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Is orbital angular momentum (OAM) based radio
communication an unexploited area?

Ove Edfors, Member, IEEE, and Anders J Johansson, Member, IEEE

Abstract—We compare the technique of using the orbital
angular momentum (OAM) of radio waves for generating multiple
channels in a radio communication scenario with traditional
multiple-in-multiple-out (MIMO) communication methods. We
demonstrate that, for certain array configurations in free space,
traditional MIMO theory leads to eigen-modes identical to the
OAM states. From this we conclude that communicating over the
sub-channels given by OAM states is a subset of the solutions
offered by MIMO, and therefore does not offer any additional
gains in capacity.

Index Terms—Antenna arrays, antenna radiation patterns,
channel capacity, free-space propagation, MIMO, orbital angular
momentum, radio communication.

I. INTRODUCTION

IT WAS recently shown that the photon orbital angular
momentum (OAM) can be used in the low frequency radio

domain and is not restricted to the optical frequency range
[1]. These findings and the claimed prospects for opening a
new frontier in wireless communications, with “promise for
the development of novel information-rich radar and wireless
communication concepts and methodologies” [1], motivates
the investigation in this paper.

Here we focus on the wireless communication aspects of
[1] and the follow-up paper [2]. We start by identifying the
conditions under which electromagnetic waves with specific
OAM characteristics1 are generated in [1] [2] and continue by
comparing with properties of traditional communication using
multiple-in-multiple-out (MIMO) antenna systems [5] [6] [7].
We pay special attention to the singular value decomposition
(SVD) based derivation of channel capacity for MIMO sys-
tems [8], when applied to MIMO systems under free-space
propagation conditions. Spatial multiplexing under free-space
conditions may seem like a contradiction, but this very concept
has been investigated in various forms for almost a decade [9]
[10] [11] [12]. When restricting ourselves to using circular
antenna arrays, the SVD-based analysis in combination with
properties of circulant matrices [13] [14] can deliver the same
beam-forming and the same OAM properties as in [1] [2].
The beam forming process for all eigenmodes/OAM states
can be performed by a discrete Fourier transform (DFT)
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1These radio waves with specific OAM characteristics are often called
“twisted radio beams” [3] [4] in popular science contexts.

Fig. 1. Illustration of the creation of Laguerre-Gaussian laser beams from
planar laser beams by using transparent spiral phase plates introducing a linear
phase delay with azimuthal angle. OAM state k implies a 2πk phase delay
over one revolution. Three different phase plates are illustrated in gray, for
OAM state 0, 1 and 2. The colored surfaces are contour surfaces indicating
where the phase of the laser beams is zero.

[15], which was also observed in [1]. The analysis also
reveals that the eigenmodes of the resulting MIMO system
are not necessarily unique, making OAM radio communication
a sub-class of traditional MIMO communication with circular
antenna arrays. Finally, we conclude the analysis by comparing
the channel capacity of OAM-based communication, resulting
from MIMO with circular antenna arrays, with known limits
on the capacity of MIMO communication [7]. This shows
that OAM based communication can achieve nearly optimal
capacity gain, as predicted by MIMO theory, when the antenna
arrays are closely spaced compared to the Rayleigh distance.

II. SHORT REVIEW OF RADIO OAM
Radio OAM can be seen as a development of techniques

used in laser optics, where Laguerre-Gaussian (LG) mode laser
beams are created using spiral phase plates [16]. The phase
fronts of the created LG beams are helical in the sense that the
phase front varies linearly with azimuthal angle, as illustrated
in Fig. 1.

As a means of creating radio waves with OAM properties
the authors of [1] and [2] use antenna arrays consisting
of concentric uniform circular arrays (UCAs). The antenna
elements in the UCAs are fed with the same input signal,
but with a successive delay from element to element such
that after a full turn the phase has been incremented by a
an integer multiple k of 2π. The basic principle of one of
these UCAs is shown in Fig. 2. In [1] they calculate the far-
field intensity patterns using NEC2 [17] and conclude that the
results are very similar to those obtained in paraxial optics. It
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Fig. 2. Eight-element UCA with phase rotation nk2π/8 on element n to
approximate OAM state k.

is also pointed out that the different OAM states in a beam
can be decomposed by integrating the complex field vector
weighted with exp (−jkφ) along a circle around the beam
axis. In practice there will be a finite number of antennas in
an UCA measuring the field and the integration operation is
approximated by a discrete Fourier transform (DFT) of the
field in the antenna positions (or the antenna outputs). In [1]
it is also concluded that with a limited number of antennas,
N , there is an upper limit on the largest OAM number k that
can be resolved, namely |k| < N/2.

Before we investigate these array design strategies for
approximating beams with certain OAM states and apply
standard MIMO theory to the resulting systems, let us briefly
review the basics of narrow-band MIMO systems.

Narrow-band MIMO systems have been addressed in nu-
merous publications during the last decade and a standard
formulation of the input/output relationship in complex base-
band notation is

y = Hx + n, (1)

where x ∈ CNTX is the vector of NTX inputs, y ∈ CNRX the
vector of NRX outputs, H ∈ CNRX×NTX the MIMO channel
matrix, and n ∈ CNRX the vector of additive receiver noise.
In many cases H is assumed to be random, e.g., in wireless
MIMO communication scenarios with relative movements in
the propagation environment. Here we assume that H is
both known and has specific properties. The additive noise
n is assumed to be a vector of independent and identically
distributed (i.i.d.) zero-mean, circularly symmetric, complex
Gaussian noise components such that n ∼ N(0, σ2

nINRX
),

where σ2
n is the noise variance on each receiver branch and

INRX
is the NRX ×NRX identity matrix.

The channel capacity of the MIMO system above has been
known for a long time, for both known and unknown channel
at the transmitter side. We will review a technique here to
derive the capacity of the system, first introduced by Telatar
[8], which is essential to the analysis in the rest of the paper.
We use the singular value decomposition (SVD) of the channel
matrix

H = UΣVH , (2)

where U ∈ CNRX×NRX and V ∈ CNTX×NTX are unitary
matrices containing the left and right singular vectors of H,

respectively, while Σ ∈ CNRX×NTX is a diagonal matrix
with the positive singular values µ1, µ2, . . . , µr, in decreasing
order, on its diagonal, and r ≤ min (NTX, NRX) is the
rank of H. The left and right singular vectors in U and V
are obtained from the eigen-decompositions of the Hermitian
matrices HHH and HHH, respectively, while the singular
values along the diagonal in Σ are the square roots of the
corresponding eigenvalues (HHH and HHH share the same
set of positive eigenvalues).

From a capacity point of view, nothing is changed if we
perform pre-processing to obtain our transmitted vector x with
the unitary matrix V, and post-processing of our received
vector y with the unitary matrix UH . To describe the pre-
and post-processing, we use the notation

x = Vx̃, (3)

ỹ = UHy. (4)

The pre- and post-processing operations above can also be seen
as receiver- and transmitter-side beam-forming, where the left
and right singular vectors of the channel matrix H are used as
steering vectors. Performing these operations on the original
MIMO system (1) gives us an equivalent system

ỹ = UHy = UH (HVx̃ + n) (5)

= UHHVx̃ + UHn = Σx̃ + ñ, (6)

where we, in the last step, use the SVD in (2) and denote the
noise by ñ = UHn. Since U is unitary, the new noise vector
has the same distribution as n itself, i.e., ñ ∼ N(0, σ2

nINRX
).

The corresponding capacity Ck for known channel at the
transmitter becomes

Ck =

r∑
i=1

log2

(
1 +

Pi

σ2
n/µ

2
i

)
bit/sec/Hz (7)

where all the available power P is distributed across the
channels, according to the water-filling principle, such that

P =

r∑
i=1

Pi. (8)

III. CAPACITY OF FREE SPACE MIMO SYSTEMS

To be able to compare free space MIMO systems against
each other we need the channel matrix H in (1) for a given
configuration of the antenna arrays and a measure which
quantifies the performance of a particular configuration. We
will use the channel capacity of the MIMO system, relative to
the capacity of a single-in-single-out (SISO) system, operating
at the same antenna separation and using the same total
transmit power. We call this the capacity gain of the MIMO
system over a SISO system.

A. Channel matrices in free space

Given the distance d between a pair of antenna elements
in free space, we denote the (narrow band) transfer function
from transmit antenna input to receive antenna output as

h(d) = β
λ

4πd
exp

(
−j2π d

λ

)
, (9)
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where the free space loss is given by λ/(4πd), the additional
phase rotation due to propagation distance is introduced by the
complex exponential term, λ denotes the wavelength of the
used carrier frequency, and β contains all relevant constants
such as attenuation and phase rotation caused by antennas and
their patterns on both sides.

For the above model to be relevant in our analysis of antenna
arrays, we assume that all antenna elements (in each array) are
equal and that the propagation distance d is large enough to
provide

• a valid far-field assumption between any pair of trans-
mit/receive antenna elements, and

• relative array sizes (diameters) small enough to assume
that the antenna diagrams are constant over the directions
of departure/directions of arrival involved.

The first of these requirements essentially says that the free-
space loss formula should be valid, while the second one
implies that the antenna diagrams of the used antenna elements
should be smooth enough in the direction of the opposing array
to allow them to be approximated well by a constant (included
in β above). These requirements are not strictly necessary for
the analysis, but greatly simplifies the expressions.

Given that we have an NRX ×NTX MIMO system, where
dnRX,nTX

is the distance between receive antenna element
nRX and transmit antenna element nTX, the channel matrix
becomes

H =


h1,1 h1,2 · · · h1,NTX

h2,1 h2,2 · · · h2,NTX

...
...

. . .
...

hNRX,1 hNRX,2 · · · hNRX,NTX

 , (10)

where
hnRX,nTX

= h(dnRX,nTX
) (11)

is given by (9).

B. Capacity gain

In the rest of the paper we will use a relative capacity
measure to evaluate the gain of applying MIMO instead
of SISO communication. We assume that we have equal
transmitters and receivers for both systems, with the same
antennas and equal receiver noise figures. The SISO system
uses a single transmitter-receiver pair, while the MIMO system
uses multiple units on each side.

As a basis for the capacity gain, we assume that our SISO
system needs a certain transmit power PSISO to achieve a
certain SNR on the receiver side. The required transmit power
can be calculated using a simple link budget. By using the
propagation loss as given by (9), the required transmit power
becomes

PSISO = SNR

(
4πD

βλ

)2

σ2
n, (12)

where σ2
n is the receiver noise variance and D is the distance

between the transmitting and receiving antenna. This choice
of transmit power gives a reference SISO channel capacity of

CSISO(PSISO) = log2 (1 + SNR) bit/sec/Hz. (13)

Fig. 3. Distance d(θ) between two antenna elements on concentric circles
with radii RTX and RRX, respectively, placed on a common beam axis at
a distance D from each other. The angle between first elements in the two
arrays is denoted φ.

We now evaluate the capacity of the studied MIMO system
for the same transmit power, PMIMO = PSISO, and compare
their channel capacities. We define the MIMO capacity gain
as

GMIMO =
CMIMO(PSISO)

CSISO(PSISO)
=
CMIMO(PSISO)

log2 (1 + SNR)
(14)

where CMIMO(PSISO) is the channel capacity for the studied
MIMO system for known channel at the transmitter, i.e., where
CMIMO(PSISO) is given by Ck in (7).

Following the analysis in [7], the capacity gain of any
MIMO system is limited by the number of antennas at each
side as GMIMO ≤ min(NTX, NRX).

Having established our metric for comparing the merits of
different MIMO systems, we move on to the specific antenna
array geometries addressed in this paper.

IV. CIRCULAR ARRAYS ON THE SAME BEAM AXIS IN FREE
SPACE

The basic system configuration described in [1] concerns
antenna arrays with one or more concentric UCAs used to
create electric fields with different OAM states. Here we focus
on the simplest MIMO system using such antenna structures;
two UCAs facing each other on the same beam axis at a
distance D. One is the transmitting array and one is the
receiving array, as illustrated in Fig. 3, where the dots indicate
antenna element positions. The distance between arbitrary
points on the two concentric circles, with radii RTX and RRX,
on which the antenna elements are placed, with an angle θ
between the points is Typo

in
(15)
cor-
rected.
Thanks
to
Zhuo-
fan
ZHANG.

d(θ) =
√
D2 +R2

TX +R2
RX − 2RTXRRX cos θ. (15)

Assuming NTX evenly distributed antennas on the first circle
and NRX evenly distributed antennas on the second circle,
neighboring antenna elements on the two circles are

∆θTX =
2π

NTX
and ∆θRX =

2π

NRX
(16)

radians apart, respectively.
Without loss of generality, we can assume that the first

antenna element on the first circle is placed at zero radians,
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while the first antenna element on the second circle is placed
at an angle φ. By changing the value on φ we can obtain
all possible relative rotations between the two antenna arrays.
Using the angles between two elements on each array as
described in (16), while introducing a relative array rotation φ,
the angle between transmit element nTX and receive element
nRX becomes

θnRX,nTX
= 2π

(
nRX

NRX
− nTX

NTX

)
+ φ, (17)

where 1 ≤ nTX ≤ NTX and 1 ≤ nRX ≤ NRX.
If the distance D and the array radii RTX and RRX are

given, the distance between elements in the two arrays can be
expressed as, substituting (17) in (15),

dnRX,nTX
= d(θnRX,nTX

). (18)

An important observation at this stage is that for the same
number of antennas NTX = NRX = N on both sides, the
element-to-element distances dnRX,nTX

only depend on the
difference (nRX − nTX) mod N . This relation holds for all
array separations D, array radii RTX and RRX, and angles φ
between first elements.

Assuming that the antenna elements of both arrays are co-
polarized2, we use the distances between transmit and receive
antenna elements (18) and the free space transfer function (9),
to express the elements of the MIMO channel matrix (10) as

hnRX,nTX
= h (d(θnRX,nTX

)) . (19)

For the same number of antennas NTX = NRX = N on
both sides the matrix H becomes circulant [13], since its
elements inherit the property that d(θnRX,nTX

) only depends
on the difference (nRX − nTX) mod N , through (19). This
implies that the channel matrix is diagonalized by the N ×N
unitary DFT matrix

TN = [tp,q] (20)

with entries

tp,q =
1√
N

exp

(
−j2π (p− 1)(q − 1)

N

)
. (21)

With this notation we can write the eigen-decomposition as

H = TN∆TH
N , (22)

where ∆ contains the eigenvalues of the channel matrix. To
change this into an SVD, where the singular values are real,
non-negative, and sorted in decreasing order, we first mod-
ify the eigen-decomposition by rearranging the order of the
eigen-vectors so that the eigenvalues are sorted according to
decreasing magnitude. Denote this sorted eigen-decomposition

H = T̃N∆̃T̃H
N . (23)

With this notation, the matrices in the SVD of the channel
matrix (2) can be expressed

U = T̃NS, (24)

Σ = abs
(
∆̃
)
, and (25)

V = T̃N , (26)

2Here we focus on a single polarization while, in principle, two independent
MIMO systems can be achieved if we exploit both polarization states.

where S is a diagonal matrix, with unit magnitude complex
numbers as diagonal elements, used to rotate the complex
eigenvalues into singular values on the positive real axis. If
δ̃k is the kth eigenvalue (diagonal element) in ∆̃, the kth
diagonal element of S is sk = exp(j∠δ̃k). By observing that
both transmit- and receive-side beam-formers, (3) and (4), are
given by the rearranged DFT in (23), we have verified that
the linear phase rotations across UCAs proposed in [1] and
[2] to approximate OAM states in radio beams coincide with
the eigen-modes derived with standard MIMO theory for our
free-space scenario.3

The circulant property also helps us in the calculation of
singular values of the channel matrix, which are the magnitude
of the DFT of the first column of H, sorted in decreasing order.

V. WAVE FRONT PROPERTIES AND CHANNEL CAPACITY

After verifying that the free-space MIMO model gives the
same beam-forming vectors as the ones proposed in [1], we
also want to verify the phase properties of the wave front as
predicted by this model. Using the steering vectors in (3), with
V = TN , we can calculate the received signal in a point in
space as

e = GTNek (27)

where G is the channel matrix from the transmitter array ele-
ments to a single receiving antenna element in the investigated
point in space, using (9), and ek is a vector with a single one in
the position corresponding to the kth OAM state. In Fig. 4 we
show the resulting phase plots for an 8-element transmit array.
The phase plots are calculated for three different distances,
1/4, 4 and 400 times the Rayleigh distance for the entire
antenna arrays4

dR =
L2

2λ
, (28)

where the aperture L is set to the transmit UCA diameter
2RTX. The plot shows that we do not have very clean helical
phases below the Rayleigh distance, but the gains of several of
the OAM states makes them useful for communication. When
the distance increases above the Rayleigh distance, we observe
much cleaner helical phases, but the normalized gains of all
non-zero OAM states fall rapidly, since the rank of the channel
matrix approaches one. This makes all but the zeroth OAM
state essentially useless at these distances for communication
at realistic SNRs. Several of the OAM states at D = 400dR
are so weak that we can clearly observe numerical problems
in the plots.

We have verified that our simple MIMO model generates
the helical wave fronts expected in OAM, but at the same time,
the pure OAM states are not necessarily unique in the sense
that they provide the only set of eigenmodes for the channel.

3It can also be shown that if the number of antenna elements on one side is
an integer multiple of the number of antennas on the other side, the resulting
channel matrix becomes rectangular circulant [14] and the matrix containing
the singular vectors corresponding to the side with fewer elements is a DFT
matrix. The singular vectors on the other side, however, do not form a DFT
matrix but can be described in closed form with harmonic functions.

4While the antenna arrays may be closer than the (array) Rayleigh distance,
any pair of transmit/receive antenna elements of the arrays are considered to
be at far field distances from each other.
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In the example provided in Fig. 4, there are singular values
with multiplicity two, which leads to non-unique singular
vectors. The non-uniqueness is illustrated by the phase plots
in Fig. 5 for the same setup as in Fig. 4, but a numerical
SVD is performed to obtain the eigenmodes rather than using
the closed form expressions. Two of the eigenmodes (singular
values of multiplicity one) coincide with OAM states 0 and
+4 for D = 400dR in Fig. 4, while the other six display quite
different characteristics (singular values with multiplicity 2).
The set of singular values are the same for both cases, making
them equivalent from a communication point of view.

When calculating the the phase diagrams above, we notice
that higher order OAM states become very weak beyond the
Rayleigh distance. To investigate this further, we calculate the
channel capacity gain, as defined in (14), for three different
configurations with 4×4, 8×8, and 16×16 antenna elements,
at a per-receiver branch SNR of 30 dB. The channel capacity
for the MIMO configurations is maximized over all relative
rotations φ of the two arrays. The results are shown in Fig. 6.
We can see that in all three cases the capacity gain achieved
by using OAM-based MIMO communication almost reach
the theoretical maximum [7] of 4, 8 and 16 times that of a
SISO system below the Rayleigh distance, while performance
degrades considerably at larger distances. At 1000 times the
Rayleigh distance only one eigen-mode (OAM state 0) is
useful for communication and the only gain available is the
the array gain. This behavior can also be understood from the
radiation patterns displayed in [1] and [2], where all but OAM
state 0 have a null in the forward direction.

VI. DISCUSSION AND CONCLUSIONS

In the investigation above we have shown that OAM-based
radio communication, as proposed in [1], can be obtained from
standard MIMO theory, under certain conditions. Inspired by
the discussion in [1], we made a system design with UCAs
facing each other on the same beam axis in free space, which
leads to circulant channel matrices, for all numbers of antenna
elements (same number on both sides), all antenna radii (can
be different at both ends), and all relative rotations of the
arrays. Such matrices are diagonalized by the DFT, which
means that the OAM states presented in [1] are one, not
necessarily unique, set of eigen-modes of these channels.

In our evaluation of the expected performance of such
systems we showed that well above the Rayleigh distance there
is a single dominant eigen-mode/OAM state. This leads to only
a small capacity gain over a SISO system, essentially due to
the array gain. No multiplexing gain is achieved since only
one of the modes will carry information at realistic SNRs.
Well below the Rayleigh distance, the investigated systems
almost achieve the maximum capacity gains predicted by
MIMO theory when using the OAM based eigenmodes of the
channels. This means that the system based on UCAs is a
relatively good choice in free space, since there is very little
extra gain to achieve with other array geometries. The helical
phase of the OAM states remain coherent over vast distances,
but the amount of energy that can be received beyond the
Rayleigh distance with a limited-size array decays rapidly, as

Fig. 4. Phase plots at three different distances from an 8-element UCA with
radius of RTX = 100λ. The DFT is used as transmit beam-former and
phase plots are shown for distances of 1/4, 4 and 400 times the Rayleigh
distance dR = 20.000λ. Phase is coded as shades of gray, from black to
white representing the range [−π, π], and the phase plots are sorted in order
of gain (singular value). Normalized gains are shown below each phase plot
and the plot area is 300λ× 300λ.

compared to free space attenuation, for all but OAM state
0. Since the Rayleigh distance increases with array radius
and frequency, the distances at which we have a multiplexing
gain can be increased with larger array radii or a move to
higher frequencies. One application example would be to
use the sub-millimeter range of wavelengths, where planar
UCAs of reasonable size can be integrated into, e.g., wallpaper
and used to provide short-range high data-rate links based
on spatial multiplexing under free-space conditions in indoor
environments.
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Fig. 5. Phase plots from an 8-element UCA with radius of RTX = 100λ.
A numerical SVD is performed of the channel, the right singular vectors are
used as beam-formers and phase plots are shown for the distance 400 times
the Rayleigh distance dR = 20.000λ. Phase is coded as shades of gray, from
black to white representing the range [−π, π], and the phase plots are sorted
in order of gain (singular value). Normalized gains are shown below each
phase plot and the plot area is 300λ× 300λ.

Fig. 6. Capacity gain over single antenna (SISO) system at at UCA sizes
4x4, 8x8 and 16x16, at an SNR of 30 dB. Curves are calculated for array
radii 100λ and array separation distances from 10 times below to 1000 times
above the Rayleigh distance (20.0000 λ).

Since transmitter and receiver beam-forming can be done
with the DFT, OAM based communication between UCAs
in free space has a potential to deliver high performance at
short distances with a low computational complexity, when
fast transforms are used. It is, however, only under very
specific conditions that OAM based communication provides
an optimal solution. The traditional and more general MIMO
communication concept can handle all array geometries and
propagation environments, including those where OAM based
communication is optimal.

Our main conclusion is that exploiting OAM states does
not bring anything conceptually new to the area of radio
communications. It is well covered by traditional MIMO com-
munication, using channel eigen-modes for transmission, in
the sense that OAM states of radio waves will be automatically
exploited whenever the array configurations and propagation
environments call for it.
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