
ISSN 0280-5316
ISRN LUTFD2/TFRT--5897--SE

Development of a ball balancing robot 
with omni wheels

Magnus Jonason Bjärenstam
Michael Lennartsson

Lund University
Department of Automatic Control

March 2012





Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

March 2012
Document Number

ISRN LUTFD2/TFRT--5897--SE
Author(s)

Magnus Jonason Bjärenstam
Michael Lennartsson

Supervisor

Anders Robertsson, Dept. of Automatic 
Control, Lund University, Sweden
Rolf Johansson, Dept. of Automatic Control, 
Lund University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Development of a ball-balancing robot with omni-wheels (Bollbalanserande robot med omnihjul)

Abstract

The main goal for this master thesis project was to create a robot balancing on a ball with the help of 
omni wheels. The robot was developed from scratch. The work covered everything from mechanical 
design, dynamic modeling, control design, sensor fusion, identifying parameters by experimentation
to implementation on a microcontroller. The robot has three omni wheels in a special configuration at 
the bottom. The task to stabilize the robot is based on the simplified model of controlling a spherical 
inverted pendulum in the xy-plane with state feedback control. The model has accelerations in the 
bottom in the x- and y-directions as inputs. The controlled outputs are the angle and angular velocity 
around the x- and y-axes and the position and speed along the same axes.The goal to stabilize the 
robot in an upright position and keep it located around the starting point was successfully achieved.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages

1-63
Recipient’s notes

Security classification

http://www.control.lth.se/publications/





Acknowledgement
We would like to thank our supervisor Anders Robertsson who has been very
helpful and supporting all our ideas, Rolf Braun for his great assistance in
hardware issues and building (and repairing) the robot and Leif Andersson
for helping us with various computer problems.

Magnus & Michael

1



2



Contents

1 Introduction 5

2 Hardware 6
2.1 Mecanum wheel . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Omni wheels . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Lego Mindstorms . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Arduino Mega 2560 . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 ArduIMU+ V3 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Faulhaber MCDC 3006S & 3257G012CR . . . . . . . . . . . . 10

3 Theoretical Background 11
3.1 State feedback control . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Linear Quadratic Optimal Control . . . . . . . . . . . . . . . 12
3.3 Complementary filter . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Kinematics of omni and mecanum wheels . . . . . . . 13
3.4.2 Kinematics of the Test Rig . . . . . . . . . . . . . . . 15
3.4.3 Ball translation . . . . . . . . . . . . . . . . . . . . . . 17
3.4.4 Robot translation . . . . . . . . . . . . . . . . . . . . . 19

4 Methodology 22
4.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Omni wheel platform . . . . . . . . . . . . . . . . . . . 22
4.1.2 Mecanum wheel platform . . . . . . . . . . . . . . . . 23
4.1.3 Lego Mindstorms Platform . . . . . . . . . . . . . . . 26

4.2 The Test Rig . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Geometry and design . . . . . . . . . . . . . . . . . . . 28
4.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 The Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Dynamics of the Robot . . . . . . . . . . . . . . . . . 29
4.3.2 Dymola Model . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Robot design . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . 32

3



5 Results 37
5.1 Lego Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Test Rig Kinematics . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 The Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Linear Model . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Model Simulations . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Complementary Filter . . . . . . . . . . . . . . . . . . 40
5.3.4 Robot Performance . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion and Future Work 45

A Source-code 48

4



Chapter 1

Introduction

The goal of this Master Thesis was to build and stabilize a robot balanc-
ing on a ball, inspired by a Japanese project [1]. The authors’ background
is in mechatronical engineering and therefore this project was a suitable
challenge.

The robot consists of three omni wheels in a special configuration stand-
ing on a ball which gives it inverse pendulum dynamics. The robot is stabi-
lized by rotating the wheels which makes it move in the xy-plane.

First the kinematics of omni wheels was investigated by studying differ-
ent mounting configurations on platforms moving on the ground [2]. A Lego
robot was built to verify and visualize the kinematics and special properties
of omni wheels.

Then a model of an inverted pendulum was developed in parallel with the
kinematics of a ball actuated by three omni wheels. The inverted pendulum
model in the xy-plane was developed in Dymola and exported to Matlab to
perform state feedback controller design. The designed controller was then
imported back into Dymola for simulation and visualization.

The model of the inverted pendulum has eight states. The states are
angle, angular velocity, position, and velocity along the x- and y-axes. State
feedback requires measurements from all states. The angles are estimated
with sensor fusion done by a complementary filter combining gyroscope and
accelerometer readings. The velocities are obtained by using motor readings
and inverse kinematics which are integrated to get the positions.

The implementation was done on an Arduino microcontroller board.

5



Chapter 2

Hardware

In this chapter the hardware used and how it is setup is covered.

2.1 Mecanum wheel
The mecanum wheel, also called the Ilon wheel, was invented by the Swedish
inventor Bengt Ilon in 1973 when he worked at the Swedish company Mecanum
AB. The mecanum wheel is a conventional wheel with a series of rollers con-
nected with an angle to the circumference. The axes of rotation for the
rollers are usually in 45 degree angle to the circumference of the mecanum
wheel, see Figure 2.1. This configuration of rollers enables the mecanum
wheel to move in both the rotational and the lateral direction of the wheel.

On a platform with two mecanum wheel pairs in parallel there are actu-
ally two versions of the mecanum wheel, one with the roller axis mounted
+45 degrees with respect to the wheels axis and the other with the roller axis
rotated -45 degrees to the wheel axis, see Figure 2.2. One of the mecanum
wheels in each pair has the positive angle and the other one has the negative.
If that was not the case all of the resultants for the four mecanum wheels
would have been parallel and the ability to move in any direction had been
lost.

The mecanum wheels are used on platforms where movement in tight
and narrow spaces is crucial for example on forklifts inside warehouses [3].

2.2 Omni wheels
Omni-directional wheels also have rollers connected to the circumference like
the mecanum wheel, see Figure 2.3. The difference between the mecanum
wheel and the omni wheel is that the axes of rotation for the rollers is parallel
to the circumference of the wheel instead of 45 degrees as for the mecanum
wheel. This design with the rollers enables the omni wheel to move freely in
two directions. It can either roll around the wheel axis like a regular wheel

6



Figure 2.1: Mecanum wheel.

Figure 2.2: The two different types of the mecanum wheel.

or roll laterally using the rollers connected to the circumference or both at
the same time.

When the omni wheel is moving the contact point between the ground
and the omni wheel will not be directly under the wheel centre at all times
as it is for a regular wheel. For example when the omni wheel is shifting
between two rollers there are actually two contact points on the ground at
the same time. Moving on a flat surface this will make the movement bumpy
and not as smooth as for an ordinary wheel. To increase the performance
manufacturers have developed omni wheels with two or three rows of rollers
placed side by side to bridge the gap between the rollers so the transition
when the wheel switches between rollers are smoother, see Figure 2.4. This
will give a less bumpy performance but the problem of having two contact
points will still occur and now the contact point cannot only drift along the
circumference but also laterally.

Further improvements have been made to the omni wheel by a Japanese

7



Figure 2.3: Picture of omni wheel, single row.

Figure 2.4: Picture of omni wheel, double row.

university [4]. They have bridged the gaps between the rollers by cleverly
inserting smaller rollers in the gaps between the larger rollers. This solu-
tion gives a smooth transition between the rollers and thereby a smooth
movement translational as an ordinary wheel with the properties of an omni
wheel.

Commercial applications for the omni wheels are mainly in different
kinds of trolleys and conveyor transfer solutions.

2.3 Lego Mindstorms
Lego Mindstorms is a product series from Lego which contains hardware
and software that is needed to create own projects such as robots [5]. The
hardware consists of Lego bricks for building the structure, gears and wheels,

8



different sensors, motors and the NXT micro computer unit.
The software used is called NXT-G and is a so called "drag-and-drop"

based programming language.
Lego Mindstorms are used both by hobbyists and for educational pur-

poses at universities.

2.4 Arduino Mega 2560

Figure 2.5: The Arduino Mega
2560 board.

The Arduino Mega 2560 microcontroller
board is based on the ATmega2560 mi-
crocontroller from Atmel, see Figure 2.5
[6]. Arduino is a cheap, open-source, cross-
platform solution [7]. The programming
language is very easy, well documented and
it can be expanded through C++ libraries.
There are several boards to choose from,
the Arduino Mega 2560 was chosen mainly
because it has four UART-modules for communication.

2.5 ArduIMU+ V3

Figure 2.6: The ArduIMU+ V3
board.

To measure the orientation of the robot
an IMU (inertia measurement unit) board
was used, ArduIMU+ V3 see Figure 2.6.
It is developed by 3D Robotics and the
DIY Drones community [8]. The board
features a 6-axis accelerometer and gy-
roscope MPU-6000 chip from InvenSense
and a 3-axis magnetometer HMC-5883L
from Honeywell [9] [10]. An ATmega328P
from Atmel running Arduino is used to in-
terface the sensor chips and to run custom
code [6] [7]. The preloaded code is open-source.

9



2.6 Faulhaber MCDC 3006S & 3257G012CR

Figure 2.7: The Faulhaber mo-
tion controller and motor.

The motion controller MCDC 3006S and
DC motor 3257G012CR from Faulhaber
were used as actuators, see Figure 2.7 [11].
The motor has a maximum torque of 70
mNm. The motion controller can be set in
various operation modes such as position-
ing mode (PID) and velocity mode (PI).
All communication with the unit is done
by a RS232 interface (serial communica-
tion) with up to 115 kBaud. For more in-
formation see the manual for the unit [12].
The motor is connected to the wheel using
a cog belt with a 3:1 ratio.

10



Chapter 3

Theoretical Background

3.1 State feedback control
Assume the process that is supposed to be controlled is described by the
state space equation

ẋ = Ax(t) + Bu(t)
y = Cx(t)

(3.1)

The transfer function of the process is then given by

Y(s) = C(sI−A)−1BU(s)

and the poles of the process are given by the roots of the characteristic
equation

det(sI−A) = 0.

Also assume that all the states in the process are measurable and that the
system is controllable. Controllable means that the matrix Wc has full rank,
where Wc is given by

Wc =
[
B AB A2B · · · An−1B

]
where n is the order of the system. If both these conditions are satisfied the
control law

u = lrr− Lx (3.2)

can be applied. The vectors L and x are given by

L =
[
l1 l2 · · · ln

]
and x =


x1
x2
...
xn

 .

11



By combining the state space Equation 3.1 and the control law Equation 3.2
then the closed loop state space equations is given by

ẋ = (A−BL)x + Blrr
y = Cx

(3.3)

where r is the new reference signal. The new transfer function is now given
by

Y(s) = C(sI− (A−BL))−1BlrR(s).

The poles of the closed loop system are the roots of the characteristic poly-
nomial

det(sI− (A−BL))−1.

The vector L is a design parameter and for a controllable system L can
always be found so that the close-loop poles can be placed as desired.

3.2 Linear Quadratic Optimal Control
Consider a continuous time linear system described by Equation 5.1 and a
cost function described by∫ ∞

0

(
x(t)ᵀQ1x(t) + 2x(t)ᵀQ12u(t) + u(t)ᵀQ2u(t)

)
dt, (3.4)

where Q1 is positive semi-definite and Q2 is positive definite. The control
law that minimizes the value of the cost is Equation 3.2, where L is given
by

L = Q2
−1(BᵀS + Q12

ᵀ). (3.5)

S is found by solving the continuous time algebraic Riccati equation

0 = Q1 + AᵀS + SA− (SB + Q12)Q2
−1(SB + Q12)ᵀ (3.6)

[13].

3.3 Complementary filter
Complementary filter is a technique used to estimate some signal z using two
measurements of the signal, xl and xh, with low respectively high frequency
noise [14][15][16]. The idea is to let the high frequency noise measurement xh
pass through a low-pass filter F1 = G(s) and the low frequency measurement
xl pass through a complementary filter F2 = 1−G(s) which corresponds to
a high-pass filter. By adding them together the estimate ẑ of the signal is
obtained, see Figure 3.1.

12



High frequency
noise

Low-pass
filter

xl

z

xhLow frequency
noise

High-pass
filter

+
ẑ

Figure 3.1: A complementary filter.

3.4 Kinematics
In this section the kinematics of omni and mecanum wheels, the test rig, a
ball and the robot will be derived.

3.4.1 Kinematics of omni and mecanum wheels

Consider an omni wheel or a mecanum wheel placed on a platform moving
on a level ground as shown in Figure 3.2. There are four systems involved.
The terrain Σ0, the vehicle Σ1, the wheel Σ2 and the roller Σ3. The roller
is always in contact with the ground at the contact point C. In reality
the contact point will drift along the roller axis when the wheel is rotating
around the wheel axis. For simplicity the contact point is assumed to always
be located below the wheel center A.

The vehicle centre O1 is chosen for the origin of the coordinate of the
analytic description. The x- and y-axes are parallel to the ground. The wheel
centre has the x- and y-coordinates ax and ay and α is the angle between
the extended wheel axis a and the e1x axis. The wheel axis is considered
always to be parallel with the ground and therefore the z-component is zero.

a =

cos(α)
sin(α)

0

 (3.7)

is the direction of the vector a. The vector b is the roller axis and it depends
on the angle δ and the angle α. Also here the z-component is zero due to the
earlier assumption that the contact point between the roller and the ground
is always directly beneath the wheel center and this occurs when the roller
axis is parallel to the ground.

b =

cos(α+ δ)
sin(α+ δ)

0

 (3.8)

The contact point and the wheel centre, A, are assumed to have the same
coordinates because the motion is always parallel to the ground and thus

13



a

b

α

A

O1
e1x

e1y

δ

Σ

Σ

Σ

Σ

1

0

2

3

Figure 3.2: One omni or mecanum wheel moving on level ground.

the z-component can be neglected. Thus[
ax
ay

]
=
[
cx
cy

]
(3.9)

ω is the angular velocity of the motion Σ1/Σ0 (vehicle/ground) and vO1,01 =
(vx, vy)> the velocity vector O1. Then the vectorial velocity of the contact
point C(cx, cy) relatively Σ1/Σ0 is

vA,01 =
[
vx − ωay
vy + ωax

]
(3.10)

The motion Σ2/Σ1 (wheel/vehicle) is the rotation around the axis a, u̇ is
the angular velocity around the wheel axis and r is the wheel radius. The
velocity vector at the contact point C is then

vA,12 = u̇r
[
− sin(α)
cos(α)

]
(3.11)

The motion Σ3/Σ2 (roller/wheel) is the rotation around the roller axis b.
The motion is perpendicular to the vector b hence the velocity vector is

vA,23 = λ

[
−by
bx

]
(3.12)

14



Since the model is assumed to be non slippage the motion Σ3/Σ0 (roller/ground)
has to be zero. Thus the vector describing the velocity is

vA,30 =
[
0
0

]
(3.13)

Using the additivity rule for velocities of composed motions we obtain the
condition

vA,01 + vA,12 + vA,23 + vA,30 = (0,0)>

and by substitution of Equation 3.10 - Equation 3.12 leads to the following
expression

vx − ωay − u̇r sin(α)− byλ = 0
vy + ωax + u̇r cos(α) + bxλ = 0

}
Elimination of λ gives the following differential equation

ru̇(bx sin(α)− by cos(α))− bx(vx − ωay)− by(vy + ωax) = 0 (3.14)

describing the relations between the angular velocity of the wheel and the
movement of the vehicle. Further simplification gives

u̇ = − 1
r sin(δ) [sin(α+ δ)(vy + ωax) + cos(α+ δ)(vx − ωay)] (3.15)

This equation gives the angular velocity for the wheel as an output with the
x-, y- and z-velocities as inputs to the vehicle. Rewriting this equation gives
the final expression 

u̇1
u̇2
...
u̇n

 = − 1
r sin(δ)M

vxvy
ω

 (3.16)

where M is

M =


cos(α1 + δ) sin(α1 + δ) a1x sin(α1 + δ)− a1y cos(α1 + δ)
cos(α2 + δ) sin(α2 + δ) a2x sin(α2 + δ)− a2y cos(α2 + δ)

...
...

...
cos(αn + δ) sin(αn + δ) a1n sin(αn + δ)− a1 cos(αn + δ)

 .
(3.17)

3.4.2 Kinematics of the Test Rig

In this section equations for the kinematics of the test rig are derived. The
input is a vector ωb that describes the desired angular rotation of the ball
and the output will be the required angular velocities of the omni wheels.
The ball has free rotational motion around its centre and it is assumed that

15



Figure 3.3: Illustrates the vectors and the contact point used in the derived
equations for one of the wheels.

the three fixed omni wheels always have contact with the ball, thus the
ball has three degrees of freedom. The omni wheels have double rows of
rollers and thus in reality the contact point will jump between them when
rotating. In order to simplify the kinematic model it is assumed that the
wheels are perfectly circular and that there is a single contact point in the
middle between the two rows of rollers. A three dimensional Cartesian
coordinate system will be used. Consider one of the wheels, see Figure 3.3.
The rotational velocity of it can be described by a rotational vector ωw

along its rotational axis. The circumferential speed vw perpendicular to the
wheel axis at the contact point c is

vw = ωw × rw (3.18)

where rw is the radial vector from the wheel centre to the contact point.
This is the velocity that can be actuated by this wheel alone. The contact
point is in reality on a roller on the omni wheel which have one more degree
of freedom because it can rotate around its own axis so in reality the contact
point can have a velocity in any direction in a plane with its normal to the
surface of the ball at the contact point. That is the same periphery velocity
as the contact point on the ball vb which is

vb = ωb × rb (3.19)

16



where rb is the radial vector from the centre of the ball to the contact point.
As mentioned the actuated speed of the contact point on the wheel is not
equal to the speed of the contact point on the ball, vw 6= vb, due to the
rollers on the omni wheel. The only exception is if the desired rotational
axis of the ball is in the same direction as the rotational axis of the wheel.
If the speed of the contact point on the ball is projected in the direction of
the speed of the contact point on the wheel, equality will be obtained. The
direction of the actuated speed vw can be calculated as

vwu = ωwu × rwu (3.20)

where ωwu and rwu are the unit vectors in the direction of the wheel axis
and rw respectively. The actuated speed can now be expressed as

vw = vbv2
wu (3.21)

A vector can be rewritten as the scalar length multiplied with the unit vector
of it, i.e. rb = rbrbu. Using this and combining Eqs. (3.18-3.21) the final
equation is formed

ωw = rb
rw

(ωb × rbu) (ωwu × rwu) (3.22)

Due to the orthogonal orientation of the vectors the equation can be sim-
plified to

ωw = − rb
rw

ωwuωb (3.23)

This is valid for an arbitrary number of wheelsωwi...
ωwn

 = − rb
rw

ωwui
...

ωwun

ωb (3.24)

The test rig setup will then yield

ωw1
ωw2
ωw3

 = − rb
rw


0 cos(θ) sin(θ)

−
√

3
2 cos(θ) − cos(θ)

2 sin(θ)
√

3
2 cos(θ) − cos(θ)

2 sin(θ)


ωbxωby
ωbz

 (3.25)

3.4.3 Ball translation

The ball is assumed to roll without slip on a horizontal plane and the coor-
dinate system is fixed to the center of the ball with z-axis in the opposite
direction of gravity, see Figure 3.4. The rotation of the ball is described by
the vector ωb and the velocity of the center of the ball is described by the

17



Figure 3.4: Vectors used to describe the translation of the ball on a hori-
zontal plane. Note that the vectors are not scaled correctly.

vector v. The relation between them will now be derived. The speed vc at
the contact point c is zero since the ground is not moving

vc = v + ωb × r = 0 (3.26)

where r is the vector from the centre of the ball to the contact point. Solving
for v gives

v = −ωb × r (3.27)

It can be rewritten as a matrix product asvxvy
vz

 = −

 0 rz −ry
−rz 0 rx
ry −rx 0


ωbxωby
ωbz

 (3.28)

where vi, ri, and ωi are elements of v, r, and ωb respectively. The as-
sumption that the ball is rolling on a horizontal plane without slip gives
restrictions to both v and ωb which must be parallel with the xy-plane and
furthermore r must be perpendicular to it. Moving in a horizontal plane is
described by

r = −rb
[
0 0 1

]

18



Figure 3.5: The robot standing upright.

where rb is the radius of the ball. Using this in Equation 3.28 and solving
for ωb yields ωbxωby

0

 = − 1
rb

0 −1 0
1 0 0
0 0 0


vxvy
vz

 (3.29)

Since it is impossible to get a velocity in the z-direction, which can be seen in
the elements in the third row and column as they are all zeros, it is possible
to optionally keep the rotation around the z-axisωbxωby

ωbz

 = − 1
rb

0 −1 0
1 0 0
0 0 −rb


 vxvy
ωbz

 (3.30)

3.4.4 Robot translation

Combining the kinematics of the test rig (see Subsection 3.4.2) and the ball
translation (see Subsection 3.4.3) it is now easy to formulate the equation
describing the kinematics of the robot. Equations (3.24) and (3.30) will then

19



Figure 3.6: The robot tilted.

yield ωwi...
ωwn

 = − 1
rw

ωwui
...

ωwun


0 −1 0

1 0 0
0 0 −rb


 vxvy
ωbz

 (3.31)

This is valid as long as the robot is standing upright, see Figure 3.5, but
what if it is tilted? Then the positions of the contact points between the
ball and the wheels will of course change and thus the model is no longer
valid, see Figure 3.6.

The reason for this is due to when the robot is standing upright the world
frame is parallel to the robot frame but when the robot is tilted that is no
longer the case. Since the robot is only intended to move on a horizontal
plane, the easiest way to get a correct model is to change basis of ωb from
the coordinate system of the ball to the coordinate system of the robot.
That is done by multiplying with the inverse rotation matrix R−1 which
has the property R−1 = Rᵀ. The error is zero when the coordinate systems
are parallel and will of course increase when the robot is tilted. The final
expression for the kinematics of the robot with tilt correction isωwi...

ωwn

 = − 1
rw

ωwui
...

ωwun

Rᵀ

0 −1 0
1 0 0
0 0 −rb


 vxvy
ωbz

 (3.32)

20



The robot will then yield

ωw1
ωw2
ωw3

 = − 1
rw


0 cos(θ) − sin(θ)

−
√

3
2 cos(θ) − cos(θ)

2 − sin(θ)
√

3
2 cos(θ) − cos(θ)

2 − sin(θ)

Rᵀ

0 −1 0
1 0 0
0 0 −rb


 vxvy
ωbz


(3.33)

The unit vectors of the wheels axes will change sign at the z-elements com-
pared to the test rig since it is "upside down".

21



Chapter 4

Methodology

4.1 Platforms
Omni and mecanum wheel platforms are platforms that use omni and mecanum
wheels in different configurations to achieve omnidirectional movement. In
these platforms the wheels have fixed positions and cannot turn like for
example an ordinary car with Ackermann steering. A platform with the
constraints that it is always parallel to the ground and that all the wheels
are always in contact with the ground has three degrees of freedom. These
degrees of freedom are movement in the plane and rotations around its own
axis. An ordinary car cannot instantly move in any direction or rotate
around its vertical axis and is therefore non-holonomic. A platform fitted
with either mecanum or omni wheels can do so and is thereby holonomic.

4.1.1 Omni wheel platform

An omni wheel platform is usually fitted with three or four omni wheels.
Since the rollers on the omni wheel are parallel to the circumference of the
wheel it is important that all the wheels are not parallel with each other, as
in this case the ability to move in any direction is lost. It is also important
that the wheels are placed so they are not close to being parallel. If so some
directions will require a lot more control signal than others to move.

In the case where the platform is fitted with three wheels it is called kiwi
drive. When the omni platform is fitted with three wheels the configuration
is most often in a shape of a triangle with 120 degrees between the wheel
axes that passes through the vehicle centre, see Figure 4.1.

The other configuration often used is fitted with four wheels. The wheels
are now placed in pairs that are perpendicular to each other.

Figure 4.2 shows three examples of movement for a platform fitted with
kiwi drive. The thick arrow shows the direction of movement from the
vehicle centre. The arrow that is parallel with each omni wheel shows in
which direction the wheel is rotating. The thicker arrow from the wheel

22



120o

120o

Figure 4.1: Omni-wheel platform fitted with kiwi drive.

illustrates in which direction the wheel is going when rotating, the thinner
arrows show the x- and y-components.

In Figure 4.2.a the platform is moving horizontally in the x-direction
by rotating wheel number one counterclockwise and wheel number two and
three clockwise. The rotation of wheel number one only contributes in the
x-direction while wheel number two and number three contribute in both di-
rections. Since the platform is symmetric around the y-axis the components
in the y-direction will cancel each other out at the same angular velocity. If
the sum of the two x-components from wheel number two and number three
times the distance to the centre of the platform in the y-direction is the
same as the distance to wheel number one times the velocity the platform
will move in the x-direction.

Figure 4.2.b illustrates the platform moving vertically in the y-direction
by rotating wheel number two counterclockwise, wheel number three clock-
wise and wheel number one standing still. The components from wheel num-
ber two and number three are canceling each other out in the x-direction
and are the same in the y-direction. Wheel number one does not contribute
to the platform moving in the y-direction and is therefore standing still.

Figure 4.2.c shows the platform rotating around the platform centre
by rotating all the wheels counterclockwise. All the wheels have the same
distance to the platform centre and therefore the contribution from each
wheel is the same and thus the platform will rotate around its centre.

4.1.2 Mecanum wheel platform

The mecanum platform has four mecanum wheels placed in pairs parallel
to each other. Since the roller axes of the mecanum wheels are placed
in ± 45 degrees to the circumference of the mecanum wheels there is no

23



1

1

2 32 3

1

2 3

1

a b

c

Figure 4.2: Different types of movement for an omni wheel platform

problem placing the wheels in parallel compared to the omni wheels. Now
the problem of lost maneuverability occurs when the rollers of the macanum
wheels are placed parallel to each other.

Figure 4.4 illustrates four different examples of different movements of
the mecanum platform. The notation of the movement for the mecanum
wheel platform is the same as for the omni wheel platform.

Figure 4.4.a shows the platform moving in the y-direction by rotating
wheel number one and number three clockwise and wheel number two and
number four counterclockwise. The components in the x-direction for each

2

3 4

1

Figure 4.3: Mecanum-wheel platform.

24



2

3 4

1 2

3 4

1

2

3 4

1 2

3 4

1

a b

c d

Figure 4.4: Different types of movement for an mecanum wheel platform.

wheel pair will cancel each other out and the y-component for all four wheels
are in the same direction and will drive the platform forward.

In Figure 4.4.b the platform is moving in the x-direction. Instead of
having the x-components cancel each other out as in Figure 4.4a here the y-
components are eliminated and all the x-components contribute in the same
direction. This is done by rotating wheel number one and number two in
counterclockwise direction and wheel number three and four clockwise.

Figure 4.4.c illustrates the platform travelling at the same speed in the
x- and y-direction by only rotating wheel number one counterclockwise and
wheel number four clockwise. No components in either the x- and y-direction
will be eliminated because wheel number one and four give the same contri-
bution. Wheel number two and number three are standing still. The reason
for this is that the roller axes for the mecanum wheel is perpendicular to
the movement of the mecanum platform. In other words the roll of the
mecanum wheel will rotate around its own axes while the actual wheel is
standing still, there will be no friction in that direction.

The Figure 4.4.d illustrates the platform rotating around centre of the
platform by rotating all the wheels counterclockwise. By doing this all the
x-components cancel each other out and the y-components of the left side
are contributing in the opposite direction as the right side, this makes the

25



Figure 4.5: The Lego platform and a joystick.

platform rotate.

4.1.3 Lego Mindstorms Platform

Lego Mindstorms was used to create an omni wheel platform with kiwi drive,
see Figure 4.1. The purpose of the Lego Mindstorms platform was to verify
the kinematics of Equation 3.16. Figure 4.5 shows the Lego platform fitted
with omni wheels specially designed for Lego and a joystick used for driving
the platform. The y-axis is pointing upwards and the x-axis is pointing to
the right.

As shown in Figure 3.2 α is the angle between the wheel axis and the
x-axis. For this platform α1 = 90◦, α2 = 210◦ and α3 = 330◦. δ is the
angle between the wheel axis and the roller axis, for an omni wheel δ = 90◦.
The length from the wheel centre to the platform centre is L=0.06 meter.
Plugging these values into Equation 3.17 results in the following M matrix:

M =

cos(180◦) sin(180◦) −L cos(180◦)
cos(300◦) sin(300◦) −L cos(30◦) sin(300◦) + L sin(30◦) cos(300◦)
cos(420◦) sin(420◦) L cos(30◦) sin(420◦) + L sin(30◦) cos(420◦)



=

−1 0 L
1
2 −

√
3

2 L
1
2

√
3

2 L

 .
This matrix can be inserted into Equation 3.16 to get the angular velocity
of each omni wheel.

26



Figure 4.6: Simulink model with the RWTH - Mindstorms NXT Toolbox.

The Lego platform consists, except from the Lego bricks and the omni
wheels, of three motors and one Lego Mindstorms NXT brick. The NXT
brick is a micro computer that is the brain in Lego Mindstorms projects.
In this case the platform is controlled by a special toolbox developed for
Matlab/Simulink, the toolbox is called "RWTH - Mindstorms NXT Toolbox
for MATLAB". The purpose of the toolbox is to control Lego Mindstroms
NXT robots with Matlab/Simulink via a wireless Bluetooth connection or
via an USB cable.

Figure 4.6 shows the Simulink model of the platform. From the block
Joystick input comes three inputs, two inputs are the velocities along the x-
and y-axes from the analog stick. The third input is the orientation around
the z-axis from two buttons. After the inputs are multiplexed into a vector
it is multiplied with Gain1. Gain1 is only a scaling so full throttle on the
joystick will give full angular velocities to the motors. The M-matrix is
the matrix gain calculated above. The Set Speed function just sends the
calculated angular velocities to the motors. The realtimer block, developed
here at LTH, enables Simulink to run in real time.

4.2 The Test Rig
This chapter will describe the test rig and its design with three omni wheels
with a ball and the kinematics of it will be derived. The first step to investi-
gate the possibilities to build a robot balancing on a ball was to build a test
rig. The test rig was built “upside down” with the ball in the air resting on
the omni wheels, see Figure 4.7.

27



Figure 4.7: Picture of the test rig.

4.2.1 Geometry and design

The omni wheels are evenly spaced around the vertical z-axis with 120 de-
grees between them and are positioned perpendicular to surface of the ball,
see Figure 4.8. That and the angle θ will define the configuration of the
wheels. A larger θ will make the wheels come closer together and thus the
ball will have a smaller support area. It will also affect the kinematics of
the rig, see Section 3.4.2. An angle of 40 degrees was chosen.
The omni wheels used are the “125 mm double omni directional wheel” man-
ufactured by Rotacaster [17]. They are double in the sense that there are
double rows of rollers. This gives a smoother run compared to a single row
wheel.

4.2.2 Verification

The kinematic model was verified by simple experiments on the test rig.
The ball was given a desired rotational speed of 0.25 revolutions per second
in different directions, see Figure 4.9. When the ball was assumed to be in
steady state after the initial acceleration the rig was recorded with a camera.
In the film one can see how long time it takes until a marked point on the
ball has completed one revolution. The mean time of three revolutions was
used.

28



Figure 4.8: The geometry of the test rig, compare with Figure 4.7

4.3 The Robot
In this section the kinematics and design of the robot will first be described.
Then the control design of the robot will be derived.

4.3.1 Dynamics of the Robot

To be able to stabilize the robot upon the ball some kind of control design
needs to be performed, therefore a model of the actual robot was created.
A simplified way of looking at the robot is as an inverted pendulum in the
xy-plane. To be able to create a model, the dynamics of the real robot needs
to be known and therefore an experiment was performed.

When an inverted pendulum falls from an upright position the curve
between the angle and the time is approximately proportional to the curve
ekt for some positive constant k. The length of the pendulum determines
how fast it will fall. A long pendulum has greater inertia than a short
pendulum constructed in the same material and with the same diameter.
Therefore a pendulum will fall slower the longer it gets. The curve ekt will
increase more rapidly with a greater coefficient k. This means that a greater
coefficient will correspond to a shorter pendulum. The goal is to find the
coefficient so the curve ekt is as close to the behavior of the real robot as
possible.

29



Figure 4.9: The rotational directions used when verifying the kinematic
model.

The robot was placed upon the basketball and then tilted a few degrees
and then released. The angles and time were measured as the robot was
falling freely. The result was plotted in Matlab together with the curve ekt
to try to get a good match. Finally the e2.9t was decided as a close result.
The result is shown in Figure 4.10.

The dynamics of the robot upon the basketball is now determined. Now
a model with similar properties as the real robot can be created.

4.3.2 Dymola Model

The model is created in Dymola with the multi-body package. The Dymola
environment uses the open Modelica modeling language [18]. Modelica is
a non-proprietary, object-oriented, equation based language to conveniently
model complex physical systems containing, e.g., mechanical, electrical, elec-

30



Figure 4.10: Comparing the curve ekt with the actual dynamics of the robot.

tronic, hydraulic, thermal, control, electric power or process-oriented sub-
components [19].

Figure 4.11 shows the Dymola-model of the robot. The solid blue trian-
gles are the acceleration inputs in the x- and y-directions to the pendulum.
The smaller white triangles are the outputs of the model. There are four
outputs in each direction, the angle and angular velocity around both the x-
and y-axes and also the position and the speed along the x- and y-axes. The
prismatic_X and the prismatic_Y components enable the inverted pen-
dulum to move along the x- and y-axes. The prismatics are connected to
each other and then to the sensors that are measuring the positions and the
velocities in the xy-plane. Inputs to the prismatics are the parts speed_X
and speed_Y. The reason for having speed components instead of accelerate
components is that the inputs for the real robot are speed references. The
components speed_X and speed_Y give the prismatics exactly the desired
velocities but in reality that is not the case. There is a delay in the mo-
tors so the actual velocity does not follow the reference signal perfectly. To
compensate that, the first order systems are added to introduce a delay.
The components revolute_X and revolute_Y are also connected with the
prismatics and the sensors. The components revolute_X and revolute_Y
enable the pendulum to rotate around the x- and y-axes respectively. The
pendulum is connected to the revolutes. The pendulum is modeled with a
component called body-cylinder. It is modeled as a solid steel rod with the
diameter of 0.1 meter and height of 1.25 meter. The dimensions are set to
give similar dynamics as the actual robot. Sensors for measuring the angles
and angular velocities are finally connected to the pendulum.

The Dymola model can then be linearized to get the state space model
for the robot. The state space model can be exported to Matlab to try
out different control designs. Figure 4.12 shows the pendulum with state
feedback control.

31



Figure 4.11: Dymola model of the robot.

4.3.3 Robot design

The basic geometry is the same as for the test rig, see Subsection 4.2.1, but
now it is turned upside down with the robot standing on the ball. Thus it
is no longer a stable system. If the robot’s center of mass is not exactly
above the contact point between the ball and the ground, the ball will start
to rotate and the robot will follow as long as the wheels are not moving and
eventually fall over. The robot now also has a rod mounted in the center
which will be used to make the system slower, see Figure 4.13.

4.3.4 Implementation

This section will give a brief overview of the implementation on the Arduino
Mega 2560 since the source-code is fairly rich commented, see Appendix A.
The Arduino Mega 2560 is the heart of the system and does all calcula-
tions and communications, see Figure 4.14. All communication is done with
UART serial communication at 115200 baud. The sampling interval of the
system is driven by the IMU which sends new data every 20 ms. When new
IMU data is received query commands are sent to the motion controllers to
get updated motor positions. Then all states are calculated and then the

32



Figure 4.12: Dymola model of the state feedback controlled pendulum.

control algorithm calculates new control signals for the motors. Last at each
period, after control signals have been sent to the motors, variables etc are
updated and information is optionally sent to a computer for debugging and
logging.

Calculating attitude

A complementary filter was used to calculate the attitude of the robot since
the sensor fusion algorithm on the IMU did not perform good enough. An
accelerometer and a gyroscope are used to estimate the attitude. To get the
angle φ from an accelerometer is done by measuring the influence of gravity
along the x- and y-axis, see Figure 4.15. The angles from the xy-plane
around the x- and y-axis are calculated as

φx = arcsin
(
ÿ

g

)
(4.1)

φy = arcsin
(−ẍ
g

)
(4.2)

where ẍ and ÿ are the accelerometer measurements and g is gravity. The
sign change is due to the right hand rule. A gyroscope measures the angular
velocity φ̇ around an axis. The angle is then easily calculated as

φ =
∫
φ̇dt (4.3)

The angle calculated using accelerometer measurements is very sensitive to
disturbances. This is due to any acceleration, for instance made caused by
the motors moving the robot, or ordinary measurements disturbances, which
will make it deviate from measuring only the gravity will cause an erroneous
result. The latter can often be regarded as high frequency noise. The gyro

33



Figure 4.13: Picture of the Robot balancing on a basket ball.

is in general very accurate and will slowly drift over time. This can be
regarded as a low frequency noise. Thus to get a good estimate of the angle
a complementary filter can be used, where the accelerometer estimation will
be low-pass filtered and the gyro estimation will be high-pass filtered and
then added together. The filter is implemented as

phi = alpha * (phi_old + gyro*dt) + (1-alpha)*acc;

where gyro and acc are readings from the gyroscope and accelerometer
respectively, phi_old is the previous value of phi and alpha is a value
between zero and one which can be regarded as how much one rely on each
sensor, one meaning completely rely on the gyroscope [20]. Since it was not
possible to measure the dynamics of the sensors the cross frequency for the
filters was chosen by practical experiments.

34



A
r

d
u
i

n
o

M
E
G
A

w
w
w
.

a
r

d
u
i
n
o

.
c
c

AREF
GND

13
12
11
10

9
8

7
6
5
4
3
2

TX 1
RX 0

0
1
2
3
4
5
6
7

RESET
3V3

8
9
10
11
12
13
14
15

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

TX3 14
RX3 15
TX2 16
RX2 17
TX1 18
RX1 19
SDA 20
SCL 21

P
W

M

P
W

R

DIGITAL

A
N

A
LO

G
 IN

C
O

M
M

U
N

IC
A
T
IO

N

5
V

G
N

D
G
N
D

V
IN

I
C
S
P

1

Tx
Rx

Tx
Rx

Tx
Rx

1

2

3 4 5 6

Figure 4.14: Overview of the network between components. Red and blue
lines indicates receiving and sending from the Arduino Mega 2560. 1 Com-
puter, 2 IMU, 3 Arduino Mega 2560, 4 TTL to RS-232 converter, 5 Motion
controller, 6 Motor. Note that connecting a computer is optional.

35



g

xacc

zacc

φy

φy

Figure 4.15: Accelerometer tilted φy = 16◦ around the y-axis. Note that the
value of the accelerometer measurement is negative.

36



Chapter 5

Results

5.1 Lego Robot
The reason for building the Lego Robot was to visualize and get a basic
understanding of the possibilities using omni wheels. The robot behavior
agrees with the kinematic model. It was easy to verify by driving the robot
as a RC car with a joystick. The platform performed as expected and the
authors were pleased with the performance and did not investigate it further.

5.2 Test Rig Kinematics
The measured results can be seen in Table 5.1. The largest deviation is
less than 3 % which is considered acceptable. The slight deviation might
be due to not perfect assembly and construction, rounding error due to the
Faulhaber speed controller can only handle integers in rotations per minute
and finally the camera has a resolution of 30 frames per second.

ωb Time [s] Deviation [ %]
ω1 4.045 1.12 %
ω2 4.055 1.38 %
ω3 4.056 1.39 %
ω1xy, x 3.900 -2.50 %
ω2xy 3.999 -0.03 %
ω3xy 3.944 -1.39 %
y 4.044 1.11 %
z 4.078 1.95 %

Table 5.1: Measured times and deviations. Note that x is in the same
direction as ω1xy.

37



5.3 The Robot

5.3.1 Linear Model

Figure 4.11 displays the model of the robot modeled in Dymola. By using
the linearize command in Dymola the state space model of the robot can be
obtained. Equation 5.1 and Equation 5.2 show the state space model of the
robot.

ẋ =



0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 11.76 0 0 0 −1.12 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 11.76 0 0 −1.12
0 0 0 0 0 0 0 0 −50 0
0 0 0 0 0 0 0 0 0 −50


x +



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
50 0
0 50


u

(5.1)

y =



0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


x (5.2)

Dymola automatically selects the states when a model is linearized. The
states selected are displayed in Table 5.2. The poles and zeroes of the open
loop system are shown in Figure 5.1. There are four poles at the origin,
one double pole in -50 and two double poles in ±3.429. Because of the
double pole in the right half plane the robot is not stable and will not stay
in an upright position. To stabilize the system an optimal feedback matrix
is calculated with the help of LQR. The Q and R matrices are weighted
to get the desired behavior of the robot. The most important task for the
controller is to keep the robot in an upright position, therefore deviations
in rotation around the x- and y-axes are penalized the highest. To keep the
robot at the origin is also important. Therefore the positions states are also
penalized but not as highly as the angle deviation. The Q and R where

38



State Physical variable
x1 Position along the x-axis
x2 Velocity along the x-axis
x3 Position along the y-axis
x4 Velocity along the x-axis
x5 Rotation around the y-axis
x6 Angular velocity around the y-axis
x7 Rotation around the x-axis
x8 Angular velocity around the x-axis
x9 FirstOrder X acceleration
x10 FirstOrder Y acceleration

Table 5.2: States of the linear model

finally chosen as

Q =



50 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 50 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,R =

[
10 0
0 10

]
.

The optimal feedback matrix, L, with the weighted Q and R matrices is
then

L =
[
−2.24 −3.56 0 0 −39.58 −11.51 0 0 0.23 0

0 0 −2.24 −3.56 0 0 39.58 11.51 0 0.23

]
Figure 5.2 shows the poles and zeroes for the closed loop system with
optimal control. Now all the poles are in the left half plane and thus the
system is stable.

5.3.2 Model Simulations

Figure 5.3 shows the disturbance rejection of the Dymola model with the
optimal feedback matrix calculated above. The initial inclination angle of
the pendulum is 0.1745 rad (10 degrees) around the y-axis. To compensate
for this the pendulum has to move along the x-axis. Figure 5.4 shows the
disturbance rejection along the y-axis. The inclination angle is now 0.0873
rad (5 degrees) around the x-axis.

39



Figure 5.1: Pole-zero map for the open loop system.

5.3.3 Complementary Filter

In order to chose α an experiment was done. The robot was fixed on a
rolling cart at an angle of approximately 3.5 degrees around the x-axis. The
cart was then moved back and forth along the y-axis while measuring the
acceleration and the angular velocity, see Figure 5.5 The angle was calcu-
lated from the measurements using Matlab for different α, see Figure 5.6.
Since the gyro is not affected by acceleration it gives far better readings
then the accelerometer. One might be tempted to set α = 1. There are two
good reasons for not doing so, the first reason is that the gyro drifts over
time and secondly pure integration of the gyro to calculate the angle will
require perfect initialization. Assuming that the accelerometer is fairly well
calibrated an α less than one will have the effect that the initialization of
the integration is less important and it will also correct the drift. With this
in mind α was chosen to 0.995.

5.3.4 Robot Performance

Figure 5.7 shows the inclination angles around the x- and y-axes of the robot
when balancing. Figure 5.8 shows the position of the robot along the x- and
y-axes when balancing and trying to stand at the origin. A video of the
robot is available at YouTube, www.youtube.com/watch?v=eqhnZmMAU6M

40

www.youtube.com/watch?v=eqhnZmMAU6M


Figure 5.2: Pole-zero map for the closed loop system with LQR.

Figure 5.3: Initial disturbance rejection with 0.1745 rad (10 degrees) degree
angle around the y-axis, compensation along the x-axis.

41



Figure 5.4: Initial disturbance rejection with 0.0873 rad (5 degrees) angle
around the x-axis, compensation along the y-axis.

0 2000 4000 6000 8000 10000 12000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [ms]

R
ot

at
io

na
l s

pe
ed

 [° s−
1 ],

A
cc

el
er

at
io

n 
[m

s−
2 ]

 

 

Accelerometer
Gyroscope

Figure 5.5: Measurements from accelerometer and gyroscope during the
experiment.

42



0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

time [ms]

A
ng

le
 [d

eg
re

es
]

 

 

α = 0.95
α = 0.98

α = 0.99

α = 0.995
α = 0.999

Figure 5.6: Estimated angle from the complementary filter for different α.

0 50 100 150 200
5

4

3

2

1

0

1

2

3

4

5

time [s]

D
eg

re
es

 [°
]

 

 
x axis
y axis

Figure 5.7: Inclination angles around the x- and y-axes when balancing.

43



0.1 0.05 0 0.05 0.1 0.15

0.1

0.05

0

0.05

0.1

0.15

x position [m]

y 
po

si
tio

n 
[m

]

Figure 5.8: Position along the x- and y-axes of the robot when balancing.

44



Chapter 6

Conclusion and Future Work

A ball balancing robot was successfully developed and implemented on a
microcontroller. The robot was stabilized with a LQR-controller. The dy-
namic model of the robot was modeled as a spherical inverted pendulum
with two inputs and eight outputs. The mechanical construction consists of
three actuated omni wheels. Other robots with similar design exist but they
are equipped with a more advanced custom made omni wheels. The robot
presented in this thesis was equipped with simpler and cheaper mass pro-
duced omni wheels. Despite the use of simpler omni wheels the performance
of the robot was satisfying.

The status of the robot at the end of this master thesis has areas of
improvements and more features could be added. Some suitable challenges
may be:

• Improve the control design for a more stable system.

• Implement a better solution for obtaining the attitude of the robot.

• Add support for moving the robot around and add a GUI.

• Add a battery power supply to make the robot wireless.

45



Bibliography

[1] M. Kumaga and T. Ochiai. “Development of a robot balanced on a
ball — Application of passive motion to transport —”. In: Proc. IEEE
Int. Conf. Robotics and Automation ICRA ’09. 2009, pp. 4106–4111.
doi: .2009.5152324.

[2] A. Gfrerrer. “Geometry and kinematics of the Mecanum wheel”. In:
Computer Aided Geometric Design 25.9 (2008). Classical Techniques
for Applied Geometry, pp. 784 –791. issn: 0167-8396. doi: 10.1016/
j . cagd . 2008 . 07 . 008. url: http : / / www . sciencedirect . com /
science/article/pii/S0167839608000770.

[3] KUKA youBot Store. url: www.youbot-store.com (visited on 2012-02-21).
[4] H. Asama et al. “Wheel for Omnidirectional Mobile Robot”. Pat. JP-

patent no.3421290. 2003.
[5] Lego Mindstorms. url: http : / / mindstorms . lego . com / en - us /

default.aspx (visited on 2012-03-13).
[6] Atmel. url: www.atmel.com (visited on 2012-02-21).
[7] Arduino. url: www.arduino.cc (visited on 2012-02-20).
[8] DIY Drones. url: www.diydrones.com (visited on 2012-02-21).
[9] InvenSense, Inc. url: www.invensense.com (visited on 2012-02-21).

[10] Honeywell. url: www.honeywell.com (visited on 2012-02-21).
[11] Faulhaber. url: www.faulhaber.com (visited on 2012-02-21).
[12] Dr. Fritz Faulhaber GmbH & Co. KG. Instruction Manual. 4th. Faul-

haber. 2009-09.
[13] T. Glad and L. Ljung. Reglerteori - Flervariabla och olinjära metoder.

2nd ed. 2003. isbn: 978-91-44-03003-6.
[14] W. T. Higgins. “A Comparison of Complementary and Kalman Fil-

tering”. In: 3 (1975), pp. 321–325. doi: 10.1109/TAES.1975.308081.
[15] S. P. Tseng et al. “Motion and attitude estimation using inertial mea-

surements with complementary filter”. In: Proc. 8th Asian Control
Conf. (ASCC). 2011, pp. 863–868.

46

http://dx.doi.org/.2009.5152324
http://dx.doi.org/10.1016/j.cagd.2008.07.008
http://dx.doi.org/10.1016/j.cagd.2008.07.008
http://www.sciencedirect.com/science/article/pii/S0167839608000770
http://www.sciencedirect.com/science/article/pii/S0167839608000770
www.youbot-store.com
http://mindstorms.lego.com/en-us/default.aspx
http://mindstorms.lego.com/en-us/default.aspx
www.atmel.com
www.arduino.cc
www.diydrones.com
www.invensense.com
www.honeywell.com
www.faulhaber.com
http://dx.doi.org/10.1109/TAES.1975.308081


[16] R. Mahony, T. Hamel, and J.-M. Pflimlin. “Nonlinear Complementary
Filters on the Special Orthogonal Group”. In: 53.5 (2008), pp. 1203–
1218. doi: 10.1109/TAC.2008.923738.

[17] Rotacaster Wheel Limited. url: www.rotacaster.com.au (visited on
2012-02-21).

[18] Dymola. url: www.3ds.com/products/catia/portfolio/dymola
(visited on 2012-02-21).

[19] Modelica. url: www.modelica.org (visited on 2012-02-21).
[20] S. Colton. The Balance Filter: A Simple Solution for Integrating Ac-

celerometer and Gyroscope Measurements for a Balancing Platform.
2007. url: http://web.mit.edu/scolton/www/filter.pdf (visited
on 2012-03-12).

47

http://dx.doi.org/10.1109/TAC.2008.923738
www.rotacaster.com.au
www.3ds.com/products/catia/portfolio/dymola
www.modelica.org
http://web.mit.edu/scolton/www/filter.pdf


Appendix A

Source-code

1 # include <EasyTransfer.h>
2 // Printing options---------------------------------------------
3 # define PRINT_STATUS 1 // Print status messages
4 # define PRINT_XY 1 // posx posy vx vy
5 # define PRINT_OMEGA 1 // omega_m1,m2,m3 in motor rpm
6 # define PRINT_ANGLES 0 // pitch, roll, yaw
7 # define PRINT_OMEGAXYZ 0 // Print omegaXYZ, may be filtered
8 # define PRINT_ACC_IMU 0 // Print acceleration from IMU m/s^2
9 # define PRINT_ACC_CONTROL 1 // Control acceleration

10 # define PRINT_V 0 // Control speed
11 # define PRINT_MOTOR 1 // Motor controlsignal
12 # define PRINT_MSTR 0 // Actual strings read from motors
13 # define PRINT_TIME 1 // Print benchtime period time and timestamp
14 # define PRINT_TEST 0 // For testing and debugging
15 # define DEC_PRINT 4 // How many decimals to print
16

17 // Options ----------------------------------------------------
18 # define CONTROL_ON 1 // send control signals
19 # define ACC_LIMIT_MIN 1 // acceleration, avoiding zero output
20 // for small signals
21 # define CF_CONSTANT 0.995 // compl. filter constant
22 # define IMU_FILTER_ACC 0 // Lowpass filter IMU acc signals
23 # define IMU_ FILTER_OMEGA 1 // Lowpass filter IMU omega signals
24 # define ACC_X_TEST 0 // Fixed acc x
25 # define ACC_Y_TEST 0 // Fixed acc y
26

27 // Option parameters -------------------------------------------
28 # define ACC_MIN 0.12 // Min acceleration
29 # define ACC_DEADZONE 0.03 // Deadzone overriding ACC_MIN
30 # define ACC_X_FIXED 0

48



31 # define ACC_Y_FIXED 0
32

33 // Filter parameters
34 # define ALPHA_IMU_OMEGA 0.8 // Lowpass filter *new value
35

36 // Feedback matrix
37 # define L1 -2.2 // Position
38 # define L2 -3.6 // Velocity
39 # define L3 39.6 // Angle
40 # define L4 11.5 // Angluar speed
41

42 // Kinematics matrix
43 # define M11 -351.1289080813352
44 # define M12 0
45 # define M13 0
46 # define M21 175.5644540406676
47 # define M22 -304.0865544015273
48 # define M23 0
49 # define M31 175.5644540406676
50 # define M32 304.0865544015273
51 # define M33 0
52

53 // Matrix for inverted kinematiks
54 # define W11 -0.054391970388845
55 # define W12 0.027195985194422
56 # define W13 0.027195985194422
57 # define W21 0
58 # define W22 -0.047104828118631
59 # define W23 0.047104828118631
60

61 // Negative due to motors dont follow right hand rule
62 # define M1_SPEED -0.087266462599716 // Encres 3*1200
63 # define M23_SPEED -0.051132692929521 // Encres 3*2048
64

65 // Get omega_? from query GV from faulhaber rad/s
66 // (encres taken care of within faulhaber unit)
67 // Motor_rpm /(ratio*60)*2pi = wheel_rad/s
68 # define GN_TO_RAD 0.03490658504
69

70 # define SENSOR_TIMEOUT 40 // Timeout before lost connection, ms
71 # define MOTOR_TIMEOUT 5 // Timeout for motor response
72 # define STRING_LENGTH 16 // Length of readins buffert strings
73

74 //----------- Declearations ------------------------------------

49



75 long timeStamp; // Time at beginning of every period
76 long timeStampOld;
77 long periodTime; // Previous actual period
78 long timeSyncOffset=0; // Offset when syncing sensor and arduino clock
79 long benchTime; // For measure the calcing time
80 long motorTimeout; // Used in readSerial123
81 long testTimer=0; // For debugging and testing
82

83 // Strings used for communication
84 char m1str[STRING_LENGTH];
85 char m2str[STRING_LENGTH];
86 char m3str[STRING_LENGTH];
87 char m1str_ctrl[8];
88 char m2str_ctrl[8];
89 char m3str_ctrl[8];
90

91 float acc_x_imu=0;
92 float acc_y_imu=0;
93

94 float phi_x=0;
95 float phi_y=0;
96 float phi_z=0;
97

98 float omega_x=0;
99 float omega_y=0;

100 float omega_z=0;
101

102 // Motor positions
103 long m1New=0;
104 long m1Old=0;
105 long m2New=0;
106 long m2Old=0;
107 long m3New=0;
108 long m3Old=0;
109 long m1gn=0;
110 long m2gn=0;
111 long m3gn=0;
112

113 // Motor speeds rad/s
114 float omega_m1=0;
115 float omega_m2=0;
116 float omega_m3=0;
117

118 // Ball speed m/s and position m

50



119 float v_bx=0;
120 float v_by=0;
121 float pos_bx=0;
122 float pos_by=0;
123

124 float v_bxGN=0;
125 float v_byGN=0;
126

127 float acc_x_control=0;
128 float acc_y_control=0;
129 float v_x_control=0;
130 float v_y_control=0;
131 float m1_control=0;
132 float m2_control=0;
133 float m3_control=0;
134

135 //Others
136 boolean contact=false; // True if connected to sensor
137 boolean booleanTest=false; // For testing
138 int intTest=0;
139 int i=0;
140

141

142 // Easy Transfer stuff ---------------
143 // Protocol for sensor communication
144 EasyTransfer ETR;
145 struct RECEIVE_DATA_STRUCTURE{
146 //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO
147 long tS;
148 float acc_x;
149 float acc_y;
150 float omega_x;
151 float omega_y;
152 float mag_z;
153 };
154

155 //give a name to the group of data
156 RECEIVE_DATA_STRUCTURE mydataR;
157

158

159

160 //--------- SETUP ----------------------------------------------
161 void setup() {
162

51



163 Serial.begin(115200);
164 Serial1.begin(115200);
165 Serial2.begin(115200);
166 Serial3.begin(115200);
167

168 // Rest encoder positions and Motor Power OFF.
169 Serial1.print("DI\rHO\r");
170 Serial2.print("DI\rHO\r");
171 Serial3.print("DI\rHO\r");
172

173 // When uploading the old program will run a short
174 // while before uploading starts.
175 delay(1000);
176

177 // Easy Transfer for sensor communication
178 ETR.begin(details(mydataR), &Serial);
179

180 // Rest encoder positions
181 Serial1.print("DI\rHO\r");
182 Serial2.print("DI\rHO\r");
183 Serial3.print("DI\rHO\r");
184

185 flushSerial123();
186

187 if(PRINT_STATUS){
188 Serial.println();
189 Serial.println("Setup done...");
190 Serial.println("Waiting for sensor...");
191 }
192 }
193

194

195 //--------- MAIN LOOP ------------------------------------------
196

197 void loop() {
198 // CONNECTED
199 if(ETR.receiveData()){
200 // If new contact Motors power ON and reset POS.
201 if(!contact){
202 // Motor Power ON and Reset motor position
203 Serial1.print("EN\rHO\r");
204 Serial2.print("EN\rHO\r");
205 Serial3.print("EN\rHO\r");
206 }

52



207

208 // Sync clocks
209 timeSyncOffset=millis()-mydataR.tS;
210 timeStamp=mydataR.tS+timeSyncOffset;
211

212 // Request motor positions
213 Serial1.print("POS\r");
214 Serial2.print("POS\r");
215 Serial3.print("POS\r");
216

217 sampleIMU();
218 sampleOmegaPOS();
219 calcBallPosSpeed();
220 calcControl();
221 # if CONTROL_ON
222 sendControl();
223 # endif
224 endStuff();
225 print2comp();
226 }
227

228 // Detect lost connection
229 else {
230 if(millis()>(SENSOR_TIMEOUT+timeStamp) && contact){
231 connectionLost();
232 }
233 flushSerial123();
234 }
235

236 }
237

238

239

240 //----------METHODS---------------------------------------------
241

242

243 // Calc control signals
244 void calcControl(){
245

246 // Calc acc
247 acc_y_control=L1*pos_by+L3*phi_x+L4*omega_x+L2*v_by;
248 acc_x_control=L1*pos_bx-L3*phi_y-L4*omega_y+L2*v_bx;
249

250 // Check minimim acc.

53



251 # if ACC_LIMIT_MIN
252 // X
253 if(abs(acc_x_control)<=ACC_MIN){
254 if(acc_x_control>=ACC_DEADZONE){
255 acc_x_control=ACC_MIN;
256 }
257 else if(acc_x_control<=-ACC_DEADZONE){
258 acc_x_control=-ACC_MIN;
259 }
260 }
261 // Y
262 if(abs(acc_y_control)<=ACC_MIN){
263 if(acc_y_control>=ACC_DEADZONE){
264 acc_y_control=ACC_MIN;
265 }
266 else if(acc_y_control<=-ACC_DEADZONE){
267 acc_y_control=-ACC_MIN;
268 }
269 }
270 # endif
271

272 // Integrate
273 v_y_control=-acc_y_control*0.02+v_by;
274 v_x_control=-acc_x_control*0.02+v_bx;
275 // Calc wheel speeds
276 m1_control=M11*v_x_control;
277 m2_control=M21*v_x_control+M22*v_y_control;
278 m3_control=M31*v_x_control+M32*v_y_control;
279 }
280

281 //--------------------------------------------------------------
282

283 // Send control signals
284 void sendControl(){
285 sprintf(m1str_ctrl,"V%d\r\0", int(-m1_control));
286 sprintf(m2str_ctrl,"V%d\r\0", int(-m2_control));
287 sprintf(m3str_ctrl,"V%d\r\0", int(-m3_control));
288 Serial1.print(m1str_ctrl);
289 Serial2.print(m2str_ctrl);
290 Serial3.print(m3str_ctrl);
291 }
292

293 //--------------------------------------------------------------
294

54



295 // Filter the sensor input
296 void sampleIMU(){
297 # if IMU_FILTER_ACC
298 acc_x_imu=ALPHA_IMU_ACC*mydataR.acc_x
299 +(1-ALPHA_IMU_ACC)*acc_x_imu;
300

301 acc_y_imu=ALPHA_IMU_ACC*mydataR.acc_y
302 +(1-ALPHA_IMU_ACC)*acc_y_imu;
303

304 # else
305 acc_x_imu=mydataR.acc_x;
306 acc_y_imu=mydataR.acc_y;
307 # endif
308

309 # if IMU_FILTER_OMEGA
310 omega_x=ALPHA_IMU_OMEGA*mydataR.omega_x
311 +(1-ALPHA_IMU_OMEGA)*omega_x;
312

313 omega_y=ALPHA_IMU_OMEGA*mydataR.omega_y
314 +(1-ALPHA_IMU_OMEGA)*omega_y;
315

316 # else
317 omega_x=mydataR.omega_x;
318 omega_y=mydataR.omega_y;
319 # endif
320

321 // Limit to 1 g, otherwise asin(acc/g) fails
322 if(acc_x_imu>9.81){
323 acc_x_imu=9.80;
324 }
325 else if(acc_x_imu<-9.81){
326 acc_x_imu=-9.80;
327 }
328 if(acc_y_imu>9.81){
329 acc_y_imu=9.80;
330 }
331 else if(acc_y_imu<-9.81){
332 acc_y_imu=-9.80;
333 }
334

335 phi_x=CF_CONSTANT*(phi_x+mydataR.omega_x*0.02)
336 +(1-CF_CONSTANT)*asin(acc_y_imu/9.81);
337

338 phi_y=CF_CONSTANT*(phi_y+mydataR.omega_y*0.02)

55



339 +(1-CF_CONSTANT)*asin(-acc_x_imu/9.81);
340 }
341

342 //--------------------------------------------------------------
343

344 // Stuff that can be done after the control signals has been sent
345 void endStuff(){
346 benchTime=millis()-timeStamp;
347 // Update
348 m1Old=m1New;
349 m2Old=m2New;
350 m3Old=m3New;
351 periodTime=timeStamp-timeStampOld;
352 timeStampOld=timeStamp;
353 // Clear motor buffers
354 flushSerial123();
355 // If new contact
356 if(!contact){
357 // Print status update
358 if(PRINT_STATUS){
359 Serial.println("Sensor OK\nMotor Power ON\nRunning...\n");
360 }
361 }
362 contact=true;
363

364 }
365

366 //--------------------------------------------------------------
367 // Reads positions from motors
368 void sampleOmegaPOS(){
369 //benchTime=micros();
370 // Ask for positions
371 readSerial123();
372 // Parse long from strings
373 m1New=atol(m1str);
374 m2New=atol(m2str);
375 m3New=atol(m3str);
376 // Calc rotational wheel speeds. rad/s
377 omega_m1=M1_SPEED*(m1New-m1Old);
378 omega_m2=M23_SPEED*(m2New-m2Old);
379 omega_m3=M23_SPEED*(m3New-m3Old);
380 }
381

382 //--------------------------------------------------------------

56



383

384 // Calculate boll position and speed
385 void calcBallPosSpeed(){
386

387 // Calc ball speed
388 v_bx=W11*omega_m1+W12*omega_m2+W13* omega_m3;
389 v_by=W22*omega_m2+W23*omega_m3; // W21=0;
390

391 // Calc ball position
392 pos_bx+=v_bx*0.02; // Hard coded sampling time
393 pos_by+=v_by*0.02;
394 }
395

396 //--------------------------------------------------------------
397

398 // Reads serial 1,2,3 will stopa at \r and replace it with \0
399 void readSerial123(){
400 motorTimeout=millis()+MOTOR_TIMEOUT;
401 // Read answers
402 // Read Serial1
403 i=0;
404 while(1){
405 m1str[i]=Serial1.read();
406 if(m1str[i]==’\r’){
407 m1str[i]=’\0’;
408 break;
409 }
410 if(m1str[i]!=-1){
411 i++;
412 }
413 else if(millis()>motorTimeout){
414 if(PRINT_STATUS){
415 Serial.println("ERROR: M1");
416 }
417 m1str[i]=’\0’; // Keep old value FIX!!
418 break;
419 }
420 }
421

422 // Read Serial2
423 i=0;
424 while(1){
425 m2str[i]=Serial2.read();
426 if(m2str[i]==’\r’){

57



427 m2str[i]=’\0’;
428 break;
429 }
430 if(m2str[i]!=-1){
431 i++;
432 }
433 else if(millis()>motorTimeout){
434 if(PRINT_STATUS){
435 Serial.println("ERROR: M2");
436 }
437 m2str[i]=’\0’; // Keep old value FIX!!
438 break;
439 }
440 }
441

442 // Read Serial3
443 i=0;
444 while(1){
445 m3str[i]=Serial3.read();
446 if(m3str[i]==’\r’){
447 m3str[i]=’\0’;
448 break;
449 }
450 if(m3str[i]!=-1){
451 i++;
452 }
453 else if(millis()>motorTimeout){
454 if(PRINT_STATUS){
455 Serial.println("ERROR: M3");
456 }
457 m3str[i]=’\0’; // Keep old value FIX!!
458 break;
459 }
460 }
461 }
462

463 //--------------------------------------------------------------
464

465 // Called when connection with Sensor is lost
466 void connectionLost(){
467 // Motor Power OFF
468 Serial1.print("DI\r");
469 Serial2.print("DI\r");
470 Serial3.print("DI\r");

58



471 contact=false;
472 if(PRINT_STATUS){
473 Serial.println("ERROR Connection lost!");
474 Serial.println("Motor Power OFF");
475 Serial.println("Please check sensor");
476 Serial.println("Waiting for sensor...");
477 }
478 }
479

480 //--------------------------------------------------------------
481

482 // Empty Serial 1,2,3 reading buffers.
483 void flushSerial123(){
484

485 // Since new version of arduino 1.0 flush()
486 // is changed and do not work in the same way
487 while(Serial1.read()!=-1){
488 // Do nothing
489 }
490 while(Serial2.read()!=-1){
491 // Do nothing
492 }
493 while(Serial3.read()!=-1){
494 // Do nothing
495 }
496 }
497

498 //--------------------------------------------------------------
499

500 // Strings sent to computer at the end.
501 // If too long sampling may be delayed.
502 void print2comp(){
503 # if PRINT_XY
504 // Print speed and pos
505 Serial.print(pos_bx, DEC_PRINT);
506 Serial.print("\t");
507 Serial.print(pos_by, DEC_PRINT);
508 Serial.print("\t");
509 Serial.print(v_bx, DEC_PRINT);
510 Serial.print("\t");
511 Serial.print(v_by, DEC_PRINT);
512 Serial.print("\t");
513 # endif
514

59



515 # if PRINT_OMEGA
516 Serial.print( omega_m1, DEC_PRINT);
517 Serial.print("\t");
518 Serial.print( omega_m2, DEC_PRINT);
519 Serial.print("\t");
520 Serial.print( omega_m3, DEC_PRINT);
521 Serial.print("\t");
522 # endif
523

524 # if PRINT_ANGLES
525 Serial.print(phi_x, DEC_PRINT);
526 Serial.print("\t");
527 Serial.print(phi_y, DEC_PRINT);
528 Serial.print("\t");
529 Serial.print(phi_z, DEC_PRINT);
530 Serial.print("\t");
531 # endif
532

533 # if PRINT_OMEGAXYZ
534 Serial.print(omega_x, DEC_PRINT);
535 Serial.print("\t");
536 Serial.print(omega_y, DEC_PRINT);
537 Serial.print("\t");
538 Serial.print(omega_z, DEC_PRINT);
539 Serial.print("\t");
540 # endif
541

542 # if PRINT_ACC_IMU
543 Serial.print(acc_x_imu, DEC_PRINT);
544 Serial.print("\t");
545 Serial.print(acc_y_imu, DEC_PRINT);
546 Serial.print("\t");
547 # endif
548

549 # if PRINT_ACC_CONTROL
550 Serial.print(acc_x_control, DEC_PRINT);
551 Serial.print("\t");
552 Serial.print(acc_y_control, DEC_PRINT);
553 Serial.print("\t");
554 # endif
555

556 # if PRINT_V
557 Serial.print(vx_control, DEC_PRINT);
558 Serial.print("\t");

60



559 Serial.print(vy_control, DEC_PRINT);
560 Serial.print("\t");
561 # endif
562

563 # if PRINT_MOTOR
564 Serial.print(m1_control, 0);
565 Serial.print("\t");
566 Serial.print(m2_control, 0);
567 Serial.print("\t");
568 Serial.print(m3_control, 0);
569 Serial.print("\t");
570 # endif
571

572 # if PRINT_MSTR
573 Serial.print(m1str);
574 Serial.print("\t");
575 Serial.print(m2str);
576 Serial.print("\t");
577 Serial.print(m3str);
578 Serial.print("\t");
579 # endif
580

581 # if PRINT_TIME
582 Serial.print(benchTime);
583 Serial.print("\t");
584 Serial.print(periodTime);
585 Serial.print("\t");
586 Serial.print(timeStamp);
587 # endif
588

589 # if PRINT_TEST
590 Serial.print("\t");
591 Serial.print(intTest);
592 # endif
593

594 Serial.println();
595

596 }

61


	Introduction
	Hardware
	Mecanum wheel
	Omni wheels
	Lego Mindstorms
	Arduino Mega 2560
	ArduIMU+ V3
	Faulhaber MCDC 3006S & 3257G012CR

	Theoretical Background
	State feedback control
	Linear Quadratic Optimal Control
	Complementary filter
	Kinematics
	Kinematics of omni and mecanum wheels
	Kinematics of the Test Rig
	Ball translation
	Robot translation


	Methodology
	Platforms
	Omni wheel platform
	Mecanum wheel platform
	Lego Mindstorms Platform

	The Test Rig
	Geometry and design
	Verification

	The Robot
	Dynamics of the Robot
	Dymola Model
	Robot design
	Implementation


	Results
	Lego Robot
	Test Rig Kinematics
	The Robot
	Linear Model
	Model Simulations
	Complementary Filter
	Robot Performance


	Conclusion and Future Work
	Source-code
	5897_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

	5897_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118




