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Abstract 
 

In the light of the current financial crisis, risk management and prediction of market 
losses seem to play a crucial role in finance. This thesis compares one day out-of-
sample predictive performance of standard methods and conditional autoregressive VaR 
(CAViaR) by Engle & Manganelli (2004) for VaR (Value-at-risk) prediction of market 
losses. Comparison is made on US, Hong Kong, and Russian indices under tranquil 
period and current crisis using more than 10 years of daily returns. Performance is 
evaluated in terms of empirical coverage probability and predictive quantile loss on 
adequate models pointed out by Christoffersen test. The findings show that traditional 
methods such as historical simulation, normal VaR and t-VaR behave quite well in 
tranquil period if accounted for the return volatility dynamics by using GARCH 
volatility estimates. When unfiltered, these models fail to produce reliable results. In 
crisis period symmetric and asymmetric specifications of CAViaR showed good results, 
generally better and more stable than traditional approaches. Overall, CAViaR was 
found to work better on 5% than on 1% level. However, this model class is in most 
cases outperformed by conventional filtered models in the tranquil period. Little 
evidence was found that the market type has impact on the choice of ideal VaR model.  
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1. Introduction 
Measuring of market risk is not a new field of finance. The risk measure called VaR and its 

ability to forecast market losses has been object of broad previous academic research. The 

background of VaR, its evaluation and comparison of various classes of VaR in prior 

research are presented in this section. A brief review of empirical findings gives an insight 

into VaR and its use as a risk measure. This chapter also includes the definition of VaR, 

purpose, delimitations and the outline of the thesis. 

1.1. Background 
Effective measures of market risk have become crucial in current times of increased 
uncertainty in financial markets. Fragility emerging from extensive movements in market 
prices of financial assets as well as increased use of derivatives call for risk measures able to 
capture and mitigate more-than-ever growing financial risks. Not only supervisory authorities, 
but also management asks for a quantitative measure of market risks, in order to make sound 
investment decisions, allocating risk capital or fulfilling external regulations. As broadly 
defined by Jorion (2001) market risk is a volatility of unexpected outcomes. In other words, it 
is a risk, that the investment loses its value due to movements in market risk factors such as 
equity, exchange rate, interest rate and commodity risks. The scope of this thesis is restricted 
to the area of market risk management with a prominent tool called Value at Risk (VaR).  

In contrast to famous Modigliani-Miller theorem postulating risk management is irrelevant in 
a perfect market; e.g. Bartram (2000) summarizes the benefits of effective risk management in 
the presence of agency costs, information asymmetries, transaction cost and taxes, i.e. in a 
real world. Hence, quantitative measurement of market risk is employed by the whole range 
of institutions such as security houses, banks, pension funds and other financial and non-
financial entities. The most commonly accepted and used measure of market risk is VaR. 
There are several more or less equivalent definitions of VaR; however there is no general 
consensus on how to actually calculate it (Thompson & McCarthy, 2008). This study has the 
ambition to bring more light to the line of research that compares various VaR models, by 
evaluating predictive performance of chosen VaR classes. 

1.2. Value­at­Risk – the Definition 
Defined as maximum loss suffered by a given portfolio within a given time period by a given 
probability, VaR is a most widespread risk measure used internally as well as externally for 
reporting to regulatory authorities. In a statistical manner ܸܴܽሺߙሻ can be defined as follows: 
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௧ܮ/ܲ ൌ ௧ܲ െ ௧ܲିଵ 

Prሾܲ/ܮ ൏ െܸܴܽሿ ൌ 1 െ  ߙ

Prሾܲ/ܮ ൐ െܸܴܽሿ ൌ  ߙ

• Pt : Value of Portfolio at time t 

• P/Lt : profit/loss at time t 

• α: confidence level (e.g. 95%, 99%) 

Thus VaR is the (1-α) quantile of the return distribution, which in most cases has to be 
specified.1 

The emergence of VaR reaches as far as 1952 as it is a natural evolution of Markowitz’s 
portfolio theory (PT) in the mean-variance framework. However, there are important 
differences between PT and VaR. Dowd (2005, p. 11) mentions e.g.: 

1. PT interprets risk in terms of standard deviation, while VaR interprets it in 
terms of maximum likely loss. 

2. PT assumes distributions close to normal, while VaR accommodates wide 
range of possible distributions. 

3. PT is limited to market risk, while VaR can be applied to other types of risk. 

4. Some VaR approaches do not share the same variance-covariance background 
as PT. 

As regards development of VaR, it can be dated back to the late 1980’s at J.P. Morgan.  
Within the next couple of years, due to its many advantages VaR established itself as a 
prevailing risk measure, that has concerned academics ever since. 

1.3. Previous Research on the topic 
VaR models have been extensively discussed in literature. As the shortcomings of the 
traditional VaR models are well known (see section 2.1), VaR-related research aimed at more 
advanced approaches in order to improve the accuracy and predictive power of VaR models. 
Although new VaR approaches such as Conditional Autoregressive VaR (CAViaR) have been 
developed, there are only few studies available comparing a broader range of VaR models 
including both, traditional and advanced VaR models.  

In an early study, Beder (1995) applied eight common VaR models to three different 
portfolios. The models used were the historical simulation approach as well as Monte Carlo 
simulation. Then variations of these VaR models were constructed by employing different 
assumptions with respect to the data base and/or data correlation. The three portfolios were 

                                                 
1 Exception is e. g. CAViaR model that does not invert the distribution but models VaR autoregressively instead.  
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chosen such that the complexity in terms of optionality and/or asset class composition was 
increasing. Applying these models, Beder found that results varied by more than 14 times for 
the same portfolio. Hence, it can be seen that results are highly dependent on the input 
parameters, data, assumption and methodology. Therefore VaR does not provide certainty or 
confidence of outcomes, as the results are highly dependent on the time horizon, the 
underlying data as well as the assumptions and the applied methodology.  

In another study Bao, Lee & Saltoğlu (2006) evaluated the predictive power of VaR models in 
several dimensions in emerging markets. In their study, they did not only apply traditional 
VaR models, but also models based on extreme value theory as well as the conditional 
autoregressive VaR (CAViaR). The focus of their study was on emerging markets in Asia. 
Their results showed that their benchmark, RiskMetrics model developed by J.P. Morgan, 
produced good results in tranquil periods, whereas in crisis periods VaR approaches based on 
extreme value theory produced better results. Furthermore Bao, Lee & Saltoğlu (2006) found 
that filtering is useful for EVT models, whereas it may deteriorate results for other models. In 
contradiction to that Danielsson & and de Vries (2000) found that common confidence levels, 
such as 95%, for VaR are not extreme enough and therefore VaR models using extreme value 
theory often produce poor results. Hence, the finding of Bao, Lee & Saltoğlu (2006) may only 
be coincidence. The last class of VaR models examined by the authors was CAViaR. 
Concluding from the results for this model class, the authors state that they produce some 
successful results across some periods. However they are not reliable for the whole period. 

In their article Kuesters, Mittnik & Paolella (2006) state that the regulatory relevance of the 
VaR approach makes it necessary to develop reliable VaR estimation and prediction 
strategies. Therefore, the authors are comparing both conditional and unconditional VaR 
models with respect to their one-step-ahead prediction ability. Applying those models to 
NASDAQ-composite data, the authors find that most of the models are not able to produce 
correct estimates. The simulated VaRs do often underestimate the actual market risk. 
Furthermore they find that the unconditional models lead to clustered VaR violations and they 
are therefore not fulfilling the independency criterion of VaR estimates (see Section 2.6). 

Even though conditional models of VaR estimates lead to an increased volatility in VaR 
estimates, approaches allowing for heteroskedasticity yield acceptable forecasts. In their 
conclusion Kuesters, Mittnik & Paolella (2006) state that VaR specifications of the following 
model classes produced the best estimates in their study: mixed normal GARCH2, extreme 
value theory and filtered historical simulation. A further finding of theirs is that CAViaR 
models were not able to perform well overall. According to the authors, this is due to a 
lacking return process which is not estimated along with the quantile process. 

                                                 
2 This model class links a “(…) GARCH-type structure to a discrete mixture of normal distributions, allowing 
for dynamic feedback between the normal components.” (Keith Kuesters, Stefan Mittnik and Marc S. Paolella, 
2006) 
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Although Giamouridis & Ntoula (2009) performed a study using different approaches for 
VaR and expected shortfall on hedge funds, their results are in line with aforementioned 
studies: Advanced models allowing for conditional mean and variance produce better VaR 
estimates, than standard approaches, such as historical simulation. In their study the authors 
use the following models: Historical simulation, Filtered Historical simulation, Gaussian 
model, Generalized Pareto Distribution model and the Cornish–Fisher model. Concluding 
from their study, they found that “parameterizations allowing asymmetry and fat tails, i.e. 
Cornish–Fisher and Generalized Pareto Distribution outperform the Gaussian and Historical 
Simulation models” (Giamouridis & Ntoula, 2009) for 1% VaR. On the 5% those three 
models were performing equally well in terms of average size of violations, and number of 
threshold violations. 

Summarizing the presented literature it can be concluded, that there seems to be no ideal VaR 
model for any dataset. Common sense suggests that traditional VaR models in their naïve 
form should not produce reliable forecasts for any dataset. More advanced models, allowing 
for conditional parameters are usually outperforming traditional models. However, the 
question whether there is a VaR model producing sufficiently good estimates for different 
data series and regions has not been answered yet. 

1.4. Purpose of the thesis 
The disagreement about which model best accommodates market risk supports the relevance 
of further research into VaR. This thesis discusses VaR as a prominent tool in risk 
management and tries to provide valuable comparison between various classes of VaR in 
terms of their forecasting performance with regards to chosen evaluation criteria.  

This thesis focuses on one-day forecast assuming that historical return data provides sufficient 
information necessary for forecasting. In recent years many new VaR models have been 
developed in order to overcome the shortcomings of traditional approaches3. However, only a 
few studies have been performed comparing a broader range of models, markets, and time 
periods. This thesis aims for a comparison of the traditional VaR models and the Conditional 
Autoregressive VaR (CAViaR) introduced by Engle & Manganelli (2004). CAViaR 
approaches show some promising performance properties, therefore deeper and 
comprehensive insight and tests of this method would surely contribute to the field of market 
risk measuring. Tests of chosen models are performed not only on different markets, 
including mature and emerging markets, but also on two different confidence levels and two 
different time periods representing tranquil and volatile market. In summary, this thesis seeks 
to answers three questions: 

                                                 
3 Detailed selection of traditional approaches as well as general and specific shortcoming are presented in the 
theory section. 
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1) Do VaR forecasting models based on CAViaR have better predictive performance in 
one-step forecast than the traditional measures of VaR in terms of specified evaluation 
criteria? 

2) How does the various VaR models performance change with respect to changes in 
return data geographical origin, time period or confidence level? 

3) What is the role evaluation technique play in looking for most appropriate models? 

1.5. Delimitations 
Quite understandably, it is difficult to cover all aspects of VaR in the relevant quality. 
Exhaustive analysis would require very extensive research which is not feasible in given time 
horizon. Therefore, several aspects of this thesis have to be delimited. 

First, it was necessary to delimit number of tested methods. Sub-section 1.3 well summarizes 
different approaches and results found by researchers in terms of VaR accuracy and reliability 
in maximum loss prediction. Methods applied vary from the simple to the most sophisticated. 
This study investigates Conditional Autoregressive VaR and puts it into contrast with 
traditional VaR models. Models based on Extreme Value theory (EVT) that model the tail of 
the distribution are not evaluated in this study. Theoretical description and references on EVT 
approach to VaR are given in the section 2.7.1. 

Second, despite drawbacks embedded in it, VaR is still the main risk management tool and 
most discussed risk measure. VaR’s exclusivity is emphasized by Basel I and Basel II, since it 
determines capital requirement of banks’ portfolios. E.g. expected shortfall (ES) is one of the 
coherent improvements of VaR. Nevertheless, it has not received equal attention. 
Consequently, to keep the study as practically useful as possible, VaR solely remains the 
primary focus of this thesis. 

Finally, this study will not focus on trading portfolios of banks because they do not disclose 
their trading positions and respective returns. It is assumed that the models would behave 
according to empirical findings of this thesis also for different kinds of positions or formed 
portfolio. Hence, estimation is conducted only on equity indices of different geographical 
origin. 

1.6. The Plan of the Thesis 
The thesis rests upon the three questions mentioned above, to which empirical analysis tries to 
find the answer. Organization of the thesis is then as follows. Section 2 introduces the 
theoretical background of various VaR models. Central theoretical aspects concern both, the 
traditional approaches of estimating VaR as well as the conditional autoregressive VaR. 
Section 2 also introduces evaluation framework used for testing VaR estimates produced by 
aforementioned models. In section 3 applied methods for both VaR estimation and 
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comparison are described. Section 4 presents obtained empirical results with respect to 
evaluation criteria. The final section summarizes the results and concludes the most important 
findings. 
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2. Theory 
In this section, the theoretical background of VaR is presented. First advantages and 

disadvantages of VaR are listed. Four different VaR classes with their sub-classes are 

described in this section. (1) Three types of Historical simulation, (2) VaR under normal 

distribution, (3) VaR under t-distribution, (4) Three specifications of Conditional 

Autoregressive VaR. Filtering of data series with volatility constitutes a striking improvement 

against naïve models. This requires plausible volatility estimate which is argued to be 

reached by GARCH(1,1). Finally, back-testing methods employed are introduced. 

2.1. Attractions and Shortcomings of VaR 
The reason behind the popularity of VaR is predominantly its conceptual simplicity as it 
aggregates all the risks in a portfolio into a single number suitable for use in the boardroom, 
reporting to regulators, or disclosure in an annual report (Linsmeier & Pearson, 1996). VaR 
can measure risk across all types of positions (almost any asset) and risk factors (not only 
market risk) and it provides a monetary and probabilistic expression of loss amounts.  

Despite significant problems, the VaR concept can be utilized in several ways. (1) 
Management can set overall risk targets and from that determine the corresponding risk 
position. Increasing VaR means increasing risk for the firm. (2) VaR can be used to determine 
capital requirements. New risk-based capital adequacy framework Basel II, analogous to 
Basel I, approves VaR as a primary means of quantifying credit risk and thus capital 
adequacy. Further, according to Basel Committee, banks should keep sufficient cash to be 
able to cover market losses over 10 days with 99 percent probability for all their traded 
portfolios. This amount is to be determined by VaR. (3) VaR is useful for reporting and 
disclosing purposes. (4) VaR-based decision rules can guide investment, hedging, trading and 
portfolio management decisions. (5) VaR information can be used to provide remuneration 
rules for traders and managers and (6) systems based on VaR can measure other risks such as 
credit, liquidity and operational risks. (Dowd, 2005) 

From among the critics, Taleb (1997) suggests suspension of VaR as a (1) potentially 
dangerous malpractice as it involves principal-agent issues and is often invalid in real world 
settings. (2) Over-reliance on VaR can lead to bigger losses. (3) VaR does not describe losses 
beyond the specific confidence level. Danielsson & Zigrand (2003) argue that VaR used for 
regulatory purposes may (4) distort good risk management practices. (5) Non-coherence due 



 

14 

to non-subadditivity4 of VaR is seen as the most serious drawback of VaR as a risk measure. 
It can only be made sub-additive when imposing normality restriction on return distribution, 
what contradicts the reality of financial time series.  

VaR is used by Bank of International Settlements (BIS) for determining capital requirement to 
cover market risks by normal operations. This, however, requires the underlying risk to be 
properly estimated, otherwise it (6) may lead institutions to overestimate (underestimate) their 
market risks and consequently to maintain excessive high (low) capital requirements. The 
result is an inefficient allocation of financial resources. These facts were suggested by Engle 
& Manganelli (2004). 

Among recent critics Whalen (2006) notes that over the past decades VaR appeared to be 
effective as there was little risk to measure and that relying on false assumption in regulatory 
framework makes VaR one of the most “(…) dangerous and widely held misconceptions in 
financial world.” (Whalen, 2006, p. 2)  

 (7) Lastly, there exists a vast number of ways of VaR calculation which differ in their 
assumptions and have their own advantages and disadvantages and performance specifics. 
While bearing in mind the current popularity of VaR, we believe that addressing the problem 
of comparison of various classes of VaR would represent useful information for VaR users. 

2.2. Traditional VaR Approaches 

2.2.1. VaR using Historical Simulation 

The most common non-parametric approach to VaR estimation is using historical simulation 
(HS). Under this approach one assumes that the historical distribution of the returns represents 
also the return distribution of future returns. This assumption allows forecasting future VaR 
directly from empirical distribution. This thesis employs three most common approaches to 
HS.  

a) Basic Historical Simulation 
Basic (naive) HS estimates 1+tVaR  by ሺ1 െ ሻ-quantile of empirical distribution of returnsߙ r . 

ܸܴܽ௧ାଵ ൌ ܸܴܽଵିఈሺݎ௧, ,௧ିଵݎ … ,  ଵሻݎ

For example, using a sliding window of, say, 1000 observations, ܸܴܽ௧ାଵሺ0,95ሻ is simply the 
negative of the 50th lowest observation in the sorted sample. 

The basic (unfiltered) HS has numerous disadvantages summarized well in (Dowd, 2005). 
The biggest weakness is the assumption of IID5 return series. In other word, basic HS would 
perform well only if there were no changes in volatility of returns over time.  

                                                 
4 Consider two portfolio representations A and B and let ρ(.) be the risk measure for a determined period, than 
ρ(.) is subadditive if ρ(A+B) ≤ ρ(A)+ ρ(B). This in fact expresses diversification principle. 
5 Independently and identically distributed 
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b)  Age­weighted Historical Simulation 
To tackle this problem Boudoukh, Richardson, & Whitelaw (1998) suggested weighting the 
observations according to their age. Consequently instead of previous weights 1/N, the most 
recent observations are assigned higher weights as follows, where 1w  is the weight for the 

newest observation: 

ଵݓ ൌ ଵିఒ
ଵିఒ೙  (1) 

௜ݓ ൌ  ଵ (2)ݓ௜ିଵߣ

Constant λ lies between 0 and 1 and reflects exponential rate of decay. For the special case
1→λ  age-weighted HS converges to basic HS. Good summary of improvement of age-

weighting against basic HS is given in Dowd (2005) stressing there are four major attractions 
of age-weighted HS: 

1. It provides a nice generalization of traditional HS as mentioned earlier. 

2. A suitable choice of λ can make VaR estimates more responsive to large loss 
observations and makes them better at handling clustering of large losses. 

3. Age-weighting helps to reduce (not eliminate!) distortions caused by events that are 
unlikely to recur and reduces ghost effects. Older observations will probably lose their 
probability weights and their power to influence current VaR falls over time. 

4. Unlike equally-weighted HS, age-weighting can be more effective as it gives the 
option of letting the sample grow with time. While under basic HS non-recurring past 
events would distort the current picture, age-weighting allows the importance of this 
events to decline. Hence, with this modification, valuable information is never thrown 
away, as it is necessary with basic HS, what results in jumps as sliding window puts 
old observations (with weight 1/N) out of sample. 

c)  Volatility­weighted Historical Simulation 
Finally, Hull & White (1998) suggest to apply HS to volatility weighted (filtered) series. The 
idea lies behind updating the return series to account for latest changes in volatility. For 
illustration, if the market volatility today is 5% a day, while two months ago it was only 2,5%, 
than the data from two months ago would clearly understate the risk tomorrow. Similar 
situation can also occur vice versa, resulting in overestimating tomorrow’s risk if basic HS is 
applied. Volatility weighting updates return data to reflect volatility tomorrow and its changes 
from past values. Detailed description of volatility weighting method is presented in sections 
2.4. and 3.6. 

2.2.2. VaR under normal distribution 

This approach assumes that returns are normally distributed and VaR is calculated employing 
quantiles of standard normal distribution. Empirical evaluation showed that return series do 
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not follow the normal distribution. More specifically, returns are not IID. Kuesters, Mittnik & 
Paolella (2006) summarizes the three widely reported stylized facts:  

(1) Volatility clustering, indicated by high autocorrelation of absolute and squared 
returns. Extreme values tend to occur in clusters. This implies that volatility today 
influences the expectation of volatility in the future period(s). Despite the widely 
accepted assumption of random walk (IID-ness) in financial returns, in what case 
variable shows no serial correlation, it does not follow that non-linear functions of 
return would also be non auto-correlated. So, while no correlation is observed in 
returns themselves, volatility of returns of financial time series exhibits it. 

(2) Substantial kurtosis, that is, the density of the unconditional return distribution is more 
peaked around the center and possesses much fatter tails than the normal density. 
Usual values of kurtosis of financial time-series fall in the range 4 to 50, while 
kurtosis of normal distribution equals to 3. Sample standard deviation is, therefore, not 
a proper measure of variance in returns. 

(3) Mild skewness of the returns, possibly of a time-varying nature. 

The normal VaR is calculated as follows: 

ܸܴܽሺߙሻ ൌ െߤ ൅ ߪ כ  ሻ   (3)ߙ௭ሺݍ

Where ݍ௭ሺߙሻ is the value of the standard normal variate such that  ߙ of the probability density 
mass lies to its left and ሺ1 െ  ,of the probability density mass lies to its right. (Dowd, 2005 (ߙ
p. 58) Assuming randomly some profit/loss variable ~ܰሺ0; 1ሻ, what is the 99% VaR for the 
next 100 days? Applying aforementioned formula yields:  

ܸܴܽሺ0,99ሻ ൌ െߤ ൅ ߪ כ  ௭ሺ0,99ሻ  (4)ݍ

ܸܴܽሺ0,99ሻ ൌ െ0 ൅ 1 כ 2,33 ൌ 2,33 (5) 

Hence in 99 trading days out of 100 trading days the loss will not exceed 2,33 P/L-units. A 
Graphical representation shows the geometrical location of the VaR(99%): 
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Figure 1: VaR for standard normal distributed profit/loss variable 

 

Using a normal distribution implies a small but non-negative probability of negative asset 
values, which cannot occur in real world, as asset prices are limited to the interval ሾ0; ∞ሿ. 
Therefore a variation of the aforementioned approach is commonly used: VaR under the 
assumption of log-normal distribution. In this case log-returns are used instead of arithmetic 
returns. Hence asset prices are limited to a positive range (see Figure 2 below). 

 

Figure 2: Log-normal distributed asset prices (following Dowd (2005), p. 61) 
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The use of normal distribution for VaR modeling has been heavily criticized: Empirical 
evidence showed that market data is more accurately described by distributions that allow 
occasionally for very large market movements. These movements are not covered by a normal 
distribution instead a heavy-tailed distribution has to be used. (Glasserman, Heidelberger, & 
Shahabuddin, 2000) Using the normal distribution in this case leads usually to an 
underestimation of the VaR. Often the normality assumption is justified by referring to the 
central limit theorem stating that as the sample size increases the distribution approaches 
normal distribution. However this applies only to “quantities and probabilities in the central 
mass of the density function.” (Dowd, 2005, p. 157)  Instead extreme value theory should be 
used, when dealing with extremes of the distribution.  

2.2.3. VaR under t­distribution 

A good description of return series is important for accurate VaR estimates. As the normality 
assumption of returns leads to underestimation of VaR, recent research focused often on 
developing advanced, complicated and calculation intensive VaR approaches. “In contrast, the 
Student-t distribution is a relatively simple distribution that is well suited to deal with the fat-
tailed and leptokurtic features.” (Chu-Hsiung & Shan-Shan, 2006, p. 292) The advantage of 
this approach is that the t-distribution converges to the normal distribution for an infinite 
number of degrees of freedom. Therefore the t-based VaR can be seen as a generalization of 
the VaR under assumption of normality. (Dowd, 2005, p. 159) 

A crucial point of the student-t distribution is the determination of degrees of freedom. One 
suggestion is to set the degree of freedom according to empirical findings. Following this 
approach it turns out that shorter periods of time suggest degrees of freedom in the range of 
[4;6]. (Glasserman, Heidelberger, & Shahabuddin, 2000, p. 58) However, this thesis follows, 
Dowd (2005): There degrees of freedoms are obtained as follows:  

ݒ ൌ ସכ఑ି଺
఑ିଷ

 (6) 

Where ߢ is the kurtosis and v are the degrees of freedom. The degrees of freedom are chosen, 
such that they fit the empirically observed kurtosis. The number of degrees of freedom is the 
closest integer satisfying aforementioned equation. 

Using the ߙ quantile of student-t distribution with v degrees of freedom, ݐ௩,ఈ, one can 
calculate the value at risk under assumption of student-t distribution: 

ሻߙሺܴܸܽݐ ൌ െߤ ൅ ට௩ିଶ
௩

כ ߪ כ  ௩,ఈ (7)ݐ

Where ߤ is the mean and ߪ the sample standard deviation. 



 

19 

However, there are also critical issues about the VaR under t-distribution that have to be 
considered. The Student-t distribution is criticized for its inability to capture the asymmetry of 
distribution of asset returns (Chu-Hsiung & Shan-Shan, 2006). Furthermore the VaR under t-
distribution can produce too conservative estimates, in other words, estimates are too high. 
Applying VaR under t-distribution to very low or very high levels, leads to estimates that are 
not consistent with extreme value theory. The aforementioned problem applies also to the 
normal distribution. Additionally, the t-distribution is not stable, if two variables are t-
distributed. The sum of these variables is not necessarily t-distributed. 

2.3. Conditional autoregressive VaR (CAViaR) 
One branch of recently developed VaR models focuses on extreme quantile estimation. 
Instead of modeling the whole distribution, this approach only focuses on the left tail of it, as 
this is usually the region of interest for everybody concerned about risk. The volatility in 
financial markets is not constant over time and shows signs of autocorrelation evident from 
observed volatility clustering. VaR is to a great extent determined by distribution of volatility; 
hence it must logically follow similar behavior.  

Engle & Manganelli (2004) try to formalize this characteristic by proposing conditional 
autoregressive quantile specification, that they call CAViaR model (Conditional 
Autoregressive Value at Risk). Next, following Engle and Manganelli; 

Suppose a portfolio’s observed returns { }T
ttr 1= . Let p (e.g. 0,01; 0,05) be the probability 

associated with VaR, let 1−Ωt  be the information set available at time t consisting of 

observable variables and let pβ  be a m-vector of unknown parameters. Next, let itVaR −  

denote the time p-quantile of the distribution of portfolio returns formed at t-i. General 
CAViaR specification is then given by 

ܸܴܽ௧ ൌ ݂ሺݔ௧, ଴ሻߚ ൌ ଴ߚ ൅ ∑ ௜ߚ
௠
௜ୀଵ ܸܴܽ௧ି௜ ൅ ݈ሺߚ௠ାଵ, … , ;௠ା௤ߚ Ω௧ିଵሻ (8) 

where l is the function of finite number of lagged values of observables (e.g. returns). 

For practical use the relation above can be in most cases reduced to 

ܸܴܽ௧ ൌ ଴ߚ ൅ ଵ ܸܴܽ௧ିଵߚ ൅ ݈ሺߚଶ, ;௧ିଵݎ VaR௧ିଵሻ (9) 

The idea behind CAViaR lies in the autoregressive term 11 −tVaRβ that ensures gradual and 

smooth change in VaR over time. Term ( )112 ,, −− tt VaRrl β  links VaR to the observed variables 

belonging to the information set 1−Ωt . For the purposes of this thesis the information set 

consists of time lagged returns of 1−tr , that are thus connected to the level of VaR. All said, 

the VaR level responds to the level of 1−tr  and previous periods’ VaR.  
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In the above specification parameter 1β  measures the change based on the previous level of 

VaR, whilst 2β is a measure of change in VaR level based on the latest information, i.e. the 

level of 1−tr . 

Next, the three CAViaR processes that are the object of this thesis are discussed. 

a) Symmetric absolute value 
ܸܴܽ௧ ൌ ଴ߚ ൅ ଵܸܴܽ௧ିଵߚ ൅  ௧ିଵ|  (10)ݎ|ଶߚ

Apart from the autoregressive term, the VaR for this specification responds symmetrically to 
the past return. This is in line with natural behavior of the VaR level, as one can expect VaR 
to increase when the latest return falls below zero. Intuition suggests that the negative 
performance today increases probability of similar performance tomorrow. However, the 
model makes the same true for “good days” through the absolute value. A possible 
explanation suggested by the authors is that in case of volatility models we might expect VaR 
increases due to exceptionally good performance.  

b) Asymmetric slope 
ܸܴܽ௧ ൌ ଴ߚ ൅ ଵܸܴܽ௧ିଵߚ ൅ ௧ିଵሻାݎଶሺߚ ൅  ௧ିଵሻି (11)ݎଷሺߚ

ሺݎ௧ିଵሻି ൌ െmin ሺݎ௧ିଵ, 0ሻ 

ሺݎ௧ିଵሻା ൌ ,௧ିଵݎሺ ݔܽ݉ 0ሻ 

This specification enables VaR level to depend asymmetrically on the sign of 1−tr . Thus 

positive and negative returns influence VaR differently. 

c) Indirect GARCH(1,1) 

ܸܴܽ௧ ൌ ඥߚ଴ ൅ ଵܸܴܽ௧ିଵߚ
ଶ ൅ ௧ିଵݎଶߚ

ଶ  (12) 

As with symmetric absolute value, the VaR level depends symmetrically on past return 1−tr . 

The authors state that indirect GARCH model would be correctly specified6 only if the 
underlying distribution is really GARCH(1,1) with IID errors.  

Further they argue that various forms of non-IID error distributions can be modeled with 
aforementioned specifications. Models are also applicable for distributions with both non-
constant volatility and errors, what is a feature of many financial time series. 

2.4. Filtering through volatility weighting 
Various models described in the sections 2.2 and 2.3 are computed in both “unfiltered” and 
“filtered” form. CAViaR models will not be presented in filtered form, since filtered series is 
nearly IID, and CAViaR-specified VaRs might thus not show signs of dependence. By 

                                                 
6 If a model is correctly specified, then Prሺݎ௧ ൏ ܸܴܽ௧ሻ ൌ  ݌
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unfiltered forms with specified conditional distribution function ܨሺ·ሻ VaR estimate is, in 
general, given by inverting the ܨሺ·ሻ 

ሻ൯ߙ௧ሺݍ௧൫ܨ ൌ  (13) ߙ

ሻߙ௧ሺݍ ൌ ௧ܨ
ିଵሺߙሻ (14) 

For filtered model this thesis uses the ideas of J. Hull and A. White, 1998 who suggested the 
method to account more for the recent changes in volatility of the instrument. This can also be 
called volatility updating as the calculations are applied to filtered series of ݎ௧

 In such case .כ
the model is denoted with *, e.g. VW-HS* in case of Volatility-weighted Historical 
Simulation. For non-parametric method (Historical Simulation) filtered VaRs are calculated 

using filtered series of ݎ௧
כ ൌ ௥೟

ఙ೟
, where the volatility, ߪ௧, must be estimated. Next step is to 

rescale ∗r  with the most recent forecast of volatility Tσ  of asset in question. Returns in the 

data set are then replaced by  

௧ݎ
כ ൌ ఙ೟

ఙ೟
 ௧ (15)ݎ 

For parametric methods (Normal VaR and VaR under t-distribution) forecasted volatility 
enters the VaR formula directly for each observation. The task is thus to forecast conditional 
volatility ߪ௧ for each day allowing for normally distributed errors (HS, Normal VaR) and t-
distributed error terms (t-distribution). 

2.5. Modeling volatility 
Conditional variance ߪ௧

ଶ can be modeled in many ways.7 First group is based on past standard 
deviations. From among these methods of modeling time varying volatility, the simplest one 
is the Moving Average (MA) approach described and criticized well in Jorion (2001). MA is 
calculated as a moving average of historical variances discarding the oldest observations. MA 
assigns the same weight to the past events as the most recent ones even though these past 
events are not likely to recur. This effect is also known as ghosting or ghost effect. From the 
same family, VaR estimation weighted by exponentially weighted MA (EWMA) used by 
RiskMetrics is usually used as a benchmark in financial industry. EWMA model, unlike MA 
puts greater weights on the more recent volatility estimates, what makes it more responsive to 
sudden movements of the market. RiskMetrics specifies EWMA model to forecasting 
variance 2

1+tσ  for 94,0=λ by the following equation: 

௧ାଵߪ
ଶ ൌ ଴ߙ ൅ ௧ߪߣ

ଶ ൅ ሺ1 െ ௧ݎሻሺߣ െ  ௧ሻଶ  (16)ߤ̂

                                                 
7 See Poon & Granger, 2003 for excellent coverage, reference and recommendations 
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Where the estimated mean of returns at time t is represented by ̂ߤ௧.This model was tested by 
González-Rivera, Lee & Mishra (2004) founding that EWMA model proposed to calculate 
VaR seems to be the worst performer. 

Other methods are either non-parametric or parametric. Non-parametric models are suggested 
by Bühlmann & McNeil (2001) who proposes simple iterative algorithm for nonparametric 
first-order GARCH modeling and its extensions. His procedure is often found to give better 
estimates of the unobserved latent volatility process than parametric modeling with the 
standard GARCH(1,1) model. 

From among ARCH class parametric models GARCH model originally proposed by Engle 
(1982) and independently developed by Bollerslev (1986) and Taylor (1986) gained the 
largest attention by academics. In financial markets, it is common to find that the variance of 
returns is not constant over time. More specifically, large changes in prices tend to follow 
large changes and small changes tend to follow small changes. This tendency is called 
volatility clustering. "GARCH models are commonly used to capture the volatility clusters of 
returns and express the conditional variance as a linear function of past information, allowing 
the conditional heteroskedasticity of returns." (Curto, Pinto & Tavares, 2009, p. 313) 

Throughout this thesis, GARCH(1,1) will be used as a model to capture volatility clustering 
since models of higher order only rarely better describe volatility, nor they are used in finance 
literature. Hansen & Lunde (2005) in their article “Does anything beat a GARCH (1, 1)?” 
support this by finding no evidence that simple GARCH(1,1) for ߪ௧

ଶ is outperformed by any 
more sophisticated model in its out-of-sample forecasting power. 

2.5.1. Leverage effect 

One of the biggest disadvantages of GARCH models is that it considers negative and positive 
error terms to have symmetric effect on volatility. In other words, negative shocks are 
assumed to increase volatility in the same way as positive shocks. In reality, the violations of 
this assumption are often observed. Bad news tend to increase volatility more than good news. 
This fact was first noted by Black (1976). Asymmetric response of volatility to the sign of the 
shock led to many parameterized extensions of GARCH.  Most widely used in practice are the 
following extensions detailed in e.g. in Brooks (2008) or Thapar (2006): Exponential GARCH 
(EGARCH), Threshold GARCH (TGARCH), GARCH in mean (GARCH-M) and 
Asymmetric GARCH (AGARCH). It should be stressed that although these extensions exhibit 
success in capturing stylized facts of volatility standard GARCH(1,1) remains the most 
widely used method in financial risk management and is also employed in this thesis for 
filtering purposes. 
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2.6. Back­testing 
In order to evaluate the accuracy of the VaR models, which are employed in this thesis, 
different back-testing methodologies are employed. In this section a general theoretical 
description is given. An exhaustive description, including notes on the practical 
implementation follows in the methodology section (see section 3.8) of this thesis. Totally 
there are four different tests examining whether the VaR model is well specified or not. 

In order to determine the accuracy of the VaR estimates produced by a model, estimates are 
usually back-tested. A common starting point for those procedures is the so-called hit 
function, or indicator function: 

௧ܫ ൌ ൜1, ௧ݎ ݂݅ ൑ ܸܴܽ௧
0, ௧ݎ ݂݅ ൐ ܸܴܽ௧

  (17) 

It takes the value one if the return at time t exceeds the VaR at time t. If the VaR is not 
exceeded the function takes the value 0. 

In order to be accurate the indicator function has to fulfill two properties, according to 
Christoffersen (1998): 

1. Unconditional coverage property:  
According to this criterion the probability of realizing a loss not exceeding ܸܴܽሺߙሻ must 
be exactly ߙ כ 100%. Hence only (1 െ ሻߙ כ 100% of the VaR estimates should be 
violated.8 In case the VaR is exceeded too few times, indicates a too conservative VaR 
model. 
2. Independence property:  
This criterion states the manner in which violations may occur. Thus any two elements of 
the indicator sequence have to be independent from each other. In case this criterion is 
not met, this is an indicator that the VaR model is not responsive enough to consider 
changes in market risk. (Campbell, 2005) 

The above stated properties can be combined into one single statement: 

 ݅. ݅. ݀.  
ሻ݌௧ሺܫ ~  ሻ݌ሺܤ

The indicator function has to be an IID Bernoulli random variable with probability ݌. As the 
aforementioned properties turned out to be the keys to accuracy tests, many of the back-
testing procedures developed in recent years focus on these features. (Campbell, 2005) 

The VaR estimates presented in methodology section of this thesis are tested for the 
aforementioned properties, using three different evaluating criteria: 

                                                 
8 In the remaining part of the thesis (1 െ  .expresses the coverage probability denoted as p (ߙ
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Firstly, the widespread unconditional Kupiec test is performed. The VaR estimates of a well 
specified model should not be violated more than ݌ כ 100. The Kupiec test examines whether 
the empirical number of violations ̂݌ כ 100 exceeds the nominal number significantly. 
(Campbell, 2005) Hence, the test accounts only for the first property, mentioned earlier in this 
section. To overcome the non-consideration of the second property, Christoffersen (1998) 
extends the Kupiec test, in order to take the independence property into account. The 
Christoffersen test consists of two parts, whereof the first part coincides exactly with the 
Kupiec test. The second part of the test, the conditional coverage ratio test, examines whether 
VaR violations are clustered or independent. The advantage of the Christoffersen test is 
clearly that it can be seen whether the VaR model fails due to a too high or too low number of 
violations or if the model does not fulfill the property of independent violations. 

The second test employed is a simple indicative test, the so called Basel back-testing method. 
This method evaluates whether the empirical coverage probability, ̂݌, is lower than the 
significance level on which the VaR model is actually performed. 

Lastly, empirical (predictive) quantile loss ( )α
∧

Q  following Bao, Lee & Saltoğlu (2006) is 

employed to examine the fitness of the VaR model to decide for the most suitable VaR 
method. 

All three methods are further detailed in the Section 3.8. 

Possible evaluation criterion is Perigon’s extension of the unconditional Kupiec test. This 
model evaluates the accuracy of the VaR models using VaR estimates for different coverage 
probabilities. The test proposed by Perignon & Smith (2009) combines the simplicity of the 
Kupiec test and additional information about the left tail of the distribution as suggested by 
Berkowitz (2001). The likelihood ratio test, examines whether the empirical coverage 
probability significantly deviates from the hypothesized one. This test is, however, not 
empirically employed in this paper. 

2.7. Other VaR models 
This thesis will not be exhaustive with respect to the range of different methodologies to 
estimate VaRs. There are several other VaR models, that will not be tested, but it is of great 
interest to introduce their attractions. The largest attention is dedicated to extreme-value VaR. 
Further, NIG-ACD model is briefly mentioned. 

2.7.1. VaR models based on extreme value theory (EVT) 

Papers dealing with VaR with the help of extreme value theory jointly share the opinion that 
traditional parametric models for VaR estimation are unsuitable for event with extremely low 
probability of occurrence. This follows from the notorious fact that financial returns 
distributions have heavy tails and parametric models usually assume normality or log-
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normally distributed returns. Fitting the distribution into the return series necessarily leads to 
underestimation of tails as the majority of observation lies in the centre, which is 
accommodated by the distribution. Hence, these models tend to fail, when they are needed 
most; i.e. when low-probability event occurs, what can lead to huge losses. EVT has 
advantage over non-parametric models as well.  

Extreme value theorists handle this problem by extracting as much information as possible 
straight from the tail. In practice, extreme-value VaR requires first the estimation of 
parameters of the whole distribution with any standard estimation technique. Next, these 
parameters are used in one of many formulae specifications to estimate VaR. Figure 3 from 
Aragonés, Blanco, & Dowd (2000) shows the difference between normal VaR and extreme-
value VaR. Particularly at low significance levels (high confidence levels) extreme-value 
VaRs are much higher than normal VaRs hence extreme-value are much better copying actual 
extreme return observation (dotted line). For more evidence see Gencay & Selcuk (2004). 

 

Figure 3: West Texas Intermediate (WTI) daily return distribution from 1983 to 1999 

EVT is extremely promising approach to VaR estimation and deserves additional academic 
attention. Interested reader is encouraged to see Ahangarani (2005), Longin (1999), Aragonés, 
Blanco & Dowd (2000) as well as Bao, Lee & Saltoğlu (2006) for more information on 
extreme-value VaR. 

2.7.2. VaR with time varying variance, skewness and kurtosis­ NIG­ACD 
model 

From the family of parametric VaR models, NIG-ACD by Wilhelmsson (2009) belongs to the 
newest. NIG-ACD allows for time varying moments based on Normal Inverse Gaussian 
(NIG) distribution with autoregressive conditional density (ACD). The author evaluates his 
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models by their VaR forecast finding they provide more correct VaR forecast then extant 
models or Gaussion GARCH model. 
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3. Methodology 
The section starts with specification of collected data and gives an overview of applied 

methods. Next, empirical employment of GARCH (1,1) approach to conditional volatility 

estimation is described in details. Optimization problem for all three CAViaR specifications is 

also presented. This section ends with an in-depth description of applied back-testing 

methods. The evaluation criteria are comprehensively stated.  

3.1. Data Description 
Price index data for three different markets was received from Datastream. Mature markets 
are represented by NYSE Composite, whilst Russia RTS, FTSE W Hong Kong represent 
emerging markets. Prices were converted into the daily log-returns. 

In order to analyze the performance of the models in different time periods, two out-of-sample 
periods are used. The periods are denoted as Period 1/P1 (tranquil) and Period 2/P2 (crisis). 
Period 2 is selected to reflect the current financial crises. It is thus possible to investigate 
performance of chosen models under two different stress situations. Both periods are divided 
into two sub-samples, in-sample and out-of-sample period. The in-sample period for both 
periods starts on September 4, 1995. As standard practice, out-of-sample period is 
approximately one year long and consists of P=250 observations for both periods. Period 1 
ends on July 15, 2005 with a total number of T=R+P=2575 and Period 2 ends on May 13, 
2009 with a total number of T=R+P=3573 observations. To get as accurate estimates as 
possible, it is important to set P very low compared to R. This empirical analysis thus operates 
with R= 2325, 3323 versus P= 250. Table 1 summarizes analyzed periods and sample 
division. 

Table 1: Two in-sample and out-of-sample periods for tranquil a crisis market 

 Period 1 (Tranquil) Period 2 (Crisis) 
In-sample period 4/9/1995-30/7/2004 

R=2325 
4/9/1995-28/5/2008 

R=3323 
Out-of-sample period 2/8/2004-15/7/2005 

P=250 
29/5/2008-13/5/2009 

P=250 
Total number of observations T=2575 T=3573 
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3.1.1. Descriptive statistics  

Table 2 and Table 3 below provide basic descriptive statistics for both in-sample periods. 
Further, Jarque-Bera9 normality test clearly rejects the null hypothesis of normal distribution 
of drawn data for all five return series. Histograms Figure 4 in Appendix B illustrate the 
distribution of returns for all three market and both periods. 

Quantile-quantile plots (QQ-plot) show how the chosen distribution fits the data. If the choice 
of distribution explains data well enough QQ-plot forms a straight line. QQ-plots in Figure 6 
in Appendix B confirm excess kurtosis (heavy tails) and thus non-normality. VaR estimates 
based on the t-distribution address this fact partly.  

As common in empirical studies, squared returns serve as a proxy for volatility10. Figure 5 in 

Appendix B plots the squared log-returns for each series. Graphs clearly demonstrate how the 

volatility clusters over time, what justifies the use of GARCH(1,1) volatility weighting.  

Table 2: Descriptive statistics: in-sample Period 1 

 

Table 3: Descriptive statistics: in-sample Period 2 

 

 

                                                 
9 The Jarque-Bera test of normality is described in details in Appendix A, section 7.1.2 
10 See Appendix A for proof. 

Sample Period1: 4/9/1995-30/7/2004
Series NYSE FTSE Hong Kong Russia RTS
Observations (T) 2325 2325 2325
Mean 0,000318161 -3,26451E-06 0,000746213
Median 0,00027264 0,000140464 0,000935061
Minimum -0,07250271 -0,144669756 -0,220963083
Maximum 0,056554696 0,158310186 0,155559809
Std.Dev. 0,012116873 0,018031802 0,030774807
Skewness -0,168615854 0,061452164 -0,386161051
Kurtosis 5,208233412 11,12363454 8,287122148
Jarque-Bera 480,2650 6363,0740 2751,4570
Probability 0,000000 0,000000 0,000000

Sample Period2: 4/9/1995-28/5/2008
Series NYSE FTSE Hong Kong Russia RTS
Observations (T) 3323 3323 3323
Mean 0,000261911 0,000168434 0,000895361
Median 0,000352726 0,000523784 0,001228137
Minimum -0,07250271 -0,144669756 -0,220963083
Maximum 0,056554696 0,158310186 0,155559809
Std.Dev. 0,01149418 0,016704328 0,027211946
Skewness -0,161950369 0,009908082 -0,443432696
Kurtosis 5,295367054 11,43844959 9,75904615
Jarque-Bera 740,6717 9825,4700 6411,8460
Probability 0,000000 0,000000 0,000000
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Table 13 in Appendix B presents Ljung-Box test statistics11 with associated probabilities of 
wrongly rejecting null hypothesis. The statistics is provided for lags 1, 10, 20 and 50 for log-
returns. Period 2 data are considered here to include all the available information. For series 
NYSE null hypothesis of no autocorrelation for all lags (1, 10, 20 and 50) cannot be rejected. 
For FTSE Hong Kong and Russia RTS null hypothesis can be rejected on all lags except for 
first lag autocorrelation for FTSE Hong Kong. The statistics is sensitive to number of chosen 
lags. With increasing number of tested lags, autocorrelations are becoming more significant 
for the examined emerging markets series. As a consequence, standard methods based on 
assumption of IID returns are prone to fail when capturing real behavior of data. 

3.2. VaR models and Notation 
Table 4 below defines the notation used in this thesis. 

Table 4: VaR models and Notation 

Distribution Unfiltered Filtered 
Historical distribution HS AW-HS* 

VW-HS* 
Normal Distribution Normal Normal* 
T-Distribution t t* 
No Distribution CAViaRS 

CAViaRA 

CAViaRG 

 

Legend:  

1. Abbreviations stand for the following methods: 
* indicates volatility- or age -filtered model 
HS=Historical Simulation; VW-HS*= Volatility-weighted historical simulation 
AW-HS*=Age-weighted historical simulation 
Normal= VaR estimated under normal distribution  
t= VaR estimated under t-distribution 
CAViaRS = Symmetric CAViaR model by Engle and Manganelli (2004) 
CAViaRA = Asymmetric CAViaR model by Engle and Manganelli (2004) 
CAViaRG = Indirect GARCH CAViaR model by Engle and Manganelli (2004) 
2. Note that quantiles of CAViaR models are not computed by inverting the distribution function. 
Filtered version of CAViaR is not considered as updated returns r* follow random walk. CAViaR 
model is based on dependent (autoregressive) quantiles; hence filtered version is not appropriate. 

                                                 
11 Detailed description of The Ljung-Box test of random walk is presented in Appendix A, section 7.1.3 
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3.3. VaR­ Historical Simulation 
Historical simulation is the least complex approach from among the models in this thesis. 
Estimation of quantile requires the choice of appropriate historical time frame used as an 
empirical distribution. Precision of this method increases with the number of observations 
included, as more observations might fall to the tails region. One day VaR forecasts are 
estimated using excels percentile function for rolling window for the entire out-of-sample 
forecasting period. 

The age-weighted HS, denoted AW-HS*, employs the same procedure for the filtered series 
as described in subsection 2.2.1.b., i.e. each value is assigned weight, that is exponentially 
decaying toward the past values.  

௜ݓ ൌ  ଵ (18)ݓ௜ିଵߣ

The weight for newest observation i=1; λ=0,995. 

The volatility-weighted HS, VW-HS*, is computed using filtered series r*, equation 15. 
Volatility forecasts used in volatility updating are estimated using GARCH (1, 1), where 
GARCH (1, 1) parameters are re-estimated each 25 observations (250/25=) 10 times and 
volatility weighting is performed 250 times, i.e. for each out-of sample observation using the 
sliding window. 

3.4. VaR under Normal Distribution 
If the assumption about the distribution of the risk factor is correct, parametric models are 
precise. Standard normal distribution ݍ௭ is considered and VaR equation is given by: 

ܸܴܽ௧ሺߙሻ ൌ െߤ௧ ൅  ሻ   (19)ߙ௭ሺݍ௧ߪ

For unfiltered Normal VaR (Normal), tσ  equals to a sample standard deviation.  

For filtered Normal VaR (Normal*) tσ  is estimated by a GARCH(1, 1) model, which is re-

estimated 10 times during the out-of-sample period.  

3.5. VaR under t­distribution 
VaR under t-distribution is used in order to address some of the stylized facts of financial 
return data. To implement this approach, first degrees of freedom must be determined as 
suggested by equation 6. Then using the ߙ quantile of student-t distribution with v degrees of 
freedom, VaR is given by equation 7 in section 2.2.3.   

For unfiltered t-VaR (t), tσ  equals to the sample standard deviation.  
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For filtered t-VaR (t*) tσ  is estimated by GARCH(1, 1) model, which is re-estimated 10 

times during the out-of-sample period. Note, that conditional volatility parameters for t-
distribution are obtained by maximizing different log-likelihood function from the one used 
for Normal distribution. Details are given in the next section. 

3.6. GARCH(1,1) 
In the GARCH framework conditional variance depends upon own lags and the past values of 
the squared errors, so that the conditional variance is given by 

௧ݎ ൌ ߤ ൅  ௧ (20)ߝ

௧ߪ
ଶ ൌ ଴ߙ ൅ ௧ିଵߝଵߙ

ଶ ൅ ௧ିଵߪߚ
ଶ   (21) 

As long as ߙଵ ൅ ߚ ൏ 1 the unconditional (long-term) variance of errors for GARCH(1,1) is 
given by 

ଶߪ ൌ ఈబ
ଵିఈభିఉ

 (22) 

This condition corresponds to stationary of GARCH model, where forecast of conditional 
variance converges to the mean with increasing forecasting period. Mean reversion means that 
the conditional variance will arrive at its unconditional mean. 

Parameter  ߚ expresses how persistent shocks are that were caused by extreme values of 
conditional variance. Parameter ߙଵ is the measure of volatility response to movements in the 
market. Equation 21 is a nice demonstration how GARCH model deals with volatility 
clustering. If the volatility of the previous period is high, next period will also be high unless 
the return of the portfolio in the previous period does not differ significantly from its mean.  

Parameters ߙ଴, ߙଵ, ߤ ,ߚ can be found by maximizing the log-likelihood function: 

ሺ·ሻܮ݈݊ ൌ ∑ ቀെ0.5 כ lnሺ2ߪߨ௧
ଶሻ െ ఌ೟

మ

ଶఙ೟
మቁ்

௧ୀଵ  (23) 

Log-likelihood function (equation 23) implies that the errors follow the normal distribution. 
When calculating the filtered version of VaR under t-distribution, the GARCH model has to 
take into account, that the underlying distribution is a t-distribution and not normal. Therefore 
the following log-likelihood function is maximized: 

ሺ·ሻܮ݈݊ ൌ ∑ ൬݈݊ ൤୻ሾሺ௩ାଵሻ/ଶሿ
୻ሾ୴/ଶሿ

ଵ
ඥሺ௩ିଶሻగ

൨ െ ଵ
ଶ

lnሺߪଶሻ െ ቀ௩ାଵ
ଶ

ቁ ݈݊ ቂ1 ൅ ఌ೟
మ

ఙమሺ௩ିଶሻ
ቃ൰்

௧ୀଵ   (24) 

Where  Γሺ·ሻ is the gamma function and v is the number of degrees of freedoms, which are 
chosen in accordance to equation 6. 

To get an accurate volatility forecast, parameters of GARCH (1,1) are re-estimated each 25 
observations. The estimation window for GARCH(1,1 )slides down to out-of-sample period 
abandoning the oldest estimations. 
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As GARCH-effect are a common feature of financial return data, statistical testing for 
GARCH effects was not conducted. Empirical estimation revealed, that this assumption was 
correct since all the coefficients of GARCH (1,1) were significantly different from zero. 

3.7. CAViaR 
The paper by Koenker & Bassett (1978) introduces the new class of the robust alternatives to 
the least square estimators for linear models. Its discussion below presents application of 
quantile regression to estimation of CAViaR parameters.   

3.7.1. Quantile Regression 

Equations 25, 26, 27 below specify one-day CAViaR. Parameter vector β  must be estimated. 

Symmetric absolute value: 

ܸܴܽ௧ ൌ ଴ߚ ൅ ଵܸܴܽ௧ିଵߚ ൅  ௧ିଵ| (25)ݎ|ଶߚ

Asymmetric slope: 

ܸܴܽ௧ ൌ ଴ߚ ൅ ଵܸܴܽ௧ିଵߚ ൅ ௧ିଵሻାݎଶሺߚ ൅  ௧ିଵሻି  (26)ݎଷሺߚ

ሺݎ௧ିଵሻି ൌ െmin ሺݎ௧ିଵ, 0ሻ 

ሺݎ௧ିଵሻା ൌ ,௧ିଵݎሺ ݔܽ݉ 0ሻ 

 

Indirect GARCH(1,1): 

ܸܴܽ௧ ൌ ඥߚ଴ ൅ ଵܸܴܽ௧ିଵߚ
ଶ ൅ ௧ିଵݎଶߚ

ଶ  (27) 

 

The parameter vector β  must be found so that it would be as near as possible to the true 

parameter vectors describing the data sample. One is therefore facing a common problem of 
estimating vector of unknown parameters β  from the sample of observations.  

As previously stated, let { }T
ttr 1=  be the series of observed returns. Let ptx β′  be the p-quantile, 

where tx  is a vector of regressors. In the specification above tx corresponds to lagged VaRs 

and returns. Quantile can also be expressed as  

݌ ൌ ׬ ௥݂ሺݔ|ݏ௧ሻ݀ݏ௫೟
ᇲఉ೛

ିஶ   (28) 

or, as common in the literature, the quantile of the random variable tr is conditional on the 

vector of known regressors tx . 

௧ݎ ൌ ௧ݔ
ᇱߚ௣ ൅  ௣௧ (29)ߝ
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௣௧ߝ ൌ ௧ݎ െ ௧ݔ
ᇱߚ௣ (30) 

௧ሻݔ|௧ݎ௣ሺݐ݊ܽݑܳ ൌ ௧ݔ
ᇱߚ௣ (31) 

Koenker & Bassett (1978) showed that parameters p

∧

β can be obtained by solving the 

minimization problem minimizing the errors ptε . Hence the p-quantile of tr  sample is 

defined as any solution to the following minimization problem: 

minఉ
ଵ
்

ቄ∑ ௧:௥೟ஹ௫೟݌
ᇲఉ ௧ݎ| െ ௧ݔ

ᇱߚ| ൅ ∑ ሺ1 െ ሻ௧:௥೟ழ௫೟݌
ᇲఉ ௧ݎ| െ ௧ݔ

ᇱߚ|ቅ (32) 

From the earlier discussion of three difference autoregressive CAViaR processes, the above 
problem can be rewritten as follows: 

minఉ
ଵ
்

൛∑ ௧:௥೟ஹି௏௔ோ೟݌ ௧ݎ| െ ܸܴܽ௧| ൅ ∑ ሺ1 െ ሻ௧:௥೟ழି௏௔ோ೟݌ ௧ݎ| െ ܸܴܽ௧|ൟ (33) 

The objective function above takes a non-linear form, due to non-linear regression quantile 
estimation (three specifications above). For this reason, the function is not differentiable and 
standard numerical optimization procedures based on differentiation might not find the global 
optimum. Global optimum can be theoretically found using evolutionary genetic algorithm. 
This algorithm is based on Price & Storn (1997) and unlike traditional routines can explore 
the whole target area without stopping at particular local optimum. This optimization problem 
(equation 33) can be solved e.g. using a built-in excel upgrade Risk Solver premium. This 
software is, however, not publicly available and programming this algorithm independently 
would far exceed the scope of this thesis. Nevertheless, trying sufficiently high number of 
different initial parameter values, linear excel solver provides surprisingly robust minimums 
yielding the parameters matching the theoretical expectations as for both magnitude and signs.  

3.8. Comparing VaR models 
The sample of all observations T was divided into two subsamples, in-sample R and out-of-
sample P so that T=R+P. Forecasts made for out-of-sample period are evaluated in the 
following way. 

First, VaR forecasts are tested using Christoffersen test of Conditional Coverage consisting of 
Kupiec test unconditional coverage and test of serial independence. Models assessed as 
adequate (those passing the test) are then compared in terms of their empirical coverage ratio 
(failure rate) and predictive quantile loss. 

3.8.1. Kupiec test of unconditional coverage 

One of the earliest and most widespread tests for back-testing VaR is Kupiec’s unconditional 
coverage test. In order to be an accurate VaR model, VaR estimates should not be violated 
more than ݌ כ 100 times. If the observed number of violations ̂݌ כ 100 significantly exceeds 
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the nominal number of violations ݌ כ 100, the applied method is not appropriate to produce 
useful VaR estimates. (Campbell, 2005) 

Kupiec (1995) uses a log-likelihood ratio test which is asymptotically ߯ଶሺ1ሻ distributed. To 
apply the test, the indicator function is defined in order to count violated VaR estimates: 

௧ܫ ൌ ൜1, ௧ݎ ݂݅ ൑ ܸܴܽ௧
0, ௧ݎ ݂݅ ൐ ܸܴܽ௧

  (34) 

Where ݎ௧ is t-time observation in the return series and ܸܴܽ௧ is the corresponding VaR 
estimate. Once this is defined, the likelihood under the null hypothesis is, according to 
Christoffersen (1998), simply given by: 

;݌ሺܮ ,ଵܫ ,ଶܫ … , ሻ்ܫ ൌ ሺ1 െ  ௡భ (35)݌ሻ௡బ݌

The likelihood under the alternative hypothesis is then given by: 

;̂݌ሺܮ ,ଵܫ ,ଶܫ … , ሻ்ܫ ൌ ሺ1 െ  ௡భ  (36)̂݌ሻ௡బ̂݌

The number of non-violated VaR estimates is given by ݊଴ and the number of violated VaR 
estimates is consequently given by ݊ଵ. Further let ̂݌ be the observed coverage probability. Its 

maximum likelihood estimator is defined as ௡భ
௡బା௡భ

 (Christoffersen, 1998, p. 845). Testing for 

unconditional coverage ratio can be done by a simple log-likelihood ratio test: 

௎஼ܴܮ ൌ െ2 ln ቀ௅ሺ௣;ூభ,ூమ,…,ூ೅ሻ
௅ሺ௣ො;ூభ,ூమ,…,ூ೅ሻቁ ൌ െ2 ln ቀሺଵି௣ሻ೙బ௣೙భ

ሺଵି௣ොሻ೙బ௣ො೙భ
ቁ ~߯ଶሺ1ሻ  (37) 

Thus, under the null hypothesis of correct parameter p LR lies in the interval: 

ݒ݄݊݅݅ܿ ቀ1 െ ௣
ଶ

; 1ቁ ൑ ௎஼ܴܮ ൑ ݒ݄݊݅݅ܿ ቀ௣
ଶ

; 1ቁ  (38) 

This test is only concerned with the coverage of the VaR estimates it does not account for any 
clustering of violated VaR estimates. As defined earlier the estimates do not only have to 
fulfill the coverage criterion but estimates should also be independently distributed. Hence it 
may happen, that a VaR model satisfies the unconditional coverage probability but they may 
exhibit dependent VaR estimates (Campbell, 2005). This should therefore be tested in an 
additional test, suggested by Christoffersen (1998). 

Furthermore unconditional VaR tests suffer from the shortcoming of inability of identification 
estimation procedures that “systematically under report risk” (Campbell, 2005, p. 7). 
Moreover the size of underreporting can be quite substantial as reported by Campbell (2005). 
Although Kupiec’s test is considered to be the standard test for VaR estimates, it lacks 
statistical power, when applied to usual datasets, such as one year of daily data (Perignon & 
Smith, 2009, p. 4).  
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3.8.2. Christoffersen test of Conditional Coverage  

As mentioned above, the unconditional coverage (UC) by Kupiec does not suffice to explain 
the fact that violations are not IID but occur in the groups. In other words UC does not 
account for the alternative that ones and zeroes of tI does not occur independently, but are 

clustered together over time. Christoffersen (1998) provides likelihood test of unconditional 
coverage (UC) and test of serial independence (ind) and conditional coverage (CC). While 
UC test is similar to Kupiec UC test, the LR test of independence and LR test of CC tackle the 
weakness of dependency-pattern in indicator function tI . The biggest attraction of conditional 

coverage test is that it considers the model inadequate (=rejects the null hypothesis) if the 
number of clustered violations is either too high or too low. 

The idea behind the test is to separate conditional coverage into two parts. Note that UCLR  is 

defined as in the previous section.  

௎஼ܴܮ ൌ െ2 ln ቀ௅ሺ௣;ூభ,ூమ,…,ூ೅ሻ
௅ሺ௣ො;ூభ,ூమ,…,ூ೅ሻቁ ൌ െ2 ln ቀሺଵି௣ሻ೙బ௣೙భ

ሺଵି௣ොሻ೙బ௣ො೙భ
ቁ ~߯ଶሺ1ሻ  (39) 

௜௡ௗܴܮ ൌ െ2 ln ቀ௅ሺగෝమ;ூభ,ூమ,…,ூ೅ሻ
௅ሺగෝభ;ூభ,ூమ,…,ூ೅ሻቁ ൌ െ2 ln ൬ ሺଵିగమሻ೙బబశ೙భభగమ

೙బభశ೙భభ

ሺଵିగబభሻ೙బబగబభ
೙భభሺଵିగభభሻ೙భబగభభ

೙భభ൰ ~߯ଶሺ1ሻ (40) 

଴ଵߨ ൌ ௡బభ
௡బబା௡బభ

ଵଵߨ  ൌ ௡భభ
௡భబା௡భభ

ଶߨ  ൌ ௡బభା௡భభ
௡బబା ௡భబା ௡బభା௡భభ

 

Where ijn is the number of observations with value i at time t-1 followed by j at time t. (takes 

values 1 if violation occurs, 0 if loss was lower that VaR). 

Christoffersen (1998) proves that when ignoring the first observation, there exists a numerical 
relation between the two tests. His paper also finds that the distribution of the LR test of 

conditional coverage is asymptotically 2χ  with 2 degrees of freedom. 

஼஼ܴܮ ൌ ௎஼ܴܮ ൅  ௜௡ௗ~߯ଶሺ2ሻ (41)ܴܮ

CCLR tests jointly for independence and correctness of probability parameter p. 

Consequently, 0H is not rejected on the significance level α−= 1p  if 

ݒ݄݊݅݅ܿ ቀ1 െ ௣
ଶ

; 2ቁ ൑ ஼஼ܴܮ ൑ ݒ݄݊݅݅ܿ ቀ௣
ଶ

; 2ቁ  (42) 

This test is employed in this thesis as a primary indicator of model adequacy. 

3.8.3. Empirical Coverage Probability 

Next, relative frequency of violations (failure rate) is employed to indicate the best model 
from among those that pass the LR(CC). According to this indicator the best model is the one 
with the lowest empirical coverage probability, ̂݌, i.e. ratio between number of VaR breaks 
and size of the out-of-sample window. The model is considered satisfactory if the actual loss 
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is smaller than the VaR forecast at least 99 percent (or 95 percent) of the time. In other words 
the empirical coverage probability, ̂݌, must be lower than the significance level on which the 
VaR model is performed. 

3.8.4. Predictive quantile loss 

Finally, evaluation technique is conducted in terms of quantile loss as in Bao, Lee & Saltoğlu 
(2006). Quantile loss can be regarded as a measure of lack of fit of the VaR model. 

If the loss predicted by VaR is ( )pqt  for the realized return rt, then a predictive quantile loss 

( )αQ for a given level of p=1-α is given by 

ܳሺߙሻ ൌ ݌ൣܧ െ 1൫ݎ௧ ൏ ௧ݎሻ൯൧ሾߙ௧ሺݍ െ  ሻሿ  (43)ߙ௧ሺݍ

The function used for evaluation is the average of out-of-sample predictive quantile losses 

෠ܳሺߙሻ ൌ ܲିଵ ∑ ሾ݌ െ 1ሺݎ௧ ൏ ௧ݎሻሻሿሾߙො௧ሺݍ െ ሻሿ்ߙො௧ሺݍ
௧ୀோାଵ   (44) 

where ݍොሺߙሻ is the VaR forecast at time t and 1 is a usual indicator function with value either 1 
if the argument in the brackets is true or 0 if it is false. The better the fit of the model, the 
lower the value of the check-function. Check-function penalizes each violation at the same 
time. Consequently, minimum value of ෠ܳሺߙሻ indicates the best model. 
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4.  Empirical Results 
This section is split into two parts. Each part presents the results for one period in terms of 

three evaluation criteria: Christoffersen test of Conditional Coverage, Empirical Coverage 

probability (failure rate) and Empirical Quantile loss. Comments on each test interpret the 

results. Each part seeks to find the best model for a given market and confidence level. 

Different periods give ground to assessment of the models under two stress scenarios.  

4.1. Period 1 (Tranquil Period) 

4.1.1. Christoffersen test of Conditional Coverage 

In the Tables 5, 6 below the results of Christoffersen test of Conditional Coverage are 
presented. The Tables show the LR(UC), LR(ind) and LR (CC) for all models, for p=0,05 and 
p=0,01 with adequate models highlighted in bold in the last column. As presented in Table 5, 
for p=0,05 all unfiltered traditional models (HS, Normal, t) are considered inadequate mainly 
due to the overestimation of VaR as indicated by LR(UC) or visible form Figure 7 in 
Appendix B. Filtering seems to improve the results letting majority of VW-HS*, Normal* and 
t* pass the test for all markets. All three CAViaR specifications pass the tests with exception 
of CAViaRS for NYSE. For p=0,01 overwhelming majority of models pass all LR tests as 
apparent from the Table 6, confirming that further comparison must be made to draw more 
precise conclusion. 

These results have graphical representation in Figures 7 in Appendix B. 
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Table 5: Test of conditional coverage - Period 1, p=5% 

 

probability: p=5%

lower bound upper bound lower bound upper bound lower bound upper bound
NYSE HS 0,000982069 5,02388647 10,8123 0,00098207 5,02388647 0,0732 0,05063562 7,37775891 10,8855

AW-HS* 0,000982069 5,02388647 8,1852 0,00098207 5,02388647 0,1306 0,05063562 7,37775891 8,3158
VW-HS* 0,000982069 5,02388647 4,3687 0,00098207 5,02388647 2,4232 0,05063562 7,37775891 6,7919
Normal 0,000982069 5,02388647 10,8123 0,00098207 5,02388647 0,0732 0,05063562 7,37775891 10,8855
Normal* 0,000982069 5,02388647 4,3687 0,00098207 5,02388647 2,4232 0,05063562 7,37775891 6,7919
t 0,000982069 5,02388647 10,8123 0,00098207 5,02388647 0,0732 0,05063562 7,37775891 10,8855
t* 0,000982069 5,02388647 10,8123 0,00098207 5,02388647 0,0732 0,05063562 7,37775891 10,8855
CAViaR (S) 0,000982069 5,02388647 7,5204 0,00098207 5,02388647 0,8671 0,05063562 7,37775891 8,3876
CAViaR (A) 0,000982069 5,02388647 0,0213 0,00098207 5,02388647 1,0215 0,05063562 7,37775891 1,0428
CAViaR (G) 0,000982069 5,02388647 0,4961 0,00098207 5,02388647 1,6760 0,05063562 7,37775891 2,1720

FTSE W Hong Kong HS 0,000982069 5,02388647 25,6466 0,00098207 5,02388647 0,0000 0,05063562 7,37775891 25,6466
AW-HS* 0,000982069 5,02388647 8,1852 0,00098207 5,02388647 4,1070 0,05063562 7,37775891 12,2922
VW-HS* 0,000982069 5,02388647 1,9441 0,00098207 5,02388647 1,3809 0,05063562 7,37775891 3,3250
Normal 0,000982069 5,02388647 10,8123 0,00098207 5,02388647 0,0729 0,05063562 7,37775891 10,8852
Normal* 0,000982069 5,02388647 5,0972 0,00098207 5,02388647 0,0341 0,05063562 7,37775891 5,1313
t 0,000982069 5,02388647 8,1851 0,00098207 5,02388647 0,1343 0,05063562 7,37775891 8,3194
t* 0,000982069 5,02388647 5,0972 0,00098207 5,02388647 0,0319 0,05063562 7,37775891 5,1291
CAViaR (S) 0,000982069 5,02388647 1,9441 0,00098207 5,02388647 0,4067 0,05063562 7,37775891 2,3508
CAViaR (A) 0,000982069 5,02388647 0,0213 0,00098207 5,02388647 1,0215 0,05063562 7,37775891 1,0428
CAViaR (G) 0,000982069 5,02388647 0,5634 0,00098207 5,02388647 0,0000 0,05063562 7,37775891 0,5634

Russia RTS HS 0,000982069 5,02388647 14,1272 0,00098207 5,02388647 0,0324 0,05063562 7,37775891 14,1596
AW-HS* 0,000982069 5,02388647 8,1852 0,00098207 5,02388647 0,1306 0,05063562 7,37775891 8,3158
VW-HS* 0,000982069 5,02388647 4,3687 0,00098207 5,02388647 2,4232 0,05063562 7,37775891 6,7919
Normal 0,000982069 5,02388647 18,4966 0,00098207 5,02388647 0,0081 0,05063562 7,37775891 18,5047
Normal* 0,000982069 5,02388647 6,0715 0,00098207 5,02388647 0,2049 0,05063562 7,37775891 6,2764
t 0,000982069 5,02388647 14,1272 0,00098207 5,02388647 0,0324 0,05063562 7,37775891 14,1596
t* 0,000982069 5,02388647 3,0089 0,00098207 5,02388647 1,8383 0,05063562 7,37775891 4,8472
CAViaR (S) 0,000982069 5,02388647 0,5634 0,00098207 5,02388647 0,5054 0,05063562 7,37775891 1,0687
CAViaR (A) 0,000982069 5,02388647 0,5634 0,00098207 5,02388647 0,5054 0,05063562 7,37775891 1,0687
CAViaR (G) 0,000982069 5,02388647 0,1827 0,00098207 5,02388647 0,0601 0,05063562 7,37775891 0,2428

Christoffersen test -LR(CC)
Confidence interval LR(CC)Calculation MethodIndex

Independence test -LR(ind)
Confidence interval LR(ind)

Kupiec test -LR(UC)
Confidence interval LR(UC)
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Table 6: Test of conditional coverage - Period 1, p=1% 

probability: p=1%

lower bound upper bound lower bound upper bound lower bound upper bound
NYSE HS 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252

AW-HS* 3,92704E-05 7,879438691 0,1084 3,92704E-05 7,879438691 0,0324 0,010025084 10,59663473 0,1408
VW-HS* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0731 0,010025084 10,59663473 0,1680
Normal 3,92704E-05 7,879438691 1,1765 3,92704E-05 7,879438691 0,0081 0,010025084 10,59663473 1,1846
Normal* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0731 0,010025084 10,59663473 0,1680
t 3,92704E-05 7,879438691 5,0250 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0250
t* 3,92704E-05 7,879438691 5,0250 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0250
CAViaR (S) 3,92704E-05 7,879438691 7,7336 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 7,7336
CAViaR (A) 3,92704E-05 7,879438691 3,5554 3,92704E-05 7,879438691 0,2963 0,010025084 10,59663473 3,8517
CAViaR (G) 3,92704E-05 7,879438691 15,8906 3,92704E-05 7,879438691 0,8404 0,010025084 10,59663473 16,7310

FTSE W Hong Kong HS 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
AW-HS* 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
VW-HS* 3,92704E-05 7,879438691 1,1765 3,92704E-05 7,879438691 0,0081 0,010025084 10,59663473 1,1846
Normal 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
Normal* 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617
t 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
t* 3,92704E-05 7,879438691 1,1765 3,92704E-05 7,879438691 0,0081 0,010025084 10,59663473 1,1846
CAViaR (S) 3,92704E-05 7,879438691 12,9555 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 12,9555
CAViaR (A) 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 0,0949
CAViaR (G) 3,92704E-05 7,879438691 4,3687 3,92704E-05 7,879438691 0,7645 0,010025084 10,59663473 5,1332

Russia RTS HS 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
AW-HS* 3,92704E-05 7,879438691 1,1765 3,92704E-05 7,879438691 0,0081 0,010025084 10,59663473 1,1846
VW-HS* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0732 0,010025084 10,59663473 0,1681
Normal 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
Normal* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0732 0,010025084 10,59663473 0,1681
t 3,92704E-05 7,879438691 5,0252 3,92704E-05 7,879438691 0,0000 0,010025084 10,59663473 5,0252
t* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0735 0,010025084 10,59663473 0,1684
CAViaR (S) 3,92704E-05 7,879438691 7,7336 3,92704E-05 7,879438691 1,1304 0,010025084 10,59663473 8,8640
CAViaR (A) 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617
CAViaR (G) 3,92704E-05 7,879438691 7,7336 3,92704E-05 7,879438691 1,3809 0,010025084 10,59663473 9,1145

Index
Kupiec test -LR(UC) Christoffersen test -LR(CC)

LR(ind) Confidence intervalCalculation Method Confidence interval LR(UC) Confidence interval LR(CC)

Independence test -LR(ind)
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4.1.2.  Empirical coverage probability 

Relative frequency of VaR breaks for p=0,05 and p=0,01 is presented in Table 7. Highlighted 
values are the models with models that previously passed LR(CC). From this group the best 
models in this criterion are marked with *.On 5% level most models give empirical coverage 
close to the nominal one-5%. Filtered VW-HS* and Normal*, however, seem to perform the 
best (have lowest ̂݌) over the most of the markets. Exception is Hong Kong where Normal* 
and t* perform rather poorly, whilst VW-HS* and CAViaRS dominate. CAViaR models 
generally drag closely behind traditional approaches on 5% in this period, although CAViaRS 
does extraordinarily well for Hong Kong.  

Situation changes on 1% level where unfiltered models dominate in this criterion. Figure 7 in 
Appendix B plots the returns against the negative of VaR. Graphs reveal the lack of fit of 
unfiltered methods by giving graphical overview of predictive power of all models. For 
trading purposes higher allocated capital can cause problems. Good results are again produced 
by their filtered equivalents, whilst having much better fitness to observed losses. Asymmetric 
CAViaR ranks among the best for 1%. 

Table 7: Empirical Coverage Probability - Period 1 p=5% and p=1% 

 

Note: Best model is marked with * 

4.1.3. Empirical quantile loss 

Table 8 shows the empirical quantile loss ෠ܳሺߙሻ for all models. The model with lowest value 
of ෠ܳሺߙሻ  is highlighted in bold for each market and level of p. Again, it can be observed, that 
introducing GARCH volatility dynamics considerably improves the models for both levels of 
p. Normal* is indicated as best model five out of six times. This means, that VaRs produced 

Calculation Method NYSE FTSE W Hong Kong Russia RTS
HS 0,012 0 0,008
AW-HS* 0,016 0,016 0,016
VW-HS* 0,024* 0,032* 0,024
Normal 0,012 0,012 0,004
Normal* 0,024* 0,084 0,02*
t 0,012 0,016 0,008
t* 0,012 0,084 0,028
CAViaR (S) 0,092 0,032* 0,04
CAViaR (A) 0,048 0,048 0,04
CAViaR (G) 0,06 0,04 0,056

1% VaR HS 0* 0* 0*
AW-HS* 0,008 0* 0,004
VW-HS* 0,012 0,004 0,012
Normal 0,004 0* 0*
Normal* 0,002 0,02 0,012
t 0* 0* 0*
t* 0* 0,004 0,012
CAViaR (S) 0,032 0,04 0,032
CAViaR (A) 0,024 0,012 0,02
CAViaR (G) 0,044 0,024 0,032

5% VaR
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by quantile of standard normal distribution are able to fit the actual data most precisely when 
accounted for volatility dynamics. In Period 1, t* and CAViaRA also show good results for 
NYSE and Hong Kong. The worst models in terms of ෠ܳሺߙሻ on both p levels are unfiltered 
models. Unfiltered models on 1% are an example of models good in terms ̂݌ but bad in terms 
of ෠ܳሺߙሻ.  

Table 8: Empirical quantile loss - Period 1 p=5% and p=1% 

 

Summarizing the results for Period 1, out of the two best models VW-HS* and Normal*, the 
later seems to yield superior performance by having the best empirical quantile loss results, 
whilst at the same time providing reasonable coverage probability on both levels of p. 
Asymmetric CAViaR fluctuates little above the target coverage probability (1%) or below it 
(5%) and belongs to the best models in term of quantile loss as well. Market choice in period 
1 impacts models’ performance only slightly, so no certain conclusion can be drawn. 

4.2. Period 2 (Crisis Period) 

4.2.1. Christoffersen test of Conditional Coverage 

Tables 9, 10 below summarize the results of all three Christoffersen tests. Turning to the 
Period 2 which represents the current crisis all unfiltered models with exceptions of 1% t, HS 
for Hong Kong and HS for Russia fail the LR(CC). This result could be expected as with 
increased volatility naïve models tend to fail as described in section 2.2. Volatility weighting 
improves the situation almost uniformly for traditional models (exception NYSE on 5%). 
Adequate models in general also pass the test of independence of violations. CAViaR models 
pass the test with a few exceptions. The fact that only CAViaRs passes the test on 5% for 
NYSE is also worth mentioning.  

Calculation Method NYSE FTSE W Hong Kong Russia RTS
HS 0,0010856 0,0014276 0,0024000
AW-HS* 0,0010483 0,0012202 0,0029076
VW-HS* 0,0009216 0,0011371 0,0018162
Normal 0,0009823 0,0014774 0,0024500
Normal* 0,0007335 0,0009243 0,0015071
t 0,0181615 0,0266374 0,0441318
t* 0,0009360 0,0009328 0,0014067
CAViaR (S) 0,0009734 0,0010748 0,0018515
CAViaR (A) 0,0009139 0,0010815 0,0017191
CAViaR (G) 0,0009071 0,0010896 0,0017663

1% VaR HS 0,0003226 0,0004788 0,0008780
AW-HS* 0,0003025 0,0003304 0,0009319
VW-HS* 0,0002992 0,0003087 0,0005404
Normal 0,0002792 0,0004179 0,0006965
Normal* 0,0002075 0,0002614 0,0004263
t 0,0301299 0,0463579 0,0773532
t* 0,0002962 0,0003115 0,0004698
CAViaR (S) 0,0003182 0,0003397 0,0006038
CAViaR (A) 0,0002824 0,0002930 0,0006372
CAViaR (G) 0,0003437 0,0003227 0,0006443

5% VaR
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Table 9: Test of conditional coverage - Period 2, p=5% 

 

probability: p=5%

lower bound upper bound lower bound upper bound lower bound upper bound
NYSE HS 0,000982069 5,02388647 86,0810 0,00098207 5,02388647 17,5156 0,05063562 7,37775891 103,5966

AW-HS* 0,000982069 5,02388647 99,8779 0,00098207 5,02388647 11,6115 0,05063562 7,37775891 111,4894
VW-HS* 0,000982069 5,02388647 7,5204 0,00098207 5,02388647 4,6895 0,05063562 7,37775891 12,2099
Normal 0,000982069 5,02388647 86,0810 0,00098207 5,02388647 5,0128 0,05063562 7,37775891 91,0938
Normal* 0,000982069 5,02388647 6,2590 0,00098207 5,02388647 4,2710 0,05063562 7,37775891 10,5300
t 0,000982069 5,02388647 89,4617 0,00098207 5,02388647 5,7119 0,05063562 7,37775891 95,1736
t* 0,000982069 5,02388647 7,5204 0,00098207 5,02388647 4,7104 0,05063562 7,37775891 12,2308
CAViaR (S) 0,000982069 5,02388647 0,9514 0,00098207 5,02388647 2,1992 0,05063562 7,37775891 3,1505
CAViaR (A) 0,000982069 5,02388647 1,5403 0,00098207 5,02388647 2,4936 0,05063562 7,37775891 4,0339
CAViaR (G) 0,000982069 5,02388647 2,2555 0,00098207 5,02388647 2,8080 0,05063562 7,37775891 5,0636

FTSE W Hong Kong HS 0,000982069 5,02388647 20,7920 0,00098207 5,02388647 2,8623 0,05063562 7,37775891 23,6543
AW-HS* 0,000982069 5,02388647 24,8941 0,00098207 5,02388647 3,4391 0,05063562 7,37775891 28,3332
VW-HS* 0,000982069 5,02388647 0,0208 0,00098207 5,02388647 0,1499 0,05063562 7,37775891 0,1707
Normal 0,000982069 5,02388647 15,1920 0,00098207 5,02388647 1,2224 0,05063562 7,37775891 16,4144
Normal* 0,000982069 5,02388647 0,9514 0,00098207 5,02388647 0,0009 0,05063562 7,37775891 0,9523
t 0,000982069 5,02388647 20,7920 0,00098207 5,02388647 2,8296 0,05063562 7,37775891 23,6216
t* 0,000982069 5,02388647 2,2555 0,00098207 5,02388647 1,9700 0,05063562 7,37775891 4,2255
CAViaR (S) 0,000982069 5,02388647 0,5634 0,00098207 5,02388647 0,8371 0,05063562 7,37775891 1,4004
CAViaR (A) 0,000982069 5,02388647 0,5634 0,00098207 5,02388647 0,7055 0,05063562 7,37775891 1,2689
CAViaR (G) 0,000982069 5,02388647 0,4961 0,00098207 5,02388647 0,0113 0,05063562 7,37775891 0,5074

Russia RTS HS 0,000982069 5,02388647 15,1970 0,00098207 5,02388647 10,3764 0,05063562 7,37775891 25,5734
AW-HS* 0,000982069 5,02388647 38,8244 0,00098207 5,02388647 6,8657 0,05063562 7,37775891 45,6901
VW-HS* 0,000982069 5,02388647 2,2555 0,00098207 5,02388647 2,8080 0,05063562 7,37775891 5,0635
Normal 0,000982069 5,02388647 11,8655 0,00098207 5,02388647 12,9458 0,05063562 7,37775891 24,8113
Normal* 0,000982069 5,02388647 1,5403 0,00098207 5,02388647 2,4936 0,05063562 7,37775891 4,0339
t 0,000982069 5,02388647 15,1970 0,00098207 5,02388647 10,3175 0,05063562 7,37775891 25,5145
t* 0,000982069 5,02388647 1,5403 0,00098207 5,02388647 2,5044 0,05063562 7,37775891 4,0447
CAViaR (S) 0,000982069 5,02388647 0,9514 0,00098207 5,02388647 0,8512 0,05063562 7,37775891 1,8026
CAViaR (A) 0,000982069 5,02388647 0,4961 0,00098207 5,02388647 1,2330 0,05063562 7,37775891 1,7291
CAViaR (G) 0,000982069 5,02388647 3,0905 0,00098207 5,02388647 0,1806 0,05063562 7,37775891 3,2711

Confidence interval LR(UC)

Christoffersen test -LR(CC)
Confidence interval LR(CC)Calculation MethodIndex

Independence test -LR(ind)
Confidence interval LR(ind)

Kupiec test -LR(UC)
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Table 10: Test of conditional coverage - Period 2, p=1% 

probability: p=1%

lower bound upper bound lower bound upper bound lower bound upper bound
NYSE HS 3,92704E-05 7,879438691 77,0794 3,92704E-05 7,879438691 0,0364 0,010025084 10,59663473 77,1158

AW-HS* 3,92704E-05 7,879438691 135,4520 3,92704E-05 7,879438691 0,6040 0,010025084 10,59663473 136,0560
VW-HS* 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617
Normal 3,92704E-05 7,879438691 107,8293 3,92704E-05 7,879438691 0,4266 0,010025084 10,59663473 108,2559
Normal* 3,92704E-05 7,879438691 7,7333 3,92704E-05 7,879438691 0,5312 0,010025084 10,59663473 8,2645
t 3,92704E-05 7,879438691 87,0136 3,92704E-05 7,879438691 0,0106 0,010025084 10,59663473 87,0242
t* 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2058 0,010025084 10,59663473 2,1626
CAViaR (S) 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617
CAViaR (A) 3,92704E-05 7,879438691 3,5554 3,92704E-05 7,879438691 0,2963 0,010025084 10,59663473 3,8517
CAViaR (G) 3,92704E-05 7,879438691 12,9555 3,92704E-05 7,879438691 0,8371 0,010025084 10,59663473 13,7926

FTSE W Hong Kong HS 3,92704E-05 7,879438691 3,5554 3,92704E-05 7,879438691 0,2963 0,010025084 10,59663473 3,8517
AW-HS* 3,92704E-05 7,879438691 37,0420 3,92704E-05 7,879438691 0,5918 0,010025084 10,59663473 37,6338
VW-HS* 3,92704E-05 7,879438691 0,7691 3,92704E-05 7,879438691 0,1306 0,010025084 10,59663473 0,8997
Normal 3,92704E-05 7,879438691 22,3170 3,92704E-05 7,879438691 0,1499 0,010025084 10,59663473 22,4669
Normal* 3,92704E-05 7,879438691 0,7691 3,92704E-05 7,879438691 0,1306 0,010025084 10,59663473 0,8997
t 3,92704E-05 7,879438691 7,7336 3,92704E-05 7,879438691 0,5334 0,010025084 10,59663473 8,2670
t* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0735 0,010025084 10,59663473 0,6069
CAViaR (S) 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0732 0,010025084 10,59663473 0,1681
CAViaR (A) 3,92704E-05 7,879438691 0,1084 3,92704E-05 7,879438691 0,0324 0,010025084 10,59663473 0,1408
CAViaR (G) 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617

Russia RTS HS 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617
AW-HS* 3,92704E-05 7,879438691 49,4453 3,92704E-05 7,879438691 5,9587 0,010025084 10,59663473 55,4040
VW-HS* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0732 0,010025084 10,59663473 0,1681
Normal 3,92704E-05 7,879438691 25,7803 3,92704E-05 7,879438691 13,1702 0,010025084 10,59663473 38,9505
Normal* 3,92704E-05 7,879438691 1,9568 3,92704E-05 7,879438691 0,2049 0,010025084 10,59663473 2,1617
t 3,92704E-05 7,879438691 15,8906 3,92704E-05 7,879438691 18,9258 0,010025084 10,59663473 34,8164
t* 3,92704E-05 7,879438691 0,0949 3,92704E-05 7,879438691 0,0735 0,010025084 10,59663473 0,1684
CAViaR (S) 3,92704E-05 7,879438691 5,4970 3,92704E-05 7,879438691 1,8452 0,010025084 10,59663473 7,3422
CAViaR (A) 3,92704E-05 7,879438691 10,2290 3,92704E-05 7,879438691 0,6752 0,010025084 10,59663473 10,9042
CAViaR (G) 3,92704E-05 7,879438691 12,9555 3,92704E-05 7,879438691 0,8371 0,010025084 10,59663473 13,7926

Index
Kupiec test -LR(UC) Independence test -LR(ind) Christoffersen test -LR(CC)

LR(ind) Confidence intervalCalculation Method Confidence interval LR(UC) Confidence interval LR(CC)
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4.2.2. Empirical coverage probability 

Empirical coverage probabilities are presented in Table 11 below. As previously models that 
passed the LR(CC) test in Tables 9, 10 are market with bold. The model with minimum value 
of ̂݌ is marked with *. On the 5% level, considering only the LR(CC) adequate models, all 
three volatility weighted models understated VaR. Despite the fact that t* accounts for 
increased skewness and kurtosis during the crises, it fails to beat Normal* in this criterion on 
5% level. Both models however perform quite poorly. Within volatility updated group, VW-
HS* yields the best result for Hong-Kong. On 1% level, VW-HS* and t* are found to be best 
performers from the filtered models family substantially beating Normal*. It must be noted 
that these results are not surprising in the crisis period. In general on 5% level of p, the most 
precise models in terms of deviations from the correct coverage are with a few exceptions 
CAViaR models, from which CAViaRS and CAViaRA are outstanding. 1% level does not 
change the order substantially, ranking CAViaRS, t* and VW-HS* jointly best for NYSE, and 
CAViaRA far best for Hong Kong. The only market where CAViaR is outperformed by t* 
together with VW-HS* is Russia. 

Table 11: Empirical Coverage Probability - Period 2 p=5% and p=1% 

 

Note: Best model is marked with * 

4.2.3. Empirical quantile loss 

Figure 8 plots VaR forecasts showing the number of violations as well as the overall goodness 
of fit of all models in Period 2. Note the different scale in plots for Figure 7 and Figure 8 
caused by crisis. Goodness of fit expressed in numbers can be also found in the Table 12 that 
reports empirical quantile loss for 5% as well as 1% level of p. On 5% level results are rather 

 
Calculation Method NYSE FTSE W Hong Kong Russia RTS
HS 0,22 0,124 0,112
AW-HS* 0,236 0,132 0,156
VW-HS* 0,092 0,052 0,072
Normal 0,22 0,112 0,104
Normal* 0,088 0,064 0,068
t 0,224 0,124 0,112
t* 0,092 0,072 0,068
CAViaR (S) 0,064* 0,04* 0,064
CAViaR (A) 0,068 0,04* 0,06*
CAViaR (G) 0,072 0,06 0,076

1% VaR HS 0,104 0,024 0,02
AW-HS* 0,148 0,068 0,08
VW-HS* 0,02* 0,016 0,012*
Normal 0,128 0,052 0,056
Normal* 0,032 0,016 0,02
t 0,112 0,032 0,044
t* 0,02* 0,012 0,012*
CAViaR (S) 0,02* 0,012 0,028
CAViaR (A) 0,024 0,008* 0,036
CAViaR (G) 0,04 0,02 0,04

5% VaR
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dispersed. For NYSE, Hong Kong and Russia the lowest empirical quantile losses ( )α
∧

Q  -in 

bold are respectively reached by CAViaRG, VW-HS* and t*. On 1% level NYSE is addressed 
best by CAViaRS, Hong Kong by CAViaRA and Russia by VW-HS*. 

Table 12: Empirical quantile loss - Period 2 p=5% and p=1% 

 

In the crisis period (Period 2) symmetric and asymmetric CAViaR perform better in 
predicting VaR than in tranquil period (Period 1). While empirical quantile loss points out 
VW-HS* or t* as the leading models in few cases, CAViaRs appears to provide superior 
results over all markets and target probabilities in Period 2. With respect to a market choice, 
no influences observed impacting the choice of the most appropriate models. However, it 
might be interesting to highlight the dominance (on 5%) of CAViaR models on the US market 
during the crisis. On the other hand, as e.g. for Russia, 1% CAViaR might underestimate VaR 
considerably. 

Calculation Method NYSE FTSE W Hong Kong Russia RTS
HS 0,0052339 0,0031687 0,0054174
AW-HS* 0,0057662 0,0037620 0,0005088
VW-HS* 0,0030664 0,0024644 0,0003120
Normal 0,0050607 0,0030946 0,0035926
Normal* 0,0030448 0,0024666 0,0044845
t 0,0052219 0,0031936 0,0004050
t* 0,0030506 0,0024771 0,0003104
CAViaR (S) 0,0031656 0,0025960 0,0043118
CAViaR (A) 0,0030793 0,0027351 0,0041432
CAViaR (G) 0,0029757 0,0024719 0,0042192

1% VaR HS 0,0023864 0,0009654 0,0018427
AW-HS* 0,0048601 0,0014876 0,0027957
VW-HS* 0,0008181 0,0006976 0,0011688
Normal 0,0028947 0,0011381 0,0023391
Normal* 0,0009081 0,0007097 0,0012022
t 0,0025268 0,0009731 0,0020304
t* 0,0008309 0,0006922 0,0011719
CAViaR (S) 0,0008069 0,0007085 0,0016195
CAViaR (A) 0,0008155 0,0006910 0,0013018
CAViaR (G) 0,0009260 0,0007055 0,0015251

5% VaR
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5. Conclusion 
This thesis examined one-day predictive power of traditional VaR models and a recently 
introduced VaR class, CAViaR, by Engle & Manganelli (2004). The comparison is made on 
three markets: US, Hong Kong and Russia. Following the questions in the purpose of this 
thesis (Section 1.4), the findings can be summarized as follows:  

1) Based on the number of violations volatility-weighted historical simulation (VW-HS*) 
and GARCH-weighted normal VaR (Normal*) gave the best results in the tranquil period. 
This result suggests that for this period the assets returns do not divert largely enough 
from assumption of normality although different statistics suggested strong non-normality. 
Asymmetric CAViaR behaves also reasonably well in the calm period.  Results based on 
empirical quantile loss correspond largely to those based on number of violations making 
Normal* generally dominate in this period. While conventional methods seem to 
outperform CAViaR models during the period of lower volatility (tranquil), CAViaR 
models work generally better during the crisis. Filtering with volatility estimated by 
GARCH(1,1) seems to be uniformly useful, while age-weighting proved to be harmful. 
For the data used in this thesis, one generally best model could not be pointed out. 

2) Conventional models tend to overstate VaR in tranquil period at both confidence levels. 
Opposite is true for crisis period, in which traditional approaches generally produced 
higher number of violations then the nominal coverage. With few exceptions CAViaR 
models worked better on the lower confidence level in both periods. No conclusion can be 
drawn about which model is the best performer depending on the market choice. 

3) Evaluation was based on three evaluation criteria. Christoffersen test of conditional 
coverage usually disqualified unfiltered methods on 5% level due to their over-
conservatism during tranquil period and understating of VaR in the crisis period. Since 
Christoffersen test considers adequate too many models, deeper look at the models 
performance must be taken. Subsequent criteria, i.e. empirical coverage probability and 
empirical quantile loss report widely compatible results. 

These results are in line with findings of Bao, Lee & Saltoğlu (2006) who found CAViaR 
working well in some periods but not reliable in the whole period. As demonstrated, the 
forecasting of market risk in different economy cycles might be a challenging matter. It is 
argued that CAViaR may be a promising crisis tool and deserves further academic attention. It 
would be interesting to see if the approach of this thesis applied to another type of data or 
different market would yield other results.   
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7. Appendix 
7.1. Appendix A 

7.1.1. Proxy for actual volatility 

Define returns by the following equations 

ttr εμ +=  and ttt zσε = ; 

zt is IID; [ ]1−Ω tE μ =0, where 1−Ωt  is an information available at time t-1 

௧ݎሾܧ
ଶ|Ω௧ିଵሿ ൌ ௧ߝሾܧ

ଶ|Ω௧ିଵሿ 

hence 

௧ݎሾܧ
ଶ|Ω௧ିଵሿ ൌ ௧ݖሾܧ

ଶߪ௧
ଶ|Ω௧ିଵሿ ൌ ௧ߪ

ଶܧሾݖ௧
ଶ|Ω௧ିଵሿ ൌ ௧ߪ

ଶ 

Since [ ] 11
2 =Ω −ttzE  ( )1,0~ Nzt  

7.1.2. Jarque­Bera normality test 

Bera & Jarque (1981) test whether the coefficients of skewness and excess kurtosis are jointly 
zero.  

Let the errors be ε and their variance be 2σ ; the skewness and kurtosis coefficients are 

respectively given by [ ]
( )2

3
2

3

σ

εEs =  and [ ]
( )22

4

σ
εEk = . 

Normal distribution has skewness equal to zero and kurtosis equal to 3. Excess kurtosis is thus 
(k-3) equal to zero. 

The Jarque-Bera test statistics can be expressed by 

ܹ ൌ ܶ ቈ
ଶݏ

6 ൅
ሺ݇ െ 3ሻଶ

24 ቉ 

where T is the number of observations. Under the null hypothesis than the distribution is 

normal (symmetric and mesokurtic) the test statistics is asymptotically ( )22λ  distributed. If 

residuals are significantly skewed, leptokurtic or both, null hypothesis is rejected. 
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7.1.3. The Ljung­Box Test of Random Walk 

Ljung & Box (1978) test whether all autocorrelations up to lag m are zero and used as a 
general test of linear independence in time series modeling.  

The statistics, 

ܳ௠ ൌ ܶሺܶ ൅ 2ሻ ෍
௞ߩ

ଶ

ሺܶ െ ݇ሻ

௠

௞ୀଵ

 

is 2λ  distributed with m degrees of freedom under null hypothesis of no autocorrelation.  

T is a sample size, m is number of lags and ρk is k -th autocorrelation. 
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7.2. Appendix B 
Figure 4: Histograms 
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Figure 5: Squared log-returns for the in-sample Period 2 
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Figure 6: QQ-plots, In-sample Period 2 

 

 

Table 13: Ljung-Box test for Random Walk 
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Figure 7: Out-of sample VaR forecasts Period 1 

P=0,01 
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Figure 8: Out-of sample VaR forecasts Period 2 
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0

0,05

0,1

0,15

returns AW‐HS* VW‐HS* Normal* t*

Normal, HS, t ‐ Russia P2

‐0,25

‐0,2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

0,2

0,25

returns HS Normal t

Normal*, AW‐HS*, VW‐HS*, t*‐ Russia P2

‐0,25

‐0,2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

0,2

0,25

returns AW‐HS* VW‐HS* Normal* t*
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CAViaR (S) ‐ NYSE P2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

CAViaR (S) returns

CAViaR (A) ‐ NYSE P2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

CAViaR (A) returns

CAViaR (G) ‐ NYSE P2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

CAViaR (G) returns

CAViaR (S) ‐ Hong Kong P2

‐0,1

‐0,05

0

0,05

0,1

0,15

CAViaR (S) returns

CAViaR (A) ‐ Hong Kong P2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

CAViaR (A) returns

CAViaR (G) ‐ Hong Kong P2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

CAViaR (G) returns

CAViaR (S) ‐ Russia P2

‐0,25

‐0,2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

0,2

0,25

CAViaR (S) returns

CAViaR (A) ‐ Russia P2

‐0,3
‐0,25
‐0,2

‐0,15
‐0,1

‐0,05
0

0,05
0,1
0,15
0,2
0,25

CAViaR (A) returns

CAViaR (G) ‐ Russia P2

‐0,25
‐0,2

‐0,15
‐0,1

‐0,05
0

0,05
0,1
0,15
0,2
0,25

CAViaR (G) returns


