Skip to main content
Record
Title
Implementation of an 8-bit Dynamic Fixed-Point Convolutional Neural Network for Human Sign Language Recognition on a Xilinx FPGA Board
Type
Student Paper
Publ. year
2019
Author/s
Núñez-Prieto, Ricardo
Department/s
Department of Electrical and Information Technology
In LUP since
2019-03-25
Downloads

Total This Year This Month
1934 164 0
Downloads per country

China 381 (20%)
United States of America 237 (12%)
India 171 (9%)
Sweden 126 (7%)
Taiwan (China) 90 (5%)
Russian Federation 76 (4%)
South Korea 73 (4%)
Czechia 72 (4%)
Japan 59 (3%)
Singapore 58 (3%)
Germany 52 (3%)
Egypt 37 (2%)
France 37 (2%)
Hong Kong (China) 36 (2%)
Viet Nam 33 (2%)
Greece 25 (1%)
United Kingdom of Great Britain and Northern Ireland 24 (1%)
Iran 23 (1%)
Indonesia 22 (1%)
Australia 18 (1%)
Italy 16 (1%)
Netherlands (Kingdom of the) 16 (1%)
Ukraine 15 (1%)
Serbia 14 (1%)
Brazil 13 (1%)
Pakistan 13 (1%)
Canada 12 (1%)
Unknown 11 (1%)
Malaysia 10 (1%)
Philippines 10 (1%)
Turkiye 10 (1%)
Sri Lanka 9 (0%)
Spain 9 (0%)
Chile 7 (0%)
Ireland 7 (0%)
Morocco 7 (0%)
Mexico 7 (0%)
Iraq 7 (0%)
Saudi Arabia 5 (0%)
Algeria 5 (0%)
Portugal 5 (0%)
Finland 5 (0%)
Slovenia 5 (0%)
Denmark 5 (0%)
Israel 5 (0%)
Nigeria 4 (0%)
Colombia 4 (0%)
Austria 4 (0%)
Cote d'Ivoire 3 (0%)
Hungary 3 (0%)
Thailand 3 (0%)
Poland 3 (0%)
Switzerland 3 (0%)
Belgium 2 (0%)
South Africa 2 (0%)
Uzbekistan 2 (0%)
New Zealand 2 (0%)
Norway 2 (0%)
Tunisia 2 (0%)
Romania 2 (0%)
United Arab Emirates 2 (0%)
Albania 1 (0%)
Nepal 1 (0%)
Kenya 1 (0%)
Lebanon 1 (0%)
Peru 1 (0%)
Cambodia 1 (0%)
Sudan 1 (0%)
Bangladesh 1 (0%)
Ethiopia 1 (0%)
Niger 1 (0%)
Lithuania 1 (0%)
Bulgaria 1 (0%)
Argentina 1 (0%)
About
The download statistics shown here have been collected since the launch of LUP in October 2007 and are updated every night. Statistics are available for all records with open access fulltexts. Efforts have been made to exclude downloads by robots and track irregular download activities.

About accessibility

Disclaimer
The information on downloads per country is based on the geolocation of IP addresses and may not be completely accurate. The statistics presented here may also change retroactively when the calculation process is improved to provide more accurate results.

Statistics Last Updated
Sat Oct 4 08:57:26 2025