

Brandteknik Lunds Tekniska Högskola Lunds Universitet Rapport 5011

BRANDFÖRLOPP - LÄTTA STOMMAR

av Johan Åqvist Lund 1998 Institutionen för Brandteknik Lunds Tekniska Högskola Box 118 221 00 Lund

Department of Fire Safety Engineering Lund University Box 118 S-211 00 Lund Sweden

ISSN 1102-8246 ISRN LUTVDG/TVB--5011--SE

BRANDFÖRLOPP - LÄTTA STOMMAR

Fully developed fires in compartments with boundary light weight wall construction (mineral wool and plasterboard).

av

Åqvist Johan

1998

ABSTRACT: This report deals with fully developed fires in compartments where the boundary structure is made of mineral wool and plasterboard. The project was initiated due to new Swedish regulations (BBR 94) that allow buildings with wood structure to be built more than two storeys high. The temperature-timecurves in this report are computed according to authorized methods used in Sweden (*method I* and *method II*). The accuracy of the first has been questioned due to simplifications in the model it is based upon and therefore the methods are thoroughly analysed. A comparison between fullscale experiments and computer simulated fires has been carried out. The results indicate that the validity of *method I* is good. The report also presents a comparison between light weight wall construction and concrete construction. Finally some suggestions are made concerning how further studies should be carried out.

KEYWORDS: Fully developed compartment fires, compartment fire temperatures, light weight boundary construction, opening factor, fire load

SAMMANFATTNING

Den nu gällande bygglagstiftningen BBR-94 tillåter byggande av flervåningshus i trä. Av denna anledning samt för att stärka träets ställning ur brandsynpunkt initierades projektet "Brandsäkra Trähus" /1/ vari följande projekt (examensarbete) ingår. Syftet med examensarbetet var att undersöka brandförlopp i en brandcell där omgivande konstruktion består av lätta konstruktioner (en kombination av skivmaterial och isolering). Detta för att ge säker indata till modell för dimensionering av bärande träregelkonstruktioner. Experimentell verifikation av dimensioneringsmodeller för brandförlopp skulle genomföras och därför har fullskaleförsök utförts såväl som beräkning och analys av olika metoder och modeller. Resultaten från fullskaleförsöken innehåller en del osäkerhetsfaktorer bland annat på grund av störda massflöden orsakat av den relativt stora bränslemängden. Dessa osäkerheter diskuteras i rapporten. Fullskaleförsöken användes dock snarare som en kontroll av brandförloppsmodellerna än som ett underlag för uppskattning av RHR.

Vid beräkning av brandförlopp enligt metod I används som utgångspunkt brandförlopp i en referensbrandcell. Dessa brandförlopp överförs sedan till brandceller med andra termiska egenskaper via en fiktiv koefficient. Metoden har ifrågasatts bland annat av Thelandersson /2/. Thelandersson påstår att det finns risk för att brandförloppens avsvalningsfas i denna metod är överdimensionerad. Slutsatsen är att metod I är fullt användbar för konstruktionen lätt stomme och ett k_{fikt}-värde på 1.7 bör användas, förutsatt antagande om att de ingående materialen förblir intakta under brandförloppet. Metod I är för övrigt genom sitt enkla beräkningsförfarande att föredra framför metod II.

Metod II innebär beräkning av brandförlopp med datorprogram eller en kombination av beräkningar och experimentella data. Av de modeller som analyserades gav modell enligt Magnusson och Thelandersson /3/ den bästa överensstämmelsen mellan fullskaleförsök och beräkning. Metod I är också baserad på denna modell. Resultat och observationer från fullskaleförsöken visar att massflödena stördes på grund av för stor bränslevolym relativt brandcellsvolymen.

Analys av brandbelastning och öppningsfaktor enligt metod II - Magnusson et al. /3/ samt jämförelse mellan brandförlopp i betongkonstruktion och lätt stomme gav följande slutsatser.

• Maximal temperatur för brandförlopp med konstruktion av lätt stomme ligger mellan

1000 - 1200 °C oavsett val av brandbelastning och öppningsfaktor.

- En ändring av brandbelastningen påverkar främst brandförloppslängden. Ökad brandbelastning ger ökad brandförloppslängd. Detta verifieras av utförda fullskaleförsök.
- En ändring av öppningsfaktorn påverkar främst brandförloppslängden. En ökning av öppningsfaktorn minskar brandförloppslängden. Temperaturen påverkas endast marginellt.
- Skillnaden i maximaltemperatur mellan brandförlopp med konstruktion av betong och lätt stomme är ca 200 °C oavsett val av brandbelastning och öppningsfaktor.

De flesta experimentella fullständiga brandförlopp som analyseras i detta arbete har genomförts med träribbstaplar som bränsle. Förbränningskarakteristika för en verklig rumsbrand med möbler och brännbara väggmaterial som bränsle kan avvika kraftigt jämfört med brandförlopp med träribbstaplar. Det finns anledning att med den information om olika materials förbränningsegenskaper som idag finns tillgänglig ta fram alternativa modeller för beräkning av fullständiga brandförlopp.

NOMENKLATUR

А	[m²]	total fönster och dörröppningsyta		
A _t	[m ²]	brandcellens totala inre omslutningsarea minus öppningarnas area		
A _{tot}	[m ²]	brandcellens totala inre omslutningsarea		
c	[J/kg °C]	specifik värmekapacitet		
D	[m]	brandcellens längd (djup)		
f	$[MJ/m^2]$	brandbelastning		
h	[m]	ett med hänsyn till öppningarnas storlek		
		vägt medelvärde av öppningarnas höjd		
ΔH_{c}	[MJ/kg]	materialets teoretiska värmevärde (bruttoinnehåll)		
$\Delta H_{c_{eff}}$	[MJ/kg]	materialets effektiva värmevärde (nettoinnehåll)		
$\mathbf{h}_{\mathbf{k}}$	$[W/m^2 \ ^\circ C]$	värmeövergångstal vid materialytan		
• m _{air}	[kg/s]	luftinflöde		
• m _f	[kg/s]	förbränningshastighet		
M_i	[kg]	massan (vikten) av varje enskilt brännbart föremål i lokalen		
• q_{stok}	[MW]	stökiometrisk effektutveckling		
q_{total}	[MJ]	total energimängd i brandcellen		
T ₀	[°C]	temperatur vid tiden $t = 0$		
t _f	[h, min]	flamfaslängd		
T _g	[°C]	gastemperatur		
W	[m]	brandcellens bredd		
α	$[W/m^2 \ ^\circ C]$	konvektivt värmeövergångstal		
λ	$[W/m \ ^{\circ}C]$	värmeledningsförmåga		
ρ	[kg/m³]	densitet		
σ	$[W/m^2 K^4]$	Stefan-Boltzmann konstant, $5.67 \cdot 10^{-8}$		
$(\lambda \cdot \rho \cdot c)^{\frac{1}{2}}$	[W s ^{1/2} m ⁻² °C	7 s ^{1/2} m ⁻² °C ⁻¹] termisk tröghet		

1	INLEDNING	6
	1.1 BAKGRUND	6
	1.2 RAPPORTDISPOSITION	7
	1.3 OSÄKERHETER	8
2	RECREPPSEÖRKI ARINGAR	0
-)
	2.1. ÖDDNINCEAKTODN $\frac{A\sqrt{h}}{h}$	0
	2.1 OPPNINGFAKTORN $\overline{A_{tot}}$	9
	2.2 BRANDBELASTNING	10
	2.3 VENTILATIONSKONTROLL, BRÄNSLEKONTROLL	12
	2.4 BRANDFÖRLOPPETS OLIKA SKEDEN	12
	2.5 RATE OF HEAT RELEASE	13
	2.6 UPPMÄTTA OCH BERÄKNADE GASTEMPERATURER	13
	2.7 METOD I OCH METOD II	13
3	UTFÖRDA FULLSKALEFÖRSÖK	15
	3.1 INI EDNING	15
	3.2 TEMPERATURBERÄKNINGAR MED DATORPROGRAMMET HSLAB	15
	3.2.1 Temperaturprofiler	16
	3.3 FÖRSÖKSUPPSTÄLLNING	17
	3.3.1 Val av öppningsfaktor och brandbelastning	18
	3.3.2 Val av bränsle	18
	3.3.3 Termoelement	18
	3.3.4 Brandcelldimensioner	20
	3.3.5 Försöksdata	21
	3.4 RESULTAT	22
4	DIMENSIONERING AV BRANDFÖRLOPP ENLIGT METOD II	. 23
	4.1 INI EDNINC	22
	4.1 INLEDNING	23
	4.2 RESULTATUT VARDERING	23
	4.2.1 Aumuni	$\frac{23}{24}$
	4.2.2 Datorprogrammer STRE	27
	4.2.4 RHR-indata och jämförelse med försök	26
	4.3 SLUTSATS.	37
5	DIMENSIONERING AV RRANDFÖRI OPP ENI IGT METOD I	38
5		50
	5.1 INLEDNING	38
	5.2 ANVANDNING AV K _{FIKT} FOR LATT STOMME	42
	5.5 DISKUSSION	45
6	SLUTSATSER OCH FÖRSLAG TILL FORTSATTA STUDIER	46
B	ILAGA 1: RÅDATA FRÅN FULLSKALEFÖRSÖKEN	48
B	ILAGA 2: FULLSKALEFÖRSÖK SOM ANVÄNDS I MODELL ENLIGT MAGNUSSON ET AL	52
B	LAGA 3: MATERIALDATA	54
B	ILAGA 4: JÄMFÖRELSE OBSERVERAD - BERÄKNAD FLAMSTORLEK GENOM ÖPPNING	. 58
B	LAGA 5: BERÄKNADE TEMPERATUR-TIDKURVOR FÖR LÄTT STOMME	61
B	LAGA 6: JÄMFÖRELSE TEMPERATUR-TIDKURVOR LÄTT STOMME -	
B	ETONGKONSTRUKTION	64
B	LAGA 7: JÄMFÖRELSE MELLAN DATORPROGRAMMEN BRI 2 OCH SFIRE	66

1 INLEDNING

Detta kapitel diskuterar arbetets bakgrund, ger en översikt av rapporten och diskuterar allmänt de osäkerheter som det experimentella och det teoretiska arbetet har varit behäftade med.

1.1 BAKGRUND

Föreliggande examensarbete har utarbetats vid Lunds Tekniska Högskola på Institutionen för Brandteknik. Arbetet utfördes under hösten 1996 och våren 1997. Arbetet initierades av Leif Andersson på Gullfiber AB och finansierades av AB Trätek och Gullfiber AB.

Det övergripande och pågående projektet "Brandsäkra Trähus" /1/ initierades för att stärka träets ställning ur brandsynpunkt. Projektet omfattar både ytmaterial och hela konstruktioner, det vill säga de två delar som omfattas i bygglagstiftningen. Boverkets Byggregler-94, BBR-94 innebär stora förändringar vad gäller brandskydd. Det är numera tillåtet att bygga flervåningshus i trä, något som också ställer högre krav på brandteknisk dokumentation. Valet av dimensionerande brand är av stor vikt för vilket utförande som krävs för att klara en given last. Följande arbete ingår som en del i projektet "Brandsäkra Trähus" /1/.

Syftet med examensarbetet var att undersöka vilka temperatur-tidkurvor som är lämpliga att använda vid brandteknisk dimensionering av bärande konstruktioner där den omgivande konstruktionen består av lätta stommar.

Brandteknisk dimensionering av fullständiga brandförlopp genom beräkning får enligt NR1 1975, avsnitt 8:22 utföras enligt två alternativ. I det ena alternativet - metod I - väljs en representativ temperatur-tidkurva där kännedom om brandbelastning och öppningsfaktor förutsätts /4/. Denna metod har presenterats av Pettersson et al. /4/ och bygger på en modell som Magnusson och Thelandersson /3/ tog fram i slutet av 60-talet. Enligt uppgift från Thelandersson /2/ innehåller modellen förenklingar och extrapolationer som kan ifrågasättas. Diskussioner /5/, inom projektet "Brandsäkra trähus" /1/, har inneburit att man ställt sig frågande till om ett brandförlopp i en standardbrandcell kan överföras till en brandcellstyp av lätt stomme endast med hjälp av en koefficient (k_{fikt}, metod I). Följande arbete skall försöka ge svar på dessa frågeställningar samt föreslå vilka brandförlopp som är relevanta för konstruktionen lätt stomme.

Arbetet har handletts av Dr Björn Karlsson, Institutionen för Brandteknik, LTH och Leif Andersson, Gullfiber AB. Gullfiber AB och Gyproc AB har bistått med material till den praktiska delen av arbetet.

Jag riktar ett speciellt tack till min flickvän Sofia Lindén, marknadsanalytiker Henrik Hedström samt snickare "Micke" Bengtsson som hållit mitt humör uppe under arbetets gång.

1.2 RAPPORTDISPOSITION

Denna sektion ger en översikt av innehållet i rapporten.

Kapitel 2, Begreppsförklaring

Förklaringar till terminologi som används i brandtekniksammanhang samt i rapporten.

Kapitel 3, Utförda Fullskaleförsök

Fyra fullskaleförsök genomfördes på Revinge Räddningsskola och dessa ligger delvis till grund för analysen.

Kapitel 4, Dimensionering av brandförlopp enligt Metod II

En brandteknisk dimensionering av byggnadskonstruktioner genom beräkning får utföras enligt något av två alternativ.

I det ena dimensioneringsalternativet - metod II - bestäms den termiska påverkan i den enskilda tillämpningen över brandcellens energi- och massbalansekvationer eller på annat likvärdigt sätt - till exempel experimentellt eller kombinerat teoretiskt och experimentellt. Denna metod presenteras i detta kapitel. Tyngdpunkten i examensarbetets teoretiska del ligger på framtagandet av RHR-indata till de modeller som räknar fram temperatur-tidkurvor för användning vid dimensionering av bärande och avskiljande konstruktioner. Ett antal olika modeller har analyserats och temperatur-tidkurvorna har sedan jämförts med utförda fullskaleförsök i syfte att avgöra vilka som ger bäst överenstämmelse (se avsnitt 4.2.4, RHR-indata och jämförelse med försök).

Kapitel 5, Dimensionering av brandförlopp enligt Metod I

I det andra dimensioneringsalternativet - metod I - väljs en representativ temperatur-tidkurva för den fullt utvecklade branden i en brandcell från det underlag som presenteras i kapitel 5.

Kapitel 6, Slutsatser och förslag till fortsatta studier

I detta kapitel dras slutsatser och förslag till hur fortsatta studier bör bedrivas ges.

Rapporten innehåller sju bilagor med rådata från utförda fullskaleförsök, fullskaleförsök som använts i modell enligt Magnusson et al., materialdata för byggnadsmaterial, jämförelse mellan observerad och beräknad flamstorlek genom öppning, beräknade temperatur-tidkurvor för lätt stomme, jämförelse mellan lätt stomme och betongkonstruktion, jämförelse mellan datorprogrammen BRI 2 och SFIRE.

1.3 OSÄKERHETER

Det arbete som beskrivs här är behäftat med osäkerhetsfaktorer både vad gäller teoretiska modeller och experimentella metoder. Nedan kommer de dominanta osäkerhetsfaktorerna och deras inverkan på resultatet att beskrivas kortfattat. Dessutom diskuteras modellosäkerheterna på olika ställen i rapporten. I slutet av rapporten föreslås hur fortsatta studier inom detta område bör genomföras för att eliminera eller minska en del av osäkerheterna och få fram resultat med större validitet. Fullskaleförsöken används dock snarare som en kontroll av brandförloppsmodellerna än som ett underlag för uppskattning av RHR.

Osäkerhetsfaktorer i fullskaleförsöken

Fyra fullskaleförsök har genomförts varav tre används för analys i rapporten. Detta är ett relativt knapphändigt material men visar dock om överensstämmelse med beräkningarna föreligger eller inte.

Brandcellens volym var liten i förhållande till volymen bränsle. Bränslet var placerat enligt figur 3.6. Denna placering gjordes för att luftcirkulationen skulle bli så fullständig som möjligt. Staplarna av bränsle blev dock relativt höga med denna placering. Detta ändrade massflödena och hade betydelse för brandförloppets längd och temperaturfördelning (se avsnitt 3.4 Resultat).

Termoelementen var uppsatta enligt figur 3.6. Placeringen gjordes för att få ett genomsnitt av temperaturen i brandcellen. Vissa termoelement blev funktionsodugliga efter en viss tid av brandförloppet (se avsnitt 3.3.5). Genomsnittstemperaturen har beräknats av de termoelement som var funktionsdugliga under hela brandförloppet (se bilaga 1).

Osäkerhetsfaktorer i beräkningar

I försöken användes speciella gipsplattor som omslutningsmaterial, så kallad brandgips (protect F, 860 kg/m³). Termiska data för brandgipsen har i beräkningarna satts lika med "normal" gips (GN-skiva, 790 kg/m³). Brandgipsen har något större densitet än den "normala" gipsen. I bilaga 3 visas att detta har liten betydelse.

Materialen förutsätts vara intakta under hela brandförloppet och termiska materialdata har extrapolerats linjärt från 1000 °C i de fall där termiska materialdata endast är angivna upp till denna temperatur. Extrapolationen görs för att datorprogrammet SFIRE skall klara av att beräkna temperatur-tidkurvor som överstiger 1000 °C. Jämfört med effektutvecklingens betydelse för brandförloppet är denna förenkling av liten betydelse.

2 BEGREPPSFÖRKLARINGAR

Detta kapitel beskriver några av de begrepp som används när den fullt utvecklade rumsbranden diskuteras.

2.1 ÖPPNINGFAKTORN $\frac{A\sqrt{h}}{A_{tot}}$

Öppningsfaktorn för en brandcell är en viktig parameter för en brands utveckling och därmed också för brandpåverkans intensitet och varaktighet. Öppningens storlek styr till stor del hur mycket luft, och därmed syre, som flödar in genom öppningen. Det är denna mängd syre som är begränsande för värmeutvecklingen inuti rummet. Kawagoe et al. /6/ upptäckte att parametern $A\sqrt{h}$ (där A är öppningsarean och h öppningens höjd) korrelerade starkt med förbränningshastigheten i rummet. Magnusson och Thelandersson /3/ normerade denna faktor med A_{tot} (den totala arean av omslutningsytor) och kallade faktorn $A\sqrt{h} / A_{tot}$ för öppningsfaktor.

För en brandcell med enbart vertikala öppningar (horisontella öppningar behandlas ej här) definieras öppningsfaktorn som $A\sqrt{h} / A_{tot}$ (m^{1/2}). Vid beräkning av öppningsfaktorn förutsätts att glas eller dörrar förstörs när flamfasen (se avsnitt 2.4) börjar.

figur 2.1 Beräkning av öppningsfaktor. Hämtad ur /7/.

$$A = A_{1} + A_{2} + \dots + A_{6} = b_{1}h_{1} + b_{2}h_{2} + \dots + b_{6}h_{6}$$
$$h = \frac{A_{1}h_{1} + A_{2}h_{2} + \dots + A_{6}h_{6}}{A}$$
$$A_{tot} = 2(l_{1}l_{2} + l_{1}l_{3} + l_{2}l_{3})$$

2.2 BRANDBELASTNING

Brandbelastningen för ett rum (en brandcell) utgör ett mått på den sammanlagda värmemängd som utvecklas (frigörs) vid fullständig förbränning av allt brännbart material i rummet (brandcellen). Med fullständig menas här att värmevärdet hos det brinnande materialet till fullo kommer att utvecklas. Analys av värmevärdet hos olika trämaterial med hjälp av en "oxygen bomb calorimeter" visar att det genomsnittliga värmevärdet för trä är 20 MJ/kg (White /8/). Detta värde benämns ibland brutto- eller teoretiskt värmevärde och kommer i verkligheten aldrig att uppnås. Analys av förbränningsgaser t ex med "OSU Apparatus" visar att den energimängd som frigörs är avsevärt mindre än det brinnande materialets teoretiska värmevärde /9/ (se tabell 2.1 /9/). Dessa värden bekräftades även experimentellt av konkalorimetern /10/.

Trots att ett brinnande material har tillgång till obegränsad mängd syre så kommer pyrolysgaserna att innehålla en del kemiska föreningar, t ex kolmonoxid som klart indikerar ofullständig förbränning. Tabell 2.1 visar att det effektiva värmevärdet för trä är ca 13 MJ/kg. Detta värde gäller tills flamman har slocknat. När trämaterialet övergår till att glödbrinna och koloxidation överväger, blir det effektiva värmevärdet högre (Tran /9/). Brandbelastningens definition förutsätter vidare att allt material åtgår till förbränningen vilket oftast inte heller är sant. När exempelvis ett bibliotek eller kontor med tätt packade böcker resp pärmar brinner, kommer en stor mängd material att lämnas oförbrända även om brandförloppet inte avbryts. Ett brandförlopp avbryts oftast av att brandkåren påbörjar sitt släckningsarbete långt innan de brännbara materialen förbrukats men dessa faktum tas dock ingen hänsyn till när brandbelastningen anges. Ovanstående resonemang bör man ha i åtanke när man använder värden för brandbelastning.

	28 kW/i irradian	m ² ce	40 kW/ irradian	m ² ce	50 kW/ irradian	m² ce
Material	Actual	Dry	Actual	Dry	Actual	Dry
DF plywood (MJ/kg)	11.7	13.3	13.1	14.7	13.5	15.1
Redwood (MJ/kg)	11.7	14.0	12.5	14.2	13.2	14.7
SP plywood (MJ/kg)	12.4	13.8	14.8	14.8	13.2	14.7
Particleboard (MJ/kg)	11.0	12.6	12.8	14.2	12.8	14.0
OSB (MJ/kg)	11.8	13.0	-	-	13.2	14.4
FRT plywood(MJ/kg)	5.7	6.8	8.0	9.3	7.9	9.1

Tabell 2.1 Det effektiva värmevärdet för olika trämaterial framtagna med "OSU Apparatus"/9/.

Brandbelastningen anges (i Sverige) per ytenhet av brandcellens totala inre omslutningsarea. Den kan bestämmas med hjälp av tabellvärden på materialets värmevärde ΔH_c . Detta värde multipliceras med materialets vikt och divideras sedan med den totala inneslutningsarean av brandcellen.

Brandbelastningen f ges av

$$f = \sum_{i=1}^{n} (M_i \cdot \Delta H_{c,i}) \cdot \frac{1}{A_{tot}} \quad MJ/m^2$$
(2.1)

där M_i är massan av materialtyp i, och $\Delta H_{c,i}$ är materialets värmevärde.

Brandbelastningen för en brandcell med bestämd funktion och inredning kan också hämtas direkt från tabell 2.2. Värden för brandbelastning enligt tabell 2.2 är internationellt antagna värden och bygger på flera olika undersökningar. Värdena motsvarar en brandbelastning som återfinns i 80 % av alla undersökta fall.

Tabell 2.2 Brandbelastning för olika lokaler. Hämtad ur /7/.

Тур	av lokal	Brandbelastning MJ/m^2
l la lb	Bostāder 2 rum + kök 3 rum + kök	168 149
2 2a 2b	Kontorshus Tekniska kontorslokaler (arkitektkontor o d) Ekonomiska och administrativa	145
2c	kontorslokaler (banker, för— säkringsbolag o d) Samtliga undersökta kontorslokaler	132 138
3 3a 3b 3c 3d	Skolor Lågstadieskolor Mellanstadieskolor Högstadieskolor Samtliga undersökta skolor	98,4 117 71,2 96,3
4	Sjukhus	147
5	Hotell	81,6

2.3 VENTILATIONSKONTROLL, BRÄNSLEKONTROLL

Effektutvecklingen vid en brand bestäms av mängden bränsle och syre. Om tillgången till luft är mindre än vad som skulle gå åt vid en fullständig förbränning av bränslet kallas branden <u>ventilationskontrollerad</u>. Är lufttillgången större än vad som behövs för en fullständig förbränning kallas branden <u>bränslekontrollerad</u>. I detta arbete förutsätts brandförloppen generellt vara ventilationskontrollerade för att beräkningsproceduren skall möjliggöras. Det är dock omöjligt att i förväg avgöra om ett brandförlopp kommer att bli ventilationskontrollerat eller inte även om brandbelastning och öppningsfaktor är kända. Bränslets placering, tjocklek eller porositet är avgörande faktorer i varje specifikt fall. Antagandet om ventilationskontroll ger dock temperatur-tidkurvor på säkra sidan (Pettersson et al. /4/).

2.4 BRANDFÖRLOPPETS OLIKA SKEDEN

Ett brandförlopp kan beskrivas genom att dela upp det i olika effektutvecklingsfaser. Antändningsfasen är tiden från antändning till dess att branden når flamfasen. Flamfasen har definierats som tiden då det brännbara materialets vikt minskar från 80 % till 30% /17/. Avsvalningsfasen följer efter flamfasen och slutar när effektutvecklingen är noll (se figur 2.2).

Figur 2.2 Brandförloppets olika skeden. Hämtad ur /12/.

2.5 RATE OF HEAT RELEASE

Rate of Heat Release (RHR) eller effektutveckling anges oftast i MW och är den effekt (energi per tidsenhet) som branden utvecklar.

2.6 UPPMÄTTA OCH BERÄKNADE GASTEMPERATURER

En har övertändning brandcell som inte nått brukar vid temperaturoch brandgasgaslagerberäkningar delas upp i två zoner, den undre med kall inströmmande luft med temperaturen T_0 (°C) och den övre med varma utströmmande brandgaser med temperaturen T_g (°C). Inom respektive zon antas temperaturen i varje ögonblick vara densamma. Inom det övertända brandförloppet antar man, i de modeller som studeras i detta arbete att temperaturen är konstant i hela brandcellen, d v s att endast en zon existerar (se avsnitt 4.2.3) vilket innebär att gastemperaturen Tg (°C) gäller för hela brandcellen. Det är denna temperatur som konsekvent används i detta arbete om inget annat anges. Enzonsmodellen tjänar till att underlätta beräkningsproceduren. I de försök som utfördes inom projektet mättes gastemperaturen på olika höjder i försöksrummet. Genomsnittstemperaturen används för jämförelse med beräknade värden.

2.7 METOD I OCH METOD II

De metoder som används i Sverige för framtagning av temperatur-tidkurvor vid brand i rum delas gärna i metod I och metod II. Skillnaden mellan metod I och metod II är inte alltid självklar. Metod I innebär att man vid beräkning av temperatur-tidkurvor använder redan framtagna tabeller och diagram. Kännedom om öppningsfaktor och brandbelastning förutsätts. Om inte aktuell brandcell finns angiven i dessa tabeller och diagram kan genom ett enkelt beräkningsförfarande aktuell temperatur-tidkurva ändå erhållas. Metoden presenterades av Pettersson et al. /4/ och bygger på en modell som Magnusson et al. /3/ tog fram i slutet av 60-talet (se även kapitel 5 Dimensionering av brandförlopp enligt metod I).

Metod II innebär tillämpning av brandcellens energi- och massbalansekvationer eller på annat likvärdigt sätt - till exempel experimentellt eller kombinerat teoretiskt och experimentellt. Om ovan beskrivna tabeller och diagram inte används vid framtagande av temperatur-tidkurvor benämns alltså dimensioneringsförfarandet metod II. I kapitel 4 används datorprogrammet SFIRE för att beräkna temperatur-tidkurvor enligt metod II. Olika metoder för effektutveckling analyseras indata SFIRE. och ges som till En av dessa effektutvecklingsmetoder är den ovan nämnda enligt Magnusson et al. /3/. Eftersom effektutvecklingen är en avgörande parameter för brandförloppet kommer SFIRE att generera snarlika kurvor jämfört med metod I. För att hålla isär begreppen kommer alla beräknade temperatur-tidkurvor enligt metod II med effektutveckling enligt Magnusson et al. /3/ benämnas - Metod II enligt Magnusson et al.

Metod I och metod II enligt Magnusson et al. förutsätter att brandförloppet går till övertändning. Temperatur-tidkurvor för brandförlopp i stora lokaler där brandförloppet inte går till övertändning överdimensioneras kraftigt och vid osäkerhet om övertändning föreligger eller inte kan ekvation (2.2) enligt Thomas /13/ användas. Effektutvecklingen måste överstiga

 $q_{\text{flashover}} = 7.8 \, A_{\text{tot}} + 378 A \sqrt{h} \, \text{kW}$ (2.2) /13/

för att gå till övertändning.

3 UTFÖRDA FULLSKALEFÖRSÖK

3.1 INLEDNING

För att verifiera databeräkningar är det lämpligt att ha experimentell förankring. Som en del i detta projekt genomfördes ett antal fullskaleförsök. Försöken utfördes på Revinge Räddningsskola. En brandcell av lätt stomme byggdes upp i en container. Den container som användes var isolerad med stenull (se figur 3.6). Det var därför viktigt att kontrollera att för stor mängd värme från branden inte skulle gå igenom den uppbyggda lätta stommen till den omslutande containern eftersom då försöken sett ur termisk synvinkel skulle få en annorlunda omgivande konstruktion än den som avsågs. Dessutom fanns det ingen möjlighet att ta reda på hur intakt stenullen i containern var. Till denna kontroll (se avsnitt 3.2) användes dataprogrammet HSLAB /14/. Ett program som beräknar endimensionellt värmeflöde genom olika sammansättningar av material. I kapitlet beskrivs också vilka val av material, bränsle, brandbelastning med mera som gjordes inför fullskaleförsöken samt problematiken med användandet av termoelement. Resultaten av fullskaleförsöken illustreras och diskuteras.

3.2 TEMPERATURBERÄKNINGAR MED DATORPROGRAMMET HSLAB

HSLAB /14/ är ett användaranpassat beräkningsprogram för persondatorer. Programmet behandlar det instationära temperaturförloppet i en dimension av en flerskiktad skiva som utsätts för värmepåverkan. Programmet tillåter flexibla randvillkor med exempelvis given temperatur eller värmeflöde vid ytan som funktion av tiden. Programmet är skrivet i Turbo Pascal. Den numeriska lösningen är baserad på differensapproximationer med Crank-Nicholson som lösningsmetod.

HSLAB beräknar temperaturfördelningen i en skiva som består av ett eller flera material som utsätts för värmepåverkan (se figur 3.1). Värmeflödet antas vara endimensionellt, det vill säga temperaturen T(x,t) vid givna materialparametrar enbart beror på variablerna x, $0 \le x \le L$, och tiden t, $t \ge t_0$. Temperaturen eller värmeflödet anges vid ränderna samt materialens initialtemperatur och materialparametrar.

Figur 3.1 HSLAB beräknar temperaturfördelningen mellan x=0 och x=L

HSLAB löser den allmänna värmeledningsekvationen

$$\rho \cdot c \frac{\delta \Gamma}{\delta t} = \frac{\delta}{\delta x} \left(\lambda(T) \cdot \frac{\delta \Gamma}{\delta x} \right)$$
(3.1)

där ρ är materialets densitet, c är materialets värmekapacitet och λ är materialets värmeledningstal och anges som funktion av temperaturen.

Randvillkoren för båda sidor fås av följande ekvation

$$-\lambda(\mathbf{T}) \cdot \delta \mathbf{T} / \delta \mathbf{x} = \varepsilon_{\text{res}} \cdot \sigma \left\{ \mathbf{T}_{g}(\mathbf{t})^{4} - \mathbf{T}_{s}^{4} \right\} + \mathbf{h}_{k} \left\{ \mathbf{T}_{g}(\mathbf{t}) - \mathbf{T}_{s} \right\}$$
(3.2) /14/

där ε_{res} är emissitivitet för omgivande konstruktion och brandgas, σ är Stefan-Boltzmann konstanten, T_s är yttemperaturen vid tiden t och h_k är värmeövergångstalet vid materialytan.

3.2.1 Temperaturprofiler

HSLAB användes för att beräkna temperaturprofilen i den uppbyggda konstruktionen inuti containern. Konstruktionen bestod av två 15 mm:s brandgipsskivor (protect F, $\rho = 860 \text{ kg/m}^3$) vid den brandutsatta sidan samt 10 cm mineralull ($\rho = 32 \text{ kg/m}^3$) vid containerväggen (se figur 3.6). Gastemperaturerna beräknades både innan och efter att fullskaleförsöken utfördes. Som dimensionerande brand användes en brandbelastning på 200 MJ/m² och en öppningsfaktor på 0.04 m^{1/2}, med andra ord en kraftigare brand än i fullskaleförsöken.

Beräkningarna visar att konstruktionen maximalt når 150 °C på den icke-brandutsatta sidan (se figur 3.2) vilket får anses vara ett tillräckligt lågt värde för att fösöksuppställningen kan antas bestå av en lätt stomme, även om denna lätta stomme (brandgips + mineralull) hade en isolerad containervägg på den icke brandutsatta sidan. Detta verifieras också av temperaturprofilen med fullskaleförsök 3 (se figur 3.3) som indata.

<u>Antaganden</u>: h_k (brandcell) = 15 W/ m² °C h_k (ute) = 10 W/ m² °C $\epsilon_{res} = 0.9$ Utetemperatur T = 20 °C Begynnelsetemperaturen T₀ = 20 °C T_g (t) = temperatur-tidkurvor enligt figur 3.2 b och figur 3.3 b

Figur 3.2 a) Temperaturprofil i konstruktionen enligt datorprogrammet HSLAB med b) temperatur-tidkurva enligt metod I (se kapitel 5) som indata.

Figur 3.3 a) Temperaturprofil i konstruktionen enligt datorprogrammet HSLAB med b) temperatur-tidkurva från fullskaleförsök 3 som indata.

3.3 FÖRSÖKSUPPSTÄLLNING

fullskaleförsök förklarades oanvändbart Fyra genomfördes varav det första för beräkningjämförelse då konstruktionen kollapsade på ett för tidigt stadium (efter 13 min). I detta inledande försök användes 10 cm minerallull + en 13 mm:s gipsskiva. Försök 1 kommer inte att behandlas ytterligare i detta arbete. Konstruktionen ändrades för att bättre klara av de höga temperaturer som den skulle utsättas för. Den nya konstruktionen bestod av 10 cm mineralull + två brandgipsskivor (protect F). För ytterligare information om materialens termiska egenskaper, se bilaga 3. I alla försök fästes gipsskivorna på stålreglar för att den bärande konstruktionen skulle få så liten termisk inverkan på brandförloppet som möjligt.

3.3.1 Val av öppningsfaktor och brandbelastning

Både öppningsfaktorn och brandbelastningen varierades. En öppningsfaktor på 0.04 m^{1/2} är normalt förekommande /7/ och brukar användas vid dimensionering när inget annat anges. Denna öppningsfaktor användes i försök 2 och 3. Öppningsfaktorn 0.08 m^{1/2} användes i det sista försöket. Brandbelastning var 75 MJ/m² i försök 2 och 150 MJ/m² i försök 3 och 4. Även dessa relativt måttliga brandbelastningar kommer visa sig påverka resultatet på grund av bränslets utrymmeskrävande natur.

3.3.2 Val av bränsle

Som bränsle användes lastpallar av typ engångspallar (ca $1.2 \cdot 0.8 \cdot 0.15 \text{ m}^3$). Ett värmevärde på 18.8 MJ/kg (Teoretiskt värmevärde, Magnusson et al. /3/) användes vid beräkning av brandbelastning (se även avsnitt 2.2)

3.3.3 Termoelement

Temperaturer kan mätas på olika sätt, både inuti brandcellen med termoelement eller utanför exempelvis med infraröd kamera. Termoelement är dock det mest använda mätinstrumentet. Termoelementet (se figur 3.4) består alltid av två olika metalliska element - Metal A och Metal B - som alstrar en spänning som varierar med temperaturen. Varje temperatur vid mätpunkten - measure junction - motsvarar en viss spänning som omvandlas i avläsningsutrustningen till en temperatur.

Figur 3.4 Termoelementets uppbyggnad (h = konvektivt värmeövergångstal (W/m² °C)).

G/G Parallell-lagda Resistens mo Mot nötning:	i ledare. Glasfil t fukt och petro Godtagbar.	ber runt varje led oleumprodukter:	are, ytterhölje a Bra till +150°C	v glasfiber.
Max. temp. °C	Min. temp. °C	Tràddim. AWG	Kalibrering	Ytterdim. mm.
510	_	20	J,K,T	1,6×2,7

- 185 A.

510	_	20 24 30 36	J,K,T J,K,T J,K,T J,K	1.6×2.7 1.0×1.7 0.8×1.2 0.7×1.2

Figur 3.5 Termoelement som användes i fullskaleförsöken. Trådarna är tillverkade av kromlegering och aluminiumlegering respektive. Diametern på trådarna är 0.51 mm vilket motsvarar tråddimension 24 AWG i figuren.

Termoelementsmätningar syftar till att få temperaturen på det medium den är placerad i. Den temperatur man avläser avspeglar dock även strålningseffekter och kan inte sägas vara ekvivalent med gastemperaturen. Följande exempel åskådliggör problematiken.

<u>Exempel 3.1</u> Ett termoelement är placerat i ett rör där man önskar att mäta gastemperaturen. Rörets väggar är 450 °C = 723 K och termoelementet visar 170 °C = 443 K. h_k är det konvektiva övergångstalet och beräknades ungefärligt till 150 W/m² °C och $\varepsilon = 0.5$. Vad är gastemperaturen?

Lösning:

Energibalansekvationen vid stationärt tillstånd:

 $h_{k}A(T_{g} - T_{t}) + \sigma A\epsilon(T_{w}^{4} - T_{t}^{4}) = 0$ (3.3)

 $150(T_g - 443) + 5.67 \cdot 10^{-8} \cdot 0.5(723^4 - 443^4) = 0 \Rightarrow T_g = 399 \text{ K} = \underline{126 \ ^\circ C}$

 T_t = den temperatur termoelementet visar T_w = temperatur på rörets väggar T_g = gastemperatur

Detta värde är betydligt mindre än det uppmätta beroende på strålningens inverkan. I de experiment som diskuteras här är skillnaden mellan den genomsnittligt uppmätta temperaturen och konstruktionens yttemperaturer betydligt mindre än i exempel 3.1 och felet på grund av strålning är därför mycket mindre. När gastemperatur anges i vetenskapliga rapporter bortses oftast från denna felkälla om inget annat anges.

I fullskaleförsöken uppmättes temperaturer med termoelement. Tio termoelement placerades i containern. Åtta stycken var så placerade att de tillsammans skulle ge ett medelvärde av temperaturen i brandcellen för beräkningsjämförelse (se figur 3.6). Två termoelement var placerade för att ge en topptemperatur (fem centimeter från tak).

3.3.4 Brandcelldimensioner

Nedan ges brandcellsdimensioner för containern som användes till fullskaleförsöken.

Den totala inneslutningsarean $A_{tot} = 46 \text{ m}^2$ Inneslutningsdimensioner: höjd = 1.91 m, längd (djup) = 5.17 m, bredd = 1.83 m Öppning på containers kortsida: höjd = 1.91 m , bredd = 0.7 m (öppningsfaktorn = 0.04 m^{1/2}) resp 1.4 m (öppningsfaktorn = 0.08 m^{1/2})

3.3.5 Försöksdata

Ytterligare information om materialens termiska egenskaper återfinns i bilaga 3. Golvet i containern bestod av två 15 mm brandgipsskivor + 50 mm stenull.

Försök 1

Försöket ej aktuellt för beräkningsjämförelse eftersom materialen kollapsade på ett för tidigt stadium. Detta försök behandlas ej mer i arbetet.

Försök 2

Öppningsfaktor: 0.04 m^{1/2} Brandbelastning: 75 MJ/m² Material: två 15 mm brandgipsskivor + 10 cm mineralull. Fukthalt i bränslet: 11 % Starttemp: ca 2 °C Kommentar: Termoelement 1-5 blev funktionsodugliga efter 35 min. Gipsskivorna förblev intakta under hela försöket.

Försök 3

Öppningsfaktor: 0.04 m^{1/2} Brandbelastning: 150 MJ/m² Material: två 15 mm brandgipsskivor + 10 cm mineralull Fukthalt i bränslet: 10 % Starttemp: ca 2 °C Kommentar: Termoelement 1 och 4 blev funktionsodugliga efter 60 min. Gipsskivorna förblev intakta under hela försöket.

Försök 4

Öppningsfaktor 0.08 m^{1/2} Brandbelastning 150 MJ/m² Material: två 15 mm brandgipsskivor + 10 cm mineralull Fukthalt i bränslet: 10 % Starttemp: ca 2 °C Kommentar: Gipsskivorna förblev intakta under hela försöket.

3.4 RESULTAT

Figur 3.7 Jämförelse av fullskaleförsöken

Lågor slog ut genom öppningen i flamfasen i alla försök. Störst lågor slog ut i försök fyra. Som illustration innehåller arbetet en bilaga där flamstorlek kan beräknas (se bilaga 4).

Observationer vid fullskaleförsök tre och fyra visade att syret i brandförloppens inledning till största del användes till förbränning av de två lastpallstaplar som stod närmast öppningen. De staplar som var placerade längre in i brandcellen förblev nästan intakta tills syre tilläts att passera, vilket skedde först när de yttre staplarna brunnit ner till ungefär halva höjden. Här är en stor osäkerhetsfaktor vad gäller brandförloppets längd. Luftinblandningens ofullständighet ledde till att värme stannade kvar i brandcellens inre del istället för att följa med förbränningsgaserna ut eller analogt resonemang, en stor mängd av den kalla luft som strömmade in i brandcellen åtgick aldrig till förbränning. Detta resulterade i att brandförloppen i försök 3 och försök 4 blev relativt lika trots att öppningsfaktorn skilde en faktor två. Detta var alltså orsakat av för höga bränslestaplar. Några termoelement blev ogiltiga i försök 2 och 3. Dessa anges i försöksdata och bilaga 1.

Vidare kan ur figur 3.7 konstateras att temperaturskillnaderna är förhållandevis små. Val av öppningsfaktor och brandbelastning spelar mindre roll för temperaturen utan påverkar främst brandförloppens längd. Brandförloppet i försök 2 är betydligt kortare än i försök 3. Övriga resultat och jämförelser presenteras i kapitel 4.2, Resultatutvärdering. Temperatur-tidkurvorna presenteras också i tabellform (se bilaga 1).

4 DIMENSIONERING AV BRANDFÖRLOPP ENLIGT METOD II

4.1 INLEDNING

I *metod II* bestäms den termiska påverkan i den enskilda tillämpningen över brandcellens energi- och massbalansekvationer eller på annat likvärdigt sätt, till exempel experimentellt eller kombinerat teoretiskt och experimentellt.

Detta kapitel syftar till att beskriva metoder som ger temperatur-tidkurvor genom beräkning. Datorprogrammet SFIRE som använts för dessa beräkningar beskrivs i avsnitt 4.2.2. SFIRE är programmerat med energibalansekvationerna som beskrivs i avsnitt 4.2.3. Verifiering av beräknade temperatur-tidkurvor görs med hjälp av fullskaleförsöken. SFIRE behöver bland annat brandens effektutveckling som indata. Olika metoder för att ta fram effektutveckling har därför studerats och utvärderats (se avsnitt 4.2.4). I bilaga 5 presenteras ett antal temperaturtidkurvor för brandförlopp i brandcell med omgivande konstruktion lätta stommar och brandbelastningens och öppningsfaktorns inverkan på brandförloppet diskuteras. I bilaga 6 jämförs temperatur-tidkurvor för brandförlopp i brandcell med omgivande konstruktion lätta stommar med betongkonstruktion.

4.2 RESULTATUTVÄRDERING

4.2.1 Allmänt

De första systematiska studierna av fullständiga brandförlopp i brandceller utfördes i Japan i slutet av 40-talet. Kawagoe et al. /6/ mätte förbränningshastigheter för träribbstaplar som placerats i brandceller med varierade öppningsstorlekar. Både småskaleförsök och fullskaleförsök genomfördes. Förbränningshastigheten visade sig bero kraftigt av storleken och utformningen av ventilationsöppningen.

Efter Kawagoes första studie av fullständiga brandförlopp har en rad vetenskapsmän varit engagerade i detta ämne. Magnusson et al. /3/, Pettersson et al. /4/, Ödeen /15/, Sjölin /16/ för att nämna några. Alla har i enlighet med Kawagoe kommit fram till att förbränningshastigheten och därmed effektutvecklingen beror av storleken och utformningen av ventilationsöppningen - analogt - effektutvecklingen är proportionell mot ventilations-faktorn $A\sqrt{h}$ för ventilationskontrollerade brandförlopp under flamfasen. Förbrännings-hastigheten definieras konventionellt i flamfasen som

 $m_f = k \cdot A\sqrt{h} kg/s$, där k är en konstant. (4.1)

Effektutvecklingen definieras i flamfasen som

$$\mathbf{q}_{c} = \mathbf{m}_{f} \cdot \Delta \mathbf{H}_{c_{eff}} \mathbf{MW}$$
 (4.2)

där q_c är utvecklad värmeeffekt och $\Delta H_{c_{eff}}$ är det effektiva värmevärdet.

Förbränningshastigheten kan dock beräknas enligt andra ekvationer (se avsnitt 4.2.4.3). Det effektiva värmevärdet $\Delta H_{c_{eff}}$ för trä kan variera från 10 MJ/m² (se avsnitt 4.2.4.2) till

20 MJ/m² (se avsnitt 2.2) beroende på antagande om hur fullständig förbränning är. Effektutvecklingen kan också beräknas med utgångspunkt från inflödet av luft (se avsnitt 4.2.4.1). Den beräknade effektutvecklingen kan alltså variera kraftigt beroende på gjorda antaganden. Det finns därför anledning att studera dessa antaganden närmare.

För att utvärdera de resultat som erhållits från fullskaleförsöken har datorsimuleringar genomförts. Ett antal olika metoder för att bestämma RHR-indata har framtagits. En av modellerna - syreförbrukningsmetoden /17/ - bygger på stökiometrisk förbränning av bränslet i brandcellen med utgångspunkt från inflödet av luft. Den andra enligt Magnusson et al. /3/ baseras på ett stort antal fullskaleförsök där förbränningen i flamfasen bygger på energiinnehållsmätningar av pyrolysgaserna. Den tredje enligt Thomas /11/ tar även hänsyn till brandcellens dimensioner på ett mer noggrant sätt än de tidigare två modellerna.

4.2.2 Datorprogrammet SFIRE

SFIRE skapades av Magnusson och Thelandersson /3/ i slutet av 60-talet och är baserat på de nu konventionella energibalansekvationerna (se avsnitt 4.2.3). Datorprogrammet har förbättrats vid två tillfällen och den nuvarande versionen SFIRE-3 /18/ är den som presenteras här. En användbar funktion är att upp till tre olika väggsammansättningar för omgivande konstruktioner kan anges, dock måste två av dessa vara homogena. En annan användbar funktion som ursprungsprogrammet inte innehöll är en korrektionsfaktor för ofullständig blandning av inströmmande luft och producerade pyrolysgaser, med andra ord hänsyn tas till att syreförbrukningen är inte fullständig (stökiometrisk), vilket leder till lägre temperaturtidkurvor. Det finns även möjlighet att betrakta effekten på brandförloppet av att ett aktiverat sprinklersystem.

Det finns ett antal sätt att uppskatta RHR-utvecklingen i brandcellen. I programmanualen anges två olika sätt. I det ena fallet beräknas den totala energimängden och antas frigöras stökiometriskt. Eventuellt görs korrektion för ofullständig blandning av syret enligt ovan. Det andra fallet kan användas när flera olika bränslepaket brinner men beskrivs inte närmare här. I detta arbete görs beräkningar enligt det första sättet.

Som indata till SFIRE skall bland annat anges

- en eller flera värmeutvecklingskurvor (RHR-kurvor)
- de ingående materialens entalpier, värmekonduktiviteter och emissitiviteter
- antal intervall materialen delas upp i
- total inneslutningsarea (A_{tot})
- öppningfaktor
- öppningsarea
- värmevärdet för bränslet $(\Delta H_{c_{eff}})$
- värmekapacitet för förbrända gaser
- utskriftsdata och utskriftsformat
- starttemperaturer
- eventuella sprinklerdata

Som utdata fås

- gastemperatur
- temperaturen i de olika materialen
- massflöden
- temperatur i väggarna

I bilaga 7 återfinns en jämförelse mellan dataprogrammet SFIRE, enzonsmodellen som har använts i detta arbete och dataprogrammet BRI 2, tvåzonsmodellen som finländska provningsanstalten (VTT) har använt i sina beräkningar.

4.2.3 Energibalansekvationerna

Studier av Kawagoe och Sekine /19/ och Ödeen /15/ gjorde det möjligt att beräkna temperatur-tidkurvor för förbränningsgaser i flamfasen av ett brandförlopp. De studerade energibalansen och tecknade ekvation (4.3) med antagande om att faktorn q_c är känd. Ekvationen beskriver sambandet mellan tillförd och bortförd energi. Brandcellen ses som en kalorimeter och temperaturen fås genom att lösa ekvation (4.3). q_c ges som indata till datorprogrammet SFIRE som sedan löser ekvationen och beräknar temperaturen i brandcellen för varje tidssteg.

Figur 4.1 Energibalans för ett brandrum. $\dot{q}_{c} = \dot{q}_{L} + \dot{q}_{W} + \dot{q}_{R}$ (4.3)

$q_{c} =$	effekt tillförd genom förbränning
$\dot{q}_{L} =$	effekt bortförd genom utbyte av varma gaser mot kall luft
$\dot{q}_w =$	effekt bortförd genom väggar, tak och golv
$\dot{q}_{R} =$	effekt bortförd genom strålning via öppningen

Följande antaganden görs för att förenkla modellen:

- Brandbelastningens förbränning är fullständig och förutsätts helt ske inom brandcellen,
- brandförloppet förutsätts generellt vara ventilationskontrollerat,
- brandgastemperaturen är i varje ögonblick densamma inom hela brandcellen,
- värmeövergångskoefficienten för brandcellens inre begränsningsyta, är i varje ögonblick lika för varje del av ytan och
- värmeflödet till och genom brandcellens omslutande konstruktioner är endimensionellt och likformigt fördelat för varje typ av omslutande konstruktion.

4.2.4 RHR-indata och jämförelse med försök

4.2.4.1 Syreförbrukningsmetod

Syreförbrukningsmetoden /17/ (oxygen consumtion method) är baserad på antagande om att mängden frigjord energi per viktenhet konsumerat syre O_2 är nästan konstant och oberoende av materialval och fullständighet hos förbränningen.

 $\Delta Ho_2 \approx 13.1 \text{ kJ/g } O_2$

/17/

Babrauskas och Williamson /20/ visade att luftinflödet för brandförlopp i brandceller är ungefär

•
$$m_{air} \approx 0.5 A \sqrt{h} kg/s$$
 (4.4) /20/

Om syrevikten antas vara 23 procent av den inströmmande luften blir den stökiometriska effektutvecklingen $\dot{q}_{stök} = 0.5A\sqrt{h} \cdot 0.23 \cdot 13.1 = 1.5A\sqrt{h}$ MW

•
$$q_{stök} = 1.5 A\sqrt{h} MW$$
 (4.5)

I figur 4.2 - 4.4 återfinns även kurvor med hänsyn tagen till ofullständig syreblandning (se avsnitt 4.2.2). Den angivna experimentella temperaturen är ett medelvärde av uppmätta värden (se bilaga 1).

Försök 2

Antändningsfas, flamfas och avsvalningsfas antas vara linjära. Vidare antas antändningsfasen vara två minuter. T_f definieras som tiden fram tills den linjära avsvalningsfasen börjar. Avsvalningfasen antas motsvara resten av den tillgängliga energin. Ekvation (4.7) från modell enligt Magnusson et al. Ovanstående antaganden enligt programmanualen /18/.

$$\begin{aligned} \mathbf{q}_{\text{total}} &= \mathbf{f} \cdot \mathbf{A}_{\text{tot}} = 75 \cdot 46 \text{ MJ} = 3450 \text{ MJ} \end{aligned} \tag{4.6} \\ \overset{\bullet}{\mathbf{q}}_{\text{stök}} &= 1.5 \text{A} \sqrt{h} = 1.5 \cdot 1.34 \cdot 1.38 = 2.78 \text{ MW} \\ \mathbf{t}_{\text{f}} &= \mathbf{q}_{\text{total}} / 105 \text{A} \sqrt{h} = 3450 / (105 \cdot 1.34 \cdot 1.38) = 17.77 \text{ min} = 1066 \text{ s} \tag{4.7} \end{aligned} \tag{4.6}$$

Tid (s)	RHR (MW)
0	0
120	2.78
1066	2.78
1536	0

Figur 4.2 Jämförelse mellan datorberäknade temperatur-tidkurvor enligt syreförbrukningsmetod (korrektion = korrektion för ofullständig syreblandning) och temperatur-tidkurva från fullskaleförsök 2.

Försök 3

Samma antaganden som i försök 2

$$\begin{array}{l} q_{total} = 150 \ \cdot \ 46 = 6900 \ \text{MJ} \\ \overset{\bullet}{q}_{st \ddot{o} k} = 1.5 \ \cdot \ 1.34 \ \cdot \ 1.38 = 2.78 \ \text{MW} \\ t_{f} = \ q_{total} \ / \ 105 A \sqrt{h} = \ 6900 \ / \ (105 \ \cdot \ 1.34 \ \cdot \ 1.38) = 35.5 \ \text{min} = 2132 \ \text{s} \end{array}$$

Tid (s)	RHR (MW)
0	0
120	2.78
2132	2.78
2952	0

Figur 4.3 Jämförelse mellan datorberäknade temperatur-tidkurvor enligt syreförbrukningsmetod (korrektion = korrektion för ofullständig syreblandning) och temperatur-tidkurva från fullskaleförsök 3.

Försök 4

Samma antaganden som i försök 2

 $\begin{array}{l} q_{total} = 150 \ \cdot \ 46 \ \text{MJ} = 6900 \ \text{MJ} \\ \overset{\bullet}{\textbf{q}}_{stök} = 1.5 \ \cdot \ 1.34 \ \cdot \ 2.76 \ \text{MW} = 5.56 \ \text{MW} \\ \textbf{t}_{f} = \ \textbf{q}_{total} \ / \ 105 \text{A} \sqrt{\textbf{h}} = \ 6900 \ / \ (105 \ \cdot \ 2.68 \ \cdot \ 1.38) = 35.5 \ \text{min} \ = 1066 \ \text{s} \end{array}$

Tid (s)	RHR (MW)
0	0
120	5.56
1066	5.56
1536	0

Figur 4.4 Jämförelse mellan datorberäknade temperatur-tidkurvor enligt syreförbrukningsmetod (korrektion = korrektion för ofullständig syreblandning) och temperatur-tidkurva från fullskaleförsök 4.

Diskussion

Syreförbrukningsmetoden överskattar temperaturen i alla brandförlopp vilket leder till onormalt korta brandförlopp. Syreförbrukningsmetoden antar att allt syre som sugs in i brandcellen blandas med pyrolysgaserna och åtgår vid förbränning. Detta är anledningen till att för höga temperaturer erhålls. Även med korrektion för att oförbrända gaser förbränns utanför brandcellen erhålls för höga temperaturer. Massflödet vid experimenten var dock stört (se avsnitt 3.4) vilket också bidrar till den stora skillnaden mellan uppmätta och beräknade temperatur-tidkurvor. Avsvalningsfasen överensstämmer inte alls. Det beror på det mycket förenklade antagandet om dess utseende.

4.2.4.2 Modell enligt Magnusson och Thelandersson

Magnusson och Thelanderssons modell för uppskattning av effektutveckling är både empiriskt och teoretiskt baserad. 1970 publicerades deras studie av fullständiga brandförlopp i ACTA POLYTECHNICA SCANDINAVICA /3/. Syftet med studien var att utveckla en metod för beräkning av brandförlopp i brandcell som skall kunna användas för olika kombinationer av väggmaterial, öppningsfaktorer och brandbelastningar där bränslet är av trätyp. En av svårigheterna var att bestämma effektutvecklingen och i detta avsnitt ges en beskrivning av hur effektutvecklingen framtagits och hur den används.

Alla jämförande beräkningar i modell enligt Magnusson et al. /3/ är baserade på antagande om att brandförloppet och effektutvecklingen kan karakteriseras enligt följande;

- Antändningfasen är polygonal och effektutvecklingen ökar från noll till ett värde som ges av luftflödesfaktorn $A\sqrt{h}$.
- Effektutvecklingen i flamfasen förutsätts vara konstant.
- Effektutvecklingen i avsvalningsfasen går från maximum till noll som en polygonal funktion. Utseendet på denna funktion är beroende av brandbelastningen. En högre brandbelastning medför en flackare avsvalning.

Modellen är baserad på trettio fullskaleförsök. Fullskaleförsöken har genomförts i fyra testserier. Testserierna beskrivs kortfattat i bilaga 2.

Kawagoe /6/ genomförde ett stort antal försök på 40-talet (se ovan). Effektutvecklingen visade sig bero kraftigt av storleken och utformningen av ventilationsöppningen. Resultaten visade att uttrycket

$$m_f = 0.09 A \sqrt{h} kg/s$$
 (4.8) /6/

•

för förbränningshastigheten under brandförloppets flamfas gav god korrelation med försöken. Ekvation (4.8) härleddes med utgångspunkt av Bernoullis ekvationer och med antagande om att det existerar ett neutrallager, det vill säga en nivå där trycket inuti och utanför brandcellen är lika. Vidare visade Kawagoe att energiutvecklingen under flamfasen är 10.8 MJ per kg trä. Detta värde framtogs genom att reducera det nominella värmevärdet för trä med graden av ofullständig förbränning från fullskaleförsöken.

Magnusson et al. /3/ använde ekvation (4.8) och det ovan nämnda värmevärdet för att beskriva effektutvecklingen under flamfasen i deras modell. Den maximala effektutvecklingen blev således

$$q_{max} = 0.09 \text{ A}\sqrt{h} \text{ kg/s} * 10.8 \text{ MJ/kg} \approx 1.0 \text{ A}\sqrt{h} \text{ MW}$$
 (4.9) /3/

För att utvärdera avsvalningsfasen genomfördes en litteraturstudie och därefter valdes 30 fullskaleförsök ut. En dator programmerades med energibalans-ekvationerna och användes sedan för att beräkna temperatur-tidkurvor med en antagen effektutveckling från fullskaleförsöken som indata. Effektutvecklingen varierades tills tillfredställande överensstämmelse uppnåddes med försöken. Det var det ena kravet. Det andra kravet bestod i att den totala frigjorda energin, det vill säga arean under effektutvecklingskurvan, skulle vara lika med det totala värmevärdet hos bränslet. Detta villkor leder till att brandförloppet kommer att ligga på den säkra sidan eftersom den verkliga effektutvecklingen inte kan överstiga den teoretiska eller maximala effektutvecklingen (se avsnitt 2.2). När öppningsfaktorn och brandbelastningen varierats och givit överensstämmelse tillräckligt många gånger systematiserades underlaget i ett diagram där man för en given brandbelastning och öppningfaktor kan utläsa en effektutvecklingskurva (se figur 4.5).

Magnusson et al. /3/ antar att det effektiva värmevärdet för trä i flamfasen är 10.8 MJ/kg vilket kan anses vara ett lågt värde jämfört med den totala energiutveckling som är baserad på ett värmevärde för trä på 18.8 MJ/kg. Detta kan dock motiveras med önskemålet att vara på säkra sidan samt att värdet 10.8 MJ/kg endast gäller för flamfasen. I avsvalningsfasen är den effektiva förbränningen betydligt högre (se avsnitt 2.2). Magnusson et al. definierar varaktigheten av branden (tiden fram till flamfasens slut).

$$t_{f} = q_{total} / 6300 A \sqrt{h} (h)$$
 (4.10)

Figur 4.5 Brandens varaktighet $t_f(h)$ beräknas enligt ekvation (4.10). t_f -värdet motsvarar en effektutvecklingskurva. Om t_f är ett värde som ligger mellan två kurvor görs interpolation. Den tjocka linjen i antändningsfasen tillhör $t_f > 0.5$.

Kritik av modellen

Enligt uppgift från Sven Thelandersson /2/ består modellen av förenklingar och extrapolationer. Det ena kravet (se ovan) i dimensioneringsunderlaget var att den totala frigjorda energin skulle vara lika med det totala värmevärdet hos bränslet. Detta krav ledde till ett energiöverskott för de beräknade kurvorna. Vid sammanställningen av figur 4.5 placerades därför överskottsenergin i avsvalningsfasen. Thelandersson /2/ menar att det finns risk för att deras modell överskattar temperaturen i avsvalningsfasen.

I figur 4.6 - 4.8 återfinns temperatur-tidkurvor beräknade med datorprogrammet SFIRE med effektutveckling enligt Magnusson et al. /3/ (se avsnitt 4.2.4.2). Temperatur-tidkurvorna från fullskaleförsöken är baserade på ett medelvärde av uppmätta värden (se bilaga 1).

Försök 2

 $t_{f} = q_{total} / 6300A\sqrt{h}$ $t_{f} = 0.29 \text{ timmar}$ $\mathbf{q}_{max} = A\sqrt{h} \text{ MW}$ $\mathbf{q}_{max} = 1.34 * 1.38 = 1.85 \text{ MW}$

Tid (s)	RHR (MW)
0	0
360	1.85

020	1.85
920	1.05
1500	0.92
2800	0.37
5400	0

Figur 4.6 Jämförelse mellan datorberäknad temperatur-tidkurva enligt Magnusson et al. /3/ och temperatur-tidkurva från fullskaleförsök 2.

Försök 3

 $t_{f} = q_{total} / 6300A\sqrt{h}$ $t_{f} = 0.59 \text{ timmar}$ $\mathbf{q}_{max} = A\sqrt{h} MW$ $\mathbf{q}_{max} = 1.34 * 1.38 = 1.85 MW$

Tid (s)	RHR (MW)
0	0
180	0.92
500	1.85
1900	1.85

3220	0.92
4970	0.37
10050	0

Figur 4.7 Jämförelse mellan datorberäknad temperatur-tidkurva enligt Magnusson et al. /3/ och temperatur-tidkurva från fullskaleförsök 3.

Försök 4

 $t_{f} = q_{total} / 6300A\sqrt{h}$ $t_{f} = 0.29 \text{ timmar}$ $\dot{q}_{max} = A\sqrt{h} MW$ $\dot{q}_{max} = 2.68 * 1.38 = 3.7 MW$

Tid (s)	RHR (MW)
0	0
360	3.7
920	3.7
1500	1.85

2800	0.74
5400	0

Figur 4.8 Jämförelse mellan datorberäknad temperatur-tidkurva enligt Magnusson et al. /3/ och temperatur-tidkurva från fullskaleförsök 4.

Diskussion

Försök tre visar den bästa överensstämmelsen mellan datorberäkning och experimentellt brandförlopp både vad gäller brandförloppets längd och temperatur. Även försök två har god överensstämmelse men uppvisar ett verkligt brandförlopp som är förskjutet i tiden jämfört med beräkningarna. Detta beror mest sannolikt på störningen av massflödet som diskuteras i avsnitt 3.4. Man kan också hänvisa den längre initialfasen till denna störning.

Brandförloppslängden i försök fyra överenstämmer inte alls. Pettersson et al. /4/ beskriver svårigheten att i praktiken avgöra om ett brandförlopp kommer att vara brandbelastnings- eller ventilationskontrollerat speciellt i brandceller med stora öppningar. Om ett brandförlopp är brandbelastningskontrollerat kommer temperaturen att vara lägre än för det ventilationskontrollerade. Detta kompenseras av att brandförloppet blir längre. Ovanstående resonemang kan appliceras på försök 4 där öppningen var stor relativt väggen. Bristen på överensstämmelse i detta försök beror också på störningen av massflödet in genom öppningen enligt ovan.

Lutningen på avsvalningsfasen överensstämmer bra i samtliga försök och de beräknade kurvorna överskattas inte i avsvalningsfasen som enligt Thelandersson /2/ det fanns risk för (se ovan). Antändningsfasen är kortare i beräkningarna än i försöken. Detta faktum saknar dock

relevans i praktiken då antändningsfasens längd bland annat är beroende på hur tätt bränslet är packat samt vilka material som brinner.

4.2.4.3 Förbränningshastighet enligt Thomas

Som tidigare nämnts kan den genomsnittliga förbränningshastigheten för ett ventilationskontrollerat brandförlopp i flamfasen uttryckas som $m_f = k \cdot A\sqrt{h}$ där ett k-värde på 5.5 kg $\cdot m^{-5/2} \cdot min^{-1}$ brukar användas (Kawagoe /6/) för bränsle av trätyp. Det finns dock experimentella data som visar att betydligt högre värden på k i vissa fall kan fås. Thomas beskriver i /11/ att koefficienten k inte är en konstant. Anledningen till att ovanstående k-värde har erhållits kan hänvisas till de geometriska begränsningar som laboratorieexperiment och användandet av standardkonstruktioner på brandcellerna medfört, vilket innebär att variationen av $A_t / A\sqrt{h}$ har varit liten. Thomas /11/ har tagit fram ett uttryck för förbränningshastigheten som tar hänsyn till brandcellsutformningen (längd (D) och bredd (W)) och den inre omslutningsarean A_t .

•
$$m_f = 0.02 \sqrt{A_t \cdot \frac{W}{D} \cdot A\sqrt{h}}$$
 kg/s (4.11) /11/

Ekvation (4.11) jämförs nedan med Kawagoes /6/ ekvation för förbränningshastigheten som används i modell enligt Magnusson et al. /3/ för att åskådliggöra eventuella skillnaden för fullskaleförsök 2.

$$\mathbf{\hat{m}_{f}} = 0.02 \ \sqrt{A_{t} \cdot \frac{W}{D} \cdot A\sqrt{h}} = 0.02 \sqrt{(45.66 - 1.34) \cdot \frac{1.83}{5.17} \cdot 1.34 \cdot 1.38} = 0.11 \ \text{kg/s} \ \text{(Thomas)}$$

 $m_f = 5.5 A \sqrt{h} = 5.5 \cdot 1.34 \cdot 1.38 = 10.17 \text{ kg} / \text{min} = 0.17 \text{ kg} / \text{s}$ (Kawagoe) Diskussion

Thomas ekvation ger en avsevärt mindre förbränningshastighet. Detta beror delvis på att förhållandet W/D ger ett relativt lågt värde. Vidare används ekvation (4.11) med fördel när brandförlopp i stora ($A_t > 200 \text{ m}^2$) brandceller skall beräknas. Enligt /11/ ger ekvation (4.11) i "små brandceller" cirka 40 % högre förbränningshastighet jämfört med den konventionella ekvationen /6/. Däremot för "stora brandceller" ökar skillnaden till över 400 %.Temperaturtidkurvor ritas därför inte upp eftersom denna förbränningshastighet leder till lägre temperaturtidkurvor jämfört med modell enligt Magnusson et al. /3/ och därför inte är aktuella för jämförelse med fullskaleförsöken.

4.3 SLUTSATS

Modell enligt Magnusson et al. /3/ ger bra överensstämmelse med försöken och är att föredra före syrekonsumtionsmetoden som överskattar temperaturen och underskattar brandförloppslängden. Thomas /11/ ger förbränningshastigheter som är avsevärt mycket lägre än förbränningshastigheterna i syrekonsumtionsmetoden och modell enligt Magnusson et al. /3/.

I bilaga 5 har ett antal temperatur-tidkurvor för konstruktionen lätt stomme ritats upp och en analys av hur kritiskt valet av öppningsfaktor resp brandbelastning är har genomförts. En kortfattad analys av skillnaden mellan beräknade temperatur-tidkurvor i en brandcell med lätt stomme som omgivande konstruktion och beräknade temperatur-tidkurvor i brandcell med omgivande betongkonstruktion återfinns i bilaga 6.

5 DIMENSIONERING AV BRANDFÖRLOPP ENLIGT METOD I

I det föregående kapitlet beskrevs en dimensioneringsmetod (metod II) som krävde att brandens effektutveckling specificerades. Ett enklare dimensioneringsförfarande presenteras i detta kapitel och benämns metod I. Kapitlet inleds med avsnitt 5.1 som förklarar beräkningsgången för dimensionering enligt metod I. Ett beräkningsexempel ges sedan för att ytterligare klargöra metoden. I avsnitt 5.2 beräknas temperatur-tidkurvor enligt metod I för brandförlopp i brandcell med omgivande konstruktionen lätt stomme. Dessa temperatur-tidkurvor jämförs med temperatur-tidkurvor enligt metod II med effektutveckling enligt Magnusson et al. /3/. Metod I är också baserad på modell enligt Magnusson et al. /3/. Det är dock relevant att undersöka överenstämmelsen mellan metoderna då den aktuella lätta stommen inte specifikt finns definierad i det tabellunderlag som används vid dimensionering enligt metod I.

5.1 INLEDNING

Vid dimensionering enligt metod I används redan tabellerade värden för en referensbrandcell kallad brandcellstyp A. Brandcellstyp A innehåller ett genomsnitt av tegel, betong och gasbetong. Metod I är baserad på modell enligt Magnusson et al. (se avsnitt 4.2.4.2). Temperatur-tidkurvorna är direkt tagna från /3/ (se figur 5.2). Pettersson et al. /4/ jämförde kurvor för de olika brandcellstyperna och utvecklade en metod där temperatur-tidkurvor kunde överföras från en brandcell till en annan med hjälp av en koefficient, k_{fikt} .

De termiska egenskaperna jämförs mellan den aktuella brandcellen och brandcellstyp A. Jämförelsen genererar en fiktiv koefficient - k_{fikt} . Denna koefficient ger en fiktiv brandbelastning och en fiktiv öppningsfaktor genom multiplikation med aktuell brandbelastning och öppningsfaktor. Dessa värden används sedan som ingångsvärde i givna diagram (se figur 5.1 a) b) c) och d)) eller tabeller som då anger temperatur-tidkurvan för den aktuella brandcellen.

Koefficienten k_{fikt} kan hämtas direkt ur tabell 5.1 för följande sju typer av brandceller, definierade genom sina omslutande konstruktioner.

Tabell 5.1	Faktor k_{fikt}	för omräkning a	v verklig bra	ndbelastning	och öppnings	faktor till j	fiktiv
brandbelas	stning och ö	ppningsfaktor för	r brandcellsty	vp A (standar	dbrandcellen)).	

Brand- cells- typ	Verklig öppningsfaktor (m ¹⁷²)									
	0,02	0,04	0,06	0,08	0,10	0,12				
A	1,0	1,0	1,0	1,0	1,0	1,0				
В	0,85	0,85	0,85	0,85	0.85	0,85				
С	3,0	3,0	3,0	3,0	3.0	2.5				
D	1,35	1,35	1,35	1,50	1.55	1.65				
E	1,65	1,50	1,35	1,50	1,75	2.00				
F×	1,0-0,5	1.0-0.5	0.8-0.5	0.7-0.5	0.7-0.5	0.7-0.				
G	1,50	1,45	1,35	1,25	1,15	1.05				
н	3,0	3.0	3.0	3.0	3.0	2.5				
Brandce betong r att kon 13 mm	n 50 % gasb <i>llstyp E</i> : O ned densite struktion b zipsplatta n	etong med d mslutande k ten ρ = 50 estående av ted densitete	lensiteten p construktion 10 kg m ⁻³ , 3 inifrån	= 500 kg m her i en omfa 33 % betong	-3 _. ettning av 50 och 17 % sa	% gas-				
egei me	mineralull	med densite	p = 790 ten $p = 50$ m = 3) kg m ⁻³ ,) kg m ⁻³ sa	mt					
tegei me Brandce Hålplåt de med Brandce	mineralull d densitete llstyp F: O och 20 % b oisolerade t llstyp G: O	med densite n ρ = 1,8 t mslutande k etong. Branc ak och vägg mslutande k	en p = 790 eten p = 50 eten 3, construktion deellen mots ar av stålplåt construktion	kg m ⁻³ ,) kg m ⁻³ sa ver i en omfø varar en lage soch med go ver i en omfø	mt stening av 80 rlokal eller 1 slv av betong stening av 20	% likean- z. % be-				
tegei me Brandce #ålplåt de med Brandce tong och dubbel (100 mm dubbel (i mineraluil d densitete llstyp F: O och 20% b oisolerade t llstyp G: O h 80% sami gipsplatta, 2 i luftspalt si gipsplatta, 2	med densite n p = 1,8 t mslutande b etong, Brand ak och vägg mslutande b mansatt kon 2 x 13 mm, r amt 2 x 13 mm, r	en $\rho = 790$ eten $\rho = 50$ im ⁻³ . construktion deellen mots ar av stålplåt construktion struktion, b ned densitet med densitet	kg m ⁻³ ,) kg m ⁻³ sa varar en lage toch med go toch med go toc	mt sttning av 80 rlokal eller 1 olv av betong sttning av 20 0 kg m ⁻³ , 0 kg m ⁻³ .	% likean- j. % be-				

För brandcellstyper som saknas i tabellen, bestäms k_{fikt} genom linjär interpolation mellan tillämpliga brandcellstyper i tabellen eller mer korrekt genom beräkning ekvation (5.1). Koefficienten k_{fikt} beror av de omgivande konstruktionernas termiska tröghet $\sqrt{\lambda \rho c}$ och bestäms ur sambandet

$$k_{fikt} = \frac{\sqrt{\left(\lambda \rho c\right)_{A}}}{\sqrt{\lambda \rho c}} \qquad (5.1) \qquad /4/$$

där $\sqrt{(\lambda \rho c)_A}$ är termisk tröghet för brandcellstyp A och $\sqrt{\lambda \rho c}$ är termisk tröghet för aktuell brandcellstyp.

Fiktiv öppningsfaktor: $\left[\frac{A\sqrt{h}}{A_{tot}}\right]_{fikt} = k_{fikt} \left[\frac{A\sqrt{h}}{A_{tot}}\right]$ (5.2) /4/

1000 1000 $\frac{A\sqrt{H}}{A} = 0.02$ $\frac{d\sqrt{H}}{d_{1}} = 0.04$ (Dur 500 Temperature (°C) 800 800 \$00 100 Tamperature 600 600 400 400 25 200 200 0 3 3 Time (h) (h) Time b) a) 1200 1200 $\frac{\mu \sqrt{H}}{\Delta 1} = 0.08$ $\frac{A\sqrt{H}}{A_1} = 0.12$ 1500 1000 1000 1000 Temperature (^DC) 206 Temperature 1°C1 800 900 800 100 Fire load 600 600 density MJ 400 400 200 200 3 3 4 4 5 Time (h) Time (h)

Fiktiv brandbelastning: $f_{fikt} = k_{fikt}$ f (5.3) /4/

c)

d)

Figur 5.1 a) b) c) d) Temperatur-tidsamband för fullständigt brandförlopp vid varierande brandbelastning f och öppningsfaktor $A\sqrt{h}/A_{tot}$. Diagrammen gäller för brandcellstyp A (standardbrandcellen).

En av anledningarna till att detta examensarbete initierades var att utreda om det kan vara så enkelt att översätta ett brandförlopp från en brandcellstyp A till en brandcell med omgivande lätt stomme endast med hjälp av en koefficient. Av /4/ framgår att verifiering av giltigheten hos metod I är noga genomförd för de brandcellstyper som finns angivna i tabell 5.1.

Figur 5.2 visar exempel på den goda överensstämmelse mellan temperatur-tidkurvor för brandcellstyp B beräknade med metod I och ursprungliga temperatur-tidkurvor enligt Magnusson et al. beräknade med datorprogrammet SFIRE. Det finns således ingen anledning att vidare utreda giltigheten hos metod I vad gäller redan definierade brandcellstyper. Detta kapitel skall dock diskutera om metod I är tillämplig för konstruktionen lätt stomme (mineralull + gips).

Figur 5.2 Temperatur-tidkurvor för brandcellstyp B med öppningsfaktorn 0.06 $m^{1/2}$ för olika brandbelastningar. Metod I (streckade kurvor) och metod II enligt Magnusson et al. /3/ (heldragna kurvor). Figur hämtad ur /4/.

Nedan redovisas ett enkelt beräkningsexempel för dimensionering av brandförlopp för brandcellstyp C.

Beräkningsexempel

Hur ser brandförloppet (temperatur-tidkurvan) ut i en brandcell med omgivande konstruktion av gasbetong med densiteten $\rho = 500 \text{ kg} / \text{m}^3$ (brandcellstyp C). Öppningfaktorn är 0.04 m^{1/2} och brandbelastningen 100 MJ/m².

<u>Lösning</u> Ur tabell 5.1 avläses $k_{fikt} = 3.0$. $f_{\rm fikt} = k_{\rm fikt} \; f = 3.0 \, \ast \, \, 100 = 300 \; \text{MJ} \, / \, m^2$

$$\left[\frac{A\sqrt{h}}{A_{tot}}\right]_{fikt} = k_{fikt} \left[\frac{A\sqrt{h}}{A_{tot}}\right] = 3.0 * 0.04 = 0.12 \text{ m}^{1/2}$$

<u>Svar</u>: Figur 5.1 d ger kurvan för brandbelastningen $f = 300 \text{ MJ/m}^2$.

5.2 ANVÄNDNING AV k_{fikt} FÖR LÄTT STOMME

För användning av det enkla beräkningsförfarandet (metod I) måste k_{fikt} bestämmas för den lätta konstruktionen. Först bestäms den termiska trögheten för den lätta konstruktionen. Vid beräkning av den termiska trögheten tas ingen hänsyn till att materialparametrar är funktion av tiden. Materialdata från bilaga 3 för gips och mineralull används.

Brandcellstyp A (standardbrandcellen)

$\label{eq:lambda} \begin{split} \lambda &= 0.81 \ W/m \ ^{\circ}C \\ \rho \ c &= 1.67 \ MJ/m^3 \ ^{\circ}C \end{split}$	/3/ /3/
$\sqrt{\lambda \rho \mathrm{c}} = \sqrt{0.81 * 1.67 \cdot 10^6}$	$= 1163 \text{ W s}^{1/2} \text{ m}^{-2} \text{ °C}^{-1}$
<u>Gips ($\rho = 790 \text{ kg/m}^3$)</u>	
$T_{medel} \approx 500 \text{ °C}$ $\lambda = 0.4 \text{ W/m °C}$ c = 1500 J/kg °C	/25/ /25/
$\sqrt{\lambda \rho c} = \sqrt{0.4 * 790 * 150}$	$\overline{00} = 688 \text{ W s}^{1/2} \text{ m}^{-2} \text{ °C}^{-1}$
$k_{fikt} = \frac{\sqrt{\left(\lambda \rho c\right)_{A}}}{\sqrt{\lambda \rho c}} = 1163 / 6$	588 = <u>1.7</u>
Mineralull ($\rho = 32 \text{ kg/m}^3$)	
$T_{medel} \approx 500 \text{ °C}$ $\lambda = 0.03 \text{ W/m °C}$ c = 900 J/kg °C	/25/ /25/
$\sqrt{\lambda \rho c} = \sqrt{0.03 * 32 * 900}$	$\overline{0} = 29.4 \text{ W s}^{1/2} \text{ m}^{-2} \text{ °C}^{-1}$

$$k_{fikt} = \frac{\sqrt{(\lambda \rho c)_A}}{\sqrt{\lambda \rho c}} = 1163 / 29.4 = \underline{39.6}$$

Det intressanta k_{fikt} -värdet är 1.7 (gips). Eftersom gipsskivorna satt uppe under hela brandförloppet används inte mineralulls-värdet överhuvudtaget. Konstruktionen motsvarar ungefär brandcellstyp G.

Figur 5.3 visar temperatur-tidkurvor för omslutande konstruktion lätt stomme enligt metod II, Magnusson et al. /3/. Dessa jämförs med temperatur-tidkurvor enligt metod I där den fiktiva brandbelastningen och den fiktiva öppningsfaktorn beräknats enligt nedan och materialegenskaperna enligt ovan.

a)
$$f = 100 \text{ MJ/m}^2$$
, $A\sqrt{h}/A_{tot} = 0.04 \text{ m}^{1/2} \Rightarrow f_{fikt} = 170 \text{ MJ/m}^2$, $[A\sqrt{h}/A_{tot}]_{fikt} = 0.068 \text{ m}^{1/2}$
b) $f = 200 \text{ MJ/m}^2$, $A\sqrt{h}/A_{tot} = 0.04 \text{ m}^{1/2} \Rightarrow f_{tr} = 340 \text{ MJ/m}^2$, $[A\sqrt{h}/A_{tot}]_{rikt} = 0.068 \text{ m}^{1/2}$

b)
$$I = 200 \text{ MJ/m}^2$$
, $A\sqrt{h}/A_{tot} = 0.04 \text{ m}^{-1/2} \Rightarrow f_{fikt} = 680 \text{ MJ/m}^2$, $[A\sqrt{h}/A_{tot}]_{fikt} = 0.068 \text{ m}^{1/2}$
c) $f = 400 \text{ MJ/m}^2$, $A\sqrt{h}/A_{tot} = 0.04 \text{ m}^{1/2} \Rightarrow f_{fikt} = 680 \text{ MJ/m}^2$, $[A\sqrt{h}/A_{tot}]_{fikt} = 0.068 \text{ m}^{1/2}$

- d) $f = 200 \text{ MJ/m}^2$, $A\sqrt{h} / A_{tot} = 0.02 \text{ m}^{1/2} \implies f_{fikt} = 340 \text{ MJ/m}^2$, $[A\sqrt{h} / A_{tot}]_{fikt} = 0.034 \text{ m}^{1/2}$
- e) $f = 200 \text{ MJ/m}^2$, $A\sqrt{h}/A_{tot} = 0.06 \text{ m}^{1/2} \implies f_{fikt} = 340 \text{ MJ/m}^2$, $[A\sqrt{h}/A_{tot}]_{fikt} = 0.102 \text{ m}^{1/2}$
- f) $f = 200 \text{ MJ/m}^2$, $A\sqrt{h}/A_{tot} = 0.08 \text{ m}^{1/2} \implies f_{fikt} = 340 \text{ MJ/m}^2$, $[A\sqrt{h}/A_{tot}]_{fikt} = 0.136 \text{ m}^{1/2}$

Figur 5.3 a) b) c) d) e) f) Jämförelse av beräknade brandförlopp enligt metod I och metod II enligt Magnusson et al. /3/.

5.3 DISKUSSION

Brandförlopp enligt figur 5.3 a, b, c, d, e och f visar på god överenstämmelse mellan metod I och metod II enligt Magnusson et al. /3/ både vad gäller längd och temperatur. Slutsatsen är att om man accepterar effektutveckling enligt Magnusson et al. är metod I att föredra tack vare dess enkla beräkningsförfarande. För konstruktionen lätt stomme där hela den omgivande konstruktionen består av gips och mineralull bör ett k_{fikt} -värde på 1.7 användas, förutsatt antagande om att de ingående materialen förblir intakta under brandförloppet.

6 SLUTSATSER OCH FÖRSLAG TILL FORTSATTA STUDIER

Av de modeller som har analyserats i detta arbete gav modell enligt Magnusson och Thelandersson /3/ den bästa överensstämmelsen mellan fullskaleförsök och beräkning. Metod I - och således också modellen enligt ovan - har ifrågasatts bland annat av Thelandersson själv /2/. Han påstår att det finns risk för att brandförloppens avsvalningsfas i

Thelandersson sjalv /2/. Han pastar att det finns risk for att brandforloppens avsvalningsfas i denna metod är överdimensionerad. Slutsatsen är att metod I är fullt användbar för konstruktionen lätt stomme och ett k_{fikt} -värde på 1.7 bör användas, förutsatt antagande om att de ingående materialen förblir intakta under brandförloppet. Denna metod är för övrigt genom sitt enkla beräkningsförfarande att föredra framför metod II.

Analys av brandbelastning och öppningsfaktor enligt metod II - Magnusson et al. /3/ samt jämförelse mellan brandförlopp i betongkonstruktion och lätt stomme gav följande slutsatser.

- En ändring av brandbelastningen påverkar främst brandförloppslängden. Ökad brandbelastning ger ökad brandförloppslängd. Detta verifieras av utförda fullskaleförsök.
- En ändring av öppningsfaktorn påverkar främst brandförloppslängden. En ökning av öppningsfaktorn minskar brandförloppslängden. Temperaturen påverkas endast marginellt.

De genomförda fullskaleförsöken indikerar att träribbstaplar och lastpallar som bränsle i relativt små brandceller kan ge ett annorlunda brandförlopp än avsett på grund av ofullständig syreinblandning i brandrummet orsakat av bränslets utrymmeskrävande natur.

De flesta experimentella fullständiga brandförlopp som analyseras i detta arbete har genomförts med träribbstaplar som bränsle. Förbränningskarakteristika för ett verkligt brandförlopp kan avvika kraftigt jämfört med brandförlopp med träribbstaplar. Detta gäller speciellt bränder där möbler och väggmaterial ingår, där mängden oförbrända gaser som förbränns utanför brandcellen kan bli större vilket leder till ett kortare brandförlopp med lägre temperatur jämfört med ett förlopp med träribbstaplar som bränsle. Det är ej heller säkert att de brännbara materialen i ett verkligt brandscenario till fullo "brinner upp".

Det finns anledning att med den information om olika materials förbränningsegenskaper som idag finns tillgänglig ta fram alternativa modeller för uppskattning av effektutveckling vid fullständiga brandförlopp. Det finns ett antal stora projekt som noggrant studerat effektavgivande element i en brandcell, det vill säga ytmaterial, isolering, stommaterial och möbler.

Forskningsprojektet **CBUF** /21/ (Combustion Behaviour of Upholstery Furniture) initierades för att få fram metoder som kan mäta möblers beteende vid brand. Både fullskaleförsök och småskaleförsök genomfördes. Information om effektutveckling, temperaturer, rökdensitet, gasernas kemiska sammansättning från över 1500 tester av föremål och material finns tillgänglig i en databas.

Forskningsprojektet **Det tidiga brandförloppet** /22/ påbörjades i början av 80-talet och täcker det mesta vad gäller brandförlopp i byggnader såsom brandtillväxt, rökspridning,

branddetektion, brandbekämpning, mänsklig påverkan vid brand mm. Det finns även utförlig information om väggbeklädnaders beteende vid brand i ett av delprojekten där även resultat från ett annat stort projekt **Eurefic** finns publicerat /23/.

Fortsatta studier bör innehålla en analys av massflöden och förbränningskarakteristika hos de ingående materialen i en brandcell med utgångspunkt av ovan beskrivna projekt. Analysen bör ge svar på frågor som:

- Hur stor den effektiva brandbelastningen är för en brandcell?
- Hur mycket av brandbelastningens effektutveckling kommer att frigöras utanför brandcellen?
- Hur mycket av de brännbara materialen lämnas oförbrända?

Syftet är att ta fram en modell för fullständiga brandförlopp där man med kännedom om en lokals väggmaterial, dimensioner, och möblering enkelt skall kunna få fram temperaturtidkurvor för dimensionering.

BILAGA 1: RÅDATA FRÅN FULLSKALEFÖRSÖKEN

För ytterligare information om termoelementen och deras placering se avsnitt 3.3.3 och 3.3.4

 $T_i (^{\circ} C) =$ Temperatur från termoelement nr i.

 T^* (° C) = Genomsnittlig temperatur för termoelementen. Endast de termoelement som förblir intakta genom hela brandförloppet ingår.

Fullskaleförsök 2

 $T^* = (T7 + T8 + T9 + T 10)/4$

tid (min)	T 1 (°C)	T 2 (°C)	T 3 (°C)	T 4 (°C)	T 5 (°C)	T 6 (°C)	T 7 (°C)	T 8 (°C)	T 9 (°C)	T 10 (°C)	T* (°C)
0	0	0	0	0	0	0	0	0	0	0	0
1	744	644 227	479 385	408 752	159 672	708.32	809 035	666 602	245 021	118 893	459 8878
2	659 633	551 496	477 074	423 904	257 51	718 734	769 277	872 938	327 711	212 409	545 5838
3	643 176	532.09	463.082	402 934	281 381	807.23	784 227	815 129	501 137	291 283	597 944
4	690.676	586.074	52/ 026	462.623	324 232	7/2 813	750 00/	8/1 800	531 555	317.846	612 576
-	707.016	500.014	524.320	466.006	215 105	770 002	025 550	022.025	402.002	277.05	620.004
5	690 152	614 622	534.492	400.090	313.193	020 660	020.009	023.033	493.09Z	407 000	029.004
0	750 72	014.033	502.004	490.209	342.203	000.000	004.492	000.170	521.59	407.900	000.0010
/	156.13	000.344	070.045	344.359	320.52	000.000	003.145	000.40	569.667	423.330	000.207
8	842.52	733.855	679.945	721.879	354.697	932.988	994.211	869.391	571.691	4/1.61/	726.7275
9	870.117	784.445	771.625	824.586	399.178	960.781	1021.93	889.242	634.949	487.635	758.439
10	876.438	847.703	784.918	847.703	454.051	931.371	919.406	812.355	624.316	456.24	703.0793
11	870.594	849.148	748.445	836.965	522.164	921.496	876.066	805.297	610.469	410.006	675.4595
12	820.375	806.008	755.758	814.023	609.539	909.438	927.168	809.117	608.047	409.402	688.4335
13	817.617	822.414	759.305	809.715	663.891	911.035	858.219	804.695	630.66	384.742	669.579
14	866.215	720.34	839.969	857.004	853.734	947.336	907.84	854.461	719.523	446.719	732.1358
15	863.059	753.156	1107.91	876.785	872.043	972.621	941.504	878.125	727.965	458.695	751.5723
16	856.996	991.922	982.508	887.266	918.281	987.523	938.156	887.023	775.758	481.566	770.6258
17	852.398	994.938	975.242	876.539	900.352	1010.13	964.25	896.555	744.898	518.43	781.0333
18	847.316	1006.84	1026.59	853.121	879.824	1031.03	975.488	904.023	779.074	551.332	802.4793
19	802.645	1025.82	976.738	836.824	869.238	1057.38	1001.53	937.16	825.52	531.82	824.0075
20	803.125	988.773	1005.45	849.004	865.23	1056.6	1003.8	923.324	828.523	592.016	836.9158
21	804.078	1010.13	1115.95	856.988	859.168	1048.45	1010.25	936.789	845.621	622.902	853.8905
22	809.691	1034.95	1119.71	849.242	859.402	1115.55	1065.55	962.738	856.379	635.258	879.9813
23	814.477	1032.03	1120.75	856.496	855.164	1076.69	1111.01	976.73	879.57	638.609	901.4798
24	813.871	1028.98	1108.27	852.617	848.266	1067.33	1121.13	1007.46	902.168	732.051	940.7023
25	825.145	1034.44	1039.27	856.246	849.234	1022.89	1051.62	970.969	840.301	657.133	880.0058
26	831.75	1000.88	938.133	845.004	844.039	1008.84	1041.55	979.848	882.848	700.996	901.3105
27	843.914	970.836	977.34	874.688	840.055	1002.39	1021.75	954.383	845.48	681.172	875.6963
28	828.98	993.777	1042.44	875.172	838.488	1014.91	1049.57	978.969	874.078	661.996	891.1533
29	813.031	953.02	1039.77	869.098	836.926	1014.66	1040.28	976.219	859.266	684.664	890.1073
30	805.504	924.055	1029.24	853.957	842.602	1033.55	1075.41	1005.06	918.992	724.766	931.057
31	802.637	946.195	1029.74	844.164	864.734	993.285	1021.13	959.746	889.313	698.777	892.2415
32	809.09	952.652	1011.38	841.512	880.418	964.855	988.887	937.52	849.465	641.949	854.4553
33	820.824	974.469	1023.27	849.715	903.27	945.82	964.977	921.461	846.324	639.172	842.9835
34	821.906	937.148	1001.27	848.754	912.973	900.945	920.848	879.199	792.844	560.379	788.3175
35						870.926	895.68	852.863	757.137	548.32	763.5
36						862.305	876.031	839.699	770.859	571.289	764.4695
37						852.621	866.07	825.387	722.762	521.922	734.0353
38						836.691	849.117	813.277	736.152	492.426	722.743
39						814.117	818.313	778.707	675.238	486.686	689.736
40						786.664	790.949	749.477	649.477	427.729	654.408
41						749.594	759.039	703.691	589.117	379.191	607.7595
42						730.992	737.34	681.414	600.168	405.078	606
43						702.52	705.211	652.266	566.586	381.74	576.4508
44						685.492	690.152	634.328	544.883	333.742	550.7763
45						668.508	671.996	618.969	517.227	347.98	539.043
46						648.098	650.527	596.262	485.1	317.748	512.4093
47						632.137	633.406	583.609	488.361	306.277	502.9133
48						610.559	604.91	555.578	456.422	282.705	474.9038
49						587.527	586.262	526.078	435.33	276.047	455.9293
50						579.711	579.711	521.84	414.813	249.392	441.439
51						555.355	552.258	498.199	395.408	243.929	422.4485
52						536.879	535.844	471.551	385.031	222.821	403.8118
53						516.453	510.6	436.547	344.469	215.285	376.7253
54						506.701	500.732	436.01	348.84	214.473	375.0138
55						497.521	489.482	426.203	320.711	195.636	358.008
56						487.189	483.061	414.721	317.607	195.177	352.6415

57			477.162	475.268	395.396	305.064	172.875	337.1508
58			465.021	454.379	388.898	292.998	160.852	324.2818
59			455.602	450.656	372.793	291.668	162.174	319.3228
60			446.461	441.639	367.111	275.912	153.397	309.5148
61			436.967	434.398	361.365	286.945	175.646	314.5885
62			425.02	417.76	352.422	267.645	157.259	298.7715
63			408.529	398.889	317.967	248.784	145.759	277.8498
64			404.488	400.17	331.629	244.866	140.159	279.206
65			398.301	391.414	328.918	244.536	142.058	276.7315
66			386.443	381.066	305.08	247.227	139.203	268.144
67			378.027	374.328	293.217	234.275	123.946	256.4415
68			369.49	361.434	291.936	221.188	126.184	250.1855
69			360.701	355.572	275.869	224.454	135.878	247.9433
70			352.104	352.092	281.713	224.051	120.898	244.6885

Fullskaleförsök 3

 $T^* = (T2 + T3 + T5 + T7 + T8 + T9 + T 10)/7$

tid (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	T8 (°C)	T9 (°C)	T10 (°C)	T* (°C)
0	0	0	0	0	0	0	0	0	0	0	0
1	764.031	780.984	778.133	766.043	824.09	576.039	535.938	360.908	203.911	63.6477	506.8017
2	554.863	519.742	477.705	498.166	369.91	555.438	580.027	812.547	483.877	178.727	488.9336
3	546.336	504.676	476.295	466.512	374.939	579.996	609.348	770.234	455.322	233.938	489.2503
4	501.313	465.031	423.154	398.066	315.879	669.359	654.387	832.516	563.992	331.535	512.3563
5	520.328	488.25	393.674	364.748	313.803	760.223	756.559	939.75	501.279	322.248	530.7947
6	501.475	425.254	414.621	360.033	267.758	735.66	732.723	851.137	622.969	393.857	529.7599
7	505.686	430.49	398.461	374.604	274.084	790.523	787.902	918.559	700.344	464.414	567.7506
8	536.984	511.23	421.172	393.168	283.289	892.027	893.496	1022.66	618.273	467.35	602.4957
9	558.195	537.645	441.443	393.615	288.354	890.898	895.301	987.617	682.664	470.213	614.7481
10	578.965	550.246	480.145	433.398	307.428	949.004	938.59	999.785	746.938	496.709	645.6916
11	639.008	587.109	582.852	488.99	328.16	1002.84	993.09	988.441	668.77	485.123	661.935
12	709.441	615.41	580.172	484.023	349.027	966.496	968.742	959.266	688.168	503.461	666.3209
13	676.289	636.285	612.844	563.828	361.553	919.484	903.508	895.426	720.051	517.938	663.9436
14	722.852	678.816	644.234	539.109	387.752	939.332	911.332	902.004	741.516	525.789	684.4919
15	760.5	728.688	660.078	553.426	403.598	896.457	887.781	882.168	775.766	549.277	698.1937
16	755.75	727.254	671.547	558.227	406.521	912.746	917.543	902.313	759.277	532.609	702.4377
17	742.398	727.703	684.207	560.27	389.982	877.855	884.195	869.344	769.43	535.684	694.3636
18	726.395	716.426	666.051	560.023	383.289	854.293	851.875	847.523	759.59	491.596	673.7643
19	737.539	730.016	679.168	575.176	391.213	838.34	833.883	824.148	727.066	473.27	665.5377
20	771.406	769.156	736.578	626.297	426.418	852.805	852.441	840.848	742.102	504.396	695.9913
21	779.691	781	760.023	643.387	442.553	874.008	866.473	856.652	761.434	518.109	712.3206
22	773.625	775.762	756.109	642.449	481.15	903.668	898.766	884.469	792.398	558.57	735.3177
23	785.242	783.816	783.816	673.395	473.119	931.094	925.785	916.422	816.988	595.918	756.552
24	820.219	815.184	818.777	725.348	442.771	938.129	931.699	920.223	816.258	586.816	761.6754
25	795.207	790.207	787.707	719.816	441.578	930.563	925.504	916.262	826.082	605.109	756.0641
26	845.813	837.492	798.297	752.5	701.781	944.785	939.953	929.316	839.543	639.262	812.2349
27	856.801	870.508	854.863	801.746	744.941	967.418	960.063	953.715	827.258	674.621	840.8527
28	863.453	910.074	876.574	833.371	762.047	1000.31	988.313	978.406	874.508	678.094	866.8594
29	867.445	925.328	875.102	839.742	674.707	1003.08	990.938	981.902	883.145	716.723	863.9779
30	864.281	924.949	874.242	839.613	661.574	1012.8	1009.52	993.316	905.645	740.086	872.7617
31	883.16	941.668	888.164	854.133	672.984	1014.48	1009.55	963.672	919.672	728.578	874.8983
32	912.219	999.055	974.207	888.816	673.84	1048.92	1045.48	958.109	951.738	732.129	904.9369
33	868.52	1018.11	988.156	864.637	650.781	1062.75	1042.6	959.145	959.605	753.004	910.2001
34	1011.79	1038.8	994.07	897.426	710.738	1052.92	1030.16	951.566	952.531	769.691	921.0794
35	1003.58	1061.61	1013.95	963.145	827.223	1062.89	1059.31	969.883	968.492	788.586	955.5791
36	984.41	1067.12	1024.2	1014.96	869.508	1065.58	1058.16	977.141	993.445	815.82	972.1991
37	1007.13	1077.12	1034.23	1088.82	938.68	1065.2	1040.71	991.32	1035.51	834.09	993.0943
38	1023.34	1102.39	1040.48	1156.57	1042.52	1043.66	1060.88	1001.21	1044.56	811.191	1014.747
39	1045.83	1062.03	1052.07	1123.68	1093.48	1037.81	1065.73	1022.71	1073.05	835.328	1029.2
40	1033.13	1040.88	1042.27	1123.83	1081.39	1020.57	1056.04	1015.51	1055.95	829.219	1017.323
41	1035.18	1035.44	1036.33	1066.8	1024.91	1007.06	1055.93	997.918	1024.93	020.152	1000.516
42	1052.37	1035.19	1053.26	1069.36	1010.22	1037.85	1113.58	1040.52	1040.31	010.297	1015.625
43	1005.2	1030.9	1005.97	900.148	900.00/	1041.82	1100.99	1035.98	1099.98	000.984	1017.382
44	1004.27	1033.57	1004.53	903.021	9/0.013	1059.67	1137.34	1004.02	1076.27	003.227	1031.2/3
40	1000.0	1024.71	1009.57	941.091	900.793	1009.90	1056.02	1007.27	10/0.2/	004.223 909.375	075 0594
40	1022.03	993.344	1031.90	919.039 964 20F	808 33	007 512	1020.02	081 550	1023.10	776 349	910.9004
47	087 852	910.047	000 /22	9/6 164	87/ 19	991.012	1020.93	901.009	082 /1	776 137	030 5872
40	963 472	033 10	975 596	02/ /1	821 05F	951 649	980 502	032 02	951 722	738 592	904 9077
-49 50	9/5 00/	933.10	913.300	010 1/1	814 600	031 352	963 875	906 177	031 305	700.042	88/ 02/7
51	911 169	892 530	930 870	893 1/12	792 652	897 022	934 586	879 117	894 566	656 100	854 3626
52	883 801	864 914	905 530	861 883	740 813	859 945	889 504	838 707	858 32	664 105	823 1417
53	869 555	850 652	890 266	861 789	731 195	848 710	887 699	856 941	853 383	634 941	815 011
54	844 031	821 652	864 844	828 738	703.68	820 934	859 871	817 934	827 969	627 336	789 0409
55	816.875	787.742	825.75	791.551	660.852	781.32	815.555	787.266	788.172	590.121	750.7797
56	772,203	748,086	786.453	734.074	606.195	741.84	774.813	746,906	744,383	520.648	703,9263
57	749,867	725,984	760.613	713.676	583.645	711.566	750.93	722,465	717.84	489.018	678,6421
58	728.699	704.918	742.93	685.316	568.027	682.172	728.113	702.348	693.301	486.633	660.8957
59	708.09	685.797	724.258	666.027	544.5	664.402	709.262	682.188	673.863	470.781	641.5213
60	696.418	672.191	708.566	654.434	526.949	646.441	690.586	670.914	655.875	436.172	623.0361

61	683.367	658.5	694.91	644.48	526.957	639.273	682.902	655.254	647.766	431.646	613.9907
62	667.91	660.598	676.977	579.676	475.564	614.105	676.512	642.523	624.066	399.629	593.6956
63		648.656	662.688	564.621	476.242	611.223	658.742	637.199	619.793	411.506	587.8323
64		635.355	652.367	546.598	453.432	597.516	651.211	626.457	606.988	359.102	569.2731
65		628.301	645.184	544.41	450.795	584.508	645.414	622.527	596.039	380.342	566.9431
66		617.801	634.66	537.988	440.258	577.844	632.813	613.648	585.332	354.121	554.0904
67		606.719	624.711	533.73	430.439	571.969	620.094	603.375	577.609	338.197	543.0206
68		603.605	620.324	541.535	442.121	569.668	618.711	599.113	575.418	334.172	541.9234
69		595.539	612.129	538.313	423.58	560.012	603.598	589.207	562.305	331.299	531.0939
70		590.125	605.555	529.816	417.84	553.574	602.789	586.211	555.516	333.314	527.3357
71		584.125	600.93	540.586	419.334	546.668	603	584.813	547.918	342.693	526.1161
72		575.719	592.625	535.984	412.461	535.066	587.906	578.477	529.078	339.766	516.576
73		568.016	584.453	528.977	407.6	536.551	582.727	574.91	519.656	323.25	508.6589
74		556.738	575.352	554.902	393.443	523.797	563.516	557.313	502.197	278.766	489.6179
75		547.648	564.414	572.227	374.664	519.645	551.438	545.121	499.074	283.725	480.8691
76		541.902	559.238		384.875	519.063	550.051	539.949	485.037	289.24	478.6131
77		531.66	549.223		365.463	514.563	543.941	529.48	483.166	284.184	469.5881
78		528.434	547.258		367.607	528.434	540.602	517.074	465.498	282.736	464.1727
79		521.879	540.355		360.592	524.977	534.73	511.549	462.789	273.914	457.9726
80		515.664	533.68		356.348	524.27	530.582	508.549	447.475	265.225	451.0747
81		510.594	525.973		349.508	533.773	520.578	507.035	440.73	255.533	444.2787
82		504.27	519.418		342.408	529.977	512.992	500.939	435.553	257.012	438.9417
83		495.184	518.254		348.051	531.336	518.941	504.826	429.43	294.678	444.1949
84		487.342	513.867		342.588	525.918	514.441	502.734	421.916	243.52	432.344
85		479.854	508.352		328.742	519.598	505.367	498.938	414.785	241.452	425.3557
86		471.09	499.023		329.074	517.387	505.223	493.629	410.688	259.027	423.9649
87		461.543	489.711		322.207	508.424	492.697	489.711	396.24	240.73	413.2627
88		453.953	482.516		314.977	489.121	475.895	474.723	381.787	248.025	404.5537
89		447.063	474.273		309.621	481.16	472.725	469.475	375.387	240.851	398.485
90		439.172	468.012		304.582	478.195	470.469	470.148	374.814	233.659	394.408
91		429.684	458.518		293.143	461.803	455.436	457.816	364.664	226.424	383.6693
92		424.205	454.746		289.324	470.807	466.57	469.314	367.104	222.956	384.8884
93		420.025	449.443		288.105	457.998	453.779	456.619	359.182	204.739	375.9846
94		415.217	444.904		280.303	454.061	445.215	450.658	340.568	198.188	367.8647
95		410.461	440.652		282.125	454.205	450.043	453.217	347.189	217.261	371.564
96		407.02	435.656		279.008	443.533	441	443.557	339.959	201.843	364.0061
97		402.459	431.75		276.43	450.643	447.732	450.184	340.102	204.174	364.6901
98		398.012	427.598		269.572	446.42	441.426	444.832	325.613	194.844	357.4139
99		394.719	423.584		269.309	449.354	449.803	450.4	332.301	190.013	358.5899
100		392.867	418.889		267.01	449.896	446.779	448.781	330.338	190.934	356.514

Fullskaleförsök 4

 $T^* = (T2 + T3 + T4 + T5 + T7 + T8 + T9 + T 10)/8$

tid (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	T8 (°C)	T9 (°C)	T10 (°C)	T* (°C)
0	0	0	0	0	0	0	0	0	0	0	0
1	778.137	778.848	781.344	774.457	708.863	693.793	739.723	669.117	115.852	72.3599	580.0705
2	789.504	780.469	770.266	769.793	779.52	630.5	674.77	775.84	275.393	174.131	625.0228
3	762.172	764.184	749.418	763.594	787.438	700.598	736.93	639.012	314.498	242.889	624.7454
4	810.059	821.32	805.035	816.164	840.199	753.027	800.141	766.621	349.543	297.078	687.0126
5	880.137	895.031	888.43	896.375	912.32	800.328	838.219	727.316	398.732	335.668	736.5114
6	875.949	888.262	884.598	884.723	900.121	830.469	846.977	859.922	429.367	324.236	752.2758
7	779.289	786.418	784.871	779.289	791.297	873.715	888.094	978.594	428.783	354.029	723.9219
8	724.129	740.348	731.762	737.875	741.406	964.176	980.176	943.781	508.758	375.994	720.0125
9	705.699	734.895	716	737.48	713.891	926.418	985.27	893.988	506.15	382.824	708.8123
10	692.93	723.105	700.633	720.176	694.797	984.973	1016.54	959.473	556.449	443.561	726.8418
11	610.258	626.875	608.527	620.984	573.082	1009.04	1004.99	996.996	544.816	370.57	668.355
12	581.551	607.34	568.91	602.27	538.25	850.824	852.035	849.738	563.613	358.279	617.5544
13	571.863	590.031	555.09	587.156	463.992	840.41	842.582	838.965	616.984	390.533	610.6666
14	629.66	639.832	609.465	645.156	515.387	799.367	801.754	867.355	568.613	342.178	623.7175
15	629.52	634.488	609.207	644.781	506.754	794.211	798.145	868.906	493.516	341.967	612.2205
16	697.285	692.734	671.777	710.961	588.109	820.004	825.043	870.094	547.09	340.371	655.7724
17	743.926	733.453	720.891	759.031	642.648	822.496	824.18	858.785	569.008	360.092	683.511
18	770.133	747.324	761.137	796.398	665.227	841.961	845.461	868.586	582.438	364.928	703.9374
19	744.828	732.238	753.32	773.316	648.398	851.484	852.934	867.234	569.664	391.834	698.6173
20	798.629	774.246	800.898	818.242	715.445	829.766	832.289	835.418	564.941	367.057	713.567
21	797.426	787.063	819.785	834.563	743.387	820.988	822.066	991.066	517.863	388.793	738.0733
22	791.098	784.551	814.5	827.574	721.98	863.914	867.918	865.734	670.535	406.117	744.8636
23	875.809	863.418	902.188	917.91	879.34	835.863	840.324	904.762	945.125	390.367	830.4293
24	977.484	969.734	973.234	974.609	929.492	861.953	867.898	942.73	923.727	423.609	875.6291
25	976.355	973.102	1026.07	1008.09	969.727	833.805	836.453	920.113	640.031	387.332	845.1148
26	1002.28	990.016	1019.35	1037.11	1018.34	830.191	830.793	955.887	1019.27	392.459	907.9031
27	981.109	1004.8	1011.25	1048.43	1023.15	867.891	870.684	1075.79	1038.3	425.086	937.1863
28	955.141	974.227	998.07	1017.2	1005.57	887.129	843.805	1076.56	1077.51	413.846	925.8485
29	969.355	990.906	1020.5	1049.08	1020.88	925.664	886.891	1068.23	1081.5	428.352	943.2924
30	1014.3	1000.78	1041.83	1061.34	1022.54	1015.57	864.141	1042.09	1054.49	411.273	937.3105
31	1011.78	1017.22	1053.43	1075.55	1017.35	1015.96	876.543	1042.47	1036.17	426.561	943.1618

32	997.977	996.969	1030.8	1059.31	1005.6	995.836	852.293	1020.02	995.012	419.523	922.4409
33	1016 11	1016.87	1036 14	1057 28	961 539	892 793	827 234	1031.83	865 691	400.9	899 6855
24	1002.00	1022.22	1054 74	107/ 10	1021 57	886 045	837 110	1009.03	874 574	383 257	000 500
	1002.09	1022.33	1004.74	1074.19	000 077	000.940	001.113	000.010	014.014	003.007	909.090
35	900.082	1008.93	1035.03	1056.42	990.277	000.301	020.000	992.013	007.000	301.076	092.0009
36	958.602	960.965	1007.81	1041.91	961.965	847.762	789.023	900.309	837.938	369.006	858.6158
37	972.223	964.98	993.664	1038.63	962.484	840.426	777.16	877.008	830.137	360.83	850.6116
38	949.441	960.637	979.75	989.66	949.566	833.461	763.555	868.641	826.074	356.484	836.7959
39	944.75	959.539	962.031	980.277	933.727	828.672	772.219	849.762	819.977	320.246	824.7223
40	923.383	954.461	953.965	979.676	895.016	817.055	753.316	840.254	806.832	344.82	816.0425
41	900.672	946.043	945.547	963.707	906.926	803.922	739.672	820.801	795.043	324.539	805.2848
42	892.867	939.871	941.605	961.613	912.973	794.883	724.656	808.969	790.188	297.66	797.1919
43	894.242	938,293	936.93	959.652	880.324	784.078	733.02	795.504	778.328	314.074	792.0156
44	901 25	934 484	920 293	949 977	842 656	769.035	724 711	780.066	764 723	307 395	778 0381
45	000 780	020 601	008.27	020 50	822 355	749 149	604 672	757	720.952	280.348	757 9472
4J	900.709	920.091	900.27	939.39	022.333	740.140	034.072	744 400	739.032	200.340	742 5450
40	939.129	906.059	903.007	910.029	014.473	735.93	074.902	744.400	720.339	200.412	743.3159
47	964.266	000.137	673.512	832.27	783.844	718	649.98	729.969	711.043	243.003	709.6773
48	990.965	868.078	1028.55	813.582	772.359	703.871	644.801	714.168	698.449	256.279	724.5333
49	1013.63	863.621	1064.88	1062.32	747.922	693.98	615.602	704.488	687.52	205.653	744.0008
50	1019.24	1058.91	1081.58	1073.23	747.129	683.176	609.176	693.313	676.723	214.463	769.3155
51	1016.49	1060.22	1064.44	1059.84	1042.24	661.355	588.48	672.969	656.551	226.638	796.4223
52	1003.75	1046.73	1022.98	1033.26	1006.79	643.543	573.449	655.82	641.18	198.893	772.3878
53	986.617	1031.26	1015.29	1038.24	977.719	627.273	550.047	639.41	626.992	222.48	762.6798
54	968.625	1012.8	989.918	1008.5	969.625	613.801	537.453	627.648	611.906	192.088	743.7423
55	962.422	990.328	968.535	991.586	969.781	604.609	533.809	613.254	605.02	185.099	732.1765
56	952.746	955.48	942,938	966.07	969.816	597.387	525.004	604.871	595.262	186.135	718.197
57	941 484	944 211	921 836	940 246	973 473	582 918	509 084	597 414	584 59	177 197	706.0064
58	010 773	906 988	808 164	012 762	052 813	573 75	501 105	586 285	575.078	166.063	687 / 185
50	900 207	977 100	000.104	004 E00	050,600	515.15	407.24	500.205	513.010	169 161	672 1502
09	039.297	077.199	000.973	004.000	950.009	500.455	407.34	575.277	561.207	100.101	073.1593
60	872.484	897.004	831.496	832.938	910.492	549.691	465.723	563.816	550.898	155.285	650.9565
61	845.867	876.41	805.035	808.742	893	533.422	446.35	552.594	536.465	127.596	630.774
62	830.238	855.813	787.66	788.492	873.891	515.438	429.564	539.078	520.086	136.824	616.426
63	818.742	822.938	771.539	773.082	858.625	500.775	428.658	521.203	504.621	147.55	603.527
64	802.738	817.215	763.398	765.055	856.84	493.916	420.139	513.773	497.303	116.148	593.7339
65	787.395	813.055	782.164	797.043	877.145	477.516	400.816	500.719	483.047	125.472	597.4326
66	771.867	782.074	763.461	781.242	853.754	469.818	391.748	490.873	474.432	122.972	582.5695
67	764.438	782.816	767.395	770.594	851.973	461.072	376.842	482.91	467.928	97.4009	574.7324
68	752.766	767.543	771.215	771.098	868.605	440.684	359.6	459.031	448.08	107.421	569.0741
69	738.18	741.828	768.637	791.082	847.801	427.207	341.668	444,119	436,779	103.829	559,4679
70	719 418	718 246	748 102	769 492	830 715	418 486	327 609	433 805	429.5	111 903	546 1715
71	704 578	690 805	720 /18	745 301	812 620	409 777	326 350	123 648	420 805	96.0327	530 6247
70	600 212	674.10	729.410	743.301	700.962	201 267	207 117	423.040	420.000	90.0327	530.0247
72	009.313	0/4.10	713.73	700.040	799.003	391.307	307.117	413.37	410.000	97.3223	520.0367
73	666.883	642.887	696.801	720.313	//5./38	376.174	303.518	406.588	402.982	83.4517	504.0348
74	654.727	621.648	684.238	/13.078	756.465	367.141	287.625	393.412	397.021	86.1929	492.46
75	648.379	613.48	678.324	711.113	747.641	278.535	282.262	386	385.4	72.7017	484.6152
76	628.395	632.902	705.406	722.383	774.746	276.195	274.197	373.166	376.65	68.7607	491.0263
77	615.605	622.066	703.207	721.469	776.785	268.229	261.852	364.801	368.465	72.6323	486.4097
78	609.633	598.34	698.559	718.563	774.793	262.283	255.686	356.816	360.359	67.4624	478.8223
79	600.32	585.934	696.25	715.422	762.145	247.433	245.17	350.223	357.172	55.2617	470.9472
80	599.77	572.621	694.637	714.391	759.801	245.615	239.937	345.176	350.674	59.3152	467.069
81	594.152	560.234	686.617	710.199	757.461	238.307	237.22	339.605	344.527	60.05	461.9891
82	594.75	565.313	682.563	709.172	751.816	247.264	240.142	333.162	335.711	59.6953	459.6968
83	588.785	555.801	673.047	707.555	745.59	238.523	234.668	328.547	334.705	59.4714	454.9231
84	591.34	557 547	670 977	709 566	742 785	236 48	232 065	322 582	328 123	56,8901	452,5669
85	592 512	554 695	668 906	716 496	741 030	226 673	221 938	318 172	326 602	59 6868	450 9419
86	50/ 270	557 122	660 740	720 624	7/1 19/	220.073	217 /77	312 504	318 955	53,8104	1/18 0150
00	502 004	501.103	667 700	747 745	720 007	241.802	211.411	200 500	212 4 40	53.0101	446.0007
0/	593.824	000./0/	001.193	/1/./15	130.021	212.412	200.023	308.508	313.143	51.93/5	440.0001
88	593.156	547.648	663.52	/1/.504	131.227	211.768	204.511	304.723	312.018	54.3833	442.6918
89	594.68	554.102	666.215	725.504	735.961	199.482	189.653	296.348	301.813	44.8428	439.3049
90	586.648	541.27	657.422	727.289	727.523	198.506	191.146	294.271	297.938	43.3193	435.0223
91	591.965	551.512	662.203	733.777	727.785	182.473	173.699	287.939	292.533	40.5898	433.7547
92	596.133	564.855	666.402	741.445	723.23	182.277	173.528	279.988	287.674	41.8782	434.875
93	589.02	549.605	658.188	737.352	715.984	188.188	173.271	277.506	285.742	48.1646	430.7266
94	592.953	572.023	667.609	740.316	716.594	196.771	178.273	273.818	282.186	46.5806	434.675
95	582.621	555.961	658.926	734.453	711.23	177.158	165.527	264.721	279.443	46.4717	427.0916
96	577 238	563 906	657 672	733 418	706 688	164 743	154 624	257 396	272 486	40,8208	423,3764
97	577 710	565 996	660 363	735 441	705 895	166 099	153 393	255 034	265 891	34 364	422 0471
00	574.000	500.000	650.000	724.051	702.176	166.003	153 55	251 625	261 574	35 2922	120.2640

BILAGA 2: FULLSKALEFÖRSÖK SOM ANVÄNDS I MODELL ENLIGT MAGNUSSON ET AL.

1 Testserie av Sjölin /16/

Syfte: Studie av brandförlopp samt spridning av brand mellan olika rum. Antändning simuleras för att likna strålningen vid en kärnvapenexplosion.

Antal försök ur testserien som använts i Magnusson/Thelanderssons modell: 7 st. Öppningsfaktor: ca 0.03 - 0.07 m^{1/2} Brandbelastning: ca 80 - 130 MJ/m² Bränsle: riktiga möbler Omslutande konstruktion: blandning av betong och gasbetong Total omslutningsarea: 30 - 90 m² Uppmätta parametrar: gastemperatur, massflöde ut, kemisk sammansättning av gaserna, strålning och RHR.

2 Testserie av Kawagoe /6/

Syfte: Det primära målet var att studera förhållandet mellan viktminskningen per tidsenhet hos det brinnande materialet och öppningsdimensionerna. Antal försök ur testserien som använts i Magnusson/Thelanderssons modell: 3 st. Öppningsfaktor: ca 0.05 m^{1/2} Brandbelastning: 150 - 400 MJ/m² Bränsle: träribbstaplar Omslutande konstruktion: betong Total omslutningsarea: 48 m² Uppmätta parametrar: gastemperatur, massflöde ut, RHR, kemisk sammansättning av gaserna, strålning och tryck i öppningen.

3 Testserie av Ödeen /15/

Syfte: Att undersöka brandförlopp. Denna testserie utfördes i en brandcell som i sin genomskärning var halvcirkulär som en tunnel.
Antal försök ur testserien som använts i Magnusson/Thelanderssons modell: 16 st. Öppningsfaktor: ca 0.01 - 0.06 m^{1/2}
Brandbelastning: ca 25 - 300 MJ/m²
Bränsle: trä med varierande energiinnehåll
Omslutande konstruktion: betong
Total omslutningsarea: ca 75 m²
Uppmätta parametrar: gastemperatur, massflöde in, hydralisk radie på bränslet.

4 Testserie av "National Swedish Institute for Materials Testing"/24/

Syfte: Att undersöka hur branden sprider sig mellan olika våningsplan. Antal försök ur testserien som använts i Magnusson/Thelanderssons modell: 4 st. Öppningsfaktor: ca 0.01 - 0.08 m^{1/2} Brandbelastning: 30 - 300 MJ/m² Bränsle: träribbstaplar Omslutande konstruktion: gasbetong Total omslutningsarea: 75 m² Uppmätta parametrar: gastemperatur, massflöde ut, RHR, kemisk sammansättning av gaserna samt strålning.

BILAGA 3: MATERIALDATA

Figur B.3.1 Specifik värmekapacitet för mineralull /25/. Kurvan är extrapolerad linjärt efter 1000°C.

Figur B.3.2 Entalpi för mineralull.

Figur B.3.3 Värmeledningsförmåga för mineralull /25/. Kurvan är extrapolerad linjärt efter 1000 °C.

Figur B.3.4 Specifik värmekapacitet för gips /25/. Kurvan är extrapolerad linjärt efter 1000 °C.

Figur B.3.5 Entalpi för gips.

Figur B.3.6 Värmeledningsförmåga för gips /25/. Kurvan är extrapolerad linjärt efter 1000 °C.

Figur B.3.7 Värmeledningsförmåga för betong /14/.

Figur B.3.8 Värmeledningsförmåga för gasbetong /14/.

<u>Övriga termiska data för betong ($\rho = 2300 \text{ kg/m}^3$)</u>

 $c = 900 \text{ J/kg }^{\circ}\text{C} /14 / \\ H = 3.1 \cdot 10^9 \text{ MJ/kg vid } 1500 \ ^{\circ}\text{C}$

 $\label{eq:constraint} \begin{array}{l} \underline{Ovriga\ termiska\ data\ för\ gasbetong\ (\rho=500\ kg/m^3)}\\ c=900\ J/kg\ ^{\circ}C \qquad /14/\\ H=675\ \cdot\ 10^6\ MJ/kg\ vid\ 1500\ ^{\circ}C \end{array}$

Entalpin är ovan beräknad enligt
$$H = \int_{T_0}^{T} \rho c dT$$

Jämförelse av termiska data för brandgips (protect F) och "normal" gips (GN)

I fullskaleförsöken användes brandgipsskivor (protect F) med en densitet på 860 kg/m³. Då fullständiga entalpi- och konduktivitetsdata saknas för detta material används data för gips med densitet 790 kg/m³. Undersökning görs nedan om skillnaden är försumbar.

I varje fullskaleförsöken användes 46 m² · 790 kg/m³ · 0.015 · 2 m = <u>1090 kg gips</u> Felmarginalen för densiteterna är (860-790)/860 = <u>8 %</u> Detta motsvarar 1090 kg · 8 % = <u>89 kg gips</u> Energiåtgången vid gipsets kalcinering /26/ = 515 + 185 = <u>700 kJ/kg gips</u> Totalt är felet 700 kJ/kg · 89 kg = <u>62 MJ</u> Fullskaleförsökens lägsta brandbelastning är 75 MJ/m² vilket motsvarar 75 · 46 = <u>3450 MJ</u> Felmarginalen för energivärdena är 62/3450 = <u>1.7 %</u> \Rightarrow **Förenklingen avseende felmarginalen för energiåtgång vid gipsets kalcinering anses tillåten.**

Figur B.3.9 visar att skillnaden i värmeledningsförmåga mellan densiteterna 790 kg/m³ resp 860 kg/m³ är tillräckligt liten för att förenklingen skall **anses som tillåten även avseende felmarginalen i värmeledningförmåga.**

Figur B.3.9 Gipsets värmeledningsförmåga som funktion av densiteten för gipsskivor /27/.

Materialdata VTT

Tabell B.1 Material och deras termiska egenskaper som användes i datorberäkning med BRI 2 /29/

Material	Emiss.	Kond.	Värmekap.	Densitet	Tjocklek	
		W/m °C	J/kg °C	kg/m³	m	
Betong	0.9	1.63	895	2250	0.30	
Gasbetong	0.9	0.12	1050	500	0.30	
Gipsskiva	0.9	0.219	993	860	0.02	

BILAGA 4: JÄMFÖRELSE OBSERVERAD - BERÄKNAD FLAMSTORLEK GENOM ÖPPNING

Observationer vid fullskaleförsöken visade att flammor slog ut genom öppningen i alla försök. Detta fenomen är av avsevärd betydelse inte bara för brandens spridning till ovanliggande våningsplan utan också på grund av att den utanpåliggande konstruktionen kan försvagas. Med den nya bygglagstiftningen som tillåter flervåningshus i trä är det av intresse att studera flammornas dimensioner närmare. Syftet med detta avsnitt är att ge ett grovt mått på öppningsflammorna som gällde för de fullskaleförsök som utfördes och exempel på beräkningsgång. Metoden kan användas som underlag för brandteknisk dimensionering. Ekvationer enligt nedan har framtagits med hjälp av empiriska iakttagelser (Thomas and Law /30/, Yokoi /31/, Seigel /32/ och Thomas & Heselden /33/) och har korrelerats mot plymekvationer /34/.

Figur B.4.1 Projektion av flamma genom öppning

 $z + h = 12.8(m / B)^{2/3}$ (B.4.1) / 34 /

 $x / h = 0.454 / (2B / h)^{0.53}$ (B.4.2) / 34 /

där dimensionerna z, x och h framgår av Figur B.4.1, mär förbränningshastigheten och B är bredden på öppningen. Flammans vidd kan antas vara lika med B. Flammans "spets" är per definition den punkt på flamaxeln där temperaturen är 540 °C. Förbränningshastigheten skall enligt denna modell beräknas genom antingen ekvation (B.4.3) eller (B.4.4) nedan. Ekvation (B.4.3) (Law och O'brien /35/) bygger på antagandet att de flesta bränder dör ut inom 20 minuter och ges som

m = f/1200 kg/s där f är brandbelastningen.	(B.4.3)	/35/
---	---------	------

Den andra ekvationen enligt Thomas och Heselden /33/ är

$$\frac{\dot{\mathbf{m}}}{Ah^{1/2}} \cdot \left(\frac{D}{W}\right)^{1/2} = 0.18 \left[1 - \exp\left(-\frac{0.036A_{\text{tot}}}{Ah^{1/2}}\right)\right]$$
(B.4.4) /33/

där D är brandcellens djup och W är brandcellens bredd.

Ovanstående modeller gäller dock inte om:

(a) värme går förlorad till byggnadens fasad

(b) det är blåsigt

(c) det brinner på ett våningsplan under

(d) bränslearean är väldigt stor

(e) bränslet inte är cellulosabaserat

Fullskaleförsöken i detta arbete uppfyller ovanstående kriterier och därför undersöks hur väl flamstorleksberäkningen överensstämmer. Beräkningar enligt ekvation (B.4.1), (B.4.2) och (B.4.4) utfördes för försök 2,3 och 4 enligt nedan.

Försök 2 och 3

$$\frac{\dot{m}}{1.34 \cdot 1.38} \cdot \left(\frac{5.17}{1.83}\right)^{1/2} = 0.18 \left[1 - \exp\left(-\frac{0.036 \cdot 45.66}{1.34 \cdot 1.38}\right)\right] \rightarrow m = 0.11 \text{ kg/s}$$

$$z + 1.91 = 12.8(0.11 / 0.7)^{2/3} \implies z = 1.8 \text{ m}$$

 $x / 1.91 = 0.454 / (2 \cdot 0.7 / 1.91)^{0.53} \implies x = 1.0 \text{ m}$

Försök 4

$$\frac{\dot{m}}{2.68 \cdot 1.38} \cdot \left(\frac{5.17}{1.83}\right)^{1/2} = 0.18 \left[1 - \exp\left(-\frac{0.036 \cdot 45.66}{2.68 \cdot 1.38}\right)\right] \to m = 0.14 \text{ kg/s}$$

$$z + 1.91 = 12.8(0.14 / 1.4)^{2/3} \implies z = 0.9 \text{ m}$$

 $x / 1.91 = 0.454 / (2 \cdot 1.4 / 1.91)^{0.53} \implies x = 0.7 \text{ m}$

<u>Slutsats</u>

De beräknade flamlängderna överensstämmer med observationer vad gäller flamlängd i både i z-led och x-led för försök två och tre. Beräkningarna visar dock att en ökning i horisontalled av öppningen ger en minskning av flamman vilket inte var fallet i försök fyra. Dock var som tidigare nämnts massflödena störda. Metoden kan därför antas ge rimliga dimensioner på öppningsflamman och är tillämplig för konstruktionen lätta stommar.

Figur B.4.2 Flammor ut genom öppning från försök 3

BILAGA 5: BERÄKNADE TEMPERATUR-TIDKURVOR FÖR LÄTT STOMME

Det är av intresse att se hur mycket en ändring av öppningsfaktorn och brandbelastningen påverkar temperaturen. Som omslutande konstruktion används två 13 mm gipsskivor + 10 cm mineralull. Gipsskivorna sitter ihop och är uppsatta på den brandpåverkade sidan. Brandcellsdimensionerna är: höjd = 1.91 m, längd (djup) = 5.17 m, bredd = 1.83 m. Öppningen är 1.91 m hög och 0.7 m bred vid en öppningfaktor på 0.04 m^{1/2}. Vid ökad öppningsfaktor ökas bredden medan höjden är konstant. Total inneslutningsarea = 46 m². Rummets geometri överensstämmer med försöksuppställningen som beskrivs i avsnitt 5.3.4. Effektutveckling enligt Magnusson et al. /3/.

Figur B.5.1 a) b) c) Temperatur-tidkurvor beräknade med datorprogrammet SFIRE vid konstant öppningsfaktor, varierad brandbelastning. Effektutveckling enligt Magnusson et al. /3/.

Figur B.5.1 d) e) f) Temperatur-tidkurvor beräknade med datorprogrammet SFIRE vid konstant brandbelastning, varierad öppningsfaktor. Effektutveckling enligt Magnusson et al. /3/.

Analys

Ur tabell B.5.1 kan utläsas att om brandbelastningen ökas från 100 MJ/m^2 till 200 MJ/m^2 vid en öppningsfaktor på 0.04 m^{1/2}, så ökar tiden då temperaturen är över 600 °C från 29 minuter till 76 min medan topptemperaturen ökar från 1000 °C till 1079 °C.

Om öppningsfaktorn ökas från 0.04 m^{1/2} till 0.08 m^{1/2} vid en brandbelastning på 200 MJ/m² påverkas inte temperaturen nämnvärt. Tiden då temperaturen är över 600 °C minskar dock från 76 minuter till 31 minuter.

Ökad brandbelastning vid konstant öppningsfaktor leder främst till en ökning av brandförloppets längd. Detta överensstämmer med försöken.

Ökad öppningsfaktorn vid konstant brandbelastning leder främst till minskad brandförloppslängd. Temperaturen påverkas inte nämnvärt.

100 MJ/m ²	200 MJ/m ²	400MJ/m ²	
1000	1079	1170	
24	41	73	
1	27	90	
29 76		166	
1007	1092	1170	
15	30	55	
3	21	1170	
22	49	105	
1026	1092	1152	
13	23	41	
3	15	40	
15	31	73	
	100 MJ/m ² 1000 24 1 29 1007 15 3 22 1026 13 3 15	100 MJ/m²200 MJ/m²100010792441127297610071092153032122491026109213233151531	

Tabell B.5.1 Data från beräknade temperatur-tidkurvor för lätt stomme med SFIRE

BILAGA 6: JÄMFÖRELSE TEMPERATUR-TIDKURVOR LÄTT STOMME - BETONGKONSTRUKTION

En jämförelse mellan brandförlopp i brandcell med lätt stomme som omslutande konstruktion och brandförlopp i brandcell med betong som omslutande konstruktion har genomförts. Omslutande konstruktion i den lätta stommen består av två 13 mm gipsskivor + 10 cm mineralull. Gipsskivorna sitter ihop och är uppsatta på den brandpåverkade sidan. Betongen (ρ =2300 kg/m³) är 30 cm tjock. Vidare är öppningen 1.91 m hög och 0.7 m bred vid en öppningfaktor på 0.04m^{1/2}. Vid ökad öppningsfaktor ökas bredden, höjden är konstant. Total inneslutningsarea = 46 m². Brandcellsdimensionerna är: höjd = 1.91 m, längd (djup) = 5.17 m, bredd = 1.83 m. Rummets geometri överensstämmer med försöksuppställningen som beskrivs i avsnitt 3.3.4.

Figur B.6.1 a) b) c) d) e) f) Temperatur-tidkurvor för brandcell med lätt stomme som omslutande konstruktion och temperatur-tidkurvor i brandcell med betong som omslutande konstruktion. Effektutveckling enligt Magnusson et al. /7/.

Figur B.6.1 g) h) i) Temperatur-tidkurvor för brandcell med lätt stomme som omslutande konstruktion och temperatur-tidkurvor i brandcell med betong som omslutande konstruktion. Effektutveckling enligt Magnusson et al. /3/.

Diskussion

Brandförloppens längd är i princip likadana för de båda konstruktionerna. Däremot skiljer topptemperaturen. Temperaturskillnaden är ungefär 200 °C. Denna skillnad beror på att betongen har större förmåga att lagra värme (högre entalpi) och större förmåga att leda värme (högre konduktivitet) än den lätta konstruktionen. Vidare når betongkonstruktionen som högst en temperatur på 1000 °C (400 MJ/m², 0.08 m^{1/2}).

BILAGA 7: JÄMFÖRELSE MELLAN DATORPROGRAMMEN BRI 2 OCH SFIRE

I projektet "Brandsäkra Trähus" /1/ har Liisa Heikkilä och Esko Mikkola /29/ på finländska provningsanstalten VTT gjort brandförloppsberäkningar för tre olika brandscenarier med datorprogrammet BRI 2. I ett av scenarierna där den omgivande konstruktionen består av gasbetong erhölls en temperatur-tidkurva med anmärkningsvärt hög temperatur. I detta scenario är varken brandbelastning eller öppningsfaktor speciellt stora. Birgit Östman och Jürgen König på AB Trätek önskade därför att jämförande beräkningar skulle genomföras. I detta kapitel jämförs beräkningar utförda med datorprogrammen BRI 2 och SFIRE. Eventuella skillnader diskuteras. Materialdata återfinns i bilaga 3.

BRI 2 (version juli 1992 /36/) är en flerrums, flervånings tvåzonsmodell skapad av Japanska Byggnadsinstitutet (Building Research Institute). Tvåzonsmodeller delar in rummet i två skikt i vilka temperaturerna antas vara densamma i hela skiktet för varje ögonblick. Det övre skiktet innehåller rökgaser medan det undre består av inströmmande luft med uteluftstemperatur.

I de följande avsnitten presenteras och jämförs de tre ovan nämnda brandscenarierna.

Brandscenario A

Figur B.7.1 Jämförelse mellan datorprogrammet BRI 2 och SFIRE.

Diskussion

Lokalen är i detta scenario relativt stor (212 m²). Det finns därför anledning att undersöka om brandförloppet är övertänt. Enligt ekvation (2.2) måste effekten q_{max} överstiga $q_{flashover}$ för att gå till övertändning som är villkoret för att metod II enligt Magnusson et al. /3/ skall kunna användas.

$$\begin{aligned} \mathbf{q}_{\text{flashover}} &= 7.8 \text{ A}_{\text{tot}} + 378 \text{ A}\sqrt{\text{h}} \text{ kW} \quad (2.2) \\ \mathbf{q}_{\text{flashover}} &= 7.8 \cdot 212 + 378 \cdot 5.9 \cdot 1.1 = 4100 \text{ kW} = 4.1 \text{ MW} \\ \mathbf{m}_{\text{f}} &= 0.09 \text{ A}\sqrt{\text{h}} \text{ kg/s} \\ \mathbf{m}_{\text{f}} &= 0.09 \cdot 5.9 \cdot 1.1 = 0.58 \text{ kg/s} \\ \mathbf{q}_{\text{max}} &= \approx 1.0 \text{ A}\sqrt{\text{h}} \text{ MW} \\ \mathbf{q}_{\text{max}} &= \approx 1.0 \cdot 5.9 \cdot 1.1 = 6.5 \text{ MW} \end{aligned}$$

Brandförloppet går till övertändning enligt metod II enligt Magnusson et al /3/.

Mikkola et al. /29/ antar den högsta förbränningshastighet till 0.27 kg/s vilket är mindre än hälften av förbränningshastighet enligt Magnusson et al. /3/ (se ovan). Om man antar ett värmevärde hos trä på 13 MJ/kg blir effektutvecklingen enligt Mikkola et al. /29/.

 $\mathbf{q}_{c} = \mathbf{m}_{f} \cdot \Delta \mathbf{H}_{c_{eff}} \qquad (4.2)$ $\mathbf{\dot{q}}_{c} = 0.27 \cdot 13 = 3.5 \text{ MW} < 4.1 \text{ MW} (\mathbf{\dot{q}}_{flashover})$

Mikkola et al. /29/ räknar således på ett brandförlopp som inte går till övertändning vilket delvis förklarar skillnaden för temperatur-tidkurvorna.

Brandscenario B

Öppningsfaktor: 0.08 m^{1/2} Brandbelastning: 100 MJ/m² Total inneslutningsarea: $A_{tot} = 50 \text{ m}^2$ Inneslutningsdimensioner: höjd = 2.6 m, längd (djup) = 2.2 m, bredd = 4.0 m Öppning: höjd = 1.2 m, bredd = 3.0 m, fönsterbläck på 1.0 m Bränsle: trä

Experimentella värden (opublicerade) presenteras i detta scenario.

Figur B.7.2 Jämförelse mellan datorprogrammet BRI 2 och SFIRE (metod II enl. Magnusson et al. /3/) för a) betongkonstruktion b) gasbetongkonstruktion. Uppmätta värden presenteras med streckad kurva.

Figur B.7.3 Effektutvecklingsindata till SFIRE (metod II enligt Magnusson et al. /3/ och till BRI 2 (maxeffekt från opublicerade fullskaleförsök, initialfas enligt /37/).

Diskussion

BRI 2 ger högre temperatur än SFIRE i betongkonstruktionen trots att effektutvecklingen är högre i flamfasen för SFIRE. Anledningen till detta är att BRI 2 beräknar temperaturen i den övre zonen - rökgaslagret - medan SFIRE beräknar genomsnittstemperaturen i brandcellen. Dessutom är brandförloppet längre för BRI 2 vilket dels beror på resonemang enligt ovan men också att effektutveckligens maximum varar längre för BRI 2. I fallet med gasbetong ger BRI 2 ett längre brandförlopp vilket även detta kan hänvisas till tvåzonsmodellernas egenskaper. Den uppmätta temperatur-tidkurvans utseende överensstämmer väl med den som SFIRE beräknat. Dock är flamfasen något kortare. BRI 2 överskattar brandförloppets längd i jämfört med de uppmätta värdena.

Brandscenario C

Öppningsfaktor: 0.04 m^{1/2} Brandbelastning: 170 MJ/m² Total inneslutningsarea: $A_{tot} = 50 \text{ m}^2$ Inneslutningsdimensioner: höjd = 2.6 m, längd (djup) = 2.2 m, bredd = 4.0 m Öppning: höjd = 1.2 m, bredd = 1.5 m, fönsterbläck på 1.0 m Bränsle: trä

Figur B.7.4 Jämförelse mellan datorprogrammet BRI 2 och SFIRE (metod II enl. Magnusson et al. /3/) för a) betong b) gasbetong.

FigurB.7.5 Effektutvecklingsindata till SFIRE (metod II enligt Magnusson et al. /3/ och till BRI 2 (maxeffekt från opublicerade fullskaleförsök, initialfas enligt /37/).

Diskussion

Skillnader i temperatur-tidkurvorna mellan datorprogrammen för betongkonstruktionen kan i detta fallet hänvisas till skillnaden i effektutvecklingsindatan. Figur B.7.5 visar att brandförloppen följer respektive effektutveckling. Skillnaden mellan brandförloppen i gasbetongkonstruktionen är stora. BRI 2 ger anmärkningsvärt höga temperaturer

(drygt 1400 °C). Av de utförda fullskaleförsök som beskrivs av Pettersson et al. /24/ kan konstateras att inte ens en kraftigare brand (brandbelastning = 270 MJ/m^2 ,

 \ddot{o} ppningsfaktor = 0.075 m^{1/2}) i gasbetongkonstruktion ger temperaturer över 1100 °C. Med största sannolikhet är brandförloppet enligt BRI 2 kraftigt överdimensionerat.

SLUTSATS

De skillnader som datorprogrammen uppvisar sinsemellan kan dels hänvisas till skillnader i effektutvecklingsindata men även till det faktum att BRI 2 är en tvåzonsmodell och SFIRE en enzonsmodell. Enzonsmodellernas antagande om att temperaturen i varje ögonblick är densamma i hela brandcellen ger en något lägre temperatur och ett kortare brandförlopp än den temperatur som tvåzonsmodellen ger. BRI 2 uppvisar i ett av brandförloppen anmärkningsvärt höga temperaturer.