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Systematics, phylogeography and polyploid evolution in the Dactylorhiza
maculata complex (Orchidaceae)

Introduction and background
Influence of Quaternary climatic changes on speciation

Quaternary climatic changes have had a profound impact on speciation, structuring of genetic
diversity and the shaping of the present-day distributions of plant and animal taxa
(Vuilleumier, 1971; Hewitt, 1996, 2000, 2004; Avise, 2000). In Europe, the repeated cycles of
glacials and interglacials during the Pleistocene (c. 2 Ma until 10 000 BP) have caused
massive fluctuations in the distributions of taxa. Fragmentation and isolation of populations
during the long-lasting glacials and expansion during the short interglacials have resulted in
marked differences among regions in intraspecific diversity. Oscillations of population sizes,
bottle necks, founder events and other population historical events associated with climatic
shifts have further contributed to differentiation among regional population groups. As a
combined effect of range shifts and population differentiation, divergent lincages have
occasionally formed contact zones, leading to reticulate speciation by means of hybridization
and polyploidization (Grant, 1981; Stebbins, 1984; Hewitt, 1988, 2001). A high frequency of
polyploid taxa may be a particularly important feature of regions harbouring young floras and
faunas, including Fennoscandia and adjacent areas of northern Europe that were covered by
thick ice sheets during the maximum of the last (Weichselian) glaciation (LGM; c. 22 000 to
18 000 BP), as compared to more climatologically stable regions (Love and Love 1974;
Stebbins, 1971; Hewitt, 1988; Soltis et al., 2003).

Analysis of macrofossil and pollen data together with organellar markers have shown that
populations of many temperate species in the European flora and fauna survived the LGM in
various southern refugia in the Mediterranean region (the Iberian, Apennine and Balkan
peninsulas), and in the Caspian/Caucasian region (Huntley and Birks, 1983; Petit et al., 1993;
Demesure et al., 1996; Hewitt, 2004). Similarly, patterns of postglacial migration have been
reconstructed for many temperate species, and a general picture of high intraspecific genetic
diversity in refugial areas in the south and low diversity in previously glaciated areas in the
north has been established (Ferris et al., 1999). However, this picture may be too simple (cf.
Widmer and Lexer, 2001). Increasing evidence suggests that the southern refugia for
temperate species were supplemented by more northern refugia during the LGM (reviewed by
Stewart and Lister, 2001), which clearly would have resulted in more complex patterns of the
distribution of intraspecific genetic diversity. Areas of sheltered topography in mountainous
parts of Central Europe may have provided suitable stable microclimates for thermophilous
plant and animal species (Litynska-Zajac, 1995; Willis and van Andel, 2004; Magri et al.,
2006; Ursenbacher et al., 2006; Sommer and Nadachowski, 2006). Populations of more cold
tolerant species may as well have survived close to the southern and eastern edges of the
Fennoscandian ice sheet together with arctic-alpine species (Rendell and Ennos, 2002; Palmé
et al., 2003; Alsos et al., 2005; Skrede et al., 2006).

Increased intraspecific genetic diversity also occurs in contact zones where divergent
populations from separate refugia meet (Petit et al., 2003). Such zones of secondary contact
have been demonstrated for both plants and animals at intermediate latitudes in Central
Europe (Petit et al. 2003). Polyploidization appears to be common at these latitudes (Stebbins,
1984). Several studies have indicated that central-northern Scandinavia may be another area
of secondary contact between divergent populations immigrating from the northeast and the
south (Jaarola and Tegelstrom, 1995; Fredga, 1996; Nyberg-Berglund and Westerbergh,
2001).



Polyploid evolution

Polyploid speciation has long been recognized as an important process in plant evolution
(Miintzing, 1936; Stebbins 1950; Grant, 1981). Recent genomic studies have made it clear
that angiosperms possess genomes with considerable gene redundancy, indicating that “most
(if not all) plants have undergone one or more episodes of polyploidization” (Soltis et al.,
2003). Many taxa are ancient polyploids that have become secondarily diploidized due to
gene silencing and other genomic processes (e.g. Lynch and Conery, 2000). Functional
polyploids in the traditional sense refer to polyploids that are integral parts of polyploid
complexes consisting of closely related taxa at various ploidy levels (cf. Grant, 1981; Soltis et
al., 2003). Polyploidization is probably the most common mechanism of sympatric speciation
(Otto and Whitton, 2000), and it is widely accepted that a single taxon may arise several times
by independent polyploidization events, via both allopolyploidization and autopoly-
ploidization (Soltis and Soltis, 1993, 1999; Soltis et al., 2003).

Chromosome doubling is an instantaneous mode of speciation that results in effective
postzygotic barriers between new polyploids and their diploid progenitors (Ramsey and
Schemske, 1998). On the other hand, new polyploid plants are subjected to competitive
constraints because they are also exposed to pollen from diploid plants, which results in
triploid offspring that have low fitness (minority cytotype disadvantage; Levin, 1975).
Adaptive strategies are needed for establishment and persistence of new polyploids. Such
strategies include apomixis, self-pollination, pollinator shift and habitat differentiation (Soltis
et al., 2003). However, even though the literature on polyploidy is comprehensive there are
relatively few studies that focus on the ecological aspects of polyploidization.

Variation in Dactylorhiza

Dactylorhiza Necker ex Nevski is one of the most taxonomically investigated genera in the
orchid family (e.g. Klinge, 1898; Vermeulen, 1947; So0, 1960; Senghas, 1968; Nelson, 1976;
Averyanov, 1990; Pedersen, 1998). The genus is widespread (Eurasia, Northern Africa,
Alaska), and consists of a confusing variety of forms that are difficult to sort into discrete
taxa. Consequently, the number of species varies strongly among authors, ranging from 12
(Klinge, 1898) to 75 (Averyanov, 1990). Part of the taxonomic complexity could be explained
by the frequent interpretation of aberrant populations and specimens as separate taxa
(Bateman and Denholm, 2003), but more important explanations may be innate factors such
as phenotypic plasticity, or that many taxa are young and have not yet acquired good
separating characters. Since long, hybridization and polyploidization have been recognized as
critical factors for the understanding of the diversification in Dactylorhiza (Hagerup, 1938;
Heslop-Harrison, 1957). During the last decade, molecular tools have provided deeper
insights into the evolutionary history of Dactylorhiza and the intricate patterns of speciation
that characterize the genus (Hedrén, 1996, 2001, 2003; Hedrén et al., 2001, 2007; Pridgeon et
al., 1997; Bateman et al., 1997; Pedersen, 1998, 2004, 2006; Bullini et al., 2001; Devos et al,
2003, 2005, 2006a, b; Shipunov et al., 2004, 2005; Pillon et al., 2006, 2007).

Most species of Dactylorhiza form a polyploid complex that has undergone extensive
reticulate evolution (summarized by Hedrén, 2002). In Europe, a large number of
allotetraploid taxa (i.e. taxa belonging to the D. majalis [Rchb.] P.F. Hunt & Summerh.
group) have evolved repeatedly by hybridization between two broadly defined parental
lineages: the D. incarnata (L.) So6 s.l. lineage and the D. maculata (L.) So6 s.1. lineage.
Extensive studies of these two parental lineages are necessary to achieve a detailed
comprehension of polyploid evolution in Dactylorhiza. A better understanding of the



variation patterns in D. incarnata s.1. and D. maculata s.1. is urgent also for proper decisions
about conservation priorities, since many allotetraploid taxa in Europe are threatened by
habitat loss (e.g. Janeckova et al., 2006; Pillon et al., 2006).

It appears that more information will be gained by studying the D. maculata s.1. parental
lineage, rather than the D. incarnata s.1. parental lineage. Nearly all investigated
allotetraploids with D. incarnata s.1. x D. maculata s.1. origin have inherited their plastid
genomes from the D. maculata s.1. parent (Hedrén, 2003; Hedrén et al., 2007; Devos et al,
2003, 2006a; Shipunov et al., 2004, 2005; Pillon et al., 2007). It is therefore of particular
interest to investigate D. maculata s.1. for plastid DNA variation. Also at nuclear marker loci
it appears more profitable to analyze D. maculata s.1. rather than D. incarnata s.1.
Dactylorhiza maculata s.. is considerably more variable than D. incarnata s.1. at all nuclear
marker loci investigated so far: allozymes (Hedrén, 1996, 2001; Pedersen, 1998, 2004, 2006),
amplified fragment length polymorphisms (AFLPs; Hedrén et al. 2001, 2007) and internal
transcribed spacers of nuclear ribosomal DNA (ITS nrtDNA; Shipunov et al., 2004, 2005;
Devos et al, 2005, 2006a; Pillon et al., 2007). Since D. maculata s.1. is morphologically very
variable and occupies a wide range of habitats, molecular genetic studies should ideally be
combined with morphometric and ecological studies.

The Dactylorhiza maculata complex

Dactylorhiza maculata s.1. is a morphologically and genetically variable polyploid complex
consisting of diploid (2n = 40) and tetraploid (2n = 80) cytotypes (Averyanov, 1990; Hedrén,
1996; Hedrén et al., 2001; Tyteca, 2001; Bateman and Denholm, 2003; Shipunov et al., 2004;
Devos et al., 2005). At least 30 taxa at various taxonomic levels have been described (So0,
1960; Delforge, 1995), but most contemporary authors distinguish between three or four
morphologically and largely cytologically defined taxa: (1) D. maculata ssp. fuchsii (Druce)
Hyl., a predominantly diploid taxon that typically grows in semi-open woodlands on fertile
soils throughout most of northwestern Eurasia (absent or rare in southern and southeastern
Europe); (2) D. maculata ssp. saccifera (Brongn.) Diklic, a diploid taxon that gradually
replaces ssp. firchsii on the Apennine peninsula and in southeastern Europe; (3) D. maculata
ssp. maculata, a tetraploid taxon that characteristically is found in more open habitats such as
grasslands, coastal moorlands and boreal-subarctic peatlands in western and northern Eurasia
(absent in southeastern Europe); (4) D. foliosa (Sol. ex Lowe) So0, a geographically isolated
Madeiran diploid. It should be observed that tetraploid populations of D. maculata ssp. fuchsii
are common in the mountain areas of Central Europe (e.g. Groll, 1965; Vo6th and Greilhuber,
1980), and that ssp. maculata is rare or absent in the same region (e.g. Klein and
Kerschbaumsteiner, 1996).

Chromosome counts and ploidy level determinations of almost 400 populations of D.
maculata s.1. from throughout all of the distribution range have been reported in the literature
(Table 1). The distributions of diploid and tetraploid populations with respect to geography
and taxonomy are shown in Figure 1. This compilation shows that there is a clear correlation
between ploidy level and taxonomy, except for populations of ssp. fichsii. Of more than 150
cytologically investigated populations of ssp. fuchsii from the Alps, northern Apennines,
western Carpathians and adjacent mountain areas in eastern Germany and the Czech
Republic, 80 % have turned out to consist of tetraploid plants; in the Alps the proportion is
even higher. Outside Central Europe, populations of ssp. fuchsii consist of diploid plants.

Morphometric studies have shown that ssp. fuchsii and ssp. maculata are relatively distinct
in southern and western Europe (Heslop-Harrison, 1951; Bateman and Denholm, 1989,
Dufréne et al., 1991; Tyteca and Gathoye, 2004). In contrast, other studies have indicated that



the morphological differentiation decreases towards the north (Averyanov, 1990; Shipunov et
al., 2004, 2005). In general, hybridization between ssp. fuchsii and ssp. maculata is
considered to be common (e.g. Delforge, 1995), and triploid hybrids are occasionally reported
(Table 1). So far, no taxonomic studies of the D. maculata complex have incorporated
detailed ecological data.

Using allozyme markers it has been shown that tetraploid populations of D. maculata s.1.
have originated by autopolyploidization (Hedrén, 1996). Regionally focused studies based on
plastid DNA and/or ntDNA markers (e.g. Devos et al, 2003, 2005, 2006a; Shipunov et al.,
2004; Hedrén, 2003; Pillon et al., 2007), as well as on morphometry and/or cytometry (e.g.
Heslop-Harrison, 1951; V6th, 1978; Reinhard, 1985; Jagietto, 1986-1987; Bateman and
Denholm, 1989; Dufréne et al., 1991; Tyteca and Gathoye, 2004) suggest, when considered
together, that tetraploid populations of D. maculata s.1. may include at least three separate
autotetraploid lineages: (i) D. maculata ssp. maculata from southern and western Europe, (ii)
D. maculata ssp. maculata from northern and eastern Europe and (iii) D. maculata ssp.
fuchsii from the mountain areas of Central Europe. According to more or less obvious
morphological differences between ssp. maculata and present-day diploids, the first two
lineages may be relatively ancient. Moreover, there are differences in chromosome size
(Jagietto and Lankosz-Mr6z, 1986-1987) and in AFLP banding patterns (Hedrén et al., 2001)
between ssp. maculata and present-day diploids. In contrast, the third lineage may be
relatively young since diploid and tetraploid populations of ssp. fuchsii are morphologically
indistinguishable (Groll, 1965; Vaucher, 1966; Scharfenberg, 1977; V6th, 1978; V6th and
Greilhuber, 1980; Jagietto, 1986-1987; Jagietto and Lankosz-Mro6z, 1986-1987; Reinhardt,
1988; Golz and Reinhard, 1997; Bertolini et al., 2000).

Aims of this thesis

The association between taxonomic complexity and universal biological issues such as
Quaternary migration history and polyploid evolution makes the foundation for this thesis.
The objective was to investigate and describe different aspects of variation in the
Dactylorhiza maculata complex and relate the variation patterns to underlying biological
processes. Four separate studies are included in the thesis. In the first study (Paper I) focus
was on the origin of allopolyploid taxa in Scandinavia. This study was also a methodological
study in which plastid DNA markers with appropriate variation were developed and
examined. The next study (Paper II) had a more taxonomic approach. Molecular markers
from both the plastid and nuclear genomes were combined with cytological and
morphological data in order to unravel patterns of differentiation in the D. maculata complex
in Scandinavia. The third study (Paper III) was a detailed investigation of habitat
differentiation, hybridization and gene flow patterns in mixed populations of diploid ssp.
fuchsii and tetraploid ssp. maculata. Plastid and nuclear DNA markers, as well as cytological,
morphological and ecological data were used for this investigation. The last study (Paper IV)
was a large-scale overview of population genetic structure, postglacial migration and
polyploidization in the D. maculata complex. This study was based on both plastid and
nuclear DNA markers.
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Material and methods
Sampling

The variation patterns in the Dactylorhiza maculata complex were investigated at various
geographical levels.

For the study of allotetraploid speciation (Paper I) plant material was mainly collected
from northern Europe, but some reference material from other parts of Europe was included
as well. More than 1 000 individuals from c. 150 populations of D. majalis s.l.
(allotetraploids) and D. maculata s.1. (the maternal lineage) were sampled for this study. In
the taxonomically focused study of the D. maculata complex in Scandinavia (Paper II) we
investigated about 30 pure populations of either diploid ssp. fucchsii or tetraploid ssp.
maculata. The populations were chosen to cover as much as possible of the biogeographic
variation in Scandinavia. One population from the adjacent Kola Peninsula was included to
improve the representation of morphologically controversial northern populations. Between 5
and 20 individuals from each population were analysed. In the third study (Paper III), which
had an ecological perspective, I investigated two mixed populations of diploid ssp. fuchsii and
tetraploid ssp. maculata. The populations were located in the coastal lowland of central
Sweden (Sjosa nature reserve; 58°45'N, 17°07E) and the central part of the Scandinavian
mountain ridge (Hamra nature reserve; 62°34'N, 12°15°E). I chose these two sites since they
represent contrasting biogeographic regions with different environmental conditions. About
50 samples/sample plots at each site were analysed. The fourth study (Paper V) had a broad
geographic perspective. Almost 2 000 samples of D. maculata s.1. from c. 300 populations
from all parts of Europe were analysed.

Ploidy level determination

In two of the studies (Papers II-11I) the relative ploidy level of each sampled plant was
assessed by flow cytometry. The analyses were performed by Gerard Geenen, Plant
Cytometry Services (Schijndel, The Netherlands).

Molecular methods

Two categories of molecular markers were used: plastid DNA and ITS alleles from the
nuclear genome. Both marker systems are supposed to be selectively neutral and are standard
tools for population genetic investigations. They have previously been used in studies of
Dactylorhiza (see background). Plastid markers are generally maternally inherited in
angiosperms and are particularly useful in phylogeographic studies since they are expected to
provide a more simplified reflection of migration patterns than biparentally inherited markers
(Ferris et al., 1999). In this thesis, plastid markers were used in all the studies. In the first
study (Paper I) we found appropriate variation at seven microsatellite loci and three loci with
indel variation. These ten loci were then used in the following studies. ITS markers (six
different alleles) were used in three of the studies (Papers II-I1I).
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Morphometry

Morphological data were used in two studies (Papers II-III). In these studies a total of 35
quantitative and qualitative characters were measured on all plants. Both floral and vegetative
characters were taken into account. The methodology was slightly modified from Bateman
and Denholm (1985).

Ecological data

Ecological data was used in one study (Paper II). In this study the niche of each sampled plant
was characterized by data of presence and cover of associated plant species (herbaceous
plants, dwarf shrubs and saplings) in a 40 x 40 cm quadrat centred on the target Dactylorhiza
individual (cf. Du Rietz, 1921). Eight environmental variables were recorded in each quadrat
in addition to the vegetation data: (1) shading, (2) cover of exposed soil, (3) cover of litter, (4)
cover of Sphagnum, (5) cover of mosses other than Sphagnum, (6) pH on the top 10 cm of
soil, (7) moisture and (8) grass sward density.

Data analysis

Variation patterns in different data sets were summarized by means of appropriate
multivariate techniques (see Papers I-IV for details): canonical correspondence analysis
(CCA), canonical variates analysis (CVA), detrended correspondence analysis (DCA),
discriminant analysis, multidimensional scaling (MDS), principal coordinates analysis (PCO)
and principal components analysis (PCA). Relationships between plastid haplotypes were
visualized in minimum spanning networks. Analysis of molecular variance (AMOVA) was
used to describe the partitioning of genetic diversity among various spatial levels. Mantel tests
were performed to unravel large-scale geographic patterns. Geographic patterns were also
described by means of distribution maps of plastid haplotypes and ITS alleles. Genetic
diversity at various spatial levels was calculated according to the indices of gene diversity (H)
and average gene diversity over loci () (Excoffier et al., 2005).

Results and conclusions
Plastid haplotypes (Papers I-1V)

We identified almost 300 plastid haplotypes in the total material of D. maculata s.1. and
allotetraploid taxa that was investigated. The haplotypes were differentiated into three distinct
groups. Group I haplotypes were dominating in populations of ssp. fuchsii (including ssp.
saccifera) and in populations of ssp. maculata from northern and northeastern Europe
(“northern/eastern ssp. maculata’). Group II haplotypes were dominating in populations of
ssp. maculata from southern, central and western Europe (“southern/western ssp. maculata™).
Intermediate haplotypes were found in contact zones between the two lineages of ssp.
maculata. The geographic distribution of haplotypes in populations of ssp. maculata is shown
in Figure 2. Both haplotype groups were represented in allotetraploid taxa in Scandinavia. The
third group of haplotypes was rare and almost completely restricted to allotetraploid material,
but must have originated from D. incarnata s.1. (see Introduction).

11
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Origin of allotetraploids (Paper 1, complemented by data from Paper V)

We found several distinct plastid haplotypes in widespread allotetraploid taxa (entities
belonging to the Dactylorhiza majalis complex), which shows that the allotetraploid group
must have multiple origins. Similar (mostly identical) haplotypes were found in both D.
majalis s.1. and in D. maculata s.1. (the maternal lineage). However, some haplotypes are
common in D. majalis s.l. but rare in D. maculata s.1., which suggests a pre-Holocene origin
of most allotetraploid lineages. Populations of D. majalis s.1. in Scandinavia are invariably
associated with widespread allotetraploid lineages and do not seem to have arisen via recent
polyploidization events in situ. Morphologically distinct populations should be considered as
segregates of already existing allotetraploid lineages. Our data indicate further that back-
crossing between allotetraploids and their parental lineages is relatively common, and this
may be an alternative pathway for the formation of new allopolyploid lineages. Hybridization
between independently derived allotetraploids may also occur.

Taxonomy of the Dactylorhiza maculata complex (Papers 1I-1V)

Both plastid and nuclear markers support the current view of four major taxa in the
Dactylorhiza maculata complex: D. maculata ssp. fuchsii, D. maculata ssp. saccifera, D.
maculata ssp. maculata and D. foliosa (cf. Devos et al., 2005, 2006a). It should however be
observed that ssp. fuchsii and ssp. saccifera grade into each other. In Scandinavia, we found
that ssp. fuchsii and ssp. maculata have partly overlapping morphological variation patterns,
but that the two subspecies could be kept separate if morphology is considered together with
habitat features. Based on ITS allele frequencies and morphology, populations of ssp.
maculata from northernmost Europe can be recognized as var. kolaénsis. Morphologically
more or less distinct groups of populations from other parts of Europe are sometimes
recognized as independent taxonomic entities as well (e.g. Delforge, 1995). However, apart
from var. kolaénsis, other taxa separated at subspecies or variety level are not supported by
molecular markers. Furthermore, some taxa previously recognized on basis of ecology and
distribution, including “elodes”, “ericetorum’™ and “psychrophila”, were also poorly separated
in morphology, based on Scandinavian material.

Niche differentiation between diploids and autotetraploids (Paper 111, complemented by data
from Paper V)

Mixed populations of diploid and autotetraploid Dactylorhiza maculata s.1. in Scandinavia
represent secondary contact zones between diploid ssp. fuchsii and tetraploid ssp. maculata. 1
found no patterns of recent and local (in sifu) autopolyploidization. Based on both molecular
markers and morphology it must be concluded that diploids and tetraploids from mixed
populations are no less differentiated than diploids and tetraploids from cytologically
homogeneous populations. Furthermore, diploid ssp. fuchsii and tetraploid ssp. maculata are
separated on a microhabitat level in mixed populations. Both taxa appear to have wider
ecological amplitude in pure populations. The ecological constraints may thus be strengthened
in mixed populations, which should contribute to the maintenance of hybrid zones. I found
unexpectedly few triploid hybrids. Most of them grew in intermediate habitats between
diploids and tetraploids. Introgressive gene flow between ploidy levels was also limited,
especially from tetraploid to diploid level (cf. Stebbins, 1971). However, I observed that
hybridization and introgression seem to be slightly more common in the Scandinavian

13



mountains than in the lowland, which may be related to differences in disturbance regimes
(cf. Anderson, 1948; Arnold, 1997).

The general conclusion that introgression is restricted between ssp. fuchsii and ssp.
maculata is strongly supported by data from particularly southern/western Europe. Of several
hundred investigated individuals of ssp. maculata from this area, none contained ssp. fuchsii
plastid haplotypes. However, a local influence of introgression (past or present) was observed
in Central Europe, where most populations of ssp. fuchsii consist of tetraploid plants.
Reproductive barriers between taxa on the same ploidy level should be less efficient than
barriers between taxa on different ploidy levels (Grant, 1981).

Polyploid evolution (Paper 1V, supported by data from Paper II)

A model of the evolutionary history of the Dactylorhiza maculata complex is given in

Figure 3. Based on both plastid and nuclear markers we identified three distinct autotetraploid
lineages: a southern/western lineage of ssp. maculata, a northern/eastern lineage of ssp.
maculata and a Central European lineage of ssp. fuchsii. Given the level of differentiation
between major plastid haplotype groups, and the present-day distribution of haplotypes
belonging to these groups, we conclude that both the southern/western and northern/eastern
lineages of ssp. maculata must have arisen before the Holocene. The tetraploid lineage of ssp.
fuchsii is genetically and morphologically indistinguishable from diploid ssp. fuchsii and is
most likely of postglacial origin (cf. references in Introduction). The southern/western lineage
of ssp. maculata has probably arisen from diploid ancestors common to this lineage and to D.
foliosa. The northern/eastern lineage of ssp. maculata has probably arisen from diploid
ancestors common to this lineage and to ssp. fuchsii. It should be observed that populations
belonging to ssp. maculata are found in two different genetically defined lineages, and in each
of these ssp. maculata is connected to a diploid taxon that is different in morphology. This
pattern indicates restricted morphological evolution in the tetraploid lineages, which may thus
have preserved some characters that have been modified in the diploids. We found that
southern/western populations of ssp. maculata are morphologically somewhat different from
northern/eastern populations, but there is no distinct morphological limit between the two
lineages.

Glacial refugia and postglacial recolonization (Paper 1V)

The separation of Dactylorhiza maculata ssp. maculata in two distinct lineages evidently
indicates postglacial recolonization from two separate refugial areas. However, the
phylogeographic signal within each lineage is weak. Both lineages are dominated by a few
widespread plastid haplotypes and by a large number of rare and geographically restricted
haplotypes. The weak phylogeographic signal within the two ssp. maculata lineages may
reflect effective seed dispersal and a propensity for long distance gene flow, as have been
suggested for other plant taxa that exhibit similar patterns of plastid haplotype distribution
(e.g. Betula; Palmé et al, 2003). Orchid seeds are dust-like and wind-borne, which implies a
potential for long-distance dispersal. Based on the present-day distribution of genetic
diversity, we suggest that source areas for postglacial migration of ssp. maculata may have
been Central Europe and parts of central Russia located between the Fennoscandian ice sheet
and the Urals. Populations of ssp. fuchsii were also characterized by a few widespread plastid
haplotypes and by many local haplotypes. During the LGM, areas of sheltered topography in
Central Europe may have provided suitable habitats for ssp. fuchsii, which is a more
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thermophilous taxon than ssp. maculata. The Mediterranean region and the Caucasus have not
contributed to northward migration, neither for ssp. fuchsii, nor for ssp. maculata.

% B Y AP N N PP S PP P SR D. incarnata (ITS X)

[ ]
[ ]
)
[J
]
[ ]
L
= | D. foliosa (ITS )
L ]
.
. !
s ® S/W D. maculata ssp. maculata (ITS |, [llIb])
T
I  Secondary contact between S/W and N/E (ITS |, lllb, V)
I > N/E D. maculata ssp. maculata (ITS [1], llib, V)

C European D. maculata ssp. fuchsii (ITS llib, V)

Plastid haplotypes:
D. maculata ssp. fuchsii (ITS lllb, V)

Dotted = incarnata
White = Group 1l
Black = Group |

Grey = Intermediate
Striped = Mixed D. maculata ssp. saccifera (ITS lllb, [V], VI)

Figure 3. Evolutionary history of the Dactylorhiza maculata polyploid complex as indicated by plastid and
nrDNA markers. Autopolyploidization events are marked by “4x.”. Note changes in relative frequencies of
Group II and Group I haplotypes. ITS alleles that occur in low frequencies are placed between square brackets.

Secondary contact between northern/eastern and southern/western lineages (Paper 1V)

Both plastid and nuclear markers conclusively show that the northern/eastern and
southern/western lineages of ssp. maculata meet in central Scandinavia (Fig. 2). The main
route of immigration for the northern/eastern lineage is via northern Finland, but it can also be
assumed that some immigration has taken place via the Aland Archipelago in the Baltic Sea.
A second contact zone involving the same two lineages seems to occur in the eastern
European lowland, between Poland and Lake Ladoga. For Scandinavia, contrasting
immigration routes from the northeast and the south has previously been suggested for e.g.
brown bear (Ursus arctos; Taberlet and Bouvet, 1994), field vole (Microtus agrestis; Jaarola
and Tegelstrom, 1995), common shrew (Sorex araneus; Fredga, 1996) and some vascular
plants (Festuca ovina, Bengtsson et al., 1995; Viola rupestris, Nordal and Jonsell, 1998;
Cerastium alpinum; Nyberg-Berglund and Westerbergh (2001); Silene dioica, Malm and
Prentice, 2005; Arabidopsis thaliana, Jakobsson et al., 2007).

We found that the contact zone between the northern/eastern and southern/western
lineages of ssp. maculata has an extensive distribution in central Scandinavia. The centre is
located to the provinces of Hilsingland, Medelpad and Angermanland along the Bothnian
Sea. Jaarola and Tegelstrom (1995) and Fredga (1996) localized hybrid zones for field vole
and common shrew to the same Bothnian region. Nyberg-Berglund and Westerbergh (2001)
also suggested that northeastern and southern lineages of Cerastium alpinum form a contact
zone in this area. Such a pattern of coinciding contact zones could be explained by the
deglaciation history of the Weichselian ice sheet. The centre of the ice sheet during the LGM



was located to the Angermanland area, and the deglaciation of southern Angermanland took
place only c. 9300 BP (c. 10 500 cal. yrs. BP) when southern and northeastern Fennoscandia
was already ice free (Berglund, 2004). Many species of plants and animals may thus have
accumulated in the bordering areas left by the retreating ice. When the ice had finally melted
away, the Bothnian region may have become quickly colonized from both the north and the
south, which should explain the coincidence of contact zones.

For plastid data, we observed that the genetic diversity is markedly higher in the contact
zone in central Scandinavia than in adjacent areas to the north and the south. This is reflected
by all measures of genetic diversity. The average gene diversity over loci, which considers
divergence between haplotypes, reveals that populations in central Scandinavia, together with
populations from the putative contact zone in the eastern European lowland, are more diverse
than any other European populations of ssp. maculata.

Plastid DNA recombination (Paper IV)

Intermediate plastid haplotypes between northern/eastern Group I haplotypes and
southern/western Group II haplotypes are conspicuously common in the contact zone in
central Scandinavia (Fig. 2). A quarter of the individuals of ssp. maculata in central
Scandinavia have intermediate haplotypes. We also observed a high frequency of intermediate
haplotypes in the putative contact zone in the eastern European lowland. These remarkable
results strongly suggest that recombination takes place in the plastid genome. So far, only a
few cases of suspected plastid DNA recombination have been reported (viz. Pinus contorta,
Marshall et al., 2001; Cycas taitungensis, Huang et al., 2001). Our study is the first to provide
clear phylogeographic evidence. As a comparison, there is an increasing amount of evidence
for mitochondrial genome recombination (e.g. Bergthorsson et al., 2003; Barr et al., 2005;
Tsaousis et al., 2005). Plastid DNA markers are standard tools for population genetic and
phylogenetic analysis. It is obvious that recombination can be problematic for phylogenetic
inference at the species level.

Main conclusions and perspectives
This thesis has resulted in several interesting and important findings:

e Gene flow between diploid and autotetraploid cytotypes of Dactylorhiza maculata s.l. is
restricted. In hybrid zones between diploid ssp. fuchsii and tetraploid ssp. maculata, the
differentiation between taxa is reinforced by niche separation at the microhabitat level.

e For Dactylorhiza maculata s.1., and many other temperate organisms, postglacial
recolonization from source populations at intermediate latitudes in Central and Eastern
Europe has played a much more important role than previously thought. In contrast,
populations of D. maculata s.1. in traditional refugial areas in southernmost Europe have
not contributed to northward migration.

e Hybrid zones between southern and northern/eastern immigrant lineages may be a common
phenomenon in central Scandinavia, which should have profound consequences for the

structuring of genetic diversity.

e The paradigm of the non-recombinant plastid genome is questioned.
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