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Abstrat

Brain-mahine interfaes (BMIs) provide a uni- or bidiretional ommuniation

link between the entral nervous system and the outside world. This link

failitates the studying of neuronal mehanisms underlying behavior as well as

the treatment of neurologial disease. Wired BMIs are limited in the sense

that they restrit the mobility of the subjet and they inrease the risks for

post-surgial ompliations. While wireless BMIs ideally solve these problems,

their designers fae the hallenge of ombining high information throughput

with limited wireless link apaity and energy resoures. Therefore, measures

have to be taken to maximize the utilization of the wireless link and energy

resoures by designing omputationally e�ient and reliable data redution

tehniques. The design and validation of suh tehniques requires the presene

of well de�ned test data, where the true information ontent is known a priori.

This thesis deals with both the modeling of the neural signal to provide realisti

and pratial means of generating test data, as well as low-omplexity methods

for data redution that lead to e�ient utilization of the wireless link and the

energy resoures at hand. The main part of the thesis is a olletion of papers

that address these aspets.

Paper I presents the design and implementation of a simple telemetry sys-

tem for the wireless transmission of neural data from four measurement han-

nels. This paper highlights some of the design hallenges that need to be

onsidered and thereby serves as a pilot investigation for the following papers.

Paper II presents a reording model and a simulation tool for generating

single-hannel test reordings for the validation of algorithms for spike detetion

and spike sorting. Having set up the geometry of the reording, eah neuron is

assigned a random spike waveforms from a library of experimentally obtained

templates. The ontribution of eah neuron is generated by adding the orre-

sponding waveform at randomly generated spike times and the spike trains are

added up to form the entire reording. Spike times are modeled by a renewal

proess. The model is evaluated in terms of realism by omparing the power

spetral density and autoorrelation of syntheti biologial noise generated by
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vi Abstrat

the model, to noise obtained from real reordings.

Paper III extends the �nite spike library provided in paper II in order to

provide a greater, still realisti, variation in spike waveforms. Prinipal om-

ponent analysis and Gaussian mixture models are used to model the statistial

properties of the original spike library and the statistial model an then be

used to generate an arbitrary number of spike wavforms with realisti prop-

erties. The extension is shown to be usable in providing aess to arbitrarily

large libraries of spikes with realisti properties.

Paper IV uses the models presented in papers II and III to explore the e�ets

of sampling rate and resolution on the performane in spike detetion and spike

sorting at various noise levels and numbers of target neurons. Performane

urves are analyzed to �nd sampling rate and resolution breakpoints for spike

detetion and spike sorting. These breakpoints serve as guidelines for seleting

sampling parameters when dimensioning wireless BMIs. The paper presents

methods for quantifying the auray in spike detetion and spike sorting and

provides general insight into how the performane of these proessing tasks are

in�uened by sampling parameters, noise level and number of target units.

Paper V presents a preliminary study of the harateristi relationship be-

tween physial eletrode movements and movements of deteted spikes in fea-

ture spae, using the signal models presented in paper VI. We then model this

relationship as a linear transformation between two oordinate systems and

show that given that a training proedure is introdued at the time of ele-

trode insertion, future eletrode movements an be estimated diretly from the

feature spae representation of spikes.

Paper VI presents a new, omputationally and memory e�ient approah

for modeling the extraellular signal. We use traditional ompression teh-

niques and polynomial �tting to derive a deterministi model that an be used

for fast alulation of spike waveforms in arbitrary measurement points sur-

rounding a ompartment model of a neuron. Four di�erent neuron models are

derived and they are all shown to aurately predit the spike waveforms pro-

dued by the original ompartment model, both in terms of spike shape and

amplitude. The model is implemented into a simulation tool that e�iently

and realistially synthesizes reordings with multieletrode arrays of arbitrary

geometries.

Paper VII addresses low-omplexity methods of ompressing deteted spike

waveforms in wireless BMIs to ensure e�ient use of the wireless link and energy

resoures at hand. The paper shows that given the orret hoie of overall

system arhiteture and spike detetor, spike waveforms an be ompressed

with �xed generi ompression bases, derived from experimentally obtained

spike libraries, without signi�ant loss in auray in spike reonstrution and

sorting.



Prefae

During the �nal part of my studies of eletrial engineering at LTH, I was of-

fered, by Anders J Johansson, the opportunity of writing my master's thesis on

the topi of telemetri devies for neural reordings. The thesis, titled �Nerve

Telemetry System� was handed in and presented about one year later and ad-

dressed the design and implementation of a wireless measurement system for

the purpose of reording extraellular signals. The result was a prototype built

on a �breadboard� and whose main omponents were an analog ampli�er, a

prototype-board for a ommerial wireless transeiver inluding an A/D on-

verter and a CPU and a simple PC interfae to ontrol the devies and ollet

measurement data.

The initial interest in suh a system ame from a then reently established

researh group at Lund University alled the Neuronano Researh Center � or

NRC. This multidisiplinary group, omposed of experts within neurosiene

and engineering, set o� with the following vision:

To improve quality of life for disabled people and individuals with

neurodegenerative disease by listening to, understanding and talk-

ing to the nervous system by means of a neuroeletroni juntion.

�Listening to�, �understanding� and �talking to� in this ontext involves mea-

suring, interpreting and reating upon the ativities of neuronal iruits within

the entral nervous system (CNS). This kind of neuroeletroni juntions �

brain-mahine interfaes (BMI) � an provide insight into the neuronal meh-

anisms that govern memory, learning, pain and other aspets of our behavior

and they provide the opportunity to �tap onto� the nervous system to extrat

ontrol signals for prostheti devies. Realizing this noble vision thus requires

signi�ant e�orts within all �elds of expertise overed by the group, inluding

for instane bioompatible eletrode designs, methods for signal analysis and

the design of wireless interfaes. Wireless BMIs allow the subjet or patient to

move around without being in�uened signi�antly by the measurement equip-

ment and they minimize the risk for post-surgial ompliations.

My master's thesis was the �rst step within the group towards designing a
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viii Prefae

wireless BMI and resulted in me being o�ered a position as a Ph.D. student

for ontinued researh within the �eld, under the supervision of Anders J Jo-

hansson and Martin Garwiz. I soon realized that the hallenge at hand not

only involved designing and building the hardware for the wireless BMI, but

also, and perhaps primarily, establishing a set of design parameters that en-

sured good system performane in terms of �listening to� and �understanding�

the nervous system. This need for pre-investigations was primarily driven by

the requirement that the implanted part of the wireless BMI should be self-

ontained and fully automati, thus demanding minimal power onsumption

and e�ient use of omputational and wireless link resoures. Testing the per-

formane of system designs requires realisti and pratial signal models that

an be used to generate test signals with ontrollable properties. This provides

aess to �ground-truth� about the neural ativity being measured, and that

the system output an be ompared with to provide a quantitative estimate of

performane.

This dotoral thesis summarizes my researh within signal modeling and

data redution for wireless BMIs where omputational simpliity has been one

of the key riteria. In the �rst part of the thesis, a general overview of the

researh �eld is provided and the ontributions of my researh to the �eld are

brie�y summarized. The seond part ontains an assembly of seven researh

papers that have been written during my �ve years as a PhD student. These

are:

[1℄ P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson:

�Implementation of a Telemetry System for Neurophysiologial Signals�,

Conferene Proeedings of the International Conferene of IEEE Engi-

neering in Mediine and Biology Soiety, pp. 1254 � 1257, 2008.

[2℄ P. T. Thorbergsson, H. Jorntell, F. Bengtsson, M. Garwiz, J. Shouen-

borg, A. J Johansson: �Spike Library Based Simulator for Extraellular

Single Unit Neuronal Signals�, Conferene Proeedings of the International

Conferene of IEEE Engineering in Mediine and Biology Soiety, pp.

6998 � 7001, 2009.

[3℄ P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson:

�Statistial Modelling of Spike Libraries for Simulation of Extraellular

Reordings in the Cerebellum�, Conferene Proeedings of the Interna-

tional Conferene of IEEE Engineering in Mediine and Biology Soiety,

pp. 4250 � 4253, 2010.



ix

[4℄ P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson: �Mini-

mizing data transfer with sustained performane in wireless brain-mahine

interfaes�, Journal of neural engineering, pp. 036005, 2012.

[5℄ P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson: �Spike-

Feature Based Estimation of Eletrode Position in Extraellular Neural

Reordings�, Conferene Proeedings of the International Conferene of

IEEE Engineering in Mediine and Biology Soiety, pp. 3380 � 3383, 2012.

[6℄ P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson:

�Computationally e�ient simulation of extraellular reordings with

multieletrode arrays�, Journal of neurosiene methods, vol. 211, pp. 133

� 144, 2012.

[7℄ P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson:

�Compression of neural spikes with �xed generi bases for wireless

brain-mahine interfaes�, manusript to be submitted for publiation,
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Chapter 1

Introdution

1.1 Bakground

As humans, we reeive onstant input from the world around us through our

senses. The proessing of the inputs an lead to various outputs, suh as

the experiene of a mental mode, the retrieval or forming of a memory or

the eliitation of a physial reation. We onstantly interat with the world

around us by feeling emotions, feeling pain, learning, forgetting, seeing, hearing,

speaking and by performing omplex movements. But what are the underlying

mehanisms that govern all the information proessing that onstitutes the

biologial foundations of behavior? Neurosientists take on the hallenge of

answering this kind of questions by studying the network dynamis of the

immensely omplex organ that is the brain.

�Listening to� the brain with the right kind of tools an help us reveal some

of the mysteries behind our behavior. By probing the entral nervous system

(CNS) for its neuronal ativities while simultaneously observing behavior, we

an make assoiations and orrelations and suessively build up models that

desribe the neural iruits that drive our behavior. Not only do suh insights

quenh our thirst for understanding normal behavior. They also provide us with

knowledge that an be used for linial treatment of neurologial disease or for

regaining physial funtions that have been lost due to neural injury, usually

by �talking bak to� the nervous system by means of eletrial stimulation.

Brain-mahine interfaes (BMIs) onstitute a lass of platforms that provide

a uni- or bidiretional onnetion to the entral nervous system, and thereby

allow researh and treatments as the ones mentioned above. Unidiretional

BMIs allow either the measurement of neural ativity or the indution of some

kind of ation, for instane the ontrol of prostheti devies or a wheelhair.

3



4 Overview of the Researh Field

Bidiretional BMIs ommuniate with the CNS in both diretions by measur-

ing neural ativity, extrating information from the measurements and then

reating in a prede�ned manner. For example, the extrated information an

re�et a patient's intended ation and the reation an be in the form of sending

a ontrol signal via an atuator unit to an eletri wheelhair or a prostheti

limb.

Various types of BMIs exist, varying in their level of invasiveness and the

type of signal that they measure [1℄. One type of BMIs uses hronially im-

planted miroeletrodes to measure the hanges in eletri potential that follows

the ativation of single neurons in the viinity of the eletrodes. Due to both

the spatial and temporal resolution that an be aptured with suh reordings,

the amount of information produed by them is vast and the most pratial way

of onveying the measured data to the outside world is through wires. How-

ever, wired onnetions to hronially implanted measurement devies ome

with risks of infetions due to transutaneous wires, and they obviously re-

strit the subjet's freedom to move around. Not only are these restritions

disadvantageous from the subjet's standpoint, but also from the point of view

of answering researh questions regarding behavior, sine having a wire bundle

onneted to its head is likely to in�uene the behavior of the subjet. Wireless

BMIs ideally resolve these restritions.

Wireless BMIs ome with new hallenges whih mostly arise due to limita-

tions in wireless link apaity and energy resoures. Implanted self-ontained

measurement devies must have a long lifetime in order to maximize their relia-

bility and minimize the frequeny of surgial interventions to replae batteries.

Low power onsumption is therefore a key feature of the implanted part of a

wireless BMI. However, wireless transmission of data is energy onsuming. The

most straight-forward ways of inreasing the apaity of a wireless link are to

inrease the transmitted power and to inrease bandwidth. However, due to

the power-onstraints on the implant and the heavy utilization of the radio

frequeny spetrum, both of these approahes are expensive, onsidering the

high data rates provided by multi-hannel neural reording devies.

A more feasible way to approah the problem is to derease the data rate

into the wireless link by minimal omputational e�orts and thereby simultane-

ously ensuring power e�ieny and e�ient use of the wireless link apaity at

hand. This demands the implementation of energy e�ient data redution or

ompression tehniques on the implant, that make sure that only the relevant

information is transmitted over the wireless link. However, disarding data

may redue the quality of the subsequent analysis and thereby it may in�uene

the validity of the onlusions drawn either by the researher studying behavior

or the atuator generating prostheti ontrol signals. It is therefore essential

to onsider the performane in extrating information from the neural data
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when studying ways of disarding data. Suh onsideration requires the use

of reliable and realisti signal models that allow the output from the analysis

proedure to be ompared with the true information ontent of the signal.

This thesis addresses realisti and omputationally e�ient modeling of the

extraellular neural signal, as well as tehniques for data redution for e�ient

use of omputational and wireless resoures. Signal models of various omplex-

ities and degrees of realism have been implemented, the latest one onstituting

a new lass of models, referred to in this thesis as ompressed ompartment

models. The models failitate omputationally and memory e�ient synthesis

of multi-eletrode reordings with realisti properties and are used to study the

e�ets of data redution on the onlusions that an be drawn from the data

analysis.

1.2 Aims

The overall aims of the thesis work have been to:

• Implement a simple wireless brain-mahine interfae using o�-the-shelf

omponents to identify bottleneks to onsider in future designs.

• Establish realisti, ontrollable and omputationally e�ient signal mod-

els that an be used to synthesize test data for evaluating performane

in the analysis of single- and multi hannel neurophysiologial data.

• Charaterize the in�uene of sampling rate and sampling resolution on

the performane in the analysis of neurophysiologial data using various

algorithms under various irumstanes and establish guidelines for the

seletion of sampling parameters.

• Use signal models to haraterize the e�ets of eletrode movements on

deteted spike waveforms.

• Study how ompression of spike waveforms with low-omplexity arhite-

tures in�uenes performane in the analysis of neurophysiologial data.

1.3 Methods at a Glane

Following is a brief summary of the most essential methods applied in the

papers of Part II. The methods are desribed in more detail in the papers and

in Chapters 2 to 4.
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Hardware (Paper I) was designed and simulated in NI Multisim and PCB

layout was done in CadSoft Eagle. The hardware was built by manual soldering

of surfae mounted omponents of sizes down to 0201, i.e. 0.6 × 0.3 mm.

Programming was done in Matlab (Papers I to VII) and C (Papers I and

II). The simulator in Paper VI was written using objet oriented programming

in Matlab.

Extraellular neural signal models were developed (Papers II, III and VI)

and used to provide syntheti test reordings with ground truth. Spike times

were generated assuming spontaneous �ring with gamma distributed inter-spike

intervals (Papers II and VI), bursty �ring with gamma distributed inter-burst

intervals and Poisson distributed number of spikes per burst (Paper VI) and

orrelated �ring (Paper VI). Neuronal spike waveforms were obtained from an

experimentally obtained library of mean spike waveforms from the at erebel-

lum (Paper II), by a statistial model involving prinipal omponent analysis

and Gaussian mixture models (Papers III and IV) and through ompressed

ompartment models obtained through the use of the NEURON simulation

environment, the line soure approximation (LSA), singular value deomposi-

tion (SVD) and trivariate polynomial �tting with a multivariate Vandermonde

matrix (Papers V, VI and VII). Physiologial bakground noise was modeled

as the spiking ativity of distant neurons (Papers II to VII) and thermal noise

was assumed to be zero-mean Gaussian distributed. Spike libraries and mod-

els were validated in terms of spike duration (Papers II and III), distribution

of Eulidean distanes between spikes, a double blind test for disrimination

between real and modeled spikes and sample intensity (Paper III) and om-

parison of shape and amplitude of true and modeled spikes (Paper VI). Signal

models were validated in terms of power spetral density using Welh's method

(Papers II, III and VI), sample histogram and level of bakground noise (Paper

VI).

Neurophysiologial analysis was performed with various algorithms for spike

detetion (Papers II, IV and VII), spike alignment (Paper VII), feature extra-

tion (Papers IV to VII), lustering (Papers IV, VI and VII) and automati spike

sorting (Paper II). A method for quantifying performane in spike detetion in

terms of true and false positive detetion rates was desribed and used (Paper

IV). Methods for quantifying performane in spike sorting, in terms of overall

and per-neuron lustering auraies, were desribed and used (Papers IV, VI

and VII). The PCA feature spae representation of spikes was examined as a

potential preditor for performane in spike sorting (Paper IV).

Eletrode movements were modeled by simulating arrays of eletrodes fol-

lowing the assumed movement paths and extrating spikes from a time window

of given duration while sweeping the window aross the reording hannels

(Paper V). Eletrode position was estimated using a linear model involving a
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transformation matrix obtained through singular value deomposition (Paper

V). Eletrode movements in physial spae and spike movements in feature

spae were quanti�ed using a path measure involving the Eulidean distane

of points on the path to the mean point on the path (Paper V).

Data redution was performed by minimizing sampling rate and resolution

while sustaining performane in spike detetion and sorting (Paper IV) and by

ompression with �xed generi ompression bases in ombination with various

spike detetors and system arhitetures (Paper VII).

1.4 Outline

Chapters 2 to 4 provide a general overview of the researh �eld and thereby

set the stage for the disussion arried out in the papers of Part II. Chapter 2

starts with a basi presentation of the neuron and the ation potential, followed

by a disussion about extraellular neural reordings and the essential system

omponents involved in their aquisition and analysis.

Chapter 3 desribes various approahes to extraellular signal modeling

with the purpose of providing test signals with a priori known harateristis

whih allows the quantitative assessment of performane in the analysis of

neurophysiologial data. The models are disussed in terms of their realism,

ontrollability and omputational e�ieny.

Chapter 4 begins by introduing the wireless BMI as a feasible solution

to some of the problems inherent with wired BMIs, suh as the risk for post-

surgial ompliations and limited freedom of movement for the subjet or the

patient. The major hallenges involved in the design of wireless BMIs are pre-

sented in relation to theoretial limits for the information transfer apaity of

the wireless hannel and the limited energy supply that typially haraterizes

self-ontained implants. The problem is disussed both from the perspetive of

the wireless system and the neural data that is to be transmitted, in terms of

apaity and data redution tehniques, respetively. The seond part of the

hapter addresses data redution in more detail, fousing on simple approahes

to e�iently utilizing the apaity of the wireless link at hand.

In Chapter 5 the results and ontributions of the papers are summarized

and the papers are disussed within the ontext of the �eld as presented in

Chapters 2 to 4. The hapter onludes with a general disussion about the

results and possible future work.
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Chapter 2

Extraellular Neural

Reordings

Neurons are the basi signaling elements of the entral nervous system (CNS)

and they ommuniate with eah other through interfaes alled synapses. The

neurons on the transmitting and reeiving sides of the synapse are referred to

as the presynapti and postsynapti neurons, respetively. A network of neu-

rons that proesses information is in many ways similar to a iruit of logi

elements that onstantly evaluate the sum of all input signals from all presy-

napti neurons. If the gathered inputs from the network to a given neuron add

up su�iently, the neuron gets ativated and transmits the signal to down-

stream neurons. Sine the signaling is eletrohemial in nature, governed by

the �ow of ions aross the neuronal membranes, the ativation pattern of a

neuron an be monitored from its outside by measuring the hange in ele-

tri potential assoiated with its ativation. These types of measurements

are referred to as extraellular neural reordings and they generally allow the

ativities of multiple individual neurons to be assessed through one or more

measurement hannels. By monitoring multiple neurons in a iruit that is

involved in a behavioral task, it is possible to haraterize the major iruit

omponents and build models that explain the neuronal ativities underlying

the behavior.

In this hapter, the neuron is introdued from a ytologial and eletro-

physiologial perspetive and the ation potential is introdued as the basi

signaling unit in neuronal iruits [2, 3℄. The major steps involved in aquir-

ing and and analyzing the extraellular signal are then disussed, assuming

that the task is to haraterize either the ompound ativities of a group of

9
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neurons (multi-unit ativity) or the ativities of individual neurons (single-unit

ativity).

2.1 Neurophysiologial Bakground

2.1.1 The Neuron

Neurons and glia ells are the building bloks of the CNS. In priniple, the

information proessing arried out by the CNS is arried out by neurons. The

basi signal unit for most neurons is the ation potential, a rapid all-or-nothing

hange of the neuronal membrane potential. The total number of neurons in

the brain is in the order of 1011 and despite the existene of a large number of

neuronal types, they all share the same basi arhiteture and their ommon

role is to onvey and proess the information that governs our behavior.

A typial neuron an be roughly divided into four funtional regions � soma,

dendrites, axon and presynapti terminals (see Fig. 2.1). The soma (or ell

body) ontains the ell nuleus and is the neuron's enter for metaboli fun-

tions and protein synthesis. The dendrites serve as the input terminals of the

neuron � reeiving inoming signals from presynapti neurons. The axon starts

at the base of the soma � at the axon hillok � and serves as a pathway for

the signal from the neuron to reah postsynapti neurons. The axon hillok is

where the input signals to the neuron are integrated and if the total input ex-

eeds a ertain threshold, an ation potential is generated and propagates along

the axon to reah other neurons. This funtion of the axon hillok depends on

its high density of voltage gated sodium hannels (see following setion). The

axon an be myelinated, i.e. wrapped within a sheath of isolating oligodenro-

ytes, whih is one type of glial ells found within the nervous system. The

setions of the myelin sheath are separated by the nodes of Ranvier, at whih

the ation potential is regenerated, providing an e�ient way of transmitting

the signal a long way e�etively without being attenuated. Presynapti termi-

nals are where the neuron terminates and onnets to postsynapti neurons.

Synapses are the onnetion terminals between neurons aross whih signaling

substanes �ow and allow the signal from one neuron to in�uene the state of

another neuron.

2.1.2 The Membrane Potential

As touhed upon already, the state of the neuron is re�eted in its membrane

potential, i.e. the potential di�erene between the inside and outside of the ell
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Figure 2.1: An illustration of the building bloks of a typial neuron (partially

adopted from http://www.openlipart.om)

membrane. The membrane potential Vm is thus given by

Vm = Vin − Vout (2.1)

where Vin and Vout are the eletri potentials at the inside and outside of the

ell membrane respetively.

While the ation potential, generated in the axon hillok and traveling down

the axon, is in priniple an all-or-nothing phenomenon, the sub-threshold mem-

brane potential of the ell soma or dendrites an be modulated in a graded fash-

ion. The membrane potential depends on di�erenes in onentrations of ions

on either side of the membrane, whih are maintained by energy onsuming ion

pumps loated in the membrane and pumping the ions against their onentra-

tion gradients. Membrane urrent is generated as the ions �ow through passive

ion hannels, thereby displaing eletrial harges aross the membrane.

The most signi�ant ions in determining the neuronal membrane potential

are sodium (Na

+
), potassium (K

+
) and hlorine (Cl

−
). At any given time,

their equilibrium potentials, together with the membrane's permeability to the

respetive ion, determine the resting potential of the ell, i.e. the membrane

potential in the resting � or inative � neuron. The equilibrium potential of a

given ion X an be alulated by Nernst's equation as

EX =
RT

zF
ln

[X ]o
[X ]i

(2.2)

where R is the gas onstant, T is the temperature (in Kelvin), z is the valene

of the ion, F is the Faraday onstant and [X ]i/o is the intra-/extraellular on-
entration of the ion. Under steady-state onditions, i.e. when the membrane



12 Overview of the Researh Field

potential Vm is not hanging, it an be alulated aording to Goldman's

equation as

Vm =
RT

F
ln

PK+ [K+]o + PNa+ [Na+]o + PCl− [Cl−]i
PK+ [K+]i + PNa+ [Na+]i + PCl− [Cl−]o

(2.3)

where PX is the membrane permeability to ion X (in m/s). Thus, when the

membrane permeability of one ion dominates over those of other ions, Gold-

man's equation approahes Nernst's equation for that ion and the membrane

potential approahes the equilibrium potential for that ion.

In the resting neuron, the net ion �ow aross the membrane is at equilib-

rium and the membrane potential is given by the neuron's resting membrane

potential (usually between -50 and -90 mV). At rest, there is an in�ux of Na

+

ions and an outward �ux of K

+
ions. When this equilibrium is disturbed, the

membrane beomes either depolarized or hyperpolarized, i.e. the membrane

potential beomes either less or more negative.

It is through loally altering the neuronal membrane properties and thereby

the permeability to di�erent ions that neurons are able to ommuniate with

eah other. When a neuron reeives input from a presynapti neuron, the

(postsynapti) neuron's membrane potential is hanged loally, usually at the

dendrites and this hange then spreads towards the ell soma and attenuates

passively along the ell membrane. The membrane's response to this hange

depends on the membrane apaitane, the membrane input resistane and the

axial resistane of the dendrite(s).

A single neuron an reeive exitatory and inhibitory inputs from several

thousands of presynapti neurons. Exitatory and inhibitory inputs strive to-

wards depolarizing and hyperpolarizing the membrane, respetively, and thus

ounterat eah other. When the sum of these inputs leads to a depolarization

of the membrane beyond a given threshold, the ell gets ativated and an ation

potential is generated.

2.1.3 The Ation Potential

In 1952 Alan Lloyd Hodgkin and Andrew Fielding Huxley explained in detail

the interation between ion permeabilities, ion �ows and the membrane poten-

tial. Using their models they provided a thorough mathematial desription of

the generation of ation potentials [4, 5℄.

If the inputs from all presynapti neurons sum up to depolarize the mem-

brane potential of the postsynapti ell beyond a given threshold, an ation

potential is generated (see Fig. 2.2). Voltage gated Na

+
hannels open when

the threshold is reahed, giving rise to an in�ux of Na

+
ions that is larger than

the out�ux of K+
ions. This altered �ux of ions ontinues to further depolarize
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Figure 2.2: An illustration of the ation potential and the underlying meha-

nisms.

the membrane, whih in turn leads to the opening of yet more voltage gated

Na

+
hannels. This positive-feedbak proedure ontinues to rapidly drive the

membrane potential towards the equilibrium potential of Na

+
, whih is in the

range of some tens of millivolts. Finally, when the peak of the ation potential

is reahed, the voltage gated Na

+
hannels start to lose by inativation and

voltage gated K

+
hannels start to open. Thus the Na

+
in�ux dereases and a

K

+
in�ux begins, resulting in the repolarization of the membrane. Before the

K

+
ion hannels lose, the membrane potential usually gets brie�y polarized

beyond the resting membrane potential.

During a short time period (a few milliseonds) after the termination of the

ation potential, there is a residual inativation of Na

+
hannels and opening

of K

+
hannels. This short time period is referred to as the refratory period.

The refratory period an be divided into two phases � the absolute and the

relative refratory periods. During the absolute refratory period, the neuron

annot be ativated and during the relative refratory period, the ativation

threshold is higher than when the ell is at equilibrium and thus a stronger

stimulus is required for ativation. The refratory period thus gives rise to an

upper limit to the �ring rate of the neuron.
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2.2 Reording and Analysis of the Extraellular

Neural Signal

Extraellular neural reordings have beome important tools for providing in-

sight into the neuronal iruits that govern our behavior as well as to provide

means of extrating ontrol signals for prostheti ontrol [6, 7, 8, 9, 10℄. In

ontrast to intraellular measurements, whih diretly measure the membrane

potential of a single neuron, extraellular neuronal reordings measure the ele-

tri potential within the extraellular spae, resulting from the �ow of ions

aross the ell membranes of a large number of neurons simultaneously. The

extraellular signal is measured with an implanted miroeletrode, onsisting of

one or more eletrode sites.

The extraellular signal onsists of several omponents. The �rst of these,

whih is the one addressed throughout this thesis, is the spiking omponent that

re�ets the ation potentials eliited in neurons that are lose to the reording

eletrode, typially within a distane of approximately 50 µm [8℄. The shape of

the extraellular spike depends on the morphology of the neuron and the spatial

relationship between the neuron and the eletrode [11, 12℄. This dependeny

is due to the spatial distribution of membrane urrent soures as seen from the

eletrode site, and it allows the deteted spikes from di�erent neurons to be

lassi�ed and assigned to their neurons of origin through a proedure referred

to as spike sorting [13, 14℄. By this proedure, the spike trains from individual

neurons an be separated and the �ring harateristis of the neurons an be

haraterized individually.

Other omponents of the extraellular signal are physiologial noise, rep-

resenting spiking ativity from distant neurons, and low-frequeny loal �eld

potentials (LFPs) that are believed to represent synapti input to neurons lose

to the reording eletrode [15, 3℄. In ontrast to the spiking omponent, most

of the LFP energy resides in the lower part of the frequeny spetrum, making

it straightforward to remove from the reorded signal by means of high-pass

�ltering and thereby isolating the spiking omponent. Sine the physiologial

noise omponent is omposed of spiking ativity of distant ells, it annot be

removed from the reording by simple �ltering without in�uening the spiking

omponent as well.

In addition to the above omponents of the extraellular signal, whih all

stem from physiologial proesses, are those that originate from the measure-

ment system or it's eletrial environment. The most signi�ant of those are

thermal noise generated in the analog front end and 50/60 Hz powerline inter-

ferene. Thermal noise an be minimized by onsidering it during the design

of eletrodes and amplifying iruits and if present, powerline interferene an
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be removed by digital �ltering.

Figure 2.3 illustrates the general struture of brain-mahine interfae that

uses extraellular neuronal reordings to extrat information about the ativ-

ities of multiple or single neurons � the multi- or single unit ativity. Figure

2.4 illustrates the proedure of isolating the spike trains from the individual

neurons through spike detetion, alignment, feature extration and lustering.

In the following setions, we introdue the essential omponents of the system

and brie�y disuss the major design onsiderations.

Electrode Amplification
A/D

conversion
Filtering

Spike

detection

Spike

alignment

Unamplified

analog signal

Amplified

analog signal

Digitized

signal

LFP and

50/60Hz removed

Spike times

and waveforms,

multi unit activity

Aligned

spike waveforms

Spike

sorting

Neuronal

firing patterns,

single unit activity

Spike train analysis

Figure 2.3: An illustration of the building bloks of a typial brain-mahine

interfae that uses extraellular neuronal reordings to haraterize multi- or

single unit ativity.

2.2.1 Eletrode

Traditional hronially implanted eletrodes for extraellular neuronal reord-

ings an be roughly ategorized into wire eletrodes and semiondutor based

eletrodes [16℄. Wire eletrodes are the oldest type of eletrodes used in this

ontext and they onsist of thin insulated wires whose implanted tip is either

ut o� or ethed in order to expose the ondutor to the tissue. Semiondu-

tor based eletrodes are manufatured on semiondutor substrates and an

be designed to have a variety of geometries. They also o�er the possibility of

diretly manufaturing the front end eletronis on top of the eletrode array.

Examples of suh eletrodes are the well known Utah and Mihigan arrays that

have numerous eletrode sites arranged on a planar and linear array, respe-

tively. A reent type of eletrodes has been developed at Neuronano Researh

Center (NRC), spei�ally designed to target the neuronal layers of the ere-

bellum [17℄. The NRC eletrode is based on a polymer foil, with platinum

oated gold eletrode sites and o�ers inreased mehanial �exibility and the

manufaturing proedure an be adapted to manufature eletrodes to target

spei� brain strutures.

Several fators in�uene the reording quality for a given eletrode. In

[18℄, the authors onluded that the reording SNR was mainly determined by

the digital �ltering, the impedane of the eletrode-tissue interfae, neuronal
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Figure 2.4: An illustration of the proedure of isolating spike trains from indi-

vidual neurons in the highpass �ltered signal. The proedure typially involves

spike detetion, spike alignment, feature extration and lustering. In the ex-

ample shown here, absolute value threshold detetion, maximum absolute value

alignment and prinipal omponent analysis are used for spike detetion, align-

ment and feature extration, respetively.
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density and �ring rates. They onluded that the size of eletrode sites had

little impat on the SNR.

2.2.2 Ampli�ation

Due to the small amplitude of the reorded neural signal (typially tens to

hundreds of mirovolts), ampli�ation is needed at the input of the neural

reordings system. Some of the primary design fators to onsider are gain, in-

put o�set, noise and power onsumption [19, 20℄. Gain and input o�set need to

be set to math the signal amplitude with the dynami range of the subsequent

blok (usually the A/D onverter). Noise should be minimized sine that is a

signi�antly limiting fator in the analysis of the reorded signal. Maximizing

the input impedane is important in order to minimize the ampli�er's eletrial

loading of the eletrode.

In Paper I, a four-hannel ampli�er with variable gain was designed and

simulated in National Instruments Multisim and the PCB layout was designed

using CadSoft Eagle. With the A/D onverter's dynami range of 1.22 V in

mind, the gain was set to be variable between 55 and 70 dB, thus allowing full

sale ampli�ation of spikes with peak-to-peak amplitudes between 270 µV and

1.5 mV.

2.2.3 A/D Conversion

The A/D onverter digitizes the ampli�ed signal at a sampling rate and resolu-

tion that ideally provide an adequate representation of the signal omponents

for subsequent data analysis to be arried out reliably. Corret dimensioning

of the A/D onverter is espeially important in wireless BMIs sine exessive

data aquisition inreases the demand for omputational resoures and the data

rate into the wireless link, both of whih inrease the power onsumption of

the implanted part of the BMI.

The sampling parameters may be seleted either by onsidering the fre-

queny ontents of the extraellular signal [13, 21℄ or by minimization with

regard to a performane measure [22, 23℄. However, the estimation of signal

bandwidth, and thereby the Nyquist rate, depends on subjetive seletion of

an upper bound for the frequenies that represent relevant signal omponents.

Thus, from the point of view of reproduability, an approah that only relates

to the objetive estimation of auray at the system's output, as a funtion

of the sampling parameters employed, is likely to be a superior hoie.

The in�uene of sampling rate and resolution on the performane in the

analysis of neurophysiologial data (spike detetion and spike sorting) at var-

ious noise levels and numbers of target units was addressed in Paper IV. The
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simulator reported in Paper II in ombination with the statistially modeled

spike libraries reported in Paper III was used to provide 150 test reordings

� 50 reordings ontaining eah number of target neurons, 1, 2 and 4 respe-

tively. The performane urves were analyzed and sampling rate and resolu-

tion breakpoints for eah proessing task were taken as the sampling rate and

resolution at whih the auray fell beyond 1% or 5% below the maximum

ahievable auray in eah ase. Spike detetion auray was estimated in

terms of true and false positive detetion rates and spike sorting auray was

estimated in terms of true positive lassi�ation rate (see Setions 2.2.5 and

2.2.7). Spike detetion with absolute value threshold detetion and spike sort-

ing with prinipal omponent analysis and fuzzy -means required a sampling

rate and resolution of 16 or 31 kHz (5% or 1% error tolerane) at 9 bits and

5 kHz at 5 bits, respetively. Besides providing guidelines for minimizing sam-

pling rate and resolution while sustaining performane, the results provided

an overall haraterization of the relationships between performane, sampling

parameters, noise level and number of target units for various algorithms for

spike detetion and spike sorting.

2.2.4 Filtering

Highpass �ltering is usually applied to the sampled signal in order to remove the

low-frequeny LFP from the higher-frequeny spiking omponent (see Figure

2.4 A). This �ltering an be performed in various ways, but should be onsidered

arefully when omparing results from di�erent studies sine it in�uenes the

shape of spikes [18℄. The spiking omponent is typially isolated by bandpass

�ltering the signal from around 300 Hz to 5 kHz.

2.2.5 Spike Detetion

Spike detetion is the task of deteting (and extrating) spike waveforms in the

reording and it is usually based on applying a threshold to a pre-proessed

version of the signal. The output of the spike detetor therefore onstitutes a

series of timestamps indiating the ourrenes of ation potentials in neurons

lose to the eletrode, referred to as multi-unit ativity (see Figure 2.4 B), and

extrated spike waveforms (see Figure 2.4 C). Although loated after the A/D

onverter blok in the system arhiteture presented here, spike detetion an

also be arried out in the analog domain [24℄. In this thesis, we assume spike

detetion to be performed in the digital domain.

In Paper IV, we ompared the performanes of several spike detetion al-

gorithms while varying sampling rate, resolution, noise level and number of

target neurons. The algorithms that were implemented and ompared were
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ABSolute value threshold detetion (ABS) [25℄, Nonlinear Energy Operator de-

tetion (NEO) [26℄, Stationary Wavelet Transform Produt Detetion (SWTP)

[27℄ and Mathed Filter detetion (MF) [28℄.

In Paper VII, we ompared the performane in spike reonstrution and

spike sorting when preeded by spike detetion and ompression with the ABS

and NEO detetors and various ompression bases (see Chapter 4). In Paper

VII, spike detetion was simulated by �rst using known spike times for extrat-

ing spikes from the syntheti signals, provided by the simulator desribed in

Paper VI, and then disarding spikes that would not pass the detetion thresh-

old or that would our during the reovery period of the detetor

1

. Spike

detetion jitter (see Setion 2.2.6) was introdued afterwards using disrete

time delay �lters. This proedure was hosen in order to ensure that false pos-

itive detetions would not in�uene the quanti�ation of performane in spike

reonstrution and sorting.

The following setions brie�y desribe the spike detetors that have been

implemented and used in the papers. The desriptions are followed by a review

of a method for estimating spike detetion auray, introdued in Paper IV.

Absolute Value Threshold Detetion (ABS)

ABS is the simplest form of spike detetion, in whih a detetion ours when-

ever the absolute value of the signal exeeds a given threshold. The threshold

is usually set as a multiple of an estimate of the bakground noise level, for

instane as

T = 4σ̂N = 4 ·median

{ |v|
0.6745

}

(2.4)

where σ̂N is the estimated standard deviation of bakground noise and |v| is
the absolute value of the digitized signal's amplitude [25℄.

Nonlinear Energy Operator Detetion (NEO)

In NEO detetion a threshold is applied to the nonlinear energy operator (NEO)

of the signal. The NEO estimates the instantaneous energy of the highpass

�ltered signal and therefore emphasizes high-amplitude, high-frequeny spikes.

The NEO Ψ(n) of the signal v(n) is given by

Ψ(n) = v2(n)− v(n+ 1) · v(n− 1). (2.5)

1

A spike detetor's reovery period refers to the time period after threshold rossing during

whih spike detetion an not our and is introdued in order to avoid multiple detetions

of single spikes.
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and the threshold T is set as

T = CΨ(n) (2.6)

where Ψ(n) is the mean of the Ψ(n) and C is a saling fator adjusted empiri-

ally and then used as a onstant [26℄. C an be found by optimizing the ratio

between true and false positive detetion rates when performing spike detetion

on syntheti reordings with known spike times.

Stationary Wavelet Transform Produt Detetion (SWTP)

The stationary wavelet transform (SWT) of the signal v(n) is alulated at 5

onseutive dyadi sales (W (2j , n), j ∈ [1, 5]). The sale with the maximum

sum of absolute values is found (2jmax
) and the point-wise produt P (n) of

wavelet oe�ients over three onseutive sales up to 2jmax
is alulated as

P (n) =

jmax
∏

j=jmax−2

|W (2j , n)|. (2.7)

P (n) is then smoothed by onvolution with a Bartlett window w(n) (half the
spike length) and a threshold T is applied to the smoothed Ps(n). T is set as

T = CPs(n) (2.8)

where C is a saling fator and Ps(n) is the mean of Ps(n) [27℄. As for NEO
detetion, the saling fator C an be set empirially by maximizing the ratio

between true and false positive detetion rates.

Mathed Filter Detetion

In MF detetion, the signal is onvolved with a template spike waveform that

an, for instane, be taken as the mean of deteted waveforms during an initial

training period. A threshold T is applied to the absolute value of the resulting

signal. T is set to a perentage of the input range of the (onvolved) signal and

an be optimized in the same way as C for NEO and SWTP.

Estimation of Spike Detetion Auray

In Paper IV, we presented a method for estimating spike detetion auray,

based on the omparison of deteted spike times and true spike time frames

aording to the ground truth provided with the test signal. True spike time

frames were determined by the true onsets and durations of spikes. Based
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on this omparison, detetion sores were assigned to true spikes depending

on the number of true spike time frames overing eah deteted spike time.

Speial ases, for instane where multiple detetions ourred during a single

true spike time frame, were also aounted for. Based on these sores and the

number of false positive detetions, the true and false positive detetion rates

were alulated aording to

P̂TP =

∑M
m=1 dm
M

· 100% (2.9)

and

P̂FP =
NFP

Nns/Nrecovery
· 100%, (2.10)

respetively, whereM is the number of true spikes and dm is the detetion sore

assigned to the mth true spike, NFP is the number of false positive detetions,

Nns is the number of samples in the reording not overed by a true spike time

frame and Nrecovery is the reovery time of the spike detetor (in samples).

2.2.6 Spike Alignment

Depending on the spike detetor employed, spike alignment may be needed to

ensure maximum auray in spike sorting. Due to noise and asynhroniity

between the sampling of the signal and the �ring of ation potentials, deteted

spikes from a given neuron are typially not sampled at the same time instanes

within the noise-free spike waveform. Therefore, the spike detetion threshold is

typially not rossed at the same relative time instane between spikes and one

extrated, spike waveforms are misaligned to one another. This phenomenon

is referred to as spike detetion jitter and is disadvantageous in spike sorting

sine it introdues an apparent deviation in shape between the spike waveforms

from a given neuron (see Figure 2.4 C).

Spike detetion jitter is removed by spike alignment by identifying the loa-

tion of a referene point (for instane a maximum value or enter of mass [3℄)

and then shifting the deteted waveforms to have that referene point our at

the same absolute point in time for all waveforms (see Figure 2.4 D). Sine the

true referene point often does not oinide with a spei� sample within the

spike waveforms, the alignment an be preeded by upsampling and proeeded

by downsampling to the original sampling rate. Single-point based alignment

is usually more sensitive to noise than approahes that onsider the entire

waveform, suh as the enter-of-mass approah [3℄, but is omputationally less

demanding.

In Paper IV, the in�uene of spike detetion jitter, introdued by asyn-

hronous sampling and �ring, on the auray in spike sorting was quanti�ed
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and found to be insigni�ant at sampling rates above 11.5 kHz when sorting

spikes with prinipal omponent analysis and fuzzy -means (see following se-

tion). In Paper VII, maximum value alignment was implemented and applied

prior to spike sorting. First, the absolute maximum value of the deteted peak

or valley was identi�ed and the waveform was then shifted in time by a disrete

time delay �lter to have the absolute maximum value our at a given point in

time. This proedure was implemented with a variable upsampling fator to

failitate a more preise alignment.

2.2.7 Spike Sorting

Spike sorting is the task of disriminating between spikes oming from di�erent

neurons and thereby, in ombination with the deteted spike times, establish-

ing an estimation of the individual neuronal spike trains (see Figure 2.4 H).

The ombined output from spike detetion and spike sorting is the single unit

ativity. In its most ommon form, spike sorting involves two steps � feature

extration and lustering. However, there are algorithms that ombine the

spike detetion and spike sorting steps and do not expliitly inlude the feature

extration step. An example of suh an algorithm, that employs linear �lters

to optimize the signal to noise ratio of the reordings and then uses a proe-

dure alled �deonfusion� to separate the ativities of the ontributing neurons,

is given in [29℄. In this thesis, fous is on algorithms where spike detetion,

feature extration and lustering are arried out separately.

An important aspet to onsider in relation to spike sorting is the algo-

rithm's ability to identify neurons in reordings that are separated in time.

Due to eletrode movements, spikes oming from a given neuron at a given

reording instane might di�er from the spike oming from the same neuron at

another reording instane. The task of pairing spikes from separate reording

instanes as oming from the same neurons is sometimes referred to as spike

traking and has been address in e.g. [30℄. In Paper VI, a method for realisti-

ally simulating the hanges in spike shapes followed by varying the eletrode's

position was introdued (see Chapter 3). In Paper V, this method was used to

provide test signals for studying the relationship between eletrode movements

and the feature spae representation of spikes and a linear model was used to

estimate the eletrode position diretly from the features of deteted spikes.

The following setions brie�y desribe the feature extration and lustering

algorithms that have been used in the papers. The desriptions are followed

by a brief review of the methods for estimating spike sorting auray, used in

Papers IV, VI and VII.
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Feature Extration

Feature extration is the step of extrating harateristi features from the

deteted spike waveforms that deviate between the spikes oming from di�erent

neurons (see Figure 2.4 E). Various approahes exist, varying in omplexity

and appliability to di�erent ases. Here we onsider a few feature extration

methods whose performanes have been well haraterized. Those are Prinipal

Component Analysis (PCA) and the Disrete Wavelet Transform (DWT) [14,

25℄. PCA was used for spike sorting in Papers IV, VI and VII and the DWT

was used in ombination with two di�erent feature seletion methods in Paper

IV. PCA has been shown to perform better than the DWT when the wavelet

basis is badly tuned to the data and when the disriminative features of the

waveforms are enountered on a large time sale [31℄.

Prinipal Component Analysis:

In PCA, an ordered set of orthonormal basis waveforms (prinipal ompo-

nents), that desribe the variation in the set of spike waveforms presented

to the algorithm, is found. The spike waveforms an then be ompletely

desribed as linear ombinations of the basis waveforms and the basis

waveforms weights an be used as spike features in spike sorting. Sine

the set of basis waveforms is ordered by signi�ane � the �rst waveform

desribing the most variation � the �rst N weights are seleted as spike

features. N is often set to 2 or 3, but this hoie is often made sine it

provides natural means of visualizing the feature spae representation of

spikes.

Disrete Wavelet Transform:

The wavelet transform of eah spike is alulated using, for instane, Haar

wavelets. The wavelet oe�ients then desribe the spike waveforms at

various sales and times [25℄. The number of wavelet oe�ients is the

same as the number of samples in the spike waveforms. In ontrast to

PCA, the oe�ients are not ordered aording to signi�ane and the

set of oe�ients used in lustering needs to be identi�ed. Thus, every

oe�ient distribution needs to be tested and seleting the oe�ients

that provide the best luster separation is based on the obtained test

statistis. Seleting oe�ients with multimodal distributions is bene-

�ial sine good mode separation indiates good luster separation. In

Paper IV, we implemented and used the maximum-di�erene test [32℄

and a modi�ed version of the Lilliefors test for normality [25℄. In the

modi�ed Lilliefors test, a measure for mode separation is inluded in the

overall test statisti and the features with the three highest test statistis

are seleted.
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Clustering

Clustering is the task of grouping together spikes with similar features, and

thereby assigning spikes to their neurons of origin (see Figure 2.4 F and G).

The lustering algorithms used in the papers are K-means (Papers VI and VII)

and Fuzzy C-means (Paper IV) [33℄. Both of these algorithms require that the

number of lusters is known a priori, whih it seldom is in reality. However,

sine the work aounted for in the papers in all ases involved omparing the

performanes of the algorithms while varying some external properties, suh

as sampling rate, noise level et., the true number of lusters was provided as

input for the sake of onsisteny. The true number of lusters was known from

the ground truth provided with the syntheti test reordings.

In K-means, K lusters are assumed to be present and the points in feature

spae are suessively assigned to lusters based on their distanes to the mean

point in eah luster. The luster means are updated as points are assigned to

them. Fuzzy C-means is similar to K-means, but instead of returning luster

identities for eah point as K-means does, C-means returns the probabilities of

eah point belonging to eah luster.

Estimation of Spike Sorting Auray

Spike sorting auray an be estimated by omparing assigned neuronal iden-

tities with the true identities provided by the ground truth when proessing

test data. The auray an be estimated for either the entire set of spikes

as an overall measure (Paper IV, VI and VII), or for the individual neurons

(Paper VI). Sine the luster identities of true and deteted lusters are not

neessarily the same, measures need to be taken in order to link together true

and deteted lusters.

In Paper IV, a method for estimating overall lustering auray was in-

trodued and used. First, an evidene matrix E was onstruted, where the

entries ei,j orresponded to the number of spikes truly belonging to luster j
that were assigned to luster i. By hierarhial examination of the evidene

matrix, the most likely luster mappings were suessively revealed and the

true positive lassi�ation rate was alulated as the total perentage of spikes

assigned to the orret luster.

In Paper VI, a similar method was used, but instead the entries ci,j of the
evidene matrix C orresponded to the pairwise linear orrelation oe�ients

between the mean spike waveforms of true luster i and deteted luster j.
Having revealed the luster mappings from the evidene matrix, the leakage

matrix L was onstruted where element li,j orresponded to the number of

spikes truly belonging to neuron i lassi�ed as belonging to neuron j. Thus,

the entries of the leakage matrix provided diret information about the number
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of orret and false lassi�ations on a per-neuron basis, allowing the lustering

results to be evaluated both for eah neuron and for the gathered assembly of

neurons. This proedure was not aounted for in detail in Paper VI sine the

purpose of the analysis arried out in the paper was only to demonstrate the

usability of the modeling method presented in the paper.
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Chapter 3

Extraellular Neural Signal

Modeling

As disussed in Chapter 2, the main omponents of the extraellular signal are

(1) the spiking omponent, representing neuronal ativity in the viinity of the

reording eletrode, (2) loal �eld potentials, representing synapti input into

the region and (3) physiologial noise, representing spiking ativity from distant

neurons. When developing and testing algorithms for extrating information

from suh reordings, the aess to test data with a priori known harateristis

is of great importane [34℄. Sine the true neuronal ativities that ontribute

to real reordings are usually not known or di�ult to haraterize ompletely,

syntheti model based test reordings are a feasible alternative.

Realism, ontrollability and omputational e�ieny are attrative proper-

ties of extraellular signal models for test signal generation. Realism an refer

to neuronal �ring patterns, spike amplitude and spike shape and it inreases the

level to whih the model mimis real-life senarios that arise one the system

is implemented. Realism is thus a highly important property sine it inreases

the likeliness that the estimated algorithm performane re�ets the true per-

formane after implementation in a future appliation. The ontrollability of

a model refers to, for instane, to whih extent the �ring properties of neurons

an be ontrolled by the experimenter and the degree of freedom in setting up

the reording geometry. It might also refer to the level of detail at whih ground

truth information an be aessed. Controllability allows system performane

to be evaluated in a wide range of senarios and inreases the appliability of

the results of a performane evaluation. Last but not least, omputational e�-

ieny allows quik aess to simulation data and it therefore aids in reduing

27
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the time spent testing the algorithms.

This hapter begins by desribing the approah to signal generation used in

the models addressed in this thesis. Then, a brief review of models to generate

neuronal �ring patterns is given. Finally, the most ommon approahes for

obtaining test signals are divided into ategories aording to signal origin

and the di�erent models are disussed in terms of realism, ontrollability and

omputational e�ieny.

3.1 Signal Constrution

In the signal models implemented in Papers II and VI, the signal is assembled as

the sum of spike trains from all neurons ontributing to the reording. For eah

neuron, a spike waveform is determined and random spike times are generated

using the neuron's �ring model (see following setion). The neuron's spike train

vn(t) is then generated aording to

vn(t) =

Mn
∑

mn=1

sn(t− τn,m) (3.1)

where τn,m is the mth spike time of neuron n, Mn is the total number of spikes

that the nth neuron �res during the reording and sn(t) is the pre-alulated
spike waveform of the nth neuron. The total signal is then given by the sum

of spike trains from all N neurons, i.e.

v(t) =

N
∑

n=1

vn(t). (3.2)

In the ase multiple eletrode sites are simulated (Paper VI), the signal is

onstruted in this way for eah eletrode site. Other signal omponents, suh

as the LFP, thermal noise and powerline interferene are generated separately

and then added to the signal. Apart from simultaneous intra- and extraellular

reordings, the models disussed in the following setions an all be used in

ombination with this signal onstrution proedure.

3.2 Firing Models

Firing models are statistial models that are used to generate spike trains or

�ring patterns for the neurons that ontribute to the reording. Although

they may not be suitable for studying the dynamis of neuronal networks [35℄,

suh statistial models are very pratial from the point of view of providing
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realisti test data for haraterizing system performane. Three suh models

are brie�y disussed here, all of whih have been implemented and used in the

work reported in the papers.

3.2.1 Spontaneous Firing

The simplest �ring model assumes no funtional relations between the neurons

in the reording and all neurons are assumed to �re spikes at random times. The

generation of spike times an be modeled, for instane, by a Poisson proess or

a renewal proess [36℄. The distributions of inter-spike intervals (ISIs) for the

Poisson and renewal proesses an then be modeled as exponential and gamma

distributions, respetively. Due to its larger number of degrees of freedom, the

renewal proess has the advantage of being able to model both the absolute and

relative refratory periods of the neuron (see Setion 2.1.3). This an be solved

to some extent for the Poisson proess by using a trunated exponential funtion

for the ISI generation. However, this only aptures the absolute refratory

period.

In Papers II and VI, models for generating spike times with gamma dis-

tributed ISIs were implemented and used. The gamma distribution is hara-

terized by it's shape and sale fators, k and θ, respetively. The shape fator
relates to how narrow the distribution is � a small shape fator indiating a

narrow distribution. The sale fator relates to the loation of the distribution

and is thus related to the mean value. The mean of the distribution is given

by the produt of the shape and sale fators. In the papers, we used a model

desription based on a given shape fator k and the mean ISI whih is given

by the inverse of the mean �ring rate f̄ , i.e.

ISI ∼ Γ

(

k,
1

f̄k

)

. (3.3)

Generating random spike times for a given neuron with a given ISI distribution

was performed in three steps. First, the total number of spike times to be

generated was assumed to be roughly given by the duration of the reording

times the mean �ring rate of the neuron. Seond, the orresponding number

of random ISIs was drawn from the ISI distribution. Finally, the ISIs were

integrated to obtain the spike times.

3.2.2 Bursting Neurons

The phenomenon of bursting refers to when the spikes from a neuron arrive in

lusters of e.g. 2 to 20 spikes. The bursts are separated by inter-burst intervals

(IBIs) of up to 30 seonds and during the time of a burst, the spikes are �red



30 Overview of the Researh Field

at regular or sometimes unusually short inter-spike intervals. The ISI usually

inreases during the burst and the spikes suessively derease in amplitude,

whih is likely to be aused by dereased Na

+
ondutane resulting from the

sustained depolarization [37, 38℄.

In the simulator desribed in Paper VI, a model for simulating bursting

neurons was implemented. IBIs were assumed to be gamma distributed and the

distribution was haraterized by a mean burst rate and a shape parameter, and

the number of spikes per burst was assumed to follow a Poisson distribution,

haraterized by a mean value [36℄. Spike times were then generated in three

steps. First, burst times were generated in the exat same way as spike times

for the spontaneous �ring models desribed in the previous setion. Seond,

a random number of spikes was assigned to eah burst. Third, spike times

were generated within eah burst by adding up a given �xed ISI plus a small

normally distributed random shift. The third step was implemented in this

way for the sake of simpli�ation. Also, for the sake of simpli�ation, spike

amplitude was kept �xed within bursts.

3.2.3 Correlated Neuronal Ativities

Statistial models an be useful for generating test data that simulates network

ativity to some extent. Suh test data extend the hallenge for the system

under test from only having to extrat �ring patterns of individual neurons to

that of also unraveling the onnetions between them. In Paper VI, we inluded

the implementation of the method desribed in [39℄ provided by the authors of

that paper, to generate spike times for neurons whose ativities were assumed

to be orrelated to a given extent, spei�ed by a ovariane matrix.

3.3 Simultaneous Intra- and Extraellular

Reordings

Although this lass of test signals would perhaps �t better into the ontext

of test signal aquisition rather than generation, we inlude it here sine it is

used within the same ontext and represents an important lass of test signals

[40, 29℄. It was previously mentioned that the major problem with using real

reordings as test signals is the absene or inompleteness of a priori knowledge

about the true information ontent in the signal. However, by simultaneously

performing high SNR intraellular measurements on the neurons ontributing

to the reorded signal, this problem is overome to some extent.

In terms of realism, this lass of test signals is highly advantageous, the

signals being real in nature. However, they lak in terms of ontrollability



Chapter 3. Extraellular Neural Signal Modeling 31

sine the possibilities of modifying the reording properties are very limited.

Also, despite the presene of the high SNR intraellular reordings, they may

not apture all of the true neuronal ativity represented in the extraellular

reording and thus, the reliability of the ground truth may be limited. The

onept of omputational omplexity does not apply here. Due to their realism

and despite the limitations mentioned here, simultaneous intra- and extrael-

lular reordings may be suitable as benhmark signals to use at later stages of

algorithm testing.

3.4 Mathematial Models

This lass of models is based on mathematial desriptions of the origin of the

extraellular signal. The models belonging to this lass an be assigned to three

di�erent subategories, depending on the level of detail they apture and the

methods used for modeling the spike waveforms. These ategories are disussed

in the following setions.

3.4.1 Compartment Models

Compartment models are based on mathematial desriptions of how the ation

potential propagates along the neuron [41, 42, 12℄. To failitate the simulation

of omplex neuronal geometries, the neuron is divided into strutural elements,

or ompartments, whose eletrial properties are well de�ned. By modeling

the membrane properties of eah ompartment, as well as the interations be-

tween adjaent ompartments, ompartment models an be used to study the

neuronal response to ation potential generation at a high level of realism.

Having obtained the time-varying membrane urrents in eah ompartment,

they an be used to alulate the resulting voltage hanges in the extraellu-

lar spae using the line soure approximation (LSA) [43℄. The fundamental

assumption of the LSA model is that eah ompartment, represented by a a-

ble (ompartment), an be replaed by a linear arrangement of point urrent

soures. The ontribution from a given point soure to the eletri potential in

a given measurement point outside the neuron is then given by

φ =
i

4πσer
(3.4)

where i is the urrent, σe is the ondutivity of the extraellular spae and

r is the distane between the point soure and the measurement point. The

extraellular potential is then omputed as the sum of the potentials from all

point soures in all ompartments. This ombination of ompartment model-

ing and the LSA thus failitates realisti simulation of the spatial dependeny
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of the measured spike waveform as a funtion of the morphology and ioni

ondutane properties of the neuron [11, 12℄.

Sine the possibility of varying the geometrial and eletrial properties of

neuronal ompartment models is pratially unlimited, they are highly �exible

and o�er a high degree of ontrollability. However, due to the level of detail and

the relatively high omputational omplexity, simulating extraellular reord-

ings with diret ompartment model and the LSA is time onsuming and thus

unpratial when simulating a wide range of reording senarios. It is possible,

however, to pre-alulate the LSA on a grid of measurement points and then

to use interpolation to determine the spike waveforms in o�-grid measurement

points [44℄. Although this may speed up the test signal generation, it does not

sale well with inreasing the number of neuron-eletrode pairs.

3.4.2 Template Based Models

Template based signal models rely on libraries of �xed spike waveforms that

are seleted, usually at random, and assigned to the neurons ontributing to

the reording [45, 46℄. Apart from the distane between the eletrode and

the neuron, no geometrial fators in�uening the measured spike waveform

are aounted for. The spike attenuation as a funtion of distane r an be

modeled, for instane, as a power law

A(r) =
1

(1 + ar)b
(3.5)

where the oe�ients a and b determine the shape of the amplitude deay

funtion as the distane r is inreased.
Template based models have been shown to provide a high degree of realism

in terms of general signal properties (power spetral density, amplitude distri-

bution and autoorrelation), but in their simplest form, this realism only holds

when simulating reordings with single non-moving eletrodes. Multi-eletrode

reordings an be simulated with template based models, but again, only the

di�erene in spike amplitudes between the reording hannels is aounted for

and other variations in the shapes of spike waveforms are disarded.

The absene of mathematial desriptions of how the spike waveform is

generated makes the ontrollability of template based models limited. For

instane, studying the e�ets of eletrode movements on the performane in

spike sorting is not feasible sine no information is available desribing how the

spike waveforms would be in�uened by the movements (exept for amplitude).

The disrete nature of experimentally obtained spike libraries also limits their

usability and ontrollability.
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Although the simpliity of template based models limits their usability to

some extent, they should not be underestimated. Due to their low omplexity it

is possible to generate large sets of test signals with relatively little e�ort. This

failitates statistial omparison of system performane, whih is attrative

from a generalizability point of view. This type of analysis was arried out in

Paper IV.

In the simulator desribed in Paper II we implemented a template based

model for the synthesis of test signals. The spike library was generated by

deteting and sorting spikes from a large number of in-vivo reordings from

the at erebellum [47℄. Spike detetion and spike sorting were performed

with absolute value threshold detetion and Chronux [3, 48℄, respetively. The

library ontained 85 mean spike waveforms. The simulated reording volume

was divided into a near �eld and a far �eld, ontaining target neurons and noise

neurons, respetively, and all neurons were assigned a randomly seleted spike

waveform from the library. Neurons in the near �eld were initially assigned a

onstant spike amplitude of one (maximum absolute value). This was hanged

in a later implementation (Paper IV) to have the near �eld amplitudes vary

randomly. Neurons in the far �eld were assigned a random position and the

spike amplitude was alulated aording to the power law of Equation 3.5.

Syntheti reordings were validated in terms of power spetral density using

Welh's method, autoorrelation and usability for quantifying spike detetion

auray.

In Paper III, we presented a method to extend the spike library provided in

Paper II by statistial modeling. Prinipal omponent analysis (PCA) was used

to �nd orthonormal basis waveforms desribing the spike templates and the

distributions of the weights of the �rst N basis waveforms were then �tted to an

N -dimensional K-modal Gaussian mixture model. The number of dimensions

(N = 6) was taken as the number of dimensions that aounted for 99% of the

variane in the spike waveforms. The modeling proedure was arried out for

various numbers of modes and the model with the lowest Bayesian information

riterion was seleted (K = 2). The statistial model was shown to be usable

for generating random spike waveforms whose properties were similar to those

of the original template waveforms.

3.4.3 Compressed Compartment Models

In Paper VI, we introdued a new lass of models that ombine the realism

and ontrollability of ompartment models with the omputational simpliity

of template based models. An ation potential was simulated in four ompart-

ment models of a CA1 pyramidal neuron [11℄ using the simulation environment

NEURON [49℄ and the LSA was then used to alulate the extraellular spike
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waveforms on a dense grid of measurement points surrounding the neurons.

Singular value deomposition was used to �nd a set of orthonormal basis wave-

forms for the alulated spikes within a volume bounded by a model spei�

ellipsoid onentri with the enter of the neuron's soma. The weights of the

�rst six basis waveforms were then individually �tted to trivariate polynomial

funtions of the measurement point oordinates. The spatial dependeny of

the weight wn(x, y, z) of the nth basis waveform bn(t) was thus assumed to be

given by

wn(x, y, z) =
∑

i

cinx
ei,1yei,2zei,3

(3.6)

where cin is the ith oe�ient of the polynomial and e is a matrix whose ith
row ontains the ith ombination of x, y and z exponents inluded in the model.

Having solved this �tting problem for all six dimensions, the spike waveforms

within the model ellipsoid ould be alulated as a linear ombination of the

basis waveforms with the weights alulated aording to the polynomials, i.e.

s(t, x, y, z) =

6
∑

n=1

wn(x, y, z)bn(t). (3.7)

For measurement points outside the model ellipsoid, the spike waveform was

alulated in the point of intersetion between the ellipsoid and a line of sight

from the measurement point to the origin and then saled with a power-law

funtion of the point's distane from the ellipsoid. The proedure of alulating

spike waveforms was implemented using matrix multipliations and thus a very

large number of measurement points ould be treated simultaneously.

The model was validated by omparing modeled and true (NEURON gen-

erated) spike waveforms in terms of shape and amplitude and by showing that

noise properties ould be ontrolled by the appropriate seletion of reording

geometry and �ring properties of distant neurons. The models were imple-

mented into a omputationally e�ient objet oriented simulation tool, written

in Matlab and the HDF5 �le format [50℄ was used to store simulation data on-

the-�y in a memory-e�ient way. The model was shown to greatly inrease the

omputational e�ieny in simulating realisti multi-hannel test reordings

ompared to previous methods.

In Paper V, the model of Paper VI was used to explore the e�ets of ele-

trode movements on the appearane of deteted spikes in feature spae and

show that a given movement path in the physial spae translated to a simi-

lar movement path in the feature spae. A path measure was introdued that

re�eted the distane of points along the path to the mean point on the path.

This insight was then used to perform estimation of the eletrode position
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based on the feature spae representation of deteted spikes, assuming that

spike features were related to eletrode position through the linear model

B
T
S = AX+ η (3.8)

where the produt S is the spike matrix, A is a transformation matrix that

transforms physial eletrode oordinates in X to points in the spike feature

spae spanned by B and η represents noise or variations not aptured by the

transformation matrix.

3.5 Hybrid Models

Hybrid signal models are based on superimposing syntheti spike trains, gen-

erated by any of the models in the �mathematial models� lass, onto a real

reording of physiologial noise [51℄. Hybrid models thus o�er a high degree of

realism, but lak in ontrollability to some extent, depending on whih model

is used to generate the syntheti spike trains. Computational omplexity also

depends on the model used to generate the syntheti spike trains. Sine no ex-

pliit mathematial desription of the bakground noise is used, hybrid models

are not suitable for the simulation of multihannel reordings where eletrode

sites are losely spaed.
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Chapter 4

Wireless Brain-Mahine

Interfaes and Data

Redution

In its traditional form, the measurement system presented in Chapter 2 relies

on wired onnetions between the system parts. When performing aute exper-

iments on anesthetized subjets, this is not a problem, sine the mobility of the

subjet and risks for surgial/post-surgial ompliations are usually insigni�-

ant fators. However, in experiments on awake and freely moving subjets or

in linial appliations where the aquisition devie is hronially implanted,

the wires and the bulk of the equipment, as well as the potential risks for post-

surgial ompliations beome problemati. Wireless brain-mahine interfaes

have the potential to overome these limitations.

By wireless BMIs, we refer to a measurement system where the eletrode,

the ampli�er, the aquisition part and some of the proessing part is implanted

into the subjet along with a transmitter. The implanted part of the BMI

sends the aquired data to an external unit that is used for ontrolling the

measurement devie and handling and analyzing the inoming measurement

data.

Despite the potential of wireless BMIs, designing them involves a great

hallenge that mainly stems from two fundamental harateristis of wireless

BMIs. First, due to physial and implementational limitations, the information

arrying apaity of wireless ommuniation systems is limited. Thus, the

transmission of raw sampled data from the neural reording system immediately

beomes problemati when inreasing the number of measurement hannels.

37
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Seond, the requirement that the subjet-/patient part of the wireless BMI is

fully or partially implanted, leads to great restritions regarding power and

area onsumption. The seond point is espeially important from the point of

view of linial appliations, where reliability and patient safety are of major

signi�ane and an be jeopardized by batteries running low, requiring either

indutive harging or surgial operation for replaement.

In this hapter, the hallenges involved in designing wireless brain-mahine

interfaes are disussed from the perspetives of the wireless link as well as

the neural data proessing part of the system. First, the limitations of the

wireless link are presented and the feasibility of in�uening its properties in

order to inrease its apaity are disussed. Seond, two steps in obtaining data

redution are disussed as means of e�iently using the available omputational

and wireless resoures at hand. The task of inreasing the hannel apaity to

failitate high data throughput has not been addressed in the papers, but is

still brie�y disussed here due to the importane of wireless link apaity within

the �eld of wireless ommuniations.

4.1 Wireless Link Capaity

In 1948, Claude Shannon invented modern information theory. His results

haraterized the limits for error-free ommuniation within a ommuniation

system and provided a theoretial framework for analyzing link apaity [52℄.

Although the atual ahievable data throughput of a ommuniation link de-

pends on implementational aspets suh as modulation and oding, Shannon's

results an serve as guidelines when approximating maximum performane.

A speial ase of Shannon's theory applies to the lossless, frequeny �at

Additive White Gaussian Noise (AWGN) hannel, for whih the input-output

signal relationship is given by

y(n) = x(n) + w(n) (4.1)

where y(n) is the reeived signal, x(n) is the transmitted signal and w(n) is
the noise added by the hannel. The apaity of suh a hannel (in bits per

seond) is given by

Cawgn = B log2

(

1 +
P

N0B

)

(4.2)

where B is the bandwidth, P is the transmitted power and N0 is the noise

spetral density. Under the AWGN assumption, the apaity of the wireless link

is thus governed by the signal-to-noise ratio (SNR) P/N0 and the bandwidth

of the hannel, B.
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As mentioned earlier, the theoretial apaity limit presented above an

be used for indiative purposes when relating available hannel resoures to

required data throughput. Assuming that eah hannel of the neural reording

system samples the neural data at a sampling rate of 25 kHz and a wordlength

of 10 bits, eah hannel will provide a raw data rate of 250 kbps to the wireless

link. For a bandwidth of 1 MHz and an SNR of 0 dB, the maximum theoretial

hannel apaity is 1 Mbps, whih ideally failitates the transmission of raw

data from four neural reording hannels. The data rate vs. apaity ratio

thus obviously sales badly with the number of neural reording hannels. For

instane, a 96 hannel neural reording [53℄ would result in a raw data rate of

24 Mbps, whih is way beyond the maximum apaity for the AWGN hannel

in the above example.

The data rate vs. apaity problem an be addressed by either reduing

the data rate or by inreasing the hannel apaity. Aording to Equation

4.2, the only ways of diretly in�uening the hannel apaity are to inrease

the SNR by inreasing the transmitted power, or to inrease bandwidth. Due

to regulatory restritions set by, e.g. the Federal Communiations Commission

(FCC) and risks for tissue damage aused by heat, inreasing the transmitted

power annot be done inde�nitely. Beside those external limitations, inreasing

the transmitted power is not bene�ial in terms of the energy onstraints on

the implant, as disussed earlier. Due to the high exploitation of the radio

spetrum, inreasing bandwidth is also limited by regulations and external

irumstanes.

Moving away from the assumption of the single-input-single-output (SISO)

hannel in Equation 4.1, it is possible to onsider other types of systems to

inrease the apaity. Multiple-input-multiple-output (MIMO) systems use

multiple transmitter and reeiver antennas to exploit the spatial dimension in

the path between the transmitter and reeiver antennas and thereby o�er an

inrease in apaity that is related to the number of subhannels introdued

[54, 55℄. However, the number of antenna elements and the spatial relationship

between the antenna elements are important fators in determining the inrease

in apaity. Inreasing the number of and spaing between antenna elements

inreases the spatial diversity in the MIMO hannel. Assuming a large spaing

between the antenna elements and an equal number of transmitter and reeiver

antennas (N), the maximum apaity is given by

CMIMO = NB log2(1 +
P

N0B
), (4.3)

whih is N times the apaity of the SISO hannel onsidered earlier. This is

assuming that the reeiver has full knowledge of the hannel's state at eah



40 Overview of the Researh Field

time

1

. Ahieving this apaity is not realisti in real senarios, sine it is based

on the assumption that all subhannels are ompletely independent and do not

interfere with eah other [54℄. However, using this as a referene for the required

apaity by the data rate produed by the 96 neural reording hannels in the

previous example, we would need a 24 × 24 MIMO system. Thus, theoretially,

MIMO does o�er a way of inreasing apaity to meet the requirements, but at

the ost of drastially inreased omputational omplexity, power onsumption

and area onsumption, all of whih are non-feasible properties from the point

of view of the implanted part of a wireless BMI.

4.2 Data Redution

Although, theoretially, there exist means of inreasing the hannel apaity

to math the data rate requirements, they are not pratial as disussed in

the previous setion. Addressing the problem from the other end, i.e. from

the standpoint of the input data to the transmitter and utilizing the available

hannel apaity wisely, is more feasible with respet to both throughput and

energy onsumption. In this setion, two steps in ahieving minimal data rate

into the transmitter are disussed. Due to the energy onstraint on the implant,

only low-omplexity tehniques for data redution are addressed.

4.2.1 Minimization of Input Data

The simplest way of performing data redution is that of ensuring minimal

aquisition of data, i.e. minimization of sampling rate and resolution in the

A/D onverter blok of the measurement system. Suh minimization an be

performed either by estimating the bandwidth of the signal and thereby the

Nyquist rate [13, 3℄, but sine the spetrum of the extraellular signal is not

learly on�ned within a ertain frequeny range, this estimation su�ers from

subjetive assumptions.

Another approah is to minimize sampling rate and resolution while ensur-

ing sustained performane in the analysis of the transmitted data. As already

disussed in Setion 2.2.3, the work reported in Paper IV addressed the mini-

mization of sampling rate and resolution with sustained performane in spike

detetion and spike sorting, and thereby the minimization of bitrate into the

reording system. We onlude that absolute threshold spike detetion required

a sampling rate of 16 to 31 kHz and an e�etive sampling resolution of 9 bits

1

The hannel state information an be established by having the transmitter send a train-

ing signal that is used to estimate the hannel's transfer funtion.
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for the auray to be maintained within 5% and 1% of the maximally ahiev-

able auray, respetively. For spike sorting we onluded that given that the

spikes were well aligned, sampling rate and resolution ould, upon spike de-

tetion, be lowered to 5 kHz and 5 bits, respetively, with an error tolerane

of 1%. In the paper, we onluded by presenting a resoure alloation sheme

that provides guidelines for minimizing the data rate into the wireless link for

various system on�gurations.

4.2.2 Compression of Spike Data

The ompression of spike data involves extrating the spiking omponent from

the reording already at the implant and thus signi�antly reduing the data

rate into the transmitter. Depending on the level of detail of the subsequent

analysis that is to be arried out, more or less detailed representations of the

extrated spiking omponent are transmitted. Among the most straightforward

approahes desribed so far inlude (in order of inreasing amount of proess-

ing on the implant) transmitting timestamps of the deteted spikes [56℄, the

extrated spike waveforms along with timestamps [57, 58℄ and �nally the neu-

ron labels of spikes along with timestamps [59℄. In the �rst approah, no spike

sorting is arried out and only the gathered ativity of the spiking neurons �

the multi-unit ativity � an be haraterized. In the seond approah, the

entire spike sorting proedure is arried out in the external unit and in the

third approah, the entire spike sorting proedure is arried out in the implant.

Assuming that the single unit ativity is to be haraterized, the exter-

nal unit needs aess to sorted spike trains. From that point of view, the

�rst approah mentioned above is ruled out, sine all information about spike

waveforms is lost. If suessfully implemented, the third approah would be

attrative, being the one onveying information about the ativities of individ-

ual neurons at the lowest data rate. However, performing spike sorting in the

implant is generally both omputationally omplex and it makes it di�ult for

the external unit to validate the results sine the spike waveforms are never

seen by it. The seond approah o�ers a feasible ompromise, onsidering that

it retains the information about the spike waveform and leaves the omputa-

tionally omplex task of spike sorting to the less onstrained external unit. This

approah an be ombined with ompression algorithms to provide essentially

the same information to the external unit, but at a lower data rate than when

transmitting the entire spike waveforms.

A ompression basis onsists of a set of waveforms that span a spae in

whih deteted spike waveforms have a sparse representation. Sparseness im-

plies that one a spike waveform has been projeted onto the full set of basis

waveforms, the majority of the transform (ompression) oe�ients are small



42 Overview of the Researh Field

in amplitude ompared to the minority of high-amplitude oe�ients. Thus,

the spike waveform an be approximated by a linear ombination of a small

subset of the ompression basis waveforms. Compression is thus ahieved by

disarding the insigni�ant oe�ients and only transmitting the signi�ant

ones. This proedure of disarding transformation oe�ients an be referred

to as dimensionality redution.

For ompression of this kind to be bene�ial both in terms of data redution

and omputational omplexity, the ompression basis needs to be seleted to

introdue sparseness, while failitating a straightforward proedure of seleting

ompression oe�ients to be transmitted. Thus, ideally � from this point of

view � one would selet a �xed ompression basis that, despite never being

updated, introdues sparseness and allows the same set of ompression oe�-

ients to be seleted in all ases. Due to the stereotypial shape of spike wave-

forms enountered in neural reordings, these riteria an be ful�lled without

signi�ant loss in performane ompared to more omplex methods involving

adaptive ompression basis and oe�ient seletion. This was indiated by the

results presented in Paper III, that showed that the spike library of Paper II

was by 99% desribed by the �rst six prinipal omponents, indiating that

spike waveforms ould be ompressed with a �xed generi ompression basis

derived from a large set of experimentally obtained spike waveforms and always

using the �rst (six) ompression oe�ients.

In Paper VII, we studied the ompression of spike waveforms with various

ombinations of system arhitetures, spike detetors and �xed ompression

bases and ompared it with the ases when no ompression was performed and

when an optimal ompression basis was found. The spike detetors inluded

were absolute value threshold detetion and nonlinear energy operator detetion

and they were hosen due to their simpliity and performane [28, 32, 23℄.

System arhitetures di�ered in terms of proessing task alloation.

Compression was performed by projeting deteted spike waveforms onto a

ompression basis and then removing redundant oe�ients, aording to

Wd = BdB
T
c S (4.4)

where the matrix Wd ontains the ompression oe�ients, Bd is a dimen-

sionality redution matrix that removes redundant oe�ients, Bc ontains

the ompression basis waveforms in its olumns and S ontains the deteted

spikes in its olumns. Sine �xed ompression bases were assumed, the external

unit had full knowledge of the basis being used and ould thus reonstrut the

deteted spikes from the reeived oe�ients Wd aording to

Ŝ = BcB
T
dWd. (4.5)
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First, we ompared the auray in spike reonstrution and spike sorting for

all ombinations of arhitetures, spike detetors and ompression bases. Then,

we foused on the basis obtained by singular value deomposition of the spike

library from Paper II, sine that basis represented the lass of generi bases

speially derived from spike data. The results indiated that the �xed generi

ompression basis allowed signi�ant ompression with insigni�ant derease

in spike reonstrution and sorting auray, ompared to the optimal and

unompressed ase.
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Chapter 5

Contributions and Disussion

This hapter summarizes the results and ontributions of my work within the

researh �eld. The papers are summarized individually and their main �ndings

are put into the ontext of the researh �eld as presented in the previous hap-

ters. The hapter is onluded with a general disussion and some thoughts

about possible future work.

My personal ontributions to the papers in all ases onstitute the main

partiipation in produing the papers, i.e. designs and implementations of

the studies as well as proessing, analyzing and aounting for the results and

onlusions. My o-authors and supervisors have provided me with valuable

input throughout all parts of these proesses, i.e. during the planning and

exeutions of the studies and writing of the papers.

5.1 Summary of the Papers

5.1.1 Paper I: Implementation of a Telemetry System for

Neurophysiologial Signals

In this paper, the design, implementation and testing of a four hannel wearable

telemetry system for neurophysiologial measurements is presented. The main

purpose of the work reported in this paper is to investigate the pratiality of

implementing wireless BMIs with generi, ommerially available omponents.

Suh a pilot investigation is onsidered to be an important step in identifying

the bottleneks that should be onsidered in ustom designs of wireless BMIs.

The wearable part of the system measures 30 × 37 × 3 mm and onsists

of a ustom designed ampli�er and a ommerially available integrated iruit

ontaining an A/D onverter, a miroontroller and a wireless transeiver. The

45
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system is built using disrete surfae-mounted omponents. The four-hannel

ampli�er has variable gain (58 to 73 dB) and the system an be used to sample

and transmit raw data from one of the four hannels, at a rate of 3.7 kHz, to an

external PC ontaining a graphial user interfae for system ontrol and visual-

ization of data. To save spae and to simplify the ampli�er design, the ampli�er

is designed to have the four measurement hannels share the greater part of the

ampli�er hain. However, due to the long settling time when swithing between

input hannels, the design is deemed unpratial for yli sampling shemes

and from that point of view, it is onluded that omplete hannel-dediated

ampli�er hains are likely to be more pratial in a multi-hannel telemetri

system.

Despite the �exibility of the presented telemetry system, we onlude that

a more re�ned set of design parameters is needed for future system designs and

�nding those requires further studying of the properties of the extraellular

neural signal. This insight serves as a motivation for the work reported in the

remaining papers.

5.1.2 Paper II: Spike Library Based Simulator for Extra-

ellular Single Unit Neuronal Signals

This paper deals with the generation of test data with a-priori known harater-

istis for the quantitative assessment of auray in analyzing spike data. The

paper presents a simulation tool for synthesizing single hannel test reordings

utilizing a template based extraellular reording model (see Setion 3.4.2). A

library of eighty-�ve experimentally obtained spike templates is used in ombi-

nation with a renewal proess model for spike time generation to generate spike

trains for the individual neurons ontributing to the reording, whih are then

added up to omprise the syntheti signal. Spike times and signal omponents

(spiking, biologial noise and thermal noise) are stored separately, allowing

easy saling of signal to noise ratio. The spike templates represent mean spike

waveforms extrated from a large number of extraellular reordings in the at

erebellum, and over a wide range of waveform morphologies. The simulator

provides test reordings with realisti bakground noise and is useful for quik

generation of test data with varying properties in terms of �ring harateristis,

number of target neurons and bakground noise level. At the time of writing

the paper, the availability of simulation tools for the purpose of quantifying

system performane was limited, and therefore an important ontribution of

this work was the releasing of the ode for general use within the researh

ommunity.
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5.1.3 Paper III: Statistial Modelling of Spike Libraries

for Simulation of Extraellular Reordings in the

Cerebellum

This paper provides a realisti extension to the disrete spike library provided

in Paper II. Prinipal omponent analysis is performed on the original spike

library to �nd a set of orthonormal basis waveforms. The distribution of the

�rst six prinipal omponent weights aross the assembly of eighty �ve original

waveforms is then �tted to a six-dimensional bi-modal Gaussian mixture model,

that an be used to generate arbitrary spike waveforms whih are likely to our,

given the original spike library.

The model is shown to be able to generate new spike libraries with the same

overall harateristis as the original spike library. In ombination with the

simulator reported in Paper II, the syntheti spike library is shown to provide

syntheti reordings with realisti properties. A double-blind test is performed

in whih trained neurosientists, with extensive experiene in analyzing spike

data, are asked to point out syntheti spikes in a matrix ontaining a random

mixture of real and syntheti spikes. None of the partiipants performs better

than hane when disriminating between real and syntheti spikes.

The number of prinipal omponent dimensions used to model the spike

library (six) is in agreement with previous studies where large assemblies of

varying spike waveforms have been analyzed in a similar manner. This result

indiates that a ompression basis derived from a generi spike library an be

used for omputationally simple ompression of spike data (see Paper VII).

5.1.4 Paper IV: Minimizing data transfer with sustained

performane in wireless brain-mahine interfaes

This paper deals with the minimization of data rate into the wireless link by

studying in detail the in�uene of sampling rate and sampling resolution on

the auray in spike detetion and spike sorting at various noise levels and

numbers of target neurons. The simulator reported in Paper II, in ombination

with a library of 2000 syntheti spike waveforms generated with the statistial

model derived in Paper II, is used to synthesize 150 test reordings with known

spike times and spike identities; 50 of eah number of target neurons, 1, 2

and 4. The reordings are proessed with various spike detetors and spike

sorters and the auraies are plotted against the simulation variables. For

spike detetion with the absolute value threshold detetor (ABS) and spike

sorting with prinipal omponent analysis and fuzzy -means (PCA and FCM),

thresholds of 1% to 5% below maximum auray in eah ase are applied to

the performane urves to identify sampling rate and resolution breakpoints.
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The distributions of these breakpoints aross the test reordings are studied as

funtions of noise level and number of target units and a set of guidelines for the

seletion of sampling parameters in a given reording situation is established.

Proedures for estimating performane in spike detetion and spike sorting are

desribed in detail and the PCA feature spae representation of spikes as a

andidate preditor of spike sorting performane is examined. The in�uene

of spike detetion jitter, arising from asynhronous sampling of spikes, on the

performane in spike sorting is quanti�ed and a sampling rate breakpoint at

whih the e�et of spike detetion jitter beomes insigni�ant, is identi�ed.

Noise level is identi�ed as the main design fator to onern for two rea-

sons. First, noise level is the primary fator that in�uenes maximum ahiev-

able performane in spike detetion and spike sorting. Seond, as noise level is

inreased, the distintiveness of sampling rate breakpoints for spike detetion

is dereased. Spike alignment is found to be an important fator in lowering

the sampling rate breakpoints for spike sorting and the feature spae represen-

tation of spikes is found to be signi�antly orrelated with performane in spike

sorting. However, our results indiate that the lustering algorithm employed

is robust to a signi�ant hange in the feature spae representation, and thus

a predition of spike sorting performane solely based on the spike features is

likely to overestimate performane breakpoints.

The sampling rate and resolution breakpoints for spike detetion with ABS

at pratial noise levels are found to be 16 to 31 kHz (5% and 1% error tol-

erane) and 9 bits, respetively. For spike sorting with PCA and FCM, the

breakpoints are found to be 5 kHz and 5 bits, respetively, assuming that spike

alignment has been ahieved prior to feature extration. This indiates that sig-

ni�ant data redution an be ahieved diretly after spike detetion by simply

disarding samples and bits.

Our omparison of algorithms for spike detetion and spike sorting indiates

that the breakpoints found for ABS and PCA/FCM an be used as guidelines

for prediting the breakpoint loations for the other algorithms.

5.1.5 Paper V: Spike-Feature Based Estimation of Ele-

trode Position in Extraellular Neural Reordings

In this paper, we use syntheti reordings based on ompressed ompartment

models (see Paper VI) to explore how physial movements of the reording ele-

trode translate to movements of deteted spikes in the PCA feature spae. We

show that there is a harateristi relationship between movements in the two

domains. This harateristi relationship is demonstrated by omparing a path

measure for three di�erent eletrode movements (linear, ellipti and P-shaped)

in both spaes. We show that the relationship between eletrode movements
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and spike movements an be modeled by a linear transformation between the

two oordinate systems and we �nally use the model to estimate the position

of the eletrode based on PCA features of deteted spikes. The estimation

involves introduing a training phase in whih the transformation matrix is es-

timated, and then transforming the spike features diretly to physial eletrode

positions using this matrix.

The insights provided by this preliminary study are valuable in the ontext

of spike-traking, i.e. the pairing of spikes representing the same neuron in

reordings separated in time, where eletrode movements may have ourred

in the meantime. The eletrode positioning proedure introdued here ould

be used to quantify post-implantational movements of eletrodes by learning

the transformation matrix during linear eletrode insertion and then estimating

the relative position of the eletrode in future reordings based on the aquired

spike waveforms. This work serves as a demonstration of the usability of om-

pressed ompartment models in modeling physial properties of the reording

setup.

5.1.6 Paper VI: Computationally e�ient simulation of

extraellular reordings with multieletrode arrays

This paper introdues an extraellular signal model that establishes the at-

egory of ompressed ompartment models (see Setion 3.4.3). Four ompart-

ment models of CA1 pyramidal neurons are used to alulate extraellular spike

waveforms on a dense grid of measurement points surrounding the models, us-

ing the line soure approximation method (LSA). The measurement points are

then divided into two groups, aording to their orresponding spike amplitude.

This division results in two regions � the neuron's near- and far-�eld, respe-

tively � separated by an ellipsoid, onentri with the ell soma. We apply

singular value deomposition (SVD) to the matrix ontaining all spike wave-

forms in the near-�eld to �nd a set of orthonormal basis waveforms and their

respetive weights as funtions of position relative to the neuron. The weights

of the �rst six dimensions in this deomposition are then individually �tted to

trivariate polynomial funtions of the measurement point oordinates (x, y, z),
allowing the basis waveform weights to be alulated in any o�-grid point in

spae, ensuring ontinuous hange in the waveform when moving along a path

of measurement points. For measurement points in the far-�eld, we model

the spike waveforms by �nding the point of intersetion between the model

ellipsoid and the line of sight to the origin, alulating the waveform in that

point aording to the near-�eld model, and then attenuating it by a power-law

funtion of the distane. The power-law funtion is estimated by �tting the

amplitudes of spikes in the original measurement points in the far-�eld to a
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power-law of the measurement points' distanes to the model ellipsoid. The

model is validated by omparing true and modeled spike waveforms in terms

of shape and amplitude.

An objet oriented simulation tool employing the simulation of multiele-

trode reordings with arbitrary neuronal population and eletrode array geome-

tries is presented and its usability is demonstrated by quantifying spike sorting

performane as a funtion of eletrode position. The results demonstrate very

learly the relationship between eletrode position, shapes and feature spae

representations of the deteted spike waveforms and the orresponding spike

sorting auray. The simulator is used to show how the geometries and �r-

ing harateristis of neuronal populations an be tweaked to gain ontrol over

physiologial noise properties, in terms of amplitude, power spetral density

and sample histograms.

The modeling method introdued shows a signi�ant improvement in om-

putational and memory e�ieny ompared to previous methods, and adds

a realisti way of simulating multieletrode reordings where the spike wave-

form from the same neuron di�ers in shape between eletrode sites, not only

amplitude. To demonstrate the inreased time e�ieny, diret LSA alula-

tion of the 14.136 extraellular spike waveforms, alulated when estimating

spike sorting auray as a funtion of eletrode position, takes approximately

24 minutes. In ontrast, our method alulates the entire set of waveforms

in approximately 2.4 seonds, or a fator of 600 times faster. This inreased

omputational e�ieny inreases the pratiality of performing simulations in

whih the spatial dependeny of measured spike waveforms is aptured.

5.1.7 Paper VII: Compression of neural spikes with �xed

generi bases for wireless brain-mahine interfaes

This paper deals with the ompression of deteted spike waveforms with �xed

generi ompression bases and minimal proessing on the implanted part of a

wireless BMI. Seleting �xed bases and minimizing the omputational omplex-

ity on the implant is done in order to maximize the utilization of the wireless

link apaity while maintaining low power onsumption. Three di�erent sys-

tem arhitetures are ompared, involving di�erent ombinations and arrange-

ments of spike detetion, alignment, ompression, reonstrution and sorting.

Two di�erent spike detetors (absolute value threshold detetion and nonlinear

energy operator detetion) and �ve di�erent ompression bases are inluded.

The �rst ompression basis represents the ase where the ompression basis is

optimized for eah reording and is obtained by performing SVD on the ma-

trix ontaining the spike waveforms that are to be ompressed. The seond

ompression basis is a �xed basis obtained by performing SVD on a matrix
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ontaining a large number of spike waveforms alulated using the ompressed

ompartment models derived in Paper VI. The third ompression basis is a

�xed basis obtained by performing SVD on the matrix of experimentally ob-

tained spike templates provided in Paper II. The fourth and �fth ompression

bases are the downsampling basis and Haar wavelet basis, respetively. The

test signals used are generated with the simulator reported in Paper VI and

they represent a wide range of reording SNRs. For referene, an arhiteture

involving no spike ompression at all, is inluded.

All ombinations of a system arhiteture, spike detetor and ompression

basis are initially ompared in terms of spike reonstrution auray and spike

sorting auray. Seond, based on the results from the �rst part, we selet

two ombinations of arhitetures and spike detetors and ompare their a-

uraies in spike reonstrution and sorting when ompressing with the third

ompression basis. That basis is of speial interest sine it represents the lass

of generi �xed bases that have no mathematial relation to the data that is

to be ompressed, but is derived from a large assembly of real spike waveforms

with various shapes. Thus, if suessful in aurately representing the data, it

shows that we an remove the omputationally intensive tasks of �nding and

maintaining an optimal ompression basis from the implant.

We onlude that given the appropriate system arhiteture, �xed generi

ompression bases an indeed be used for ompressing spike data without sig-

ni�antly reduing auray in spike reonstrution and sorting, ompared to

using an optimal basis or not performing ompression at all. We suggest a

ompression arhiteture onsisting of the absolute value threshold spike de-

tetor, maximum value spike alignment on the implant side and ompression

with at least a four dimensional �xed generi ompression basis, derived from

a widely varying set of experimentally obtained spike waveforms. Assuming a

wireless link apaity of 1 Mbps, four spiking neurons per hannel, eah �ring

on average 10 spikes per seond, this would theoretially allow the transmis-

sion of over 600 neural reording hannels, in ontrast to four hannels when

transmitting raw neural data.

5.2 Disussion and Future Work

Wireless brain-mahine interfaes o�er solutions to many of the problems that

are inherently present in wired BMIs. However, when inreasing the number

of neural reording hannels beyond just a ouple, the apaity of the wireless

link soon beomes a limitation and e�orts have to be made in order to either

inrease the link apaity or utilize the available apaity e�iently. Out of

these two ations, e�ient utilization of the wireless link is the most e�ient
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and pratial one from a ost-bene�t point of view, given the raw data rate

of neural reordings and the regulatory and physial restritions that limit

the freedom to modify the hannel apaity. Ensuring e�ient use of resoures

demands aess to realisti signal models that allow the detailed study of system

performane as a funtion of input to the wireless link. This thesis addresses

both the required signal modeling, and the use of the signal models for studying

data redution methods that ensure e�ient use of resoures.

As shown in Chapter 3, there are several ways of modeling the extraellular

reording and those di�er in terms of realism, ontrollability and omplexity.

When seleting a model to work with, one should onsider the level of detail

and realism that needs to be aptured from the point of view of the appliation

that is to be validated. For example, template based models probably o�er

an adequate representation of the neural signal when studying single hannel

reordings where eletrode movements annot arise, but they fail as soon as the

spatial dimension is introdued in the form of movements or spei� geometries.

Geometrially realisti models suh as ompartment models or ompressed

ompartment models apture the spatial dependeny of the measured signal

and should therefore be onsidered for simulations with well-de�ned geomet-

rial on�gurations and/or multi-hannel reordings. Although the highest

degree of realism is provided by diret simulations with ompartment models,

their omplexity makes them unpratial to implement in simulation platforms

where �exibility and ease of use are of great importane to the developer of

algorithms for signal analysis. Developers need to be able to easily set up arbi-

trary reording senarios and test the output of their analysis tools against the

immediately available ground truth. Compressed ompartment models pro-

vide a solution to this, ombining the realism of ompartment models with the

omputational e�ieny of simpler models.

Working further on the user-friendliness of our ompressed ompartment

models and making them available to the researh ommunity would be of

great bene�t from the perspetive of developing �standardized� toolboxes for

the analysis of neural data and the development of algorithms. The simulation

output ould be onneted to an analog output, allowing it to be used to test

the performane of omplex hardware from the output of the eletrode to the

system's output. Due to the �exibility and ease of use of the simulation envi-

ronment, its use ould be inorporated into the training of neurophysiologists

to provide a diret visual feedbak representing the origin of the extraellular

signal.

Building up a database of ompressed ompartment models of neurons from

spei� brain regions would failitate the simulation of those regions and allow

the ombined simulation of omplex eletrode designs adapted to the geometry

of the tissue. Not only would this be bene�ial from the point of view of
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designing algorithms for signal proessing, but also from the point of view of

designing eletrodes to target spei� brain regions. The realism of the model

ould be further inreased by onsidering �nite eletrode designs and eletrode

enapsulation. A �nite eletrode site ould be replaed with a luster of point-

eletrodes and the signals from the point-eletrodes ould then be spatially

integrated in order to obtain the signal measured by the �nite eletrode site.

Eletrode enapsulation ould be simulated by studying the frequeny response

of the enapsulation tissue in real senarios and adding it as a �lter to the signal

generation hain in the simulator. These extensions ould potentially save a

great amount of time spent in testing eletrode designs and it would allow for a

tighter integration between the proedures of designing eletrodes and analysis

methods.

Our results regarding the relationship between physial eletrode move-

ments and the feature spae representation of deteted spikes ould potentially

be valuable in linial appliations suh as deep brain stimulation (DBS). By

monitoring the feature spae representation of deteted spikes while inserting

the DBS eletrode, the relative position of the eletrode ould potentially be

determined and its mehanial stability ould be observed after implantation.

The �rst step in this diretion is to validate our preliminary model-based results

experimentally.

Our results suggest that signi�ant data redution an be ahieved by sim-

ply disarding samples after spike detetion and/or by ompression with �xed

generi ompression bases. The high ompression ratios obtained by intro-

duing our methods and the insigni�ant di�erene in performane in signal

analysis ompared to the unompressed ase, suggest that the methods onsid-

ered here are indeed feasible alternatives to more sophistiated solutions where

ompression basis optimization is employed. The next step is to implement our

data redution tehniques into a physial platform, suh as FPGA, to provide

added insight into the pratial aspets of their implementation and use. Hav-

ing implemented an analog interfae to the ompressed ompartment model

based simulator, as mentioned above, the real-life performane of the hardware

implementation ould be veri�ed using the simulator.
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Implementation of a Telemetry System

for Neurophysiologial Signals

Abstrat

With an ever inreasing need for assessment of neurophysiologial ativity in on-

netion with injury and basi researh, the demand for an e�ient and reliable data

aquisition system rises. Brain-mahine interfaes is one lass of suh systems that

targets the entral nervous system. A neessary step in the development of a brain-

mahine interfae is to design and implement a reliable and e�ient measurement

system for neurophysiologial signals. The use of telemetri devies inreases the

�exibility of the devies in terms of subjet mobility and unobtrusiveness of the

equipment. In this paper, we present a omplete system arhiteture for a wearable

telemetry system for the aquisition of neurophysiologial data. The system has been

miniaturized and implemented using surfae-mount tehnology. System performane

has been suessfully veri�ed and bottleneks in the arhiteture have been identi�ed.

Based on: P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson: �Im-

plementation of a Telemetry System for Neurophysiologial Signals�, Conferene

Proeedings of the International Conferene of IEEE Engineering in Mediine and

Biology Soiety, pp. 1254 � 1257, 2008.
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1 Introdution

The spinal ord is the main pathway for signals traveling between the brain and

the body. Spinal ord injury may ause a break in this pathway. Depending

on the loation and severity of the lesion, di�erent parts of the body an lose

their funtion partially or totally [1℄. In addition to proessing motor and

sensory information, signals in the entral nervous system (CNS) arry valuable

information about pereption, memory, pain, learning mehanisms et. [2℄.

Aess to the signals onduted by the CNS ould hene provide the possibility

to restore funtion after injury and study the underlying mehanisms of the

features mentioned above.

A brain-mahine interfae (BMI) is an arti�ial interfae between the ner-

vous system and the outside world. With appropriate ways of handling the

information delivered by the interfae, it beomes possible to use it to pro-

vide ontrol signals for prostheti devies. With the ever inreasing interest

in BMIs, the need for e�ient ways of handling the data inreases [3℄. Some

important parameters in this aspet are pre-ampli�ers, �ltering requirements,

sampling, data transmission, power onsumption, size and �exibility in opera-

tion. Together, these fators determine the usefulness of implementing BMIs

with implanted telemetri devies.

The properties of the measured signals determine the design riteria for

the physial implementation of the BMI. Extraellular reordings have been

shown to provide information about the intraellular ativity of neurons [4℄[5℄.

However, fators suh as enapsulation of eletrodes and eletrode position

in�uene the properties of the aquired waveform [5℄[6℄. Due to the variations

in signal properties depending on these parameters, design riteria will vary

between situations. Based on experiene of reordings with wire eletrodes

on di�erent strutures in the CNS, we have made some general assumptions

regarding important features suh as amplitude and bandwidth. The ampli�er

should have su�ient gain for the A/D onverter to detet signal amplitudes

ranging from tens to hundreds of µV with bandwidth up to 5 kHz [7℄[8℄.

Various ways of implementing multi-hannel neural ampli�ers and aqui-

sition systems have been proposed. In some designs, eah hannel has been

implemented with a partial or full ampli�er hain [9℄[10℄[11℄. Di�erent ap-

proahes have also been made to design telemetri devies [12℄[13℄[14℄.

This paper suggests a omplete arhiteture for a miniature wearable four-

hannel neural data aquisition system for animal experiments. The work is

intended to provide a proof of onept for the suggested arhiteture. The

arhiteture an be expanded to work with an arbitrary number of hannels,

though within some restritions related to lowered performane with inreased

amount of hannels. The system has been implemented and the funtion of its
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parts has been suessfully veri�ed.

2 System Desription

The ore building bloks of the telemetry system are a front-end analog ampli-

�er with variable gain and input hannel and an nRF24E1 transeiver module

from Nordi Semiondutor. The nRF24E1 features an on-board 100 ksps, 8

hannel, 12 bit A/D onverter, a serial RS-232 interfae, a 2.4GHz transeiver

and an 8051 ompatible CPU. The ampli�er gain, referene level and band-

width are set to interfae the A/D onverter. The CPU is used to ontrol

two 4:1 multiplexers (ADG804) to selet an input hannel and a gain. A 2.4

GHz erami hip antenna (ANT-2.45-CHP) is onneted to the nRF24E1 via

a balun mathing network. The nRF24E1 �rmware is stored on an in-iruit

programmable EEPROM (25LC320A). The whole wearable devie is powered

by a single 3V Li battery (CR2032). Figure 1 shows the top side of the �rst

prototype of the telemetry system.

2.1 Analog Front-End

A iruit shemati of the analog ampli�er is shown in �gure 3. The inputs are

highpass �ltered with a �rst order �lter (fc = 34 Hz) to suppress a potential

DC-o�set present at the eletrode tips. Large resistors (RIN, 4.7 MΩ) inrease
the input impedane and provide biasing at the inputs. One of the four input

hannels is seleted with MUX1 (Analog Devies ADG804), via I/O pins on the

nRF24E1. The ampli�er onsists of three operational ampli�ers (OPA348). A

virtual ground is provided with OP3. The resistors Rr1 and Rr2 are hosen so

that the virtual ground potential is in the entre of the A/D onverter's input

signal range. The battery level is monitored with one of the A/D onverter

hannels of the nRF24E1. The �rst gain stage provides a �xed gain of 40

dB. The seond stage provides a variable gain of 18 to 34 dB. The gain of

the seond stage an be hosen from four di�erent values. The gain is set with

MUX2 (Analog Devies ADG804) via I/O pins on the nRF24E1. Both ampli�er

stages provide further highpass �ltering through the apaitors Cf1 and Cf2.

A �lter bank on the ampli�er output provides variable lowpass �ltering for

sampling at various sampling rates. The outputs of the �lters are onneted

to di�erent hannels of the A/D onverter. Filter seletion is done by seleting

the appropriate A/D onverter input.
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Figure 1: The dimensions of the �rst prototype of the wearable telemetry

devie are 30 × 37 × 3 mm

3
. All omponents are mounted on the top side

of the PCB. The analog ampli�er is on the left and the nRF24E1 with it's

peripheral omponents is on the right.

2.2 Data-Aquisition and -Transmission

The wearable devie listens for ontrol words from the basestation at regular

intervals. The length of these intervals an be set by the user during initial

programming of the devie. This redues the urrent onsumption of the devie

severely. The ontrol words ontain information about session mode, session

length, input hannel, ampli�er gain, and sampling rate. The output signal of

the ampli�er is sampled with 8 bit resolution and a sampling rate aording to

the user. The A/D onverter uses an internal bandgap voltage as a referene

(nominally 1.22 V).

Wireless ommuniation is arried out via the on-board transeiver on the

nRF24E1. After loking in reeiver address and payload, data is sent in a

short burst at 1 Mbps, i.e. samples are saved in a bu�er and then transmitted.

When data is not being sent or reeived, the transeiver an be kept in standby

mode in order to redue its urrent onsumption.

Data-aquisition and -transmission an be arried out in various manners,
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Figure 2: A blok diagram of the telemetry system. The analog front-end and

nRF24E1 module are implemented on the same PCB. The external base-station

is based on an nRF24E1 evaluation board onneted to a PC via a serial link.

depending on the task. Signals an either be sampled at high sampling rates,

stored in an internal memory and sent in short bursts, or they an be sent one

sample at a time, allowing for on-line monitoring of the registered ativity. The

latter option lowers the sampling rate beause of inreased proessing time per

sample.

2.3 External Basestation

An external basestation is used to ommuniate with the wearable telemetry

devie. Control words are sent by the user from a PC to an nRF24E1 on the

basestation via a serial interfae (RS-232). The nRF24E1 on the basestation

transmits the ontrol words to the wearable devie and starts waiting for inom-

ing measurement data. One the measurement data is reeived, it is forwarded

via the serial port to the PC for further analysis and proessing.

2.4 User Interfae

The operator of the system an interat with it via a graphial user interfae

(GUI), implemented in MATLAB. Through the interfae, parameters suh as

sampling rate, input hannel(s), ampli�er gain, session length and mode of op-

eration an be set. Figure 4 shows a sreenshot of the GUI. Old measurement

data an be aessed through the same graphial interfae and frequeny anal-

ysis, spetrogram, digital �ltering and audio playbak of seleted segments of

the measurement data an be ativated. The user an enter a omment apply-
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Figure 3: The analog front-end of the wearable telemetry devie onsists of a

single ampli�er hain. Channels are time-division multiplexed at the ampli�er

inputs after highpass �ltering of the hannels.

ing to the apture session that is saved with the measurement data for later

referene. Sampling rate alibration an be initiated from the GUI.

3 Veri�ation of Performane

The performane of the telemetry system was evaluated by measuring some im-

portant parameters and omparing with results from simulations and expeted

values aording to omponent spei�ations. Table 1 shows a summary of the

results. Spie simulations were done in NI Multisim 10.

3.1 Analog Front End

Input Impedane

The input impedane of ampli�er was measured to be 2.2 MΩ at 10 kHz.

Simulations gave an input impedane of 1.5 MΩ, also at 10 kHz.

Ampli�er Gain and Bandwidth

The ampli�er gain was measured at all gain settings to range between 58 and

73 dB. Simulations gave gain values orresponding to those given by the de-

sign riteria, 55 to 70 dB. With the 1.22 V internal bandgap voltage as A/D
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Figure 4: The wearable devie is ontrolled via a graphial user interfae im-

plemented in MATLAB.

onverter referene, the ampli�er is apable of full-sale ampli�ation of signal

amplitudes from 270 µV to 1.5 mV. Measured ampli�er bandwidth was some-

what lower than the simulations indiated. This disrepany is assumed to be

a result of stray e�ets and inaurate modeling of some of the omponents.

Ampli�er Noise

The input referred ampli�er noise was measured at all gain settings and the

average was found to be 5.6µV (rms). The simulations gave an input referred

noise of 6.7 µV (rms). The di�erene may be due to approximations in alu-

lations.

3.2 Sampling Rate

Sampling rate was measured in di�ent modes of operation. When running

in burst-mode, the total sampling rate was measured to be 25 ksps. When
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Table 1: A summary of performane evaluation

Property Expeted Measured

/ Simulated / Observed

Input impedane � f = 1kHz [MΩ] 1.5 2.2

Ampli�er gain [dB℄ 55 to 70 58 to 73

Input referred amplifer noise (rms) [µV℄ 6.7 5.6

Ampli�er urrent 160 150

onsumption [µA℄

Current onsumption of ≥ 3 3.5 to 9

nRF24 and peripherals [mA℄

Physial dimensions of wearable devie [mm

3
℄ - 30 × 37 × 3

approahing the nRF24E1 limitations, the sampling rate was found to rely

heavily on e�ient programming of the devie. Assuming ontinuous mode

(sampling and transmitting one sample at a time), a sampling rate of 3.7 ksps

was ahieved.

3.3 Physial Dimensions

The physial dimensions of the �rst prototype of the wearable devie were

measured to be 30× 37× 3 mm

3
(not inluding the battery). These dimensions

are assumed to be aeptable for a �bakpak� version of the wearable system

[15℄.

3.4 Current Consumption and Lifetime

The urrent onsumption of the ampli�er was measured as the total urrent

drawn from the battery with the nRF24E1 disonneted. It was measured to

be 150 µA.
The urrent onsumption of the nRF24E1 transeiver module was measured

when running in di�erent modes. With the measurement system running but

the radio transeiver turned o�, the urrent onsumption was 3.5 mA. When

the system was waiting for start signals from the basestation, the urrent on-

sumption was 5 mA and when ative (ontinuous mode), it was 9 mA. Current

onsumption depends strongly on e�ient programming of the devie �rmware.

The system was powered by a GP CR2032 Li 3 V battery. This battery

has a apaity of 210 mAh. Assuming a total urrent onsumption of 9 mA in

ative ontinuous mode, this results in a lifetime of approximately 23 hours of

ontinuous usage.
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Figure 5: The amplitude of the amplifer transfer funtion at the four di�erent

gain settings.

3.5 Channel Seletion

The time it takes to swith from one input hannel to another was measured

to be 60 ms. This is not due to multiplexer swithing speed, but due to long

settling time of the input ampli�er hain.

4 Conlusions and Future Work

A wearable system for telemetri aquisition of neurophysiologial signals has

been designed, implemented and tested. Design riteria were set with signal

properties suh as amplitude and bandwidth in mind. The overall system

performane has been evaluated and most parameters have been shown to

meet the design riteria and behave aording to expetations.

The hoie to arry out hannel seletion early in the ampli�er hain was

done in order to simplify the ampli�er design and save spae on the PCB.

However, the long settling time when swithing hannels makes yli sampling

shemes between hannels impratial. This suggests that the hannel seletion
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be arried out later in the ampli�er hain. An important fator to keep in mind

in this regard is the the inreased area onsumption when inreasing the size

of hannel-dediated ampli�er hains.

For an expliit set of design riteria to be set for the telemetry devie,

further studies will have to be made on the properties of the aquired signals,

that is extraellular ation potentials from di�erent parts of the CNS. Some

work based on simulations has been arried out [4℄[5℄[16℄. However, �exibility

and the presented system's ability to adapt to di�erent situations makes it

usable even when the exat harateristis of the signals are knot known. The

system has been designed with �exibility in mind and will be further tested

under various onditions in order to verify its degree of �exibility.

The wearable devie will be developed further in terms of physial layout,

system arhiteture and programming. The physial struture of the wearable

telemetry devie an be improved and redued in size by using a module-based

approah. The ampli�er and the transeiver parts an be implemented in

separate modules and staked on top of eah other. The size redution will

make it possible to implant the devie in a small animal.
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Spike Library Based Simulator for

Extraellular Single Unit Neuronal

Signals

Abstrat

A well de�ned set of design riteria is of great importane in the proess of design-

ing brain mahine interfaes (BMI) based on extraellular reordings with hroni-

ally implanted miro-eletrode arrays in the entral nervous system (CNS). In order

to ompare algorithms and evaluate their performane under various irumstanes,

ground truth about their input needs to be present. Obtaining ground truth from

real data would require optimal algorithms to be used, given that those exist. This

is not possible sine it relies on the very algorithms that are to be evaluated. Using

realisti models of the reording situation failitates the simulation of extraellular

reordings. The simulation gives aess to a priori known signal harateristis suh

as spike times and identities. In this paper, we desribe a simulator based on a library

of spikes obtained from reordings in the at erebellum and observed statistis of

neuronal behavior during spontaneous ativity. The simulator has proved to be useful

in the task of generating extraellular reordings with realisti bakground noise and

known ground truth to use in the evaluation of algorithms for spike detetion and

sorting.

Based on: P. T. Thorbergsson, H. Jorntell, F. Bengtsson, M. Garwiz, J. Shouen-

borg, A. J Johansson: �Spike Library Based Simulator for Extraellular Single Unit

Neuronal Signals�, Conferene Proeedings of the International Conferene of IEEE

Engineering in Mediine and Biology Soiety, pp. 6998 � 7001, 2009.
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1 Introdution

One of the urrent promising trends in the �eld of brain-mahine interfaes

(BMI) is development toward long term extraellular reordings with hron-

ially implanted multi-eletrode arrays (MEA) in the entral nervous system

(CNS). Detetion and lassi�ation of spikes are of major importane to su-

essful implementation of a BMI based on extraellular reordings.

The algorithms hosen for spike detetion and lassi�ation will determine

the design riteria for signal aquisition hardware. However, the task of hoos-

ing an algorithm is not a trivial one making qualitative evaluation of their

performane neessary.

In order to evaluate the performane of algorithms for spike detetion and

lassi�ation under various hardware implementations, we have hosen to im-

plement a simulator to generate extraellular reordings. Simulation gives

aess to ground truth about spiking ativity in the reording and thereby

failitates a quantitative assessment of algorithm performane sine the har-

ateristis of the signals are known a priori.

Similar approahes have been taken by others to perform the task of algo-

rithm assessment. However, not many simulators have been fully published,

making it neessary for researhers to implement their own versions. Previous

works inlude [1℄, [2℄ and [3℄, where simulators based on the same ideas as

ours were used. A fully doumented simulator based on analytial models has

been published in [4℄. In ontrast, we have developed a simulator based on

large amounts of extraellular reordings that is more readily appliable to our

experimental setups.

The simulator desribed in this paper is fully doumented and will be pub-

lished for general use under a Creative Commons liense [5℄ as a library of

MATLAB funtions along with an extensive and expandable spike library. The

performane of the simulator has been suessfully veri�ed by omparing fea-

tures suh as �ring statistis, power spetral density and autoorrelation of

simulated and real signals.

2 Models

2.1 Neuronal Distribution and Density

Neuronal density varies among strutures in the CNS. We have hosen to use

a modi�ed density estimate provided by [6℄. In this work, the number of hip-

poampal CA1 pyramidal ells ontained within a ylinder of a given radius

was estimated.
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Our modi�ation involves replaing the ylinder with a sphere of equal

radius but assuming the same number of neurons. The motivation behind this

modi�ation is that we want to simulate ativity in CNS strutures that do

not neessarily have the prominent laminar organization that is enountered

in the hippoampus [7℄. We further assume an isotropi neuronal distribution.

Figure 1 shows how the reording environment is modeled.

Figure 1: A model of the reording environment. The white dots in the far

�eld represent noise units. Target units are plaed in the near �eld.

2.2 Unit Isolation

In the default setup of the simulator we assume the volume surrounding the

eletrode to be divided into two parts; �near �eld� and �far �eld�. The surfaes

of the inner and outer spheres shown in Figure 1 bound the two volumes. Spikes

oming from neurons within the near �eld and the far �eld are referred to as

target units and noise units respetively. We assume a small amount of ative

target units to be present in the near �eld and we assume those to be separable

from the noisy bakground ativity ontributed by the noise units in the far

�eld.
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2.3 Extraellular Spike Amplitude

The variation in spike shape and amplitude has been studied by [6℄, [8℄ and [9℄.

Our amplitude model for the noise units is based on the result in [9℄ that at large

distanes (in the eletrode's far �eld), the amplitude deays as 1/rn where n is

between 2 and 3. We have not inluded the spatially dependent lowpass �ltering

also desribed in [9℄ sine the spike prototypes in our library are obtained from

atual reordings and are therefore assumed to have undergone this �ltering

already.

Based on observations of simulated and real signals in ombination with the

work mentioned above, we model the normalized spike amplitude deay as

A =

{

1
(Kr+1)2 for noise units

1 for target units

(1)

where K is a saling fator that spei�es the rate of deay. Within the near

�eld of the eletrode we urrently assume a onstant amplitude of one.

2.4 Inter Spike Interval and Refratory Period

To generate spike times for our target and noise units, we assume a renewal

proess with gamma distributed inter spike intervals (ISI). An advantage of

this assumption is that both the absolute and relative refratory periods are

diretly implemented in the model [10℄. The spike times τp(n) for unit p are

thus given by

τp(n) =

n
∑

j=1

ISIj , ISI ∼ Γ(k, θ) (2)

where k and θ are the shape and sale fators of the gamma distribution re-

spetively. The value of the shape fator varies among units with di�erent

mean �ring rates f , but an appropriate value an be obtained by estimating

parameters in a real ISI distribution (see Figure 4). By de�nition of the gamma

distribution, the sale fator is determined by the mean ISI, ISI, and shape

fator k

θ =
ISI

k
=

1

fk
. (3)

2.5 Noise

We assume that the bakground noise mainly onsists of the sum of saled

spike trains generated by noise neurons in the far �eld of the eletrode. The

saling fator is the same as the amplitude deay in Equation 1. Apart from
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the amplitude deay, the noise ontributing spike trains are generated in the

same way as the target unit spike trains. Instead of assuming a ommon mean

�ring rate for all noise units, the �ring rate for eah noise unit is drawn from

a uniform distribution bounded by values given by the user.

We assume thermal noise to be present at the input of the reording am-

pli�er. The root-mean-square (RMS) of the thermal noise an be expressed

as

√

ē2n =
√
4kTRB (4)

where k is Boltzmann's onstant, T is the temperature, R is the input resis-

tane of the reording system (eletrode and ampli�er) and B is the system's

bandwidth [11℄. The values of those parameters an be adjusted to math an

atual setup, but typial values for an implanted system (T = 310K, R = 1MΩ,
B = 10kHz) will give RMS values around 13µV at the ampli�er input.

2.6 Model limitations

The models have limitations in the assumptions of the dynamis and stationar-

ity of the underlying proesses. Correlation between di�erent spike trains and

bursting ativity is not aounted for and we assume onstant spike morpholo-

gies throughout the duration of the simulation. Further, non-spiking ativity

(passive signaling [7℄) is not aounted for and the assumptions of isotropi

neuronal distribution and absene of amplitude deay in the eletrode's near

�eld are simpli�ations worth bearing in mind.

3 Spike Library

Spike waveforms were deteted in and extrated from reordings performed in

various regions in the at erebellum [12℄ and sorted using the open-soure

software pakage Chronux [13℄[14℄. Thresholds for spike detetion were set

automatially using the method desribed in [1℄. The average waveforms were

upsampled to 100ksps and stored. Exeuting this proess on an ensemble of

reordings ontaining well isolated single unit ativity resulted in a library

onsisting of 85 di�erent waveforms.

To obtain a qualitative measure of the harateristis of the spike library,

we looked at features suh as spike duration, frequeny ontents and general

morphology of the stored spikes. The results of the frequeny analysis are not

shown here sine they orrelate strongly with spike duration. This examination

showed us that the library is su�ient as a basis for modeling the reordings

needed for our future algorithm assessment.
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We de�ne spike duration as the time period where the absolute amplitude

of the largest phase of the spike is above half its peak value. The spike duration

histogram in Figure 2 shows that the vast majority of spikes have durations

that lassi�es them as fast spikes [8℄. This provides us with an upper bound

for testing the algorithms sine fast spikes are assumed to pose the biggest

hallenge to them and is therefore regarded as a desirable feature. Figure 2

also shows �ve representative spikes from the library.
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Figure 2: Spike duration histogram (upper) and �ve spike from the spike library

that demonstrate various spike morphologies present in the library (lower).

4 Algorithm

The basi ideas behind the simulation algorithm are inspired by the simulator

desribed in [1℄. The algorithm is summarized in Algorithm 1.

The user provides the algorithm with input suh as duration of the reording

(D), sampling rate (fs), number of target neurons (Nu), standard deviation of

physiologial bakground noise (σn), parameters of thermal noise (T , R, B),
mean �ring rate of target units (fu), a range of �ring rates for noise units (fn)
and rate of amplitude deay in far �eld (K). For eah noise neuron, a �ring

rate is drawn from a uniform distribution bounded by the given values. In the

ase of multiple target units, the mean �ring rates of the individual units an

be set separately.

For eah of the target units, spike times are generated (Equation 2) and a

random spike waveform is hosen from the spike library. The waveform is then
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added to the reording with unhanged amplitude at the obtained spike times.

To generate the bakground noise, eah noise unit is assigned a random

position in the far �eld of the reording eletrode (see Figure 1) and a random

�ring rate is hosen. The amplitude of the unit is then derived from it's distane

from the eletrode tip (Equation 1). The noise units' spike times are generated

in the same way as the target units' and they are added to the reording trae

in the same manner as well. White noise is generated aording to Equation 4

and added to the reording.

The output of the simulation is the spike times and labels of all (target)

spikes in the reording, the simulated reording and bakground noise as well

as the atual waveforms of the target units as taken from the spike library.

Input: Duration of reording, sampling rate, number of target units,

standard deviation of physiologial noise, thermal noise

parameters, mean �ring rates, rate of amplitude deay in far

�eld.

Output: Target unit spike times, entire reording, noise omponent of

reording, target unit waveforms.

foreah Noise/target unit P do

Generate a spike train sp(t) of N spikes wk with amplitude Ap

(Equation 1) ourring at τp(n) (Equation 2):

sp(t) = Ap

N
∑

n=1

wk(t− τp(n)) , k ∼ U(1, L)

where k is the index of the seleted spike waveform and L is the

number of spikes in the library.

end

Add the spike trains and thermal noise e(t) to obtain the �nal signal v(t):

v(t) =
P
∑

p=1

sp(t) + e(t)

Algorithm 1: The extraellular reording simulator.
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5 Veri�ation of Performane

5.1 Methods

To evaluate the performane of the simulator, we seleted a set of segments

from our reordings and roughly estimated features suh as number of separa-

ble units, mean �ring rates and level of bakground noise. In order to try to

mimi the real reordings, these estimates were used as input parameters to

the simulator. Sine the modeling of the bakground noise has proved to be the

most hallenging task in the implementation, we foused our attention toward

segments with low target unit ativity and low signal-to-noise ratio (SNR). We

then ompared the autoorrleation [3℄ and its Fourier transform, the power

spetral density (PSD), for real and simulated signals to get a qualitative as-

sessment of the similarities. The PSD was estimated with Welh's method.

Results from both analyses (averages over four segments of data) are shown in

Figure 3 to failitate omparison with results from earlier studies. To evalu-

ate the validity of the assumption of gamma distributed inter spike intervals,

we �tted a gamma distribution to inter spike intervals obtained from in-vivo

reordings.

To demonstrate the usefulness of the simulator in the task of alulating

the probability of detetion and false positives in spike detetion, we ran a

bath of simulated signals through a spike detetion algorithm and alulated

the resulting probabilities.

5.2 Results

The omparison between the power spetral densities of the real and simulated

signals revealed strong similarities (see Figure 3(a)). The densities resemble

those obtained by [8℄ when studying frequeny ontents of bakground ativity

in extraellular reordings.

The properties of the PSD are in�uened by the modeling of the bakground

noise. Assuming varying ativity among neurons and assigning random mean

�ring rates to the noise neurons gave a good math.

The autoorrelation of the simulated and real signals (Figure 3(b)) showed

strong similarities. Referene [3℄ reported signi�ant autoorrelation at delays

up to around 1.2 ms. The shorter interval in our results is mainly aused by the

fat that our spike library is dominated by fast spikes. We ran simulations with

syntheti spikes of various durations as well and saw a lear onnetion between

the duration of signi�ant autoorrelation and �dominating� spike duration in

the library.

Figure 4 shows a histogram of measured ISI during typial spontaneous
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(a) Power spetral density of real and simulated reordings. The simulation parame-

ters were Nu = 5, fu = 10, fn ∼ U(1, 50), σn = 0.2, K = 0.05.
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(b) Autoorrelation of real and simulated reordings.

Figure 3: A omparison of real and simulated reordings

ativity of a single neuron in the at erebellum. The histogram and the �tted

gamma distribution show lose resemblane and support the assumption of

gamma distributed ISI [10℄.

Figure 5 shows a short segment of a simulated signal and demonstrates the

usability when testing spike detetion with a threshold rossing riterion. In

this ase, the probability of detetion and false positives was PD = 95.35% and

PFP = 4.13% respetively.

6 Conlusions and Future Work

A simulator based on extraellular spikes and observed statistis of neuronal

�ring has been implemented and tested. The simulator has proved to be useful

for providing simulated extraellular reordings to use in the evaluation of
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Figure 4: Measured ISI during spontaneous ativity of a single neuron. The

parameters of the �tted gamma distribution are k = 6.4 and θ = 0.047.
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Figure 5: A short segment of a simulated reording. The diamonds (⋄) and
triangles (∇) at the bottom indiate the beginning of spikes belonging to two

target units present in the reording (ground truth). The arrows at the top

indiate deteted spike times obtained with a double amplitude threshold (dot-

ted lines). The irles and rosses at the top indiate false positives and missed

spikes respetively.

algorithms for spike detetion and sorting.

The simulator will be fully published along with an expandable spike li-

brary. In [14℄, some problems behind diverse onventions in methodology are

mentioned. We believe that a joint e�ort would make the resulting researh

more straight forward and appliable. Our aim is to establish an open venue

for researhers to submit their spike libraries and additions to the algorithm.

Inreased size of the library and more detailed information on spei� regions

in the CNS will failitate the simulation of ativity in spei� areas of the CNS.

Reduing the limitations of the simulator is a work in progress. We plan

to investigate appropriate and biologially valid ways of modeling the orrela-

tion between target units and implement time-varying �ring statistis. These

features will be added to the simulator as they ome along.
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Statistial Modelling of Spike Libraries

for Simulation of Extraellular

Reordings in the Cerebellum

Abstrat

Brain mahine interfaes with hronially implanted miroeletrode arrays for sig-

nal aquisition require algorithms for suessful detetion and lassi�ation of neural

spikes. During the design of suh algorithms, signals with a priori known harater-

istis need to be present. A ommon way to establish suh signals is to model the

reording environment, simulate the reordings and store ground truth about spiking

ativity for later omparison. In this paper, we present a statistial method to expand

the spike libraries that are used in a previously presented simulation tool for the pur-

pose desribed above. The method has been implemented and shown to suessfully

provide quik aess to a large assembly of syntheti extraellular spikes with real-

isti harateristis. Simulations of extraellular reordings using synthesized spikes

have shown to possess harateristis similar to those of in-vivo reordings in the at

erebellum.

Based on: P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson: �Sta-

tistial Modelling of Spike Libraries for Simulation of Extraellular Reordings in

the Cerebellum�, Conferene Proeedings of the International Conferene of IEEE

Engineering in Mediine and Biology Soiety, pp. 4250 � 4253, 2010.
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1 Introdution

Brain Mahine Interfaes (BMIs) are an emerging �eld within neurosiene.

BMIs allow uni-/bidiretional ommuniation with the entral nervous sys-

tem (CNS), failitating studies of neuronal mehanisms as well as extration

of ontrol signals for operating prostheti devies. One lass of BMIs uses

extraellular reordings in the erebral ortex as their input signals. These

reordings are done with hronially implanted eletrode arrays onneted to

external devies for data aquisition and signal proessing. A major problem

in this type of BMIs is the amount of data obtained from the reordings. This

makes it neessary to implement e�ient algorithms for extration of relevant

information and thereby redution of data to be stored or transmitted through

the system.

The extraellular reordings onsist of two major omponents; a low fre-

queny loal �eld potential, representing mainly synapti ativity, and high

frequeny �spiking ativity�, representing ativity of single neurons [1℄. Ex-

tration of information from single-unit spiking ativity depends on suess-

ful detetion and lassi�ation of spikes. During development of algorithms

for these tasks, signals with a priori known harateristis (spike times and

lasses) are needed. We have previously implemented and reported on a simu-

lator that is based on statistial models for spike times and basi assumptions

about the reording environment [2℄, [3℄. The simulator assigns a spike wave-

form to every ontributing neuron and assumes that the waveform does not

hange during the reording. The waveforms are randomly seleted from an

assembly of experimentally obtained spikes. Suh an assembly is referred to

as a spike library. Spike shapes depend on several fators, inluding type and

geometry of the neuron and spatial relationship between the neuron and the

reording eletrode [4℄, [5℄. Although the original spike library spans a wide

range of waveform morphologies, its disrete and sparse nature poses obvious

restritions in this regard.

In this paper we report on a method to expand a spike library to an arbitrary

size in order to over a wider range of waveformmorphologies. We �nd the basis

waveforms (prinipal omponents) that desribe the original spike library and

estimate parameters in a statistial model desribing their weights. We then

use the model to generate new weights that, when applied to the prinipal

omponents, result in new spike waveforms that follow the statistis of the

original data. The method has been shown to be suessful in synthesizing an

arbitrary number of spike waveforms to use in the simulation of extraellular

reordings for testing of spike detetion and sorting algorithms.
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2 Bakground

2.1 The Original Spike Library

Spikes were deteted in and extrated from several reordings in the at ere-

bellum [6℄. Spikes from eah reording were sorted using Chronux [7℄, [8℄,

ensemble averaging was used for noise redution and average spike waveforms

were stored. The original spike library onsists of 85 spike waveforms. In the

simulations presented in this paper, some of the spikes in the original library

are onsidered to be outliers due to exessive deviations in loation and shape

of major waveform landmarks and are therefore disarded in the modelling

proedure desribed here.

2.2 Prinipal Component Analysis

When performing prinipal omponent analysis (PCA) on an ensemble of

spikes, we �nd an orthonormal basis to desribe the spikes by applying sin-

gular value deomposition (SVD) on the original spike matrix with the mean

waveform subtrated from eah spike. The output of the analysis are the

basis vetors (prinipal omponents), their relative ontributions to the total

variability in the dataset (eigenvalues of the ovariane matrix of the data,

�latent roots�), and omponent weights for every spike in the dataset [9℄. By

using all the prinipal omponents, the dataset an be entirely desribed by

S = PW (1)

where the i-th original spike is in olumn i of the matrix S, prinipal omponent

j is in olumn j of the matrix P and the weight of prinipal omponent j for

spike i in olumn i and row j of the matrix W.

We estimate the number of prinipal omponents needed to desribe the

information ontained in the data by looking at the relative ontributions of

the prinipal omponents to the variane in the data. The remaining ompo-

nents are assumed to desribe bakground noise and are disarded. By setting a

threshold for what perentage of variane should be onsidered to ontain infor-

mation, we an automatially �nd the number of prinipal omponents needed

do desribe the data. Sine the number of prinipal omponents needed is usu-

ally smaller than the number of samples in eah spike, this allows us to redue

the dimension of the problem from the original number of samples/spike to the

number of prinipal ompoents used to desribe the data. This is a ommonly

used approah in spike sorting, where prinipal omponent weights are used as

spike features. An approximation of the spike matrix in the �rst N prinipal

omponents is

Ŝ = PNWN (2)
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where PN ontains the �rst N olumns of P and WN ontains the �rst N rows

of W in Equation (1).

2.3 Weight Distributions

The statistis of the spike waveforms an be examined by looking at the dis-

tributions of the weights of the �rst N prinipal omponents aross the entire

original dataset. The distributions of individual omponent weights an be vi-

sualized in a histogram over the rows of WN in Equation (2). However, it is

assumed that ertain ombinations of prinipal omponents are less likely than

others. This motivates us to look at the joint distributions of all omponent

weights and assume that the omponent weight distribution is desribed by a

Gaussian mixture model in N dimensions and with K mixture omponents.

I.e. the olumns of WN in Equation (2) are assumed to be stohasti variables

oming from an N−dimensional K−modal Gaussian distribution.

A key assumption of this paper is that the original spike library is a sample

drawn from a large population of spikes. This sample an be used to derive

information about the statistial properties of the underlying population. By

estimating model parameters, we get an idea of what the rest of the spikes in

the population might look like and by generating prinipal omponent weights

aording to this model, we an synthesize an arbitrary number of spikes with

similar harateristis as the original spikes, and with shapes within the spe-

trum of �possible� shapes.

3 Methods

3.1 Derivation and Utilization of Model Parameters

Prinipal omponent analysis is performed on the original spike library to ob-

tain prinipal omponents, omponent weights and latent roots. The umula-

tive sum of latent roots is plotted and a variane threshold of 99% is applied to

selet the number of prinipal omponents to use, N . The omponent weights

are �tted to an N -dimensional K-modal Gaussian mixture model using the

funtion gmdistribution.�t in MATLAB. Sine the number of modes, K, is un-

known, the parameter estimation is arried out for one to six modes (K ∈ [1, 6])
and the model with the lowest Bayesian information riterion (BIC) is seleted.

The BIC is used as it favors models with low omplexity. The estimated model

is used to generate a matrix of random prinipal omponent weights, W̃ and

the new spikes are onstruted by

S̃ = PNW̃. (3)
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The entire proedure is illustrated in Figure (1).

Figure 1: Prinipal omponent analysis (PCA) is performed on the original

spike library and the parameters of a Gaussian mixture model desribing the

resulting weight distribution are estimated. The model is used to generate new

weights whih are applied to the �rst N prinipal omponents, resulting in a

synthesized spike with similar harateristis as the original spikes.

3.2 Evaluation of Synthesized Spike Libraries

To evaluate the overall quality of the modelling, we arry out several ompar-

isons between the original and synthesized spike libraries. The library features

of interest are distribution of spike durations, distribution of Eulidean inter-

spike distanes and sample intensity. The features are examined in histograms

aross the spike libraries. Usability in simulation of extraellular reordings is

evaluated by running simulations in EAPSim [2℄, [3℄ with a real and synthe-

sized spike library and omparing the power spetral densities of the simulated

reordings. General appearane of spikes is evaluated in a double blind test on

neurosientists with long experiene in working with spike data.

Feature Comparison: Original vs. Synthesized Spike Libraries

We de�ne spike duration as the time period during whih the absolute ampli-

tude of the largest phase of the spike is above half its peak value [2℄. Spike

duration is alulated for all spikes in the real and synthesized spike library

and the distributions are ompared in histograms.
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Eulidean interspike distane between spikes si and sj is de�ned as

di,j =

√

√

√

√

M
∑

m=1

(si(m)− sj(m))2. (4)

where m is the sample index. For eah spike library, the distane is alulated

for every spike pair in that library.

We de�ne sample intensity as the histogram aross every row of the spike

matries S and S̃. Sample intensity provides a qualitative measure of the

range of spike morphologies spanned by a spike library. A similar measure

has previously been used in [7℄ to visualize dominating spike waveforms in an

assembly of spikes in spike sorting.

Evaluation of Simulated Reordings

Four sets of simulated extraellular reordings are generated with EAPSim [2℄,

[3℄. Eah set onsists of �ve reordings. In two sets, we use the original spike

library and in two sets, we use a synthesized library with 2000 spike waveforms.

The sets have zero and four target units present respetively. Power spetral

density (PSD) is estimated for all reordings using Welh's method and the

mean of the PSDs of all reordings at a given setting is ompared between the

datasets.

Double Blind Test

To evaluate the quality of synthesized spikes with respet to general appearane,

we present two experiened neurosientists with a double blind test. A 9 × 10
matrix of spike �gures, eah showing either an original or synthesized spike,

is shown to the subjets and they are asked to identify synthesized spikes.

For eah of the spike �gures, we �rst selet (with equal probability) either the

original or synthesized library. We then selet (without replaement) a random

spike from that library. The only information given to the subjets is that eah

�gure either shows an original or synthesized spike. The results are evaluated

with the VassarStats statistial tool [10℄.

4 Results

4.1 Model Parameters

Figure (2) shows the relative ontribution of the �rst N prinipal omponents

to the variane in the original spike library. A 99% variane threshold is ap-
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Figure 2: The relative ontribution of the �rst N prinipal omponents to the

variane in the original spike library. N = 6 prinipal omponents apture 99%

of the variane in the data.

plied and we onlude that the �rst six prinipal omponents apture 99% of

the variane in the data. Aording to the Bayesian information riterion, we

model the weight distribution with two omponents (K = 2). As a result, the

weight distribution is assumed to be desribed by a 6-dimensional 2-omponent

Gaussian mixture model. Table (1) summarizes the results from the parame-

ter estimation. Figure (3) shows the �rst six prinipal omponents and their

individual weight distributions in the original spike library.

4.2 Feature Comparison: Original vs. Synthesized Spike

Libraries

Feature Comparison

Figure (4) shows the omparison between features of the original and synthe-

sized spike libraries. A qualitative analysis of the �gures shows that we obtain

lose mathes between original and synthesized spike libraries in all ases.

Evaluation of Simulated Reordings

Figure (5) shows means of power spetral densities for �ve simulated reord-

ings with four target units, using original and synthesized spike libraries. The

results for bakground noise only (zero target units) are very similar and are

not shown here. In [2℄, we showed that a good math in power spetral den-

sities of simulated and in vivo reordings ould be obtained with our original
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Figure 3: The �rst 6 omponents and their original weight distributions (inset

histograms).

spike library. The lose math between the urves in Figure (5) among with

the previously mentioned observations shows that realisti spetral features in

simulated extraellular reordings an be obtained even when using simulated

spike libraries.

Double Blind Test

Analysis of the double blind tests show, within a 95% on�dene interval, that

none of the subjets performed signi�antly better than hane when disrim-

inating between original and synthesized spikes.

5 Conlusions and Future Work

In this paper, we have desribed a method in whih we use prinipal om-

ponent analysis to obtain a statistial model to desribe the waveforms in an

experimentally obtained spike library. The statistial model, among with the

originally obtained prinipal omponents, is used to synthesize a spike library

of arbitrary size. Our results show that the modelling and synthesis result
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Table 1: Gaussian MixtureModel Parameters

Parameter Component 1

Mixing proportion 0.62
Mean

[

2.66 −0.11 −0.08 0.08 −0.02 −0.01
]

Covariane matrix

















0.46 0.67 0.27 −0.23 0.15 0.14
0.67 5.29 −0.64 −0.49 0.00 0.13
0.27 −0.64 0.57 −0.05 0.16 0.11

−0.23 −0.49 −0.05 0.19 0.00 −0.05
0.15 0.00 0.16 0.00 0.29 0.00
0.14 0.13 0.11 −0.05 0.00 0.08

















Parameter Component 2

Mixing proportion 0.38
Mean

[

−4.4 0.18 0.13 −0.12 0.03 0.02
]

Covariane matrix

















0.53 0.18 0.46 −0.49 −0.03 −0.05
0.18 4.49 1.02 0.84 −0.01 −0.22
0.46 1.02 1.62 0.11 −0.27 −0.19

−0.49 0.84 0.11 0.9 0.01 0.09
−0.03 −0.01 −0.27 0.01 0.31 0.00
−0.05 −0.22 −0.19 0.09 0.00 0.29

















in spikes with realisti features, usable for realisti simulation of extraellular

reordings in the erebellum.

The model will be implemented into EAPSim [3℄ for ommon use. By

allowing prinipal omponent weights to move within the modelled distribution,

we an model variations in spike shapes over time within or between reordings.

These variations would failitate studies on algorithms for spike traking and

spike sorting under dynami onditions.

Our results show that six prinipal omponents are su�ient to desribe

99% of the variane in the original spike library of erebellum reordings. This

result is onsistent with the independent results reported in [11℄ where the

authors performed prinipal omponent analysis on a large ensamble of spikes

oming from di�erent neurons and onluded that 99% of the variane was

desribed by the �rst six prinipal omponents. These results give us reason to

suspet that spike sorting algorithms with orrelation against a onstant set of

basis shapes (PCs) might be feasible.
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Figure 4: Feature omparison between the original (whole lines in a) and b))

and synthesized (dashed lines in a) and b)) spike libraries. Figures a) and

b) show distributions of spike durations and interspike distanes respetively.

Figures ) and d) show sample intensity for the original and synthesized spike

libraries respetively.
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Figure 5: Power spetral density of simulated extraellular reordings with

original and simulated spike libraries.
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Minimizing data transfer with sustained

performane in wireless brain-mahine

interfaes

Abstrat

Brain mahine interfaes (BMIs) may be used to investigate neural mehanisms or to

treat the symptoms of neurologial disease and are hene powerful tools in researh

and linial pratie. Wireless BMIs add �exibility to both types of appliations

by reduing movement restritions and risks assoiated with transutaneous leads.

However, sine wireless implementations are typially limited in terms of transmis-

sion apaity and energy resoures, the major hallenge faed by their designers is

to ombine high performane with adaptations to limited resoures. Here, we have

identi�ed three key steps in dealing with this hallenge: 1) the purpose of the BMI

should be learly spei�ed with regard to the type of information to be proessed, 2)

the amount of raw input data needed to ful�ll the purpose should be determined, in

order to avoid over- or under dimensioning of the design, 3) proessing tasks should

be alloated among the system parts suh that all of them are utilized optimally with

respet to omputational power, wireless link apaity and raw input data require-

ments. We have foused on step 2) under the assumption that the purpose of the

BMI (step 1) is to assess single- or multiunit neuronal ativity in the entral nervous

system with single hannel extraellular reordings. The reliability of this assessment

depends on performane in detetion and sorting of spikes. We have therefore per-

formed absolute threshold spike detetion and spike sorting with prinipal omponent

analysis and fuzzy -means on a set of syntheti extraellular reordings while varying

sampling rate and resolution, noise level and number of target units, and used known

ground truth to quantitatively estimate the performane. From the alulated perfor-

mane urves, we have identi�ed sampling rate and resolution breakpoints, beyond

whih performane is not expeted to inrease by more than 1-5%. We have then

estimated the performane of alternative algorithms for spike detetion and spike

sorting in order to examine the generalizability of our results to other algorithms.

Our �ndings indiate that the minimization of reording noise is the primary fator

to onsider in the design proess. In most ases there are breakpoints for sampling

rates and resolution that provide guidelines for BMI designers in terms of minimum

amount raw input data that guarantees sustained performane. Suh guidelines are



essential during system dimensioning. Based on these �ndings we onlude by pre-

senting a quantitative task alloation sheme that an be followed to ahieve optimal

utilization of available resoures.

Based on: P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson: �Mini-

mizing data transfer with sustained performane in wireless brain-mahine interfaes�,

Journal of neural engineering, pp. 036005, 2012.
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1 Introdution

The substantial progress made within the �eld of neurosiene in reent deades

depends in part on the development of brain-mahine interfaes (BMIs). By

providing a onnetion between the entral nervous system (CNS) and the

external world, BMIs onstitute powerful tools for both the investigation of

neural mehanisms in awake, freely moving animals and for linial appliations

[1, 2, 3℄. Many of the approahes to BMI implementation to date rely on wired

onnetions between the di�erent parts of the system [4, 5℄, whih restrit the

subjet frommoving around and are assoiated with inreased risk for infetions

and other ompliations due to transutaneous leads. The implementation of

wireless ommuniation links within the BMI (Figure 1 (a)) solves many of these

problems. However, with an ever inreasing number of reording hannels [6℄,

designers of wireless BMIs are hallenged with inreased demands, whih must

be met by areful system dimensioning.

The primary building bloks of a BMI are the aquisition unit, the proess-

ing unit and the atuation unit (Figure 1(a)). The aquisition unit aquires a

signal that arries information about ongoing neural ativity within the CNS

and forwards it to the proessing unit. The role of the proessing unit is gen-

erally to extrat that information from the aquired signal. The output from

the proessing unit is passed on to the atuation unit that exeutes ommands

based on the measured neural ativity. The atuation unit provides feedbak

to the subjet, e.g. eletrial stimulation of nerves or musles, the driving of

a prostheti limb or wheelhair or the operation of a personal omputer. In

researh appliations, the researher makes use of either the raw (unproessed)

aquired signal or the proessed signal from any of the stages within the pro-

essing unit. In a wireless BMI, the aquisition unit is implanted along with

some or all parts of the proessing unit and the wireless link.

Typially, the signal is aquired through implanted miroeletrodes [7℄. The

reorded signal then onsists of bakground noise re�eting the ativity of dis-

tant neurons, low frequeny loal �eld potentials representing synapti ativity

and a higher frequeny spiking ativity, representing APs from lose-by neu-

rons [8℄, here referred to as target units. When aquisition is performed in this

manner, the proessing unit typially extrats information about the ompound

ativity of a group of neurons (multi unit ativity) by deteting spikes in the

aquired signal [9℄, or the �ring patterns of the individual neurons (single unit

ativity) by sorting the spikes upon their detetion [10℄ (Figure 1(b)).

From this point on, we assume that the aquisition unit digitizes the

signal at a ertain sampling rate (samples/seond) and sampling resolution

(bits/sample) and that all signal proessing is performed on the digitized signal

in the proessing unit. We also assume that the objetive of the proessing
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Figure 1: (a) A brain-mahine interfae (BMI), aquires signals from the entral

nervous system (CNS), proesses them and forwards the output to an atuator

or to a researh appliation. The atuator provides feedbak that is modulated

by the aquired neural ativity. The feedbak an be in the form of neural

stimulation, prostheti limb ontrol, musle stimulation, wheelhair operation

or the operation of a personal omputer. Wireless links between the parts of

a BMI are an attrative solution to problems related with dereased freedom

of movement and inreased risk for post surgial ompliations that are often

assoiated with wired BMIs. The wireless link(s) an be implemented in dif-

ferent parts of the system, depending on how proessing tasks are alloated

among the system parts. (b) Implanting miroeletrodes into the extraellular

spae of the CNS is a ommon way of aquiring signals in BMI appliations.

Extraellular reordings in the CNS an be used to assess the gathered ativity

of a group of neurons lose to the eletrode (multi unit ativity) or that of

the individual neurons (single unit ativity). The proessing steps involved are

spike detetion and spike sorting.

unit is to extrat information about neuronal �ring, i.e. single or multi unit

ativity. The amount of information needed, i.e. the auray in the detetion

and sorting of spikes, depends on the appliation. For instane, in appliations

involving the ontrol of prostheti limbs, BMIs an be trained to work with a

fairly high error tolerane but in appliations where the objetive is to perform

analysis of detailed network funtions, high auray is of key importane.

However, both appliations pro�t from inreased performane in terms of

auray in detetion and sorting of spikes.

During the design of a wireless BMI, several ompeting goals need to be

arefully onsidered and balaned. Reliable assessment of neuronal �ring pat-

terns requires aurate detetion and sorting of spikes. In turn, auray in
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spike detetion and sorting relies on high-quality reordings that apture an

adequate amount of information. However, wireless links are highly power-

onsuming and limited in data transmission apaity ompared to their wired

ounterparts. Hene, the balaning at of the wireless BMI designer involves

minimizing the amount of raw data passed to the wireless link without jeopar-

dizing information transfer in terms of aurate assessment of neuronal �ring

patterns, and without exessively burdening the resoures available on the im-

planted part of the system.

This leads us to identifying three ruial steps in the proess of designing

BMIs:

1. Speify the purpose of the BMI

What type of information should the proessing unit extrat?

2. Determine the amount of data needed

How muh raw data needs to be aquired for the output of the proessing

unit to be as aurate as possible? I.e. what sampling rate and resolution

need to be employed in the aquisition unit to ensure maximum ahievable

performane in a given reording situation?

3. Alloate proessing tasks

How should proessing tasks be alloated among the system parts in order

to obtain a balane between performane and resoure utilization and to

avoid over- or underdimensioning?

For wireless BMIs, these steps aid in obtaining a balaned design as desribed

above and for wired BMIs, they help in minimizing the amount of data to be

stored for o�-line analysis. Suh a minimization is bene�ial both in terms of

lowering the ost of data storage and reduing post-proessing time. Step 3

is of partiular importane in the wireless ase due to the distributed system

on�guration that obviously haraterizes wireless BMIs. Figure 2 illustrates

the demands posed by the proessing task alloation onto the individual parts

of the BMI. Inreasing proessing task alloation on the implant dereases

the demand on the wireless link, but inreases the demands on omputational

resoures, and vie versa.

There has been great interest in the development of wireless BMIs in reent

years and the implementations suggested so far di�er in terms of all three key

steps mentioned above. These inlude the transmission of the raw signals from

a large number of hannels, either in analog [11, 12, 13℄ or digital form [14℄,

the transmission of timestamps representing the ourrene of spikes in the

signal [15℄, the transmission of digitized spike waveforms [16, 17℄ and neuronal

assignment labels of sorted spikes [18℄.
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Figure 2: The alloation of proessing tasks among the parts of a wireless BMI

and its in�uene on the demands plaed on the implanted parts of the system

need to be onsidered during BMI design. High/low olor intensities indiate

high/low task alloation and high/low demand on the implant's parts (wireless

link and proessing part). Given a purpose for the BMI, the minimum amount

of data needed to ful�ll the purpose and the resoures available, proessing

tasks should be alloated among the parts of the BMI in a way that ensures

high output reliability and optimum utilization of the resoures at hand.

Despite the diversity among wireless BMI implementations, arising mostly

from di�erenes in BMI purposes (step 1) and task alloation (step 3), ur-

rent knowledge of the atual need for raw input data maximum ahievable

performane (step 2) is sparse. E�orts have been made to quantify these re-

quirements, whih are reported in [8, 19, 20, 21, 22℄. All of these foused on

the spike sorting step, using various estimations of spike waveform bandwidth

and performane measures to onlude that spike sorting required a sampling

rate between 16 and 30 kHz and a sampling resolution above 4 bits. Sampling

resolution was only onsidered in one of the studies [21℄. Two of the studies

[21, 22℄ onsidered the in�uene of waveform misalignments introdued by spike

detetion jitter, i.e. when spikes from the same neuron are sampled at di�erent

times and onluded that it gave rise to spurious lusters in the spike feature

spae. In [22℄, this e�et was assumed to be signi�ant at sampling rates below

10kHz, but in [21℄ the limit was found to be at 30kHz.

Although the investigations summarized here are important steps in the di-

retion of balaned BMI designs, they di�er somewhat in their onlusions and

are inomplete in the sense that they do not fully address the entire proessing

hain, i.e. both spike detetion and spike sorting. There is still a need for

systemati, quantitative and objetive approahes to exploring the in�uene of

the amount of raw input data on the reliability of the proessing unit's out-

put and the minimum amount of data needed to ensure maximum ahievable

performane in a given situation. This need beomes even greater when the

number of reording hannels inreases.
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The ontributions of this work an be divided into four parts. First, we have

performed a detailed estimation of the performane of spike detetion with an

absolute threshold and spike sorting with prinipal omponent analysis (feature

extration) and fuzzy -means (lustering) as a funtion of sampling rate and

resolution, noise level and number of target units. These estimations provide a

desription of the relationship between the amount of raw input data and the

auray of the proessing unit's output under various irumstanes. Seond,

we have quantitatively identi�ed sampling rate and resolution �breakpoints� at

whih performane falls below 1% to 5% below the maximum ahievable per-

formane in eah ase. The breakpoints provide an estimation of the minimum

amount of raw input data needed to ensure minimal loss of auray in the as-

sessment of single and multi unit ativity. Third, in order to see how the results

from these analyses generalize to other algorithms, and to explore the e�ets on

performane introdued by inreasing the amount of omputational resoures,

we have performed the same type of performane analysis for other algorithms

(detetion with nonlinear energy operator, stationary wavelet transform and

mathed-�lter based detetion, and spike sorting with disrete wavelet trans-

form), but at a lower level of detail. The results from these preliminary analyses

show that the algorithms in many ases have similar dependenies on sampling

rate and resolution. Our results for absolute value threshold detetion and prin-

ipal omponent analysis with fuzzy -means thus allow us to draw qualitative

onlusions about the amount of raw data required by the other algorithms

for aurate proessing unit output. Last, we have summarized our �ndings

in a diagram that relates the alloation of proessing tasks to the demands on

the wireless link and the omputational resoures at hand. Our results pro-

vide useful guidelines for the seletion of sampling rate and resolution when

dimensioning wireless BMIs.

2 Methods

2.1 Synthesized Reordings

The simulator desribed in [23℄ was used to synthesize 150 extraellular neural

reordings, eah with a duration of 30 seonds. A library of 2000 syntheti

spikes was used for the synthesis [24℄. The reordings were divided into 3 sets

of 50 reordings eah, ontaining 1, 2 and 4 target units respetively. The tar-

get unit spike waveforms were hosen randomly from the spike library. Ground

truth (true spike times, identities and waveforms) was stored with all reord-

ings. Target unit spike amplitudes were drawn from a uniform (retangular)

distribution between 0.5 and 1.0 (U(0.5, 1.0)) and were then normalized with
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respet to the largest one. The strongest unit in eah reording thereby had a

amplitude of 1 (unipolar), assumed to orrespond to 100 µV . In all reordings,

target units had a mean �ring rate of 20 spikes/seond and gamma distributed

inter-spike intervals.

White noise was added to represent thermal noise generated in the reording

eletronis. The thermal noise amplitude was set aording to

vtrms
=

√
4kTBR (1)

where k is Boltzmann's onstant, T is the temperature and B and R are the

bandwidth and input resistane of the analog front end, respetively [25℄. With

parameters set to T = 310K, B = 50 kHz and R = 200 kΩ, this gave an in-

put referred noise of 13 µVrms, or 0.13 when normalized to the largest spike

amplitude. Physiologial bakground noise was synthesized by simulating the

spiking ativity of distant neurons with mean �ring rates hosen randomly

from a uniform distribution between 1 and 50 spikes/seond. Signal ompo-

nents (target unit ativity, physiologial bakground noise and thermal noise)

were stored separately, allowing us to sale the physiologial bakground noise

to any desired level and study its in�uene on proessing unit output. Phys-

iologial bakground noise was referred to in terms of its standard deviation,

σN , normalized to the maximum spike amplitude. Figure (3) shows an ex-

ample of a synthesized reording, sampled at 25 kHz, with 2 target units and

physiologial bakground noise saled to 0.05, 0.1 and 0.2 respetively prior to

downsampling.

Dynami reording properties suh as varying noise level, spike amplitude,

number of target units et. were left out of the simulations in order to ensure

objetivity and full ontrol over simulation variables. Real reordings with dy-

nami properties an be modeled as a ontinuous series of stationary reording

segments. Thus, the results presented here an be applied to the dynami

ase by onsidering either the �worst segment� or the �mean segment� in the

reording.

The reordings were synthesized at a sampling rate of 100 kHz and a sam-

pling resolution determined by mahine preision. When exploring the e�ets

of sampling rate and resolution on the performane in spike detetion and

spike sorting (see following setions), the reordings were downsampled using

MATLAB 's funtion resample, that inludes antialiasing �ltering. Sampling

resolution was de�ned in terms of the least signi�ant bit (LSB) amplitude

relative to the maximum spike amplitude of 1, and was varied by disretizing

the sample values as multiples of the LSB amplitude with MATLAB 's fun-

tion quant. The number of e�etive bits for eah sampling resolution was then

alulated as

Nb = log2(Vmax/VLSB) (2)
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Table 1: 150 reordings with 1, 2 and 4 (50 eah) target units were synthesized

and stored along with ground truth about neuronal ativity. Ground truth was

used to quantify the performane in spike detetion and spike sorting while

altering simulation variables aording to the table values.

Simulation Variables Values

Number of target units (Nu) 1, 2, 4

Target unit amplitude 0.5 - 1.0

a

Std. deviation of bakground noise (σN ) 0.01 - 0.3

b

Std. deviation of thermal noise (vtrms
) 0.13



Sampling rate (fs) 0.5 - 100 kHz

Sampling resolution (Qs) 1 - 14 bits

d

a

The largest unit has an amplitude of 1, orresponding to 100 µV
b

Relative to a spike amplitude of 100µV .



Relative to a spike amplitude of 100 µV at a bandwidth of 50kHz

d

E�etive bits, assuming full utilization of the ADCs dynami range of ± 1 relative to a

spike amplitude of 100 µV

where Nb is the number of e�etive bits, Vmax is the analog-to-digital on-

verter's (ADC's) dynami range and VLSB is the LSB amplitude. For the sake

of generalization, we assumed the dynami range of the analog-to-digital on-

verter to be fully utilized and hene set Vmax to 2 (±1), i.e. the maximum

peak-to-peak spike amplitude. The breakpoints obtained and presented in our

results an hene be adapted to a real situation in whih the ADC's dynami

range is larger than the spike amplitude by adding one extra bit of sampling

resolution for every doubling of the dynami range relative to the maximum

spike amplitude. Table (1) provides an overview of the simulation variables

and their overed ranges.

2.2 Spike Detetion

Several spike detetion algorithms have been desribed in the literature, varying

in both omplexity and performane. Some of these that have been desribed

within the ontext of low-power, low-omplexity BMI appliations, are ABSo-

lute value threshold detetion (ABS) [26℄, Nonlinear Energy Operator detetion

(NEO) [27℄, Stationary Wavelet Transform Produt detetion (SWTP) [28℄ and

Mathed-Filter based detetion (MF) [29℄.

In [30℄ the authors ompared ABS, NEO and SWTP and onluded that

NEO provided the highest auray, ABS the seond highest (only slightly be-

low NEO) and SWTP the lowest. In terms of hip area and omputational
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Figure 3: A synthesized reording with two target units and physiologial bak-

ground noise saled to three di�erent levels (σN = standard deviation of phys-

iologial bakground noise). Ground truth (true spike waveforms, target unit

identities and spike times) stored with the synthesized reordings allowed for

quantitative assessment of performane in spike detetion and spike sorting.

True spike times of the two units are shown along the lower edge of the �g-

ure (�•� and �⋆�) and the true spike waveforms are shown in the inset. The

dotted lines represent spike detetion thresholds for absolute value threshold

detetion, obtained with Equation (3).

omplexity, ABS had the lowest ost, NEO the seond and SWTP the high-

est. In [29℄ the authors ompared ABS, NEO and MF (along with others)

and onluded that ABS was as e�etive as NEO and MF. In terms of om-

putational omplexity, ABS had the lowest ost, NEO the seond and MF the

highest. Their results also indiated that in order to improve spike detetion,

maximizing signal-to-noise ratio (SNR) was superior to employing advaned

preproessing.

We stress the fat that the main fous of this work is on wireless autonomous

implants with limited resoures, making the hoie of fully automati low-
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omplexity algorithms for signal proessing essential. With this in mind, and

onsidering the small di�erenes in reported performane but signi�ant dif-

ferenes in omplexity between the proposed algorithms, we hose to perform

the identi�ation of sampling rate and resolution breakpoints on absolute value

threshold detetion; that being a feasible hoie in terms of both performane

and omplexity. We also arried out a preliminary analysis of the performane

of the other algorithms. These are brie�y desribed in Setion 2.4.

In ABS, spike detetion is performed by applying a threshold of

T = 4σ̂N = 4 ·median

{ |v|
0.6745

}

(3)

where σ̂N is the estimated standard deviation of bakground noise and |v| is
the absolute value of the digitized signal's amplitude [26℄.

Estimation of Spike Detetion Auray

Deteted spike times (sample indies of threshold rossings) were ompared

to the ground truth (spike onset and duration) and the results were used to

quantify performane in terms of true and false positive detetion rates, as

explained in Figure 4. A reovery time of 2 ms, during whih a new spike

detetion ould not our, was applied after eah detetion. From the true spike

onsets and durations, time frames of true spike ourrenes were established.

Every deteted spike time was then ompared with the true spike time frames

and detetion sores were assigned aording to the number of true spike time

frames, N , overing the deteted spike time:

Case 1: No true spike time frame (N = 0)
Number of false positives, NFP inreased by 1.

Case 2: Exatly 1 true spike time frame (N = 1)
Detetion sore d = 1 assigned to the true spike whose true time frame

overed the detetion time.

Case 3: More than one true spike time frames (N > 1)
Detetion sore d = 1/N assigned to the true spikes whose true time

frames overed the detetion time.

In ase of a double detetion, i.e. two detetion times being overed by the same

true spike time frame, the seond detetion was lassi�ed as a false positive

detetion (Case 2'). However, in ase the seond of these two detetion times

was overed by yet another true spike time frame, the �rst true spike did not

in�uene the treatment of the seond (Case 3').
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Figure 4: Spike detetion performane was quanti�ed by omparing spike de-

tetion times with the known presene of spikes aording to the ground truth

stored during reording synthesis (spike onset and duration). Three main ases

were identi�ed: 1) the deteted spike time was not overed by any true spike,

2) the deteted spike time was overed by exatly N = 1 true spike and 3) the

deteted spike time was overed by N > 1 true spikes. In ase 1, the detetion

was lassi�ed as a false positive detetion. In ase 2, the detetion was lassi�ed

as a true positive detetion and a detetion sore of dm = 1 was assigned to

the true spike. In ase 3, the detetion was lassi�ed as a true positive dete-

tion with weight 1/N and detetion sores of dm = 1/N were assigned to the

true spikes. In rare ases, 2 detetions ould our during the same true spike

interval. In suh ases, only the �rst detetion was lassi�ed as a true positive

detetion and the seond was lassi�ed as a false positive detetion (ase 2').

An exeption from this was made when the seond detetion was overed by

yet another true spike, in whih ase the �rst detetion did not in�uene the

treatment of the seond (ase 3').

Probability of true positive detetion, PTP , was estimated by the rate of

true positive detetion, P̂TP and was alulated aording to

P̂TP =

∑M
m=1 dm
M

· 100% (4)
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where M is the number of true spikes in the reording and dm is the detetion

sore assigned to true spike m, obtained by the above proedure. A detetion

sore of zero was assigned to missed spikes.

Probability of false positive detetion, PFP , was estimated by the rate of

false positive detetions, P̂FP , de�ned as and alulated aording to

P̂FP =
NFP

Nns/Nrecovery
· 100% (5)

where NFP is the total number of false positive detetions obtained by the

above proedure, Nns is the number of samples in the reording not overed by

any true spike time frame and Nrecovery is the reovery time of the spike dete-

tor. The ratio Nns/Nrecovery is hene a measure of the maximum ahievable

number of false positive detetions in the reording.

Sampling Rate and Resolution Breakpoints for Absolute Value

Threshold Detetion

When identifying sampling rate breakpoints, the true positive detetion rate,

P̂TP , was interpolated (ubi spline) and thresholds of 1% and 5% below P̂TP

at full sampling rate were applied. The sampling rate breakpoint for eah of

the thresholds was taken as the sampling rate at whih the true positive de-

tetion rate urve rossed the threshold. Two di�erent thresholds were applied

sine the breakpoint loations varied strongly with the error tolerane, espe-

ially at high noise levels. Sine the detetion threshold was adapted to the

noise level (Equation 3) to avoid false positive detetions, the false positive de-

tetion rate was onsistently negligible ompared to the true positive detetion

rate. Therefore, it was negleted when identifying sampling rate breakpoints.

Sampling resolution was held �xed at a level determined by mahine preision

while sampling rate was varied.

For sampling resolution, we inluded both true and false positive detetion

rate in the breakpoint estimation sine, with lowered resolution, both true and

false positive detetion rates beame signi�antly unstable. The instability

was aused by rounding of both the signal and the detetion threshold (see

Setion 3.1). We applied thresholds of 1% below the true positive detetion

rate at full sampling resolution and above the false positive detetion rate

at full sampling resolution to identify the sampling resolution at whih the

onset of the instability ourred. Thus we obtained two sampling resolution

breakpoints, one at the resolution where true positive detetion rate dropped

below its threshold and one at the resolution where false positive detetion rate

rose above its threshold. The �nal sampling resolution breakpoint was taken
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as the higher resolution breakpoint of these two. Sampling rate was held �xed

at 25 kHz while sampling resolution was varied.

2.3 Spike Sorting and Feature Extration

Although there has been great interest in the task of spike sorting, no stan-

dard algorithm exists and the algorithms proposed di�er in terms of feature

extration as well as lustering approahes. We onsidered Prinipal Compo-

nent Analysis (PCA) [10℄, the Disrete Wavelet Transform (DWT) [26℄ and

Disrete Derivatives (DD) [30, 31℄ for feature extration and Fuzzy C-means

(FCM) [32℄ for lustering.

In [26℄, the authors ompared PCA and DWT and onluded that DWT

was superior in performane. This onlusion was mainly based on the ob-

servation that although the �rst prinipal omponents apture the majority

of the variane in the original data, they do not neessarily provide the best

luster separation. In [33℄, the authors also ompared PCA and DWT and

also onluded that DWT was superior, but only in ases where it was well

tuned to the data. In addition, they onluded that the DWT su�ered from

di�ulties in �nding the best wavelet-parameters to be used in lustering. In

[30℄, the authors ompared PCA, DWT and DD, in terms of both performane

and omputational omplexity. They onluded that there was little di�er-

ene in performane, but a signi�ant di�erene in omputational omplexity

� DD being the simplest and PCA the most omplex. In [31℄, the performane

of PCA, DWT and DD was ompared. The di�erenes varied somewhat be-

tween the ases studied, and from the results, it seems di�ult to derive a

general onlusion regarding the ranking of the methods aross all ases. From

a omputational omplexity point of view, DD should be a feasible alterna-

tive. However, it su�ers from the same problems as DWT regarding seletion

of features and the seletion of time sales to alulate slopes is arbitrary.

From the above, we onlude that there is no obvious best hoie in these

omparisons. However, PCA is well de�ned, well established and a widely used

algorithm for feature extration [30℄. It is not the simplest in most omputa-

tional terms, but it is generi in the sense that it has no ase spei� parameters

that need to be set. Therefore it is straightforward and suitable to use for quan-

titative analysis over a wide range of ases. The other algorithms that were

onsidered for preliminary analysis are desribed brie�y in Setion 2.4.

In PCA, an ordered set of orthonormal basis waveforms (prinipal ompo-

nents), that desribe the variation in the set of spike waveforms presented to

the algorithm, is found. The spike waveforms an then be ompletely desribed

as linear ombinations of the basis waveforms and the weights applied to the

basis waveforms an be used as spike features in spike sorting. Sine the set of
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basis waveforms is ordered � the �rst waveform desribing the most variation

� dimensionality redution is ahieved by simply seleting the �rst N weights

as spike features. N was set to 3 in our simulations.

Estimation of Spike Sorting Auray

True spike times and durations, obtained from ground truth, were used to

extrat spikes from synthesized reordings with 2 and 4 target units at full

sampling rate (100 kHz). This was done in order to exlude any errors possibly

indued in the spike detetion step.

Spikes were sorted using fuzzy -means lustering (FCM) [32℄ and were

assigned to the luster with the strongest membership grade. To ensure on-

sisteny in the proessing, we assumed the number of target units to be known

and provided it to the lustering algorithm as input (number of lusters). We

are aware that suh an assumption does not re�et reality, but we assume it

to be valid for the sake of omparing lustering results while varying the sim-

ulation parameters of interest. The probability of orret spike lassi�ation,

PTP , was estimated as the orret lassi�ation rate, P̂TP , by omparing the

luster assignments with the true spike identities aording to ground truth, as

explained by examples in Figure 5.

Corret lassi�ation rate, P̂TP , was alulated by hierarhial examination

of the evidene for mappings between luster i and target unit j. Suh an ap-

proah was neessary sine the mappings between luster identities and target

units is non-deterministi. An evidene matrix, E, of size Nu×Nu, where Nu is

the number of target units, was onstruted. Entry ei,j in the evidene matrix

was set to the number of spikes truly oming from target unit j, assigned to

luster i by FCM. The evidene matrix was then proessed aording to the

following proedure:

1. Set hierarhial level ounter, n, to 1.

2. Find the n−th largest value, emaxn
in the evidene matrix, representing

the n − th largest evidene for mapping between a target unit and a

luster, assuming that evidene on higher hierarhial levels is true.

3. Set all values in the row and olumn of emaxn
to zero (eliminate evidene

assumed to be false).

4. Inrease hierarhial level ounter, n, by 1.

5. Repeat from step 2 until the number of non-zero entries in the proessed

evidene matrix is lower than or equal to Nu.
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Figure 5: Spike sorting performane was measured as the perentage of or-

retly lassi�ed spikes, P̂TP , as obtained by the proedure desribed by exam-

ples 1 and 2. In both examples, 100 spikes oming from 4 units (25 from eah)

have been sorted with fuzzy -means with the number of units (4) given as

input. After lustering, the assigned luster identities are ompared with the

true unit identities aording to ground truth and the evidene matrix E is

onstruted. The entries of the evidene matrix, ei,j represent the number of

spikes in luster i belonging to unit j aording to ground truth. In Example 1,

all spikes have been orretly lassi�ed and luster identities 1, 2, 3 and 4 orre-

spond to target unit identities 1, 4, 3 and 2 respetively. This demonstrates the

non-deterministi mapping between luster and target unit identities desribed

in the text. In Example 2, some of the spikes have been mislassi�ed. Compar-

ing this with Example 1, this an be desribed as �leakage� between the entries

of the evidene matrix. �Leakage� between rows represents spikes oming from

the same unit being lassi�ed as oming from di�erent units (luster splitting)

and �leakage� between olumns represents spikes oming from di�erent units

being lassi�ed as the same unit (luster merging). The evidene matrix is pro-

essed in a hierarhial manner (arrows) by suessively �nding the strongest

mappings between units and lusters, assuming previously found evidene to

be true.
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After ompleting this proedure, the number of orretly lassi�ed spikes was

taken as the sum of the elements in the proessed evidene matrix and the rate

of orret lassi�ation, P̂TP was taken as the ratio between that number and

the total number of spikes present in the reording. Sine fuzzy -means is

a non-deterministi algorithm, we performed the lustering 10 times for eah

ase and kept the result with the largest rate of orret lassi�ation only.

Sampling Rate and Resolution Breakpoints for Spike Sorting with

PCA and FCM

We applied a threshold of 1% below the orret lassi�ation rate at full sam-

pling rate or resolution and the breakpoints were taken as the sampling rate

or resolution where the urves fell below the threshold. In the sampling rate

ase, the urves were interpolated (ubi spline) prior to applying the threshold.

When varying sampling rate, sampling resolution was held �xed at the original

value determined by mahine preision. When varying sampling resolution, the

reordings where �rst downsampled to a �xed sampling rate of 25 kHz.

PCA Feature Spae Representation as a Quantitative Measure of

Performane

Quantifying spike sorting performane relies on some subjetive assumptions

(see Setion 2.3) regarding the number of lusters and the hoie of method

for assessing the sorting results. Therefore, we found that using an objetive

measure that neglets the spike sorting algorithm and only onsiders the in-

formation provided to it would be a sound approah. Suh a measure would

greatly simplify the work of haraterizing system behavior in terms of spike

sorting performane.

We therefore examined the development of the feature spae representation

(PCA) of spikes as an objetive, indiret measure of spike sorting performane.

The measure was taken as the mean squared error (MSE) between the nor-

malized feature matrix (�rst 3 prinipal omponent weights) at a given sam-

pling rate or resolution and the normalized feature matrix at full sampling rate

or resolution. Our expetation was that a onvergene in the feature spae

representation as sampling rate or resolution was inreased would lead to a

onvergene in spike sorting results, independent of the lusterability of the

spikes. Therefore, optimization of performane in terms of the feature matrix

MSE instead of spike sorting auray should be a valid and feasible approah.

However, sine this measure is not easily interpreted in terms of quality of the

system output, namely the auray in single unit ativity assessment, it is still

vitim to subjetivity when setting performane thresholds for breakpoint esti-
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mation. Therefore, we hose to only look at the orrelation oe�ient between

the orret lassi�ation rate and the MSE at this stage as a �rst step in em-

ploying suh a measure in future studies. The orrelation oe�ient indiates

the strength of the linear relationship between the two measures.

E�ets of Spike Detetion Jitter on Spike Sorting

Spike sorting and feature extration analyses for PCA desribed so far were

arried out in both the presene and absene of simulated spike detetion jitter

(Setion 1). Spike detetion jitter was simulated by applying a random time

shift to every spike waveform one the waveforms were extrated and downsam-

pled. The magnitude of the time shift is limited by the sample period and was

hene drawn from a uniform (retangular) distribution between -1/2 and 1/2

a sample period. Therefore, the e�ets of spike detetion jitter were expeted

to be redued as sampling rate was inreased. Additional spike detetion jitter

aused by noise was not taken into aount.

The e�et of spike detetion jitter on spike sorting performane was quanti-

�ed as the di�erene between orret lassi�ation rate with and without jitter.

The breakpoint was taken as the sampling rate at whih the di�erene dropped

below a threshold of 1%. The in�uene of spike detetion jitter was examined

in the same manner while altering sampling resolution.

Joint E�ets of Sampling Rate and Resolution on Spike Sorting Per-

formane

To aount for any possible e�ets on spike sorting performane aused by a

ombination of employing both a low sampling rate and resolution, we alu-

lated orret lassi�ation rate while jointly varying sampling rate and resolu-

tion on a subset of the values spanned when varying the individual parameters

as desribed in previous setions. We assumed spike detetion and extration

to have been performed on the signal at a sampling rate of 25 kHz, whih is

high enough for the e�ets of spike detetion jitter to be negligible (Figure

11). We therefore did not inlude spike detetion jitter in this part. We then

alulated the orret lassi�ation rate, P̂TP , as a funtion of sampling rate

and resolution at all noise levels studied for 2 and 4 target units. A threshold

of 1% below orret lassi�ation rate at full sampling rate and resolution was

applied and the breakpoint was taken as the point, in the region where P̂TP

was above the threshold, that minimized bitrate (sampling rate × sampling

resolution, bits/seond).
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2.4 Generalization to Other Algorithms

In order to investigate how the sampling rate and resolution breakpoints ob-

tained by the above analysis would generalize to the other algorithms onsid-

ered (NEO, SWTP and MF for spike detetion and DWT for spike sorting),

we performed preliminary analysis on the in�uene of varying sampling rate

and resolution on their performane. This preliminary analysis also provided

insight into how an inrease in available omputational resoures, and thus

the possibility of employing more demanding algorithms, would in�uene the

requirement for raw input data to the proessing unit. These analyses were

performed in the same way as desribed for ABS and PCA in Setions 2.2 and

2.3. The alternative algorithms onsidered are brie�y desribed here. We hose

not to implement DD for spike sorting in our analysis due to the arbitrariness

in the hoie of time sales for slope alulation.

Spike Detetion

Nonlinear Energy Operator:

A threshold T is applied to the nonlinear energy operator Ψ(n) for the
signal v(n). Ψ(n) is obtained by

Ψ(n) = v2(n)− v(n+ 1) · v(n− 1). (6)

and T is set as

T = CΨ(n) (7)

where Ψ(n) is the mean of the Ψ(n) and C is a saling fator adjusted

empirially and then used as a onstant [27℄. C was set to 20 in our

simulations.

Stationary Wavelet Transform Produt

The stationary wavelet transform (SWT) of the signal v(n) is alulated
at 5 onseutive dyadi sales (W (2j , n), j ∈ [1, 5]). The sale with the

maximum sum of absolute values is found (2jmax
) and the point-wise

produt P (n) of wavelet oe�ients over three onseutive sales up to

2jmax
is alulated as

P (n) =

jmax
∏

j=jmax−2

|W (2j , n)|. (8)

P (n) is then smoothed by onvolution with a Bartlett window w(n) (half
the spike length) and a threshold T is applied to the smoothed Ps(n). T
is set as

T = CPs(n) (9)
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where C is a saling fator and Ps(n) is the mean of Ps(n) [28℄. C was

set to 2 in our simulations.

Mathed Filter

The signal is onvolved with a spike waveform that is the mean of spikes in

the spike library used to generate the syntheti reordings (Setion 2.1).

A threshold T is applied to the absolute value of the resulting signal. T
is set to a perentage of the input range of the (onvolved) signal. T was

set to 20% in our simulations.

Spike Sorting

Disrete Wavelet Transform:

The wavelet transform of eah spike is alulated using a four-level mul-

tiresolution deomposition with Haar wavelets. The wavelet oe�ients

thus desribe the spike waveforms at various sales and times [26℄. The

number of wavelet oe�ients is the same as the number of samples in

the spike waveforms. In ontrast to PCA, the oe�ients are not ordered

and the set of oe�ients used in lustering needs to be identi�ed. Thus,

every oe�ient distribution needs to be tested and oe�ient seletion

is based on the obtained test statistis.

Modi�ed Lilliefors Test:

The Lilliefors test for normality employed in [26℄ provides a measure

of deviation from normality for the oe�ient distributions. In or-

der to further reward oe�ients with multimodal distributions, we

modi�ed the test to inlude a measure of separation between mul-

tiple modes. The empirial umulative distribution funtion of the

oe�ients ECDF (c) is alulated and ompared to the umulative

distribution funtion of a normal distribution NCDF (c) with the

same mean and variane as the oe�ient distribution. The test

statisti is then taken as

K = |∆p|+ ||d||/||dmax|| (10)

where ∆lm is the distane between the �rst and last peak of the

funtion d = |ECDF (c) − NCDF (c)| and ||.|| denotes Eulidean

norm. dmax is set to be |0.5−NCDF (c)|. Thus, a large mode sep-

aration and large deviation from normality (�rst and seond term

of Equation 10 respetively) lead to a high test statisti. The oef-

�ients with the three highest test statistis are seleted for feature

extration.
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Maximum-Di�erene Test:

The oe�ients with the three largest variations are seleted for

feature extration (see [30℄ for details on implementation).

3 Results

3.1 Spike Detetion with Absolute Value Threshold
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Figure 6: True and false positive detetion rates, P̂TP and P̂FP , were used to

quantify spike detetion performane while varying the number of target units

present (1, 2 and 4), standard deviation of bakground noise (σN = 0.01 to 0.3),

sampling rate (0.5 to 100 kHz) and sampling resolution (1 to 14 bits). (a) to ()

show the mean true positive detetion rates (aross all reordings) as funtions

of sampling rate at three of the noise levels studied for 1, 2 and 4 target units.

Thresholds of 1 and 5% below true positive detetion rate at full sampling rate

were applied to �nd performae breakpoints. The stars indiate the loation

of the 5% breakpoints obtained for the mean urves. (d) to (f) and (g) to (i)

show the mean true and false positive detetion rates respetively as funtions

of sampling resolution. Thresholds of 1% below true positive detetion rate

at full sampling resolution and above 1% false positive detetion rate at full

resolution were applied and the overall sampling resolution breakpoint was

taken as the higher one of the two resulting breakpoints. Breakpoints obtained

for the mean urves are indiated with stars. 95% on�dene intervals for the

mean are indiated with thin lines. (Continued on page 132)

Figure 6 shows mean true and false positive detetion rates (aross all

reordings) as funtions of sampling rate and resolution at a subset of the noise

levels studied (false positive detetion rate as a funtion of sampling rate is

not shown). The mean urves illustrate the general relationship between spike



132 PAPER IV

2 4 6 8 10 12 14
0

20

40

60

80

100

σN = 0.01

σN = 0.15

σN = 0.3

1 unit

Sampling Resolution (bits)

T
ru

e
P
o
s.

D
et

.
R

a
te

,
P̂

T
P

(%
)

(d)

2 4 6 8 10 12 14
0

20

40

60

80

100
σN = 0.01

σN = 0.15

σN = 0.3

2 units

Sampling Resolution (bits)
T
ru

e
P
o
s.

D
et

.
R

a
te

,
P̂

T
P

(%
)

(e)

2 4 6 8 10 12 14
0

20

40

60

80

100

σN = 0.01

σN = 0.15

σN = 0.3

4 units

Sampling Resolution (bits)

T
ru

e
P
o
s.

D
et

.
R

a
te

,
P̂

T
P

(%
)

(f)

2 4 6 8 10 12 14
0

10

20

30
σN = 0.01

1 unit

2 4 6 8 10 12 14
0

10

20

30
σN = 0.15

F
a
ls

e
P
o
si

ti
v
e

D
et

ec
ti

o
n

R
a
te

,
P̂

F
P

(%
)

2 4 6 8 10 12 14
0

10

20

30
σN = 0.3

Sampling Resolution (bits)

(g)

2 4 6 8 10 12 14
0

10

20

30
σN = 0.01

2 units

2 4 6 8 10 12 14
0

10

20

30
σN = 0.15

F
a
ls

e
P
o
si

ti
v
e

D
et

ec
ti

o
n

R
a
te

,
P̂

F
P

(%
)

2 4 6 8 10 12 14
0

10

20

30
σN = 0.3

Sampling Resolution (bits)

(h)

2 4 6 8 10 12 14
0

10

20

30
σN = 0.01

4 units

2 4 6 8 10 12 14
0

10

20

30
σN = 0.15

F
a
ls

e
P
o
si

ti
v
e

D
et

ec
ti

o
n

R
a
te

,
P̂

F
P

(%
)

2 4 6 8 10 12 14
0

10

20

30
σN = 0.3

Sampling Resolution (bits)

(i)

Figure 6: True and false positive detetion rates for spike detetion with ab-

solute value threshold detetion as funtions of noise level, number of target

units and sampling resolution (ontinued from page 131).

detetion performane and sampling rate, sampling resolution, noise level and

number of target units. Breakpoints obtained from the mean urves aording

to the proedure desribed in Setion 2.2 are shown in the �gure. Close to the

sampling rate breakpoints, we generally observed a �knee� or plateauing in per-

formane. As noise level inreased, the knee in the true positive detetion rate

urves for sampling rate generally beame less lear. Close to the sampling res-

olution breakpoints, we observed an inreased instability in performane. This

behavior is explained by the fat that as sampling resolution is lowered, the
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signal-to-noise ratio swithes between being enhaned and degraded as some

resolutions lead to noise being suppressed (rounded downwards) and spikes be-

ing enhaned (rounded upwards), and some lead to both being either enhaned

or suppressed. For absolute value threshold detetion, this behavior is ampli-

�ed sine the detetion threshold is loked to the same quantization levels as

the signal (the threshold is obtained from signal median). As a result, per-

formane was atually better at some low resolutions than at full resolution.

However, sine sampling resolution was varied in terms of least signi�ant bit

amplitude relative to the maximum spike amplitude, a hange in either spike

or noise amplitude would ause a hange in the e�etive sampling resolution

and thereby also a potentially dramati hange in performane when operating

at these low resolutions.

We reall that we assume a system arhiteture where signal digitization

is performed in the aquisition unit and all proessing is performed on the

digitized signal. One way of exluding the threshold's ontribution to the osil-

lating behavior is to onsider an alternative arhiteture, in whih the detetion

threshold would be either analog or set with a higher resolution than that em-

ployed for signal aquisition. In order to see the e�ets of suh an alternative

arhiteture, we tried using the threshold obtained from the signal at full res-

olution and observed that the onset of the osillating behavior onsistently

ourred at a lower resolution. In other words, suh an arhiteture would be

more robust to lowered sampling resolution than the one studied here. With

the intention to study a worst ase senario, we only present the results for the

original thresholds (sampling resolution dependent), sine it onsistently over-

estimates the sampling resolution breakpoint ompared to the full-resolution

threshold.

Figure 7 shows the distributions of sampling rate and resolution breakpoints

for all ases studied. The 1% sampling rate breakpoints are omitted in the

�gure. At the high-end noise levels, their loations were signi�antly higher

than the 5% breakpoints due to the diminishing plateauing of performane

urves. The 5% breakpoint was observed to provide a loser estimate of the

urve knees. Maximum ahievable spike detetion performane dereased with

inreased noise level and number of target units. The maximum true positive

detetion rate deteriorated signi�antly at noise levels of σN = 0.1 to 0.15

(Figure 7(b)).

Sampling rate breakpoints were obtained at 1.4 to 90.7 kHz and 1.2 to 49.0

kHz (upper limit of 5% median omparison interval) for the 1% and 5% thresh-

olds respetively, depending on noise level and number of target units present

(Figure 7(a)). Lowering the threshold (error tolerane) from 5% to 1% hene

aused a notiable inrease in the demands with respet to sampling rate. How-

ever, in the ases where the highest of those breakpoints were enountered, the
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Figure 7: The distributions of sampling rate and resolution breakpoints for

spike detetion with an absolute threshold. (a) and (b) show sampling rate

breakpoints and true positive detetion rate at the breakpoints for the 5%

threshold. () and (d) show sampling resolution breakpoints and true positive

detetion rate at the breakpoints. The number of target units present in eah

ase is indiated with 1, 2 and 4. σN is the standard deviation of the physio-

logial bakground noise in eah ase. Median omparison intervals (p = 0.05)
are marked with triangles (△/▽). (Continued on page 135)

maximum ahievable true positive detetion rate su�ered a signi�ant derease

due to the inreased noise level, as mentioned above. Therefore, the major on-

sideration in these ases was not whih sampling rate to employ, but whether

the noise level ould be lowered by any means. Assuming an upper limit of

0.15 on the noise level, we would obtain maximum sampling rate breakpoints of

30.6 kHz and 16.1 kHz for the 1% and 5% thresholds respetively (σN = 0.15,
4 target units). Sampling rate breakpoints were generally shifted upwards with

inreasing noise level and number of target units, exept at high noise lev-

els, where the breakpoints were lowered when inreasing the number of target

units. This is explained by the di�erenes in the plateauing behavior of the

performane urves at high noise levels (see Figure 6).
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Figure 7: The distributions of sampling rate and resolution breakpoints for

spike detetion with an absolute threshold (ontinued from page 134).

Sampling resolution breakpoints were obtained at 6.8 bits to 9.3 bits (upper

limit of 5% median omparison interval) (Figure 7()). The noise dependeny of

breakpoints was somewhat inonsistent, displaying a loal maximum within the

range of noise levels studied. However, this inonsisteny was observed for all

numbers of target units. Again, assuming a maximum noise level of σN = 0.15,
a maximum sampling resolution breakpoint of 9.0 bits was obtained.

3.2 Spike Sorting with Prinipal Component Analysis

Spike Sorting

Figure 8 shows the orret lassi�ation rate, feature matrix mean squared er-

ror, feature spae representation and luster assignments as funtions of sam-

pling rate and resolution for a representative example reording with 4 target

units at a noise level of σN = 0.01, both in the presene and absene of spike

detetion jitter.

Figure 9 shows sampling rate and resolution breakpoint distributions for

spike sorting for all ases studied. Maximum orret lassi�ation rate was

robust to an inrease in noise level up to σN = 0.3 when 2 target units were
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Figure 8: Performane in spike sorting and development of feature spae repre-

sentation were quanti�ed as the orret lassi�ation rate (P̂TP , upper urve,

red), and the feature matrix (prinipal omponent weights) mean squared er-

ror (MSE, lower urve, green) respetively. The feature matrix MSE at a given

sampling rate or resolution was taken as the mean squared error between the

feature matrix at that spei� sampling rate or resolution and the feature ma-

trix at full sampling rate or resolution. (a) and (b) show the P̂TP and MSE

as funtions of sampling rate in the absene and presene of spike detetion

jitter respetively for one representative reording with 4 target units at noise

level of σN = 0.01. () and (d) show the same, but as funtions of sampling

resolution. The insets show snapshots of the feature spae representation of

the spikes and luster assignments after spike sorting with fuzzy -means (red,

green, blue, gray). The snapshot loations on the sampling rate and resolution

axes are marked with stars on the P̂TP and MSE urves.
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present, both in the presene and absene of spike detetion jitter (Figure

9(b)). When 4 target units were present, a signi�ant derease in the maximum

orret lassi�ation rate was seen already at a noise level of σN = 0.05. The
presene of spike detetion jitter aused no signi�ant hange in maximum

orret lassi�ation rate. This is not surprising when onsidering that at the

maximum sampling rate (100 kHz), spike detetion jitter has no signi�ant

in�uene on spike sorting performane (Setion 3.2, Figure 11).

Sampling rate breakpoints between 0.7 kHz to 11.6 kHz (upper limit of 5%

median omparison interval) were obtained, depending on the number of tar-

get units and the presene of spike detetion jitter (Figure 9(a)). Inreasing

noise level and the number of target units and introduing spike detetion jitter

generally aused an upward shift in the breakpoints. Di�erenes in breakpoint

loations per ase aross noise levels were generally insigni�ant. However, re-

moving spike detetion jitter generally aused a signi�ant downward shift in

breakpoint loations. Ahieving spike alignment before the spike sorting step

by any means (adequate sampling rate in the spike detetion step or realign-

ment in post-proessing) therefore proved to be an important fator in lowering

sampling rate breakpoints for spike sorting.

Sampling resolution breakpoints were obtained between 1.4 bits and 3.1

bits (upper limit of 5% median omparison interval), depending on noise level

and the number of target units (Figure 9()). Spike detetion jitter did not

have signi�ant in�uene on the loation of sampling resolution breakpoints.

Again, sampling resolution was varied while keeping sampling rate �xed at 25

kHz, high enough for the spike misalignments aused by spike detetion jitter to

have negligible e�ets on spike sorting performane (Setion 3.2, Figure 11). As

noise level was inreased, the di�erene between the ases studied was generally

redued. Maximum orret lassi�ation rates (Figure 9(d)) were essentially

the same as in the sampling rate part, again due to the employment of the

sampling rate of 25 kHz (9(a)).

PCA Feature Spae Representation as a Quantitative Measure of

Spike Sorting Performane

Comparing the orret lassi�ation rate urves and feature matrix mean

squared error urves as exempli�ed in Figure 8, we saw that in general, the

orret lassi�ation rate seemed to onverge faster than the feature spae

mean squared error. The orrelation between the feature matrix MSE and the

orret lassi�ation rate, P̂TP , was found to be signi�ant (p = 0.05) in 97.2%

and 92.3% of the reordings studied for sampling rate and resolution respe-

tively. The median orrelation over all reordings per ase (noise level, number

of target units and presene/absene of spike detetion jitter) was signi�antly
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Figure 9: The distributions of sampling rate and resolution breakpoints for

spike sorting with prinipal omponent analysis and fuzzy -means. (a) and

(b) show sampling rate breakpoints and orret lassi�ation rate at the break-

points. () and (d) show sampling resolution breakpoints and orret lassi�-

ation rate at the breakpoints. The number of target units present in eah ase

is indiated with 2 and 4 and the presene of spike detetion jitter is indiated

with an appended �j�. σN is the standard deviation of physiologial bakground

noise in eah ase. Median omparison intervals (p = 0.05) are marked with

triangles (△/▽). (Continued on page 139)

(p = 0.05) di�erent from 0 in all ases. Although lustering with fuzzy -means

seemed to be robust to some hanges in feature spae representation of spikes,

as illustrated by the example in Figure 8, these results provide support to our

expetation that optimization of performane in terms of the feature matrix

MSE instead of P̂TP is a feasible approah in future studies.

E�ets of Spike Detetion Jitter on Spike Sorting

Figure 10 shows the mean di�erene in orret lassi�ation rate between ases

with and without spike detetion jitter for 2 and 4 target units at some of the

noise levels studied. In general, the in�uene of spike detetion jitter dereased
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Figure 9: The distributions of sampling rate and resolution breakpoints for

spike sorting with prinipal omponent analysis and fuzzy -means (ontinued

from page 138).

with inreased noise level and learly seemed to onverge to beome insigni�ant

as sampling rate was inreased.

Figure 11 shows the distributions of sampling rate breakpoints for orret

lassi�ation rate derease aused by the introdution of spike detetion jitter.

Sampling rate breakpoints between 2.3 kHz and 11.5 kHz were obtained (upper

limit of 5% median omparison interval). Noise level did not have signi�ant

in�uene on breakpoint loations per ase, but a signi�ant di�erene was seen

between ases with 2 and 4 target units at all noise levels.

It may seem ounterintuitive that the loss in spike sorting performane is

the smallest at high noise levels. However, as noise level is inreased, the orret

lassi�ation urves are shifted downwards for both ases, i.e. with and without

jitter, and the higher the noise level, the less beomes the di�erene between

the two urves. Therefore, at high noise levels, there is less to be gained in

spike sorting performane by ahieving spike alignment.

This suggest that as long as spikes are deteted in and extrated from

the signal at a sampling rate of 11.5 kHz or higher, the spike detetion jitter

introdued will not derease spike sorting performane by more than 1% in

orret lassi�ation rate and hene no further measures need to be taken to
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establish spike alignment in post-proessing prior to the spike sorting step.

The breakpoints reported here are onsiderably lower than those reported in

[21℄. A possible explanation for this di�erene is the robustness towards hanges

in input data displayed by fuzzy -means lustering (see Setion 3.2). In [21℄ the

authors identi�ed the sampling rate at whih the feature spae representation

onverged. As qualitative examination of the example in Figure 8(b) indiates,

the feature matrix MSE onverges at a onsiderably higher sampling rate than

the orret lassi�ation rate.

Spike detetion jitter did not ause signi�ant e�ets on spike sorting per-

formane when sampling resolution was varied. Again, this is due to the fat

that sampling resolution was altered while keeping the sampling rate �xed at

25 kHz, whih is above sampling rate breakpoints in all ases (Figure 11).
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Figure 10: The in�uene of spike detetion jitter on the performane of spike

sorting was quanti�ed as the di�erene in orret lassi�ation rate aused by

the introdution of jitter, P̂TP
nj

− P̂TP
j

. The upper and lower panel show the

mean di�erene over all reordings at three di�erent noise levels (σN ) for 2 and

4 target units respetively. The stars indiate the 1% breakpoints obtained for

the mean urves. 95% on�dene intervals for the mean are indiated with thin

lines.
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Figure 11: The distributions of sampling rate breakpoints for orret lassi�-

ation rate di�erene aused by spike detetion jitter. The number of target

units is indiated with 2 and 4. σN is the standard deviation of physiologial

bakground noise. Median omparison intervals (p = 0.05) are marked with

triangles (△/▽).

Joint E�ets of Sampling Rate and Resolution on Spike Sorting Per-

formane

Figure 12 shows the mean orret lassi�ation rate (aross all reordings) as

a funtion of sampling rate and resolution for 4 target units at a subset of the

noise levels studied. As noise level inreased, the maximum ahievable orret

lassi�ation rate was dereased. Figure 13 shows the distributions of joint

sampling rate and resolution breakpoints for spike sorting.

Maximum orret lassi�ation rate was robust to noise levels up to σN =
0.2 when 2 target units were present but deteriorated signi�antly already at

a noise level of σN = 0.05 when 4 target units were present.

Sampling rate and resolution breakpoints were obtained at 1.0 to 13.5 kHz

and 2.2 to 4.6 bits respetively. However, at the higher sampling rate limit,

whih ourred at a noise level of σN = 0.3, the maximum orret lassi�ation

rate was just above 50%, meaning that the noise level was the primary fator

to onern rather than sampling rate or resolution.

These breakpoints are similar to the breakpoints obtained when individu-

ally varying sampling rate and resolution (Setion 3.2), although the individual

treatment of sampling resolution seems to provide a somewhat lower breakpoint

estimation. Therefore, when estimating performane breakpoints, a joint treat-

ment of sampling rate and resolution appears to be a more reliable approah,

although separate treatment provides a good approximation.

These results show that spike sorting performane does not su�er a loss in

orret lassi�ation rate by more than 1% as long as spikes passed to the spike

sorting algorithm are aligned, either by employing a su�iently high sampling

rate prior to spike detetion (Setion 3.2) or by post-proessing, and sampled
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Figure 12: Joint e�ets of sampling rate, fs, and resolution, Qs, on spike

sorting performane were quanti�ed by alulating the orret lassi�ation

rate, P̂TP , while jointly varying the two variables on a subset of the values

spanned by the dediated parts (Setion 3.2). The �gure shows the mean P̂TP

surfae aross all reordings for 4 target units at a noise level of σN = 0.15.
A threshold of 1% below P̂TP at full sampling rate and resolution was applied

to the surfae and the breakpoint was taken as the point in the area of the

fs-Qs plane ful�lling the threshold riteria (dark area) that minimized bitrate

(sampling rate × sampling resolution, bits/seond). The bitrate is shown as

the surfae below the P̂TP surfae, normalized to the maximum P̂TP value for

the sake of visual larity. The breakpoints obtained for the mean surfaes are

indiated with stars and are projeted onto the fs-, Qs- and P̂TP -axes and the

bitrate surfae. Breakpoints obtained for the individual reordings are shown

with dots for omparison.

at a sampling rate and resolution of at least 13.5 kHz and 4.6 bits respetively.

However, assuming a noise level of σN = 0.2 or lower, and thereby raising

the maximum performane further above the 50% limit, the sampling rate

breakpoint is lowered to 5.4 kHz.
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Figure 13: The distributions of joint sampling rate (a) and resolution (b) break-

points for spike sorting with prinipal omponent analysis and fuzzy -means.

The number of target units is indiated with 2 and 4 and σN is the stan-

dard deviation of physiologial bakground noise. Median omparison intervals

(p = 0.05) are marked with triangles (△/▽).

3.3 Generalization to Other Algorithms

Figure 14 shows the mean performane (aross all reordings) of the algorithms

onsidered for spike detetion and spike sorting as a funtion of sampling rate

and resolution for representative ases (noise level and number of target units).

Spike Detetion

For all of the algorithms studied, the e�et of sampling rate on false positive

detetion rate was insigni�ant in omparison with true positive detetion rate.

False positive detetion rate did however inrease slightly with inreased noise

level for all algorithms. Thus, we fous our disussion regarding sampling

rate towards true positive detetion rate. At low noise levels, ABS and NEO

performed similarly and had a similar dependeny on sampling rate. As noise

level inreased, NEO outperformed ABS and the urve knee for true positive
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Figure 14: Comparison of algorithms for spike detetion and spike sorting. (a)

and (b) show mean true and false positive detetion rates (aross all reordings)

respetively as funtions of sampling rate. () and (d) show mean true and

false positive detetion rates (aross all reordings) respetively as funtions of

sampling resolution. (a) and (b) show mean orret lassi�ation rates (aross

all reordings) as funtions of sampling rate and resolution respetively. The

ases shown here (noise levels and numbers of target units) are representative

the ases studied. 95% on�dene intervals for the mean are indiated with

thin lines. (Continues on page 145)

detetion rate beame less lear. SWTP seemed to be the most robust to noise

level, but had the least lear urve knee throughout. The unlear urve knee for
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Figure 14: Comparison of algorithms for spike detetion and spike sorting

(ontinued from page 144).

NEO at high noise levels and SWTP at all noise levels was similar to what was

observed for ABS at high noise levels (see Setion 3.1). The behavior of MF

was rather inonsistent with the behavior of the other algorithms. At low noise

levels it had the lowest ahievable performane but in terms of true positive

detetion rate, it showed a relatively high robustness to inreased noise level

ompared to ABS. Inreasing the number of target units did not in�uene the

relative performanes between the algorithms.

Out of all of the algorithms, ABS showed the learest dependeny on sam-

pling resolution (osillations in performane urves as desribed in Setion 3.1)

and it's breakpoint estimates (onset of osillations) onsistently seemed to over-

estimate the breakpoints for the other algorithms. SWTP seemed to be the

most robust algorithm to lowered sampling resolution, whih is in line with the

observation that it is the most robust to noise level, sine lowering sampling

resolution an be seen as an introdution of inreased noise level.

Spike Sorting

PCA and DWT (with both feature seletion methods) showed similar depen-

deny on both sampling rate and resolution. In the mean ases, PCA onsis-

tently performed slightly better than DWT, but the urve knee seemed to our

at similar sampling rate and resolution for both algorithms. The di�erene in

performane between PCA and DWT seemed to inrease with inreased noise

level. The performane of DWT was not in�uened signi�antly by the hoie
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of feature seletion method.

4 Disussions and Conlusions

In this work we have explored the in�uenes of varying sampling rate, sampling

resolution, level of physiologial bakground noise and number of target units

on the performane in spike detetion and spike sorting with absolute value

threshold and prinipal omponent analysis with fuzzy -means. From the

results we have identi�ed sampling rate and resolution breakpoints by applying

thresholds of 1% to 5% below the maximum ahievable performane level or

the performane level at full sampling rate or resolution for eah ase. We have

examined the development of the feature spae representation of spikes as a

means of quantifying the information provided to the spike sorting algorithm

with the simpli�ation of estimating performane breakpoints in mind. We

have looked at how the presene of spike detetion jitter in�uenes spike sorting

performane. Finally, with the intention to explore the generalizability of our

results, we have performed a preliminary omparison of the performane of

other algorithms for spike detetion and spike sorting. Besides shedding light

on generalizability, the results from that omparison also provide insight into

the performane gain that inreased omputational resoures would failitate.

We onlude that performane urves for spike detetion and spike sorting

plateau in most ases and that sampling rate and resolution breakpoints an be

estimated in order to �nd the minimum amount of raw input data that ensures

maximum auray in assessment of single and multiunit ativity. At high

noise levels, breakpoints for spike detetion are less lear sine the plateauing

in true positive detetion rate is dereased (Figure 6) and maximum ahievable

performane for both spike detetion and spike sorting is severely dereased

(Figures 7 and 9). Therefore the minimization of noise should be the primary

point of onsideration in the design proess. This is in agreement with the

results reported in [29℄.

Maximum ahievable performane dereased with inreased number of tar-

get units in all ases (Figures 7 and 9). For spike detetion, this is presumably

due to an inreased probability of overlapping spikes. We note that we onsid-

ered the ase where all target units had a mean �ring rate of 20 spikes/seond,

whih we onsider to re�et a high overall degree of neuronal ativity and thus a

worst-ase-senario in this sense. For spike sorting, this is explained by the fat

that the di�ulty of the lustering problem inreases with inreased number of

lusters and with inreased similarity between lusters.

Our results show that the alignment of spike waveforms is an important

fator in lowering the sampling rate breakpoints for spike sorting. The align-
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ment an be ahieved either by employing a su�iently high sampling rate in

the initial digitization step or by post-proessing. The signi�ant orrelation

between the PCA feature matrix MSE and orret lassi�ation rate in spike

sorting indiates that optimization of performane in terms of feature matrix

MSE instead of spike sorting auray is a feasible approah in future studies.

Coming bak to the ruial steps in BMI design presented in Setion 1,

assuming that the assessment of single or multiunit ativity is the purpose of

the BMI (step 1) and that an adequate noise minimization (σN ≤ 0.15) has
been ahieved, our results provide general guidelines for the hoie of sampling

rate and resolution (step 2) to be employed in the analog-to-digital onverter

of the aquisition unit.

For absolute threshold spike detetion and the assessment of multi unit a-

tivity, a sampling rate of 16 to 31 kHz (5% and 1% performane loss tolerane

respetively) and an e�etive sampling resolution of 9 bits (1% performane

loss tolerane) should be employed (Setion 3.1, Figure 7). For spike sort-

ing with prinipal omponent analysis and fuzzy -means, assuming that the

spike detetion guidelines are followed, the extrated spike waveforms do not

need realignment and an be lowpass�ltered and downsampled to a sampling

rate of 5 kHz and an e�etive sampling resolution of 5 bits (1 % performane

loss, Setion 3.2, Figure 13). For a reording ontaining 2 target units with

a �ring rate of 20 spikes/seond eah and assuming a spike duration of 3 ms,

transmitting the extrated spike waveforms over a wireless link would imply an

approximately eightfold redution in bitrate as ompared to transmitting the

raw signal. Transmitting the waveforms after downsampling them would imply

a total of approximately a �fty- to hundredfold bitrate redution, depending on

the initial sampling rate employed (16 to 31 kHz). We stress the preautions

regarding sampling resolution and the dynami range of the ADC mentioned

in Setion 2.1. The guidelines for spike sorting are appliable for noise levels

up to σN = 0.2, although spike detetion performane is signi�antly a�eted

at suh a high noise level.

Having observed that the performane of the algorithms onsidered in most

ases have similar dependenies on sampling rate and resolution, we onlude

that the breakpoints obtained for spike detetion with absolute value thresh-

olding and spike sorting with prinipal omponent analysis an be used to

provide an indiation of breakpoint loations for the other algorithms studied

(Figure 14). Sampling rate breakpoints for NEO are expeted to be similar to

those for ABS, espeially at low noise levels (at least up to σN = 0.15). At

higher noise levels (σN = 0.3), the performane of NEO onverges slower with

inreased sampling rate, but it's maximum performane is signi�antly higher

than that of ABS. In general, SWTP onverges slower than ABS, indiating

that it requires a higher sampling rate to reah it's maximum performane. In
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the high noise ase however, it's maximum performane is higher than that of

both ABS and NEO. MF's dependeny on sampling rate was inonsistent with

that of the other algorithms. This is possibly explained by the suboptimality

in it's implementation, i.e. using the mean of all stored waveforms as a �lter

waveform. Out of all of the spike detetion algorithms, ABS was in�uened the

most by redued sampling resolution. However, it onsistently seemed to over-

estimate the sampling resolution breakpoints of the other algorithms. From

this we onlude that NEO and SWTP are feasible alternatives to ABS at high

noise levels, but at the ost of inreased sampling rate and omputational om-

plexity. We also onlude that the amount of raw input data (sampling rate

and resolution) should be taken into aount when omparing the performane

of spike sorting algorithms. Both sampling rate and resolution breakpoints for

spike sorting with DWT seemed to be similar to those for PCA. In ontrast with

the onlusions of [26℄, PCA performed better than DWT in the mean ase.

However, aording to [33℄ PCA should be expeted to perform better when

the di�erenes between target unit waveforms are mainly large-sale, whih is

likely to be the ase in our synthesized reordings.

We emphasize that all of the algorithms onsidered involve some free pa-

rameters suh as saling fators for setting thresholds, length of smoothing

windows, feature seletion methods et., and optimizing those for eah spei�

ase might boost their performane. In the fully unsupervised ase however,

suh optimization might not be possible. We have thus kept all algorithm-

spei� parameters �xed throughout our simulations and in that sense we have

tested a worst-ase-senario.

Reordings with non-stationary properties an be modeled as series of seg-

ments with stationary properties. Thus, the dimensioning of a BMI ould be

based on either the most hallenging stationary segment in the reording or

the �mean segment�.

Given a set of resoures in terms of omputational and wireless link a-

paity, our guidelines give rise to a proessing task alloation sheme (step 3),

presented in Figure 15. By following the guidelines presented here and allo-

ating proessing tasks based on the resoures available, the bitrate of data

into the wireless link an be minimized without jeopardizing the reliability of

the output information, namely that regarding single or multi unit ativity.

Thereby, a balaned BMI design is ahieved � a design that neither su�ers

from over- nor underdimensioning. The guidelines presented here are based on

spike detetion with ABS and spike sorting with PCA.

Some soures of epistemi unertainty related to this work should be men-

tioned. First, the simulation parameters were hosen to represent hallenging

senarios in terms of high target unit ativity, without taking into aount

the possibility of a low degree of ativity. However, breakpoint estimations
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Figure 15: We onlude by presenting a task alloation sheme for wireless BMI

designs, based on available resoures (omputational and wireless link apaity)

and the purpose of the BMI in terms of proessing unit output. The arrows

indiate alternative proessing task alloations. For eah suggested task allo-

ation, the bitrate and the type of data fed into the wireless link are provided

for a typial ase. The bitrate estimations are based on the sampling rate and

resolution breakpoints obtained from our results and ensure minimum loss of

performane in spike detetion and spike sorting, and thereby sustained relia-

bility in single and multiunit ativity assessment, provided that minimization

of noise has been performed (σN ≤ 0.15 to 0.2).

based on suh worst ase senarios should provide upper limits that an be

adjusted (lowered) to math more spei� situations. The work�ow presented

here an be used to estimate breakpoints for any given situation that devi-

ates from the ones studied here in terms of e.g. number of target units, �ring

harateristis of ontributing neurons and stationarity/non-stationarity of the

reordings. Seond, full breakpoint analysis was not performed for all of the

algorithms onsidered. Instead, we showed that we an draw qualitative on-
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lusions regarding their breakpoints, based on the breakpoints for ABS and

PCA. At last, we assume single hannel reordings to be performed. Again,

this re�ets a worst ase senario in terms of spike detetion and spike sorting

performane sine multi hannel reordings allow for improving performane

by utilizing the orrelations between near by hannels. The introdution of ad-

ditional reording hannels would presumably lower the requirements for raw

input data to eah individual hannel, provided that that there is some degree

of orrelation between the ativity measured by the individual hannels.
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Spike-Feature Based Estimation of

Eletrode Position in Extraellular

Neural Reordings

Abstrat

Deteting and sorting spikes in extraellular neural reordings are ommon proedures

in assessing the ativity of individual neurons. In hroni reordings, passive eletrode

movements introdue hanges in the shape of deteted spike waveforms, and may

thus lead to problems with identi�ation and traking of spikes reorded at separate

instanes in time, whih is an important step in long-term monitoring of individual

neurons. Information about eletrode movements after implantation is ruial to the

evaluation of mehanial stability of di�erent eletrode designs. In this paper, we

present a preliminary study of the relationship between eletrode movements and

the resulting movements of spike-features in feature spae. We show that there is a

harateristi relationship between the two movements and that this relationship an

be modeled as a linear transformation between two oordinate systems. Finally, we

show how the relationship an be used for estimating eletrode positions based on

measured spike waveforms without any prior knowledge about the type of neuron by

introduing a learning proedure during eletrode insertion.

Based on: P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson: �Spike-

Feature Based Estimation of Eletrode Position in Extraellular Neural Reordings�,

Conferene Proeedings of the International Conferene of IEEE Engineering in

Mediine and Biology Soiety, pp. 3380 � 3383, 2012.
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1 Introdution

Extraellular reordings with hronially implanted miroeletrodes are a om-

mon means of aquiring signals re�eting the ativity of individual neurons in

the entral nervous system [1℄. The reorded signal then onsists of the spiking

ativity of near-by neurons (target neurons), the ombined spiking ativity of

a large number of far-away neurons (noise neurons), thermal noise generated

in the front-end eletronis and loal �eld potentials [2℄, [3℄.

When the target neurons are su�iently lose to the reording eletrode,

their spikes an be deteted [4℄ and sorted [5℄ in order to reveal the �ring

patterns of individual neurons. Assuming that the detetion has been suess-

ful, the sorting step involves extrating features from the spike waveforms and

lassifying similar waveforms as originating from the same neuron. Feature

extration is ommonly arried out by projeting the spike waveforms onto a

set of basis waveforms that an be obtained through e.g. prinipal omponent

analysis (PCA) of the aquired spike waveforms.

Di�erenes in spike waveforms arise from di�erenes in neuron morphology

and di�erenes in eletrode position relative to the di�erent neurons [6℄, [7℄.

While spike sorting relies on these di�erenes, they an beome problemati

in dynami situations, i.e. where the reording eletrode an move in relation

to the target neuron(s). This beomes espeially hallenging when ompar-

ing identi�ed units in reordings from a spei� eletrode that are exeuted at

separate time instanes. While small eletrode movements an slightly hange

the feature spae representation of deteted spikes from a given neuron, larger

movements an put that neuron out of range from the eletrode and new neu-

rons into range. Solving this problem is ommonly referred to as spike-traking

[8℄, [9℄ and involves omparing units between separate reording instanes and

onluding that they either originate in the same neuron or in di�erent neurons.

Gaining insight into how eletrode movements are translated into spike

movements in feature spae would be of great bene�t both in terms of solv-

ing the spike-traking problem and in terms of being able to estimate eletrode

movements based on observed spike waveforms. In this paper, we present a pre-

liminary study of the relationship between physial movements of the reording

eletrode and the orresponding movements of spike-features in feature spae.

Using mathematial models to simulate multi-eletrode reordings, we demon-

strate how eletrode movements along a given path are translated into spike-

feature movements along a similar path in feature spae. Exploring this insight,

we present a method for using reorded spike waveforms to estimate the ele-

trode position, based on the relationship between the two domains. Our results

show that there is a harateristi relationship between eletrode movements

in the physial domain and spike-feature movements in the feature domain.
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This relationship is evident even when employing sub-optimal feature spaes.

Our results also show that reorded spike waveforms provide information about

the reording eletrode position if a training proedure is arried out during

implantation of the eletrode.

2 Methods

2.1 Dataset

As test data, we used syntheti multi-eletrode reordings where the eletrode

sites were plaed along the paths of eletrode movements we wished to test in

eah ase. We used a reently developed simulation tool that employs dimen-

sionality redution tehniques to ompatly desribe the spatial dependeny of

the measured spike waveform. This allows for an e�ient simulation of mul-

tieletrode reordings with realisti properties [10℄. The model was derived

by ompressing the information obtained when alulating spike waveforms in

measurement points surrounding a ompartment model of a CA1 pyramidal

neuron using the simulation environment NEURON [6℄, [11℄, [12℄.

Figure 1: (a)-() Three di�erent reording setups were simulated, one for eah

of the eletrode array on�gurations shown in (a) - (). One target neuron

(purple ellipsoid) was plaed lose to the eletrode array and approximately 500

interfering neurons (dark ellipsoids) were plaed at random positions at least

150 µm away from the target neuron. (d) The e�ets of eletrode movements

were mimiked by extrating spikes from the reording hannels from a time

frame of length T s (T = 15 s in the �gure) while suessively sweeping the

window aross the hannels.

Fig. 1 shows the target neuron and the eletrode loations onsidered for

eah of the three test reordings. The eletrode paths we onsidered were 1)

linear movement, 2) movement along an ellipse and 3) movement along a P-
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shaped path. Fig. 1 (d) shows how eletrode movement was mimiked by

extrating spikes in a time frame of duration T that was swept aross the

hannels. This orresponds to the assumption that the eletrode stays in plae

for the duration of the window, T . The linear movement was assumed to

represent the pratial ase where eletrodes are inserted and then assumed to

move along one axis. The ellipti and P-shaped paths were inluded to show

that omplex eletrode movements were translated to similar movements of

spikes in the feature spae.

Twenty eletrode sites were simulated in eah ase and the duration of eah

reording was 5 minutes. One neuron was plaed in the origin and approxi-

mately 600 noise neurons were plaed at random positions, but at a minimum

distane of 150 m from the target neuron. Eah noise neuron was given a ran-

dom mean �ring rate between 1 and 50 spikes/seond. A mean �ring rate of 20

spikes/seond was assigned to the target neuron. Spike times were generated

by assuming gamma-distributed inter-spike intervals [13℄. All spike times were

stored at the time of simulation and used to extrat spike waveforms.

2.2 Feature-Spae Representation of Spike Waveforms

The P -dimensional feature-spae representation of sampled spike waveforms

of length N (N = number of samples) was obtained by projeting the spike

waveforms onto a set of P (P = number of feature spae dimensions) N sample

long basis waveforms. To explore the e�ets of the seletion of basis waveforms,

we onsidered three sets of basis waveforms, where the j-th set of basis wave-

forms was ontained in the olumns of the N × P matrix Bj . The olumns of

the matrix Bj were obtained as the �rst P basis waveforms from the prinipal

omponent analysis of eah of the following matries:

1. The matrix ontaining the mean spike waveforms in eah eletrode posi-

tion in its olumns (optimal basis).

2. A matrix of the same size as that in 1), but whose elements were normally

distributed random numbers (sub-optimal basis).

3. The matrix ontaining the three very �rst waveforms in the �rst eletrode

position.

The P × M feature spae representation Wj of the spike waveforms in the

N ×M matrix S in the spae spanned by the basis waveforms in Bj was thus

obtained through the projetion and normalization

Wj =
B

T
j S

||BT
j S||2

(1)
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where ||.||2 denotes the Eulidean norm.

2.3 Comparison of Movement Paths between Spaes

To explore the similarity between eletrode paths in the physial spae and

deteted spikes in the feature spae we de�ned the path measure d that sum-

marizes the path in a given Q-dimensional spae (Q > 1) in a 1-dimensional

sequene of normalized Eulidean distanes of points along the path to the

mean point of the path. For a path whose i-th oordinate in the original Q-
dimensional spae is given by pi and whose mean oordinate is given by p0, the
distane measure in the i-th point is given by

di = ||p0 − pi||2. (2)

The i-th point orresponds to eletrode site i out of 20. For the feature spaes,
we only onsidered the �rst three dimensions in this omparison. All distane

measure sequenes were normalized by �rst subtrating their respetive mean

values and then dividing by the Eulidean norm of the resulting sequene.

Although interpreting these one-dimensional path measures in terms of a-

tual paths in a three-dimensional spae is not straight forward, espeially for

more omplex paths, they do provide a means for assessing the geometrial

similarity between two paths in separate domains.

2.4 Spike-Feature Based Estimation of Eletrode Position

Based on the observation that eletrode movements along a given path are

translated to spike waveform movements along a similar path in the feature

spae, we assumed that there existed a P × 3 matrix A that transformed

the 3-dimensional vetor of Cartesian eletrode oordinates to orresponding

P -dimensional spike waveform oordinates in the feature spae. This transfor-

mation is desribed by the linear model

B
T
S = AX+ η (3)

where B and S are the basis- and spike waveform matries respetively, X is

the matrix ontaining the Cartesian oordinates of the eletrode positions and

η is a matrix ontaining noise or variations not aptured by the transformation

matrix.

For a known matrix of Cartesian measurement point oordinates X0, a or-

responding matrix of measured mean spike waveforms S0 and a set of basis

waveforms B, an estimator for the transformation matrix is obtained by mul-

tiplying both sides of Eq. 3 by the Moore-Penrose psesudoinverse [14℄ of the
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Cartesian oordinate matrix, X
+
, so that XX

+ = I, from the right, or

Â = B
T
S0X

+
0 (4)

Having obtained the estimate for the transformation matrix, it an now be

used to estimate the eletrode position for a given set of measured mean spike

waveforms S by multiplying Eq. 3 with the Moore-Penrose pseudoinverse of

the estimated transformation matrix from the left, or

X̂ = Â
+
B

T
S. (5)

To perform and evaluate feature spae based eletrode positioning, we di-

vided the test data for the linear eletrode movement (Se. II-A) into two

parts - odd-numbered hannels (training data) and even-numbered hannels

(test data). The mean spike waveforms and Cartesian eletrode oordinates of

the odd-numbered hannels, S0 and X0 respetively, were used for estimating

the transformation matrix aording to Eq. 4. This orresponds to a train-

ing period during whih the position of the eletrode is known. The resulting

transformation matrix was then used to estimate the eletrode positions of the

even number hannels X by projeting the orresponding mean waveforms S

onto the basis that was used to estimate the transformation matrix aording

to Eq. 5.

To examine the sensitivity of positioning to the hoie of basis waveforms

and the number of basis waveforms (number of feature spae dimensions), we

performed the above proedure using the optimal basis and the random basis

(Se. II-B) while suessively inreasing the number of dimensions and alu-

lating the estimation error. The estimation error for eah ase was taken as

the mean distane between true and estimated positions aross all sites for that

ase.

3 Results

3.1 Comparison of Movement Paths

Fig. 2 shows the path measure d that haraterizes the eletrode movements

and the movements of the spike-features of mean waveforms in the feature

spaes spanned by the three di�erent bases desribed in Se. II-B. In all feature

spaes, the path measure was similar to that of the eletrode path, indiating

that eletrode movements gave rise to similar spike movements in feature spae.

This was evident even for the random basis.

Inreasing the length of the time spent in eah position (T in Fig. 1 (d)),

and thus inreasing the number of spike waveforms used for forming the mean
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(a) (b) ()

Figure 2: The path measure d for the eletrode movements and orresponding

movements of mean spike waveforms in the feature spaes spanned by three

di�erent sets of basis waveforms. (a) Linear path, (b) elliptial path, () P-

shaped path. The path measures in the feature spaes were in all ases similar

to those in the eletrode movement spae.

waveform in eah position, inreased the similarity between the path measures.

As expeted, the random basis required the largest number of waveforms to

reah the high similarity shown in Fig. 2. The �gure shows the ase where the

maximum amount of time is spent in eah hannel (T = 15 seonds).

3.2 Spike-Feature Based Estimation of Eletrode Position

Fig. 3 shows the mean estimation error (in m) as a funtion of the number

of feature spae dimensions used in the eletrode position estimation for the

optimal basis and one realization of a random basis. The inset illustrates the

true and estimated positions obtained using the 40-dimensional optimal basis.

The estimation error onverged at approximately 8 dimensions when us-

ing the optimal basis. For the random basis, this limit was dependent on the

realization, sometimes being lower than 8 and sometimes higher. In the ase

show in Fig. 3 the error onverged at approximately 22 dimensions to approx-

imately the same error as that obtained by using the optimal basis. For the

ase studied, the error onverged onto a value of approximately 1µm.

4 Conlusion

In this paper we have presented preliminary �ndings regarding the relationship

between physial movements of a reording eletrode in extraellular neural

reordings and the orresponding movement of spike-features in a feature spae

spanned by various basis waveforms. We have shown that there appears to be

a harateristi relationship between the movements in these two domains and
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Figure 3: Feature-spae based estimation of eletrode position during linear

movement. The mean positioning error generally onverged to a minimum

value for both the optimal basis (obtained through PCA of the entire set of

mean waveforms in training positions) and the random basis (obtained through

PCA of a random matrix). However, the random basis generally onverged at

a higher number of dimesion. The inset shows the true (red) and estimated

(blue) positions when using the 40-dimensional optimal basis. For the sake of

larity, the position of eah hannel is indiated by a spei� symbol.

that this relationship an be interpreted as a linear transformation between two

oordinate systems, not neessarily of equal dimensions. We have shown that,

for linear eletrode movements, this transformation an be aquired during a

training period and then applied to estimate eletrode position based on the

feature spae representation of spike waveforms. Due to the introdution of a

training proedure during eletrode insertion, no prior information about the

type of neuron is required. In our study, plaing the eletrode in the odd-

numbered loations orresponds to the training period.

Future work involves veri�ation of our �ndings by in vivo experiments, the

full implementation of a pratial framework for aquiring the oordinate trans-

formation during eletrode implantation and the utilization of the aquired

transformation for post-implantation assessment of eletrode movements. Fu-
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ture work also involves the utilization of this type of modeling for the purpose

of traking identi�ed units between reording sessions.

Although the present study only addresses eletrode positioning along a

linear path, our results indiate that the estimation proedure is diretly ap-

pliable during three-dimensional eletrode movements. However, this has not

been on�rmed and thus requires further investigation.
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Computationally e�ient simulation of

extraellular reordings with

multieletrode arrays

Abstrat

In this paper we present a novel, omputationally and memory e�ient way of model-

ing the spatial dependeny of measured spike waveforms in extraellular reordings of

neuronal ativity. We use ompartment models to simulate ation potentials in neu-

rons and then apply linear soure approximation to alulate the resulting extraellu-

lar spike waveform on a three dimensional grid of measurement points surrounding the

neurons. We then apply traditional ompression tehniques and polynomial �tting

to obtain a ompat mathematial desription of the spatial dependeny of the spike

waveform. We show how the ompressed models an be used to e�iently alulate

the spike waveform from a neuron in a large set of measurement points simultaneously

and how the same proedure an be inversed to alulate the spike waveforms from

a large set of neurons at a single eletrode position. The ompressed models have

been implemented into an objet oriented simulation tool that allows the simulation

of multieletrode reordings that apture the variations in spike waveforms that are

expeted to arise between the di�erent reording hannels. The omputational sim-

pliity of our approah allows the simulation of a multi-hannel reording of signals

from large populations of neurons while simulating the ativity of every neuron with

a high level of detail. We have validated our ompressed models against the original

data obtained from the ompartment models and we have shown, by example, how

the simulation approah presented here an be used to quantify the performane in

spike sorting as a funtion of eletrode position.

Based on: P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson:

�Computationally e�ient simulation of extraellular reordings with multieletrode

arrays�, Journal of neurosiene methods, vol. 211, pp. 133 � 144, 2012.
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1 Introdution

Reently, there has been great interest in the development of brain mahine

interfaes (BMIs) with the aim to ontrol prostheti devies, ondut basi

researh on the entral nervous system (CNS) and to treat the symptoms of

neurologial disease. One way of performing signal aquisition in BMIs is to

use hronially implanted miroeletrode arrays [1℄ to measure the variation

in extraellular potential resulting from disharges of ation potentials in near

by neurons. The extraellular representation of the ation potential is usually

referred to as a spike. Deteting spikes [2℄ in the extraellular signal and as-

signing them to their neurons of origin thus provides information about the

ativity patterns of individual neurons. The assignment part of that proe-

dure is usually referred to as spike sorting [3℄. Sine the performane in these

proessing steps is what determines the quality of the extrated information,

the algorithms used for spike detetion and spike sorting play a ruial role

for the funtion of BMIs. Apart from the purely funtional aspet, they are

also important in the ontext of ompressing the information ontained in the

neural signal for e.g. wireless transmission and/or memory-e�ient storage for

o�-line analysis.

The development of algorithms for information extration is an important

aspet of BMI development. During design and evaluation of suh algorithms,

test signals are needed with a priori known information ontent, in whih the

spike times of eah individual neuron in the reording are known and an be

ompared with the output of the algorithms. In addition to having a priori

known harateristis, the test signals need to have realisti signal proper-

ties and these properties need to be ontrollable to some extent. Realism is

important for the future appliability of the results and ontrollability is im-

portant sine it allows the algorithm designer to perform studies of algorithm

performane in a wide range of senarios that might be enountered in future

appliations.

The approahes to obtaining adequate test signals an be roughly divided

into three ategories, (1) simultaneous intra- and extraellular reordings, (2)

purely syntheti reordings and (3) hybrid reordings. In simultaneous intra-

and extraellular reordings, the intraellular membrane potentials of the ells

of interest are measured diretly and sine the signal-to-noise ratio in these is

normally high, they an be used as ground truth when assessing the perfor-

mane in spike detetion and sorting applied to the extraellular signal [4, 5℄.

This lass of test signals provides a high level of realism � the signals in ques-

tion being real. However, they lak in some pratial aspets sine keeping

trak of all true neuronal ativity is di�ult or even impossible in many ases.

Besides these pratial problems, ontrollability of the reording properties is
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limited. Despite these downsides, simultaneous intra- and extraellular reord-

ings ould serve as ultimate benhmark signals in later steps of the algorithm

design proess.

Purely syntheti reordings are based on mathematial models of the signal

generation proess. The mathematial models an in turn be divided into

two subategories, (1) models based on ompartment models of the neurons

and (2) models based on �xed spike templates. Compartment models rely

on more or less detailed models of the mehanisms involved in produing the

ation potential aross the ell membrane and of the resulting signal measured

outside the ell [6, 7, 8℄. The extraellular signal is alulated by onsidering

the voltage ontribution of eah point on eah ontributing neuron at eah

given time instane. The amount of details aptured by suh models thus leads

to high omputational demand, whih makes them unpratial when modeling

large populations of neurons. However, they are realisti in the sense that

they do apture the variations in the spike waveform's shape that arise when

plaing the reording eletrode in di�erent measurement points [7℄. This feature

is of great importane when modeling reording setups with multiple and/or

positionally unstable reording eletrodes, both of whih are important fators

to onsider during development of algorithms for spike detetion and spike

sorting in realisti senarios.

Models based on �xed spike templates assume that the extraellular spike

waveformmeasured from a given ell an be seleted from a library of spike tem-

plates and then saled aording to the ells distane from the eletrode [9, 10℄.

Apart from the amplitude saling, template based models do not apture any

spatial variations in the shape of measured spike waveforms. Therefore, despite

their omputational simpliity, they are not suitable for simulating reordings

with multiple and/or positionally eletrodes. A possible solution to this limi-

tation is to �rst employ a ompartment model to alulate spike waveforms on

a three dimensional grid of measurement points surrounding the neuron and

then to interpolate the resulting waveforms to obtain waveforms in measure-

ment points not lying on the simulation grid [11℄. Despite the inreased level of

realism introdued with this approah, it requires extensive waveform interpo-

lation and may therefore not be suitable for simulating very large populations

of neurons.

In hybrid reordings, syntheti spike trains are overlaid on real reordings

of bakground noise [12℄. They are thus advantageous in the sense that they

have highly realisti signal properties, but lak in ontrollability for the same

reasons as simultaneous intra- and extraellular reordings.

Considering the above, there is an obvious trade-o� between realism and

omputational omplexity when seleting among the available modeling ap-

proahes. Despite the ever inreasing availability of omputational resoures
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that indeed ontributes to minimizing the impat of this trade-o�, we reason

that omputational e�ieny should be striven for. General availability to fast

and simple ways of modeling omplex reording senarios would be of great

value to researhers during the development of algorithms for signal proess-

ing. The possibility of quikly generating test data to math a spei� reording

setup would speed up the development phase and save valuable time.

In this paper, we present a novel, omputationally and memory e�ient

approah to generating test signals that ombines the detail of ompartment

models with the omputational simpliity of template based models. To ahieve

this ombination, we applied traditional dimensionality redution tehniques

and polynomial �tting to ompress the desription of the spatial dependeny

in spike waveforms provided by ompartment models. We used the NEURON

simulation environment [13℄ to simulate an ation potential in a ompartment

model of a CA1 pyramidal neuron originally modeled in [14℄ and used in [7℄

and omputed the extraellular spike waveforms on a three dimensional grid of

measurement points using the line soure approximation (LSA) [15℄. We then

performed singular value deomposition (SVD) on the matrix ontaining the

alulated spike waveforms and thereby obtained a set of basis waveforms de-

sribing the original spike matrix and their respetive ontributions to eah of

the original waveforms. Sine most of the information desribing the waveforms

is ontained in the �rst few (six) [16, 17℄ omponents of this deomposition, we

ahieved dimensionality redution (ompression) by disarding all other om-

ponents. The result of this was a trivariate �eld of six dimensional vetors,

whose elements desribed the basis waveform weights as funtions of the mea-

surement point oordinates relative to the neuron in question. To obtain a om-

pat desription of the spatial dependeny of the basis waveform weights, we

individually �t the elements of the weight vetor �eld to polynomial funtions

of the measurement point oordinates. The modeling proedure was arried

out for four di�erent neuronal ompartment models (ases A to D in [7℄) and

the parameters of the ompressed models were optimized for eah neuron to

provide a good math between the spike waveforms provided by the NEURON

simulations and our ompressed models. The models were implemented into an

objet oriented simulation tool, written in Matlab, that failitates fast and real-

isti simulations of multieletrode reordings with arbitrary geometries. Model

validation was performed by omparing spikes from the original NEURON sim-

ulations with spikes generated by our models in terms of shape and amplitude,

as well as by examination of syntheti signals in terms of noise properties.

The appliability of our approah was evaluated in an example appliation by

estimating the performane in spike sorting as a funtion of eletrode position.
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2 Methods

2.1 Neuron models

Figure 1: An illustration of the proedure of modeling the spatial dependeny

of the measured spike waveform for one of the neurons onsidered (neuron 1).

(A) The CA1 pyramidal neuron model adopted from [7℄ was used to alulate

extraellular spike waveforms in measurement points surrounding the neuron.

(B) Spikes within an ellipsoid (overlaid ellipsoid) entered in the origin (ell

soma) were used to derive the model. The ellipsoid was taken as the largest

insribed ellipsoid into the volume where spike amplitudes (maximum absolute

amplitude) were at least Amin (typially around 20 µV . The spike waveforms

are olor oded aording to their maximum amplitude (blue and red indiate

low and high maximum amplitude respetively). (Note that for the sake of

larity, not all initial waveforms are shown here.) (C) Spikes with amplitudes

below Amin (measured in points outside the model ellipsoid in (B)) were used

to model the amplitude attenuation as a funtion of distane from the model

ellipsoid along a line of sight from the measurement point to origin. (Continued

on page 177)

Figure 1 illustrates the proedure we followed to derive the ompressed

neuron models. We used the CA1 pyramidal neuron ompartment models

employed in [7℄ as a starting point for obtaining spike waveforms on a three di-

mensional grid of measurement points around the neuron. An ation potential

was simulated in the model neuron with four di�erent ioni hannel densities

(referred to as ases A to D in [7℄, referred to here as neuron 1 to neuron

4 ) and the extraellular spike waveform was alulated in measurement points

on a three dimensional grid surrounding the neuron using the line soure ap-

proximation (LSA) [15℄. The measurement points were distributed within a

volume of 140 × 140 × 140 µm and the spaing between the points was var-

ied between 5 and 20 µm in eah dimension (x, y, z). Close to the ell soma
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Figure 1: An illustration of the proedure of modeling the spatial dependeny

of the measured spike waveform for neuron 1 (ontinued from page 176). (D)

Singular value deomposition was used to �nd an orthonormal set of basis wave-

forms un and their weights w0n desribing spikes within the model ellipsoid.

(E) The weight distributions were then individually �t to trivariate polynomial

funtions of measurement point oordinates, wn(x, y, z).

({x, y, z} ≤ {60}µm), the spaing was 5 µm and further away, it was sues-

sively inreased to 10 µm and 20 µm. This resulted in a total of 42.875 initial

measurement points.

To verify that this measurement point density was su�ient, we alulated

the orrelation oe�ients between spike waveforms in all pairs of measurement

points within a distane of 60 µm from the origin and then alulated the mean

and standard deviation of the orrelation oe�ient as a funtion of distane

between measurement points. The mean minus one standard deviation was

above 0.99 for all neurons at a measurement point distane of 5 µm. At a

measurement point distane of 20 µm, the mean minus one standard devia-

tion of orrelation oe�ients was above 0.97. This indiates that the hosen

measurement point densities were adequate to apture the spatial variation in

spike waveforms.

The �rst step in the modeling proedure for eah of the neurons was to �nd

a volume within whih the model would be derived. For points outside that

volume, amplitude saling was applied (disussed later in this setion). The

volume was taken as an ellipsoid, onentri with the ell soma, insribed into

the volume bounded by the measurement points in whih the spike amplitude
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exeeded a ase-spei� value of Amin. Spike amplitude was de�ned as the

maximum absolute amplitude of the spike waveform. Finding the optimal

value of Amin was part of a model seletion proedure that is disussed later in

this setion. Having identi�ed the model ellipsoid, spikes within the ellipsoid

were arranged into olumns of the spike matrix S0. S0 was then deomposed

using singular value deomposition (SVD) aording to

S0 = UΣV
T = UW0 (1)

where the olumns of the matrix U ontain an ordered set of orthonormal basis

waveforms desribing the original spike matrix S0 and the olumns of the matrix

produt ΣV
T = W0 ontain the ontributions (weights) of eah of the basis

waveforms in onstruting the original set of spike waveforms in S0. Sine most

of the spike waveform variation is desribed by the �rst few basis waveforms,

we disarded all but the �rst six omponents of the deomposition to ahieve a

dimensionality redution [16, 17℄. In order to assure that no information about

spike waveform variability was lost by disarding the other omponents, we

alulated the amount of total variane desribed by the �rst six omponents

as

p6 =

∑6
n=1 σ

2
n

∑N
n=1 σ

2
n

(2)

where σn is the n-th singular value. This ratio was larger than 0.99 in all ases,

indiating that the �rst six omponents adequately desribed the waveform

variability.

We now modeled the weight of the n-th basis waveform as a trivariate poly-

nomial funtion of the measurement point oordinates (x, y, z) in a oordinate

system with origin in enter of the ell soma, i.e.

wn(x, y, z) =
∑

i

cinx
ei,1yei,2zei,3

(3)

where cin is the i-th polynomial oe�ient and e is a matrix whose i-th row

ontains the i-th ombination of x, y and z exponents inluded in the model.

For instane, if the i-th polynomial term is cix
3y2, the orresponding row in

the exponent matrix e is [3 2 0]. The exponent matrix was onstruted

by assuming maximum orders of pure terms (inluding only one of the three

oordinates) and mixed terms (inluding more than one of the three oordi-

nates). These orders were referred to as Npure and Nmixed and together with

the minimum spike amplitude Amin, they determined the model properties

and were seleted to provide a good math between original and modeled spike

waveforms (disussed later in the urrent setion).
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The polynomial �tting was performed by solving the equation system

(AD)C = W0
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(4)

where L is the number of measurement points used in the �tting, I is the total

number of polynomial terms in the �tted model, A is the multivariate Vander-

monde matrix, D is an I×I diagonal matrix whose i-th diagonal element is the

reiproal of the Eulidean norm of the i-th olumn of A, C is the oe�ient

matrix to be estimated (cip is the estimated polynomial oe�ient of the i-th
term for the p-th basis waveform) and W0 is the original weight matrix (wlp is

the weight of the p-th basis waveform in the l-th measurement point). The pur-

pose of the matrix D was to sale the olumns of the Vandermonde matrix to

improve the onditioning of the problem. The number of measurement points

was in all ases larger than the number of polynomial terms (i.e. L > I). The
equation system was thus overdetermined and solving it yielded a least-squares

solution.

For measurement points outside the model ellipsoid (in the far-�eld of the

neuron) we assumed the measured spike waveform to be an attenuated version

of the spike waveform measured in the point of intersetion between the model

ellipsoid and the line of sight from the measurement point to the origin. We

assumed the attenuation g to be a power-law funtion of the distane r between
the measurement point and the point of intersetion, i.e.

g(r) =
1

(1 + afarr)bfar
. (5)

The oe�ients afar and bfar were estimated by �tting the amplitudes of spikes

with amplitudes below Amin to a power-law funtion of their orresponding

measurement point distanes (along the line of sight to origin) to the model

ellipsoid. The power-law was estimated assuming the distane r to be in mi-

rometers. Thus, the unit of the oe�ient afar is [µm−1]. The form of the

power-law was hosen to provide an attenuation of 1 at a distane of 0 from the
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model ellipsoid. This way of modeling the spike waveforms in the far-�eld as-

sured a ontinuous variation in the spike waveform when moving the eletrode

out of the model ellipsoid and between points outside the model ellipsoid.

As mentioned before, eah neuron model was haraterized by three pa-

rameters � Amin, Npure and Nmixed. For eah of the neurons, we performed

the modeling proedure for all ombinations of model parameters in the ranges

Amin ∈ [16, 26]µV (steps of 2 µV ), Npure ∈ [10, 24] (steps of 1) and Nmixed ∈
[2, 8] (steps of 2), resulting in a total of 360 models per neuron. The spike

waveforms alulated by eah of the models were ompared with those ob-

tained from the original NEURON simulations and a sore was assigned to

eah model based on how the waveforms mathed in terms of shape and ampli-

tudes. To lower the omputational demand during the omparison, we seleted

two random sets of measurement points to use in the omparison � 20% of the

entire set of points within the near �eld (NF, inside the model ellipsoid) and

20 % of the entire set of points in the far �eld (FF). The following metris were

alulated to obtain the model sores:

• eNF1
= 1−mean(orrel. oe�s. between spikes in NF)

• eNF2
= std(orrel. oe�s. between spikes in NF)

• eNF3
= mean(abs. di�. between spike amplitudes in NF)

• eNF4
= std(abs. di�. between spike amplitudes in NF)

• eFF1
= mean(abs. di�. between spike amplitudes in FF)

• eFF2
= std(abs. di�. between spike amplitudes in FF)

The metris were normalized to range from 0 to 1, 0 indiating the losest

math and 1 the worst math. Based on the normalized metris, the following

model sores were then de�ned (̂· denotes the normalized metris):

• Near �eld sore:

sNF =
√

ê2NF1
+ ê2NF2

+ ê2NF3
+ ê2NF4

(6)

• Far �eld sore:

sFF =
√

ê2FF1
+ ê2FF2

(7)

• Total sore:

stot =
√

s2NF + s2FF (8)
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We wanted to selet a model that, apart from minimizing the total sore stot,
also minimized the di�erene between the near and far �eld sores. Thus, we

seleted the model that minimized the funtion

E =
√

∆2
s + ŝ2tot (9)

where ∆s is the normalized (0 to 1) absolute di�erene between near- and

far-�eld sores and ŝtot is the normalized (0 to 1) total sore. This proedure

onsistently resulted in the automati seletion of a model that provided a high

overall math with the original data while simultaneously performing well in

both the near- and far-�eld.

Having seleted the best model for a spei� neuron, the model desription

was saved for implementation into the simulation algorithm. The main param-

eters inluded in the model were the basis waveforms (sampled at 25 kHz),

the matrix produt DC, the exponent matrix e, the axial radii of the model

ellipsoid and the oe�ients of the far-�eld attenuation power-law. The model

parameters Amin, Npure, Nmixed were also inluded for desriptive purposes.

The model �les were typially around 40kB of size whih is three orders of

magnitude smaller than the original spike matrix obtained from the NEURON

simulations that were typially around 31MB.

The stored model parameters ould now be used to e�iently alulate

spike waveforms from neurons in a large set of arbitrary measurement points.

Using the same proedure, we ould also alulate the spike waveforms from a

large set of neurons sharing the same neuron model in a single measurement

point. Figure 2 illustrates this proedure. Assuming that we have a single

eletrode plaed in (xe, ye, ze) andN neurons where the n-th neuron is plaed in
(xn, yn, zn), the waveforms from the neurons an be alulated in the following

way:

Step 1: Calulate the relative positions of the eletrode

For every neuron plaed in (xn, yn, zn), alulate the position of the ele-

trode relative to that neuron, i.e.

(x′

n, y
′

n, z
′

n) = (xe, ye, ze)− (xn, yn, zn). (10)

The problem is now that of alulating the spike waveform from a sin-

gle neuron in N separate measurement points where the n-th point is

(x′

n, y
′

n, z
′

n).

Step 2: Construt Vandermonde and attenuation matries

For every (relative) measurement point, (x′

n, y
′

n, z
′

n), hek if the point is
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Figure 2: An illustration of how the derived models an be used to alulate the

extraellular spike waveforms from two neurons measured with a single ele-

trode. In the original oordinate system, the eletrode is loated in (xe, ye, ze)
and the neurons are loated in (x1, y1, z1) and (x2, y2, z2) respetively. As-

suming that the neurons are of the same type (share the same neuron model),

the �rst step is to alulate the positions of the eletrode relative to the two

neurons, (x′

n, y
′

n, z
′

n). Relative measurement points inside the model domain of

the neuron (yellow ellipsoid) are left unhanged (x′

1, y
′

1, z
′

1) and measurement

points outside the model domain are replaed with the point of intersetion

between the model ellipsoid and a line of sight to origin. In the �rst ase, the

attenuation is set to 1 (element (1,1) in the attenuation matrix G) and in the

seond ase it is set to 1/(1 + afarrpe)
bfar

where afar and bfar are estimated

model oe�ients and rpe is the distane of the relative measurement point

from the model ellipsoid along the line of sight to origin before it was replaed

with the intersetion point. The Vandermonde matrix is onstruted using the

exponent matrix e (obtained from the neuron model) and relative measurement

points and �nally the matrix S ontaining the spike waveforms in its olumns

is alulated with a simple matrix multipliation. The basis waveform matrix

U and model oe�ient matrix DC are parts of the derived model.

inside or outside the model ellipsoid by evaluating the quantity

rcheck =
x′2
n

r2ex
+

y′2n
r2ey

+
z′2n
r2ez

(11)
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where re
·

is the radius of the model ellipsoid along the ·-axis. If rcheck is

larger than 1, the point is outside the model ellipsoid and is thus replaed

with the point of intersetion between the line of sight to origin and the

model ellipsoid. If rcheck is smaller than or equal to 1, the point is inside

the model ellipsoid and is left unhanged. If the point is outside the model

ellipsoid, the n-th diagonal element of the N × N diagonal attenuation

matrix G is set to 1/(1 + afarrpe)
bfar

where rpe is the distane of the

point to the ellipsoid along the line of sight to origin. If the point is inside

the model ellipsoid, the attenuation value is set to 1. After performing

the above hek and replaing/keeping the relative measurement point

oordinates, the l-th element of the n-th row of the Vandermonde matrix

A is set to x
′el,1
n y

′el,2
n z

′el,3
n .

Step 3: Calulate the spike matrix

The spike matrix S whose n-th olumn ontains the modeled spike wave-

form from the n-th neuron an now be alulated as

S = U(ADC)TG. (12)

Note that the above proedure assumes that all neurons share the same

neuron model. If the volume to be simulated ontains several types of neurons,

the entire population of neurons an be divided into subpopulations aording

to type and the subpopulations an then be treated individually aording to

the above proedure.

2.2 Firing Models

Three models were implemented for generating spike times � gamma distributed

inter spike intervals, bursting and orrelated spike trains. In the urrent imple-

mentation, eah neuronal population is assumed to have the same basi �ring

model, although the model parameters are set individually for eah neuron.

For instane, a population of neurons an have gamma distributed inter spike

intervals, but eah neuron in the population has an individual mean �ring

rate. For bursting neurons, inter-burst-intervals were assumed to be gamma

distributed and the number of spikes within a burst was assumed to follow a

Poisson distribution [18℄. Changes in the spike waveform during a bursting

period were not aounted for. We inluded the methods in [19℄ to generate

orrelated spike trains. Having used �ring models to generate spike times for

every neuron in the simulation volume, the measured signal at eah reording

hannel was assembled by adding the alulated spike waveforms from eah

neuron at that hannel at the spike times of that neuron in the same manner

as desribed in [9℄.
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2.3 Noise Models

We assumed noise to onsist of two omponents, namely the spiking ativity of

distant neurons and thermal noise aused by random harge movements. This

is a ommon way of modeling noise in extraellular reordings [10, 9, 20℄. The

thermal noise amplitude depends on reording bandwidth, temperature and

input resistane of the reording eletrode [21, 20℄ and we assumed it to be

zero-mean normally distributed with a standard deviation determined by these

parameters. We used the results presented in [20℄ to derive a quantitative

model for setting the standard deviation. We approximated an extrapolation

of the resistive part of the eletrode impedane for an eletrode size of 177 µm2

to inlude frequenies from 100 Hz to 50 kHz and obtained an estimation of

the power spetral density,

P (f) = 2kTR(f) (13)

where k is the Boltzmann onstant, T is temperature in Kelvin (set to 37

◦
C)

and R(f) is the resistane as a funtion of frequeny, f . The standard deviation
of the thermal noise, σNth

, was then obtained as a funtion of reording band-

width by taking the square root of the integral of the power spetral density

over the reording bandwidth,

σNth
(fB) =

√

∫ fB

0

P (f)df (14)

where fb is the reording bandwidth. A general desription of this relationship

was obtained by �tting σNth
to a power-law funtion of log(f),

σNth
(fB) = at log(fB)

bt . (15)

Physiologial bakground noise was assumed to ome from the spiking a-

tivity of distant neurons. To be able to make a distintion between the noise

omponent of the signal and the spiking ativity, we assumed the noise on-

tributing neurons to be loated at a minimum distane of ri from the eletrode

(or origin) and we assumed them to have random mean �ring rates seleted

from a uniform distribution between 1 and fu spikes/seond. The minimum

distane ri and the upper level of �ring rates were then used to set the bak-

ground noise level (see Setion 2.5). Due to the omputational e�ieny of the

methods desribed in Setion 2.1, we were able to generate the bakground noise

using the relative positions of the noise ontributing neurons, thus employing

the entire variability in spike waveforms desribed by the neuron models in the

noise generation proess also. Thus, although we make a distintion between
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noise- and signal ontributing neurons from the perspetive of the reorded

signal, the two ategories of neurons were treated in exatly the same way in

the simulation proess. We did, however, inlude the possibility of not storing

the true spike times for neurons far away from all reording eletrodes, thus

further dereasing the memory requirements and simulation time (See setion

2.4).

2.4 Simulator Implementation

The simulator was implemented in Matlab using objet oriented programming.

We assumed the ore omponents of the simulation to be the neuronal popu-

lations ontributing to the signal, the array of eletrodes reording the signals

and a reorder that kept trak of ground truth data and reorded signals. This

abstrat struture was implemented with three objet models, one for eah of

these ore omponents. A brief desription of the properties of eah objet

model follows:

The neuron lass

An objet of the neuron lass ontains information about the properties

of a population of neurons that share the same model, both in terms of

the spatial dependeny of spike waveforms and �ring times. The infor-

mation ontained is the absolute oordinates of the neurons, the volume

density within the population, a desription of the volume ontaining the

population, the spike model assoiated with the population and the �ring

statistis and spike times for the individual neurons. The neuron lass

has methods to generate spike times for its neurons based on the dura-

tion of the reording and the individual neuronal �ring statistis. In order

to simulate a spei� reording setup where several types of neurons (in

terms of spike and/or �ring models) exist in spei� regions, one neuron

objet is onstruted for eah population within the volume.

The eletrode lass

An objet of the eletrode lass ontains the absolute oordinates of eah

eletrode site and the spike waveforms from every neuron in every pop-

ulation alulated at the position eah eletrode. The eletrode lass

ontains methods to alulate the spike waveforms and to assemble the

signal measured at eah eletrode site from the alulated spike wave-

forms and the spike times ontained by the neuron objets.

The reorder lass

An objet of the reorder lass ontains information about the struture of

the HDF5 simulation �le (see following paragraph) where the simulation
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data is stored and methods to interat with the simulation �le during

and after simulation. This interation inludes writing the information

ontained in and generated by the neuron and eletrode objets to the

simulation �le as well fething the information one it is written to the

�le. The reorder lass also ontains several methods to visualize the

simulation results.

In order to minimize memory requirements, we employed the HDF5 (Hier-

arhial Data Format �le format [22℄ for data storage during simulation. The

HDF5 �le format is suitable for fast read and write aess for large and omplex

datasets and allows database-like queries to be made one the �le struture has

been de�ned. Figure 3 illustrates the HDF5 �le struture that we designed.

When a reorder objet is onstruted in write mode, it reates a new HDF5

�le for the reording that is to be simulated and then it provides read/write

aess to the simulation data as long as it exists. After simulation, a reorder

objet an be onstruted in read mode with the name of the simulation �le as

input, thus allowing quik post-simulation aess to all simulation data. The

reorder objet also allows for instane quik plotting of the syntheti signals,

true spike waveforms as measured at the individual reording hannels and the

3D geometry of the simulated volume.

2.5 Validation

The validity of our results was examined in terms of similarity between orig-

inal and model-generated spike waveforms and noise properties of simulated

reordings. The shapes of the spike waveforms were visually ompared within

the near-�eld (inside the model ellipsoid). Spike amplitude (maximum abso-

lute amplitude) was examined as a funtion of distane from origin (ell soma)

and by qualitative omparison of spike amplitude �elds around the neuron.

The amplitude �elds were visualized by plotting three-dimensional isosurfaes

around the neurons at spike amplitudes of 25, 50 and 100 µV . The spike am-

plitude distributions for the original data (NEURON generated spikes) were

estimated by seleting approximately half of the original measurement points

at random and alulating the mean and standard deviation of spike ampli-

tudes in measurement points within 10 µm wide distane bins from the origin.

For the spikes generated with our models, we used the same oordinates as for

the true spikes, but with a small random shift. The random shift was intro-

dued in order to make sure that the model aptured the overall appearane

of the amplitude distribution, even in measurement points that were o� the

original measurement point grid. In addition, evaluating the amplitude dis-

tribution in o�-grid measurement points would reveal any potential problems
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HDF5 file

Trial 1

Electrode Neurons

Array Type

Sampling Rate

Signals

Site Locations

Waveforms

Channel 1

Channel 2

...

Population 1

Population 2

...

Population 1

...

Population 2

...

Alive

Density

Firing Model

Neuron Locations

Neuron Model

Spike Times

Volume

Neuron 1

Neuron 2

...

Trial 2

...
...

Figure 3: An illustration of how simulation data is organized into HDF5 �les. In

order to lower memory requirements, all information is written to the HDF5 �le

as soon as it beomes available during simulation. Upon starting a simulation,

a new HDF5 �le is reated and a reorder objet that provides read/write

aess to it is onstruted. After the simulation is omplete, it an be loaded

in read-mode by alling the reorder objet onstrutor funtion with the �le

name as input. The funtions implemented in the reorder objet provide fast

aess to all simulation data in a database-query type of way.

with �over-�tting�. The spike amplitude isosurfaes were estimated in the same

way, i.e. using an equally large random set of measurement points and applying

a random shift for the model-generated spikes. Apart from these omparisons,

we also inluded the metris alulated during the model seletion proedure

(Setion 2.1) as validity measures.

Noise properties of simulated single hannel reordings were examined in

terms of sample histograms, normalized power spetral density and standard

deviation of noise. We assumed the noise properties to be mainly determined

by the radius of the �silent volume� around the reording eletrode and the

distribution of �ring rates among the neurons ontributing to the bakground

noise (see Setion 2.3). To estimate the noise properties as funtions of these

parameters, we set up a reording senario with a single eletrode plaed in the

origin and we then reated four populations of noise neurons (one population

of eah type of neuron) surrounding the eletrode. The noise neurons were

plaed at random positions within a hollow ylindrial volume entered along

the z-axis. The outer boundaries of the volume were de�ned by a ylinder with

a radius of 250 µm and z between -250 µm and 250 µm. The inner boundaries



188 PAPER VI

were de�ned by a ylinder with a variable radius ri ranging from 50 µm to

150 µm and z between -150 µm and 250 µm. Assuming a neuronal density

of 9.5× 106 neurons/m

3
[20℄, gamma distributed inter-spike intervals [9℄ and

a minimum �ring rate of 1 spike/seond, we synthesized 30 seond long noise

reordings while varying the minimum distane of noise ontribution neurons,

ri, and the upper limit of �ring rates, fu. ri and fu were varied between 50

and 150 µm and 5 and 80 spikes/seond respetively. The reordings were

synthesized at a sampling rate of 100 kHz, but were downsampled to 25 kHz

and then bandpass �ltered (300 Hz to 5 kHz). We then estimated the power

spetral density using Welh's method, the sample amplitude histogram and

the standard deviation of the resulting noise signal. Thermal noise was inluded

sine that was assumed to be an inevitable part of the reorded noise in a real

situation. Besides allowing us to ompare the noise properties of our simulator

with those of previously reported simulators, this analysis provided basi means

for ontrolling the noise properties by altering the parameters mentioned above.

2.6 Appliation Example: Spike Sorting Performane

The appliability of our work was evaluated by an example appliation in whih

we explored the e�ets of eletrode position on the performane in spike sorting.

Noise neurons were reated in the same manner as desribed in the previous

setion. The inner radius of the the hollow noise ylinder was set to ri = 150µm
and the upper limit of noise neuron �ring rates was set to 50 Hz. Four tar-

get neurons (one of eah type, ell 1 to 4) were plaed in (10, 20,−2) µm,

(−2, 18, 20) µm, (−20,−5, 10) µm and (16,−13, 15) µm respetively (Carte-

sian oordinates of ells 1 through 4, µm). All target neurons had gamma

distributed inter-spike intervals and random mean �ring rates between 1 and

10 Hz. Nineteen eletrodes were plaed along the z axis (x = y = 0) at positions
ranging from z = −30µm to z = 60µm (5 µm spaing) and a 60 seond long

reording was synthesized (a lose-up of the eletrodes and the target neurons

is shown in Figure 7 A).

Having obtained the HDF5 simulation �le, we used the interfae provided by

the reorder lass to extrat the spike waveforms for eah of the target neurons

at eah of the eletrode sites at the known spike times. We thus obtained

nineteen sets of extrated spike waveforms, eah orresponding to one eletrode

position. The spikes from eah position were then sorted separately and the

sorting auray was estimated. Prinipal omponent analysis (PCA) [3℄ was

used to extrat spike features and the �rst two prinipal omponent weights (PC

1 and PC 2) were used to perform sorting of the spikes using K-means lustering

[23℄. Sine we were only interested in omparing the performane in spike

sorting while varying the eletrode position, and not the absolute performane
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of the seleted spike sorting algorithm, we provided the true number of lusters

(4 ells) to the K-means algorithm as input. We only employed the �rst two

prinipal omponent weights in the lustering sine that allowed for a straight

forward visual interpretation of the spike sorting performane in terms of a two

dimensional illustration of the PCA feature spae representation of the spikes

(Figure 7 D).

Having obtained the sorting results for a given set of spikes (a given po-

sition), the spike sorting auray was estimated in terms of true and false

positive lassi�ation rates per ell (PTP and PFP respetively) and an overall

sorting auray (PID). The true positive lassi�ation rate (PTP ) for a given

ell in a given eletrode position was alulated as the ratio between the num-

ber of spikes orretly assigned to that ell and the total number of spikes truly

oming from that ell. False positive lassi�ation rate (PFP ) for a given ell

in a given eletrode position was alulated as the ratio between the number

of spikes wrongfully assigned to that ell and the total number of spikes truly

oming from any other ell. Overall spike sorting auray (PID) for a given

eletrode position was alulated as the ratio between the overall number of

orretly lassi�ed spikes and the total number of spikes.

3 Results and Disussion

3.1 Model Parameters

The estimated neuron model parameters are summarized in Table 1. The

minimum spike amplitude (Amin) inluded ranged from 18 to 24 µV , and the

maximum degree of pure and mixed polynomial terms was 10 to 24 and 6 to 8

respetively. The model domain ellipsoid had a radius of approximately 45 to

65 µm in the x−y plane and 104 to 142 along the z axis. A maximum distane

of 50 µm between a neuron and the eletrode is assumed for the neuron's spikes

to be distinguishable from the bakground noise [1℄. The model ellipsoids of

all neurons approximately over that range. For neuron 4, the x-axial radius is
below 50 µm, whih is explained by the smaller (in the x− y diretions) spike

amplitude �eld for neuron 4 (see Figure 5 B), whih in e�et would lower the

50 µm distane threshold mentioned before.

The estimated power law desribing the standard deviation of thermal noise

as a funtion of reording bandwidth is shown in Figure 4. The parameters of

the �tted power law aording to Equation 15 where at = 0.36 and bt = 2.25.
The oe�ient of determination between the standard deviations adopted from

[20℄ and the �tted power-law was R2 = 0.98, indiating a good math.
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Table 1: A summary of derived model parameters. Amin is the spike amplitude

threshold applied to determine the model ellipsoid volume. Npure and Nmixed

are the maximum orders of pure and mixed polynomial terms respetively and

I is the resulting number of polynomial terms. (rx, ry, rz) are the axial radii

of the model ellipsoid and afar and bfar are the oe�ients of the amplitude

deay power-law in the far �eld aording to Equation 5.

Neuron Amin Npure Nmixed I (rx, ry, rz) (afar, bfar)
(µV ) (µm) (µm−1

, unitless)

1 24 10 8 735 (53,58,104) (6.8E-3,4.2)

2 18 16 8 753 (62,64,106) (5.6E-3,4.3)

3 18 13 8 744 (65,78,142) (7.4E-3,3.4)

4 22 24 6 397 (45,63,108) (5.7E-3,4.1)
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Figure 4: The standard deviation of thermal noise, σNth
at a temperature of

37

◦
C �tted to a power law funtion (R2 = 0.98) of the logarithm of reording

bandwidth fB for an eletrode of 177 µm2
extrapolated from [20℄.

3.2 Validation

Spike Waveforms and Amplitude

All four models provided a good math in terms of spike waveforms and spike

amplitudes when ompared to the original data. Figure 5 A shows the true spike

waveforms (blak) and spike waveforms alulated by the neuron models (red

dots) in an example set of measurement points. By visual inspetion of these

waveforms, we see that the models produe essentially idential waveforms

to those generated by the original NEURON simulations. Mean orrelation

between true and modeled spike waveforms in the near �eld was larger than
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Figure 5: Validation of neuron models in terms of spike waveforms and spike

amplitude. (A) Spike waveforms obtained with NEURON in an example set of

measurement points (blak) and spike waveforms alulated in those points by

our models (red dots). (B) Spike amplitude �elds displayed as spike amplitude

isosurfaes at 25, 50 and 100 µV (blue, red and green respetively). (C) Spike

amplitude (mean and standard deviation) as a funtion of distane from the

origin (ell soma). The mean and standard deviation are taken aross all spikes

within 10 µm wide distane bins.

0.99 (standard deviation < 0.02) for all neurons (metris eNF1
and eNF2

).

Mean amplitude deviation in the near �eld was below 2 µV (standard deviation

< 5µV ) for all neurons (metris eNF3
and eNF4

). Mean amplitude deviation

in the far �eld was below 0.4 µV (standard deviation < 2.1µV ) for all neurons
(metris eFF1

and eFF2
).

Figure 5 B shows the spike amplitude isosurfaes (25, 50 and 100 µV ) for
NEURON generated spikes and spikes generated by the ompressed models.

In all four ases, the ompressed models apture the major features of the

amplitude �elds at all three amplitudes examined. This also applies to most

�non-regular� features, suh as the surfae irregularities at the top of the 25
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µV surfae for neuron 4 and the following of the 50 µV surfae along the axon

for neuron 4.

Figure 5 C shows the mean and standard deviation of spike amplitudes as

a funtion of distane from the origin (ell soma) within 10 µm wide distane

bins. Also here, there is no notieable di�erene between the original spike

amplitudes and those produed by our models. In all ases, the models apture

most of the loal variations in spike amplitudes (for instane at loal derease in

standard deviation of spike amplitudes at 90 to 100 µm for neuron 3). These

loal variations are aused by the non-uniform struture of the neuron, i.e.

some points far away from the soma are in fat very lose to other parts of the

neuron.

Noise Properties

Figure 6 shows the noise level (σN ), power spetral density (PSD) and sample

histogram as funtions of the upper limit of noise neuron �ring rates, fu, and
minimum distane of noise ontributing neurons, ri. The �gure shows that by
varying those parameters we an ontrol the amplitude and spetral properties

of the reording noise. The �gure also shows that we an obtain a good math

with previously reported spetral properties and sample histograms [24, 10℄.

Inreasing the maximum �ring rate of noise neurons and dereasing the

minimum distane to them inreased the noise level and onentrated the noise

towards the lower part of the spetrum, in whih most of the spike energy is

ontained.

At large distanes to the noise neurons (rightmost olumn in Figure 6),

the hange in noise neuron �ring rate had less impat on the noise amplitude

than at small distanes (leftmost olumn in Figure 6). This observation an be

interpreted in terms of how the varianes of the ontributions of individual noise

neurons are in�uened by their respetive �ring rates and distanes from the

reording eletrode. In order to simplify this interpretation, we assume that the

noise ontributing neurons are statistially independent and that the variane

of the spike train from a given neuron is approximately linearly dependent on

the neuron's �ring rate. Then, at a given distane, a linear inrease in �ring

rate will ause a linear inrease in variane. Sine spike amplitude dereases

with distane as a power law, this linear inrease in variane with an inrease

in �ring rate will be larger as the distane beomes smaller.

Thus, if the variane of the spike train from the n-th neuron σ2
n relates to

the neuron's �ring rate fn and the neuron's distane from the eletrode rn as

a power law funtion of the distane, saled with the �ring rate, or

σ2
n ∼ fn

rmn
(16)
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wherem is the amplitude power law oe�ient, the variane of the total reord-

ing (sum of all N spike train varianes due to the statistial independene

assumption) relates to the properties of the individual neurons as

σ2
N ∼

N
∑

n=1

fn
rmn

. (17)

Therefore, an overall inrease in the �ring rate of noise neurons makes the

standard deviation of noise (the square root of the variane) more sensitive to

an overall derease in the distane to noise neurons.

Appliation Example: Spike Sorting Performane

Figure 7 A shows the example reording senario onsidered in our appliation

example. The reorded signal at four example loations (z = −20µm, z =
10µm, z = 30µm and z = 50µm) is shown in Figure 7 B along with extrated

spike waveforms (mean waveforms ± standard deviation) for eah of the four

neurons at eah of the four example loations. Figure 7 C shows the true and

false positive lassi�ation rates (PTP and PFP for the individual neurons as

well as the overall lassi�ation performane (PID and 1 − PID) as funtions

of the eletrode position (z). Finally, Figure 7 D shows the PCA feature spae

development (�rst two PC weights) for the extrated spikes at ten example

positions.

As expeted, spike sorting performane varied signi�antly with the ele-

trode position, both in terms of overall performane (PID) and for individual

neurons (PTP and PID). Overall performane (PID) was maximal at z = 30µm,

whih also appeared to generally provide the best performane with regard to

individual neurons.

The example loations in Figure 7 A were seleted to demonstrate the vary-

ing similarity between the spikes oming from di�erent neurons, depending on

the eletrode position. At z = −20µm, the true positive lassi�ation rates

(PTP ) were low for neurons 1 and 2 in omparison to neurons 3 and 4. At the

same position, the false positive lassi�ation rates (PFP ) for neurons 1 and

2 were high. Also, the true and false positive lassi�ation rates for neuron 4

were almost maximal and minimal, respetively, and for neuron 3, essentially

the same applied. At z = 30µm, all neurons had similar true and false positive

lassi�ation rates, those being high and low respetively. At z = 50µm how-

ever, the performane was low for neurons 1 and 3, but high for neurons 2 and

4.

This varying performane an be explained both in terms of the varying sim-

ilarity between spike waveforms (Figure 7 B, right part) and how the PCA lus-

ters develop as the eletrode position is altered (Figure 7 D). At z = −20µm,
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Figure 6: The reording noise properties as funtions of the minimum distane

of noise ontributing neurons, ri, and the upper limit of their �ring rates, fu.
The individual �ring rates of the neurons were seleted from uniform distribu-

tions between 1 and fu spikes/seond. The red solid line show the normalized

power spetral density (PSD) of the noise, the blak broken line shows the

sample histogram and the text inset shows the values of ri and fu for eah ase

as well as the obtained standard deviation of the noise, σN for eah ase. The

bakground olor indiates the standard deviation of the noise.

the spike waveforms from neurons 1 and 2 were very similar and those from neu-

ron 3 were somewhat similar to those from neurons 1 and 2. However, spikes

from neuron 4 had a distintive shape when ompared to all other neurons.
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This is learly seen in the PCA feature spae where lusters 1 and 2 overlap

heavily, luster 3 is lose to, but not overlapping lusters 1 and 2, and luster

4 is well isolated from all other lusters.

At z = 30µm, all waveforms had distintive harateristis, whih was also

re�eted in the PCA feature spae, where all lusters were well isolated. At

z > 30µm, spikes from neurons 1 and 3 beame more and more similar, whih

was seen in the PCA feature spae as a gradually inreased overlap between

lusters 1 and 3.

Figure 7: A demonstration of how our modeling and simulation an be used

to evaluate spike sorting performane as a funtion of eletrode position. (A)

Nineteen eletrodes (brown olored spheres along the enter of the �gure) were

plaed along the z axis (x = y = 0), eah representing one eletrode position

to be evaluated. The eletrodes were plaed at z = −30µm to z = 60µm
with a spaing of 5 µm. Four target neurons (neurons 1 to 4, green, light-

blue, blue and purple ellipsoids) were plaed lose to the array of eletrodes

and noise neurons (gray ellipsoids) were plaed far away. The size of the neu-

rons orresponds approximately to the size of the ell soma in the NEURON

model (see Figure 1). (B) Known spike times were used to extrat spike wave-

forms from the reorded signals at eah of the nineteen eletrode loations and

the extrated spike waveforms were sorted using prinipal omponent analysis

(PCA) for feature extration and K-means lustering for lassi�ation. (C) At

eah eletrode loation, true and false positive lassi�ation rates (PTP and

PFP ) were alulated for the individual neurons and the overall lassi�ation

performane (PID) was estimated. (Continued on page 196)
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Figure 7: A demonstration of how our modeling and simulation an be used

to evaluate spike sorting performane as a funtion of eletrode position (on-

tinued from page 195). (D) The �rst two dimensions of the PCA feature spae

development at every other eletrode position, showing how the overlapping

of the lusters varied with the eletrode loation. The varying overlapping of

lusters in (D) and the varying similarities/dissimilarities between spike wave-

forms in (B) relate diretly to the varying lassi�ation performane that is

evident in (C).

4 Conlusions

In this paper we have desribed a novel approah for generating syntheti test

signals to failitate the development and testing of signal proessing algorithms

for neuronal signals. Our approah ombines the powers of ompartment mod-

els and template based signal models to provide a omputationally and memory

e�ient way of simulating large sale reordings without disarding the spatial

variability in spike waveforms. We have shown that we an use traditional

ompression tehniques to obtain a ompat desription of the spatial variabil-

ity in measured spike waveforms predited by ompartment models and linear

soure approximations. The ompressed models have been implemented into a

simulation algorithm by whih we generate syntheti spike trains as measured

at an arbitrary number of eletrode sites. The eletrode sites an in turn be ar-

bitrarily plaed. The simulator has proved to be useful for providing syntheti

multieletrode reordings in whih the measured spike waveforms di�er realis-

tially between reording hannels due to their di�erent positions relative to

the neurons. This property failitates the development of algorithms for mul-

tihannel neuronal signal proessing, the studying of the e�ets of eletrode
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array geometry on the performane in information extration and the studying

of algorithms to handle moving eletrodes.

We have performed the modeling for four di�erent ompartment models

and our validation proedures have shown that despite the heavy ompression,

we an use the model to rereate the major features of the spatial variation in

spike shape and amplitude. They also show that by adjusting the minimum

distane and maximum �ring rate of noise ontributing neurons, we an ontrol

the amplitude and spetral properties of the physiologial bakground noise.

We emphasize that the modeling proedure we have presented here is in not

restrited to ompartment models of pyramidal ells. Due to the generi har-

ater of our method, onstruting a database of ompressed models for various

types of neurons would provide a way of e�iently simulating the measured

neuronal ativity in spei� brain strutures where multiple types of neurons

might be present.

In the initial ompartment model simulations we generated 42.875 spike

waveforms (orresponding to the same number of measurement points), eah

being 100 samples of length. A �le ontaining the spike waveforms in these

disrete measurement points was thus roughly 31MB of size. With our om-

pressed models we are able to obtain a �le size of around 40kB, or 775 times

smaller than the original data matrix. Besides being smaller in size, the model

is not restrited to disrete oordinates and thus does not require any wave-

form interpolation for o�-grid measurement points as would the initial spike

waveforms from the ompartment model.

To underline the omputational e�ieny of our simulation approah, we

measured the time it took to generate reordings of various lengths with one

and four simulated reording hannels respetively. The measured simulation

time was approximately 1.2 seonds/minute/hannel and we tested reording

lengths up to 16 minutes. In [10℄ the authors reported that the simulation time

was 270 seonds/minute for a single hannel, or a fator 225 longer than what

we observed with our simulator. With our previously reported simulator [9℄ we

measured a simulation time of 16.5 seonds/minute for a single hannel, or a

fator of 13.75 times longer than the simulation time for the urrent simulator.

Note that in ontrast to the urrent simulation approah, the other simulators

in this omparison neither apture the spatial variation in spike waveforms as a

funtion of eletrode position, nor do they failitate the simulation of multiple

eletrode sites.

In omparison with other simulation approahes that have the ability to

apture the spatial variation of spike waveforms, our simulator is signi�antly

more e�ient. An alternative approah would be to pre-alulate membrane

urrents for a given neuron model and use the LSA [15℄ to alulate spike wave-

forms in the given eletrode loations, whih orresponds to the �rst step in
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the modeling proedure presented in this paper. When initially alulating the

LSA, we obtained simulation times of around 0.1 seond/waveform. In the ap-

pliation example presented in Setion 2.6, a total of 744 neurons were present

(740 noise neurons and 4 target neurons) and 19 eletrode sites � requiring

the total number of 744 × 19 = 14.136 spike waveforms to be pre-alulated.

Assuming diret saling of alulation time with the number of waveforms, the

diret LSA approah would require a total time of approximately 24 minutes to

alulate all spike waveforms at all eletrode sites. However, using our method,

the entire set of 14.136 spike waveforms was alulated in approximately 2.4

seonds, or a fator of 600 times faster.

Another alternative approah would be to pre-alulate the LSA on a grid

of measurement points and interpolate the waveforms for o�-grid measurement

points, as disussed in the Introdution [11℄. However, interpolating suh a

high number of waveforms from a grid of 42.875 measurement points would

be signi�antly more demanding than alulating the matrix multipliation of

Equation 12.

Judging from our results, we onlude that our urrent simulator is both

very omputationally and memory e�ient and o�ers inreased realism in terms

of spike waveform variability ompared to urrent state-of-the-art simulators.

Future work inludes improving the user interfae of the simulator and making

it available to the researh ommunity as a tool for providing multi-hannel

test signals with realisti properties.
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Compression of neural spikes with �xed

generi bases for wireless brain-mahine

interfaes

Abstrat

Brain-mahine interfaes (BMIs) provide means of studying the neuronal mehanisms

that govern behavior and they o�er ways of overoming disabilities aused by neuro-

logial disease. By removing the physial link between the subjet and the external

omponents of the BMI, wireless BMIs derease the risk of post-surgial omplia-

tions and inrease the mobility of the subjet. However, the information-arrying

apaity of a wireless ommuniation hannel is limited by bandwidth, noise and

various hannel properties. When the number of reording hannels in the BMI is

inreased, the hannel's apaity immediately beomes a signi�ant limitation. Data

redution tehniques an be applied to overome this limitation. First, the amount

of raw aquired data an be minimized by minimizing sampling rate and resolution.

Seond, low omplexity autonomous ompression algorithms an be employed. In

this paper, we address the seond step in the data redution proedure, fousing on

ompression with �xed ompression bases. We show that deteted neuronal spikes

an be ompressed with �xed generi ompression bases without in�uening spike

reonstrution and spike sorting auraies. Our results show that employing a �xed

generi ompression basis obtained by performing singular value deomposition on

a matrix ontaining a large assembly of experimentally obtained spike waveforms

that over a wide range of shapes eliminates the need for implementing optimization

proedures on the implant to pursue an optimal basis or the seletion of optimal

ompression oe�ients. This approah ensures a high degree of ompression with

minimal omputational e�ort on the implant and thus also e�ient utilization of the

wireless hannel apaity and minimum power onsumption on the implant, both of

whih are highly desirable harateristis of wireless BMIs.

Based on: P. T. Thorbergsson, M. Garwiz, J. Shouenborg, A. J Johansson:

�Compression of neural spikes with �xed generi bases for wireless brain-mahine

interfaes�, manusript to be submitted for publiation, 2012.
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1 Introdution

Brain-mahine interfaes (BMIs) have beome important researh tools in neu-

rosiene. By providing a bidiretional onnetion between the entral nervous

system (CNS) and the outside world, BMIs may be used for studying behav-

ior at the level of neuronal mehanisms or ontrol of external devies suh as

wheelhairs or a ursor on a omputer sreen. BMIs an be divided into di�er-

ent lasses based on their level of invasiveness and means of signal aquisition.

One suh lass employs intraranially implanted miroeletrodes to pik up

hanges in extraellular voltage indued by ativities of neurons surrounding

them [1℄. The signal resulting from suh extraellular reordings is omposed

of spiking ativity from neurons in the viinity of the reording eletrode, noise

from distant neurons, loal �eld potentials (LFPs) and thermal noise generated

in the analog front-end eletronis [2℄.

The detetion, sorting and analysis of spikes in the reording allows the

haraterization of �ring patterns of individual near-by neurons, that an in

turn be orrelated with events or learning proesses in the motor or sensory

domains [3℄. The typial proessing hain involves �rst deteting spikes and

their timing in the reording, extrating the spike waveform that is assumed

to extend over a short period (typially 2-3 milliseonds) of the signal immedi-

ately before and after the estimated spike time and �nally using lassi�ation

algorithms to sort the extrated waveforms and thereby assigning them to their

neurons of origin. A spike alignment step is often inluded as well to inrease

the spike sorting auray [2℄. Spike detetion is ommonly based on deteting

the loal inrease in signal energy or amplitude followed by the ourrene of a

spike. Spike sorting involves two steps � feature extration and lassi�ation.

The �rst step of those involves extrating features that are harateristi for

the spikes and allow spikes from the same neuron to be grouped together in

the seond step.

Although the lass of BMIs desribed above have great potential in both

researh and linial appliations, their level of invasiveness and need for wired

onnetions are assoiated with risks of post-surgial ompliations and limita-

tions of subjet mobility. Wireless BMIs ideally solve both of these problems,

sine they remove the need for transutaneous leads and they allow the subjet

to move around freely without restritions posed by instrument ables.

Despite these advantages of wireless BMIs, they do not ome without hal-

lenges as they are limited in terms of energy supply and information arrying

apaity. The fundamental requirement that the implanted part of a wireless

BMI is self-ontained makes it neessary to onsider low-power designs that

maximize battery life and/or inlude means of wirelessly reharging the bat-

tery. Transmitting the raw signal from eah eletrode sampled at 25 kHz and
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10 bits leads to a bitrate of 250 kbps per hannel. Aording to Shannon, the

maximum theoretial hannel apaity for a Single-Input-Single-Output Addi-

tive White Gaussian Noise Channel is determined by the hannel bandwidth,

the signal-to-noise ratio (SNR) and the hannel's transfer funtion [4℄. For

a lossless frequeny-�at hannel at a bandwidth of 1 MHz and an SNR of 0

dB, the maximum apaity is about 1 Mbps, whih allows the raw data from

four neural reording hannels to be transmitted. Thus the hannel apaity

beomes an obvious bottlenek when inreasing the number of neural measure-

ment hannels to hundreds or even thousands. The only ways to overome

this bottlenek are to either inrease the hannel apaity or to remove any

redundanies from the data that are to be transmitted, the latter being the

most e�etive and pratially feasible. Apart from failitating e�ient use of

the hannel apaity, data redution tehniques also minimize the power used

to transmit eah bit of atual information.

Data redution an be performed in two steps. The �rst step is to minimize

the amount of raw aquired data by minimizing sampling rate and resolution

and the seond step is to implement low-power, automati ompression algo-

rithms that extrat only the relevant information from the reorded signal.

The �rst step was addressed in [5℄, in whih we found that a sampling rate

and resolution of 16-31 kHz and 9 bits respetively were su�ient for maxi-

mizing performane in spike detetion and spike sorting at realisti reording

SNR. The seond step � low-omplexity autonomous ompression algorithms

that ensure maximal information transfer and hannel utilization with minimal

omputational resoures � is the subjet of the present paper.

A ommon way of obtaining ompression is to projet the deteted spike

waveforms onto a set of sparsifying basis waveforms. Sparsi�ation implies

that the waveforms are mainly desribed by a small portion of the transform

oe�ients. By only onsidering these oe�ients and disarding the rest,

ompression � or dimensionality redution � is ahieved.

The seletion of a ompression basis is ruial with regard to the su�ient

represention of the ompressed spike waveforms. Optimally, the ompression

basis is derived diretly from the spike waveforms that are to be ompressed

by means of, for instane, singular value deomposition (SVD), ensuring that

the majority of the data is desribed by a minimal number of ompression

oe�ients � i.e. maximizing the sparseness of the data in the ompression ba-

sis. The SVD provides ompression oe�ients that are ordered by signi�ane

and the oe�ient seletion simply involves seleting the �rst K oe�ients.

However, this approah requires that the omputationally demanding task of

�nding the optimal ompression basis is arried out for eah senario in whih

new spike waveforms are enountered and is thus unpratial in low-omplexity

autonomous implants.
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Another approah, whih is more feasible in terms of omputational om-

plexity on the implant, involves using a �xed generi ompression basis. The

basis then aptures the �general� harateristis of spike waveforms that may

be enountered in a wide range of senarios and thus eliminates the need for

adapting to the data in eah ase. Here, we divide the types of �xed ompres-

sion bases into two major ategories. The �rst ategory inludes general trans-

formation bases, suh as the disrete Fourier transform (DFT), the disrete

osine/sine transform (DCT/DST) or the disrete wavelet transform (DWT).

It also inludes the transform representation of the simplest form of data redu-

tion, namely that of downsampling, or disarding samples. These bases may be

e�ient in ompressing spike data, but their ommon drawbak is that the sig-

ni�ane of the ompression oe�ients varies between ases, and therefore the

implementation of an adaptive oe�ient seletion proedure is a prerequisite

for optimal performane.

Fixed bases in the seond ategory are derived from spike data by means

of, for instane, SVD and are therefore similar to the optimal bases. However,

these bases are not derived from the deteted spike waveforms eah time as in

the optimal ase, but from a large pre-reorded assembly of spike waveforms

that over a wide range of shapes. Thus, for a given reording senario, it is

likely that the majority of the information about the deteted spike waveforms

resides within the lower end of the oe�ient spetrum, and the oe�ient

seletion beomes straight-forward.

In [6℄ we used a large set of mean spike templates extrated from reordings

in the at erebellum for the purpose of modeling extraellular reordings with

known properties. In [7℄ we used prinipal omponent analysis and Gaussian

mixture models to obtain a statistial model that ould be used to interpolate

the disrete experimentally obtained spike library used in [6℄. In that seond

paper, we showed that six prinipal omponents were adequate to desribe the

spike library, that overed a wide range of spike morphologies. These results

were in agreement with the results presented in [8℄, where a similar analysis

was arried out. These �ndings indiate that the same priniple ould be used

to obtain a generi �xed basis for ompressing spike waveforms in a wireless

BMI.

In this paper we study the ompression of extrated spike waveforms with

various system arhitetures, spike detetors and ompression bases. We imple-

mented various system arhitetures that involved spike detetion, spike align-

ment, spike ompression, spike reonstrution and spike sorting. The system

arhitetures di�ered with regard to the presene and alloation of proessing

tasks. Spike detetion was performed with absolute value threshold detetion

(ABS) and nonlinear energy operator detetion (NEO). Five di�erent ompres-

sion bases were inluded. These were 1) the optimal basis in eah ase, 2) a �xed
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basis derived (by SVD) from a large assembly of syntheti model-generated

spikes (�xed 1 ), 3) a �xed basis derived (by SVD) from a large assembly of ex-

perimentally obtained spikes (�xed 2 ), 4) a downsampling basis and 5) a Haar

wavelet basis. The simulator desribed in [9℄ was used to generate syntheti

reordings with various noise levels and the reordings were then proessed by

all ombinations of a system arhiteture, spike detetor and ompression basis

and the results were ompared in terms of spike reonstrution auray and

spike sorting auray. These results allowed us to assess whether or not a

given ompression basis ombined with a given spike detetor and a given ar-

hiteture would ause a derease in performane in spike analysis ompared to

when the unompressed spike waveforms were transmitted and analysed. Due

to their generi nature and straight-forwardness in oe�ient seletion � both

of whih are bene�ial harateristis in terms of lowering omputational om-

plexity on the implant � �xed ompression bases of the seond ategory were

of speial interest to us. The �xed 2 basis represents this ategory and was

therefore treated in more detail than the other ompression bases. Our results

show that ompressing deteted spike waveforms with a generi ompression

basis derived from an arbitrary set of spike waveforms an lead to similar spike

sorting performane as the optimal basis, and only a somewhat lower auray

in spike reonstrution.

2 Methods

2.1 Test Data

The simulator desribed in [9℄ was used to synthesize three nineteen-hannel

test reordings with varying signal-to-noise ratios (high, medium and low SNR).

The reordings were �ve minutes long. In all three reordings, a linear array

of nineteen evenly spaed eletrodes was plaed along the z-axis (x = y = 0,
−30µm ≤ z ≤ 60µm, 5µm spaing). Noise neurons were plaed at random

positions (density of 9.5× 106 neurons/m3
[10℄) within a hollow ylinder on-

entri with the z-axis. The inner and outer boundaries of the hollow ylindrial

volume were at 120 µm and 250 µm respetively and its �oor and eiling were

at ± 250 µm respetively.

Four target neurons (one of eah neuron model derived in [9℄) were plaed

inside the hollow spae of the noise neuron ylinder. For the high SNR reord-

ing, the neurons were plaed at positions of (10,20,-2)µm, (-2,18,20)µm, (-20

-5 -10)µm and (16,-13,15)µm. For the medium and low SNR reordings, these

oordinates were multiplied by fators of 1.5 and 2 respetively, i.e. moving

eah neuron along a linear path from the origin. Moving the neurons away
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Figure 1: One of nineteen eletrode sites and a snapshot of the orresponding

signal from eah of the multi-hannel test reordings (high, medium and low).

The SNR was varied by varying the distane of neurons 1 to 4 from the linear

eletrode array array plaed along the z axis. The left part of the �gure shows

one seond of the total of �ve minutes of reording with the true spike identities

labeled and olor oded. The right part of the �gure shows the plaements of

the target neurons (olored dots around origin), noise neurons (gray dots far

away from origin) and the eletrode site (x, y, z) = (0, 0, 0) (yellow dot in

origin). The sizes of the indiators do not re�et the true sizes of the neurons

and the eletrode, but only their positions. Only the X-Y and X-Z views are

shown. Note that eah test reording ontained eighteen additional eletrode

sites, arranged along the z-axis.
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from the eletrode array resulted in dereasing their spike amplitudes and thus

dereasing the SNR sine the noise neuron ylinder was not altered. The mul-

tipliation fators were hosen empirially to provide learly varying SNRs and

resulted in the neurons being at distanes of approximately 20, 30 and 40 µm
from the eletrode array (in the x − y domain) for the high, medium and low

SNR respetively. Assuming that spikes from neurons within a distane of 50

µm an be deteted [11℄, these distanes are reasonable.

Figure 1 illustrates the arrangement of neurons and the eletrode site used in

eah ase for the �rst part of the performane estimation, i.e. (x, y, z) = (0, 0, 0)
(see later setion) as well as a one seond long segments of the signal in eah

SNR ase. Note that eah test reording ontained eighteen eletrode sites in

addition to the one shown in Figure 1. Note also that the three test signals were

generated individually, meaning that the atual loations of noise neurons and

atual spike times of all neurons varied between the reordings. However, the

statistial properties used to generate loations and spike times did not vary

between the reordings. The reordings were sampled at 25 kHz and bandpass

�ltered between 300 Hz and 5 kHz.

All neurons were assumed to have gamma distributed inter-spike intervals

[12℄. For eah noise neuron, a random mean �ring rate was hosen from a

uniform distribution between 1 and 50 spikes/seond. For eah target neuron,

a random mean �ring rate was hosen from a uniform distribution between 1

and 10 spikes/seond.

Signal to noise ratio was alulated in a similar manner as desribed in [13℄.

For a given reording and a given eletrode site, we de�ned the SNR for the

n-th neuron as

SNRn = 20 log10

(

sppn

σ̂N

)

(1)

where sppn
is the peak-to-peak amplitude of the mean spike waveform of the

neuron measured at the eletrode site and σN is the standard deviation of

bakground noise estimated aording to [14℄

σ̂N = median

( |v|
0.6745

)

(2)

where v is the sampled signal. We then reported the mean SNR aross the

neurons for any given ase.

2.2 System Arhitetures

Three di�erent system arhitetures involving spike waveform ompression were

onsidered in our omparison (arhitetures 1 to 3 in Figure 2), in addition to
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Figure 2: An illustration of the system arhitetures onsidered in the ompar-

ison. The �Tx� and �Rx� bloks refer to the wireless transmitter and reeiver,

respetively. In arhiteture 0 (the referene arhiteture) unompressed spikes

were transmitted, aligned and sorted. In arhitetures 1 to 3, spikes were om-

pressed, reonstruted and sorted and in arhitetures 2 and 3, spike alignment

was performed at di�erent stages.

a referene arhiteture in whih no ompression was performed (arhiteture

0 in Figure 2). We assumed the main task of the system to be the harater-

ization of the �ring patterns of individual neurons through the detetion and

sorting of neuronal spikes in extraellular neuronal reordings. We assumed

spike detetion to be performed on the implanted unit and spike sorting on the

external unit. Further, in order to minimize the omputational burden on the

implant, we assumed ompression of deteted waveforms to be primarily ar-

ried out with a �xed ompression basis (see later setion), so that no learning

needed to take plae on the implant.

The arhitetures varied in terms of the arrangement of proessing tasks

arried out between the spike detetion and spike sorting tasks. The main

intermediate proessing tasks were assumed to be the ompression and reon-

strution of deteted spike waveforms. A seondary � but nevertheless im-

portant � proessing step, was assumed to be spike alignment. Eah of these

proessing steps is disussed in more detail in the following setions.

Arhiteture 0 was inluded as the referene arhiteture, i.e. the ase

where the extrated spike waveforms were transmitted without ompression

and aligned on the external unit prior to spike sorting. In arhiteture 1,

spikes were extrated and ompressed on the implanted unit and reonstruted

and sorted without alignment on the external unit. Arhiteture 2 was similar

to arhiteture 1, but with the additional alignment step on the external unit
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prior to spike sorting. In arhiteture 3, spikes were extrated, aligned and

ompressed on the implant and reonstruted and sorted on the external unit.

2.3 Spike Detetion

We assumed ABSolute value (ABS) and Nonlinear Energy Operator (NEO)

spike detetion, both of whih have been shown to provide a good ombination

of performane and omputational omplexity [15, 16, 5℄. NEO has been shown

to be more robust to bakground noise and provide less spike detetion jitter

whih is bene�ial for spike sorting, but its omputational omplexity is higher

[15, 5, 17℄. Spike detetion jitter refers to the misalignment of extrated spike

waveforms that arises when di�erent spikes ross the detetion threshold at

di�erent time instanes within the waveform [2℄. ABS is attrative due to its

simpliity, but it requires an extra spike alignment step (see Setion 2.4) due

to the more severe spike detetion jitter it introdues (see Figure 4). Spike

duration was assumed to be 2.5 milliseonds.

In order to eliminate any errors in estimation of spike sorting auray

aused by false positive detetions, we used true spike times provided with

the syntheti reordings to extrat spike waveforms from the reordings and

then introdued the spike detetion jitter afterwards. Detetion thresholds

(see Setions 2.3 and 2.3) were used to �nd the detetion time (time instane

of threshold rossing) for eah extrated waveform that did pass the threshold.

Spikes that did not pass the threshold were disarded. We then used a disrete-

time delay �lter to shift eah waveform in time to have the threshold rossing

our at the most frequent detetion time aross all the spikes. Spikes whose

threshold rossing time deviated by more than 1.5 standard deviations from the

most frequent value were disarded as outliers. These ases usually represented

overlapping spikes. Spike waveforms were upsampled to a sampling rate of 100

kHz before introduing the jitter and were then downsampled to 25 kHz again

afterwards. ABS and NEO spike detetion are brie�y desribed below.

ABSolute value Spike Detetion

In ABS detetion, a threshold of

T = 4σ̂N = 4 ·median

( |v(n)|
0.6745

)

(3)

where σ̂N is the estimated standard deviation of bakground noise and |v| is
the digitized signal's amplitude, is applied to the absolute value of the signal

[14℄. This is equivalent to simultaneously applying a positive and a negative

threshold to the raw signal.
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Nonlinear Energy Operator Spike Detetion

In NEO detetion, a threshold T is applied to the nonlinear energy operator

Ψ(n) of the signal v(n). The nonlinear energy operator is given by

Ψ(n) = v2(n)− v(n+ 1) · v(n− 1) (4)

and the threshold is taken as

T = 8 ·Ψ(n) (5)

where · represents the sample mean [18, 15℄.

2.4 Spike Alignment

For the arhitetures that involved a spike alignment step (arhitetures 0, 2

and 3), spikes were aligned at their maximum absolute amplitude within a time

interval of approximately half a milliseond after the detetion time. This was

assumed to orrespond to aligning the spikes on the maximum value of the

deteted peak or valley. We hose maximum amplitude alignment due to its

simpliity, sine it only involves �nding the maximum absolute value of the

signal within a short time window. More sophistiated approahes have been

reported, suh as the enter-of-mass alignment [2℄, whih takes into aount

the entire waveform and is thus less sensitive to noise. However, it is more

omplex than maximum value alignment, and therefore less feasible to use in

the implanted unit (arhiteture 3) from an energy onsumption point of view.

Therefore, we seleted the approah that introdued the lowest omplexity in

the implanted unit and used that for the other arhitetures as well for the

sake of omparison.

For arhitetures 0 and 2 (spike alignment on the external unit), spikes were

upsampled to a sampling rate of 100 kHz prior to alignment and were then

downsampled to 25 kHz after alignment. For arhiteture 3 (spike alignment

on the implant), the alignment was performed at the initial sampling rate of 25

kHz in order to minimize the inrease in omputational omplexity introdued

by plaing the alignment step in the implant. The alignment was performed

using delay �lters in the same way as when applying spike detetion jitter

(Setion 2.3).

2.5 Spike Compression and Reonstrution

Spike ompression was performed by projeting deteted spike waveforms onto

a sparsifying basis, referred to as ompression basis and transmitting a �xed
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Figure 3: (Caption on page 217)
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Figure 3: (Continued from page 216 aption) Eight basis waveform from the

�ve ompression bases that were inluded (optimal, �xed 1, �xed 2, downsample

and Haar) and 32 ompression oe�ients of the spikes from the high SNR

reording at eletrode site (x, y, z) = (0, 0, 0). The oe�ients are given as

mean plus/minus one standard deviation for the spikes of eah of the four target

units (green, light blue, dark blue and pink). The oe�ient spetra show the

varying sparsi�ation levels provided by the di�erent bases, the optimal basis

providing the highest sparsi�ation and the downsampling basis the lowest.

number of transformation (ompression) oe�ients. The transformation was

obtained as

Wc = B
T
c S (6)

where the M ×N matrix S ontains the M sample long spike waveforms in its

olumns, the M ×M matrix Bc ontains the M sample long basis waveforms

of the ompression basis in its olumns and the M×N matrix Wc ontains the

full set of transformation oe�ients. Sine ompression involves disarding all

butK of the total set ofM (K < M) transformation oe�ients, we introdued

the K × N dimensionality redution matrix Bd. The transmitted oe�ients

were thus given by

Wd = BdWc = BdB
T
c S. (7)

The ompression and dimensionality redution bases were assumed to be

known at the external unit and were used to reonstrut the spike waveforms

aording to

Ŝ = BcB
T
dWd (8)

where Ŝ is the reonstruted spike matrix. For ompression with the downsam-

pling basis, the reonstrution involved an additional lowpass �ltering step for

interpolation (see Setion 2.5).

We inluded �ve di�erent ompression bases in our analysis. These are

brie�y disussed below. Figure 3 illustrates the �rst eight basis waveforms

of eah basis and 32 ompression oe�ients in eah basis for the high SNR

reording at eletrode site (x, y, z) = (0, 0, 0). The distributions of ompression

oe�ients show that all bases introdued sparsity, but to a varying degree.

Apart from providing di�erent levels of sparsity, the bases also provided di�er-

ent distributions of oe�ients within the oe�ient spetra. As touhed upon

in the introdution, the bases derived by SVD (optimal, �xed 1 and �xed 2 )

have the attrative property of providing oe�ients that are onentrated at

the lower end of the spetrum, making the seletion of oe�ients straightfor-

ward (the �rst K oe�ients are seleted). This is in ontrast to the downsam-
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pling and Haar bases, in whose oe�ient spetra the �rst K oe�ients are

not neessarily the most signi�ant ones. Also, the SVD based bases generally

tend to provide a greater degree of sparsi�ation, indiating that they allow a

smaller number ompression oe�ients to be transmitted.

Optimal Basis

This basis was found by performing singular value deomposition (SVD) on

the matrix S ontaining the deteted spike waveforms in its olumns. The

optimal basis was inluded as a referene ase sine it involves basis waveforms

that are derived diretly from the waveforms that are to be ompressed. The

basis waveforms were obtained as the olumns of the unitary matrix U in the

deomposition

S = UΣV
H . (9)

Sine the dimensions of the basis given by the SVD are arranged in a dereasing

order of signi�ane, the dimensionality redution matrix Bd was taken as the

�rst K rows of the M × M identity matrix. As mentioned previously, this is

an attrative property of SVD-based ompression bases and is due to the fat

that most of the waveform information is onentrated in the lower range of

the transform oe�ients.

Fixed Basis 1

This basis was found by performing SVD on a matrix ontaining 40.000 syn-

theti spike waveforms obtained by alulating the measured spike waveform

in 10.000 random measurement points surrounding eah of the four model neu-

rons addressed in [9℄. This basis was assumed to represent the generi basis

that was well tuned to the data, sine it was derived from the same neuron

models as the test data but not derived from the test data. The dimensionality

redution matrix was the same as that for the optimal basis.

Fixed Basis 2

This basis was obtained by performing SVD on the matrix of spike waveforms

ontained in the library used in [6℄. Sine this basis had no onnetion to the

test data, it was assumed to represent the generi ase, i.e. basis waveforms

obtained from a set of spike waveforms extrated from an arbitrary set of

reordings. The dimensionality redution matrix was the same as that for the

optimal basis. This basis was the most interesting one within the ontext of this

paper, sine it represents the generi ompression basis where the derivation

of the basis waveforms is entirely independent of the spike data that is to be

ompressed.
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Downsampling Basis

This basis was inluded as the simplest form of data redution, namely that

where samples are simply disarded. The ompression matrix Bc was taken as

the M ×M identity matrix and the dimensionality redution matrix Bd was

obtained by removing all but every R-th row from the M ×M identity matrix

where R was the downsampling fator obtained by rounding the ratio M/K to

the nearest integer.

Having obtained the reonstruted spike matrix Ŝ aording to Eq. 8, the

reonstruted waveforms were �ltered in the frequeny domain by a lowpass

interpolation �lter [19℄. Note that sine we wanted to examine the e�ets of

simply disarding samples, no antialiasing �ltering was applied prior to down-

sampling.

Haar Wavelet Basis

This basis was obtained by onstruting the M × M Haar matrix, whose

olumns ontain the disrete time Haar basis waveforms. Although not ne-

essarily optimal, the dimensionality redution matrix was taken as the �rst

K rows of the M × M identity matrix. This hoie was made sine seleting

the optimal transform oe�ients to transmit would result in the need for im-

plementing an optimization proedure on the implant, whih would lead to a

signi�ant inrease in omplexity.

2.6 Spike Sorting

We performed feature extration and lustering at the external unit with prini-

pal omponent analysis (PCA) and K-means respetively. In PCA, an ordered

set of orthonormal basis waveforms is derived from the spike waveforms and the

projetions of the spikes onto the �rst P dimensions of this basis are used as

features in spike sorting [20℄. In K-means, data points are assigned to lusters

that form gradually and ideally their means onverge to the true luster means

[21℄. We provided the true number of lusters (four neurons) as input to the

K-means algorithm.

PCA is a widely used approah for feature extration in spike sorting and

has been shown to perform well in omparison to other feature extration ap-

proahes, suh as the disrete wavelet transform (DWT) and disrete deriva-

tives (DD) [15℄. For the DWT, this applies espeially when the wavelet basis

is badly tuned to the data [22℄ or when feature seletion is not straightforward

[5℄. DD has been shown to provide similar performane as PCA, but as DWT,

it requires a feature seletion step [15℄. We used the �rst three PCA weights as

spike features. Sine we assumed spike sorting to be performed at the external
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unit, the need for prioritizing omputationally simple spike sorting algorithms

was essentially eliminated.

2.7 Estimation of Performane

System on�gurations (ombination of a spike detetor, system arhiteture

and ompression basis) were ompared in terms of spike sorting auray and

spike reonstrution auray. Spike reonstrution auray was alulated

for eah reonstruted spike as the maximum value of the ross-orrelation

funtion between the reonstruted spike and the mean spike for the neuron

in question. This waveform similarity measure is similar to the one employed

in [23℄. Overall spike sorting auray (PID) for a given ase was estimated in

the same way as desribed in [9℄, i.e. in terms of the total perentage of spikes

that were lassi�ed orretly.

First, we seleted the hannel orresponding to the eletrode site (x, y, z) =
(0, 0, 0) in eah of the test reordings (high, medium and low SNR) and esti-

mated performane for all ombinations of spike detetors, arhitetures and

ompression bases. This �rst step illustrated the relative performanes of the

alternative system setups at di�erent noise levels.

Seond, we foused on the generi ompression basis, i.e. the �xed 2 basis

and estimated performane in spike sorting and reonstrution at all eletrode

sites for eah test reording, using the ABS detetor with arhiteture 3 and the

NEO detetor with arhiteture 1. These detetor-arhiteture ombinations

were hosen due to their simpliity and their good performanes aording

to the �rst part. We also inluded NEO detetion with arhiteture 0 (no

ompression) as a referene.

Figure 4 illustrates the proedure for spikes from eletrode site (x, y, z) =
(0, 0, 0) in the high SNR reording for ABS detetion, the �xed 2 basis and ar-

hiteture 3. The spikes were aligned at their ABS detetion threshold, aligned

at the absolute maximum, ompressed with an 8 dimensional �xed 2 basis,

reonstruted and sorted with PCA and K-means.

2.8 Computational Complexity on the Implant

We used similar omplexity measures as those employed in [15℄, where one

operation was de�ned as a one-bit addition. Subtration was assumed to involve

the same number of operations as addition and multipliation and division were

assumed to involve ten times as many operations as addition. We assumed

a wordlength of 10 bits and a sampling rate of 25 kHz, both of whih are

within reasonable limits for suessful spike detetion and spike sorting [5℄.
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Figure 4: The upper panel shows deteted and reonstruted spikes using the

ABS detetor and ompression with the �xed 2 basis (8 dimensions) and arhi-

teture 3 (high SNR, (x, y, z) = (0, 0, 0)). Mean spike waveforms are olor oded

aording to their neurons of origin. The lower panel shows the projetions of

reonstruted spikes onto the �rst three prinipal omponents (marked (1,2),

(1,3) and (2,3)). In the upper and lower rows, spikes in the PCA feature spae

are olor oded aording to their true and assigned identities, respetively.

Clustering was performed with K-means. The overall spike sorting auray in

this ase was PID = 0.88.
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Computational omplexity was only onsidered for the ases studied in the

seond part of the performane estimation (see previous setion).

3 Results and Disussion

3.1 First Part: All Arhitetures, Detetors and Com-

pression Bases

Figure 5 shows spike reonstrution and sorting auraies as funtions of the

number of ompression basis dimensions for all ases studied at high, medium

and low SNR (�rst step of performane estimation proedure, see Setion 2.7)

for the eletrode position (x, y, z) = (0, 0, 0).
As expeted, all the best performanes for all arhitetures were obtained at

high SNR, both in terms of spike reonsrution auray and spike sorting au-

ray. For a given ombination of a spike detetor and a ompression basis, the

spike reonstrution auray did not vary signi�antly between the arhite-

tures, but was notieably dependent on SNR and the number of ompression

basis dimensions inluded. As expeted, the optimal and �xed 1 bases on-

sistently provided the highest reonstrution auray, those being diretly or

indiretly mathematially related to the spike waveforms being ompressed. In-

terestingly, the �xed 2 basis (generi ompression basis) provided only slightly

lower performane than the optimal and �xed 1 bases, indiating that spike

ompression with a �xed generi basis was indeed a feasible alternative. The

Haar basis onsistently performed the worst in terms of spike reonstrution.

This is not surprising sine no measures were taken to selet the most signi�-

ant Haar transform oe�ients, but instead, the �rst oe�ients were seleted.

This is generally not optimal sine the Haar basis waveforms are loalized in

both time and frequeny.

At high SNR, the spike sorting performane of arhiteture 1 with NEO

detetion gradually beame similar to that of the referene arhiteture, arhi-

teture 0. This applied to all ompression bases. However, when employing

ABS detetion with arhiteture 1, spike sorting performane was signi�antly

lower than for the referene ase for all ompression bases. This di�erene is

explained by the absene of the spike alignment blok in arhiteture 1 and

indiates that the spike detetion jitter introdued by NEO detetion does not

negatively in�uene spike waveform ompression or sorting, but rather diretly

provides an alignment that is bene�ial in terms of both tasks. As noise level

inreased, the di�erene in performanes between ABS and NEO detetion with

arhiteture 1 beame less signi�ant. Also at low SNR, spike sorting auray

for arhiteture 1 generally fell behind ompared to arhiteture 0.
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Figure 5: Spike sorting (upper panel) and spike reonstrution (lower panel) as

funtions of the number of ompression basis dimensions at high, medium and

low signal-to-noise ratio (SNR). Eah olumn orresponds to eah arhiteture

studied (arhiteture 0 to arhiteture 3) and eah sub�gure shows the auray

for eah ombination of spike detetors and ompression basis.

Arhiteture 2 provided similar spike sorting performane for both spike

detetors and all ompression bases, with the exeption of the Haar basis on-
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sistently providing the lowest performane and NEO detetion with the �xed

2 basis onverging at a somewhat higher number of ompression basis dimen-

sions than the other ases. This is explained by the suboptimal seletion of

ompression oe�ients for the Haar basis. This relative performane applied

at all noise levels.

For arhiteture 3, the relative spike sorting performanes between the on-

�gurations did not vary notieably with SNR. For a given ompression basis,

the seletion of a spike detetor did not seem to in�uene the performane.

This is not surprising, sine the main di�erene between the detetors from

the point of view of spike ompression/reonstrution and spike sorting is the

alignment, whih is removed by the pre-ompression alignment step in arhi-

teture The downsampling basis onsistently provided the slowest onverging

performane.

3.2 Seond Part: NEO and Fixed 2 with Arhiteture 1

and ABS and Fixed 2 with Arhiteture 3

Figure 6 shows the distributions of auraies in spike reonstrution and spike

sorting for NEO detetion with arhiteture 0 (no ompression, referene ase),

NEO detetion with arhiteture 1 and ompression with the �xed 2 basis and

ABS detetion with arhiteture 3 and ompression with the �xed 2 basis at

high, medium and low SNR. Signi�ant di�erene (p = 0.05) between ases is

indiated with stars and brakets.

In general, an dereased SNR led to a derease in spike reonstrution

auray, the derease being the least signi�ant when spikes were ompressed

with at least four dimensions. Thus, the bene�t of performing ompression also

inreased as SNR dereased. This is due to the noise redution introdued by

the ompression. Note however, that the spike detetion performane generally

dereases with dereased SNR [15, 5℄ and this is not an indiation that low SNR

is bene�ial � but rather that given a low SNR, ompression is an e�ient way

of reduing noise in the deteted spike waveforms.

As expeted, inreasing the number of ompression basis dimensions in-

reased the reonstrution auray for both ompression arhitetures. Exept

at medium SNR and four ompression basis dimensions, no signi�ant di�er-

ene was seen in the reonstrution auray for the ompression arhitetures.

In the single exeptional ase, although signi�ant, the di�erene was notiably

small. Both ompression arhitetures required at least four ompression basis

dimensions for the spike reonstrution auray to be equal to or higher than

that of the referene arhiteture.

Spike sorting auray generally dereased with a dereased SNR and

tended to derease with a dereased number of ompression basis dimensions
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Figure 6: Spike reonstrution auray (upper row) and spike sorting auray

(lower row) for NEO detetion with arhiteture 0 (no ompression, referene

ase), NEO detetion with arhiteture 1 and ompression with the �xed 2 basis

and ABS detetion with arhiteture 3 and ompression with the �xed 2 basis

at high, medium and low SNR. The distributions desribe the performane

aross all nineteen eletrode sites in eah ase. Median omparison intervals

(p = 0.05) are marked with triangles and signi�antly di�erent ases are marked

with a star and a braket.

employed. When two ompression basis dimensions were used, both om-

pression arhitetures provided spike sorting auray that was signi�antly

lower than that of the referene arhiteture. When at least four ompression

basis dimensions were used at high and medium SNR, there was no signi�ant

di�erene in spike sorting performane between any of the arhitetures. At

low SNR, the spike sorting auray of NEO with arhiteture 1 was the signif-

iantly lowest but no signi�ant di�erene was seen between the performanes

of the referene arhiteture and ABS with arhiteture 3.

The omputational omplexity at the implant for NEO with arhiteture

1 and ABS with arhiteture 3 was 5.5 MOPS/spike/dimension and 0.51

MOPS/spike/dimension respetively. The large (fator 10) di�erene between
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the omplexities was due to the inreased omplexity introdued by performing

spike detetion with NEO.

4 Conlusions

In this paper, we have studied how various ombinations of spike detetors,

ompression arhitetures and ompression bases in�uene the performane in

spike sorting and spike waveform reonstrution at various signal-to-noise ra-

tios, ompared to the ase where unompressed spike waveforms are transmit-

ted and analyzed. Due to the need for minimizing the omputational burden

on the implant, we have foused on non-adaptive implant designs, i.e. designs

where ompression is performed with �xed ompression bases. This eliminates

the need for �nding and maintaining an optimal ompression basis on the im-

plant.

We have shown that ompression with a �xed generi ompression basis,

obtained by performing singular value deomposition on a set of empirially

found mean spike waveforms, is possible, given the appropriate system arhi-

teture. The basis we used to show this (�xed 2 ) was obtained from extra-

ellular reordings in the at erebellum and is thus entirely independent on

the test reordings used in this paper (syntheti multihannel reordings using

ompressed models of CA1 pyramidal neurons).

Based on the omparison of all ombinations of detetors, arhitetures and

bases (part 1), we seleted NEO detetion with arhiteture 1 and ABS de-

tetion with arhiteture 3 as feasible andidates for implementation. Both

andidate designs provided similar performane in both spike sorting and spike

reonstrution. However, the omplexity at the implant for ABS with arhite-

ture 3 was about 10 times lower than that for NEO with arhiteture 1, thus

making that the most feasible alternative in terms of spike sorting and reon-

strution auray. A possible argument for seleting NEO for spike detetion

would be it's superior performane at low SNR.

To summarize, for a future hardware implementation of a wireless BMI,

we propose a spike ompression arhiteture that onsists of absolute value

threshold detetion, spike alignment at the implant and ompression with a

�xed basis that is derived from a large assembly of empirially found spike

waveforms. Suh a on�guration has been shown to provide spike reonstru-

tion and sorting auraies that di�er insigni�antly from those obtained when

no ompression is performed, given that at least four ompression basis oe�-

ients are transmitted per deteted spike waveform.

Transmitting four ompression oe�ients per deteted spike waveform and

assuming 10 bits per sample, this results in a data rate of 40 bits per trans-
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mitted spike waveform, or a fator of 16 times less than when transmitting

the unompressed spike waveforms (assuming 25 kHz sampling rate and 2.5 ms

spike duration). In order to simplify these omparisons, we do not onsider

overhead data suh as timestamps and hannel IDs. Assuming a mean of four

neurons per reording hannel and a mean �ring rate of 10 spikes per seond per

neuron, this orresponds to a mean total data rate of 1.6kbps. Assuming the

same maximum hannel apaity as in the example taken in the introdution

(1 Mbps), this would allow the transmission of spike data from 625 reording

hannels, or a fator of 156 times more than when transmitting the raw neural

data (four hannels maximum).
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