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It is envisaged that guidelines for statistical analysis and presenta-
tion of results will improve the quality and value of research. The
Nordic Arthroplasty Register Association (NARA) has therefore
developed guidelines for the statistical analysis of arthroplasty
register data. The guidelines are divided into two parts, this one
with an introduction and a discussion of the background to the
guidelines, and the second one with a more technical statistical
discussion on how specific problems can be handled (Ranstam et
al. 2011b, see pages x-y in this issue). This first part contains an
overview of implant survival analysis and statistical methods used
to evaluate factors with a potential influence on this outcome.

In 1996, the guidelines known as the Consolidated Standards
of Reporting Trials (CONSORT) Statement (Begg et al. 1996)
were finalized. A few years earlier, two groups of experts on
clinical trials had started to develop publication guidelines for
randomized clinical trials, first independently of each other
and later together. This was a reaction to the many reports
from randomized clinical trials that had been published with
insufficient information on items important for assessment of
their quality.

Since then, reporting guidelines have also been devel-
oped for a number of other types of studies. Several journals
(including Acta Orthopaedica) consider compliance with the

guidelines to be compulsory and request that manuscripts be
submitted together with completed guidelines checklists (Van-
denbroucke 2009).

Methodological guidelines have been developed in parallel
to reporting guidelines. The introduction of the ICH guideline
“Statistical Principles for Clinical Trials”, adopted by the reg-
ulatory bodies of the European Union, Japan, and the USA in
1998, was, for example, the first time that clear and consistent
regulatory guidance on statistical principles had been made
available internationally.

The CONSORT reporting guidelines have clearly improved
the reporting of clinical trials (Plint et al. 2006), and the “Sta-
tistical Principles for Clinical Trials”” have had a “huge positive
impact” on the quality of clinical trials by promoting a unified
standard of good statistical practice (Brown et al. 2008).

Assuming that guidelines play an equally important role
in improvement of the reliability and the value of regis-
try research, the Nordic Arthroplasty Register Association
(NARA) study group decided at a meeting in Lund, Sweden,
in September, 2009, to develop statistical recommendations
for analysis of arthroplasty data.

Standard methods for analysis of survival data

The term “survival analysis” is used for statistical methods
developed for data that define time intervals, with one starting
point and one endpoint. In analyses of data from arthroplasty
registers, the time intervals analyzed may represent the sur-
vival of implants, where the starting point is the date of the
primary operation and the endpoint is the date of revision.
Usually, not all implants will be revised. Some implants are
well-functioning, or at least unrevised at the end of the study,
or they may have been implanted in a person who died or was
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lost to follow-up for some other reason. The survival times of
such incomplete observations are called “censored”. Censored
observations should also be included in the analysis, because
even if the exact time of revision is not known, the implant is
at least known to be unrevised before being censored.

It is usually assumed that censoring occurs at random. This
may not always be the case, however. How departures from
random censoring can be handled is discussed under the head-
ing “Competing risk™, in Part II, Section 1.

Two functions are used to describe survival data: the sur-
vival function and the hazard function. The survival function
(S(1) is expressed as the probability that the survival time, for
example of an implant, is greater than or equal to time 7, and
the hazard function (A(#)) can be expressed as the hazard (risk)
of revision at some time ¢ given that the implant has survived
to that time without revision.

Life table and Kaplan-Meier estimates

The estimated survival function is often presented as a table
or a graph (survival curve). The survival function can be esti-
mated using two different methods: the life table (actuarial)
approach (Cutler and Ederer 1958) and the Kaplan-Meier
(product-limit) approach (Kaplan and Meier 1958).

Both methods are non-parametric, i.e. no assumption regard-
ing the distribution of survival times is required, and for both
methods the survival function is calculated as the cumulative
probability that an implant will survive through a set of time
intervals.

The main difference between the methods is that while the
life table is calculated for a set of predefined time intervals,
the Kaplan-Meier method defines the time intervals to include
only one event (revision) and is thus independent of a subjec-
tive choice of time intervals.

The probability of an implant surviving until time ¢ (S(¢)) is
calculated as the probability of the implant surviving the first
postoperative day multiplied by the probability of it surviving
the second postoperative day given that the implant was not
revised the first day, multiplied by the probability of it surviv-
ing the third postoperative day given that the implant was not
revised the first or second day, and so on, until time 7.

Assuming k revisions occurring at k different times during
follow-up (tl’ by oovns 4, S0), the survival until time ¢ may thus
be written as a product of conditional probabilities:

k. n —-d.

S(t):P(T>t)=ﬁP(T>tj/T>tj_1)=1£[5(tj)=n i
j=1 =1 Ay

where n = number at risk at revision time L and d = number
of revisions at time ¢..

If there are no censored observations, the Kaplan-Meier
estimate of the survival function at time t will be equal to the
proportion of implants unrevised at that time.

Confidence intervals may also be calculated for values of
the survival function and these are often based on the Green-

Kaplan-Meier survival function
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Kaplan-Meier survival curves for implants A, B, and C with standard
(solid line) and modified (dotted line) 95% confidence limits for implant
A at 20-year follow-up. In the modified Cl the number of implants still
at risk at the time of interest is taken into account in the calculation of
the lower confidence limit.

Table 1. Kaplan-Meier estimated survival probabilities for implants
A, B, and C with standard 95% confidence interval (Cl) and modi-
fied confidence interval (CI, ) with the Peto lower confidence limit.
With the CI 4, the number of implants still at risk at the time of
interest is taken into account in the calculation of the lower confi-
dence limit

15-year survival 20-year survival

Implant % Cl Cliog % Cl Cliog
A 91 91-92 90-92 88 87-89 81-89
B 90 88-90 86—91 81 78-84 47-84
C 94 93-95 90-95 92 90-94 60-94

wood formula for calculation of standard errors. The life table
method has been discussed (Dobbs 1980) and recommended
in relation to arthroplasty data (Murray et al. 1993). However,
the Kaplan-Meier method is usually preferred if the exact
times of revision are known.

As an example, the Kaplan-Meier estimated survival func-
tions for implants A, B, and C are given in the Figure. The
survival probability at 20 years was 88% (95% CI: 87-89) for
implant A, 81% (78-84) for implant B, and 92% (90-94) for
implant C (Table 1).

The confidence limits given are based on survival data not
at 20 years, but at the time of the last revision before this time.
It is clear that with heavy censoring, as might be the case
towards the end of the survival curve, the number at risk may
have decreased considerably after the time of the last revision
and the estimated confidence intervals might therefore be too
narrow.

Alternative methods have been suggested for obtaining con-
fidence intervals based on the number of implants still at risk
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at the time of interest (Dorey and Korn 1987). The numbers
given in Table 1 show that confidence limits modified in this
way are much wider. Non-overlapping 95% confidence inter-
vals imply a difference that is statistically significant at the
5% level. A small degree of overlap does not preclude the pos-
sibility of statistical significance, however.

Log-rank test

In this example, the difference in survival is relatively small
(2.3%, 95% CI: 1.2-3.4), and it is based on only one time
point (15 years)—which may not be representative of the total
follow-up. It is also a problem that the investigators’ subjec-
tive choice of width of time interval can affect the estimated
difference in survival between the implants.

The log-rank test (Mantel and Haenszel 1959), on the other
hand, is based on the total follow-up, and it tests the null
hypothesis of there being no difference in the survivor func-
tions of 2 (or more) implants.

In our example, this test gave a p-value of less than 0.001,
which indicates that the difference in estimated survival was
not due to chance.

The log-rank test is known by several other names, and
there are many variations of the test. In contrast to the log-
rank test, which puts equal weight on all uncensored obser-
vations, the Gehan test weights each uncensored observation
by the number of implants still at risk (n) at the time of fail-
ure (Gehan 1965). This test will therefore put more weight
on what happens early after implantation. Tarone and Ware
(1977) suggested that weights equal to the square root of n
would give a more efficient test.

Cox regression

In observational studies, such as registry studies, there may
be systematic differences between groups of patients with
different types of implants, and these systematic differences
may affect the validity of the results by confounding bias.
For example, if more high-risk patients receive implant A
than implant B, a crude comparison of the 2 implants may
show that implant A, despite being just as good as implant B,
appears to have shorter survival.

Also, in well-designed randomized controlled trials there
may be imbalances between study groups due to chance. Sev-
eral strategies, or combinations of strategies, exist that can
be used to adapt to this situation (Havelin et al. 2004). These
include selection of a more homogenous material and adjust-
ments by the Cox proportional hazards regression model (Cox
1972).

The Cox model is semi-parametric and assumes no particu-
lar distribution for the survival times. It is, however, based on
the assumption that the hazard of implant A at any given time
is proportional to the hazard of implant B. This is known as
the proportional hazards (PH) assumption.

Survival curves that cross, as for implant A and B in the
Figure, imply that the PH assumption is violated. The con-

sequences of such departures from the assumption, methods
to diagnose them, and how such departures can be handled
are discussed in detail under the heading “The proportional
hazards assumption” in Part II, Section 2.

The previously discussed log-rank test is also based on an
assumption of PH.

In the Cox model, the hazard function is defined as ki (t) =
hy (1) e#"X where the baseline hazard function hy(t) (common
to all implants included) is multiplied by a factor representing
the revision risk associated with some factor X (e.g. implant
type).

The exponential function ensures positive values for the
hazard function. The corresponding survival function is writ-
ten as

S(1) = S, (1)

(S, (t) being the baseline survival function).

If X is defined as an indicator variable, equal to O when
implant A has been used and 1 when implant B is used, the
hazard ratio—often interpreted as the relative risk (RR) for
implant B versus implant A with respect to revision—can be
written:

hy(®  h,@e"
hy®)  hy(ef

In the example, the estimated hazard ratio (or RR) is 1.08
(95% CI: 0.98-1.19) when implant B is compared to implant
A, and 0.72 (0.62-0.83) when comparing implant C with A
(p <0.001). This suggests that implant B has a hazard rate that
is 8% higher than that of implant A, while the hazard rate of
implant C is 72% of that of implant A (Table 2). The 95% con-
fidence intervals describe the uncertainty in these estimates.

In the same way, one could also say that the estimated
hazard of implant A is 1.4 (i.e. 1/0.72) times higher than that
of implant C.

Risk estimates such as these, estimated without any inclu-
sion of covariates in the statistical model, are often called
crude or unadjusted. Thus, the risk estimates discussed above
do not include adjustment for systematic imbalance in predic-
tive factors between the implant groups.

To account for such factors and to increase the validity of
the result, the Cox model can be expanded to include also
covariates representing known or suspected confounders:

For example, if information on patient age, sex, and primary
diagnosis is included in the model, the hazard ratio for the
implant type will be estimated conditionally on these factors,
i.e. the risk estimate will be protected from the effects of imbal-
ance in these factors, adjusted for confounding by association
with the factors included in the model. Successful adjustment,
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Table 2. Cox regression estimated crude and adjusted relative risk (RR) of revision comparing implant B and
C with implant A. Breakdown of patient gender and age according to type of implant

Simple Cox regression

Multiple Cox regression 2

Implant % males % > 70 years RR 95 % ClI p-value RR 95 % ClI p-value
A 29 61 1 1

B 28 64 1.08 0.98-1.19 0.1 1.05 0.95-1.16 0.3

C 27 78 0.72 0.62-0.83 < 0.001 0.80 0.69-0.93 0.003

2 Adjustment for age (< 59, 60—69, 70-79, > 80), sex, and diagnosis (OA, other).

however, requires that all confounding factors be identified
and measured—and often relies on assumptions of log-linear
effects. It is conceivable that confounding effects may remain
after adjustment. This is known as residual confounding.

In the example, the new adjusted estimate comparing
implant C with implant A was 0.78 (95% CI: 0.69-0.92; p =
0.002), meaning that the relative difference was somewhat
reduced by the adjustment (Table 2).

The difference in crude and adjusted estimates was due to
the fact that a larger proportion of older patients with better
prognosis had received implant C than implant A. Table 2 also
shows that the crude and adjusted relative risk estimates for
comparison of implant B against implant A were similar.

The Cox regression model thus is a tool to explore the effect
of one or more factors on survival and to adjust for confound-
ing factors. Identification of confounders may be a problem
when covariates are highly correlated.

Furnes et al. (2001) observed that several diagnoses found
in younger patients gave reduced implant survival compared
to primary osteoarthritis of the hip, but that the effect of hip
disease disappeared with adjustment for age and use of unce-
mented implants with inferior survival. Since uncemented
implants were mostly used for younger patients, it was diffi-
cult to ascertain which of these factors was the most important
confounder. Here, it was helpful to study the effect of hip dis-
ease in subgroups defined by age and prosthesis use. Another
important reason for doing subgroup analysis is to investigate
whether the impact of a risk factor on implant survival differs
among subgroups (interaction). The precision of these results
will, however, depend on the number of patients in each stra-
tum. An alternative could be to include the interaction terms in
a new multiple model.

It should also be noted that the selection of covariates to be
included in the statistical model for confounding adjustment
requires careful considerations regarding cause and effect.
The decision should not be based on p-values from p-value
screenings of crude effects or on the results of an automatic
stepwise regression method.

While Kaplan-Meier survival curves illustrate crude or
unadjusted differences in implant survival, results from Cox
regression analyses can be used to construct prosthesis-spe-
cific survival curves with adjustment for relevant factors such

as age and sex. These are often based on Cox regression analy-
ses with implant brand as stratification factor and the curves
calculated for mean values of the other factors included in
the model. The way to do this is debated, however, and other
methods have been suggested (Ghali et al. 2001, Cole and
Hernan 2004).

Other methods of survival analysis

Other methods for analysis of survival exist. The best known
in the context of arthroplasty register data is probably Pois-
son regression, which is often used to combine results from
different studies in meta-analyses, but other methods are also
available: parametric survival models, accelerated failure time
models, and Aalen’s linear regression. These methods will,
however, not be discussed here.

Other methodological problems

Arthroplasty register data have several characteristics that may
have special consequences for the precision and validity of the
results from statistical analyses. One such issue is bilaterality.

Bilateral observations

One basic assumption in the statistical methods that are most
often used to analyze arthroplasty register data is that observa-
tions are independent. This assumption is not fulfilled when
bilateral observations are included in the analysis. Two obser-
vations from the same patient can be assumed to be correlated,
i.e. that within-subject variance differs from between-subject
variance.

While this may theoretically have consequences for the pre-
cision and validity of the results, no one has shown this to be
a practical problem for analyses of arthroplasty register data
(Robertsson and Ranstam 2003, Lie et al. 2004). How the sta-
tistical analysis should deal with this issue is addressed in Part
II, Section 3.

Revision rate ranking
Arthroplasty registers often have a prominent role in evalua-
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tions of quality of healthcare and in comparisons of counties
and hospitals. The results from statistical analyses using the
previously described methods—for example, revision rates
and adjusted relative revision risks—are then used as bench-
marks, as criteria for ranking, and for compilation of league
tables.

However, the observed revision rate may seem clear and
objectively measured but it is, from a statistical standpoint,
uncertain because of unavoidable sampling errors and mea-
surement (or registration) errors.

While manifestations of sampling uncertainty can be identi-
fied by the variability in results from multiple samples used
for the same estimation (for example, the replicates of a labo-
ratory experiment), it may be more difficult to recognize sam-
pling uncertainty in a single sample—which is often the case
for hospital comparisons.

Revision rates from different hospitals are therefore often
compared directly (Ranstam et al. 2008), without any con-
sideration for the fact that the estimates being compared are
uncertain. The consequences of this, and suggestions for
assessment and presentation of the uncertainties for ranking
of revision risk estimates are discussed in Part II, Section 4.
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