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Abstract 

 
 
To obtain high performance control of a dc-dc converter, a good model 

of the converter is needed. The load usually affects the dynamics and one way 
to take this into consideration is to regard the load as a part of the converter. 
The load is often the most variable part of this system. If the load current and 
the output voltage are measured there are good possibilities to obtain a good 
model of the load on-line. Adaptive control can then be applied to improve 
the control. 

In peak current-mode control, the output voltage and the inductor 
current are measured and utilized for control. In the author’s licentiate thesis, 
analytic models were derived for the case where the load current is also 
measured and utilized for control. The control-to-output transfer function, 
the output impedance, and the audio susceptibility were derived for the buck, 
boost, and buck-boost converters operated in continuous conduction mode in 
the case of resistive load. The use of load current can be seen as gain 
scheduling in the case where the load is a resistor. Gain scheduling can be 
considered a special case of adaptive control. The majority of the results in the 
licentiate thesis were validated by comparing the frequency responses 
predicted by the analytic models and switched large-signal simulation models. 

In this thesis, additional results are presented for the buck converter. 
Experimental results obtained by means of a network analyzer verify the 
derived control-to-output transfer function and the audio susceptibility but 
not the output impedance at low frequencies. In the experimental buck 
converter there are stray resistances in the inductor, transistor, and diode but 
these stray resistances were not considered in the licentiate thesis. A new 
transfer function for the output impedance is derived where these stray 
resistances are considered and it is in good agreement with the experimental 
result also at low frequencies. 

If the current to the output capacitor is measured in addition to the 
output voltage and the inductor current, the load current can be calculated as 
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the difference between the inductor and capacitor currents in the case of the 
buck converter. Hence, the measurement of the load current can be replaced 
by measurement of the capacitor current. If this possibility is utilized and the 
capacitor current is measured by means of a current transformer, a low-
frequency resonance is introduced in the frequency responses according to 
experimental results. The reason for this resonance is due to the high-pass-
filter characteristics of the current transformer. A new analytic model is 
derived which predicts the resonance. 
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Notation 

 
 
Frequently used signals and parameters are presented with name and 

description in the list below. Signals and parameters that only appear in one 
of the chapters are not included in the list. The names of signals consist of 
lower-case letters. However, exceptions are made for the subscript part of the 
names. The names of the signals are also used to denote their dc values but 
capital letters are used in this case. However, the letters in the subscript part 
are not changed. The dc value names are not included in the list. 

 
 

Name Description 
 

C  Capacitance of the capacitor 
d  Duty cycle 

'd  dd −=1'  

ci  Current reference 

capi  Capacitor current 

ei  External ramp used for slope compensation 

inji  Current injected into the output stage 

Li  Inductor current 

loadi  Load current 

fk  Input voltage feedforward gain (see Section 2.3) 

rk  Output voltage feedforward gain (see Section 2.3) 
L  Inductance of the inductor 

1m  Slope of the inductor current while the transistor is on 

2m−  Slope of the inductor current while the transistor is off 

cm  Relative slope of the external ramp, 11 MMm ec +=  

eM  Slope of the external ramp 
R  Resistance of the load resistor 

aR  Average stray resistance, offona RDDRR '+=  
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cR  Equivalent Series Resistance (ESR) of the capacitor 

dR  Resistance in the diode while it conducts 

iR  Gain of inductor-current sensor 

LR  Resistance in the inductor 

offR  Stray resistance while the transistor is off, dLoff RRR +=  

onR  Stray resistance while the transistor is on, tLon RRR +=  

tR  Resistance in the transistor while it is on 

sT  Switching period 

gv  Input voltage 

ov  Output voltage 

refv  Voltage reference 
δ  Control signal of the transistor driver 

nω  Half the switching frequency, sn Tπω =  
 
Signals are often divided into a dc part and an ac part. The ac part is 

denoted by using the hat-symbol (^). As mentioned earlier, the dc part is 
denoted by using capital letters. To explicitly denote that a signal is a function 
of time, the variable t  is added to the name, i.e. )(tnamesignal . The 
sampled version of a continuous-time signal is denoted by replacing the 
variable t  with n . The Laplace transform of a continuous-time signal is 
denoted by replacing the variable t  with s . The Z-transform of a discrete-
time signal is denoted by replacing the variable n  with z . 

The notation is to some extent chosen such that it is compatible with the 
one used by Ridley (1991). 
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Chapter 1 Introduction 

This thesis is concerned with the modeling and control of dc-dc 
converters with current-mode control. Special focus is placed on using load 
current measurements for control. 

In the licentiate thesis, Johansson (2003), a number of models for buck, 
boost and buck-boost converters were developed and analyzed in detail. Later 
experiments verified the accuracy of some of the models and revealed certain 
inconsistencies in other models. Therefore the experiments have motivated 
further refinements of the models. This thesis emphasizes the buck converter 
models. 

In this chapter, the background of the problem is described, the 
motivation for the work is presented and the contributions of the thesis are 
outlined. 

1.1 Background 

DC-DC Converters 

Figure 1.1 shows a dc-dc converter as a black box. It converts a dc input 
voltage, )(tvg , to a dc output voltage, )(tvo , with a magnitude other than 
the input voltage (Erickson and Maksimovic, 2000, Section 1.1). The 
converter often includes one (or several) transistor(s) in order to control the 
output voltage, using the control signal )(tδ . 

It is desirable that the conversion be made with low losses in the 
converter. Therefore, the transistor is not operated in its linear interval. 
Instead, it is operated as a switch and the control signal is binary. While the 
transistor is on, the voltage across it is low which means that the power loss in 
the transistor is low. While the transistor is off, the current through it is low 
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Figure 1.1: A dc-dc converter. 
 
 

and the power loss is also low. To obtain low losses, resistors are avoided in 
the converters. Capacitors and inductors are used instead since ideally they 
have no losses. 

The electrical components can be combined and connected to each other 
in different ways, called topologies, each one having different properties. The 
buck, boost, and buck-boost converters are three basic converter topologies. 
The buck converter has an output voltage that is lower than the input voltage. 
The boost converter has an output voltage that is higher than the input 
voltage (in steady state). The buck-boost converter is able to have an output 
voltage magnitude that is higher or lower than the input voltage magnitude. 

Figure 1.2 shows the buck converter with two controllers. Here it is 
assumed that all components are ideal. The load consists of a resistor with 
resistance R . The converter has a low-pass output filter consisting of an 
inductor with inductance L  and a capacitor with capacitance C . While the 
transistor is on, the inductor current, )(tiL , increases since the input voltage 
is higher than the output voltage in the buck converter. As the transistor is 
turned off, the diode must start to conduct since the inductor current cannot 
stop flow instantaneously. The voltage across the diode is zero when it is 
conducting and the inductor current will decrease. Figure 1.3 shows the 
waveforms of the control signal and the inductor current. The converter is 
usually designed so that the magnitude of the ripple in the output voltage 
becomes small. If the ripple is insignificant, the inductor current increases and 
decreases linearly as shown in Figure 1.3. The voltage across the diode is equal 
 

δ (t) 

vg(t) 

iload(t) 

vo(t) Load 
Dc-dc
power 

converter 
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Figure 1.2: The buck converter with a current controller and a voltage 

controller. 
 
 

Figure 1.3: The waveforms of the control signal and the inductor current. 
 
 

to the input voltage or equal to zero. The output filter of the converter filters 
this voltage waveform and the magnitude of the ripple in the output voltage 
depends on the filter design. If the inductor current becomes zero before the 
transistor is turned on, it will remain at zero until the transistor is turned on 
since the diode can only conduct in one direction. If the converter is operated 
so that the inductor current is zero during some part of the switching period, 
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it is said to be operated in discontinuous conduction mode. Otherwise, it is 
operated in continuous conduction mode. 

The switching period, sT , of the converter is determined by the control 
signal )(tδ , as shown in Figure 1.3. In this figure, the switching period is 
held constant. The average output voltage is controlled by changing the width 
of the pulses. In Figure 1.3, the falling edge is controlled i.e. when the 
transistor should turn off. The duty cycle, )(td , is a real value in the interval 
0 to 1 and it is equal to the ratio of the width of a pulse to the switching 
period. The control signal )(tδ  can be obtained from )(td  by using a pulse 
width modulator. The duty cycle can be seen as a discrete-time signal. 

State-Space Averaging 

The converter acts as a time-invariant system while the transistor is on. 
While the transistor is off the converter acts as another time-invariant system 
and if the inductor current reaches zero, the converter acts as yet another 
time-invariant system. If the transistor is controlled as described previously, 
the converter can be described as switching between different time-invariant 
systems during the switching period. Consequently, the converter can be 
modeled as a time-variant system. State-space averaging (Middlebrook and 
Cuk, 1976) is one method to approximate this time-variant system with a 
linear continuous-time time-invariant system. This method uses the state-
space description of each time-invariant system as a starting point. These 
state-space descriptions are then averaged with respect to their duration in the 
switching period. The averaged model is nonlinear and time-invariant and has 
the duty cycle, )(td , as the control signal instead of )(tδ . This model is 
finally linearized at the operating point to obtain a small-signal model. From 
the model we will extract three major transfer functions: 

 
• The control-to-output transfer function describes how a change in the 

control signal affects the output voltage. 
• The output impedance describes how a change in the load current affects 

the output voltage. 
• The audio susceptibility describes how a change in the input voltage 

affects the output voltage. 
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Current-Mode Control 

Figure 1.2 shows the buck converter controlled by two control loops. The 
inductor current is fed back to the current controller in the inner loop and 
the output voltage is fed back to the voltage controller in the outer loop. This 
control method is called current-mode control. (The name current controller 
is used instead of current modulator in this thesis, see Section 2.3.) Assume 
that the outer loop is not present. The system is then a closed loop system 
since the inductor current is fed back. If the outer loop is added, a new closed 
loop is obtained. The control signal from the outer loop acts as the reference 
signal for the current controller. The three transfer functions mentioned 
above will in general be different for the new closed loop system. 

The current controller controls the inductor current. This can be made in 
different ways. One way is to control the peak value of the inductor current 
in each switching period. Ridley (1991) and Tan and Middlebrook (1995) 
have presented two models for current-mode control. (The voltage controller 
is actually excluded.) The main difference between the two models is the 
modeling of the current loop gain. Al-Mothafar and Hammad (1999) found 
that also the audio susceptibilities predicted by the two models are different. 

The average value of the inductor current can be controlled instead of the 
peak value. This control method is usually called average current-mode 
control. 

The output voltage is fed back to the voltage controller so that the output 
voltage is kept near the voltage reference signal refV  (see Figure 1.2). The 
voltage controller controls the reference signal of the current controller, )(tic . 
An alternative is to let the voltage controller control the duty cycle directly. 
This means that the measurement of the inductor current and the current 
controller are not needed. This control method is called voltage-mode 
control. 

1.2 Motivation for the Work 

Many aspects must be considered in the case where a converter is to be 
designed. One such aspect is keeping the output voltage in the specified 
voltage interval. Here are some examples of changes that can decrease the 
variation of the output voltage: 
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• Change the properties of some of the components in the converter, e.g. 
increase the capacitance of the capacitor. 

• Change the converter topology. 
• Change to a more advanced controller. 
• Increase the number of signals that are measured and used by the 

controller. 
 

Each one of these changes has one or several disadvantages such as: 
 

• Higher cost. 
• Increased weight and volume. 
• Lower reliability. 
• Lower efficiency (see Poon, Tse, and Liu (1999)). 

 
Therefore, the change or changes that are most suitable depend to a large 
extent on the converter specification at hand. 

Converters can be improved as better components are developed and 
more knowledge becomes available. This motivates research in the areas of 
components, converter topologies and controllers for example. 

To obtain high performance control of a system, a good model of the 
system is needed. A model of a system can be derived by using the laws of 
physics and/or by using measurements of the system, i.e. system identification 
(Ljung, 1999). When the system is changed during the time it is in use, it is 
an advantage to apply system identification that can be used on-line for 
updating the model. The adjusted model is then used to adjust the parameters 
of the controller, which is the essence of adaptive control (Åström and 
Wittenmark, 1995). An adaptive controller can perform better than a non-
adaptive controller, which must be designed for the worst case. 

One difficulty with adaptive control is making the identification such 
that the model adjusts sufficiently fast during a system change without 
making the identification sensitive to measurement noise. If the adjustment is 
slow, the controller must be designed to be cautious. This means that there 
will be no significant improvement compared to a non-adaptive controller. 

The adjustment can, in general, be made faster if the number of 
parameters to be estimated in a system is fewer. One way to achieve this is to 
fix the parameters whose values are known with great precision and vary only 
slightly. Another way is to measure a larger number of signals in the process 
and the reason for this is explained as follows. A way to decrease the number 
of parameters to be estimated is to simply identify a part of the system. To 
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identify this subsystem, its input and output signals must be measured. If a 
larger number of signals in the process are measured, it may be possible to 
divide the process into different smaller parts. Note that the time for the 
sampling and computation are not considered in this discussion. 

The load usually affects the dynamics and one way to take this into 
consideration is to regard the load as a part of the converter. If a measurement 
of the load current, )(tiload , (see Figure 1.2) is introduced, it is possible to 
consider the load as one part to be identified. The output voltage is then 
regarded as the input signal and the load current as the output signal of this 
part. If adaptive control is to be introduced, a suitable first step may be to 
only identify the load. Often this is the most variable part of the converter. 
This first step may be sufficient to obtain a controller that meets the 
performance specifications. As a second step, identification of the rest of the 
converter may further improve control. Computational time is one price to 
pay. This second step may be more expensive than other solutions to improve 
the performance of the closed loop system. This discussion motivates the 
research in identification of the load. 

As mentioned above, the output voltage and the load current should be 
measured to obtain fast load identification. There are several papers that 
suggest that the load current should be measured and utilized for control of 
the converter and they show what properties are obtained. Two of these 
papers are mentioned here. In these two papers, the output voltage and the 
inductor current are assumed to be measured besides the load current. 

Redl and Sokal (1986) show that the transient in the output voltage due 
to a step change in the load can be much reduced. They call the use of the 
measured load current feedforward. For a definition of feedforward, see 
Åström and Hägglund (1995, Section 7.3). Redl and Sokal also show that the 
control-to-output transfer function does not change when this feedforward is 
introduced. 

The dc gain of the control-to-output transfer function normally depends 
on the load. Hiti and Borojevic (1993) use the measured load current to make 
the control-to-output transfer function invariant for different loads at dc for 
the boost converter. Hiti and Borojevic thus show that the control-to-output 
transfer function changes when the use of measured load current is 
introduced. The control Hiti and Borojevic use turns out to be exactly the 
same as the one Redl and Sokal propose for the boost converter. 

To summarize, Redl and Sokal show that the control-to-output transfer 
function does not change when the use of measured load current is 
introduced while Hiti and Borojevic show that it does change. It thus seems 
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to be a contradiction. Since the output voltage and the load current are 
assumed to be measured in the two papers, the analysis may be connected to 
identification of the load in some way. Therefore, it is motivated to 
investigate this possible connection and contradiction before the work with 
identification of the load starts. 

1.3 Literature Review 

The number of references was limited in the previous sections to make 
the descriptions clear. In this section, an extended review of works related to 
this thesis is made. Some models for (uncontrolled) dc-dc converters are first 
reviewed. Models for current-mode control are then considered. Next, some 
works related to the effect loads have on the dynamics of the converters are 
reviewed. Finally, several works where the measured load current is used for 
control are reviewed. 

Models for DC-DC Converters without Controllers 

There are several methods that can be used to obtain a linear continuous-
time time-invariant model of a dc-dc converter. State-space averaging 
(Middlebrook and Cuk (1976) and Mitchell (1988)), circuit averaging 
(Wester and Middlebrook (1973) and Vorperian (1990)), and the current-
injected approach (Clique and Fossard (1977) and Kislovski, Redl and Sokal 
(1991)) are some of them. If these methods are applied to a converter that is 
operated in continuous conduction mode, the resulting models are accurate 
both at low and high frequencies. (The frequencies are here related to the 
interval dc to half the switching frequency, i.e. high frequencies are lower 
than half the switching frequency.) However, if these methods are applied to 
a converter that is operated in discontinuous conduction mode, the resulting 
models are only accurate at low frequencies. Sun et al. (2001) present a 
modified method to obtain models for converters operated in discontinuous 
conduction mode that are accurate both at low and high frequencies. 

Tymerski (1991, 1994) uses time-varying system theory to derive models 
for the frequency function and these models are claimed to be exact for all 
frequencies, i.e. also higher than half the switching frequency. The control-to-
output frequency function is derived in the cases where the converter is 
operated in continuous conduction mode or discontinuous conduction mode. 
The models are more complicated than the previously mentioned models. 
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When the control-to-output frequency function of a converter is used to 
design a controller, the frequency interval dc to half the switching frequency 
is the most interesting. The previously mentioned models may therefore be 
sufficient when designing a controller. 

Models for Current-Mode Control 

A large number of continuous-time models for current-mode control 
have been presented during the years. Some of these models are intended to 
be accurate also at high frequencies. The models presented by Ridley (1991), 
Tan and Middlebrook (1995), and Tymerski and Li (1993) are designed to 
be accurate from dc to half the switching frequency. Tymerski and Li (1993) 
present a state-space model while the Ridley and Tan models uses the PWM 
switch model (Vorperian, 1990). Tymerski (1994) derives a model for the 
frequency function (from control signal to output voltage) and it is claimed to 
be exact for all frequencies. 

The main difference between the Ridley and Tan models is the modeling 
of the current loop gain. The current loop gain can be measured by using a 
digital modulator (Cho and Lee, 1984) or an analog technique (Tan and 
Middlebrook, 1995) but the results are not the same. The current loop gain 
according to the Ridley model predicts the measurement result obtained by 
use of a digital modulator while the Tan model predicts the result obtained 
when the analog technique is used. The analog technique is preferred 
according to Tan and Middlebrook (1995). However, Lo and King (1999) 
claim that the analog technique is not correct for measuring the current loop 
gain and that a digital modulator should be used instead. A digital modulator 
can add a significant delay to the pulse width modulator. Mayer and King 
(2001) present a model for the current loop gain that includes the effects of 
delay in the pulse width modulator. If the delay is set to zero in this model, 
the predicted current loop gain is the same as the one predicted by the Ridley 
model. 

Remark The Ridley model includes feedforward gains. Ridley (1991) 
presents an approximate expression for the current loop gain for the buck 
converter and the feedforward gains are ignored in the derivation of this 
expression. This makes the approximation error significant at low frequencies 
if the converter operates close to discontinuous conduction mode (Ridley, 
1990b). If the feedforward gains are not ignored, the following approximate 
expression is obtained: 
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The term -0.5 is added compared to the expression presented by Ridley. 
Hence, (1.1) is not that much more complicated. The approximation error of 
(1.1) is insignificant, even when the converter operates close to discontinuous 
conduction mode. Note that the sensitivity to stray resistances in the 
inductor, transistor, and diode for the three major transfer functions are 
decreased when the current loop is closed since the inductor current is 
controlled. However, this is not the case for the current loop gain which has 
the same sensitivity as the open loop transfer functions. 

Effect of Load on Converter Dynamics 

The load usually affects the dynamics of the converter. In Section 1.2, the 
load was considered to be a part of the converter. An alternative is to exclude 
the load from the converter and use the Thevenin equivalent circuit as a 
model of the output of the converter. 

One way to ensure reasonable stability margins is to define an impedance 
specification of the load. Feng et al. (2002) discuss forbidden regions for the 
impedance ratio io ZZ  where oZ  is the output impedance of the converter 
(without load) and iZ  is the impedance of the load. Sudhoff et al. (2000) 
present a forbidden region that is smaller than all previously presented 
forbidden regions and, hence, the conservativeness is reduced. 

Choi et al. (2002) present a method to design the outer (voltage) 
controller in current-mode control in the case where the load dynamics are 
unknown. The design is made such that the controlled unloaded converter 
has suitable stability margins and low output impedance of resistive 
characteristics. In the design, a constant current sink is actually assumed to be 
connected to the output to be able to obtain a desired operation point. 
Hence, the converter is only unloaded in the small-signal sense. 

Varga and Losic (1992) try to derive a control technique such that the 
output impedance is zero. However, there is a shortcoming in their “proof” of 
the stability of the inner closed loop system. The loop gain of this system is as 
follows (Equation 9): 
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They claim that the system is stable since the magnitude of )(sLGi  is less 
than unity. However, since )(' sZekv  and )('' sZekv  are complex numbers, 

)( ωjLGi  may be greater than unity for some ω . The control technique 
utilizes positive feedback of the inductor current. 

Some of the works presented in the next subsection also analyzes how the 
load affects the dynamics of the converter. 

Using Load Current for Control 

Several works where the measured load current is used for control are 
reviewed in this subsection. 

As mentioned in Section 1.2, Redl and Sokal (1986) show how the 
measured load current should be used to reduce the transient in the output 
voltage when a step change in the load occurs. They only consider the case 
where current-mode control is used. Schoneman and Mitchell (1989) analyze 
the proposed use of load current further in the case of the buck converter. 
However, there is a shortcoming in their work (see Section 2.7). Kislovski, 
Redl and Sokal (1991, Section 11.4) present a control technique which tries 
to equalize the output and input power of the converter. To do this, the load 
current, output voltage, input current, and input voltage must be measured. 

Suntio et al. (2003) derive a general small-signal model for the case where 
the measured load current is used for control. They use an unterminated two-
port model of the converter as a starting point. The output port of this model 
consists of the Thevenin equivalent circuit. 

As mentioned in Section 1.2, Hiti and Borojevic (1993) use the measured 
load current to modify the current-mode control for the boost converter such 
that the dc gain becomes independent of the load. This control technique is 
extended by Hiti and Boroyevich (1994) such that the parameters in the 
outer (voltage) controller are adapted to different load current and output 
voltage levels. 

Varga and Losic (1989) extend voltage mode control of the buck 
converter by including an inner loop where the measured load current is 
utilized such that the output impedance is zero. They do not investigate the 
stability of the closed load current loop. A preliminary investigation made by 
the author of this thesis shows that the magnitude of the load current loop 
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gain theoretically is lower than unity if the load is a (positive) resistance. For 
other types of loads the closed load current loop may not be stable. One 
disadvantage with the control technique is that the derivative of the load 
current must be used. This is not necessary in the control technique proposed 
by Redl and Sokal (1986) which uses current-mode control as a starting 
point. 

Kanemaru et al. (2001) also extend voltage mode control of the buck 
converter. The control technique utilizes the load current which is measured 
by means of a current transformer. A current transformer has high-pass-filter 
characteristics and by choosing a current transformer with a low magnetizing 
inductance, the corner frequency of the current sensor is high. In this case, 
the output of the current sensor is approximately proportional to the 
derivative of the load current. Hence, the control technique is similar to the 
one presented by Varga and Losic (1989). However, the corner frequency of 
the current sensor and the amplification of the output signal of the current 
sensor are chosen such that the output voltage squared error is minimized. 

Carrasco et al. (1995) design a fuzzy-logic controller for the buck 
converter. The controller utilizes measurements of the output voltage and the 
load current. 

Zhang et al. (2004) present a novel control scheme for voltage regulator 
modules where measurements of the output voltage and the load current are 
utilized for control. Voltage regulator modules are used as power supplies for 
microprocessors. 

As mentioned previously, Redl and Sokal (1986) extend current-mode 
control by utilizing also measurements of the load current. Schoneman and 
Mitchell (1989) show that, in the case of the buck converter, equivalent 
control can be obtained if the current to the output capacitor is measured 
instead of the inductor and load currents. Hence, only the output voltage and 
the capacitor current must be measured. Ioannidis et al. (1998) present a 
novel control design approach for average current-mode controlled buck 
converters. Furthermore, they propose that the capacitor current is measured 
instead of the inductor current since several advantages can be gained. They 
show that the output impedance is significantly reduced and that the 
dynamics of the converter remain almost unchanged with load variations. 
They also show that the effect of stray resistance in the inductor on the 
closed-loop transfer functions is minor. They show that the stray resistance in 
the inductor introduces a zero in the output impedance transfer function at a 
low frequency. Ioannidis and Manias (1999) also utilize measured capacitor 
current instead of inductor current in the controller. 
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1.4 Main Contributions 

This thesis is a continuation of the licentiate thesis, Johansson (2003). 
Therefore, the main contributions of the licentiate thesis are first presented 
and then the main contributions of this thesis are presented. The practical 
importance of some of the contributions is discussed. 

The Licentiate Thesis 

The main contributions of the licentiate thesis are presented in this 
subsection. 

Some of the properties that can be obtained using measured load current 
for control are analyzed. The analysis is only made for the case where current-
mode control is used. An accurate model is used in the case where the load is 
a linear resistor. 

 
1. The analysis confirms that low output impedance can be obtained. 
 
2. The analysis shows that in the case where the load is a current source, i.e. 

the load current is independent of the output voltage, the following 
properties are obtained: 
• The use of measured load current for control is feedforward. 
• The control-to-output transfer function does not change when this 

feedforward is introduced. (If it had changed, it would not have been 
a feedforward.) 

 
3. The analysis shows that in the case where the load is a linear resistor, the 

following properties are obtained: 
• The control-to-output transfer function can change when the 

measured load current is introduced for control. 
• The converter can become unstable when the measured load current 

is introduced for control. 
• The control-to-output transfer function can be almost invariant for 

different linear resistive loads if the measured load current is used for 
control. This is especially the case for the buck converter. 

• The use of measured load current for control is not feedforward. It 
can instead be seen as gain scheduling, which can be considered a 
special case of adaptive control (Åström and Wittenmark, 1995, 
Chapter 9). 
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It is also shown that the two published models for current-mode control, 
Ridley (1991) and Tan and Middlebrook (1995), give accurate expressions 
for the control-to-output transfer function and the output impedance but not 
for the audio susceptibility. A novel model for the audio susceptibility is 
presented and it is used to improve the Ridley and Tan models. The novel 
model is in some cases inaccurate at low frequencies but the improvements 
are made in such a way that this shortcoming is not transferred to the 
improved models. The improved models are accurate. 

Accurate (continuous-time) expressions for the control-to-output transfer 
function, the output impedance, and the audio susceptibility are derived for 
dc-dc converters that meet the following specifications: 

 
• The converter topology is buck, boost or buck-boost. 
• The converter is operated in continuous conduction mode. 
• Current-mode control with constant switching frequency and peak-

current command is used. 
• The load is a linear resistor. 

This Thesis 

The main contributions of this thesis are presented in this subsection. 
After the licentiate thesis was published, experiments were made to verify 

some of the presented models. These experiments verified the accuracy of 
some of the models and revealed some inconsistencies in some other models. 
Therefore the experiments have motivated further refinements of the models. 
Redl and Sokal (1986) propose control laws for the buck, boost and buck-
boost converters. In the licentiate thesis, these control laws were considered as 
important special cases. The proposed control law for the buck converter is 
very simple to implement and may therefore be the most interesting to use in 
practice. Therefore, this thesis is emphasizing models for the buck converter. 
The main contributions of this thesis are: 

 
1. If the frequency functions predicted by the transfer functions derived in 

the licentiate thesis are compared with experimental results obtained by 
means of a network analyzer, it is found that there is a large difference in 
one case. The transfer function for the output impedance does not predict 
the experimental results at low frequencies in the case where the measured 
load current is utilized for control. The reason for the difference is that 
the stray resistances in the inductor, transistor, and diode are not 
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considered in the licentiate thesis. A new transfer function for the output 
impedance is derived where these stray resistances are considered. 

 
2. Experimental results are presented for the case where the load is a resistor 

and these results verify the frequency functions predicted by the control-
to-output transfer function, the transfer function for the audio 
susceptibility, and the new transfer function for the output impedance. 

 
3. Redl and Sokal (1986) suggest that the load current is not measured 

directly. Instead, the current to the output capacitor, )(ticap , is measured 
and the load current can then be calculated as the difference between the 
inductor current and capacitor current (see Figure 1.2). In the 
experiments mentioned in item 1 and 2 above, the capacitor current is 
measured by means of a current shunt. This solution has several 
drawbacks such as increased magnitude of the ripple in the output voltage 
and decreased efficiency. Redl and Sokal (1986) suggest that a current 
transformer is used to measure the capacitor current. However, the 
current transformer has high-pass-filter characteristics and these introduce 
a resonance in the buck converter at a low frequency. A new model is 
derived for the case where a current transformer is used to measure the 
capacitor current. Experimental results are presented also for this case and 
they verify the frequency functions predicted by the new model. 

Practical Importance of the New Models 

The licentiate thesis and this thesis increase the understanding of the 
properties of the converters and how to derive models. Furthermore, the 
following new transfer functions are presented: 

 
1. The novel model for audio susceptibility for current-mode control. 
2. The three major transfer functions in the case where the load current is 

measured (with a current shunt) and utilized for control. 
3. The same transfer functions as in item 2 except that the load current is 

measured (indirectly) by means of a current transformer. 
 

It is verified both by simulations and experiments that these transfer functions 
are accurate (the experimental verification is only made for the buck 
converter). 
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The novel model in item 1 above is mainly of academic interest since the 
errors in the predictions of the audio susceptibility in the Ridley and Tan 
models often are small and only appear at high frequencies. 

The transfer functions in item 2 above may be more interesting to use in 
practice since the changes of the current through the load resistor are 
accounted for. This is not made in Schoneman and Mitchell (1989) (see 
Section 2.7). However, in case of the buck converter the current through the 
load resistor mainly affects the properties of the converter at low frequencies. 
This means that the design of the (outer) voltage controller does not change 
so much if the new model is used instead since the gain of the controller 
usually is very high at low frequencies. 

The most interesting transfer functions to use in practice are probably the 
ones in item 3 above which can be used in the case where the capacitor 
current is measured with a current transformer. The reason for this is that the 
resonance changes the phase curve significantly. The resonance frequency 
increases if the corner frequency of the current transformer increases (see 
Section 5.4). Therefore, the higher the corner frequency of the current 
transformer, the more the design of the voltage controller is affected. 

The output impedance transfer functions in items 2 and 3 above are 
improved by considering the stray resistances in the inductor, transistor, and 
diode in the modeling. This improves the prediction of the output impedance 
at low frequencies. This improvement may not be so important in practice 
since the voltage controller usually makes the output impedance low at low 
frequencies. An exception may be the design of voltage regulator modules 
where it is suitable to obtain an output impedance which is constant for all 
frequencies (Zhang et al., 2004). (The definition of output impedance is in 
this case the impedance in the Thevenin equivalent circuit.) 

One may ask if in practice it is important to use models which include 
high frequency extensions. In the case of the buck converter it may be 
important since the crossover frequency can be designed to be high, e.g. one 
tenth of the switching frequency. According to the small-signal models for the 
boost and buck-boost converters, these converters are not minimum-phase 
systems. Therefore, the crossover frequency must usually be designed to be 
rather low. Consequently, the high-frequency properties of the boost and 
buck-boost converters may not be so important to consider in practice when 
designing the voltage controllers. 
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1.5 Outline of the Thesis 

In Chapter 2, a brief review of the licentiate thesis is presented. The new 
transfer function for the output impedance is derived in Chapter 3. The 
frequency functions predicted by some of the transfer functions presented in 
Chapter 2 and Chapter 3 are compared with experimental results in Chapter 
4. The case where a current transformer is used to measure the capacitor 
current is analyzed in Chapter 5. A summary and future work are presented 
in Chapter 6. 

1.6 Publications 

The author has published the following conference papers: 
 

1. Johansson, B. and Lenells, M. (2000), Possibilities of obtaining 
small-signal models of DC-to-DC power converters by means of 
system identification, IEEE International Telecommunications Energy 
Conference, pp. 65-75, Phoenix, Arizona, USA, 2000. 

2. Johansson, B. (2002a), Analysis of DC-DC converters with current-
mode control and resistive load when using load current 
measurements for control, IEEE Power Electronics Specialists 
Conference, vol. 1, pp. 165-172, Cairns, Australia, 2002. 

3. Johansson, B. (2002b), A comparison and an improvement of two 
continuous-time models for current-mode control, IEEE 
International Telecommunications Energy Conference, pp. 552-559, 
Montreal, Canada, 2002. 

 
Paper 1 is neither included in the licentiate thesis nor in this thesis. 

Papers 2 and 3 contain parts of the licentiate thesis. Errata for the three 
papers are presented in Chapter 9 of the licentiate thesis. 
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Chapter 2 Models for Buck 
Converters – A Summary of the 
Licentiate Thesis 

The next chapters are partly based on the results presented in the 
licentiate thesis by Johansson (2003). Therefore, it is suitable to first make a 
summary of the licentiate thesis and this is made in this chapter. However, 
since only the buck converter is considered in the next chapters, few results 
for the boost and buck-boost converters are presented here. 

2.1 Chapter Survey 

In Section 2.2, the operation of the buck converter is described. The 
method of state-space averaging is explained. The model obtained by 
applying this method to the buck converter is presented and compared with 
results from simulations of a switched model. 

Current-mode control is explained in Section 2.3. The Ridley and Tan 
models are reviewed and compared. The models obtained by applying these 
models to the buck converter are presented and compared with simulation 
results. The results of the comparison are explained. 

The novel model for the audio susceptibility is presented in Section 2.4. 
The expression obtained by applying this model to the buck converter is 
presented and compared with the corresponding ones in Section 2.3. 

In Section 2.5, the Ridley and Tan models are improved by using the 
results in Section 2.4. 

In Section 2.6, some approximations of the models for current-mode 
control presented in the previous sections are showed. 
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Some properties that can be obtained when using load current 
measurements to control the converter are analyzed in Section 2.7. The 
results of this analysis are compared with simulation results. 

A summary and concluding remarks are presented in Section 2.8. 

2.2 State-Space Averaging 

The converter can be described as switching between different time-
invariant systems during each switching period and is subsequently a time-
variant system. There are several methods that approximate this time-variant 
system with a linear continuous-time time-invariant system. State-space 
averaging (Middlebrook and Cuk, 1976) is used here. 

The outline of this section is as follows. The circuit and operation of the 
buck converter are first presented. The method of state-space averaging is 
then explained. The control-to-output transfer function, the output 
impedance, and the audio susceptibility can be obtained by applying this 
method to the buck converter and the results are presented. Finally, a 
switched simulation model of the buck converter is presented. It is shown 
how the frequency functions of the converter are obtained from this 
simulation model. The frequency functions are presented and compared with 
the three transfer functions for the buck converter. 

Operation of the Buck Converter 

The circuit and operation of the buck converter are presented in this 
subsection. Numerous notations are introduced. 

The components of a converter are not ideal and some of these non-
idealities can be considered in a model. Only one non-ideality is considered in 
the licentiate thesis. The capacitor is modeled as an ideal capacitor in series 
with an ideal resistor with resistance cR . The resistance cR  is called the 
Equivalent Series Resistance (ESR) of the capacitor. 

Figure 2.1 shows the circuit of the buck converter where the ESR of the 
capacitor is included. The waveforms of the signals in the circuit are as shown 
in Figure 2.2 and they are obtained from a simulation. Steady state is reached 
and, therefore, the control signal, )(tδ , consists of pulses with constant 
width. The time intervals where the control signal )(tδ  is high are called ont  
and the once where )(tδ  is low are called offt . The switching period, sT , is 
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Figure 2.1: The circuit of the buck converter. 
 
 

the time between two successive positive flanks of )(tδ  and hence equal to 
the sum of ont  and offt . The ratio of ont  to sT  is called the duty cycle or the 
duty ratio and it is denoted by )(td . The duty cycle is constant in steady 
state and equal to D  (the dc value of )(td ). During ont  the transistor 
operates in the on state and during offt  the transistor operates in the off state. 
The voltage across the diode, )(tvdiode , is equal to the input voltage, )(tvg , 
during ont  and equal to zero during offt . The input voltage is held constant 
at gV  during the simulation. The diode voltage is filtered by the L-C low-
pass output filter. The corner frequency of this filter is chosen to be much 
lower than the switching frequency to obtain small magnitude of the ripple in 
the output voltage, )(tvo . Consequently, the output voltage is approximately 
equal to the mean value of the diode voltage and lower than )(tvg . 

The voltage across the inductor, )(tvL , is equal to the difference between 
)(tvdiode  and )(tvo . During each time interval, the slope of )(tiL  is almost 

constant since )(tvL  is almost constant. The inductor current is equal to the 
transistor current, )(titrans , during ont  and equal to the diode current, 

)(tidiode , during offt . The capacitor current, )(ticap , is equal to the 
difference between )(tiL  and the load current, )(tiload . The mean value of 

)(ticap  is zero in steady state. The magnitude of the ripple in )(tvo  is larger 
than the magnitude of the ripple in the voltage across the (ideal) capacitor, 

)(tv , due to the capacitor’s ESR. 
Table 2.1 shows the parameter values used in the simulation. These are 

also used by Ridley (1991). The switching frequency, sf , is equal to 50 kHz 
(the inverse of sT ). 
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Figure 2.2: The waveforms of the signals in steady state for a buck converter. 

The unit of the voltages is Volt and the unit of the currents is 
Ampere. 

 
 



Chapter 2. A Summary of the Licentiate Thesis 23 

 

Table 2.1: The parameter values used in the simulation of the buck converter. 
 

Parameter Value 

L  37.5 µH 

C  400 µF 

cR  14 mΩ 

R  1 Ω 

gV  11 V 

D  0.455 

sT  20 µs 

The Method of State-Space Averaging 

In this subsection, the method of state-space averaging is explained. The 
control-to-output transfer function, the output impedance, and the audio 
susceptibility can be obtained by applying this method to the converters and 
the results are presented. 

The converter can be described as switching between different time-
invariant systems and is subsequently a time-variant system. The state-space 
descriptions of the different time-invariant systems are used as a starting point 
in the method of state-space averaging. Consider the buck converter in Figure 
2.1. While the transistor is on, the voltage across the diode is equal to the 
input voltage. The circuit in Figure 2.3 can therefore be used as a model of 
the buck converter during ont . In the figure, a current source is added. It 
injects the current )(tiinj  into the output stage of the converter. This current 
is an input signal and is needed to determine the output impedance. While 
the transistor is off, the voltage across the diode is equal to zero and the 
circuit in Figure 2.4 can be used as a model. 

Assume that the state-space descriptions of the circuits in Figure 2.3 and 
Figure 2.4 are 
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Figure 2.3: The circuit of the buck converter during ont . 

 
 

 
Figure 2.4: The circuit of the buck converter during offt . 
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respectively, where 
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 .)()( tvt o=y  (2.5) 
 

(2.1) and (2.2) are two different linear time-invariant systems. In state-space 
averaging, these two systems are first averaged with respect to their duration 
in the switching period: 
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(2.6) is an approximation of the time-variant system and new variable 

names should formally have been used. To limit the number of variable 
names, this is not made. The duty cycle, )(td , is an additional input signal in 
(2.6). A new input vector is therefore defined: 
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This is not made in traditional presentations of state-space averaging, where 
the control signal )(td  is kept separate from the disturbance signals )(tvg  
and )(tiinj . However, in system theory, all control signals and disturbance 
signals are put in an input vector. 

Since the duty cycle can be considered to be a discrete-time signal with 
sampling interval sT , one cannot expect the system in (2.6) to be valid for 
frequencies higher than half the switching frequency. 

The second step in state-space averaging is linearization of the nonlinear 
time-invariant system in (2.6). The deviations from an operating point are 
defined as follows: 

 
 ,)(ˆ)( tt xXx +=  (2.8) 

 
 ,)(ˆ)( tt 'uU'u' +=  (2.9) 

 
 .)(ˆ)( tt yYy +=  (2.10) 
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Capital letters denote the operating-point (dc, steady-state) values and the 
hat-symbol (^) denotes perturbation (ac) signals. The result of the 
linearization is a linearized (ac, small-signal) system: 
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Besides the ac model (2.11), a dc model can be obtained from (2.6) by setting 

)(ˆ tx , )(ˆ t'u , )(ˆ ty , and dttd )(x  to zero. 
If the Laplace transform of (2.11) is calculated, several transfer functions 

can be extracted. By applying state-space averaging to the three treated 
converters the following results are obtained for the three major transfer 
functions. The control-to-output transfer function, the output impedance, 
and the audio susceptibility for the buck converter are 
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To be spared from introducing new variable names, the Laplace transform of 
a signal is denoted by the same name as the signal, e.g. { } )()( svtvL oo = , 
even if this is not a formally correct notation. The operating-point value of 

)(td  is denoted D  and 
 

 DD −=1' . (2.15) 
 

Note that the denominators in the three transfer functions (2.12)-(2.14) are 
the same. Therefore, the positions of the two poles are the same for the three 
transfer functions. This is also the case for the zero caused by the ESR of 
output capacitor. The transfer function for the output impedance has an 
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additional zero at the origin. This means that the output impedance tends to 
zero as the frequency tends to zero. 

For the boost converter, the control-to-output transfer function, the 
output impedance, and the audio susceptibility are found in Johansson (2003, 
Section 2.6, Equations 2.142-2.144). The corresponding results for the buck-
boost converter are found in Johansson (2003, Section 2.9, Equations 2.186-
2.188). 

Simulation Model and Results 

In this subsection, a switched simulation model of the buck converter is 
presented. It is shown how the frequency functions of the converter are 
obtained from this simulation model. The frequency functions are presented 
and compared with the three transfer functions for the buck converter. 

We simulate a buck converter by using the software 
MATLAB/SIMULINK including Power System Blockset. Figure 2.5 shows 
the complete simulation model. The buck converter is a subsystem. Its 
simulation model is shown in Figure 2.6 and it has three input signals and 
three output signals. The input signals vg, iinj, and delta are the input voltage, 
injected current, and control signal, respectively. iinj is multiplied by -1 to 
obtain a direction of the injected current that agrees with the one defined in 
Figure 2.3. The input signal delta controls the transistor. A controllable 
switch emulates the diode. The inverse of delta is used to control this switch 
since the diode should conduct when the transistor in not conducting. To be 
able to start a simulation, a dummy resistor is included in the model. The 
resistance of this resistor is set to 1 MΩ and its effect on the simulation result 
is negligible. The output signals vo, iload, and iL are “measurements” of the 
output voltage, load current, and inductor current, respectively. 

The input and output signals of the converter are connected as shown in 
Figure 2.5, to obtain the frequency functions of the converter. The input 
voltage, vg, is the sum of its dc value, Vg, and its ac value vghat. The injected 
current, iinj, and the duty cycle, d, are implemented in a corresponding way. 
The dc value of iinj, i.e. Iinj, is equal to zero in all the simulations. Only one 
signal generator at the time is activated. 

The pulse width modulation (PWM) makes use of a saw-tooth signal, e.g. 
the one shown in Figure 2.7. The period of the signal is equal to sT , i.e. the 
switching period. When the signal sawtooth becomes greater than the duty 
cycle, d, the SR-latch is reset. A relay block is used to generate a reset signal 
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Figure 2.5: The complete simulation model. 
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Figure 2.6: The buck converter subsystem. 
 
 

that is either 0 or 1. A pulse generator sets the SR-latch. The set signal is 
synchronized with the sawtooth signal so that the SR-latch is set each time the 
sawtooth signal goes from 1 to 0. The output signal of the SR-latch, delta, is a 
pulse train and the width of each pulse is determined by the duty cycle signal 
d. 

Consider the output signal vo of the converter which represents the 
output voltage. This signal has a Fourier component with a frequency equal 
to the frequency of the signal from the active signal generator. There exist 
other Fourier components in the output voltage (Erickson and Maksimovic, 
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Figure 2.7: The waveforms of the signals in a pulse-width modulator. 
 
 

2000, Section 7.1). The output of a linear system such as (2.12), (2.13), or 
(2.14) only consists of one Fourier component if the input is a sinusoidal. 
The frequency of this component is the same as the frequency of the input 
sinusoidal. To be able to compare the simulation results with the linearized 
model, only the Fourier component in the output voltage with a frequency 
equal to the frequency of the signal from the active signal generator is 
considered. A network analyzer also just considers this Fourier component 
(Erickson and Maksimovic, 2000, Section 8.5). 

To evaluate a frequency function at a specific frequency, the active signal 
generator is set to generate a sinusoidal with this frequency. The specific 
frequency is also set in the Fourier analysis block. 

The result of the Fourier analysis is the magnitude and the phase of the 
component. The analysis is repeated during the simulation and the results are 
viewed by using the oscilloscope block. At the start of each simulation, the 
result of the Fourier analysis changes considerably since the inductor current 
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Figure 2.8: The control-to-output transfer function of a buck converter. Solid 

line: the analytic model. X: the simulation results. 
 
 

and the capacitor voltage are far from the final dc values. The simulation is 
stopped when the changes in the result of the Fourier analysis is negligible. 

The frequency function at a specific frequency can be expressed as its 
magnitude and its phase. The magnitude is equal to the ratio of the 
magnitude of the output voltage, obtained from the Fourier analysis, to the 
magnitude of the signal from the active signal generator. The phase is equal to 
the phase of the output voltage, obtained from the Fourier analysis, since the 
phase of the signal from the active signal generator is zero. 

A simulation is conducted for each one of the frequencies that is 
evaluated. This procedure is repeated three times since there are three 
different signal generators. 

The frequency functions predicted by the linearized model of the buck 
converter are now compared with simulation results. The parameter values 
shown in Table 2.1 are used in the linearized model and the simulation 
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Figure 2.9: The output impedance of a buck converter. Solid line: the 

analytic model. X: the simulation results. 
 
 

model. Figure 2.8, Figure 2.9, and Figure 2.10 show the Bode plot for the 
control-to-output transfer function (2.12), output impedance (2.13), and 
audio susceptibility (2.14), respectively. Simulation results are also shown. 
The figures show that the predicted frequency functions agree closely with the 
simulation results. Note that the frequency axes are limited to half the 
switching frequency (25 kHz). 

For the boost and buck-boost converters the conclusion is the same, i.e. 
the predicted frequency functions agree closely with the simulation results. 

2.3 Current-Mode Control 

In this section we consider models for converters with current-mode 
control. The two models presented by Ridley (1991) and Tan and 
Middlebrook (1995) are compared with simulation results. 
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Figure 2.10: The audio susceptibility of a buck converter. Solid line: the 

analytic model. X: the simulation results. 
 
 
Current-mode control is also called current programmed control and 

current-injected control. Descriptions of current-mode control can be found 
in e.g. Kislovski, Redl and Sokal (1991, Chapter 5), Erickson and 
Maksimovic (2000, Chapter 12), and Mitchell (1988, Chapter 6). 

The outline of this section is as follows. The operation of current-mode 
control is first explained. The Ridley and Tan models are then reviewed and 
compared. The control-to-output transfer function, the output impedance, 
and the audio susceptibility can be obtained by applying these two models to 
the buck converter with current-mode control and the results are presented. 
The simulation model is extended and simulation results are compared with 
the presented transfer functions. The results of the comparison are also 
explained. 
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Figure 2.11: Current-mode control. 

 
 

 
Figure 2.12: Voltage-mode control. 

 
 

Operation of Current-Mode Control 

The operation and implementation of current-mode control are discussed 
in this subsection. 

In current-mode control, two control loops are used (Redl and Sokal, 
1986). See Figure 2.11. The inner loop is fast and controls the inductor 
current, )(tiL . The outer loop is slower and controls the output voltage, 

)(tvo . The inductor current is fed back via the current controller in the inner 
loop while the output voltage is fed back via the voltage controller in the 
outer loop. The voltage controller has the reference signal )(tvref . The 
voltage controller tries to get )(tvo  equal to )(tvref  by changing its control 
signal, )(tic . This signal is subsequently used as the reference signal for the 
current controller. The current controller aims at getting )(tiL  equal to )(tic  
(in a sense) by changing its control signal, )(tδ , which is the input (control) 
signal of the converter. Thus, current-mode control is an application of 
cascade control (Goodwin, Graebe and Salgado, 2001, Section 10.7). 
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Figure 2.13: A voltage controller in voltage-mode control. 
 
 

Figure 2.14: A current controller in current-mode control. 
 
 
In the case of current-mode control, the control signal of the voltage 

controller is analog and the control signal of the current controller is digital 
(binary). 

In the case of voltage-mode control, see Figure 2.12, the control signal of 
the voltage controller is digital using )(tδ . There is no current controller and 
the inductor current does not need to be measured. A voltage controller is 
shown in Figure 2.13. The first (left) part is usually a voltage-error amplifier 
and its output signal, )(tvc , is analog. The second (right) part of the 
controller is a pulse width modulator (compare this modulator with the 
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circuit shown in Figure 2.5). The duty cycle, )(td , depends linearly on the 
control signal )(tvc . Voltage-mode control is also called duty ratio control. 

A typical current controller in current-mode control is implemented as 
shown in Figure 2.14. The peak inductor current is controlled and the 
control method is therefore called peak current-mode control. This is the 
most common type of current-mode control and the word “peak” is often left 
out. If the controllers in Figure 2.14 and Figure 2.13 are compared, the 
current controller seems to consist only of a modulator. Kislovski, Redl and 
Sokal (1991, Chapter 5) use the name current modulator instead of current 
controller. Average current-mode control is another type of current-mode 
control (Kislovski, Redl and Sokal, 1991, Chapter 5). The first part of the 
current controller in average current-mode control is a current-error 
amplifier. It may in this case not be suitable to call the current controller a 
current modulator since one may consider it consists of more than a 
modulator (compare this current controller with the voltage controller in 
voltage-mode control). The name current controller may therefore be seen as 
more general and it is used here. The modulator is seen as a (large or small) 
part of the current controller. 

The operation of the current controller in (peak) current-mode control 
shown in Figure 2.14 will now be explained. For a moment assume that the 
saw-tooth signal, )(tie , is not present. The period of the signal from the pulse 
generator is equal to sT  and the signal sets the SR-latch. Each time this 
occurs, the transistor is turned on and the inductor current, )(tiL , starts to 
increase as shown in Figure 2.15. When )(tiL  becomes greater than the 
signal )(tic , the SR-latch is reset and )(tiL  then decreases until a new set 
pulse is generated. This is the same function as the pulse width modulator in 
Figure 2.5 and Figure 2.13 except the inductor current, )(tiL , replaces the 
saw-tooth signal. Compare the waveforms shown in Figure 2.15 and Figure 
2.7. The signal )(tic  is the reference signal of the current controller. The 
current controller tries to get )(tiL  equal to )(tic  in the sense that it is the 
peak value of )(tiL  that is of interest. In average current-mode control, it is 
the average value of )(tiL  that is of interest. The current controller in (peak) 
current-mode control is fast since it manages to get the peak value of )(tiL  
equal to )(tic  directly. The inner closed loop system in (peak) current-mode 
control can therefore be seen as a current source. 

To be compatible with the definitions made by Ridley (1991), the saw-
tooth signal, )(tie , is from now on called the external ramp. 

The feedback of )(tiL  can cause instability (Erickson and Maksimovic, 
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Figure 2.15: The waveforms of the signals in a current controller in (peak) 
current-mode control. 

 
 

2000, Section 12.1). The control of the inductor current is unstable if the 
steady-state duty cycle, D , is greater than 0.5. It is unstable in the sense that 
the duty cycle, )(td , never reaches a constant level even if )(tic  is constant. 
However, it is stable in the sense that the peak value of )(tiL  is equal to 

)(tic . 
It is possible to obtain stability also in the case where D  is greater than 

0.5 if slope compensation is utilized. With slope compensation, )(tic  is 
compared with the sum of )(tiL  and an external ramp, )(tie . The slope of 
the sum is greater than the slope of )(tiL  alone. The characteristic value α  is 
now defined as 
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where eM  is the slope of )(tie , 1M  is the slope of )(tiL  while the transistor 
is on and 2M−  is the slope of )(tiL  while the transistor is off. None of eM , 

1M , and 2M  is negative with these definitions. eM  must be chosen such 
that 1<α  to obtain stability. 

The Ridley and Tan Models Applied to the Buck Converter 

In this subsection, the two models presented by Ridley (1991) and Tan 
and Middlebrook (1995) are reviewed and compared. The control-to-output 
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transfer function, the output impedance, and the audio susceptibility can be 
obtained by applying these two models to the buck converter with current-
mode control and the results are presented. 

A large number of continuous-time models for current-mode control 
have been presented during the years. The Ridley and Tan models are 
designed to be accurate from dc to half the switching frequency. They differ 
mainly in the modeling of the current loop gain. 

When an accurate model of current-mode control has been needed, the 
one presented by Ridley (1991) often has been chosen. An example of this is 
Lo and King (1999), where the choice was between the Ridley and Tan 
models. In Lo and King (1999), the Tan model is considered suspect and 
some other authors have also expressed this opinion. 

The Ridley and Tan models include high-frequency extensions to be 
accurate up to half the switching frequency. These high-frequency extensions 
are based on an accurate control-to-current transfer function. We will first 
make a brief review of how this transfer function is obtained. 

In Figure 2.15, )(tie  is added to )(tiL  but the same function is obtained 
if )(tie  is subtracted from )(tic  and this is used in Figure 2.16(a). Figure 
2.16(a) shows the waveforms of the signals )(tic , )()( titi ec − , and two 
different versions of the inductor current. The first version (solid line) shows 
the inductor current waveform in steady state, i.e. in the case where there are 
no perturbations of )(tic . The second version (dashed line) shows the 
inductor current waveform in the case where there is a step perturbation in 

)(tic  as shown in Figure 2.16(a). The transistor is assumed to turn on at the 
points snTt = , where n  is an integer. The transistor will then turn off at the 
points ( ) sTDnt +=  in steady state. It is assumed that the changes in the 
input voltage and the output voltage are negligible so that the slopes of the 
inductor current can be considered constant. 

The perturbations of )(tic  and )(tiL  are shown in Figure 2.16(b) and 
Figure 2.16(c), respectively. An approximation of )(ˆ tiL  is shown in Figure 
2.16(d). If we search for a linearized model, the use of the waveform in Figure 
2.16(d) instead of the waveform in Figure 2.16(c) does not cause an error 
since the relative error in the integral of )(ˆ tiL  then is infinitely small. 

The signal )(tic  affects the waveform of the inductor current. If the 
changes in )(tic  are small, the value of )(tic  is important only in a small 
surrounding of the points ( ) sTDnt += . If the changes of )(tic  in these 
surroundings are slow, only a sampled version of )(tic  (or )(ˆ tic ) is needed in 
order to obtain an accurate model. A sampled version of )(ˆ tic  is shown in 
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Figure 2.16: Different versions of the currents in a current controller. 
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Figure 2.16(e) and it is denoted )(ˆ nic . To be spared from introducing new 
variable names, the sampled (discrete-time) version of a continuous-time 
signal is denoted by the same name as the continuous-time signal, which is 
not a formally correct notation. 

A sampled version of the approximate )(ˆ tiL  is shown in Figure 2.16(f) 
and it is denoted )(ˆ niL . An expression that describes how )(ˆ niL  depends on 

)(ˆ nic  can be derived. The Z-transform of this expression gives a discrete-time 
transfer function. By considering that the approximate perturbed inductor 
current shown in Figure 2.16(d) is reconstructed from )(ˆ niL  by using a zero-
order-hold circuit the following accurate continuous-time control-to-current 
transfer function is obtained: 
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where α  is defined in (2.16). Once again, note that the derivation of (2.17) 
is made with the assumption that the changes in the input and output voltage 
are negligible. 

Both the Ridley and Tan models are unified models, i.e. they can be 
applied to different types of converter topologies. The block diagram in 
Figure 2.17 is used to compare the Ridley and Tan models. Both are small-
signal models and, therefore, the linearized model of the converter is included 
in Figure 2.17. 

The model of the current controller consists of six blocks. The iR  block 
will be explained later in this subsection. )(sFm  is the transfer function of the 
modulator. Changes in the input and output voltages affect the control and 
these effects are modeled with the feedforward gains fk  and rk . Note that 
the input and output voltages are not fed forward in Figure 2.11. The reason 
why they are needed in Figure 2.17 is that there are Fourier components 
missing in the signal { })(ˆ1 siL L

−  compared to the signal )(tiL  in Figure 2.11 
(see Section 2.2). It is not just the dc component that is missing. The input 
and output voltages affect the slopes of the inductor current in each switching 
period, which is an important factor in the current controller. The use of 

)(ˆ svg  and )(ˆ svo  in the small-signal model of the current controller therefore 
complements )(ˆ siL  so that the waveform of )(tiL  is better known. The 
feedforward gains are in the Ridley and Tan models calculated in a way that 
makes the amplification of the closed loop system correct at dc. In the next 
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Figure 2.17: A small-signal model of the current controller and the converter. 
 
 

subsection, it will be shown that this way introduces a modeling error at high 
frequencies. 

)(sHe  is used to include the high-frequency extension in the Ridley 
model and it is calculated to be 
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The Ridley model utilizes an approximation of (2.18). The approximation: 
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is used both by Ridley and Tan to replace the exponential functions. The 
approximation error of (2.19) is zero at dc and half the switching frequency, 

nω . 
The approximate )(sHe  and )(sFh  are 
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The high-frequency extension in the Tan model is obtained by including 

a pole in )(sFm . Tan and Middlebrook (1995) present the following model 
for the buck converter: 
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In a practical current-mode controller, the inductor current is measured 

and transformed to a voltage signal. Voltage signals also represent the control 
signal and the external ramp signal. Ridley models this by including a gain, 

iR , in the inductor current feedback loop. Tan does not model this and iR  is 
therefore set to 1 in (2.30). The following variables are used in the Ridley 
model: 

 
 ,)(ˆ)(ˆ siRsv cic =  (2.32) 

 
 ,1MRS in =  (2.33) 

 
 ,2MRS if =  (2.34) 

 
 .eie MRS =  (2.35) 

 
Ridley (1990a) presents the following model for the buck converter: 
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By applying the Ridley model to the buck converter the following results 

are obtained for the three major transfer functions: 
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where 
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and )(sFh  is defined in (2.23). 

By applying the Tan model to the buck converter the following results are 
obtained for the three major transfer functions: 
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and )(sFh  is defined in (2.23). 

The denominator in the Tan model, (2.47), is almost the same as the one 
in the Ridley model, (2.43). The difference is often insignificant for 
converters that are used in practice. The control-to-output transfer functions 
predicted by the Ridley and Tan models are therefore approximately the same 
since the numerators in (2.40) and (2.44) are exactly the same. The same is 
true for the output impedances since the numerators in (2.41) and (2.45) are 
exactly the same. However, the numerator in (2.42) and (2.46) are not the 
same. The audio susceptibility predicted by the Tan model includes an extra 
zero compared to the Ridley model. 

If the three transfer functions obtained from the Ridley model, (2.40)-
(2.42), are compared with the transfer functions for the open loop system, 
(2.12)-(2.14), it is found that there are three poles instead of two poles. 
Furthermore, the ESR zero remains but the zero at the origin for the output 
impedance is replaced by two zeros determined by )(1 sFh . This means that 
the output impedance does not tend to zero as the frequency tends to zero. 

The control-to-output transfer function, the output impedance, and the 
audio susceptibility obtained by applying the Ridley model to the boost 
converters are found in Johansson (2003, Section 3.6, Equations 3.92-3.94). 
The corresponding results for the buck-boost converter are found in 
Johansson (2003, Section 3.7, Equations 3.110-3.112). 
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Figure 2.18: The simulation model for current-mode control (without the 

voltage controller). 
 
 

A Comparison of the Two Models and the Simulation 
Results. 

In this subsection, a simulation model of a buck converter with current-
mode control is presented. The transfer functions obtained by means of the 
Ridley and Tan models are compared with simulation results. The results of 
the comparison are also explained. 

Figure 2.18 shows the simulation model. The inductor current iL is fed 
back and added to the external compensation signal ie and the sum is 
compared to reference signal ic. The signal ie is obtained by multiplying the 
signal sawtooth with es MT . The slope of sawtooth is equal to sT1  so the 
slope of ie is equal to eM . The reference signal, ic, is the sum of its dc value, 
Ic, and its ac value ichat. 

If the output of the relay block is connected directly to the reset input of 
the SR-latch, the simulation program report an existence of an algebraic loop. 
To avoid the algebraic loop, the special designed subsystem is inserted 
between the relay and the SR-latch. 

The transfer functions obtained by means of the Ridley and Tan models 
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Figure 2.19: The control-to-output transfer function of a buck converter with 

a current controller. X: the simulation results. Solid line: the 
Ridley model. Dashed line: the Tan model. Note that the two 
lines almost coincide. 

 
 

are now compared with simulation results. The parameters used in the 
simulation model presented in Section 2.2 are also used here. iR  is set to 1 
Ω. Ic is adjusted manually so that the average value of the output voltage, oV , 
is equal to 5 V ( D =0.455). eM  is calculated by using (2.25) and the first 
equality in (3.108) (with 0=onR ): 

 

 ( ) ,1−
−

= c
og

e m
L

VV
M  (2.48) 

 
where cm  is chosen to be 2. 

Figure 2.19 shows the Bode plots for the control-to-output transfer 
functions in (2.40) and (2.44) together with the simulation results. From the 
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Figure 2.20: The output impedance of a buck converter with a current 

controller. X: the simulation results. Solid line: the Ridley 
model. Dashed line: the Tan model. Note that the two lines 
almost coincide. 

 
 

figure it is seen that the control-to-output transfer functions predicted by the 
Ridley and Tan models are almost the same and they agree closely with the 
simulation results. 

Figure 2.20 shows the Bode plots for the output impedances in (2.41) 
and (2.45) together with the simulation results. From the figure it is seen that 
the output impedances predicted by the Ridley and Tan models are almost 
the same and they agree closely with the simulation results. 

Figure 2.21 shows the Bode plots for the audio susceptibilities in (2.42) 
and (2.46) together with the simulation results. From the figure it is seen that 
the audio susceptibilities predicted by the Ridley and Tan models are not the 
same and neither agrees closely with the simulation results at high 
frequencies. The Tan model has the largest deviation from the simulation 
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Figure 2.21: The audio susceptibility of a buck converter with a current 

controller. X: the simulation results. Solid line: the Ridley 
model. Dashed line: the Tan model. 

 
 

results in the magnitude while the Ridley model has the largest deviation 
from the simulation results in the phase shift. 

The results of the comparison are now explained. The control-to-current 
transfer function (2.17) is derived under the assumption that there are no 
changes in the input and output voltages. To cope with changes in these 
voltages, the feedforward gains fk  and rk  are included in the Ridley and 
Tan models. The feedforward gains are calculated in a way that makes the 
amplification of the closed loop system correct at dc. At high frequencies, the 
perturbation of the voltage across the inductor cannot be considered constant 
during a switching period. However, the amplitude of the changes in the 
output voltage is low at high frequencies due to the output capacitor. This 
explains why the control-to-output transfer functions and the output 
impedances predicted by the Ridley and Tan models are so accurate. In the 
case where the audio susceptibility is considered, also the input voltage 
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changes. Since the input voltage is the input signal in this case, its amplitude 
is assumed to be unity. The perturbation of the voltage across the inductor is 
therefore not small at high frequencies and the errors in the Ridley and Tan 
models are significant. 

If the transfer functions obtained by applying the Ridley model to the 
boost and buck-boost converters are compared with simulation results, the 
conclusion is the same as the one for the buck converter, i.e. the predictions 
agree closely with the simulation results except at high frequencies in the case 
of audio susceptibility. 

2.4 A Novel Model 

Models for converters with current-mode control were considered in 
Section 2.3. We showed that the way the changes in the input and output 
voltages are treated in the Ridley and Tan models introduces a modeling error 
at high frequencies. We also showed that this modeling error is significant for 
the audio susceptibility. To obtain an accurate model for the audio 
susceptibility, the changes in the input and output voltages must be treated in 
a more refined way. In this section, a novel model for the audio susceptibility 
is presented and compared with simulation results. This model will be 
utilized in Section 2.5 to improve the Ridley and Tan models. 

The outline of this section is as follows. First, the derivation of the novel 
model is presented briefly. The audio susceptibility obtained by applying the 
novel model to the buck converter is then presented. It is also compared with 
simulation results and the Ridley and Tan models. 

A Novel Model for the Audio Susceptibility 

In this subsection, the derivation of the novel model is presented briefly. 
The audio susceptibility describes how a perturbation in the input voltage 

affects the output voltage. Figure 2.22 shows the converter and the current 
controller. In the case where the audio susceptibility is considered, the 
reference signal, )(tic , is constant and the input voltage, )(tvg , is perturbed. 
A perturbation in )(tvg  causes a perturbation in the output voltage and the 
inductor current. It also causes a perturbation in the duty cycle of )(tδ  since 
the inductor current is fed back to the current controller. The perturbation in 
the duty cycle of )(tδ  contributes to the perturbation in the output voltage 
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Figure 2.22: The converter and the current controller. 

 
 

and the inductor current. Since the rule of superposition holds for the 
linearized converter, the Laplace transform of the perturbed output voltage is 
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The subscript ol  will be used for the converter transfer functions, i.e. for the 
open loop system, except for the control-to-output transfer function. Note 
that fractions in (2.49) must be regarded as transfer functions and )(ˆ sd  and 

)(ˆ svg  cannot be canceled. If )(ˆ sd  were known, )(ˆ svo  could be calculated 
with (2.49). A model for )(ˆ zd  (the Z-transform of the sampled version of 

)(ˆ td ) will first be derived. 
The voltage across the inductor depends on the input and output voltages 

and the topology of the converter according to Table 2.2, see Ridley (1990b, 
Table 4.2). The positive voltage across the inductor as the transistor is on is 
called )(tvon  while the positive voltage across the inductor as the transistor is 
off is called )(tvoff . Both these voltages are here defined to be equal to the 
expressions in Table 2.2 for all t , i.e. the expressions for )(tvon  is valid also 
when the transistor is off and the expressions for )(tvoff  is valid also when 
the transistor is on. 

 
 

Table 2.2: The positive voltage across the inductor. 
 

 Buck Boost Buck-Boost 

)(tvon  )()( tvtv og −  )(tvg  )(tvg  

)(tvoff )(tvo  )()( tvtv go − )(tvo  

vg(t) 

Current 
controller 

vo(t) 

ic(t) δ (t) iL(t) Converter 
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Figure 2.23: The waveforms in steady state and in the case where the input 
and output voltages change. 

 
 
The slopes of the inductor current are calculated by 
 

 ( ) ,)(
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)(ˆ
1
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tvV
L

tmMtm ononon =+=+=  (2.50) 

 

 ( ) .)(
1

)(ˆ
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)(ˆ)( 222 tv
L

tvV
L

tmMtm offoffoff =+=+=  (2.51) 

 
)(1 tm  is the positive slope of the inductor current while the transistor is on. 

The negative slope of the inductor current as the transistor is off corresponds 
to )(2 tm− . 

When the audio susceptibility is considered, )(tic  is constant and equal 
to its dc value cI . Figure 2.23 shows the waveforms of cI , cI  minus the 
external ramp, )(tie , and two different versions of the inductor current. The 
first version ( )(tiLss , solid line) shows how the inductor current waveform is 
in steady state, i.e. when there are no perturbations of the inductor current 
slopes )(1 tm  and )(2 tm− . The dashed line shows an example of how the 
inductor current waveform is if there are perturbations of the inductor 
current slopes. The transistor is assumed to turn on at the points snTt = , 
where n  is an integer. In steady state the transistor will then turn off at the 
points ( ) sTDnt += . To find out how much the inductor current changes, 
the inductor current slopes are integrated. The following two equations are 
obtained from Figure 2.23: 
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Using (2.52) and (2.53) it is possible to derive the following expression 

for )(ˆ nd : 
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Note that the integer variable k  in (2.52) and (2.53) is substituted by the 
integer variable n  in (2.54). The discrete-time signal )(ˆ nd  is the result of 
sampling the continuous-time signal )(ˆ td . The sampling interval changes if 
the converter is not in steady state. Similarly to the discussion in Section 2.3, 
sampling at the points ( ) sTDnt +=  is a good approximation if the 
magnitude of )(ˆ td  is small and the changes of )(ˆ td  are slow in the 
surroundings of these sampling points. From (2.54), it is seen that )(ˆ nd is a 
sum of a discrete-time part (first term) and a continuous-time part (last term). 
To be able to create the discrete-time signal )(ˆ nd , the continuous-time part 
must deliver its value at ( ) sTDnt +=  so that it can be sampled and added to 
the discrete-time part of (2.54). In the first integral in (2.54), 

 

,)(ˆ 2∫
∞−

nTs

dttm   

 
the signal )(ˆ 2 tm  is integrated up to snTt =  so the value of the integral is 
known at snTt = . Since the value of the integral has to be delivered at 

( ) sTDnt += , the value must be delayed by sDT . The delay for the three 
remaining integrals must be sT , 0, and sDT , respectively. Therefore, the 
signal )(ˆ nd  can be created as shown in Figure 2.24. 



Chapter 2. A Summary of the Licentiate Thesis 53 

 

The block diagram in Figure 2.24 is transformed from the time domain 
to the frequency domain and the result is shown in Figure 2.25. A feedback is 
included in Figure 2.25 to eliminate one of the input signals. The feedback is 
transformed from the discrete-time part to the continuous-time part if z  is 
substituted with ssTe and the result is shown in Figure 2.26. 

In Figure 2.26, the signal )(ˆ sx  is introduced. The following expression 
can be derived: 
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By using (2.50), (2.51), (2.55), and Table 2.2, the block diagram in 

Figure 2.27 is obtained and it is a model for )(ˆ zd . Note that this block 
diagram is derived without the prerequisite that )(ˆ tvg  and )(ˆ tvo  are 
sinusoidal. 

If the spectrums of )(ˆ nd  and )(ˆ tvo  are examined the following 
conclusions are obtained for the case where )(ˆ tvg  is a sinusoidal with the 
frequency mω  and mω  is in the interval [0, sTπ ] rad/s: 

 
• The discrete-time signal )(nd  consists approximately of just one 

Fourier component (in the interval [0, sTπ ] rad/s) and it has the 
frequency mω . Therefore, )(nd  can be obtained by sampling a 
sinusoidal signal with the sampling interval sT . 

• A good approximation of the signal )(ˆ tx  (the inverse Laplace 
transform of )(ˆ sx ) in Figure 2.27 is obtained if the input signal 

)(ˆ tvo  (the inverse Laplace transform of )(ˆ svo ) is replaced with a 
signal consisting of just the Fourier component in )(ˆ tvo  with the 
frequency mω . 

 
To find a linear model of the audio susceptibility that is accurate from dc 

to half the switching frequency it is sufficient to consider just the case where 
the perturbation in the input voltage, )(ˆ tvg , is a sinusoidal signal with the 
frequency mω . The model should be accurate for any mω  in the frequency 
interval. From the two conclusions above, it seems reasonable that an accurate 
model of the audio susceptibility can be obtained from the block diagram in 
Figure 2.28, where the block diagram in Figure 2.27 is combined with 
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Figure 2.24: A time-domain model for the duty cycle perturbation signal. 
 
 

 
Figure 2.25: A frequency-domain model for the duty cycle perturbation 

signal. 
 
 

 
Figure 2.26. The feedback is moved to the continuous-time part. 
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Figure 2.27: The block diagram with )(ˆ tvg  and )(ˆ tvo  as input signals. 
 
 

 
Figure 2.28: A model of the audio susceptibility. 

 
 

equation (2.49). )(ˆ sx  is used as )(ˆ sd  and the output )(ˆ svo  from (2.49) is 
fed back to the input )(ˆ svo  in the block diagram in Figure 2.27. The Fourier 
component in the output voltage with the frequency mω  (see Section 2.2) is 
correctly predicted in (2.49) and it is enough to use this component as the 

)(ˆ svo -input in the block diagram in Figure 2.27. 

Audio Susceptibility of the Buck Converter 

In this subsection, the audio susceptibility obtained by applying the novel 
model to the buck converter is presented. It is compared with simulation 
results, experimental result and the Ridley and Tan models. 

By applying the novel model to the buck converter the following result is 
obtained: 
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and )(sHe  is the same as in (2.18). The Taylor series of )(sF f  is also shown 
in (2.57). 

If the approximations (2.22) and (2.23) are used, it can be shown that the  
denominator (2.58) is exactly the same as (2.47), i.e. the denominator in the 
Tan model. In Section 2.3, it was concluded that the denominator in the Tan 
model is almost the same as the denominator in the Ridley model, (2.43). 
The novel expression and the audio susceptibility predicted by the Ridley and 
Tan models thus have approximately the same denominator but three 
different numerators, compare (2.56), (2.42), and (2.46). 

The novel expression (2.56) is now compared with simulation results, 
experimental result, and the Ridley and Tan models. 

Figure 2.29 shows the Bode plot for the audio susceptibility according to 
the novel expression in (2.56) together with the results presented in Figure 
2.21, i.e. the simulation results and the audio susceptibilities predicted by the 
Ridley and Tan models. From the figure it is seen that the novel expression 
agrees closely with the simulation results also at high frequencies. 

Figure 2.30 shows the same as Figure 2.29 except cm  is changed from 2 
to 1.5 and experimental result presented by Ridley is included (copied 
manually from plot in Ridley (1991)). From the figure it is seen that the 
novel expression agrees closely with the simulation results also at high 
frequencies. The choice cm =1.5 makes the audio susceptibility very small at 
dc since there is a subtraction between two almost equal values in the 
numerator of transfer function. The modeling errors in the Ridley and Tan 
models cause larger relative errors at high frequencies in this case. This is most 
evident in the Ridley model. Ridley (1991) explains the difference between 
the audio susceptibility predicted by his model and experimental result at 
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Figure 2.29: The audio susceptibility of a buck converter with a current 

controller ( cm =2). X: the simulation results. Dotted line: the 
novel expression. Solid line: the Ridley model. Dashed line: the 
Tan model. 

 
 

cm =1.5 by saying that the measurements were unreliable due to noise and 
grounding problems. The experimental result from Ridley agrees closely (if 
we take into consideration that it is an experimental result) with the 
simulation results and the novel expression as seen from Figure 2.30. This 
indicates that it is Ridley’s measurements that are correct, not his model. 

Figure 2.31 shows the same as Figure 2.29 except cm  is changed to 1. 
From the figure it is seen that the novel expression agrees closely with the 
simulation results also at high frequencies. The choice cm =1 does not make 
the audio susceptibility small at dc. The result of the subtraction in the 
numerator of the transfer function is of opposite sign at dc compared to the 
case where cm =2. This is seen from the phase shift curves in Figure 2.29 and 
Figure 2.31. 
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Figure 2.30: The audio susceptibility of a buck converter with a current 

controller ( cm =1.5). X: the simulation results. Dotted line: the 
novel expression. Solid line: the Ridley model. Dashed line: the 
Tan model. Dash-dotted line: the measurement made by 
Ridley (the phase shift curve is not available). 

 
 
The transfer function for the audio susceptibility obtained by applying 

the novel model to the boost converters is found in Johansson (2003, Section 
4.4, Equation 4.38). The corresponding result for the buck-boost converter is 
found in Johansson (2003, Section 4.5, Equation 4.63). If these two transfer 
functions are compared with simulation results, it is found that they agree 
closely with the simulation results at high frequencies but not at low 
frequencies. It can be shown that the predictions made by the novel model of 
the gain at low frequencies are very sensitive to modeling errors in the 
different blocks in Figure 2.28. If these predictions agree closely with the 
simulation results, this is due to more good luck than good management. 
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Figure 2.31: The audio susceptibility of a buck converter with a current 

controller ( cm =1). X: the simulation results. Dotted line: the 
novel expression. Solid line: the Ridley model. Dashed line: the 
Tan model. 

 
 

2.5 Improved Models 

Models for converters with current-mode control were considered in 
Section 2.3. We showed that the way the changes in the input and output 
voltages are treated in the Ridley and Tan models introduces a modeling error 
at high frequencies. We also showed that this modeling error is significant for 
the audio susceptibility. A novel model for the audio susceptibility was 
derived in Section 2.4. In this section, this model is utilized to improve the 
Ridley and Tan models. In Section 2.6, the improved Ridley model will be 
approximated and then, in Section 2.7, used to analyze some properties that 
can be obtained when load current measurements are utilized for control. 
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In Section 2.4, it was concluded that the three expressions for the audio 
susceptibility for the buck converter, (2.42), (2.46), and (2.56), have 
approximately the same denominator but three different numerators. One 
way to improve the Ridley and Tan models is to modify the numerators in 
(2.42) and (2.46) in some way so that they are equal to the numerator in 
(2.56). 

The improvement of the Ridley model is first considered. In the 
derivation of (2.42), (2.37) is used to substitute fk . If fk  is not substituted 
in the derivation of the audio susceptibility, the result is 
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where )(sden  is defined in (2.43). Hence, the feedforward gain fk  is not 
present in the denominator and may therefore be used to modify the 
numerator without changing the denominator. Note that predictions of the 
control-to-output transfer function and the output impedance made by the 
Ridley model are not affected when fk  is changed. This parameter is the gain 
of the feedforward of the input voltage, which is constant in the case where 
the control-to-output transfer function and the output impedance are 
considered. An equation is obtained if the numerator in (2.59) is put equal to 
the numerator in (2.56) and its solution is 
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where )(sF f  is defined in (2.57). Since the new fk  depends on s , it is 
denoted )(sk f . Note that the 0s  term in (2.60) is equal to (2.37). The 
audio susceptibility according to the improved Ridley model is obtained by 
substituting fk  in (2.59) with (2.60): 
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where )(sF f  is defined in (2.57) and )(sden  is defined in (2.43). 
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If the Tan model is improved in a corresponding way the new )(sk f  is 
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where )(sF f  is defined in (2.57). 

In the licentiate thesis, the Ridley model is improved also for the boost 
and buck-boost converters. The novel model is inaccurate at low frequencies 
for these two converters but the improvements are made in such a way that 
this shortcoming is not transferred to the improved models. For the boost 
converter, the audio susceptibility according to the improved Ridley model 
and the new )(sk f  are found in Johansson (2003, Section 5.3, Equations 
5.21 and 5.27). The corresponding results for the buck-boost converter are 
found in Johansson (2003, Section 5.4, Equations 5.38 and 5.44). The new 

)(sk f  are unstable transfer functions for the boost and buck-boost 
converters. 

2.6 Approximations of Obtained Expressions 

Models for converters with current-mode control were considered in 
Section 2.3 and they were improved regarding the audio susceptibility in 
Section 2.5. The expressions obtained from all these models are rather 
complicated. In this section, approximate versions of the expressions for the 
control-to-output transfer function, the output impedance, and the audio 
susceptibility obtained by applying the improved Ridley model to the buck 
converter are presented. In Section 2.7, these approximate expressions will be 
used to analyze some properties that can be obtained when load current 
measurements are utilized for control. 

The denominator (2.43) is common for the control-to-output transfer 
function (2.40), the output impedance (2.41), and the audio susceptibility 
(2.61). The transfer functions have three poles since the denominator (2.43) 
is a third order polynomial. The poles depend on cm , which is the relative 
slope of the external ramp (see (2.25)), according to Figure 2.32 (see Ridley 
(1990b, Section 5.2.2)). If cm  is not to large, there are two high-frequency 
poles (i.e. poles far from the origin) and one low-frequency pole. In this case 
it is possible to approximate the denominator with a product of a second 
order polynomial and a first order polynomial. The second order polynomial 
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Figure 2.32: The root-locus of the three poles for increasing cm . 

 
 

corresponds to the two high-frequency poles and the first order polynomial 
corresponds to the low-frequency pole. This fact is used as the starting point 
for the derivation of an approximate model and the result is now presented. 

If the conditions 
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and Q  is defined in (2.24), are fulfilled, then approximate versions of the 
control-to-output transfer function, the output impedance, and the audio 
susceptibility for the buck converter are 
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)(sFh  is defined in (2.23), K  is defined in (2.68), and )(sF f  is defined in 

(2.57). The approximate versions (2.69) and (2.70) are exactly the same as the 
ones proposed by Ridley (1991). In the approximate version (2.70), two poles 
are cancelled by two zeros compared to the original version (2.41). 

Since )(sF f  is a rather complicated expression, it is desirable to find an 
approximate expression. )(sF f  can be approximated by a Taylor polynomial, 
i.e. a truncated version of the Taylor series in (2.57). The higher degree of the 
Taylor polynomial that is used, the better approximation is obtained. If a 
Taylor polynomial of degree 0 is used, )(sk f  in (2.60) is the same as fk  in 
(2.37) and the Ridley model is not improved. If a Taylor polynomial of 
degree 1 is used, there is an extra zero in the improved Ridley model. In 
Section 2.3, it was observed that the Tan model includes an extra zero 
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compared to the Ridley model (compare (2.42) and (2.46)). If a Taylor 
polynomial of degree 1 is used to improve the Tan model, the extra zero that 
is already present in the Tan model, is moved to a more suitable position. 
The extra zero in the Tan model explains why the Tan model is better than 
the Ridley model in Figure 2.30. However, the Ridley model is better than 
the Tan model in some cases since the extra zero in the Tan model is not 
placed at the most suitable position. This is for instance the case if D  is 
small. 

A Taylor polynomial approximates a function in a neighborhood of a 
point. There are other methods that approximate a function in an interval. 
For instance, the method of least squares can be used to minimize the integral 
of the squared errors. This can give a smaller maximum error. 

Approximate versions of the control-to-output transfer function, the 
output impedance, and the audio susceptibility for the boost converter are 
found in Johansson (2003, Section 6.3, Equations 6.109, 6.118, and 6.121). 
The corresponding results for the buck-boost converter are found in 
Johansson (2003, Section 6.4, Equations 6.157, 6.166, and 6.178). 

2.7 Using Load Current for Control 

The output voltage and the inductor current are measured in the case 
where current-mode control is utilized. In this section, some properties that 
can be obtained when the controller also utilizes load current measurements 
are analyzed. The results of this analysis are compared with simulation results. 

The outline of this section is as follows. First, some of the previous works 
made in this area are reviewed. Two concepts in control theory, feedforward 
and gain scheduling, will be needed and are therefore also reviewed. Next, a 
simple model of the buck converter with current-mode control is used to give 
a simple explanation of the following principal properties that are obtained 
when using load current measurements to control the converter: 

 
• Low output impedance. 
• An almost invariant control-to-output transfer function for different 

loads. 
• Risk of instability. 

 
Finally, the model obtained in Section 2.6 for the buck converter with 
current-mode control is used to analyze the properties. 
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Figure 2.33: The configuration of the controller. 

 
 

A Review 

A number of papers suggest that the load current should be measured in 
order to improve the control of dc-dc converters. A few of them are 
mentioned in this subsection. 

Redl and Sokal (1986) show that the transient in the output voltage due 
to a step change in the load can be much reduced if the load current is 
measured and used to control the converter. They only consider the case 
where current-mode control is used. The configuration of the controller is 
shown in Figure 2.33. The inductor current, )(tiL , is fed back in the inner 
loop. The load current, )(tiload , is used in the middle loop. (The input 
voltage, )(tvg , and output voltage, )(tvo , are in some cases also used in the 
middle loop.) The output voltage, )(tvo , is fed back in the outer loop. The 
control method includes an extra middle controller compared to current-
mode control (compare Figure 2.33 and Figure 2.11). The middle controller 
should be as follows according to Redl and Sokal (1986). 
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(The expression in (2.76) is actually obtained from Kislovski, Redl and Sokal 
(1991, Section 11.2).) 

Schoneman and Mitchell (1989) analyze the proposed use of load current 
further in the case of the buck converter, i.e. (2.74). 

Redl and Sokal (1986) suggest that the load current is not measured 
directly but calculated indirectly. For example, in the buck converter, the 
inductor current, )(tiL , and the current to the output capacitor, )(ticap , are 
measured. The load current can then be calculated as the difference (see 
Figure 2.1): 

 
 .)()()( tititi capLload −=  (2.77) 

 
Note that the inductor current is measured in current-mode control so it is 
still only necessary to measure one extra current compared to current-mode 
control. 

Schoneman and Mitchell (1989) propose an alternative approach. From 
Figure 2.14, it is seen that the difference )()( titi Lc −  is calculated in the 
current controller. This difference is rewritten by using (2.74) and (2.77): 

 

 
.)()()()()()(

)()()()()(

22

2

titititititi

tititititi

capcLcapLc

LloadcLc

−=−−+
=−+=−

(2.78) 

 
Hence, it is not necessary to measure the inductor and load currents. Only 
the current to the output capacitor must be measured. 

Hiti and Borojevic (1993) use the measured load current to modify the 
current-mode control for the boost converter. The modification is made in 
such a way that the dc gain of the closed middle loop in Figure 2.33 (i.e. the 
dc gain of the transfer function that describes how )(tvo  is affected by 

)(2 tic ) is independent of the load. The modification turns out to be the same 
as the one presented for the boost converter by Redl and Sokal (1986), i.e. 
(2.75). 

Feedforward and Gain Scheduling 

Two concepts in control theory, feedforward and gain scheduling, will be 
needed in some of the next subsections and are therefore reviewed in this 
subsection. 
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Figure 2.34: The basic configuration of the controller. 

 
 
Figure 2.34 shows the configuration of the controller used as a base here. 

The control signal of the controller is called u  and controls the input signal 
of the process that should be controlled. The output signal of the process is 
called y  and it is fed back to the controller. The reference signal of the 
controller is called r . The controller is very general since the compensators 

1C  and 2C  can be chosen independently. 
The definition of feedforward is that a disturbance signal is measured and 

used to make a change in the control signal before the disturbance has caused 
any change in the output of the process (Åström and Hägglund, 1995, 
Section 7.3). Figure 2.35 shows an example where the controller in Figure 
2.34 is extended to also include feedforward. The disturbance signal is called 
v  and it is multiplied with ffC  to obtain the contribution to the control 
signal from the feedforward part. Feedforward does not cause any stability 
problems (Åström and Hägglund, 1995, Section 7.3). A consequence of this 
is that, for linear systems, feedforward does not affect the loop gain. 

A definition of gain scheduling is found in Åström and Wittenmark 
(1995, Chapter 9). If the operating conditions of a process vary with time and 
the controller that controls the process is time invariant, the dynamics of the 
closed loop system also vary with time. Assume that some variables that reflect 
the operating conditions of a process are measured. If these variables are used 
to change the values of the parameters in the controller, it should be possible 
to reduce the influence of changed operating conditions on the dynamics of 
the closed loop system. This method is called gain scheduling and an example 
is shown in Figure 2.36. calP  is a time-varying parameter in the controller. It 
is calculated by using the gain schedule and the scheduling variables, which 
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Figure 2.35: A controller with feedforward. 

 
 

 
Figure 2.36: A gain-scheduling controller. 

 
 

are the input signals to the gain schedule. The scheduling variables should 
reflect the operating conditions of the process. The signal 2y  is an extra 
output of the process that is measured and used as a scheduling variable. The 
signal y  that is measured and fed back to the original controller could also be 
used as a scheduling variable if it reflects the operating conditions of the 
process in some way. 
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Figure 2.37: A simple model of the buck converter with current-mode 

control. 
 
 

 
Figure 2.38: The measured load current affects the control signal. 

 
 

Low Output Impedance 

In this subsection, the output impedance obtained when using measured 
load current for control is analyzed by using a simple model of the buck 
converter with current-mode control. 

The current through the inductor is controlled in current-mode control. 
If this control has high bandwidth, the inductor can be approximated by a 
controlled current source. The buck converter with current-mode control can 
then be modeled as in Figure 2.37 (compare Figure 2.37 and Figure 1.2). The 
current from the current source is equal to the reference signal for the current 
controller, )(tic . The ESR of the capacitor is neglected in Figure 2.37. 
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Figure 2.38 shows how the measured load current should be used to 
control the buck converter according to (2.74). If )(tiload  changes, )(tic  
changes by the same amount, provided that )(2 tic  is constant. Consequently, 
the capacitor current does not change. The conclusion is that changes in load 
current do not affect the output voltage, that is, the output impedance is zero: 
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Note that the definition of output impedance used in (2.79) is not the same 
as the one used previously (e.g. (2.13)). 

An Almost Invariant Control-to-Output Transfer Function 
for Different Loads 

In this subsection, the control-to-output transfer function that describes 
how )(2 tic  affects )(tvo  is analyzed by using the simple model. Two 
different types of loads are considered. The first type is a current source, i.e. 
the load current is independent of the output voltage. The second type is a 
linear resistive load. 

First assume that the load is a current source. If the load current is not 
used, )(tic  is equal to )(2 tic  and the output voltage is 
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Since )(tiload  is determined by the current source, it can be regarded as an 
input signal in addition to )(2 tic . The control-to-output transfer function 
that describes how )(2 tic  affects )(tvo  is therefore obtained if )(tiload  is set 
to zero: 
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If the load current is used, )(tic  is given by (2.74) and the output voltage is 
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It is seen from (2.81) and (2.83) that the control-to-output transfer function 

)(
2

sG
coiv  does not change when the measured load current is introduced for 

control. Therefore, the loop gain and the stability properties do not change. 
Since the load current does not depend on the states of the converter, it can 
be seen as a disturbance signal. The conclusion is that the use of measured 
load current for control is feedforward in the case where the load is a current 
source. 

Now assume that the load is a resistor with resistance R . If the load 
current is not used, )(
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If the load current is used, the output voltage is given by (2.82) and )(

2
sG

coiv  
is given by (2.83). It is seen from (2.84) and (2.83) that )(

2
sG

coiv  changes 
from the impedance of the parallel of the capacitor and resistor to just the 
impedance of the capacitor when the measured load current is introduced for 
control. Since R  is not present in (2.83), the use of the load current makes 
the control-to-output transfer function )(

2
sG

coiv  invariant for different values 
of R , i.e. different linear resistive loads. 

If the load is a resistor and the measured load current is introduced for 
control, the control-to-output transfer function )(

2
sG

coiv  changes, as shown 
above, and can also become unstable, as will be shown in the next subsection. 
The conclusion is that the use of measured load current for control is not 
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Figure 2.39: A configuration of the controller where the gain-scheduling 

property is emphasized. 
 
 

feedforward in the case where the load is a resistor. It can instead be seen as 
gain scheduling, as now will be shown. Figure 2.39 is a modified version of 
Figure 2.33. The closed inner loop in Figure 2.33 is regarded as the process to 
be controlled in Figure 2.39. The controller in Figure 2.39 controls the input 
signal of the process, )(tic . The output signals of the process, )(tvo  and 

)(tiload , are measured and used by the controller. The controller consists of 
two voltage controllers in cascade: an outer voltage controller and a gain-
scheduling voltage controller. The outer voltage controller then controls a 
“process” which is the closed loop of the gain-scheduling voltage controller 
and the process. Assume that the gain-scheduling voltage controller is 
designed just to make this “process” invariant for different linear resistive 
loads. Assume further that the outer voltage controller is designed thereafter 
to obtain the wanted properties of the whole closed loop system. If the 
designed gain-scheduling voltage controller is 
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then the control signal is 
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Hence, the gain-scheduling voltage controller is exactly the same as the 
middle controller in Figure 2.33 for the buck converter, i.e. (2.74). The use 
of measured load current for control can therefore be seen as gain scheduling. 

It was shown previously that the control-to-output transfer function 
)(

2
sG

coiv  is invariant for different linear resistive loads if (2.74) is used. The 
designed gain-scheduling voltage controller, (2.85)-(2.87), is therefore 
reasonable since it is equivalent to (2.74) and the purpose was to obtain 
invariance for different linear resistive loads. 

By using the simple model in Figure 2.37, the following description of 
the process in Figure 2.39 is obtained in the case where the load is a resistor: 
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This is a first order system and the most natural choice for the state variable is 
the voltage across the capacitor, which is the same as the output voltage, 

)(tvo . )(tvo  and )(tiload  are both measurements of this state, where the 
latter one is scaled by the factor R1 . If the controller knows the value of R , 
it will control the process equally well with only )(tiload  measured compared 
to if only )(tvo  is measured. 

That both signals are measured and used by the controller is in the above 
gain-scheduling approach interpreted as follows. )(tvo  is a measurement of 
the state and is fed back to the controller. The controller shall try to control 
the process such that )(tvo  is equal to reference signal refV  and it is 
therefore a voltage controller. The value of the load resistance, R , will be a 
parameter in the voltage controller. The operating conditions of the process 
vary with time since the load resistance varies. To reduce the influence of the 
changed dynamics of the process, the parameter R  in the controller is 
replaced by the time-varying parameter )(tRcal . It should be an estimate of 
the load resistance. To be able to calculate this estimate, an extra variable that 
reflects the operating conditions of a process must be measured and it is the 
load current, )(tiload . An estimate of the load resistance can now be 
calculated with the gain schedule (2.87). )(tiload  and also )(tvo  are used as 
scheduling variables. The calculated estimate, )(tRcal , is equal to the load 
resistance, R , if there are no measurement errors. 

An alternative interpretation of that )(tvo  and )(tiload  are both 
measured, is that it is the output power, )()( titv loado , that is measured and 
used to control the input power (Hiti and Borojevic, 1993). 

Schoneman and Mitchell (1989) use a load consisting of both a resistor 
and a current source. The load current is in this case dependent of the output 
voltage. The authors say that the load current is fed forward, but this is thus 
not correct, strictly speaking. They also claim that the “feedforward” does not 
affect the loop gain. The reason for this erroneous conclusion is that the 
authors at a point in the derivation neglect the changes of the current through 
the resistor. 

Risk of Instability 

From Figure 2.38, it is seen that there is positive feedback in the load 
current loop. This indicates that there can be a problem with the stability in 
the case where the load is a resistor. To investigate the stability, Figure 2.38 is 
generalized to obtain Figure 2.40, where the gain in the measurement of the 
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Figure 2.40: A measurement gain, iH , is introduced for the load current. 

 
 

load current is iH . In a real system, iH  is not exactly equal to 1, but the 
measurement can be made such that iH  is close to 1. The output voltage is 
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Hence, the control-to-output transfer function )(
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If iH >1, the system is unstable since the pole is in the right half plane in the 
complex s-plane. If iH =1, the system has a pole in the origin and the system 
acts as an integrator. If iH <1, the system is stable and the dc gain is 

( )iHR −1 , i.e. very high if iH  is close to 1. The conclusion of all this is 
that it is difficult or impossible to obtain a specific output voltage by 
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manually setting a value for )(2 tic  if iH  is close to 1. Instead, an outer 
voltage controller is used to set )(2 tic  and the system can be stabilized. 

Analysis Using Approximate Expressions 

In Section 2.5, approximate expressions for the buck converter with 
current-mode control were presented. In this subsection, these expressions are 
used to analyze how the control-to-output transfer function, the output 
impedance and the audio susceptibility are affected when using load current 
measurements to control the converter. The results are also compared with 
simulation results. 

To make the analysis in this subsection general, a transfer function, 
)(sHi , is introduced in (2.74): 

 
 .)(ˆ)()(ˆ)(ˆ

2 sisHsisi loadicc +=  (2.94) 
 

)(sHi  can represent the dynamics of a filter, which filters the signal from the 
load-current sensor, and also the sensor itself. From Figure 2.6, it is seen that 
the load current is 

 

 .)(
)(

)( ti
R

tv
ti inj

o
load +=  (2.95) 

 
Figure 2.41 shows the system obtained by using (2.94) and (2.95). In Section 
2.4, the subscript ol  was introduced to denote the converter transfer 
functions, i.e. the open loop system. This system is controlled by changing 
the duty cycle of )(tδ . If the inductor current is fed back, a new system is 
obtained which is controlled by changing )(tic . The transfer functions for 
this new system will be denoted with the subscript 2ol . However, it is not 
used for the control-to-output transfer function since there is no risk of 
confusion in that case. Since linear models are used, the output voltage is 
obtained by adding the contribution from each input signal as shown in 
Figure 2.41. 

By using (2.69)-(2.71) and Figure 2.41 the following results are obtained 
for the three major transfer functions: 
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Figure 2.41: The system obtained when using )(sHi  in the control law. 
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where )(sFESR  is defined in (2.73) and )(sFh  is defined in (2.23). )(sF f  is 
in this subsection a Taylor polynomial of degree 2 of )(sF f  in (2.57). 

The control-to-output transfer function (2.96) is first considered. A new 
variable, )(sF , is introduced: 

 
 .)()()( sFsFsF hESR=  (2.99) 

 
The load resistance, R , shows up only at one place in (2.96) and the more 

)(sHi  is in accordance with )(1 sF , the closer invariance for different loads 
is the control-to-output transfer function. )(1 sF  is approximately equal to 1 
at low frequencies since both )(sFESR  and )(sFh  are approximately equal to 
1 at low frequencies. If (2.74) is used, i.e. )(sHi  is equal to 1, the control-to-
output transfer function is almost invariant for different loads at low 
frequencies. It can be shown that the absolute value of the second term is 
much smaller than the absolute value of the first term, s , in the (largest) 
parenthesis in the denominator of (2.96) if )(sHi  is equal to 1. This means 
that the control-to-output transfer function is almost invariant for different 
loads for all frequencies in the interval [ ]nω,0 . The conclusion is that there is 
not so much to gain by trying to get )(sHi  in accordance with )(1 sF  
compared to setting )(sHi  equal to 1. 

It is seen from (2.73) and (2.23) that )(sFESR  has one high-frequency 
zero and )(sFh  has two high-frequency poles. If )(sHi  is equal to 0, i.e. the 
measured load current is not used in the control law, the low-frequency pole 
in (2.96) is 
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If )(sHi  is equal to 1, i.e. the control law (2.74) is used, the low-frequency 
pole in (2.96) is approximately 

 

 ( ) .5.0'1 −−≈ Dm
LC

T
p c

s  (2.101) 

 
The results obtained here for the position of the low-frequency pole are 
compared with the results obtained in the previous subsection where a simple 
model was used. According to (2.93), the pole moves from ( )RC1−  to the 
origin if iH  is increases from 0 to 1. The pole moves into the right half plane 
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in the complex s-plane if iH  increases further and the system becomes 
unstable. From (2.100) and (2.101), it is seen that the position of the low-
frequency pole is shifted approximately ( ) ( )LCDmT cs 5.0'−  to the left in the 
s-plane compared to the position of the pole in the simple model. A greater 

)(sHi  is therefore needed to obtain instability according to the model used 
in this subsection compared to what is needed according to the simple model. 

It is seen from (2.96) that the dc gain is approximately inversely 
proportional to the distance between the low-frequency pole and the origin. 
Therefore, the dc gain approximately increases by the same degree as the first 
(lowest) corner frequency decreases if )(sHi  is changed from 0 to 1. 

Figure 2.42 shows the Bode plot for )(
2

sG
coiv  in (2.96) when different 

)(sHi  and loads, minR =1 Ω and maxR =4 Ω, are used. Except for R , the 
parameter values shown in Table 2.1 are used. cm  is set to 2. From the figure 
it is seen that for )(sHi =0, the gain and phase shift changes considerably for 
different loads. For )(sHi =1, the gain and phase shift is almost invariant for 
different loads. Simulation results are also plotted in Figure 2.42 and they are 
in good agreement with (2.96). An extended version of the simulation model 
in Figure 2.18 is used. 

Previously in this subsection, we concluded from (2.96) that the more 
)(sHi  is in accordance with )(1 sF , the closer invariance for different loads 

is the control-to-output transfer function. Simulation results have showed 
that when )(sHi  is set to )(1 sF  in series with a second order Butterworth 
low-pass filter with corner frequency at the switching frequency, the transfer 
function is closer to invariance for different loads than when )(sHi  is set 
equal to 1. This is in accordance with the conclusion. 

According to (2.96), )(sHi  should be equal to )(1 sF  to obtain 
invariance for different loads. It will now be shown that this result also can be 
obtained by applying gain scheduling. Assume that the only goal with the 
gain scheduling controller is to make the closed loop invariant for different 
loads and an outer controller is designed later to control the output voltage 
(see Figure 2.39). 

The first step in designing the gain scheduling controller is to design a 
controller as if the resistance of the load is constant and known. This 
controller is here designed by using model matching (Chen, 1999, Section 
9.3), which is similar to pole placement but the zeros are also placed. The 
process to be controlled is )(sG

coiv  and it has one zero and three poles 
according to (2.69). The position of the zero associated with )(sFESR  does 
not depend on R . The same is true for the two high-frequency poles 
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Figure 2.42: The control-to-output transfer function of a buck converter 

controlled by (2.94). Symbol for simulation result is in 
parenthesis. Dash-dotted line (): )(sHi =0 and R = minR . 
Dotted line (O): )(sHi =0 and R = maxR . Solid line (+): 

)(sHi =1 and R = minR . Dashed line (x): )(sHi =1 and 
R = maxR . Note that the two last mentioned lines almost 
coincide. 

 
 

connected with )(sFh . However, the position of the low-frequency pole, 1p , 
connected with )(sFl  and the dc gain of )(sG

coiv  depend on R . 
The expressions for the dc gain and the position of all the poles and zeros 

of the closed loop system )(
2

sG
coiv  should be independent of R . Since this is 

the only goal with the controller, the dc gain and the positions are chosen 
such that the expression of the controller is simple. Two poles and a zero are 
therefore placed at the same position as the two high-frequency poles and the 
zero in )(sG

coiv . It turns out that it is suitable to place the last pole at 
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and to choose the dc gain )(1 1nCp− . With these choices, the controller is 
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1
)(ˆ)(ˆ

2 sv
RsF

sisi occ
−−=  (2.103) 

 
where )(sF  is defined in (2.99). 

The second step in designing the gain scheduling controller is to replace 
the parameter R  in the control law (2.103) with the time-varying parameter 

)(tRcal  defined in (2.87) and the result is 
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)()(

1
)(ˆ)(ˆ

22 si
sF

sisv
sRsF

sisi loadco
cal

cc +=−−=  (2.104) 

 
By comparing (2.104) and (2.94), it is concluded that )(sHi  should be equal 
to )(1 sF  to obtain invariance for different loads. It has now been shown 
that this result could be obtained by applying gain scheduling. Note that if 

)(sHi  is equal to )(1 sF  in (2.96), then the dc gain and the low-frequency 
pole in (2.96) are exactly the same as the choices made above in the model 
matching design. 

The output impedance (2.97) is now considered. Note that the 
denominator is exactly the same as in (2.96) and that the numerator is 
independent of R . The conclusions about invariance of R  for the control-to-
output transfer function are therefore also valid in this case. From (2.97), it is 
seen that the more )(sHi  is in accordance with )(1 sFh , the lower is the 
output impedance. )(1 sFh  is approximately equal to 1 at low frequencies. If 
(2.74) is used, i.e. )(sHi  is equal to 1, the output impedance will be low at 
low frequencies. 

Figure 2.43 shows the Bode plot for the output impedance in (2.97) 
when different )(sHi  and loads are used. The parameter values used for the 
control-to-output transfer function are also used here. From the figure it is 
seen that for )(sHi =0, the output impedance is high at low frequencies. 
When )(sHi  is changed to 1, the output impedance is reduced at low 
frequencies and it becomes almost invariant for different loads. Simulation 
results are also plotted in Figure 2.43 and they are in good agreement with 
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Figure 2.43: The output impedance of a buck converter controlled by (2.94). 

Dash-dotted line (): )(sHi =0 and R = minR . Dotted line (O): 
)(sHi =0 and R = maxR . Solid line (+): )(sHi =1 and 

R = minR . Dashed line (x): )(sHi =1 and R = maxR . Note that 
the two last mentioned lines almost coincide. Points: Simulation 
with R = maxR  and )(sHi  equal to )(1 sFh  in series with a 
second order filter. 

 
 

(2.97). When )(sHi  is changed to )(1 sFh  in series with a second order 
Butterworth low-pass filter with corner frequency at five times the switching 
frequency, simulation results show (see Figure 2.43) that the output 
impedance is further decreased by approximately 20 dB for all the tested 
frequencies. Note that (2.97) is not valid for frequencies over half the 
switching frequency. Therefore, it cannot be used to predict what happens 
when there is a step change in the load, since the load current in this case 
consists of frequency components that are also over half the switching 
frequency. 
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Figure 2.44: The audio susceptibility of a buck converter controlled by 

(2.94). Dash-dotted line (): )(sHi =0 and R = minR . Dotted 
line (O): )(sHi =0 and R = maxR . Solid line (+): )(sHi =1 
and R = minR . Dashed line (x): )(sHi =1 and R = maxR . Note 
that the two last mentioned lines almost coincide. 

 
 
Finally, the audio susceptibility (2.98) is considered. Note that the 

denominator is exactly the same as in (2.96) and that the numerator is 
independent of R . The conclusions about invariance of R  for the control-to-
output transfer function are therefore also valid in this case. According to 
Section 2.4, it is possible to choose cm  such that the audio susceptibility is 
very small at dc. This ability still remains in the case where the control law 
(2.94) is used since the expression )(' sFDm fc −  in (2.71) also is present in 
the numerator of (2.98). 

Figure 2.44 shows the Bode plot for the audio susceptibility in (2.98) 
when different )(sHi  and loads are used. The parameter values used for the 
control-to-output transfer function are also used here. From the figure it is 
seen that for )(sHi =0, the gain changes considerably for different loads. For 
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)(sHi =1, the gain is almost invariant for different loads. Simulation results 
are also plotted in Figure 2.44 and they are in good agreement with (2.98). 

In the case where a linearized version of (2.75) is used to control a boost 
converter, the control-to-output transfer function, the output impedance, and 
the audio susceptibility are found in Johansson (2003, Section 7.5, Equations 
7.122, 7.151, and 7.156). The corresponding results for the buck-boost 
converter are found in Johansson (2003, Section 7.6, Equations 7.187, 7.192, 
and 7.198). For boost and buck-boost converters, it is not possible to obtain 
invariance for different loads at high frequencies due to the presence of zeros 
in the right half plane of the complex s-plane. 

2.8 Summary and Concluding Remarks 

This section explains which major models were obtained and how they 
were derived. The main conclusions are also presented. However, the method 
used to verify the obtained models is first explained. 

Verification 

Evaluation of a converter by means of a network analyzer is common and 
this is one of the reasons for the interest in models that can predict the 
frequency functions. 

To verify the derived small-signal models, the frequency functions 
predicted by them were compared with simulation results. Switched (large-
signal) simulation models were utilized and the output voltage then consists 
of several Fourier components. To obtain the frequency function, one 
frequency at the time was evaluated. A sinusoidal signal with frequency mω  
was injected and only the Fourier component with frequency mω  in the 
output voltage was considered. A network analyzer also just considers this 
Fourier component. 

The control signal can be considered to be sampled with the switching 
frequency. The frequency functions were therefore only evaluated for the 
frequency interval dc to half the switching frequency. 

State-Space averaging 

State-space averaging was used to derive a linear continuous-time time-
invariant model for the buck converter. The control-to-output transfer 
function, the output impedance, and the audio susceptibility were extracted 
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from this model. We concluded that these transfer functions are in good 
agreement with the simulation results. 

Current-Mode Control 

The Ridley and Tan models were applied to the buck converter with 
current-mode control. We concluded that the obtained control-to-output 
transfer functions and the output impedances are in good agreement with the 
simulation results but the obtained audio susceptibility is not. 

The high-frequency extensions in the Ridley and Tan models are based 
on an accurate control-to-current transfer function, which is derived with the 
assumption that the changes in the input and output voltages are negligible. 
The actual changes in the input and output voltages are in the Ridley and 
Tan models taken into consideration by including two feedforward gains, fk  
and rk . These gains are designed such that the dc gain should be correct. 
This design results in modeling errors, especially for the audio susceptibility at 
high frequencies. The reason is that the amplitude of the perturbation in the 
input voltage does not decrease at high frequencies since the injection signal 
from the network analyzer affects the input voltage directly. However, when 
the control-to-output transfer function and the output impedance are 
considered, the input voltage is not affected and the changes in the output 
voltage is negligible at high frequencies due to the low-pass character of the 
output filter of the converters. 

A Novel Model 

A novel model for the audio susceptibility of converters with current-
mode control was derived by treating the changes in the input and output 
voltages in a more refined way. The novel model was applied to the buck 
converter. We concluded that the obtained audio susceptibility is in good 
agreement with simulation results. 

Improved Models 

The novel model was used to improve the Ridley and Tan models. The 
feedforward gains fk  were changed such that the two models became equal 
to the novel model. 
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Approximations of Obtained Expressions 

The control-to-output transfer function, the output impedance, and the 
audio susceptibility obtained from the improved Ridley model were 
approximated. To be able to do this, several assumptions were introduced. 

Using Load Current for Control 

The output voltage and the inductor current are measured in the case 
where current-mode control is used. Some properties that can be obtained 
when the controller also uses load current measurements were analyzed. The 
control-to-output transfer function, the output impedance, and the audio 
susceptibility were derived for the buck converter. The main conclusions are 
presented here. 

 
1. The analysis confirms that low output impedance can be obtained. 
 
2. The analysis shows that in the case where the load is a current source the 

following properties are obtained: 
• The use of measured load current for control is feedforward. 
• The control-to-output transfer function does not change when this 

feedforward is introduced. 
 
3. The analysis shows that in the case where the load is a linear resistor, the 

following properties are obtained: 
• The control-to-output transfer function can change when the 

measured load current is introduced for control. 
• The converter can become unstable when the measured load current 

is introduced for control. 
• The control-to-output transfer function can be almost invariant for 

different linear resistive loads if the measured load current is used for 
control. 

• The use of measured load current for control is not feedforward. It 
can instead be seen as gain scheduling. 

 
The derived approximate expressions were used as a starting point when 

expressions were derived for the closed loop system where the load current is 
used for control. This is not the best way to derive reliable expressions. 
Instead, the non-approximate expressions should have been used as a starting 
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point and the derived expressions for the closed loop system should have been 
approximated afterwards. 

 





89 

Chapter 3 Model Including 
Stray Resistances 

If the frequency functions predicted by the transfer functions for the buck 
converter derived in the licentiate thesis, Johansson (2003), are compared 
with experimental results obtained by means of a network analyzer, it is found 
that there is a large difference in one case. The transfer function for the 
output impedance does not predict the experimental results at low frequencies 
when the measured load current is utilized for control. The reason for the 
difference is that the stray resistances in the inductor, transistor, and diode 
were not considered in the licentiate thesis. In this chapter a new transfer 
function for the output impedance is derived where the stray resistances are 
considered. It will be compared with experimental results in Chapter 4. 

3.1 Introduction 

Figure 2.1 shows the circuit of the buck converter that is used in the 
licentiate thesis. Only one non-ideality is considered and it is the ESR of the 
capacitor, cR . Figure 3.1 shows the circuit of the buck converter that is used 
in this chapter to derive a new transfer function for the output impedance. 
Three stray resistances are added compared to the circuit in Figure 2.1. It is 
the resistance in the inductor, LR , the resistance in the transistor while it 
operates in the on state, tR , and the resistance in the diode while it conducts, 

dR . The inductor, transistor, and diode are each modeled as an ideal 
component in series with an ideal resistor. 

The methodology used in the derivation is analogous to the one used in 
the licentiate thesis. In Section 3.2, state-space averaging is used to derive a 
model of the buck converter. In Section 3.3, the Ridley model is used to 
obtain a model of the buck converter with current-mode control. The output 
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Figure 3.1: The circuit of the buck converter where stray resistances are 
included. 

 
 

impedance for the case where the measured load current is utilized for control 
is derived in Section 3.4. A summary and concluding remarks are presented 
in Section 3.5. 

3.2 State-Space Averaging 

In this section, a linear time-invariant model of the buck converter is 
derived by means of state-space averaging. The converter can be described as 
switching between different time-invariant systems and the state-space 
description of each one of these systems is first derived. These state-space 
descriptions are used as a starting point in the method of state-space 
averaging. This method is then applied to the buck converter and the result is 
a linear time-invariant model in state-space description. Finally, several 
transfer functions are extracted from this model. 

State-Space Description for Each Time Interval 

Since it is assumed that the converter is operated in continuous 
conduction mode, two different systems must be considered. The state-space 
description of each one of these two systems is derived in this subsection. 

The circuit in Figure 3.2 is used as a model of the buck converter during 

ont  (compare Figure 3.2 and Figure 3.1). The transistor is on during ont  and 
is modeled with tR . The diode does not conduct and is therefore removed. 
As in Figure 2.3, a current source is added and it injects the current )(tiinj . 
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Figure 3.2: The circuit of the buck converter during ont . 

 
 
A new parameter, onR , is introduced: 
 

 .tLon RRR +=  (3.1) 
 

From Figure 3.2, the following equations are obtained: 
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The circuit in Figure 3.2 is a second order system. Let )(tiL  and )(tv  be 

chosen as the state variables. Regard )(tvg  and )(tiinj  as the input signals 
and )(tvo  as the output signal. The following state-space system is obtained 
from (3.2)-(3.4) according to the appendix (Section 3.6): 
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The circuit in Figure 3.3 is used as a model of the buck converter during 

offt  (compare Figure 3.3 and Figure 3.1). The transistor is off during offt  
and is therefore removed together with the input voltage source. The diode 
conducts and is modeled with the resistance dR . 

A new parameter, offR , is introduced: 
 

 .dLoff RRR +=  (3.13) 

 
The circuit in Figure 3.2 is the same as the circuit in Figure 3.3 if )(tvg  is set 
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Figure 3.3: The circuit of the buck converter during offt . 

 
 

to zero and tR  is replaced by dR . Therefore, a state-space model for the 
circuit in Figure 3.3 can be obtained by setting all the coefficients for )(tvg  
to zero and by replacing onR  with offR  in (3.5): 
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 ,12 CC =  (3.17) 

 
 .12 EE =  (3.18) 
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Applying State-Space Averaging 

The method of state-space averaging is applied to the buck converter in 
this subsection. 

A new parameter, aR , is introduced: 
 

 .' offona RDDRR +=  (3.19) 

 
where 'D  is defined in (2.15). aR  is the average stray resistance. 

A dc model is first derived from (2.6) by setting )(ˆ tx , )(ˆ t'u , )(ˆ ty , and 
dttd )(x  to zero: 
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Assume that the dc value of )(tiinj  is zero. The following equations are then 
obtained if (3.20) is expanded: 
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(3.26) is simplified to: 

 
 .LRIV =  (3.28) 

 
(3.28) is inserted into (3.27): 

 

 .VV
RR

R
V

RR

R
V

cc

c
o =

+
+

+
=  (3.29) 

 
(3.28) is inserted in (3.25): 
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Finally, an ac model is derived from (2.6). According to Johansson (2003, 

Section 2.3), the following linear system is obtained if (2.6) is linearized: 
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where 
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 [ ] ,dBBB'=  (3.33) 
 

 [ ] ,dEEE'=  (3.34) 
 

 ( ) ( ) ,UBBXAAB 2121d −+−=  (3.35) 
 

 ( ) ( ) .UEEXCCE 2121d −+−=  (3.36) 

 
(3.35) and (3.36) are expanded and written on an explicit form: 
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One expression in (3.37) is rewritten by using (3.28), (3.31), (3.19), and 
(2.15): 
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(3.33) and (3.34) are expanded: 

 

 ( )
( )

( )

( )
,

00 ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
+

+=

CRR

R
LRR

RRV

LRR

RR

L

D

c

a

offg

c

c

B'  (3.40) 

 



Chapter 3. Model Including Stray Resistances 97 

 

 .00 ⎥
⎦

⎤
⎢
⎣

⎡
+

−=
c

c

RR

RR
E'  (3.41) 

 
All the coefficient matrices in the ac model (3.32) are now available. 

Extracting the Transfer Functions 

The control-to-output transfer function, the output impedance and the 
audio susceptibility will now be derived from the linearized system in (3.32). 

Assume that the state is zero initially. The Laplace transform of (3.32) is 
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(3.42) is rewritten: 
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The following six transfer functions are obtained from the first equation in 
(3.43) according to the appendix (Section 3.6): 
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The control-to-output transfer function, the output impedance, and the 

audio susceptibility are obtained by combining (3.44)-(3.49) and the second 
equation in (3.43) (see appendix): 
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where )(sdenol  is defined in (3.50). By comparing (3.51)-(3.53) with (2.12)-
(2.14), it is concluded that the stray resistances LR , tR , and dR  do not 
affect the number of poles and zeros in the transfer functions. Furthermore, if 
these stray resistances are set to zero in (3.51)-(3.53), the equations (2.12)-
(2.14) are obtained as expected. 
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3.3 Current-Mode Control 

In this section, the Ridley model is used to obtain a model of the buck 
converter with current-mode control. One part of this model is the model of 
the converter derived in the previous section. 

To obtain a model where the stray resistances are considered, the block 
diagram in Figure 2.17 must be changed. In Figure 2.17, changes in the input 
and output voltages are taken into account by using the feedforward gains fk  
and rk . These feedforward gains depend on the converter topology. The 
contribution to the input of the modulator block )(sFm  is 

 
 .)(ˆ)(ˆ svksvk orgf +  (3.54) 

 
In Ridley (1991), a more general block diagram is presented where  

)(ˆ svon  and )(ˆ svoff  are used instead of )(ˆ svg  and )(ˆ svo . )(ˆ svon  is the 
voltage across the inductor during ont  and )(ˆ svoff  is the voltage across the 
inductor during offt . The contribution to the input of the modulator block 

)(sFm  is 
 

 ,)(ˆ')(ˆ' svksvk offronf +  (3.55) 
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 ,
2

1' ⎟
⎠
⎞

⎜
⎝
⎛ −−= D

L

RDT
k is

f  (3.56) 

 

 .
2

'
'

2

L

RTD
k is
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The feedforward gains 'fk  and 'rk  do not depend on the converter 
topology which is an advantage. Note that the feedforward gains fk  and rk  
depend on the converter topology. 

If the stray resistances are not considered, the following expressions for 
)(ˆ svon  and )(ˆ svoff  are valid for the buck converter (see Table 2.2): 

 
 ,)(ˆ)(ˆ)(ˆ svsvsv ogon −=  (3.58) 
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 .)(ˆ)(ˆ svsv ooff =  (3.59) 
 

(3.55) is rewritten for this case: 
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By comparing (3.54) and (3.60), it is concluded that fk  should be equal to 

'fk  and so it is (compare (2.37) and (3.56)). Furthermore, rk  should be 
equal to '' rf kk +−  and this is also the case since (2.38) is the same as 

 

 
( )

.
22

12

2

'

2
1''

22

2

L

RT

L

RTDRTDRDT

L

RTDD

L

RDT
kk

isisisis

isis
rf

=
−+−

=+⎟
⎠
⎞

⎜
⎝
⎛ −=+−

(3.61) 

 
According to Figure 2.17, the duty cycle is 

 

 ( ).)(ˆ)()(ˆ)(ˆ)(ˆ)()(ˆ siRsHsiRsvksvksFsd Lieciorgfm −++= (3.62) 

 
If the stray resistances are considered, the following expressions for 

)(ˆ svon  and )(ˆ svoff  are valid for the buck converter (see Figure 3.2 and 
Figure 3.3): 

 

 ,)(ˆ)(ˆ)(ˆ)(ˆ svsiRsvsv oLongon −−=  (3.63) 

 

 .)(ˆ)(ˆ)(ˆ siRsvsv Loffooff +=  (3.64) 

 
For this case, the Ridley model is according to Figure 3.4 and the duty cycle 
is 
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Figure 3.4: The Ridley model for the buck converter including stray 

resistances. 
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 (3.65) 

 
where 

 

 ,'')()( 11
offrionfieee RkRRkRsHsH −− −+= (3.66) 

 

fk  is defined in (2.37), and rk  is defined in (2.38). (3.66) is an extended 
version of )(sH e  and is used temporarily to reduce the size of the expressions 
below. 

The model of the converter is linear and the outputs are therefore 
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(3.65) is rewritten by using (3.67) and (3.68): 
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All the terms containing )(ˆ sd  in (3.69) are moved to the left: 
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(3.70) is rewritten: 

 



Chapter 3. Model Including Stray Resistances 103 

 

 

.)(ˆ)(ˆ
)(ˆ
)(ˆ

)(
)(ˆ
)(ˆ

)(ˆ
)(ˆ

)(ˆ
)(

)(ˆ

)(ˆ

)(ˆ
)(ˆ

)(
)(ˆ
)(ˆ

)()(ˆ
1

1

⎟
⎟

⎠

⎞
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

−
−

siRsi
si

si
RsH

si

sv
k

sv
sv

si
RsH

sv

sv
kk

sd

si
RsH

sd

sv
ksFsd

ciinj
inj

L
iee

inj

o
r

g
g

L
iee

g

o
rf

L
iee

o
rm

 (3.71) 

 
(3.67) is now modified using (3.71): 
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The control-to-output transfer function of the closed loop system, which 

includes the converter and the current controller, is obtained from (3.72): 
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As in Chapter 2, the subscript ol  will be used for the converter transfer 
functions, i.e. for the open loop system. When otherwise obvious the 
subscript will be excluded. The output impedance of the closed loop system is 
obtained from (3.72): 
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(3.74) 

The audio susceptibility of the closed loop system can be obtained from 
(3.72): 
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(3.73)-(3.75) are rewritten in the appendix (Section 3.6) by using the 

converter transfer functions derived in Section 3.2 and the results are 
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and )(sFh  is defined in (2.23). The parameter srK  shows the influence of 
the stray resistances LR , tR , and dR . If these stray resistances are zero, then 

srK  is also zero. Note that LR , tR , and dR  do not affect the number of 
poles and zeros in the transfer functions (3.76)-(3.78). 

The new expression for the output impedance can be derived without 
considering the audio susceptibility. The audio susceptibility has been 
considered so far in this chapter since it has given a more complete model 
without too much extra work. However, the audio susceptibility and the 
control-to-output transfer function will not be considered any more in this 
chapter. The audio susceptibility predicted by the Ridley model in (3.78) will 
for instance not be improved by using the novel model presented in Section 
2.4. 

3.4 Using Load Current for Control 

In this section, the output impedance is derived for the case where the 
measured load current is used for control. The result is analyzed and 
compared with simulation results. A discussion about the control method is 
also included. Finally, a heuristic approximation of the obtained expression is 
presented. 
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Derivation of the output impedance 

An expression for the output impedance is first derived and it is assumed 
that the control law (2.94) is used. Figure 2.41 shows the system obtained 
when (2.94) is used. The following is obtained from the figure: 
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An expression for the output voltage is obtained from (3.81): 

 

 

.
1

)(
)(ˆ
)(ˆ

1)(ˆ
)(ˆ

)(ˆ

)(ˆ
)(ˆ
)(ˆ

)(
)(ˆ
)(ˆ

)(ˆ
)(ˆ
)(ˆ

)(ˆ

1

2

2

2

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟

⎠

⎞

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎜⎜
⎜

⎝

⎛
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++=

R
sH

si

sv
sv

sv

sv

si
si

sv
sH

si

sv
si

si

sv
sv

i
c

o
g

olg

o

inj

olinj

o
i

c

o
c

c

o
o

(3.82) 

 
To obtain the output impedance, the two input signals )(ˆ svg  and )(ˆ

2 sic  
are set to zero in (3.82): 
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(3.83) is rewritten by using (3.76) and (3.77): 
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where )(sFESR  is defined in (2.73), )(sFh  is defined in (2.23), )(sK sr  is 
defined in (3.80), and )(sden  is defined in (3.79). 

Analysis of the obtained expression 

The obtained expression (3.84) is analyzed and compared with simulation 
results in this subsection. A discussion about the control method is also 
included. 

From (3.84), it is seen that the more )(sHi  is in accordance with 

srh KsF +− )(1 , the lower is the output impedance. )(1 sFh
−  is approximately 

equal to 1 at low frequencies. If (2.74) is used, i.e. )(sHi  is equal to 1, and 

srK <<1, the output impedance will be low at low frequencies. If )(sHi  is 
equal to 1 srK+ , the output impedance will be even lower at low frequencies. 

The curves and the simulation results in Figure 2.43 for R = minR  and 
two different )(sHi are shown again in Figure 3.5. LR , tR , and dR  were 
not considered when these results were generated. Figure 3.5 also shows the 
corresponding results for the case where LR =20 mΩ, tR =60 mΩ, and 

dR =25 mΩ. For this case, the curves are generated with (3.84) and the 
simulation results are generated with the model shown in Figure 3.6. Two 
transfer functions, )(sHi  and )(sH v , are added in the simulation model 
compared to the model in Figure 2.18. )(sH v  should be used only when the 
boost and buck-boost converters are considered and )(sH v  is therefore set to 
zero. The constant Ic2 is adjusted manually so that the average value of the 
duty cycle, D , is equal to 0.455. Note that the average value of the output 
voltage, oV , is lower in the case where aR >0 compared to the case where aR  
is zero according to (3.31) and (3.29). eM  is calculated by using (2.25) and 
(3.108): 
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Figure 3.5: The output impedance of a buck converter controlled by (2.94). 

Dash-dotted line (): )(sHi =0 and without LR , tR , and dR . 
Dotted line (O): )(sHi =0 and with LR , tR , and dR . Solid line 
(+): )(sHi =1 and without LR , tR , and dR . Dashed line (x): 

)(sHi =1 and with LR , tR , and dR . Note that the two first 
mentioned lines almost coincide. 
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The buck converter subsystem shown in Figure 3.7 is used and it includes 

LR , tR , and dR . According to Figure 3.5, the simulation results are in good 
agreement with (3.84). 

From Figure 3.5 it is seen that for )(sHi =0, the output impedance is 
high at low frequencies and it is insensitive to LR , tR , and dR . When 

)(sHi  is changed to 1, the output impedance is reduced at low frequencies 
and it is sensitive to LR , tR , and dR . 
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Figure 3.6: The simulation model where two transfer functions, )(sHi  and 

)(sH v , are included. 
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Figure 3.7: The buck converter subsystem where LR , tR , and dR  are 

included. tR  and dR  are parameters in the transistor and diode 
emulator block, respectively. 
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To explain these results, consider first the output impedance for the open 
loop system (3.52). If aR  is zero, the output impedance tends to zero as the 
frequency tends to zero (see Figure 2.9). The output impedance is mainly 
determined by the ideal inductor at low frequencies since the impedance of 
the capacitor and the load resistor is much higher than the impedance of the 
inductor. If aR >0, the output impedance is mainly determined by the ideal 
inductor and the average stray resistance aR  at low frequencies. At dc, the 
output impedance is equal to aR  connected in parallel with R . Hence, the 
output impedance is sensitive to LR , tR , and dR . 

Now consider the case where current-mode control is used ( )(sHi =0). 
The inductor current is controlled and the simple model in Figure 2.37 can 
be used at low frequencies. In this model, the capacitor and the load is fed by 
a current source. The impedance of the current source is infinite. Therefore, 
the output impedance is mainly determined by the load resistor at low 
frequencies (according to the simple model). Since the current through the 
inductor is controlled, the closed loop system is insensitive to resistances in 
series with the inductor. 

Finally, consider the case where the load current is measured and used for 
control ( )(sHi =1). In Figure 2.33, the interpretation of this case is that an 
outer controller (the middle controller in the figure) is added. Since the 
inductor current controller makes the inner closed loop system insensitive to 

LR , tR , and dR , it is surprising that the new closed loop system, where the 
outer controller i added, is sensitive to LR , tR , and dR . (2.78) shows why 
Figure 2.33 is misleading. The two measured signals, )(tiL  and )(tiload , 
enter the control law with opposite signs. )(tiload  works against the decrease 
in sensitivity to LR , tR , and dR  obtained by )(tiL . An alternative 
interpretation is also obtained from (2.78): It is the current to the output 
capacitor, )(ticap , that is controlled in the new closed loop system. Hence, 
there is only one controller and one measured signal, not two controllers and 
two measured signals. Since the current through the inductor is no longer 
controlled, the new closed loop system is sensitive to resistances in series with 
the inductor. If the capacitor current really is calculated from measurements 
of )(tiL  and )(tiload , the two measured signals can be seen as internal signals 
in the capacitor current sensor. 

The alternative interpretation presented above, where the capacitor 
current is measured, is now investigated further. The circuit in Figure 2.1 (or 
Figure 3.1) is a second order system. The most natural choice for the state 
variables is the voltage across the capacitor, )(tv , and the inductor current, 

)(tiL . However, assume that the output voltage, )(tvo , and the capacitor 
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current, )(ticap , are chosen instead. When an outer voltage controller is 
added to the controller discussed above, each of the two states is measured 
(once). Hence, the total controller is a standard state feedback controller 
where all the states are measured. Cascade control can be seen as a special case 
of state feedback and our case fulfills the requirements of cascade control. In 
fact, it is a very common type of cascade control (if we neglect the ESR of the 
capacitor). In the outer loop the output voltage is controlled and in the inner 
loop the derivative of the output voltage is controlled (the capacitor current is 
proportional to the derivative of the output voltage). The advantage of using 
such a cascade control instead of a PID control is that the derivative part is 
measured instead of calculated which makes it less sensitive to measurement 
noise. 

There seems to be a contradiction between the discussion above and the 
one made in Section 2.7 where it was concluded that the control can be seen 
as gain scheduling. This is now investigated. Assume that )(tvo , )(tiL , and 

)(tiload  are measured. (The measurement of )(tiload  can be replaced by 
measurement of )(ticap  since )(tiload  then can be calculated.) )(tvo  and 

)(tiL  can be chosen as the two state variables of the converter. Hence, the 
two states are measured. )(tiload  is used to estimate the load resistance so that 
gain scheduling can be applied. In the general case where the load is a 
dynamic system, )(tiload  is used to estimate a dynamic model of the load so 
that adaptive control can be applied. If )(tiL  and )(tiload  are measured, 
more information is available compared to the case where only )(ticap  is 
measured. If a gain-scheduling controller is designed in such a way that the 
measurements of )(tiL  and )(tiload  are used only to calculate the difference 

)(tiL - )(tiload , then the extra information is wasted. In this case, the same 
control can be obtained from measurements of only )(tvo  and )(ticap  and 
this can be regarded as cascade control according to the previous discussion. 
One interpretation can be that the cascade controller is a special case of the 
gain-scheduling controller. Another interpretation is that if the potential of 
gain scheduling is not fully utilized during the design, the obtained gain 
scheduling controller can deteriorate to a cascade controller. 

It was concluded previously that the output impedance will be lower at 
low frequencies if )(sHi  is changed from 1 to 1 srK+ . The output 
impedance is zero at dc with this choice. In some cases, it is possible to obtain 
this even if )(sHi =1 by changing the relative slope of the external ramp, cm . 
From (3.84), it is seen that srK  must be zero and cm  is therefore calculated 
as follows: 
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One restriction when choosing cm  is that the control of the inductor current 
can be unstable if cm  is small. According to Johansson (2003, Section 6.2), 

'Dmc  must be greater than 0.5 to obtain stability. Hence, it is not possible to 
obtain zero output impedance at dc if onR  is smaller than offR  (see (3.87)). 

Figure 3.8 shows the Bode plot for the output impedance in (3.84) for 
two different cases. In the first case, )(sHi  is set to 1 srK+  (=1.01686). In 
the second case, )(sHi =1 and cm  is changed from 2 to 1.04812 according 
to (3.88). The values for the other parameters are the same as the ones used in 
Figure 3.5. From Figure 3.8 it is seen that the output impedance tends to zero 
as the frequency tends to zero in both cases as expected. Note that the output 
impedance in the first case is almost the same as the output impedance 
obtained for the case where )(sHi =1 and LR , tR , and dR  are zero 
(compare Figure 3.8 and Figure 3.5). 

Simulation results are also plotted in Figure 3.8. Note that simulation 
results for the frequency 10 Hz is included this time. For the first case, 
simulation results agree closely with the magnitude curve. However, there is a 
significant difference in the phase curve at 10 Hz. For the second case, there is 
a significant difference in both the magnitude and phase curves at low 
frequencies. By adjusting cm , it is found that the simulation model predicts a 
minimum for the output impedance at cm =1.0542. The simulation results 
are plotted in Figure 3.8 also for this cm  and it is seen that they agree closely 
with the magnitude and phase curves. It seems reasonable that small modeling 
errors can cause large relative errors in (3.84) in the case where low output 
impedance is to be predicted since there is a subtraction between two almost 
equally large values in this case. Hence, the prediction of low output 
impedance is very sensitive to errors in cm . 
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Figure 3.8: The output impedance of a buck converter with LR , tR , and dR  

and controlled by (2.94). Dashed line (x): )(sHi =1.01686 (and 

cm =2). Solid line (+): )(sHi =1 and cm =1.04812. Simulation 
results with )(sHi =1 and cm =1.0542 are also included (O). 

 
 

Heuristic approximation of the obtained expression 

Figure 3.9 shows the Bode plots for the denominators in (3.84) and 
(2.97). The parameter values used in Figure 3.5 are also used here and 

)(sHi =1. From Figure 3.9 it is seen that the denominator in (2.97) is a good 
approximation of the denominator in (3.84) even though LR , tR , and dR  
are not considered and some other approximations are made. Therefore, a 
heuristic approximation of the output impedance is 
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Figure 3.9: Bode plots of two denominators. Dashed line: denominator in 

(3.84). Solid line: denominator in (2.97). Note that the two lines 
almost coincide. 

 
 

( )
( ) ( )

,
5.0'

1
)()()(1

)()()(1
)(

11

⎟
⎠
⎞

⎜
⎝
⎛ −+−+

⎟
⎠
⎞⎜

⎝
⎛ +−

=

−−

Dm
LC

T

RC
sHsFsFsC

sFsHKsF
sZ

c
s

ihESR

ESRisrh

out  (3.89) 

 
where )(sFESR  is defined in (2.73), )(sFh  is defined in (2.23), and )(sK sr  
is defined in (3.80). Note that (3.89) is exactly the same as (2.97) if 

)(sHi =0. 

3.5 Summary and Concluding Remarks 

A new transfer function for the output impedance has been derived in 
this chapter where the stray resistances in the inductor, transistor, and diode 
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have been considered. The methodology used in the derivation is analogous 
to the one used in the licentiate thesis, Johansson (2003). 

The new transfer function shows that the output impedance is sensitive to 
the stray resistances if the load current is used for control as proposed by Redl 
and Sokal (1986). In this control the measured inductor and load currents are 
only used to calculate the difference, i.e. the capacitor current. Hence, the 
capacitor current is controlled. Since the inductor current is not controlled, 
the output impedance is sensitive to the stray resistances. In current-mode 
control, not applying the load current for control, the inductor current is 
controlled and the indictor acts as a current source. Therefore, the output 
impedance is insensitive to the stray resistances, which are connected in series 
with the inductor. 

Since the capacitor current is controlled in the control proposed by Redl 
and Sokal (1986), cascade control is obtained when an outer voltage 
controller is added. If a gain-scheduling controller is designed in such a way 
that the measurements of the inductor and load currents are used only to 
calculate the difference, i.e. the capacitor current, the obtained gain 
scheduling controller will simply act as a cascade controller. 

In this chapter, it was also shown that the output impedance 
(theoretically) can become zero at dc also in the case where the stray 
resistances are larger than zero by adjusting the control ( )(sHi  or cm ). 
Furthermore, a heuristic approximation of the new transfer function for the 
output impedance was presented. Simulation results were also presented and 
they verified the main analytical results in the chapter. 

3.6 Appendix 

Some results presented previously in this chapter are derived in this 
section. First, the derivation of (3.5)-(3.12) is presented. Next, (3.44)-(3.49) 
are derived. The derivation of (3.51)-(3.53) is then presented. Finally, (3.76)-
(3.78) are derived. 

Derivation of (3.5)-(3.12) 

(3.4) is rearranged to: 
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(3.92) is used to substitute )(tvo  in (3.2) and (3.3): 
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(3.94) is simplified: 
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By using (3.93), (3.95), and (3.92), the state-space system in (3.5)-(3.12) is 
obtained. 

Derivation of (3.44)-(3.49) 

The first equation in (3.43) is expanded: 
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The matrix inversion in (3.96) is calculated: 
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(3.97) is simplified: 
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The six transfer functions (3.44)-(3.49) are obtained from (3.99). 

Derivation of (3.51)-(3.53) 

The second equation in (3.43) is expanded: 
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The control-to-output transfer function is obtained by combining (3.100), 
(3.44), and (3.45): 
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The output impedance is obtained by combining (3.100), (3.46), and (3.47): 
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 (3.102) 

 
The audio susceptibility is derived by combining (3.100), (3.48), and (3.49): 
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Derivation of (3.76)-(3.78) 

(3.73) is rewritten by using (3.44) and (3.51): 
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where 
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and )(sdenol  is defined in (3.50). Hence, the numerator in (3.76) is derived. 

(3.74) can be rewritten by using (3.46), (3.52), and the fact that (3.73) 
can be rewritten as in (3.104): 
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(3.106) 
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(3.75) is modified by using (3.48), (3.53), and the fact that (3.73) can be 
rewritten as in (3.104): 
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An expression for the slope of the inductor current while the transistor is 

on is obtained by using (3.2), (3.28), (3.29), (3.31), (3.19), and (2.15): 
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The first term in (3.105) is modified by using (2.36), (2.33), and (3.108): 
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(3.105) is rewritten using (3.109): 
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(3.110) is rewritten using (3.50) and (2.38): 
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The following is obtained from (2.23), (2.24), (2.20), and (2.21): 
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where )(sH e  is defined in (2.22). One part of (3.111) is rewritten by using 
(3.66), (3.112), (3.56), (3.57), (2.15), and (3.19): 
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where 
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The following is obtained if (3.113) is inserted into (3.111): 
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Hence, the denominator in (3.76) is derived. 

The large parenthesis in (3.106) is rewritten by using (3.110), (3.50), and 
(3.113): 
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(3.116) 

 
(3.106) is rewritten by using (3.116): 
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Hence, (3.77) is derived. 

The large parenthesis in (3.107) is rewritten by using (3.110): 
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(3.118) 

 
(3.107) is rewritten by using (3.118) and (2.37): 
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Hence, (3.78) is derived. 
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Chapter 4 Experimental 
Verification 

The control-to-output transfer function and the audio susceptibility for 
the buck converter were presented in Chapter 2. The frequency functions 
predicted by these two transfer functions and the new transfer function for 
the output impedance, presented in Chapter 3, are experimentally verified in 
this chapter. 

The buck converter used to obtain experimental results is presented in 
Section 4.1. The frequency functions predicted by the presented transfer 
functions and simulation model are compared with experimental results in 
Section 4.2. A summary and concluding remarks are presented in Section 4.3. 

4.1 Experimental Converter 

To obtain experimental results, an experimental buck converter was built 
and it is presented in this section. 

The circuit of the buck converter is shown in Figure 3.1. The 
components in the converter and the operating point are to some extent 
chosen such that non-idealities do not affect the measurement results so 
much. The input voltage, gV , is 24 V and the output voltage, oV , is 12 V. 
The experiments are made with two different resistive loads. The load 
resistance, R , is either equal to 2 Ω (= minR ) or 6 Ω (= maxR ). Therefore, the 
load current, loadI , is either equal to 6 A or 2 A. 

The transistor is a IRF540 from Intersil. According to the data sheet, it is 
a 28 A, 100 V, N-channel power MOSFET and )(ONDSr  is typically 60 mΩ 
(at junction temperature 25 °C). 

A MBR4060PT from TSC contains two diodes but we only use one of 
them. The circuit is a 40 A, 60 V, Schottky barrier rectifier according to the 
data sheet. The diagram that shows forward current versus forward voltage is 
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considered to obtain a value for dR . The slope is 33 mΩ at 2A and 17 mΩ at 
6A (at junction temperature 25 °C). For simplicity, the average value, 25 
mΩ, will be used in the models. 

The inductor consists of a molybdenum permalloy powder (MPP) 
toroidal core and a copper winding. The core is a 55907-A2 from Magnetics. 
According to the data sheet, the initial permeability is equal to 60 and the LA  
value is equal to 85 nH/turn2. Each core of this type is stamped with a grade 
and it is zero for our core. This means that the manufacturer has checked that 
the LA  value for our core is in the interval [99, 101] % of the nominal value. 
The outer diameter of the core is 7.78 cm, the inner diameter is 4.92 cm, and 
the height is 1.59 cm. The winding consists of 48 turns of copper wire. The 
diameter of the wire is 0.18 cm and the length of each turn is 6.3 cm. The 
inductance is calculated as follows: 

 

 196481085 292 ≈••== −NAL L µH. (4.1) 

 
The resistivity of copper is 1.72 µΩ-cm (at temperature 20 °C). Therefore, 
the dc resistance of the winding is calculated as follows: 

 

 ( )
20

218.0

3.648
1072.1

2
6 ≈•••== −

π
ρ

A

l
RL mΩ. (4.2) 

 
The capacitor actually consists of two capacitors connected in parallel. 

Each one of the capacitors is a RJH-50V331MI5 from ELNA. Each one is a 
330 µF, 50 V, aluminum electrolytic capacitor according to the data sheet. 
The maximum current ripple is 0.979 A (RMS) at 100 kHz and 105 °C. The 
ESR is 60 mΩ at 100 kHz and 20 °C. Totally, the capacitance is 660 µF and 
the ESR is 30 mΩ. 

The control proposed by Redl and Sokal (1986) is implemented 
according to the alternative approach presented by Schoneman and Mitchell 
(1989), i.e. only the capacitor current is measured and used by the controller. 
The capacitor current is measured by using a current shunt with resistance 50 
mΩ (model SR10 from Caddock). Hence, the gain of the current sensor is 50 
mV/A. The case where the capacitor current is measured by using a current 
transformer is analyzed in the Chapter 5. The resistance of the current shunt 
affects the converter properties significantly at high frequencies but it is not 
considered in the models presented in the previous chapters. However, since 
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Figure 4.1: The circuit of the current sensor used to measure the transistor 

current. 
 
 

the current shunt is connected in series with the capacitor, we can pretend 
that the resistance of the current shunt is a part of the ESR of the capacitor. 
Therefore, cR  is set to 80 mΩ and the non-ideality of the sensor is taken care 
of by the models. 

To be able to make experiments also for the case where only current-
mode control is used (neither load current nor capacitor current is used for 
control), the transistor current is measured by using a current transformer. 
The currents through the transistor and inductor are the same while the 
transistor is on. Therefore, the transistor current can be used instead of 
inductor current in peak current-mode control. It is rather easy to measure 
the transistor current using a current transformer since the transistor current 
is zero during the second part of each switching period. The circuit of the 
current sensor is shown in Figure 4.1. The core of the transformer is a ferrite 
toroid, TN36/23/15-3C11 from Ferroxcube. According to the data sheet, the 
initial permeability is equal to 4300 and the LA  value is equal to 5800 
nH/turn2. The secondary winding consists of 60 turns and the primary 
winding consists of 1 turn, i.e. the lead from the transistor goes straight 
through the toroid. 1D  and 2D  are diodes of type 1N4148. ZD  is a zener 
diode of type 1N4744A and the zener voltage is 15 V. While the transistor 
operates in the on state, the current in the secondary winding mainly goes 
through 1D  and the magnetizing current increases. The gain of the current 
sensor is approximately 13.2/60=0.22 V/A. While the transistor operates in 
the off state, 1D  does not conduct and the output voltage of the current 
sensor is zero as it should be. At the same time, the magnetizing current 
mainly goes through the 56 kΩ resistor. The voltage across the resistor makes 
the magnetizing current to decrease towards zero. To protect the components, 

itrans(t) 

13.2 Ω 
. . 

1:60 

56 kΩ 

D1 

D2 

ZD 

current- 
sensor 
output 
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the maximum voltage is limited by the zener diode. The impedance of the 
current sensor at the primary winding affects the transistor current but this 
will be neglected in the models. 

The outer voltage controller is excluded in the models presented in the 
previous chapters. Therefore, no voltage controller is implemented and we are 
actually not using current-mode control according to the definition. The 
output voltage 12 V is obtained by manually adjusting the current reference. 
The slope of the external ramp, eM , is 56000 A/s and the switching period, 

sT , is 20 µs. 
Referring to Figure 3.1 and the last section all the parameter values that 

will be needed are summarized in Table 4.1. 
 
 
Table 4.1: The parameter values for the experimental buck converter. 
 

Parameter Value 

L  196 µH 

LR  20 mΩ 

C  660 µF 

cR  80 mΩ 

minR  2 Ω 

maxR  6 Ω 

tR  60 mΩ 

dR  25 mΩ 

gV  24 V 

oV  12 V 

sT  20 µs 

eM  56000 A/s 
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4.2 Results 

The frequency functions predicted by the presented transfer functions 
and simulation model are compared with experimental results in this section. 
However, the conditions used to obtain the various results are first presented. 

Conditions 

A network analyzer, MS4630B from Anritsu, is used to measure the 
frequency functions. In each experiment, the gain and the phase shift are 
measured at 251 different frequencies in the interval [10 Hz, 100 kHz]. The 
frequencies are logarithmically equally spaced in the interval. Only the results 
for the frequencies in the interval [10 Hz, 25 kHz] will be presented since the 
switching frequency of the converter is 50 kHz. The network analyzer can 
make measurements in the frequency interval [10 Hz, 300 MHz] and this 
explains why a lower limit than 10 Hz is not chosen. The duration of each 
experiment, i.e. the sweep time, is 200 s and the resolution bandwidth is 3 
Hz. Neither averaging nor smoothing is used to improve the signal-to-noise 
ratio. 

The simulation model in Figure 3.6 and the parameter values in Table 
4.1 are used to obtain the simulation results that will be presented. Note that 
the stray resistances LR , tR , and dR  are included in the simulation model. 

)(sH v  is set to zero and 2cI  is adjusted manually to obtain oV  equal to 12 
V. The duty cycle, D , is then a little larger than 0.5 according to (3.31) and 
(3.29). Note that a different method was used to obtain the simulation results 
presented in Section 3.4 since 2cI  was adjusted such that D  became equal to 
0.5. 

The parameter values in Table 4.1 are used also in the transfer functions. 
According to the model for the buck converter in Johansson (2003), D  is 
equal to go VV . Therefore, D  is set to 0.5 in the transfer functions to 
obtain a fair verification. Furthermore, cm  is calculated as follows: 

 

 ( ) .915.111
1

≈
−

+=+=
LVV

M

M

M
m

og

ee
c  (4.3) 

 
The values of both D  and cm  are used also in the case where the new 
(approximate) transfer function for the output impedance (3.89) is used. 
 



132 Chapter 4. Experimental Verification  

 

10
0

10
1

10
2

10
3

10
4

-30

-20

-10

0

10

20

10
0

10
1

10
2

10
3

10
4

-100

-80

-60

-40

-20

0

Frequency (Hz)

P
ha

se
 (

de
g)

; 
M

ag
ni

tu
de

 (
dB

)

 
Figure 4.2: The control-to-output transfer function of the experimental buck 

converter with an inductor-current controller. : Simulation with 
R = minR . Dash-dotted line: Analytic model with R = minR . 
Solid line: Experiment with R = minR . O: Simulation with 
R = maxR . Dotted line: Analytic model with R = maxR . Dashed 
line: Experiment with R = maxR . 

 
 

Control-to-Output Transfer Function 

Figure 4.2 shows the Bode plot for the control-to-output transfer 
functions in (2.96) when )(sHi =0 (i.e. the measured load current is not used 
for control) and different loads are used. Only the inductor current is 
measured and used for control in this case. Simulation and experimental 
results are also shown in the figure for frequencies higher or equal to 10 Hz. 
From the figure it is seen that (2.96) is in good agreement with the simulation 
and experimental results. 

Figure 4.3 shows the same as Figure 4.2 except that )(sHi =1 (i.e. the 
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Figure 4.3: The control-to-output transfer function of the experimental buck 

converter when load current (or capacitor current) is used for 
control. +: Simulation with R = minR . Dash-dotted line: Analytic 
model with R = minR . Solid line: Experiment with R = minR . x: 
Simulation with R = maxR . Dotted line: Analytic model with 
R = maxR . Dashed line: Experiment with R = maxR . Note that 
the dash-dotted and dotted lines almost coincide. 

 
 

measured load current is used for control) in the analytic and simulation 
models and that the capacitor current is measured and used for control in the 
experimental converter instead of the transistor current. From the figure it is 
seen that (2.96) is in good agreement with the simulation and experimental 
results also in this case. 

Note that (2.96) does not consider the stray resistances LR , tR , and dR . 
Since (2.96) makes good predictions of the simulation and experimental 
results, it can be concluded that LR , tR , and dR  do not affect the control-
to-output transfer function significantly. 
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Figure 4.4: The output impedance of the experimental buck converter with 

an inductor-current controller. : Simulation with R = minR . 
Dash-dotted line: Analytic model with R = minR . Solid line: 
Experiment with R = minR . O: Simulation with R = maxR . 
Dotted line: Analytic model with R = maxR . Dashed line: 
Experiment with R = maxR . 

 
 

Output Impedance 

Figure 4.4 shows the Bode plot for the output impedance in (2.97) when 
)(sHi =0 and different loads are used. Simulation and experimental results 

are also shown in the figure. From the figure it is seen that (2.97) is in good 
agreement with the simulation and experimental results. Hence, (2.97) makes 
good predictions even though LR , tR , and dR  are not considered. 

Figure 4.5 shows the same as Figure 4.4 except that )(sHi =1 in the 
analytic and simulation models and that the capacitor current is measured 
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Figure 4.5: The output impedance of the experimental buck converter when 

load current (or capacitor current) is used for control. +: 
Simulation with R = minR . Dash-dotted line: Analytic model 
with R = minR . Solid line: Experiment with R = minR . x: 
Simulation with R = maxR . Dotted line: Analytic model with 
R = maxR . Dashed line: Experiment with R = maxR . Note that 
the dash-dotted and dotted lines almost coincide. 

 
 

and used for control in the experimental converter. From the figure it is seen 
that (2.97) is not in good agreement with the simulation and experimental 
results at low frequencies. 

Figure 4.6 shows the same as Figure 4.5 except that (2.97) is replaced by 
the new (approximate) transfer function for the output impedance (3.89). 
From the figure it is seen that the analytic model now is in good agreement 
with the simulation and experimental results also at low frequencies. Hence, 

LR , tR , and dR  must be considered to obtain good predictions of the 
output impedance in the case where )(sHi =1. 
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Figure 4.6: The output impedance of the experimental buck converter when 

load current (or capacitor current) is used for control. +: 
Simulation with R = minR . Dash-dotted line: New analytic 
model with R = minR . Solid line: Experiment with R = minR . x: 
Simulation with R = maxR . Dotted line: New analytic model 
with R = maxR . Dashed line: Experiment with R = maxR . Note 
that the dash-dotted and dotted lines almost coincide. 

 
 
Note that (3.89) is exactly the same as (2.97) if )(sHi =0. Hence, it is 

verified that (3.89) makes good predictions both when )(sHi =0 and 
)(sHi =1. 

Audio Susceptibility 

Figure 4.7 shows the Bode plot for the audio susceptibility in (2.98) when 
)(sHi =0 and different loads are used. )(sF f  is a Taylor polynomial of 

degree 0 of )(sF f  in (2.57), i.e. an approximate version of the original 
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Figure 4.7: The audio susceptibility of the experimental buck converter with 

an inductor-current controller. : Simulation with R = minR . 
Dash-dotted line: Analytic model with R = minR . Solid line: 
Experiment with R = minR . O: Simulation with R = maxR . 
Dotted line: Analytic model with R = maxR . Dashed line: 
Experiment with R = maxR . 

 
 

Ridley model (2.42) is used. Simulation and experimental results are also 
shown in the figure. From the figure it is seen that the phase curves predicted 
by the analytic model are not in good agreement with the simulation and 
experimental results at high frequencies. 

Figure 4.8 shows the same as Figure 4.7 except that )(sF f  is a Taylor 
polynomial of degree 2 of )(sF f  in (2.57), i.e. an improved version of the 
Ridley model is used. From the figure it is seen that the phase curves 
predicted by the analytic model now are in good agreement with the 
simulation and experimental results also at high frequencies. However, the 
magnitude curves from the experiments are (still) shifted a little compared to 
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Figure 4.8: The audio susceptibility of the experimental buck converter with 

an inductor-current controller. : Simulation with R = minR . 
Dash-dotted line: Improved analytic model with R = minR . Solid 
line: Experiment with R = minR . O: Simulation with R = maxR . 
Dotted line: Improved analytic model with R = maxR . Dashed 
line: Experiment with R = maxR . 

 
 

the curves predicted by the simulation and analytic models. The reason for 
this is not investigated here. The results presented by Ridley (1991) show the 
same type of difference between the experimental result and the model 
prediction at low and medium frequencies for some choices of cm . 

Figure 4.9 shows the same as Figure 4.8 except that )(sHi =1 in the 
analytic and simulation models and that the capacitor current is measured 
and used for control in the experimental converter. As in Figure 4.8, the 
curves are in good agreement except the magnitude curves from the 
experiments that are shifted a little compared to the curves predicted by the 
simulation and analytic models. 
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Figure 4.9: The audio susceptibility of the experimental buck converter when 

load current (or capacitor current) is used for control. +: 
Simulation with R = minR . Dash-dotted line: Improved analytic 
model with R = minR . Solid line: Experiment with R = minR . x: 
Simulation with R = maxR . Dotted line: Improved analytic model 
with R = maxR . Dashed line: Experiment with R = maxR . Note 
that the dash-dotted and dotted lines almost coincide. 

 
 

4.3 Summary and Concluding Remarks 

The experimental buck converter was first presented. The experimental 
results obtained by means of a network analyzer were then presented and 
compared with the frequency functions predicted by the simulation and 
analytic models. 

The main conclusion of the comparison is that the control-to-output 
transfer function (2.96), the audio susceptibility (2.98), and the new 
(approximate) transfer function for the output impedance (3.89) make good 
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predictions of the experimental and simulation results. However, in the case 
of the audio susceptibility, the magnitude curves from the experiments are 
shifted a little compared to the curves predicted by the simulation and 
analytic models. 

Another conclusion is that experimental results for the audio 
susceptibility verify that the improved Ridley model makes better predictions 
than the (original) Ridley model. 

It is also experimentally verified that the stray resistances LR , tR , and 

dR  must be considered in an analytic model to obtain good predictions of 
the output impedance in the case where )(sHi =1. Hence, (2.97) does not 
make good predictions of the experimental results in this case. However, in 
the case where )(sHi =0, (2.97) makes good predictions and (2.97) is exactly 
the same as (3.89). 
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Chapter 5 Current-Transformer 
Influence 

In the experiments presented in Chapter 4, the capacitor current was 
measured using a current shunt. The case where a current transformer is used 
instead of a current shunt is analyzed in this chapter. The analysis is also 
verified by means of experimental and simulation results. 

5.1 Introduction 

Redl and Sokal (1986) suggest that a current transformer is used to 
measure the capacitor current. There are several advantages using a current 
transformer instead of a current shunt. The magnitude of the ripple in the 
output voltage is decreased and the efficiency is increased since the impedance 
of the sensor can be decreased. Furthermore, electrical insulation is obtained. 
The suggested current transformer is simple but it has high-pass-filter 
characteristics, which introduce a resonance in the buck converter at a low 
frequency. A new model is derived that can predict this resonance. 

In Section 3.2, a model is derived for the capacitor-current sensor that 
uses a current transformer. In Section 3.3, the new converter model is derived 
and approximate expressions for the control-to-output transfer function, 
audio susceptibility, and output impedance are also presented. The frequency 
functions predicted by the approximate expressions are compared with 
experimental and simulation results in Section 3.4. A summary and 
concluding remarks are presented in Section 3.5. 

5.2 Current Transformer 

In this section, a model is derived for the capacitor-current sensor that 
utilizes a current transformer. 
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The circuit of the current sensor is shown in Figure 5.1. The core of the 
transformer is a ferrite toroid, TN13/7.5/5-3E25 from Ferroxcube. According 
to the data sheet, the initial permeability is equal to 5500 and the LA  value is 
equal to 2810 nH/turn2. The number of turns in the primary winding, 1n , is 
equal to 1 and the number of turns in the secondary winding, 2n , is equal to 
30. The burdon resistance, 2R , is equal to 6.6 Ω. 

By using a simple model for a transformer (Erickson and Maksimovic, 
2000, Section 13.2.2) the model in Figure 5.2 is obtained for the current 
sensor. The magnetizing inductance, ML , is calculated as follows: 

 

 81.21102810 292
1 =••== −nAL LM µH. (5.1) 

 
The impedance of the current sensor at the primary winding, 

)()()( 11 sisvsZ cap= , will now be calculated. The resistance 2R  on the 
secondary side can be represented by an equivalent resistance, 1R , on the 
primary side: 
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1R  and ML  are connected in parallel and  
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The output voltage of the current sensor is obtained by using (5.3) and (5.2): 
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Therefore, the transfer function for the current sensor is 
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Figure 5.1: The circuit of the current sensor used to measure the capacitor 

current. 
 
 

 
Figure 5.2: A model of the capacitor-current sensor. 
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Note that )(sH c  is a first order high-pass filter and the gain in the pass band 
is unity. Hence, the gain of the current sensor is 212 nnR  at high 
frequencies and it tends to zero as the frequency tends to zero. 

Assume that the current sensor is extended such that a voltage-to-current 
converter is connected at the output. Assume further that the gain of this 
converter is ( )122 nRn . The transfer function for the extended current 
sensor is 

 

 ,)(
)(

)(
sH

si

si
c

cap

capm =  (5.7) 

 
where )(sicapm  is the new output signal. )(sicapm  is a measured version of 

)(sicap  and the high frequency components are the same in the two signals. 

5.3 Model Including a Capacitor-Current Sensor 

A new buck converter model, where the capacitor-current sensor is 
considered, is derived in this section. Approximate expressions for the 
control-to-output transfer function, audio susceptibility, and output 
impedance are also presented. However, how to treat the non-idealities of the 
current transformer is first discussed. 

Treating the Non-Idealities of the Current Transformer 

In Chapter 4, the capacitor-current sensor was a current shunt. Its non-
ideality was taken care of in the converter models by increasing cR . In this 
chapter, the capacitor-current sensor uses a current transformer. In Section 
5.2, it was shown that the impedance of this sensor can be modeled as a 
resistor ( 1R ) and an inductor ( ML ) connected in parallel. At high 
frequencies, the impedance of the inductor is much higher than the 
impedance of the resistor and the sensor can be approximated with the 
resistor. This approximation is not good at low frequencies since the 
impedance of the sensor then is much lower due to the inductor. However, 
this approximation error is not important if the capacitor and the sensor are 
considered as a unit since the impedance of the capacitor is much higher than 
the resistance of the resistor at low frequencies. Therefore, the impedance of 
the sensor will be taken care of in the converter model by increasing cR  with 

1R . 
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Figure 5.3: The system obtained when the transfer function for the capacitor-

current sensor, )(sH c , is included. 
 
 
In Section 5.2, it was shown that the capacitor-current sensor has another 

non-ideality. The sensor gain depends on the frequency. In Chapter 2 and 
Chapter 3, )(sHi  was used as the transfer function for the load-current 
sensor. In the new converter model, )(sH c  is used as the transfer function 
for the capacitor-current sensor. 

General Expressions for the Transfer Functions 

Figure 5.3 shows a modified version of Figure 2.41. )(sZc  is the 
impedance of the capacitor (and the sensor): 
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The transfer functions for the buck converter with a current controller are 
included in Figure 5.3 and they are derived with the assumption that the 
inductor current is measured with an ideal sensor. A measured version of the 
load current, )(siloadm , is calculated as the difference between the (measured) 
inductor current and the measured capacitor current. The following 
equations are obtained from Figure 5.3: 
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An expression for the output voltage is obtained from (5.10): 
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To obtain the control-to-output transfer function, the two input signals 
)(ˆ svg  and )(ˆ siinj  are set to zero in (5.11): 
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If )(ˆ svg  and )(ˆ

2 sic  are set to zero in (5.11), the output impedance is 
obtained: 
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Finally, the audio susceptibility is obtained by setting the input signals )(ˆ siinj  
and )(ˆ

2 sic  to zero in (5.11): 
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Approximation of the Control-to Output Transfer Function 

The control-to-output transfer function derived in the previous 
subsection is rewritten and approximated in this subsection. 

(5.12) is rewritten by using (2.40): 
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where )(sden  is defined in (2.43). The reason for using (2.40) instead of the 
approximate version (2.69) will be explained at the end of this section. The 
(last) denominator in (5.15) is rewritten by using (5.8): 
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 (5.16) 

 
Hence, the denominator in (5.15) is a fourth order polynomial if )(sH c  is 
according to (5.6). Therefore, there are four poles and two zeros in the 
control-to-output transfer function. Hence, one pole and one zero is added 
when the capacitor current is measured with a current transformer instead of 
a current shunt (compare (5.15) and (2.96)). The extra zero has a frequency 
equal to MLR1 , i.e. the corner frequency of )(sH c . Assume that the corner 
frequency of )(sH c  is low and )(ˆ

2 tic  is a sinusoidal signal with high 
frequency. In this case, there are no low-frequency components in )(ˆ ticap  
and the current transformer gives a measurement signal that is almost the 
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same as the one a current shunt gives. Therefore, it is reasonable to assume 
that the positions of two of the poles in (5.15) are almost the same as the 
positions of the two high-frequency poles in (2.96) (which are approximately 
given by )(sFh  when )(sHi =1) and that the two remaining poles in (5.15) 
are positioned much closer to the origin. With the assumption that there are 
two high-frequency poles and two low-frequency poles it is possible to 
approximate the denominator in (5.15). It is shown in the appendix (Section 
5.6) that if )(sH c  is according to (5.6) and the conditions 
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)(sFh  is defined in (2.23), and Q  is defined in (2.24). Hence, if )(sH c  is 

according to (5.6) and the conditions (5.17)-(5.24) are fulfilled, an 
approximate version of the control-to-output transfer function is 
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2K  is defined in (5.26), )(2 sF ctl  is defined in (5.27), )(sFESR  is defined in 
(2.73), and )(sFh  is defined in (2.23). The two low-frequency poles are 
given by )(2 sF ctl  and the two high-frequency poles are given by )(sFh . 

Approximation of the Audio Susceptibility 

In previous chapters, the audio susceptibility was considered after the 
output impedance but here the order is reversed. 

To rewrite (5.14), the non-approximated version of the improved Ridley 
model is used. According to this model, the audio susceptibility is given by 
(2.56) except that the denominator is replaced by )(sden  in (2.43). 
Furthermore, the control-to-output transfer function is given by (2.40). By 
using these two transfer functions, (5.14) is rewritten as follows: 
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where )(sden  is defined in (2.43) and )(sF f  is defined in (2.57). The 
denominator in (5.32) can be approximated by using (5.25). If )(sH c  is 
according to (5.6) and the conditions (5.17)-(5.24) are fulfilled, an 
approximate version of the audio susceptibility is 
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where )(sF f  is a Taylor polynomial of degree 2 of )(sF f  in (2.57), 2K  is 
defined in (5.26), )(2 sF ctl  is defined in (5.27), )(sFESR  is defined in (2.73), 

)(sFCT  is defined in (5.31), and )(sFh  is defined in (2.23). 
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Approximation of the Output Impedance 

An approximate expression for the output impedance is presented in this 
subsection. 

Since the stray resistances LR , tR , and dR  affect the output impedance 
significantly in the case where the capacitor current is measured with a 
current shunt, it is reasonable to assume that they do so also in the case where 
the capacitor current is measured with a current transformer. Therefore, the 
transfer functions derived in Chapter 3 are used as a starting point. (5.13) is 
rewritten by using (3.76) and (3.77): 

 

( ) ( )( )
( )

( ) ( )

( ) ( )

,

)(

1

)(

)(1
11)(

11)(1

)(

)(11
)(

1
1

)(

)(1

)(

1

)(ˆ
)(ˆ

)(

1
111

1

11

1

srh

M

c

c
c

M
csrh

c

cc

srhcc

inj

o
out

KsF

R

L
s

sZ

sH
RCsRRsdenR

R

L
sCsRKsF

sZ

sH

Rsden

CsRR

sden

KsFCsRR

sden

CsRR

si

sv
sZ

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −++−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞⎜

⎝
⎛ +−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −++−

++−+

−=−=

−
−−

−−

−

 (5.34) 

 
where )(sden  is defined in (3.79). If srK  is zero, the denominator in (5.34) 
can be approximated with )(1

2
1

2 sFK ctl
−−  according to (5.25). To check if it is 

reasonable to use this approximation also in the case where srK  is not zero, 
the Bode plot for the denominator in (5.34) is compared with the Bode plot 
for )(1

2
1

2 sFK ctl
−− . From Figure 5.4 it is seen that the approximation is good 

for the used parameter values, which are: ML =2.81 µH, 1R =7.33 mΩ, 

cR =87.33 mΩ, R =2 Ω, and the rest are the same as the ones used in 
Chapter 4. Therefore, if )(sH c  is according to (5.6) and the conditions 
(5.17)-(5.24) are fulfilled, a heuristic approximation of the output impedance 
in (5.34) is 
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Figure 5.4: Comparing two Bode plots. Dashed line: denominator in (5.34). 

Solid line: )(1
2

1
2 sFK ctl

−− . Note that the two lines almost coincide. 
 
 

where )(sFh  is defined in (2.23), srK  is defined in (3.80), 2K  is defined in 
(5.26), )(2 sF ctl  is defined in (5.27), )(sFESR  is defined in (2.73), and 

)(sFCT  is defined in (5.31). 

Using Approximate Expressions in the Derivation 

In this subsection, the consequences of using approximate expressions as a 
starting point in the derivation is discussed. 

In the derivation of the control-to-output transfer function, (2.40) was 
used as a starting point instead of its approximate version (2.69). If the 
approximate version is used, it is found that the resulting transfer function 
makes bad predictions of simulation results near ctω . (A Bode plot that 
shows this is not included in this thesis.) 

In the licentiate thesis, Johansson (2003), the approximate version is used 
as a starting point but it is mentioned that this may result in unreliable 
analysis. However, it is concluded that the resulting transfer function makes 
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good prediction of the value of the frequency function if )(sH i  is equal to 1. 
It will now be shown that this may not be the case for other choices of 

)(sH i . 
In the case where the control-to-output transfer function (or the audio 

susceptibility) is analyzed, )(tiinj  is considered to be zero. Therefore, (2.94) 
can be rewritten by using (2.95): 
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By combining (5.36) and (5.9), an expression for )(sH i  is obtained: 
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Hence, the system in Figure 5.3 can be converted to the system in Figure 
2.41 by using (5.38) if )(tiinj  is zero. Furthermore, in the beginning of this 
subsection, it was mentioned that the control-to-output transfer function 
obtained by using approximate expressions in Figure 5.3 makes bad 
predictions of simulation results near ctω . The conclusion of all this is that 
(2.96) is not accurate in the case where )(sH i  is according to (5.38) and 

)(sH c  is according to (5.6). 

5.4 Experimental Verification 

The frequency functions predicted by the presented transfer functions 
and simulation model are compared with experimental results in this section. 
However, the conditions used to obtain the various results are first presented. 

Conditions 

The current transformer presented in Section 5.2 is used to measure the 
capacitor current. However, the current shunt is not removed, which means 
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Figure 5.5: The simulation model where the capacitor current is calculated, 

filtered, and fed back. 
 
 

that cR  is not changed so much between Chapter 4 and Chapter 5. The 
frequency functions are measured in the same way as in Section 4.2. 

The simulation model in Figure 5.5 is used. The capacitor current is fed 
back in the inner loop instead of the inductor current (compare Figure 5.5 
and Figure 3.6). The capacitor current is calculated from the inductor and 
load currents and then filtered using the transfer function for the (extended) 
current sensor (5.6). To model the impedance of the capacitor-current sensor, 
a resistor (R1) and an inductor (LM) are included in the buck converter 
subsystem as shown in Figure 5.6. The parameter values in Table 4.1 are 
used. Furthermore, ML =2.81 µH, 1R =7.33 mΩ, )(sH i =0, )(sH v =0, and 

2cI  is adjusted manually to obtain oV  equal to 12 V. Note that cR  is equal 
to 80 mΩ in the simulation model. 

The parameter values in Table 4.1 are used also in the transfer functions 
except cR , which is equal to 87.33 mΩ so that the impedance of the  
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Figure 5.6: The buck converter subsystem where the impedance of the 

capacitor-current sensor is included. 
 
 

capacitor-current sensor is taken care of. Furthermore, ML =2.81 µH, 

1R =7.33 mΩ, D =0.5, and cm  is calculated according to (4.3). 

Results 

Figure 5.7 shows the Bode plot for the control-to-output transfer 
function in (5.30) when different loads are used. Simulation and 
experimental results are also shown in the figure for frequencies higher or 
equal to 10 Hz. From the figure it is seen that (5.30) is in good agreement 
with the simulation and experimental results. Compared to the case where a 
current shunt is used (Figure 4.3), a resonance is added at ctω , which is 
defined in (5.28). Note that ctω  is the geometric mean of MLR1 , which is 
the corner frequency of the current transformer, and ( ) ( )LCDmT cs 5.0'− , 
which approximately is the lowest corner frequency of the converter in the 
case where a current shunt is used (see (2.101)). Using (5.28), ctω  is 
calculated to be 430 rad/s (68.4 Hz). Note that, contrary to previous Bode 
plots, simulation results for the frequency 66.6667 Hz ( 750sf≈ ) are 
included to be able to verify the transfer function. According to (5.30), the 
control-to-output transfer function is almost independent of the load 
resistance, R . Only ctQ  in (5.29), which affects the height of the resonance 
peak, depends on R  a little. 

Figure 5.8 and Figure 5.9 show the corresponding results for the output 
impedance and audio susceptibility. The conclusions are the same. (5.35) and 
(5.33) are the used analytic models. As in Figure 4.9, the magnitude curves 
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Figure 5.7: The control-to-output transfer function of the experimental buck 

converter when the capacitor current is measured with a current 
transformer and used for control. +: Simulation with R = minR . 
Dash-dotted line: Analytic model with R = minR . Solid line: 
Experiment with R = minR . x: Simulation with R = maxR . Dotted 
line: Analytic model with R = maxR . Dashed line: Experiment 
with R = maxR . Note that the dash-dotted and dotted lines 
almost coincide. 

 
 

from the experiments are shifted a little compared to the curves predicted by 
the simulation and analytic models for the audio susceptibility. 

5.5 Summary and Concluding Remarks 

A model for the capacitor-current sensor that uses a current transformer 
was first derived. We then derived a new model for the buck converter with 
feedback of the capacitor current, where the dynamics of a current sensor is 
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Figure 5.8: The output impedance of the experimental buck converter when 

the capacitor current is measured with a current transformer and 
used for control. +: Simulation with R = minR . Dash-dotted line: 
Analytic model with R = minR . Solid line: Experiment with 
R = minR . x: Simulation with R = maxR . Dotted line: Analytic 
model with R = maxR . Dashed line: Experiment with R = maxR . 
Note that the dash-dotted and dotted lines almost coincide. 

 
 

included. Approximate expressions for the control-to-output transfer 
function, audio susceptibility, and output impedance were also derived for the 
case where the sensor uses a current transformer. Finally, the approximate 
expressions were verified by means of experimental and simulation results. 

One conclusion is that the high-pass-filter characteristics of the current 
transformer introduce a resonance in the converter at a low frequency. This 
frequency decreases if the corner frequency of the current transformer 
decreases. Another conclusion is that the analytic models are rather sensitive 
to approximations that are made in the middle of the derivation. Therefore, 
the (main) approximations are made at the end of the derivation. 
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Figure 5.9: The audio susceptibility of the experimental buck converter when 

the capacitor current is measured with a current transformer and 
used for control. +: Simulation with R = minR . Dash-dotted line: 
Analytic model with R = minR . Solid line: Experiment with 
R = minR . x: Simulation with R = maxR . Dotted line: Analytic 
model with R = maxR . Dashed line: Experiment with R = maxR . 
Note that the dash-dotted and dotted lines almost coincide. 

 
 

5.6 Appendix 

In Section 5.3, the denominators in the closed loop transfer functions 
were approximated using (5.25). In this section, (5.25) is derived. The left-
hand-side expression in (5.25) is first approximated such that it consists of a 
product of three factors. To be able to do this approximation it is assumed 
that there are two high-frequency poles and two low-frequency poles. Next, 
two of the factors are approximated further to obtain the right-hand-side 
expression in (5.25). It is then shown that the conditions (5.17)-(5.24) ensure 
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that there are two high-frequency poles and two low-frequency poles. Finally, 
some remarks are presented. 

Factorization 

The expression to be approximated is denoted )(sdencl  in this section: 
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where )(sden  is defined in (2.43). By using (5.16), (5.6), (2.43), and (2.23), 

)(sdencl  is rewritten as follows: 
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where 2K  is defined in (5.26),  
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The following derivation is similar to the one made by Erickson and 

Maksimovic (2000, Section 8.1.8), Johansson (2003, Section 6.2), and Choi 
et al. (1999). The polynomial )(sP  in (5.41) is factored into 
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where 1p , 2p , 3p , and 4p  are the four poles. The coefficients 1a  and 2a  
are identified by using (5.41) and (5.46): 
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As mentioned in Section 5.3, the approximation is made with the 

assumption that there are two high-frequency poles and two low-frequency 
poles. This means that 31 pp << , 41 pp << , 32 pp << , and 

42 pp <<  if 1p  and 2p  are the two low-frequency poles. A consequence 
of this is that each of 31 pp , 32 pp , 41 pp , 42 pp , and 43 pp  is much 
larger than 21 pp . Therefore, 1a  and 2a  are approximated with 
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From the second row in (5.46) it is found that )(sP  can be approximated as 
follows by using (5.49) and (5.50): 
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The coefficients 1b  and 2b  are real since the poles 3p  and 4p  are either 
complex conjugated or real. The coefficients 1a  and 2a  are also real since the 
poles 1p  and 2p  are either complex conjugated or real. The first parenthesis 
in the second row in (5.51) represents the two low-frequency poles and the 
second parenthesis represents the two high-frequency poles. Approximate 
expressions for 1b  and 2b  are obtained by comparing (5.41) and (5.51): 
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(5.51) is rewritten by using (5.52) and (5.53): 
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By using (5.54), )(sdencl  in (5.40) is approximated as follows: 

 

 ( ) .11

)()(

2

2

4
2
2

41

2

32
21

1
2

1
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+++

≈=

−

−

s
a

a
s

a

aa

a

a
sasaK

sPKsdencl

(5.55) 

Further Approximations 

In this subsection )(sdencl  is approximated further. However, to do this 
some results are needed and they are first derived. 

The following expression is rewritten by using (2.21) and (2.24): 
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If 1≥Q , (5.21) and (5.23) can be extended as follows: 
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Similarly, (5.22) and (5.24) can be extended as follows if 1<Q : 
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From (5.57) and (5.59), it is concluded that 
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and from (5.58) and (5.60), it is concluded that 
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for all allowable values of Q . 

The coefficient 2a  in (5.43) is approximated with 
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To show that this is a valid approximation, the terms in the large parenthesis 
in (5.43) are compared with each other. The first term is compared with the 
second term by using (5.18): 
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The third term is compared with the second term by using (5.61) and (5.62): 
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Next, the fourth term is compared with the second term by using (5.17) and 
(5.24): 
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Finally, the fifth term is compared with the second term by using (5.22): 
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Form (5.64)-(5.67) it is concluded that 2a  in (5.43) can be approximated 
according to (5.63). 

The approximation of the coefficient 3a  in (5.44) is now considered. 
The third term in the large parenthesis in (5.44) is approximated by using 
(5.17): 
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By using (5.17) and (5.23), the first term in the large parenthesis in (5.44) is 
compared with (5.68): 
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Next, the second term in the large parenthesis in (5.44) is compared with 
(5.68) by using (5.21): 
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Form (5.68)-(5.70) it is concluded that 3a  in (5.44) can be approximated 
with 
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The coefficient 4a  in (5.45) is approximated by using (5.17): 
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The first parenthesis in (5.55) is approximated and rewritten by using 
(5.42), (5.63), (5.26), (5.56), (5.28), (5.29), and (5.27): 
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(5.73) 

 
The second parenthesis in (5.55) is approximated by using (5.42), (5.63), 

(5.71), and (5.72): 
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To approximate (5.74) further, the terms in the (last) parenthesis are 
compared with each other. The second term is compared with the first term 
by using (5.18) and (5.23): 
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Next, the third term is compared with the first term by using (5.56) and 
(5.19): 
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Finally, the fourth term is compared with the first term by using (5.61) and 
(5.62): 
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(5.74) is approximated as follows by using (5.75)-(5.77): 
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where )(sFh  is defined in (2.23). By using (5.73) and (5.78), )(sdencl  in 
(5.55) is approximated with 
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where 2K  is defined in (5.26), )(2 sF ctl  is defined in (5.27), and )(sFh  is 
defined in (2.23). 

Distances between Poles 

In the derivation of the approximate )(sdencl  it is assumed that there are 
two high-frequency poles and two low-frequency poles. In this subsection it is 
shown that the conditions (5.17)-(5.24) ensure that this assumption is 
fulfilled. For simplicity, the approximate )(sdencl  in (5.79) is utilized to 
show this even if it is somewhat unsatisfactory to utilize the result of the 
approximation to show that the approximation is valid. 

Assume that there are two high-frequency poles and two low-frequency 
poles. According to (5.79), the two low-frequency poles are given by )(2 sF ctl  
and the two high-frequency poles are given by )(sFh . The two low-frequency 
poles, 1p  and 2p , are obtaind by solving the equation where the 
denominator in )(2 sF ctl  is set equal to zero: 
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From (5.80) it is seen that 1p  and 2p  are complex conjugates if and only if 
5.0>ctQ . In this case, (5.80) can be rewritten as 
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and the distance from each of 1p  and 2p  to the origin is 
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If 5.0≤ctQ , 1p  and 2p  are real and 
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If ctQ  decreases from 5.0 , 1p  moves from ctω−  to the right along the real 
axis and 2p  moves from ctω−  to the left along the real axis. 

According to Erickson and Maksimovic (2000, Section 8.1.7), the poles 
can be approximated as follows if 5.0<<ctQ : 

 
 ,11 pQp ctcta ≈−= ω  (5.85) 
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Furthermore, if 5.0≤ctQ ,  

 
 ,11 pp a ≤  (5.87) 
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 .22 pp a ≥  (5.88) 

 
Note that 211 pp a =  and 22 2 pp a =  if 5.0=ctQ . Hence, the relative 
errors of ap1  and ap2  are large for this value of ctQ . 

We will now investigate how 1p  and 2p  depend on the corner frequency 
of the current transformer, MLR1 . The approximations in (5.85) and 
(5.86) are rewritten as follows by using (5.29) and (5.28): 

 

 
,

1

1

1

R

L

R

L
CR

Qp
M

c

ctcta

++
−=−= ω  

(5.89) 

 

 ( ) .5.0'
1

1
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−−=−=

R

L

R

L
CR

L

R
Dm

LC

T

Q
p M

c
M

c
s

ct

ct
a

ω
 (5.90) 

 
From the definitions of ctQ  and ctω  in (5.29) and (5.28) it is concluded 

that ctQ  is low if MLR1  is low. Therefore, 1p  and 2p  can be 
approximated by using (5.89) and (5.90) in this case. Assume that MLR1  
tends to zero. At the limit the following is obtained. 1p  is equal to zero and 

2p  is equal to ( ) ( )LCDmT cs 5.0'−− , which approximately is the same as 
the low-frequency pole in the case where a current shunt is used to measure 
the capacitor current (see (2.101)). This is not a surprise since the gain of the 
current sensor is independent of the frequency if the corner frequency of the 
current transformer is zero. The pole 1p  is cancelled by the zero in )(sFCT  
since the zero also is positioned at the origin (see (5.31)). 

If MLR1  increases from zero, 1p  moves from the origin to the left 
along the real axis. Hence, if 5.0≤ctQ , then 01 ≤p . 2p  is positioned to the 
left of 1p  (or they coincide) in this case. The conclusion is that 12 pp ≥  if 

5.0≤ctQ . By using (5.88), we obtain 122 ppp a ≥≥  if 5.0≤ctQ . 
According to (5.82), ctp ω=2,1  if 5.0>ctQ . Therefore, if it can be shown 
that app 23 >> , ctp ω>>3 , app 24 >> , and ctp ω>>4 , then there 
are two high-frequency poles and two low-frequency poles. To do this, the 
positions of the poles 3p  and 4p  are first considered. These two high-
frequency poles are given by )(sFh  in (2.23) according to (5.79). If 5.0>Q , 

3p  and 4p  are complex conjugates and np ω=4,3 . If 5.0≤Q , 3p  and 4p  
are real and can be approximated with 
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 ,33 pQp na ≈−= ω  (5.91) 
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ω
 (5.92) 

 
Furthermore, appp 334 ≥≥  if 5.0≤Q  (see (5.87)). If 15.0 ≤< Q , 

np ω=4,3  and, therefore, app 34,3 ≥ . Hence, appp 334 ≥≥  if 1≤Q . 
Therefore, if it can be shown that aa pp 23 >>  and ctap ω>>3  when 

1≤Q  and that an p2>>ω  and ctn ωω >>  when 1>Q , then there are two 
high-frequency poles and two low-frequency poles. The rest of this subsection 
is devoted to showing that this is the case. 

First, consider the case where 1≤Q . To show that aa pp 23 >> , each 
of the terms in ap2  is compared with ap3 . By using (5.18) and (5.24) we 
have 
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The following is obtained by using (5.56), (5.22), and (5.24): 
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Finally, by using (5.56) and (5.20) we obtain the following: 
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Since the operator <<  occurs two times in each of (5.93), (5.94), and (5.95), 
it is reasonable to claim that 
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To show that ctap ω>>3 , assume first that ( ) ( ) Mcs LRLCDmT 15.0' ≤− . 
By using (5.28), (5.24), and (5.91) we have 
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Assume now that ( ) ( ) Mcs LRLCDmT 15.0' >− . The following is obtained 
by using (5.28), (5.20), and (5.91): 
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From (5.97) and (5.98) it is concluded that ctap ω>>3 . 

Next, consider the case where 1>Q . This case is treated similarly as the 
case where 1≤Q . To show that an p2>>ω , each of the terms in ap2  is 
compared with nω . By using (5.18) and (5.62) we have 
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The following is obtained by using (5.56), (5.61), and (5.62): 
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Finally, by using (5.56) and (5.19) we obtain the following: 

 

 

( )

.
1111111

5.0'
1

1

n
nn

M

M
c

s

LCLCLCQLCLC

R

L

L

R
Dm

LC

T

ω
ωω

<<<<<

=−
 (5.101) 

 
From (5.99)-(5.101) it is concluded that 
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To show that ctn ωω >> , assume first that ( ) ( ) Mcs LRLCDmT 15.0' ≤− . 
By using (5.28) and (5.62) we have 
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Assume now that ( ) ( ) Mcs LRLCDmT 15.0' >− . The following is obtained 
by using (5.28) and (5.19): 
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From (5.103) and (5.104) it is concluded that ctn ωω >> . 

All the different cases are considered and the conclusion is that there are 
two high-frequency poles and two low-frequency poles if the conditions 
(5.17)-(5.24) are fulfilled. 

Remarks 

The conditions (5.21) and (5.23) set an upper limit for Q . If Q  is very 
high, the two high-frequency poles are not according to )(sFh  and the 
predictions made by the approximate expression is bad near nω . In Section 
2.6, approximate versions of the expressions for the control-to-output transfer 
function, the output impedance, and the audio susceptibility obtained by 
applying the improved Ridley model to the buck converter were presented. 
This model assumes that only the inductor current is fed back. The 
approximate versions of the expressions are valid if the conditions (2.63)-
(2.67) are fulfilled. Note that the conditions (2.63)-(2.67) do not set at an 
upper limit for Q . Therefore, in the case where (only) the inductor current is 
fed back the two high-frequency poles are according to )(sFh  also when Q  
is very high. 
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The derivation of (5.25), made in this section, is not foolproof. The 
approximation in (5.25) is based on a sequence of approximations: 

 
 .321 Nxxxx ≈≈≈≈ K  (5.105) 

 
If N  is large, Nx  may be a bad approximation of 1x . 

 





177 

Chapter 6 Summary and Future 
Work 

The work presented in this thesis is summarized in this chapter. 
Furthermore, suggestions for future work are presented. 

6.1 Results 

In the licentiate thesis, Johansson (2003), a number of analytic models for 
buck, boost and buck-boost converters were developed and analyzed in detail. 
To verify the models, the frequency functions predicted by them were 
compared with results from switched (large-signal) simulation models. 

In this thesis, additional results have been presented for the buck 
converter. An experimental buck converter has been built. Experimental 
results obtained by means of a network analyzer are presented and compared 
with the frequency functions predicted by the developed analytic models and 
the simulation models. The experimental results have verified the control-to-
output transfer functions and the audio susceptibility. However, the 
differences between the experimental result and the results predicted by the 
analytic and simulation models are significant for the output impedance at 
low frequencies in the case where the measured load current is utilized for 
control. 

A new transfer function for the output impedance has been derived where 
the stray resistances in the inductor, transistor, and diode were considered. 
These stray resistances are also included in a new simulation model. We 
concluded that the frequency functions predicted by the new transfer 
function for the output impedance and the new simulation model are in good 
agreement with the experimental result. 

The new transfer function shows that the output impedance is sensitive to 
the stray resistances if the load current is used for control as proposed by Redl 
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and Sokal (1986). The measured inductor and load currents are in this 
control technique only used to calculate the difference, i.e. the capacitor 
current. Hence, the capacitor current is controlled. Since the inductor current 
is not controlled, the output impedance is sensitive to the stray resistances. If 
current-mode control is used and the load current is not used for control, the 
inductor current is controlled and the indictor acts as a current source. 
Therefore, the output impedance is insensitive to the stray resistances, which 
are connected in series with the inductor. 

Since the capacitor current is controlled in the control proposed by Redl 
and Sokal (1986), cascade control is obtained when an outer voltage 
controller is added. If a gain-scheduling controller is designed in such a way 
that the measurements of the inductor and load currents are used only to 
calculate the difference, i.e. the capacitor current, the obtained gain 
scheduling controller will simply act as a cascade controller. 

In this thesis, an analytic model and a simulation model were developed 
for the case where the capacitor current is measured by means of a current 
transformer instead of a current shunt and they were verified by means of 
experimental results. Low-frequency resonance is introduced in the frequency 
functions predicted by the three major transfer functions in this case due to 
the high-pass-filter characteristics of the current transformer. The resonance 
frequency decreases if the corner frequency of the current transformer 
decreases. 

6.2 Implications of the Results 

The results of this and the licentiate thesis were summarized in Section 
6.1 and Chapter 2, respectively. The practical importance of some of the 
results was discussed in Section 1.4. We concluded that the result that is the 
most interesting to use in practice is probably the model for the case where 
the load current is measured (indirectly) by means of a current transformer 
and used for control since the resonance may affect the design of the (outer) 
voltage controller. 

Other results may not in practice affect the design of converters but can 
still be valuable knowledge for a designer of dc-dc converters. A designer can 
obtain increased understanding of the properties of the converters and the 
reasons for differences between some models and experimental results. 
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The results that are of little practical interest can be of academic interest 
since it is easier to draw conclusions from an analysis if it is known that the 
error in the model that is used as a starting point is small. 

6.3 Future Work 

Suggestions for future work are summarized here. 
 

• The novel model for the audio susceptibility derived in the licentiate 
thesis is sensitive to errors (Johansson, 2003, Section 4.4) and the model 
should be modified in order to reduce this sensitivity. 

• The improved Ridley model includes in some cases unstable feedforward 
transfer functions (Johansson, 2003, Sections 5.3 and 5.4) and the 
improvement should be made such that they are stable. An idea of how to 
do this was presented in Johansson (2003, Section 5.5). 

• Models for the case where measured load current is used for control were 
derived in Johansson (2003, Sections 7.4-7.6) by using approximate 
expressions presented in Johansson (2003, Chapter 6) as a starting point. 
The non-approximate expressions should be used as a starting point and 
the approximations should be made at the end of the derivation (see 
Johansson (2003, Section 7.7)). 

• Suitable methods to identify more complex loads should be found. How 
to use the identification result in an adaptive controller should be 
investigated. (See Section 1.2.) 
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