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Abstract

Brain-machine interfaces (BMIs) provide a uni- or bidirectional communication
link between the central nervous system and the outside world. This link
facilitates the studying of neuronal mechanisms underlying behavior as well as
the treatment of neurological disease. Wired BMIs are limited in the sense
that they restrict the mobility of the subject and they increase the risks for
post-surgical complications. While wireless BMIs ideally solve these problems,
their designers face the challenge of combining high information throughput
with limited wireless link capacity and energy resources. Therefore, measures
have to be taken to maximize the utilization of the wireless link and energy
resources by designing computationally efficient and reliable data reduction
techniques. The design and validation of such techniques requires the presence
of well defined test data, where the true information content is known a priori.
This thesis deals with both the modeling of the neural signal to provide realistic
and practical means of generating test data, as well as low-complexity methods
for data reduction that lead to efficient utilization of the wireless link and the
energy resources at hand. The main part of the thesis is a collection of papers
that address these aspects.

Paper I presents the design and implementation of a simple telemetry sys-
tem for the wireless transmission of neural data from four measurement chan-
nels. This paper highlights some of the design challenges that need to be
considered and thereby serves as a pilot investigation for the following papers.

Paper II presents a recording model and a simulation tool for generating
single-channel test recordings for the validation of algorithms for spike detection
and spike sorting. Having set up the geometry of the recording, each neuron is
assigned a random spike waveforms from a library of experimentally obtained
templates. The contribution of each neuron is generated by adding the corre-
sponding waveform at randomly generated spike times and the spike trains are
added up to form the entire recording. Spike times are modeled by a renewal
process. The model is evaluated in terms of realism by comparing the power
spectral density and autocorrelation of synthetic biological noise generated by
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the model, to noise obtained from real recordings.

Paper III extends the finite spike library provided in paper II in order to
provide a greater, still realistic, variation in spike waveforms. Principal com-
ponent analysis and Gaussian mixture models are used to model the statistical
properties of the original spike library and the statistical model can then be
used to generate an arbitrary number of spike wavforms with realistic prop-
erties. The extension is shown to be usable in providing access to arbitrarily
large libraries of spikes with realistic properties.

Paper IV uses the models presented in papers IT and IIT to explore the effects
of sampling rate and resolution on the performance in spike detection and spike
sorting at various noise levels and numbers of target neurons. Performance
curves are analyzed to find sampling rate and resolution breakpoints for spike
detection and spike sorting. These breakpoints serve as guidelines for selecting
sampling parameters when dimensioning wireless BMIs. The paper presents
methods for quantifying the accuracy in spike detection and spike sorting and
provides general insight into how the performance of these processing tasks are
influenced by sampling parameters, noise level and number of target units.

Paper V presents a preliminary study of the characteristic relationship be-
tween physical electrode movements and movements of detected spikes in fea-
ture space, using the signal models presented in paper VI. We then model this
relationship as a linear transformation between two coordinate systems and
show that given that a training procedure is introduced at the time of elec-
trode insertion, future electrode movements can be estimated directly from the
feature space representation of spikes.

Paper VI presents a new, computationally and memory efficient approach
for modeling the extracellular signal. We use traditional compression tech-
niques and polynomial fitting to derive a deterministic model that can be used
for fast calculation of spike waveforms in arbitrary measurement points sur-
rounding a compartment model of a neuron. Four different neuron models are
derived and they are all shown to accurately predict the spike waveforms pro-
duced by the original compartment model, both in terms of spike shape and
amplitude. The model is implemented into a simulation tool that efficiently
and realistically synthesizes recordings with multielectrode arrays of arbitrary
geometries.

Paper VII addresses low-complexity methods of compressing detected spike
waveforms in wireless BMIs to ensure efficient use of the wireless link and energy
resources at hand. The paper shows that given the correct choice of overall
system architecture and spike detector, spike waveforms can be compressed
with fixed generic compression bases, derived from experimentally obtained
spike libraries, without significant loss in accuracy in spike reconstruction and
sorting.



Preface

During the final part of my studies of electrical engineering at LTH, I was of-
fered, by Anders J Johansson, the opportunity of writing my master’s thesis on
the topic of telemetric devices for neural recordings. The thesis, titled “ Nerve
Telemetry System” was handed in and presented about one year later and ad-
dressed the design and implementation of a wireless measurement system for
the purpose of recording extracellular signals. The result was a prototype built
on a “breadboard” and whose main components were an analog amplifier, a
prototype-board for a commercial wireless transceiver including an A/D con-
verter and a CPU and a simple PC interface to control the devices and collect
measurement, data.

The initial interest in such a system came from a then recently established
research group at Lund University called the Neuronano Research Center — or
NRC. This multidisciplinary group, composed of experts within neuroscience
and engineering, set off with the following vision:

To improve quality of life for disabled people and individuals with

neurodegenerative disease by listening to, understanding and talk-

ing to the nervous system by means of a neuroelectronic junction.
“Listening to”, “understanding” and “talking to” in this context involves mea-
suring, interpreting and reacting upon the activities of neuronal circuits within
the central nervous system (CNS). This kind of neuroelectronic junctions —
brain-machine interfaces (BMI) — can provide insight into the neuronal mech-
anisms that govern memory, learning, pain and other aspects of our behavior
and they provide the opportunity to “tap onto” the nervous system to extract
control signals for prosthetic devices. Realizing this noble vision thus requires
significant efforts within all fields of expertise covered by the group, including
for instance biocompatible electrode designs, methods for signal analysis and
the design of wireless interfaces. Wireless BMIs allow the subject or patient to
move around without being influenced significantly by the measurement equip-
ment and they minimize the risk for post-surgical complications.

My master’s thesis was the first step within the group towards designing a

vii
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wireless BMI and resulted in me being offered a position as a Ph.D. student
for continued research within the field, under the supervision of Anders J Jo-
hansson and Martin Garwicz. I soon realized that the challenge at hand not
only involved designing and building the hardware for the wireless BMI, but
also, and perhaps primarily, establishing a set of design parameters that en-
sured good system performance in terms of “listening to” and “understanding”
the nervous system. This need for pre-investigations was primarily driven by
the requirement that the implanted part of the wireless BMI should be self-
contained and fully automatic, thus demanding minimal power consumption
and efficient use of computational and wireless link resources. Testing the per-
formance of system designs requires realistic and practical signal models that
can be used to generate test signals with controllable properties. This provides
access to “ground-truth” about the neural activity being measured, and that
the system output can be compared with to provide a quantitative estimate of
performance.

This doctoral thesis summarizes my research within signal modeling and
data reduction for wireless BMIs where computational simplicity has been one
of the key criteria. In the first part of the thesis, a general overview of the
research field is provided and the contributions of my research to the field are
briefly summarized. The second part contains an assembly of seven research
papers that have been written during my five years as a PhD student. These
are:

[1] P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson:
“Implementation of a Telemetry System for Neurophysiological Signals”,
Conference Proceedings of the International Conference of IEEE Engi-
neering in Medicine and Biology Society, pp. 1254 — 1257, 2008.

[2] P. T. Thorbergsson, H. Jorntell, F. Bengtsson, M. Garwicz, J. Schouen-
borg, A. J Johansson: “Spike Library Based Simulator for Extracellular
Single Unit Neuronal Signals”, Conference Proceedings of the International
Conference of IEEE FEngineering in Medicine and Biology Society, pp.
6998 — 7001, 2009.

[3] P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson:
“Statistical Modelling of Spike Libraries for Simulation of Extracellular
Recordings in the Cerebellum”, Conference Proceedings of the Interna-
tional Conference of IEEE Engineering in Medicine and Biology Society,
pp. 4250 — 4253, 2010.
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4]

[5]

[6]

7]

P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson: “Mini-
mizing data transfer with sustained performance in wireless brain-machine
interfaces”, Journal of neural engineering, pp. 036005, 2012.

P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson: “Spike-
Feature Based Estimation of Electrode Position in Extracellular Neural
Recordings”, Conference Proceedings of the International Conference of
IEEFE Engineering in Medicine and Biology Society, pp. 3380 — 3383, 2012.

P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson:
“Computationally efficient simulation of extracellular recordings with
multielectrode arrays”, Journal of neuroscience methods, vol. 211, pp. 133
144, 2012.

P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson:
“Compression of neural spikes with fixed generic bases for wireless
brain-machine interfaces”, manuscript to be submitted for publication,
2012.
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Chapter 1

Introduction

1.1 Background

As humans, we receive constant input from the world around us through our
senses. The processing of the inputs can lead to various outputs, such as
the experience of a mental mode, the retrieval or forming of a memory or
the elicitation of a physical reaction. We constantly interact with the world
around us by feeling emotions, feeling pain, learning, forgetting, seeing, hearing,
speaking and by performing complex movements. But what are the underlying
mechanisms that govern all the information processing that constitutes the
biological foundations of behavior? Neuroscientists take on the challenge of
answering this kind of questions by studying the network dynamics of the
immensely complex organ that is the brain.

“Listening to” the brain with the right kind of tools can help us reveal some
of the mysteries behind our behavior. By probing the central nervous system
(CNS) for its neuronal activities while simultaneously observing behavior, we
can make associations and correlations and successively build up models that
describe the neural circuits that drive our behavior. Not only do such insights
quench our thirst for understanding normal behavior. They also provide us with
knowledge that can be used for clinical treatment of neurological disease or for
regaining physical functions that have been lost due to neural injury, usually
by “talking back to” the nervous system by means of electrical stimulation.

Brain-machine interfaces (BMIs) constitute a class of platforms that provide
a uni- or bidirectional connection to the central nervous system, and thereby
allow research and treatments as the ones mentioned above. Unidirectional
BMIs allow either the measurement of neural activity or the induction of some
kind of action, for instance the control of prosthetic devices or a wheelchair.
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Bidirectional BMIs communicate with the CNS in both directions by measur-
ing neural activity, extracting information from the measurements and then
reacting in a predefined manner. For example, the extracted information can
reflect a patient’s intended action and the reaction can be in the form of sending
a control signal via an actuator unit to an electric wheelchair or a prosthetic
limb.

Various types of BMIs exist, varying in their level of invasiveness and the
type of signal that they measure [1]. One type of BMIs uses chronically im-
planted microelectrodes to measure the changes in electric potential that follows
the activation of single neurons in the vicinity of the electrodes. Due to both
the spatial and temporal resolution that can be captured with such recordings,
the amount of information produced by them is vast and the most practical way
of conveying the measured data to the outside world is through wires. How-
ever, wired connections to chronically implanted measurement devices come
with risks of infections due to transcutaneous wires, and they obviously re-
strict the subject’s freedom to move around. Not only are these restrictions
disadvantageous from the subject’s standpoint, but also from the point of view
of answering research questions regarding behavior, since having a wire bundle
connected to its head is likely to influence the behavior of the subject. Wireless
BMIs ideally resolve these restrictions.

Wireless BMIs come with new challenges which mostly arise due to limita-
tions in wireless link capacity and energy resources. Implanted self-contained
measurement, devices must have a long lifetime in order to maximize their relia-
bility and minimize the frequency of surgical interventions to replace batteries.
Low power consumption is therefore a key feature of the implanted part of a
wireless BMI. However, wireless transmission of data is energy consuming. The
most straight-forward ways of increasing the capacity of a wireless link are to
increase the transmitted power and to increase bandwidth. However, due to
the power-constraints on the implant and the heavy utilization of the radio
frequency spectrum, both of these approaches are expensive, considering the
high data rates provided by multi-channel neural recording devices.

A more feasible way to approach the problem is to decrease the data rate
into the wireless link by minimal computational efforts and thereby simultane-
ously ensuring power efficiency and efficient use of the wireless link capacity at
hand. This demands the implementation of energy efficient data reduction or
compression techniques on the implant, that make sure that only the relevant
information is transmitted over the wireless link. However, discarding data
may reduce the quality of the subsequent analysis and thereby it may influence
the validity of the conclusions drawn either by the researcher studying behavior
or the actuator generating prosthetic control signals. It is therefore essential
to consider the performance in extracting information from the neural data
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when studying ways of discarding data. Such consideration requires the use
of reliable and realistic signal models that allow the output from the analysis
procedure to be compared with the true information content of the signal.

This thesis addresses realistic and computationally efficient modeling of the
extracellular neural signal, as well as techniques for data reduction for efficient
use of computational and wireless resources. Signal models of various complex-
ities and degrees of realism have been implemented, the latest one constituting
a new class of models, referred to in this thesis as compressed compartment
models. The models facilitate computationally and memory efficient synthesis
of multi-electrode recordings with realistic properties and are used to study the
effects of data reduction on the conclusions that can be drawn from the data
analysis.

1.2 Aims

The overall aims of the thesis work have been to:

e Implement a simple wireless brain-machine interface using off-the-shelf
components to identify bottlenecks to consider in future designs.

e Establish realistic, controllable and computationally efficient signal mod-
els that can be used to synthesize test data for evaluating performance
in the analysis of single- and multi channel neurophysiological data.

e Characterize the influence of sampling rate and sampling resolution on
the performance in the analysis of neurophysiological data using various
algorithms under various circumstances and establish guidelines for the
selection of sampling parameters.

e Use signal models to characterize the effects of electrode movements on
detected spike waveforms.

e Study how compression of spike waveforms with low-complexity architec-
tures influences performance in the analysis of neurophysiological data.

1.3 Methods at a Glance

Following is a brief summary of the most essential methods applied in the
papers of Part II. The methods are described in more detail in the papers and
in Chapters 2 to 4.
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Hardware (Paper I) was designed and simulated in NI Multisim and PCB
layout was done in CadSoft Eagle. The hardware was built by manual soldering
of surface mounted components of sizes down to 0201, i.e. 0.6 x 0.3 mm.

Programming was done in Matlab (Papers I to VII) and C' (Papers I and
IT). The simulator in Paper VI was written using object oriented programming
in Matlab.

Extracellular neural signal models were developed (Papers II, IIT and VI)
and used to provide synthetic test recordings with ground truth. Spike times
were generated assuming spontaneous firing with gamma distributed inter-spike
intervals (Papers IT and VI), bursty firing with gamma distributed inter-burst
intervals and Poisson distributed number of spikes per burst (Paper VI) and
correlated firing (Paper VI). Neuronal spike waveforms were obtained from an
experimentally obtained library of mean spike waveforms from the cat cerebel-
lum (Paper II), by a statistical model involving principal component analysis
and Gaussian mixture models (Papers III and IV) and through compressed
compartment models obtained through the use of the NEURON simulation
environment, the line source approximation (LSA), singular value decomposi-
tion (SVD) and trivariate polynomial fitting with a multivariate Vandermonde
matrix (Papers V, VI and VII). Physiological background noise was modeled
as the spiking activity of distant neurons (Papers I to VII) and thermal noise
was assumed to be zero-mean Gaussian distributed. Spike libraries and mod-
els were validated in terms of spike duration (Papers II and III), distribution
of Euclidean distances between spikes, a double blind test for discrimination
between real and modeled spikes and sample intensity (Paper III) and com-
parison of shape and amplitude of true and modeled spikes (Paper VI). Signal
models were validated in terms of power spectral density using Welch’s method
(Papers II, IIT and VI), sample histogram and level of background noise (Paper
VI).

Neurophysiological analysis was performed with various algorithms for spike
detection (Papers I, IV and VII), spike alignment (Paper VII), feature extrac-
tion (Papers IV to VII), clustering (Papers IV, VI and VII) and automatic spike
sorting (Paper IT). A method for quantifying performance in spike detection in
terms of true and false positive detection rates was described and used (Paper
IV). Methods for quantifying performance in spike sorting, in terms of overall
and per-neuron clustering accuracies, were described and used (Papers IV, VI
and VII). The PCA feature space representation of spikes was examined as a
potential predictor for performance in spike sorting (Paper IV).

Electrode movements were modeled by simulating arrays of electrodes fol-
lowing the assumed movement paths and extracting spikes from a time window
of given duration while sweeping the window across the recording channels
(Paper V). Electrode position was estimated using a linear model involving a
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transformation matrix obtained through singular value decomposition (Paper
V). Electrode movements in physical space and spike movements in feature
space were quantified using a path measure involving the Euclidean distance
of points on the path to the mean point on the path (Paper V).

Data reduction was performed by minimizing sampling rate and resolution
while sustaining performance in spike detection and sorting (Paper IV) and by
compression with fixed generic compression bases in combination with various
spike detectors and system architectures (Paper VII).

1.4 Outline

Chapters 2 to 4 provide a general overview of the research field and thereby
set the stage for the discussion carried out in the papers of Part II. Chapter 2
starts with a basic presentation of the neuron and the action potential, followed
by a discussion about extracellular neural recordings and the essential system
components involved in their acquisition and analysis.

Chapter 3 describes various approaches to extracellular signal modeling
with the purpose of providing test signals with a priori known characteristics
which allows the quantitative assessment of performance in the analysis of
neurophysiological data. The models are discussed in terms of their realism,
controllability and computational efficiency.

Chapter 4 begins by introducing the wireless BMI as a feasible solution
to some of the problems inherent with wired BMIs, such as the risk for post-
surgical complications and limited freedom of movement for the subject or the
patient. The major challenges involved in the design of wireless BMIs are pre-
sented in relation to theoretical limits for the information transfer capacity of
the wireless channel and the limited energy supply that typically characterizes
self-contained implants. The problem is discussed both from the perspective of
the wireless system and the neural data that is to be transmitted, in terms of
capacity and data reduction techniques, respectively. The second part of the
chapter addresses data reduction in more detail, focusing on simple approaches
to efficiently utilizing the capacity of the wireless link at hand.

In Chapter 5 the results and contributions of the papers are summarized
and the papers are discussed within the context of the field as presented in
Chapters 2 to 4. The chapter concludes with a general discussion about the
results and possible future work.
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Chapter 2

Extracellular Neural
Recordings

Neurons are the basic signaling elements of the central nervous system (CNS)
and they communicate with each other through interfaces called synapses. The
neurons on the transmitting and receiving sides of the synapse are referred to
as the presynaptic and postsynaptic neurons, respectively. A network of neu-
rons that processes information is in many ways similar to a circuit of logic
elements that constantly evaluate the sum of all input signals from all presy-
naptic neurons. If the gathered inputs from the network to a given neuron add
up sufficiently, the neuron gets activated and transmits the signal to down-
stream neurons. Since the signaling is electrochemical in nature, governed by
the flow of ions across the neuronal membranes, the activation pattern of a
neuron can be monitored from its outside by measuring the change in elec-
tric potential associated with its activation. These types of measurements
are referred to as extracellular neural recordings and they generally allow the
activities of multiple individual neurons to be assessed through one or more
measurement channels. By monitoring multiple neurons in a circuit that is
involved in a behavioral task, it is possible to characterize the major circuit
components and build models that explain the neuronal activities underlying
the behavior.

In this chapter, the neuron is introduced from a cytological and electro-
physiological perspective and the action potential is introduced as the basic
signaling unit in neuronal circuits [2, 3]. The major steps involved in acquir-
ing and and analyzing the extracellular signal are then discussed, assuming
that the task is to characterize either the compound activities of a group of
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neurons (multi-unit activity) or the activities of individual neurons (single-unit
activity).

2.1 Neurophysiological Background

2.1.1 The Neuron

Neurons and glia cells are the building blocks of the CNS. In principle, the
information processing carried out by the CNS is carried out by neurons. The
basic signal unit for most neurons is the action potential, a rapid all-or-nothing
change of the neuronal membrane potential. The total number of neurons in
the brain is in the order of 10'! and despite the existence of a large number of
neuronal types, they all share the same basic architecture and their common
role is to convey and process the information that governs our behavior.

A typical neuron can be roughly divided into four functional regions — soma,
dendrites, axon and presynaptic terminals (see Fig. 2.1). The soma (or cell
body) contains the cell nucleus and is the neuron’s center for metabolic func-
tions and protein synthesis. The dendrites serve as the input terminals of the
neuron — receiving incoming signals from presynaptic neurons. The axon starts
at the base of the soma — at the azon hillock — and serves as a pathway for
the signal from the neuron to reach postsynaptic neurons. The axon hillock is
where the input signals to the neuron are integrated and if the total input ex-
ceeds a certain threshold, an action potential is generated and propagates along
the axon to reach other neurons. This function of the axon hillock depends on
its high density of voltage gated sodium channels (see following section). The
axon can be myelinated, i.e. wrapped within a sheath of isolating oligodenro-
cytes, which is one type of glial cells found within the nervous system. The
sections of the myelin sheath are separated by the nodes of Ranvier, at which
the action potential is regenerated, providing an efficient way of transmitting
the signal a long way effectively without being attenuated. Presynaptic termi-
nals are where the neuron terminates and connects to postsynaptic neurons.
Synapses are the connection terminals between neurons across which signaling
substances flow and allow the signal from one neuron to influence the state of
another neuron.

2.1.2 The Membrane Potential

As touched upon already, the state of the neuron is reflected in its membrane
potential, i.e. the potential difference between the inside and outside of the cell
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Figure 2.1: An illustration of the building blocks of a typical neuron (partially
adopted from http://www.openclipart.com)

membrane. The membrane potential V,,, is thus given by
Vm = Vin — Vout (2-1)

where V;, and V,,; are the electric potentials at the inside and outside of the
cell membrane respectively.

While the action potential, generated in the axon hillock and traveling down
the axon, is in principle an all-or-nothing phenomenon, the sub-threshold mem-
brane potential of the cell soma or dendrites can be modulated in a graded fash-
ion. The membrane potential depends on differences in concentrations of ions
on either side of the membrane, which are maintained by energy consuming ion
pumps located in the membrane and pumping the ions against their concentra-
tion gradients. Membrane current is generated as the ions flow through passive
ion channels, thereby displacing electrical charges across the membrane.

The most significant ions in determining the neuronal membrane potential
are sodium (Na'), potassium (K*) and chlorine (C17). At any given time,
their equilibrium potentials, together with the membrane’s permeability to the
respective ion, determine the resting potential of the cell, i.e. the membrane
potential in the resting — or inactive — neuron. The equilibrium potential of a
given ion X can be calculated by Nernst’s equation as

_RT[X),
~LF X,

Ex (2.2)
where R is the gas constant, T is the temperature (in Kelvin), z is the valence
of the ion, I is the Faraday constant and [X];/, is the intra-/extracellular con-
centration of the ion. Under steady-state conditions, i.e. when the membrane
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potential V,,, is not changing, it can be calculated according to Goldman’s
equation as
RT PK*[K-F]O+PNa+[Na+]o+PCl7[CZ_]i

V, = —1
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(2.3)

where Px is the membrane permeability to ion X (in cm/s). Thus, when the
membrane permeability of one ion dominates over those of other ions, Gold-
man’s equation approaches Nernst’s equation for that ion and the membrane
potential approaches the equilibrium potential for that ion.

In the resting neuron, the net ion flow across the membrane is at equilib-
rium and the membrane potential is given by the neuron’s resting membrane
potential (usually between -50 and -90 mV). At rest, there is an influx of Na™
ions and an outward flux of K* ions. When this equilibrium is disturbed, the
membrane becomes either depolarized or hyperpolarized, i.e. the membrane
potential becomes either less or more negative.

It is through locally altering the neuronal membrane properties and thereby
the permeability to different ions that neurons are able to communicate with
each other. When a neuron receives input from a presynaptic neuron, the
(postsynaptic) neuron’s membrane potential is changed locally, usually at the
dendrites and this change then spreads towards the cell soma and attenuates
passively along the cell membrane. The membrane’s response to this change
depends on the membrane capacitance, the membrane input resistance and the
axial resistance of the dendrite(s).

A single neuron can receive excitatory and inhibitory inputs from several
thousands of presynaptic neurons. Excitatory and inhibitory inputs strive to-
wards depolarizing and hyperpolarizing the membrane, respectively, and thus
counteract each other. When the sum of these inputs leads to a depolarization
of the membrane beyond a given threshold, the cell gets activated and an action
potential is generated.

2.1.3 The Action Potential

In 1952 Alan Lloyd Hodgkin and Andrew Fielding Huxley explained in detail
the interaction between ion permeabilities, ion flows and the membrane poten-
tial. Using their models they provided a thorough mathematical description of
the generation of action potentials [4, 5].

If the inputs from all presynaptic neurons sum up to depolarize the mem-
brane potential of the postsynaptic cell beyond a given threshold, an action
potential is generated (see Fig. 2.2). Voltage gated Na™ channels open when
the threshold is reached, giving rise to an influx of Na™ ions that is larger than
the outflux of KT ions. This altered flux of ions continues to further depolarize
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Figure 2.2: An illustration of the action potential and the underlying mecha-
nisms.

the membrane, which in turn leads to the opening of yet more voltage gated
Na* channels. This positive-feedback procedure continues to rapidly drive the
membrane potential towards the equilibrium potential of Na™, which is in the
range of some tens of millivolts. Finally, when the peak of the action potential
is reached, the voltage gated Na™ channels start to close by inactivation and
voltage gated K™ channels start to open. Thus the Na™ influx decreases and a
K+ influx begins, resulting in the repolarization of the membrane. Before the
K* ion channels close, the membrane potential usually gets briefly polarized
beyond the resting membrane potential.

During a short time period (a few milliseconds) after the termination of the
action potential, there is a residual inactivation of Na™ channels and opening
of Kt channels. This short time period is referred to as the refractory period.
The refractory period can be divided into two phases — the absolute and the
relative refractory periods. During the absolute refractory period, the neuron
cannot, be activated and during the relative refractory period, the activation
threshold is higher than when the cell is at equilibrium and thus a stronger
stimulus is required for activation. The refractory period thus gives rise to an
upper limit to the firing rate of the neuron.
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2.2 Recording and Analysis of the Extracellular
Neural Signal

Extracellular neural recordings have become important tools for providing in-
sight into the neuronal circuits that govern our behavior as well as to provide
means of extracting control signals for prosthetic control [6, 7, 8, 9, 10]. In
contrast, to intracellular measurements, which directly measure the membrane
potential of a single neuron, extracellular neuronal recordings measure the elec-
tric potential within the extracellular space, resulting from the flow of ions
across the cell membranes of a large number of neurons simultaneously. The
extracellular signal is measured with an implanted microelectrode, consisting of
one or more electrode sites.

The extracellular signal consists of several components. The first of these,
which is the one addressed throughout this thesis, is the spiking component that
reflects the action potentials elicited in neurons that are close to the recording
electrode, typically within a distance of approximately 50 pm [8]. The shape of
the extracellular spike depends on the morphology of the neuron and the spatial
relationship between the neuron and the electrode [11, 12]. This dependency
is due to the spatial distribution of membrane current sources as seen from the
electrode site, and it allows the detected spikes from different neurons to be
classified and assigned to their neurons of origin through a procedure referred
to as spike sorting [13, 14]. By this procedure, the spike trains from individual
neurons can be separated and the firing characteristics of the neurons can be
characterized individually.

Other components of the extracellular signal are physiological noise, rep-
resenting spiking activity from distant neurons, and low-frequency local field
potentials (LFPs) that are believed to represent synaptic input to neurons close
to the recording electrode [15, 3]. In contrast to the spiking component, most
of the LFP energy resides in the lower part of the frequency spectrum, making
it straightforward to remove from the recorded signal by means of high-pass
filtering and thereby isolating the spiking component. Since the physiological
noise component is composed of spiking activity of distant cells, it cannot be
removed from the recording by simple filtering without influencing the spiking
component as well.

In addition to the above components of the extracellular signal, which all
stem from physiological processes, are those that originate from the measure-
ment system or it’s electrical environment. The most significant of those are
thermal noise generated in the analog front end and 50/60 Hz powerline inter-
ference. Thermal noise can be minimized by considering it during the design
of electrodes and amplifying circuits and if present, powerline interference can
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be removed by digital filtering.

Figure 2.3 illustrates the general structure of brain-machine interface that
uses extracellular neuronal recordings to extract information about the activ-
ities of multiple or single neurons — the multi- or single unit activity. Figure
2.4 illustrates the procedure of isolating the spike trains from the individual
neurons through spike detection, alignment, feature extraction and clustering.
In the following sections, we introduce the essential components of the system
and briefly discuss the major design considerations.

Spike train analysis

. . A/D o Spike Spike Spike
Electrode >{Amplification| . Filtering Lo Nt L
conversion detection ahgnment sortmg
Unamplified Amplified Digitized LFP and Spike times Aligned Neuronal
analog signal analog signal signal 50/60Hz removed  and waveforms,  spike waveforms  firing patterns,
multi unit activity single unit activity

Figure 2.3: An illustration of the building blocks of a typical brain-machine
interface that uses extracellular neuronal recordings to characterize multi- or
single unit activity.

2.2.1 Electrode

Traditional chronically implanted electrodes for extracellular neuronal record-
ings can be roughly categorized into wire electrodes and semiconductor based
electrodes [16]. Wire electrodes are the oldest type of electrodes used in this
context and they consist of thin insulated wires whose implanted tip is either
cut off or etched in order to expose the conductor to the tissue. Semiconduc-
tor based electrodes are manufactured on semiconductor substrates and can
be designed to have a variety of geometries. They also offer the possibility of
directly manufacturing the front end electronics on top of the electrode array.
Examples of such electrodes are the well known Utah and Michigan arrays that
have numerous electrode sites arranged on a planar and linear array, respec-
tively. A recent type of electrodes has been developed at Neuronano Research
Center (NRC), specifically designed to target the neuronal layers of the cere-
bellum [17]. The NRC electrode is based on a polymer foil, with platinum
coated gold electrode sites and offers increased mechanical flexibility and the
manufacturing procedure can be adapted to manufacture electrodes to target
specific brain structures.

Several factors influence the recording quality for a given electrode. In
[18], the authors concluded that the recording SNR was mainly determined by
the digital filtering, the impedance of the electrode-tissue interface, neuronal
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Figure 2.4: An illustration of the procedure of isolating spike trains from indi-
vidual neurons in the highpass filtered signal. The procedure typically involves
spike detection, spike alignment, feature extraction and clustering. In the ex-
ample shown here, absolute value threshold detection, maximum absolute value
alignment and principal component analysis are used for spike detection, align-
ment and feature extraction, respectively.
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density and firing rates. They concluded that the size of electrode sites had
little impact on the SNR.

2.2.2 Amplification

Due to the small amplitude of the recorded neural signal (typically tens to
hundreds of microvolts), amplification is needed at the input of the neural
recordings system. Some of the primary design factors to consider are gain, in-
put offset, noise and power consumption [19, 20]. Gain and input offset need to
be set to match the signal amplitude with the dynamic range of the subsequent,
block (usually the A/D converter). Noise should be minimized since that is a
significantly limiting factor in the analysis of the recorded signal. Maximizing
the input impedance is important in order to minimize the amplifier’s electrical
loading of the electrode.

In Paper I, a four-channel amplifier with variable gain was designed and
simulated in National Instruments Multisim and the PCB layout was designed
using CadSoft FEagle. With the A/D converter’s dynamic range of 1.22 V in
mind, the gain was set to be variable between 55 and 70 dB, thus allowing full
scale amplification of spikes with peak-to-peak amplitudes between 270 'V and
1.5 mV.

2.2.3 A/D Conversion

The A/D converter digitizes the amplified signal at a sampling rate and resolu-
tion that ideally provide an adequate representation of the signal components
for subsequent data analysis to be carried out reliably. Correct dimensioning
of the A/D converter is especially important in wireless BMIs since excessive
data acquisition increases the demand for computational resources and the data
rate into the wireless link, both of which increase the power consumption of
the implanted part of the BMI.

The sampling parameters may be selected either by considering the fre-
quency contents of the extracellular signal [13, 21] or by minimization with
regard to a performance measure [22, 23]. However, the estimation of signal
bandwidth, and thereby the Nyquist rate, depends on subjective selection of
an upper bound for the frequencies that represent relevant signal components.
Thus, from the point of view of reproducability, an approach that only relates
to the objective estimation of accuracy at the system’s output, as a function
of the sampling parameters employed, is likely to be a superior choice.

The influence of sampling rate and resolution on the performance in the
analysis of neurophysiological data (spike detection and spike sorting) at var-
ious noise levels and numbers of target units was addressed in Paper IV. The



18 Overview of the Research Field

simulator reported in Paper II in combination with the statistically modeled
spike libraries reported in Paper III was used to provide 150 test recordings
— 50 recordings containing each number of target neurons, 1, 2 and 4 respec-
tively. The performance curves were analyzed and sampling rate and resolu-
tion breakpoints for each processing task were taken as the sampling rate and
resolution at which the accuracy fell beyond 1% or 5% below the maximum
achievable accuracy in each case. Spike detection accuracy was estimated in
terms of true and false positive detection rates and spike sorting accuracy was
estimated in terms of true positive classification rate (see Sections 2.2.5 and
2.2.7). Spike detection with absolute value threshold detection and spike sort-
ing with principal component analysis and fuzzy c-means required a sampling
rate and resolution of 16 or 31 kHz (5% or 1% error tolerance) at 9 bits and
5 kHz at 5 bits, respectively. Besides providing guidelines for minimizing sam-
pling rate and resolution while sustaining performance, the results provided
an overall characterization of the relationships between performance, sampling
parameters, noise level and number of target units for various algorithms for
spike detection and spike sorting.

2.2.4 Filtering

Highpass filtering is usually applied to the sampled signal in order to remove the
low-frequency LFP from the higher-frequency spiking component (see Figure
2.4 A). This filtering can be performed in various ways, but should be considered
carefully when comparing results from different studies since it influences the
shape of spikes [18]. The spiking component is typically isolated by bandpass
filtering the signal from around 300 Hz to 5 kHz.

2.2.5 Spike Detection

Spike detection is the task of detecting (and extracting) spike waveforms in the
recording and it is usually based on applying a threshold to a pre-processed
version of the signal. The output of the spike detector therefore constitutes a
series of timestamps indicating the occurrences of action potentials in neurons
close to the electrode, referred to as multi-unit activity (see Figure 2.4 B), and
extracted spike waveforms (see Figure 2.4 C). Although located after the A/D
converter block in the system architecture presented here, spike detection can
also be carried out in the analog domain [24]. In this thesis, we assume spike
detection to be performed in the digital domain.

In Paper IV, we compared the performances of several spike detection al-
gorithms while varying sampling rate, resolution, noise level and number of
target neurons. The algorithms that were implemented and compared were
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ABSolute value threshold detection (ABS) [25], Nonlinear Energy Operator de-
tection (NEO) [26], Stationary Wavelet Transform Product Detection (SWTP)
[27] and Matched Filter detection (MF) [28].

In Paper VII, we compared the performance in spike reconstruction and
spike sorting when preceded by spike detection and compression with the ABS
and NEO detectors and various compression bases (see Chapter 4). In Paper
VII, spike detection was simulated by first using known spike times for extract-
ing spikes from the synthetic signals, provided by the simulator described in
Paper VI, and then discarding spikes that would not pass the detection thresh-
old or that would occur during the recovery period of the detector!'. Spike
detection jitter (see Section 2.2.6) was introduced afterwards using discrete
time delay filters. This procedure was chosen in order to ensure that false pos-
itive detections would not influence the quantification of performance in spike
reconstruction and sorting.

The following sections briefly describe the spike detectors that have been
implemented and used in the papers. The descriptions are followed by a review
of a method for estimating spike detection accuracy, introduced in Paper IV.

Absolute Value Threshold Detection (ABS)

ABS is the simplest form of spike detection, in which a detection occurs when-
ever the absolute value of the signal exceeds a given threshold. The threshold
is usually set as a multiple of an estimate of the background noise level, for
instance as

. . v
T=46n=4- medlan{ 0.|67|45} (2.4)

where 6y is the estimated standard deviation of background noise and |v] is
the absolute value of the digitized signal’s amplitude [25].

Nonlinear Energy Operator Detection (NEO)

In NEO detection a threshold is applied to the nonlinear energy operator (NEO)
of the signal. The NEO estimates the instantaneous energy of the highpass
filtered signal and therefore emphasizes high-amplitude, high-frequency spikes.
The NEO ¥(n) of the signal v(n) is given by

T(n) =v2(n) —v(n+1)-v(n —1). (2.5)

LA spike detector’s recovery period refers to the time period after threshold crossing during
which spike detection can not occur and is introduced in order to avoid multiple detections
of single spikes.
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and the threshold T is set as

T=CY(n

~—

(2.6)

where ¥(n) is the mean of the ¥(n) and C is a scaling factor adjusted empiri-
cally and then used as a constant [26]. C' can be found by optimizing the ratio
between true and false positive detection rates when performing spike detection
on synthetic recordings with known spike times.

Stationary Wavelet Transform Product Detection (SWTP)

The stationary wavelet transform (SWT) of the signal v(n) is calculated at 5
consecutive dyadic scales (W (27,n), j € [1,5]). The scale with the maximum
sum of absolute values is found (2/me=) and the point-wise product P(n) of
wavelet coefficients over three consecutive scales up to 2/me= is calculated as

JImazx

Pm)= J[ W@ (2.7)

J=Jmazx—2

P(n) is then smoothed by convolution with a Bartlett window w(n) (half the
spike length) and a threshold T is applied to the smoothed Py(n). T is set as

T = CP4(n) (2.8)
where C' is a scaling factor and Ps(n) is the mean of Ps(n) [27]. As for NEO
detection, the scaling factor C' can be set empirically by maximizing the ratio
between true and false positive detection rates.

Matched Filter Detection

In MF detection, the signal is convolved with a template spike waveform that
can, for instance, be taken as the mean of detected waveforms during an initial
training period. A threshold T is applied to the absolute value of the resulting
signal. T is set to a percentage of the input range of the (convolved) signal and
can be optimized in the same way as C for NEO and SWTP.

Estimation of Spike Detection Accuracy

In Paper IV, we presented a method for estimating spike detection accuracy,
based on the comparison of detected spike times and true spike time frames
according to the ground truth provided with the test signal. True spike time
frames were determined by the true onsets and durations of spikes. Based
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on this comparison, detection scores were assigned to true spikes depending
on the number of true spike time frames covering each detected spike time.
Special cases, for instance where multiple detections occurred during a single
true spike time frame, were also accounted for. Based on these scores and the
number of false positive detections, the true and false positive detection rates
were calculated according to

S d

Prp = % -100% (2.9)

and N
Prp=——-12  100%, 2.10
er an/N'recovery ‘ ( )

respectively, where M is the number of true spikes and d,, is the detection score
assigned to the mth true spike, Ngp is the number of false positive detections,
N, s is the number of samples in the recording not covered by a true spike time
frame and Nyecovery 1S the recovery time of the spike detector (in samples).

2.2.6 Spike Alignment

Depending on the spike detector employed, spike alignment may be needed to
ensure maximum accuracy in spike sorting. Due to noise and asynchronicity
between the sampling of the signal and the firing of action potentials, detected
spikes from a given neuron are typically not sampled at the same time instances
within the noise-free spike waveform. Therefore, the spike detection threshold is
typically not crossed at the same relative time instance between spikes and once
extracted, spike waveforms are misaligned to one another. This phenomenon
is referred to as spike detection jitter and is disadvantageous in spike sorting
since it introduces an apparent deviation in shape between the spike waveforms
from a given neuron (see Figure 2.4 C).

Spike detection jitter is removed by spike alignment by identifying the loca-
tion of a reference point (for instance a maximum value or center of mass [3])
and then shifting the detected waveforms to have that reference point occur at
the same absolute point in time for all waveforms (see Figure 2.4 D). Since the
true reference point often does not coincide with a specific sample within the
spike waveforms, the alignment can be preceded by upsampling and proceeded
by downsampling to the original sampling rate. Single-point based alignment
is usually more sensitive to noise than approaches that consider the entire
waveform, such as the center-of-mass approach [3], but is computationally less
demanding.

In Paper IV, the influence of spike detection jitter, introduced by asyn-
chronous sampling and firing, on the accuracy in spike sorting was quantified
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and found to be insignificant at sampling rates above 11.5 kHz when sorting
spikes with principal component analysis and fuzzy c-means (see following sec-
tion). In Paper VII, maximum value alignment was implemented and applied
prior to spike sorting. First, the absolute maximum value of the detected peak
or valley was identified and the waveform was then shifted in time by a discrete
time delay filter to have the absolute maximum value occur at a given point in
time. This procedure was implemented with a variable upsampling factor to
facilitate a more precise alignment.

2.2.7 Spike Sorting

Spike sorting is the task of discriminating between spikes coming from different
neurons and thereby, in combination with the detected spike times, establish-
ing an estimation of the individual neuronal spike trains (see Figure 2.4 H).
The combined output from spike detection and spike sorting is the single unit
activity. In its most common form, spike sorting involves two steps — feature
extraction and clustering. However, there are algorithms that combine the
spike detection and spike sorting steps and do not explicitly include the feature
extraction step. An example of such an algorithm, that employs linear filters
to optimize the signal to noise ratio of the recordings and then uses a proce-
dure called “deconfusion” to separate the activities of the contributing neurons,
is given in [29]. In this thesis, focus is on algorithms where spike detection,
feature extraction and clustering are carried out separately.

An important aspect to consider in relation to spike sorting is the algo-
rithm’s ability to identify neurons in recordings that are separated in time.
Due to electrode movements, spikes coming from a given neuron at a given
recording instance might differ from the spike coming from the same neuron at
another recording instance. The task of pairing spikes from separate recording
instances as coming from the same neurons is sometimes referred to as spike
tracking and has been address in e.g. [30]. In Paper VI, a method for realisti-
cally simulating the changes in spike shapes followed by varying the electrode’s
position was introduced (see Chapter 3). In Paper V, this method was used to
provide test signals for studying the relationship between electrode movements
and the feature space representation of spikes and a linear model was used to
estimate the electrode position directly from the features of detected spikes.

The following sections briefly describe the feature extraction and clustering
algorithms that have been used in the papers. The descriptions are followed
by a brief review of the methods for estimating spike sorting accuracy, used in
Papers IV, VI and VII.
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Feature Extraction

Feature extraction is the step of extracting characteristic features from the
detected spike waveforms that deviate between the spikes coming from different
neurons (see Figure 2.4 E). Various approaches exist, varying in complexity
and applicability to different cases. Here we consider a few feature extraction
methods whose performances have been well characterized. Those are Principal
Component Analysis (PCA) and the Discrete Wavelet Transform (DWT) [14,
25]. PCA was used for spike sorting in Papers IV, VI and VII and the DWT
was used in combination with two different feature selection methods in Paper
IV. PCA has been shown to perform better than the DWT when the wavelet
basis is badly tuned to the data and when the discriminative features of the
waveforms are encountered on a large time scale [31].

Principal Component Analysis:

In PCA, an ordered set of orthonormal basis waveforms (principal compo-
nents), that describe the variation in the set of spike waveforms presented
to the algorithm, is found. The spike waveforms can then be completely
described as linear combinations of the basis waveforms and the basis
waveforms weights can be used as spike features in spike sorting. Since
the set of basis waveforms is ordered by significance — the first waveform
describing the most variation — the first N weights are selected as spike
features. NN is often set to 2 or 3, but this choice is often made since it
provides natural means of visualizing the feature space representation of
spikes.

Discrete Wavelet Transform:

The wavelet transform of each spike is calculated using, for instance, Haar
wavelets. The wavelet coefficients then describe the spike waveforms at
various scales and times [25]. The number of wavelet coefficients is the
same as the number of samples in the spike waveforms. In contrast to
PCA, the coefficients are not ordered according to significance and the
set of coefficients used in clustering needs to be identified. Thus, every
coefficient distribution needs to be tested and selecting the coefficients
that provide the best cluster separation is based on the obtained test
statistics. Selecting coefficients with multimodal distributions is bene-
ficial since good mode separation indicates good cluster separation. In
Paper IV, we implemented and used the mazimum-difference test [32]
and a modified version of the Lilliefors test for normality [25]. In the
modified Lilliefors test, a measure for mode separation is included in the
overall test statistic and the features with the three highest test statistics
are selected.
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Clustering

Clustering is the task of grouping together spikes with similar features, and
thereby assigning spikes to their neurons of origin (see Figure 2.4 F and G).
The clustering algorithms used in the papers are K-means (Papers VI and VII)
and Fuzzy C-means (Paper IV) [33]. Both of these algorithms require that the
number of clusters is known a priori, which it seldom is in reality. However,
since the work accounted for in the papers in all cases involved comparing the
performances of the algorithms while varying some external properties, such
as sampling rate, noise level etc., the true number of clusters was provided as
input for the sake of consistency. The true number of clusters was known from
the ground truth provided with the synthetic test recordings.

In K-means, K clusters are assumed to be present and the points in feature
space are successively assigned to clusters based on their distances to the mean
point in each cluster. The cluster means are updated as points are assigned to
them. Fuzzy C-means is similar to K-means, but instead of returning cluster
identities for each point as K-means does, C-means returns the probabilities of
each point belonging to each cluster.

Estimation of Spike Sorting Accuracy

Spike sorting accuracy can be estimated by comparing assigned neuronal iden-
tities with the true identities provided by the ground truth when processing
test data. The accuracy can be estimated for either the entire set of spikes
as an overall measure (Paper IV, VI and VII), or for the individual neurons
(Paper VI). Since the cluster identities of true and detected clusters are not
necessarily the same, measures need to be taken in order to link together true
and detected clusters.

In Paper IV, a method for estimating overall clustering accuracy was in-
troduced and used. First, an evidence matrix F was constructed, where the
entries e; ; corresponded to the number of spikes truly belonging to cluster j
that were assigned to cluster ¢. By hierarchical examination of the evidence
matrix, the most likely cluster mappings were successively revealed and the
true positive classification rate was calculated as the total percentage of spikes
assigned to the correct cluster.

In Paper VI, a similar method was used, but instead the entries ¢; ; of the
evidence matrix C corresponded to the pairwise linear correlation coefficients
between the mean spike waveforms of true cluster ¢ and detected cluster j.
Having revealed the cluster mappings from the evidence matrix, the leakage
matriz L was constructed where element [; ; corresponded to the number of
spikes truly belonging to neuron i classified as belonging to neuron j. Thus,
the entries of the leakage matrix provided direct information about the number
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of correct and false classifications on a per-neuron basis, allowing the clustering
results to be evaluated both for each neuron and for the gathered assembly of
neurons. This procedure was not accounted for in detail in Paper VI since the
purpose of the analysis carried out in the paper was only to demonstrate the
usability of the modeling method presented in the paper.
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Chapter 3

Extracellular Neural Signal
Modeling

As discussed in Chapter 2, the main components of the extracellular signal are
(1) the spiking component, representing neuronal activity in the vicinity of the
recording electrode, (2) local field potentials, representing synaptic input into
the region and (3) physiological noise, representing spiking activity from distant
neurons. When developing and testing algorithms for extracting information
from such recordings, the access to test data with a priori known characteristics
is of great importance [34]. Since the true neuronal activities that contribute
to real recordings are usually not known or difficult to characterize completely,
synthetic model based test recordings are a feasible alternative.

Realism, controllability and computational efficiency are attractive proper-
ties of extracellular signal models for test signal generation. Realism can refer
to neuronal firing patterns, spike amplitude and spike shape and it increases the
level to which the model mimics real-life scenarios that arise once the system
is implemented. Realism is thus a highly important property since it increases
the likeliness that the estimated algorithm performance reflects the true per-
formance after implementation in a future application. The controllability of
a model refers to, for instance, to which extent the firing properties of neurons
can be controlled by the experimenter and the degree of freedom in setting up
the recording geometry. It might also refer to the level of detail at which ground
truth information can be accessed. Controllability allows system performance
to be evaluated in a wide range of scenarios and increases the applicability of
the results of a performance evaluation. Last but not least, computational effi-
ciency allows quick access to simulation data and it therefore aids in reducing
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the time spent testing the algorithms.

This chapter begins by describing the approach to signal generation used in
the models addressed in this thesis. Then, a brief review of models to generate
neuronal firing patterns is given. Finally, the most common approaches for
obtaining test signals are divided into categories according to signal origin
and the different models are discussed in terms of realism, controllability and
computational efficiency.

3.1 Signal Construction

In the signal models implemented in Papers IT and VI, the signal is assembled as
the sum of spike trains from all neurons contributing to the recording. For each
neuron, a spike waveform is determined and random spike times are generated
using the neuron’s firing model (see following section). The neuron’s spike train
vp (t) is then generated according to

My,
vn(t) = Y snlt = Tom) (3.1)

myp=1

where 7, ,,, is the mth spike time of neuron n, M, is the total number of spikes
that the nth neuron fires during the recording and s,,(¢) is the pre-calculated
spike waveform of the nth neuron. The total signal is then given by the sum
of spike trains from all NV neurons, i.e.

N
v(t) =Y va(t). (3.2)

In the case multiple electrode sites are simulated (Paper VI), the signal is
constructed in this way for each electrode site. Other signal components, such
as the LFP, thermal noise and powerline interference are generated separately
and then added to the signal. Apart from simultaneous intra- and extracellular
recordings, the models discussed in the following sections can all be used in
combination with this signal construction procedure.

3.2 Firing Models

Firing models are statistical models that are used to generate spike trains or
firing patterns for the neurons that contribute to the recording. Although
they may not be suitable for studying the dynamics of neuronal networks [35],
such statistical models are very practical from the point of view of providing
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realistic test data for characterizing system performance. Three such models
are briefly discussed here, all of which have been implemented and used in the
work reported in the papers.

3.2.1 Spontaneous Firing

The simplest firing model assumes no functional relations between the neurons
in the recording and all neurons are assumed to fire spikes at random times. The
generation of spike times can be modeled, for instance, by a Poisson process or
a renewal process [36]. The distributions of inter-spike intervals (ISIs) for the
Poisson and renewal processes can then be modeled as exponential and gamma
distributions, respectively. Due to its larger number of degrees of freedom, the
renewal process has the advantage of being able to model both the absolute and
relative refractory periods of the neuron (see Section 2.1.3). This can be solved
to some extent for the Poisson process by using a truncated exponential function
for the ISI generation. However, this only captures the absolute refractory
period.

In Papers II and VI, models for generating spike times with gamma dis-
tributed ISIs were implemented and used. The gamma distribution is charac-
terized by it’s shape and scale factors, k and @, respectively. The shape factor
relates to how narrow the distribution is — a small shape factor indicating a
narrow distribution. The scale factor relates to the location of the distribution
and is thus related to the mean value. The mean of the distribution is given
by the product of the shape and scale factors. In the papers, we used a model
description based on a given shape factor £ and the mean ISI which is given
by the inverse of the mean firing rate f, i.e.

1
ISINF(k, fk:) (3.3)
Generating random spike times for a given neuron with a given ISI distribution
was performed in three steps. First, the total number of spike times to be
generated was assumed to be roughly given by the duration of the recording
times the mean firing rate of the neuron. Second, the corresponding number
of random ISIs was drawn from the ISI distribution. Finally, the ISIs were
integrated to obtain the spike times.

3.2.2 Bursting Neurons

The phenomenon of bursting refers to when the spikes from a neuron arrive in
clusters of e.g. 2 to 20 spikes. The bursts are separated by inter-burst intervals
(IBIs) of up to 30 seconds and during the time of a burst, the spikes are fired
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at regular or sometimes unusually short inter-spike intervals. The IST usually
increases during the burst and the spikes successively decrease in amplitude,
which is likely to be caused by decreased Nat conductance resulting from the
sustained depolarization [37, 38].

In the simulator described in Paper VI, a model for simulating bursting
neurons was implemented. IBIs were assumed to be gamma distributed and the
distribution was characterized by a mean burst rate and a shape parameter, and
the number of spikes per burst was assumed to follow a Poisson distribution,
characterized by a mean value [36]. Spike times were then generated in three
steps. First, burst times were generated in the exact same way as spike times
for the spontaneous firing models described in the previous section. Second,
a random number of spikes was assigned to each burst. Third, spike times
were generated within each burst by adding up a given fixed ISI plus a small
normally distributed random shift. The third step was implemented in this
way for the sake of simplification. Also, for the sake of simplification, spike
amplitude was kept fixed within bursts.

3.2.3 Correlated Neuronal Activities

Statistical models can be useful for generating test data that simulates network
activity to some extent. Such test data extend the challenge for the system
under test from only having to extract firing patterns of individual neurons to
that of also unraveling the connections between them. In Paper VI, we included
the implementation of the method described in [39] provided by the authors of
that paper, to generate spike times for neurons whose activities were assumed
to be correlated to a given extent, specified by a covariance matrix.

3.3 Simultaneous Intra- and Extracellular
Recordings

Although this class of test signals would perhaps fit better into the context
of test signal acquisition rather than gemeration, we include it here since it is
used within the same context and represents an important class of test signals
[40, 29]. Tt was previously mentioned that the major problem with using real
recordings as test signals is the absence or incompleteness of a priori knowledge
about the true information content in the signal. However, by simultaneously
performing high SNR intracellular measurements on the neurons contributing
to the recorded signal, this problem is overcome to some extent.

In terms of realism, this class of test signals is highly advantageous, the
signals being real in nature. However, they lack in terms of controllability
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since the possibilities of modifying the recording properties are very limited.
Also, despite the presence of the high SNR intracellular recordings, they may
not capture all of the true neuronal activity represented in the extracellular
recording and thus, the reliability of the ground truth may be limited. The
concept of computational complexity does not apply here. Due to their realism
and despite the limitations mentioned here, simultaneous intra- and extracel-
lular recordings may be suitable as benchmark signals to use at later stages of
algorithm testing.

3.4 Mathematical Models

This class of models is based on mathematical descriptions of the origin of the
extracellular signal. The models belonging to this class can be assigned to three
different, subcategories, depending on the level of detail they capture and the
methods used for modeling the spike waveforms. These categories are discussed
in the following sections.

3.4.1 Compartment Models

Compartment models are based on mathematical descriptions of how the action
potential propagates along the neuron [41, 42, 12]. To facilitate the simulation
of complex neuronal geometries, the neuron is divided into structural elements,
or compartments, whose electrical properties are well defined. By modeling
the membrane properties of each compartment, as well as the interactions be-
tween adjacent compartments, compartment models can be used to study the
neuronal response to action potential generation at a high level of realism.

Having obtained the time-varying membrane currents in each compartment,
they can be used to calculate the resulting voltage changes in the extracellu-
lar space using the line source approzimation (LSA) [43]. The fundamental
assumption of the LSA model is that each compartment, represented by a ca-
ble (compartment), can be replaced by a linear arrangement of point current
sources. The contribution from a given point source to the electric potential in
a given measurement point outside the neuron is then given by

1

6= (3.4)

dmoer
where 7 is the current, o, is the conductivity of the extracellular space and
r is the distance between the point source and the measurement point. The
extracellular potential is then computed as the sum of the potentials from all
point sources in all compartments. This combination of compartment model-
ing and the LSA thus facilitates realistic simulation of the spatial dependency
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of the measured spike waveform as a function of the morphology and ionic
conductance properties of the neuron [11, 12].

Since the possibility of varying the geometrical and electrical properties of
neuronal compartment models is practically unlimited, they are highly flexible
and offer a high degree of controllability. However, due to the level of detail and
the relatively high computational complexity, simulating extracellular record-
ings with direct compartment model and the LSA is time consuming and thus
unpractical when simulating a wide range of recording scenarios. It is possible,
however, to pre-calculate the LSA on a grid of measurement points and then
to use interpolation to determine the spike waveforms in off-grid measurement
points [44]. Although this may speed up the test signal generation, it does not
scale well with increasing the number of neuron-electrode pairs.

3.4.2 Template Based Models

Template based signal models rely on libraries of fixed spike waveforms that
are selected, usually at random, and assigned to the neurons contributing to
the recording [45, 46]. Apart from the distance between the electrode and
the neuron, no geometrical factors influencing the measured spike waveform
are accounted for. The spike attenuation as a function of distance r can be
modeled, for instance, as a power law

1
A(r) = A rary (3.5)
where the coefficients ¢ and b determine the shape of the amplitude decay
function as the distance r is increased.

Template based models have been shown to provide a high degree of realism
in terms of general signal properties (power spectral density, amplitude distri-
bution and autocorrelation), but in their simplest form, this realism only holds
when simulating recordings with single non-moving electrodes. Multi-electrode
recordings can be simulated with template based models, but again, only the
difference in spike amplitudes between the recording channels is accounted for
and other variations in the shapes of spike waveforms are discarded.

The absence of mathematical descriptions of how the spike waveform is
generated makes the controllability of template based models limited. For
instance, studying the effects of electrode movements on the performance in
spike sorting is not feasible since no information is available describing how the
spike waveforms would be influenced by the movements (except for amplitude).
The discrete nature of experimentally obtained spike libraries also limits their
usability and controllability.
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Although the simplicity of template based models limits their usability to
some extent, they should not be underestimated. Due to their low complexity it
is possible to generate large sets of test signals with relatively little effort. This
facilitates statistical comparison of system performance, which is attractive
from a generalizability point of view. This type of analysis was carried out in
Paper IV.

In the simulator described in Paper II we implemented a template based
model for the synthesis of test signals. The spike library was generated by
detecting and sorting spikes from a large number of in-vivo recordings from
the cat cerebellum [47]. Spike detection and spike sorting were performed
with absolute value threshold detection and Chronuz [3, 48], respectively. The
library contained 85 mean spike waveforms. The simulated recording volume
was divided into a near field and a far field, containing target neurons and noise
neurons, respectively, and all neurons were assigned a randomly selected spike
waveform from the library. Neurons in the near field were initially assigned a
constant spike amplitude of one (maximum absolute value). This was changed
in a later implementation (Paper IV) to have the near field amplitudes vary
randomly. Neurons in the far field were assigned a random position and the
spike amplitude was calculated according to the power law of Equation 3.5.
Synthetic recordings were validated in terms of power spectral density using
Welch’s method, autocorrelation and usability for quantifying spike detection
accuracy.

In Paper III, we presented a method to extend the spike library provided in
Paper II by statistical modeling. Principal component analysis (PCA) was used
to find orthonormal basis waveforms describing the spike templates and the
distributions of the weights of the first NV basis waveforms were then fitted to an
N-dimensional K-modal Gaussian mixture model. The number of dimensions
(N = 6) was taken as the number of dimensions that accounted for 99% of the
variance in the spike waveforms. The modeling procedure was carried out for
various numbers of modes and the model with the lowest Bayesian information
criterion was selected (K = 2). The statistical model was shown to be usable
for generating random spike waveforms whose properties were similar to those
of the original template waveforms.

3.4.3 Compressed Compartment Models

In Paper VI, we introduced a new class of models that combine the realism
and controllability of compartment models with the computational simplicity
of template based models. An action potential was simulated in four compart-
ment models of a CA1 pyramidal neuron [11] using the simulation environment
NEURON [49] and the LSA was then used to calculate the extracellular spike
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waveforms on a dense grid of measurement points surrounding the neurons.
Singular value decomposition was used to find a set of orthonormal basis wave-
forms for the calculated spikes within a volume bounded by a model specific
ellipsoid concentric with the center of the neuron’s soma. The weights of the
first six basis waveforms were then individually fitted to trivariate polynomial
functions of the measurement point coordinates. The spatial dependency of
the weight w,(z,y, z) of the nth basis waveform b,,(¢) was thus assumed to be
given by

(2,9, 2 Zcz Sityyei2 00 (3.6)

where ¢;, is the ith coefficient of the polynomial and e is a matrix whose ith
row contains the ith combination of z, y and z exponents included in the model.
Having solved this fitting problem for all six dimensions, the spike waveforms
within the model ellipsoid could be calculated as a linear combination of the
basis waveforms with the weights calculated according to the polynomials, i.e.

6
s(t, ,y, 2) Z (,, 2)bn (t). (3.7)

For measurement points outside the model ellipsoid, the spike waveform was
calculated in the point of intersection between the ellipsoid and a line of sight
from the measurement point to the origin and then scaled with a power-law
function of the point’s distance from the ellipsoid. The procedure of calculating
spike waveforms was implemented using matrix multiplications and thus a very
large number of measurement points could be treated simultaneously.

The model was validated by comparing modeled and true (NEURON gen-
erated) spike waveforms in terms of shape and amplitude and by showing that
noise properties could be controlled by the appropriate selection of recording
geometry and firing properties of distant neurons. The models were imple-
mented into a computationally efficient object oriented simulation tool, written
in Matlab and the HDF'5 file format [50] was used to store simulation data on-
the-fly in a memory-efficient way. The model was shown to greatly increase the
computational efficiency in simulating realistic multi-channel test recordings
compared to previous methods.

In Paper V, the model of Paper VI was used to explore the effects of elec-
trode movements on the appearance of detected spikes in feature space and
show that a given movement path in the physical space translated to a simi-
lar movement path in the feature space. A path measure was introduced that
reflected the distance of points along the path to the mean point on the path.
This insight was then used to perform estimation of the electrode position
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based on the feature space representation of detected spikes, assuming that
spike features were related to electrode position through the linear model

BTS = AX 417 (3.8)

where the product S is the spike matrix, A is a transformation matrix that
transforms physical electrode coordinates in X to points in the spike feature
space spanned by B and 7 represents noise or variations not captured by the
transformation matrix.

3.5 Hybrid Models

Hybrid signal models are based on superimposing synthetic spike trains, gen-
erated by any of the models in the “mathematical models” class, onto a real
recording of physiological noise [51]. Hybrid models thus offer a high degree of
realism, but lack in controllability to some extent, depending on which model
is used to generate the synthetic spike trains. Computational complexity also
depends on the model used to generate the synthetic spike trains. Since no ex-
plicit mathematical description of the background noise is used, hybrid models
are not suitable for the simulation of multichannel recordings where electrode
sites are closely spaced.
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Chapter 4

Wireless Brain-Machine
Interfaces and Data
Reduction

In its traditional form, the measurement system presented in Chapter 2 relies
on wired connections between the system parts. When performing acute exper-
iments on anesthetized subjects, this is not a problem, since the mobility of the
subject and risks for surgical /post-surgical complications are usually insignifi-
cant factors. However, in experiments on awake and freely moving subjects or
in clinical applications where the acquisition device is chronically implanted,
the wires and the bulk of the equipment, as well as the potential risks for post-
surgical complications become problematic. Wireless brain-machine interfaces
have the potential to overcome these limitations.

By wireless BMIs, we refer to a measurement system where the electrode,
the amplifier, the acquisition part and some of the processing part is implanted
into the subject along with a transmitter. The implanted part of the BMI
sends the acquired data to an external unit that is used for controlling the
measurement device and handling and analyzing the incoming measurement
data.

Despite the potential of wireless BMIs, designing them involves a great
challenge that mainly stems from two fundamental characteristics of wireless
BMIs. First, due to physical and implementational limitations, the information
carrying capacity of wireless communication systems is limited. Thus, the
transmission of raw sampled data from the neural recording system immediately
becomes problematic when increasing the number of measurement channels.
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Second, the requirement that the subject-/patient part of the wireless BMI is
fully or partially implanted, leads to great restrictions regarding power and
area consumption. The second point is especially important from the point of
view of clinical applications, where reliability and patient safety are of major
significance and can be jeopardized by batteries running low, requiring either
inductive charging or surgical operation for replacement.

In this chapter, the challenges involved in designing wireless brain-machine
interfaces are discussed from the perspectives of the wireless link as well as
the neural data processing part of the system. First, the limitations of the
wireless link are presented and the feasibility of influencing its properties in
order to increase its capacity are discussed. Second, two steps in obtaining data
reduction are discussed as means of efficiently using the available computational
and wireless resources at hand. The task of increasing the channel capacity to
facilitate high data throughput has not been addressed in the papers, but is
still briefly discussed here due to the importance of wireless link capacity within
the field of wireless communications.

4.1 Wireless Link Capacity

In 1948, Claude Shannon invented modern information theory. His results
characterized the limits for error-free communication within a communication
system and provided a theoretical framework for analyzing link capacity [52].
Although the actual achievable data throughput of a communication link de-
pends on implementational aspects such as modulation and coding, Shannon’s
results can serve as guidelines when approximating maximum performance.

A special case of Shannon’s theory applies to the lossless, frequency flat
Additive White Gaussian Noise (AWGN) channel, for which the input-output
signal relationship is given by

y(n) = x(n) +w(n) (4.1)

where y(n) is the received signal, z(n) is the transmitted signal and w(n) is
the noise added by the channel. The capacity of such a channel (in bits per
second) is given by
P

Cawgn = BlOg2 <]. + m) (42)
where B is the bandwidth, P is the transmitted power and N is the noise
spectral density. Under the AWGN assumption, the capacity of the wireless link
is thus governed by the signal-to-noise ratio (SNR) P/Ny and the bandwidth
of the channel, B.
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As mentioned earlier, the theoretical capacity limit presented above can
be used for indicative purposes when relating available channel resources to
required data throughput. Assuming that each channel of the neural recording
system samples the neural data at a sampling rate of 25 kHz and a wordlength
of 10 bits, each channel will provide a raw data rate of 250 kbps to the wireless
link. For a bandwidth of 1 MHz and an SNR of 0 dB, the maximum theoretical
channel capacity is 1 Mbps, which ideally facilitates the transmission of raw
data from four neural recording channels. The data rate vs. capacity ratio
thus obviously scales badly with the number of neural recording channels. For
instance, a 96 channel neural recording [53] would result in a raw data rate of
24 Mbps, which is way beyond the maximum capacity for the AWGN channel
in the above example.

The data rate vs. capacity problem can be addressed by either reducing
the data rate or by increasing the channel capacity. According to Equation
4.2, the only ways of directly influencing the channel capacity are to increase
the SNR by increasing the transmitted power, or to increase bandwidth. Due
to regulatory restrictions set by, e.g. the Federal Communications Commission
(FCC) and risks for tissue damage caused by heat, increasing the transmitted
power cannot be done indefinitely. Beside those external limitations, increasing
the transmitted power is not beneficial in terms of the energy constraints on
the implant, as discussed earlier. Due to the high exploitation of the radio
spectrum, increasing bandwidth is also limited by regulations and external
circumstances.

Moving away from the assumption of the single-input-single-output (SISO)
channel in Equation 4.1, it is possible to consider other types of systems to
increase the capacity. Multiple-input-multiple-output (MIMO) systems use
multiple transmitter and receiver antennas to exploit the spatial dimension in
the path between the transmitter and receiver antennas and thereby offer an
increase in capacity that is related to the number of subchannels introduced
[54, 55]. However, the number of antenna elements and the spatial relationship
between the antenna elements are important factors in determining the increase
in capacity. Increasing the number of and spacing between antenna elements
increases the spatial diversity in the MIMO channel. Assuming a large spacing
between the antenna elements and an equal number of transmitter and receiver
antennas (IV), the maximum capacity is given by

CMIMO =NB 10g2(1 (43)

+ NOB))

which is N times the capacity of the SISO channel considered earlier. This is
assuming that the receiver has full knowledge of the channel’s state at each
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time!. Achieving this capacity is not realistic in real scenarios, since it is based
on the assumption that all subchannels are completely independent and do not,
interfere with each other [54]. However, using this as a reference for the required
capacity by the data rate produced by the 96 neural recording channels in the
previous example, we would need a 24 x 24 MIMO system. Thus, theoretically,
MIMO does offer a way of increasing capacity to meet the requirements, but at
the cost of drastically increased computational complexity, power consumption
and area consumption, all of which are non-feasible properties from the point
of view of the implanted part of a wireless BMI.

4.2 Data Reduction

Although, theoretically, there exist means of increasing the channel capacity
to match the data rate requirements, they are not practical as discussed in
the previous section. Addressing the problem from the other end, i.e. from
the standpoint of the input data to the transmitter and utilizing the available
channel capacity wisely, is more feasible with respect to both throughput and
energy consumption. In this section, two steps in achieving minimal data rate
into the transmitter are discussed. Due to the energy constraint on the implant,
only low-complexity techniques for data reduction are addressed.

4.2.1 Minimization of Input Data

The simplest way of performing data reduction is that of ensuring minimal
acquisition of data, i.e. minimization of sampling rate and resolution in the
A /D converter block of the measurement system. Such minimization can be
performed either by estimating the bandwidth of the signal and thereby the
Nyquist rate [13, 3], but since the spectrum of the extracellular signal is not
clearly confined within a certain frequency range, this estimation suffers from
subjective assumptions.

Another approach is to minimize sampling rate and resolution while ensur-
ing sustained performance in the analysis of the transmitted data. As already
discussed in Section 2.2.3, the work reported in Paper IV addressed the mini-
mization of sampling rate and resolution with sustained performance in spike
detection and spike sorting, and thereby the minimization of bitrate into the
recording system. We conclude that absolute threshold spike detection required
a sampling rate of 16 to 31 kHz and an effective sampling resolution of 9 bits

IThe channel state information can be established by having the transmitter send a train-
ing signal that is used to estimate the channel’s transfer function.
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for the accuracy to be maintained within 5% and 1% of the maximally achiev-
able accuracy, respectively. For spike sorting we concluded that given that the
spikes were well aligned, sampling rate and resolution could, upon spike de-
tection, be lowered to 5 kHz and 5 bits, respectively, with an error tolerance
of 1%. In the paper, we concluded by presenting a resource allocation scheme
that provides guidelines for minimizing the data rate into the wireless link for
various system configurations.

4.2.2 Compression of Spike Data

The compression of spike data involves extracting the spiking component from
the recording already at the implant and thus significantly reducing the data
rate into the transmitter. Depending on the level of detail of the subsequent
analysis that is to be carried out, more or less detailed representations of the
extracted spiking component are transmitted. Among the most straightforward
approaches described so far include (in order of increasing amount of process-
ing on the implant) transmitting timestamps of the detected spikes [56], the
extracted spike waveforms along with timestamps [57, 58] and finally the neu-
ron labels of spikes along with timestamps [59]. In the first approach, no spike
sorting is carried out and only the gathered activity of the spiking neurons —
the multi-unit activity — can be characterized. In the second approach, the
entire spike sorting procedure is carried out in the external unit and in the
third approach, the entire spike sorting procedure is carried out in the implant.

Assuming that the single unit activity is to be characterized, the exter-
nal unit needs access to sorted spike trains. From that point of view, the
first approach mentioned above is ruled out, since all information about spike
waveforms is lost. If successfully implemented, the third approach would be
attractive, being the one conveying information about the activities of individ-
ual neurons at the lowest data rate. However, performing spike sorting in the
implant is generally both computationally complex and it makes it difficult for
the external unit to validate the results since the spike waveforms are never
seen by it. The second approach offers a feasible compromise, considering that
it retains the information about the spike waveform and leaves the computa-
tionally complex task of spike sorting to the less constrained external unit. This
approach can be combined with compression algorithms to provide essentially
the same information to the external unit, but at a lower data rate than when
transmitting the entire spike waveforms.

A compression basis consists of a set of waveforms that span a space in
which detected spike waveforms have a sparse representation. Sparseness im-
plies that once a spike waveform has been projected onto the full set of basis
waveforms, the majority of the transform (compression) coefficients are small
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in amplitude compared to the minority of high-amplitude coefficients. Thus,
the spike waveform can be approximated by a linear combination of a small
subset of the compression basis waveforms. Compression is thus achieved by
discarding the insignificant coefficients and only transmitting the significant
ones. This procedure of discarding transformation coefficients can be referred
to as dimensionality reduction.

For compression of this kind to be beneficial both in terms of data reduction
and computational complexity, the compression basis needs to be selected to
introduce sparseness, while facilitating a straightforward procedure of selecting
compression coefficients to be transmitted. Thus, ideally — from this point of
view — one would select a fixed compression basis that, despite never being
updated, introduces sparseness and allows the same set of compression coeffi-
cients to be selected in all cases. Due to the stereotypical shape of spike wave-
forms encountered in neural recordings, these criteria can be fulfilled without
significant loss in performance compared to more complex methods involving
adaptive compression basis and coefficient selection. This was indicated by the
results presented in Paper III, that showed that the spike library of Paper II
was by 99% described by the first six principal components, indicating that
spike waveforms could be compressed with a fixed generic compression basis
derived from a large set of experimentally obtained spike waveforms and always
using the first (six) compression coefficients.

In Paper VII, we studied the compression of spike waveforms with various
combinations of system architectures, spike detectors and fixed compression
bases and compared it with the cases when no compression was performed and
when an optimal compression basis was found. The spike detectors included
were absolute value threshold detection and nonlinear energy operator detection
and they were chosen due to their simplicity and performance [28, 32, 23].
System architectures differed in terms of processing task allocation.

Compression was performed by projecting detected spike waveforms onto a
compression basis and then removing redundant coefficients, according to

W, =B,B!'S (4.4)

where the matrix W, contains the compression coefficients, B, is a dimen-
sionality reduction matrix that removes redundant coefficients, B, contains
the compression basis waveforms in its columns and S contains the detected
spikes in its columns. Since fixed compression bases were assumed, the external
unit had full knowledge of the basis being used and could thus reconstruct the
detected spikes from the received coefficients W, according to

S=B.B'W,. (4.5)
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First, we compared the accuracy in spike reconstruction and spike sorting for
all combinations of architectures, spike detectors and compression bases. Then,
we focused on the basis obtained by singular value decomposition of the spike
library from Paper II, since that basis represented the class of generic bases
specially derived from spike data. The results indicated that the fixed generic
compression basis allowed significant compression with insignificant decrease
in spike reconstruction and sorting accuracy, compared to the optimal and
uncompressed case.
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Chapter 5

Contributions and Discussion

This chapter summarizes the results and contributions of my work within the
research field. The papers are summarized individually and their main findings
are put into the context of the research field as presented in the previous chap-
ters. The chapter is concluded with a general discussion and some thoughts
about possible future work.

My personal contributions to the papers in all cases constitute the main
participation in producing the papers, i.e. designs and implementations of
the studies as well as processing, analyzing and accounting for the results and
conclusions. My co-authors and supervisors have provided me with valuable
input throughout all parts of these processes, i.e. during the planning and
executions of the studies and writing of the papers.

5.1 Summary of the Papers

5.1.1 Paper I: Implementation of a Telemetry System for
Neurophysiological Signals

In this paper, the design, implementation and testing of a four channel wearable
telemetry system for neurophysiological measurements is presented. The main
purpose of the work reported in this paper is to investigate the practicality of
implementing wireless BMIs with generic, commercially available components.
Such a pilot investigation is considered to be an important step in identifying
the bottlenecks that should be considered in custom designs of wireless BMIs.

The wearable part of the system measures 30 x 37 x 3 mm and consists
of a custom designed amplifier and a commercially available integrated circuit
containing an A /D converter, a microcontroller and a wireless transceiver. The
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system is built using discrete surface-mounted components. The four-channel
amplifier has variable gain (58 to 73 dB) and the system can be used to sample
and transmit raw data from one of the four channels, at a rate of 3.7 kHz, to an
external PC containing a graphical user interface for system control and visual-
ization of data. To save space and to simplify the amplifier design, the amplifier
is designed to have the four measurement channels share the greater part of the
amplifier chain. However, due to the long settling time when switching between
input channels, the design is deemed unpractical for cyclic sampling schemes
and from that point of view, it is concluded that complete channel-dedicated
amplifier chains are likely to be more practical in a multi-channel telemetric
system.

Despite the flexibility of the presented telemetry system, we conclude that
a more refined set of design parameters is needed for future system designs and
finding those requires further studying of the properties of the extracellular
neural signal. This insight serves as a motivation for the work reported in the
remaining papers.

5.1.2 Paper II: Spike Library Based Simulator for Extra-
cellular Single Unit Neuronal Signals

This paper deals with the generation of test data with a-priori known character-
istics for the quantitative assessment of accuracy in analyzing spike data. The
paper presents a simulation tool for synthesizing single channel test recordings
utilizing a template based extracellular recording model (see Section 3.4.2). A
library of eighty-five experimentally obtained spike templates is used in combi-
nation with a renewal process model for spike time generation to generate spike
trains for the individual neurons contributing to the recording, which are then
added up to comprise the synthetic signal. Spike times and signal components
(spiking, biological noise and thermal noise) are stored separately, allowing
easy scaling of signal to noise ratio. The spike templates represent mean spike
waveforms extracted from a large number of extracellular recordings in the cat
cerebellum, and cover a wide range of waveform morphologies. The simulator
provides test recordings with realistic background noise and is useful for quick
generation of test data with varying properties in terms of firing characteristics,
number of target neurons and background noise level. At the time of writing
the paper, the availability of simulation tools for the purpose of quantifying
system performance was limited, and therefore an important contribution of
this work was the releasing of the code for general use within the research
community.
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5.1.3 Paper III: Statistical Modelling of Spike Libraries
for Simulation of Extracellular Recordings in the
Cerebellum

This paper provides a realistic extension to the discrete spike library provided
in Paper II. Principal component analysis is performed on the original spike
library to find a set of orthonormal basis waveforms. The distribution of the
first six principal component weights across the assembly of eighty five original
waveforms is then fitted to a six-dimensional bi-modal Gaussian mixture model,
that can be used to generate arbitrary spike waveforms which are likely to occur,
given the original spike library.

The model is shown to be able to generate new spike libraries with the same
overall characteristics as the original spike library. In combination with the
simulator reported in Paper II, the synthetic spike library is shown to provide
synthetic recordings with realistic properties. A double-blind test is performed
in which trained neuroscientists, with extensive experience in analyzing spike
data, are asked to point out synthetic spikes in a matrix containing a random
mixture of real and synthetic spikes. None of the participants performs better
than chance when discriminating between real and synthetic spikes.

The number of principal component dimensions used to model the spike
library (six) is in agreement with previous studies where large assemblies of
varying spike waveforms have been analyzed in a similar manner. This result
indicates that a compression basis derived from a generic spike library can be
used for computationally simple compression of spike data (see Paper VII).

5.1.4 Paper IV: Minimizing data transfer with sustained
performance in wireless brain-machine interfaces

This paper deals with the minimization of data rate into the wireless link by
studying in detail the influence of sampling rate and sampling resolution on
the accuracy in spike detection and spike sorting at various noise levels and
numbers of target neurons. The simulator reported in Paper I, in combination
with a library of 2000 synthetic spike waveforms generated with the statistical
model derived in Paper II, is used to synthesize 150 test recordings with known
spike times and spike identities; 50 of each number of target neurons, 1, 2
and 4. The recordings are processed with various spike detectors and spike
sorters and the accuracies are plotted against the simulation variables. For
spike detection with the absolute value threshold detector (ABS) and spike
sorting with principal component analysis and fuzzy c-means (PCA and FCM),
thresholds of 1% to 5% below maximum accuracy in each case are applied to
the performance curves to identify sampling rate and resolution breakpoints.
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The distributions of these breakpoints across the test recordings are studied as
functions of noise level and number of target units and a set of guidelines for the
selection of sampling parameters in a given recording situation is established.
Procedures for estimating performance in spike detection and spike sorting are
described in detail and the PCA feature space representation of spikes as a
candidate predictor of spike sorting performance is examined. The influence
of spike detection jitter, arising from asynchronous sampling of spikes, on the
performance in spike sorting is quantified and a sampling rate breakpoint at
which the effect of spike detection jitter becomes insignificant, is identified.

Noise level is identified as the main design factor to concern for two rea-
sons. First, noise level is the primary factor that influences maximum achiev-
able performance in spike detection and spike sorting. Second, as noise level is
increased, the distinctiveness of sampling rate breakpoints for spike detection
is decreased. Spike alignment is found to be an important factor in lowering
the sampling rate breakpoints for spike sorting and the feature space represen-
tation of spikes is found to be significantly correlated with performance in spike
sorting. However, our results indicate that the clustering algorithm employed
is robust to a significant change in the feature space representation, and thus
a prediction of spike sorting performance solely based on the spike features is
likely to overestimate performance breakpoints.

The sampling rate and resolution breakpoints for spike detection with ABS
at practical noise levels are found to be 16 to 31 kHz (5% and 1% error tol-
erance) and 9 bits, respectively. For spike sorting with PCA and FCM, the
breakpoints are found to be 5 kHz and 5 bits, respectively, assuming that spike
alignment has been achieved prior to feature extraction. This indicates that sig-
nificant data reduction can be achieved directly after spike detection by simply
discarding samples and bits.

Our comparison of algorithms for spike detection and spike sorting indicates
that the breakpoints found for ABS and PCA/FCM can be used as guidelines
for predicting the breakpoint locations for the other algorithms.

5.1.5 Paper V: Spike-Feature Based Estimation of Elec-
trode Position in Extracellular Neural Recordings

In this paper, we use synthetic recordings based on compressed compartment
models (see Paper VI) to explore how physical movements of the recording elec-
trode translate to movements of detected spikes in the PCA feature space. We
show that there is a characteristic relationship between movements in the two
domains. This characteristic relationship is demonstrated by comparing a path
measure for three different electrode movements (linear, elliptic and P-shaped)
in both spaces. We show that the relationship between electrode movements
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and spike movements can be modeled by a linear transformation between the
two coordinate systems and we finally use the model to estimate the position
of the electrode based on PCA features of detected spikes. The estimation
involves introducing a training phase in which the transformation matrix is es-
timated, and then transforming the spike features directly to physical electrode
positions using this matrix.

The insights provided by this preliminary study are valuable in the context
of spike-tracking, i.e. the pairing of spikes representing the same neuron in
recordings separated in time, where electrode movements may have occurred
in the meantime. The electrode positioning procedure introduced here could
be used to quantify post-implantational movements of electrodes by learning
the transformation matrix during linear electrode insertion and then estimating
the relative position of the electrode in future recordings based on the acquired
spike waveforms. This work serves as a demonstration of the usability of com-
pressed compartment models in modeling physical properties of the recording
setup.

5.1.6 Paper VI: Computationally efficient simulation of
extracellular recordings with multielectrode arrays

This paper introduces an extracellular signal model that establishes the cat-
egory of compressed compartment models (see Section 3.4.3). Four compart-
ment models of CA1 pyramidal neurons are used to calculate extracellular spike
waveforms on a dense grid of measurement points surrounding the models, us-
ing the line source approximation method (LSA). The measurement points are
then divided into two groups, according to their corresponding spike amplitude.
This division results in two regions — the neuron’s near- and far-field, respec-
tively — separated by an ellipsoid, concentric with the cell soma. We apply
singular value decomposition (SVD) to the matrix containing all spike wave-
forms in the near-field to find a set of orthonormal basis waveforms and their
respective weights as functions of position relative to the neuron. The weights
of the first six dimensions in this decomposition are then individually fitted to
trivariate polynomial functions of the measurement point coordinates (z, y, z),
allowing the basis waveform weights to be calculated in any off-grid point in
space, ensuring continuous change in the waveform when moving along a path
of measurement points. For measurement points in the far-field, we model
the spike waveforms by finding the point of intersection between the model
ellipsoid and the line of sight to the origin, calculating the waveform in that
point according to the near-field model, and then attenuating it by a power-law
function of the distance. The power-law function is estimated by fitting the
amplitudes of spikes in the original measurement points in the far-field to a
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power-law of the measurement points’ distances to the model ellipsoid. The
model is validated by comparing true and modeled spike waveforms in terms
of shape and amplitude.

An object oriented simulation tool employing the simulation of multielec-
trode recordings with arbitrary neuronal population and electrode array geome-
tries is presented and its usability is demonstrated by quantifying spike sorting
performance as a function of electrode position. The results demonstrate very
clearly the relationship between electrode position, shapes and feature space
representations of the detected spike waveforms and the corresponding spike
sorting accuracy. The simulator is used to show how the geometries and fir-
ing characteristics of neuronal populations can be tweaked to gain control over
physiological noise properties, in terms of amplitude, power spectral density
and sample histograms.

The modeling method introduced shows a significant improvement in com-
putational and memory efficiency compared to previous methods, and adds
a realistic way of simulating multielectrode recordings where the spike wave-
form from the same neuron differs in shape between electrode sites, not only
amplitude. To demonstrate the increased time efficiency, direct LSA calcula-
tion of the 14.136 extracellular spike waveforms, calculated when estimating
spike sorting accuracy as a function of electrode position, takes approximately
24 minutes. In contrast, our method calculates the entire set of waveforms
in approximately 2.4 seconds, or a factor of 600 times faster. This increased
computational efficiency increases the practicality of performing simulations in
which the spatial dependency of measured spike waveforms is captured.

5.1.7 Paper VII: Compression of neural spikes with fixed
generic bases for wireless brain-machine interfaces

This paper deals with the compression of detected spike waveforms with fixed
generic compression bases and minimal processing on the implanted part of a
wireless BMI. Selecting fixed bases and minimizing the computational complex-
ity on the implant is done in order to maximize the utilization of the wireless
link capacity while maintaining low power consumption. Three different sys-
tem architectures are compared, involving different combinations and arrange-
ments of spike detection, alignment, compression, reconstruction and sorting.
Two different spike detectors (absolute value threshold detection and nonlinear
energy operator detection) and five different compression bases are included.
The first compression basis represents the case where the compression basis is
optimized for each recording and is obtained by performing SVD on the ma-
trix containing the spike waveforms that are to be compressed. The second
compression basis is a fixed basis obtained by performing SVD on a matrix
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containing a large number of spike waveforms calculated using the compressed
compartment models derived in Paper VI. The third compression basis is a
fixed basis obtained by performing SVD on the matrix of experimentally ob-
tained spike templates provided in Paper II. The fourth and fifth compression
bases are the downsampling basis and Haar wavelet basis, respectively. The
test signals used are generated with the simulator reported in Paper VI and
they represent a wide range of recording SNRs. For reference, an architecture
involving no spike compression at all, is included.

All combinations of a system architecture, spike detector and compression
basis are initially compared in terms of spike reconstruction accuracy and spike
sorting accuracy. Second, based on the results from the first part, we select
two combinations of architectures and spike detectors and compare their ac-
curacies in spike reconstruction and sorting when compressing with the third
compression basis. That basis is of special interest since it represents the class
of generic fixed bases that have no mathematical relation to the data that is
to be compressed, but is derived from a large assembly of real spike waveforms
with various shapes. Thus, if successful in accurately representing the data, it
shows that we can remove the computationally intensive tasks of finding and
maintaining an optimal compression basis from the implant.

We conclude that given the appropriate system architecture, fixed generic
compression bases can indeed be used for compressing spike data without sig-
nificantly reducing accuracy in spike reconstruction and sorting, compared to
using an optimal basis or not performing compression at all. We suggest a
compression architecture consisting of the absolute value threshold spike de-
tector, maximum value spike alignment on the implant side and compression
with at least a four dimensional fixed generic compression basis, derived from
a widely varying set, of experimentally obtained spike waveforms. Assuming a
wireless link capacity of 1 Mbps, four spiking neurons per channel, each firing
on average 10 spikes per second, this would theoretically allow the transmis-
sion of over 600 neural recording channels, in contrast to four channels when
transmitting raw neural data.

5.2 Discussion and Future Work

Wireless brain-machine interfaces offer solutions to many of the problems that
are inherently present in wired BMIs. However, when increasing the number
of neural recording channels beyond just a couple, the capacity of the wireless
link soon becomes a limitation and efforts have to be made in order to either
increase the link capacity or utilize the available capacity efficiently. Out of
these two actions, efficient utilization of the wireless link is the most efficient
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and practical one from a cost-benefit point of view, given the raw data rate
of neural recordings and the regulatory and physical restrictions that limit
the freedom to modify the channel capacity. Ensuring efficient use of resources
demands access to realistic signal models that allow the detailed study of system
performance as a function of input to the wireless link. This thesis addresses
both the required signal modeling, and the use of the signal models for studying
data reduction methods that ensure efficient use of resources.

As shown in Chapter 3, there are several ways of modeling the extracellular
recording and those differ in terms of realism, controllability and complexity.
When selecting a model to work with, one should consider the level of detail
and realism that needs to be captured from the point of view of the application
that is to be validated. For example, template based models probably offer
an adequate representation of the neural signal when studying single channel
recordings where electrode movements cannot arise, but they fail as soon as the
spatial dimension is introduced in the form of movements or specific geometries.

Geometrically realistic models such as compartment models or compressed
compartment models capture the spatial dependency of the measured signal
and should therefore be considered for simulations with well-defined geomet-
rical configurations and/or multi-channel recordings. Although the highest
degree of realism is provided by direct simulations with compartment models,
their complexity makes them unpractical to implement in simulation platforms
where flexibility and ease of use are of great importance to the developer of
algorithms for signal analysis. Developers need to be able to easily set up arbi-
trary recording scenarios and test the output of their analysis tools against the
immediately available ground truth. Compressed compartment models pro-
vide a solution to this, combining the realism of compartment models with the
computational efficiency of simpler models.

Working further on the user-friendliness of our compressed compartment,
models and making them available to the research community would be of
great benefit from the perspective of developing “standardized” toolboxes for
the analysis of neural data and the development of algorithms. The simulation
output could be connected to an analog output, allowing it to be used to test
the performance of complex hardware from the output of the electrode to the
system’s output. Due to the flexibility and ease of use of the simulation envi-
ronment, its use could be incorporated into the training of neurophysiologists
to provide a direct visual feedback representing the origin of the extracellular
signal.

Building up a database of compressed compartment models of neurons from
specific brain regions would facilitate the simulation of those regions and allow
the combined simulation of complex electrode designs adapted to the geometry
of the tissue. Not only would this be beneficial from the point of view of
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designing algorithms for signal processing, but also from the point of view of
designing electrodes to target specific brain regions. The realism of the model
could be further increased by considering finite electrode designs and electrode
encapsulation. A finite electrode site could be replaced with a cluster of point-
electrodes and the signals from the point-electrodes could then be spatially
integrated in order to obtain the signal measured by the finite electrode site.
Electrode encapsulation could be simulated by studying the frequency response
of the encapsulation tissue in real scenarios and adding it as a filter to the signal
generation chain in the simulator. These extensions could potentially save a
great amount of time spent in testing electrode designs and it would allow for a
tighter integration between the procedures of designing electrodes and analysis
methods.

Our results regarding the relationship between physical electrode move-
ments and the feature space representation of detected spikes could potentially
be valuable in clinical applications such as deep brain stimulation (DBS). By
monitoring the feature space representation of detected spikes while inserting
the DBS electrode, the relative position of the electrode could potentially be
determined and its mechanical stability could be observed after implantation.
The first step in this direction is to validate our preliminary model-based results
experimentally.

Our results suggest that significant data reduction can be achieved by sim-
ply discarding samples after spike detection and/or by compression with fixed
generic compression bases. The high compression ratios obtained by intro-
ducing our methods and the insignificant difference in performance in signal
analysis compared to the uncompressed case, suggest that the methods consid-
ered here are indeed feasible alternatives to more sophisticated solutions where
compression basis optimization is employed. The next step is to implement our
data reduction techniques into a physical platform, such as FPGA, to provide
added insight into the practical aspects of their implementation and use. Hav-
ing implemented an analog interface to the compressed compartment model
based simulator, as mentioned above, the real-life performance of the hardware
implementation could be verified using the simulator.
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Implementation of a Telemetry System
for Neurophysiological Signals

Abstract

With an ever increasing need for assessment of neurophysiological activity in con-
nection with injury and basic research, the demand for an efficient and reliable data
acquisition system rises. Brain-machine interfaces is one class of such systems that
targets the central nervous system. A necessary step in the development of a brain-
machine interface is to design and implement a reliable and efficient measurement
system for neurophysiological signals. The use of telemetric devices increases the
flexibility of the devices in terms of subject mobility and unobtrusiveness of the
equipment. In this paper, we present a complete system architecture for a wearable
telemetry system for the acquisition of neurophysiological data. The system has been
miniaturized and implemented using surface-mount technology. System performance
has been successfully verified and bottlenecks in the architecture have been identified.

Based on: P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson: “Im-
plementation of a Telemetry System for Neurophysiological Signals”, Conference
Proceedings of the International Conference of IEEE Engineering in Medicine and
Biology Society, pp. 1254 — 1257, 2008.
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1 Introduction

The spinal cord is the main pathway for signals traveling between the brain and
the body. Spinal cord injury may cause a break in this pathway. Depending
on the location and severity of the lesion, different parts of the body can lose
their function partially or totally [1]. In addition to processing motor and
sensory information, signals in the central nervous system (CNS) carry valuable
information about perception, memory, pain, learning mechanisms etc. [2].
Access to the signals conducted by the CNS could hence provide the possibility
to restore function after injury and study the underlying mechanisms of the
features mentioned above.

A brain-machine interface (BMI) is an artificial interface between the ner-
vous system and the outside world. With appropriate ways of handling the
information delivered by the interface, it becomes possible to use it to pro-
vide control signals for prosthetic devices. With the ever increasing interest
in BMIs, the need for efficient ways of handling the data increases [3]. Some
important parameters in this aspect are pre-amplifiers, filtering requirements,
sampling, data transmission, power consumption, size and flexibility in opera-
tion. Together, these factors determine the usefulness of implementing BMIs
with implanted telemetric devices.

The properties of the measured signals determine the design criteria for
the physical implementation of the BMI. Extracellular recordings have been
shown to provide information about the intracellular activity of neurons [4][5].
However, factors such as encapsulation of electrodes and electrode position
influence the properties of the acquired waveform [5][6]. Due to the variations
in signal properties depending on these parameters, design criteria will vary
between situations. Based on experience of recordings with wire electrodes
on different structures in the CNS, we have made some general assumptions
regarding important features such as amplitude and bandwidth. The amplifier
should have sufficient gain for the A/D converter to detect signal amplitudes
ranging from tens to hundreds of x4V with bandwidth up to 5 kHz [7][8].

Various ways of implementing multi-channel neural amplifiers and acqui-
sition systems have been proposed. In some designs, each channel has been
implemented with a partial or full amplifier chain [9][10][11]. Different ap-
proaches have also been made to design telemetric devices [12][13][14].

This paper suggests a complete architecture for a miniature wearable four-
channel neural data acquisition system for animal experiments. The work is
intended to provide a proof of concept for the suggested architecture. The
architecture can be expanded to work with an arbitrary number of channels,
though within some restrictions related to lowered performance with increased
amount of channels. The system has been implemented and the function of its
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parts has been successfully verified.

2 System Description

The core building blocks of the telemetry system are a front-end analog ampli-
fier with variable gain and input channel and an nRF24E1 transceiver module
from Nordic Semiconductor. The nRF24E1 features an on-board 100 ksps, 8
channel, 12 bit A/D converter, a serial RS-232 interface, a 2.4GHz transceiver
and an 8051 compatible CPU. The amplifier gain, reference level and band-
width are set to interface the A/D converter. The CPU is used to control
two 4:1 multiplexers (ADG804) to select an input channel and a gain. A 2.4
GHz ceramic chip antenna (ANT-2.45-CHP) is connected to the nRF24E1 via
a balun matching network. The nRF24E1 firmware is stored on an in-circuit
programmable EEPROM (25LC320A). The whole wearable device is powered
by a single 3V Li battery (CR2032). Figure 1 shows the top side of the first
prototype of the telemetry system.

2.1 Analog Front-End

A circuit schematic of the analog amplifier is shown in figure 3. The inputs are
highpass filtered with a first order filter (f. = 34 Hz) to suppress a potential
DC-offset present at the electrode tips. Large resistors (RIN, 4.7 M) increase
the input impedance and provide biasing at the inputs. One of the four input
channels is selected with MUX1 (Analog Devices ADG804), via I/O pins on the
nRF24E1. The amplifier consists of three operational amplifiers (OPA348). A
virtual ground is provided with OP3. The resistors Rrl and Rr2 are chosen so
that the virtual ground potential is in the centre of the A/D converter’s input
signal range. The battery level is monitored with one of the A/D converter
channels of the nRF24E1. The first gain stage provides a fixed gain of 40
dB. The second stage provides a variable gain of 18 to 34 dB. The gain of
the second stage can be chosen from four different values. The gain is set with
MUX2 (Analog Devices ADG804) viaI/O pins on the nRF24E1. Both amplifier
stages provide further highpass filtering through the capacitors Cfl and Cf2.
A filter bank on the amplifier output provides variable lowpass filtering for
sampling at various sampling rates. The outputs of the filters are connected
to different channels of the A/D converter. Filter selection is done by selecting
the appropriate A/D converter input.
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Figure 1: The dimensions of the first prototype of the wearable telemetry
device are 30 x 37 x 3 mm3. All components are mounted on the top side
of the PCB. The analog amplifier is on the left and the nRF24E1 with it’s
peripheral components is on the right.

2.2 Data-Acquisition and -Transmission

The wearable device listens for control words from the basestation at regular
intervals. The length of these intervals can be set by the user during initial
programming of the device. This reduces the current consumption of the device
severely. The control words contain information about session mode, session
length, input channel, amplifier gain, and sampling rate. The output signal of
the amplifier is sampled with 8 bit resolution and a sampling rate according to
the user. The A/D converter uses an internal bandgap voltage as a reference
(nominally 1.22 V).

Wireless communication is carried out via the on-board transceiver on the
nRF24E1. After clocking in receiver address and payload, data is sent in a
short burst at 1 Mbps, i.e. samples are saved in a buffer and then transmitted.
When data is not being sent or received, the transceiver can be kept in standby
mode in order to reduce its current consumption.

Data-acquisition and -transmission can be carried out in various manners,
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Figure 2: A block diagram of the telemetry system. The analog front-end and
nRF24E1 module are implemented on the same PCB. The external base-station
is based on an nRF24E1 evaluation board connected to a PC via a serial link.

depending on the task. Signals can either be sampled at high sampling rates,
stored in an internal memory and sent in short bursts, or they can be sent one
sample at a time, allowing for on-line monitoring of the registered activity. The
latter option lowers the sampling rate because of increased processing time per
sample.

2.3 External Basestation

An external basestation is used to communicate with the wearable telemetry
device. Control words are sent by the user from a PC to an nRF24E1 on the
basestation via a serial interface (RS-232). The nRF24E1 on the basestation
transmits the control words to the wearable device and starts waiting for incom-
ing measurement data. Once the measurement data is received, it is forwarded
via the serial port to the PC for further analysis and processing.

2.4 User Interface

The operator of the system can interact with it via a graphical user interface
(GUI), implemented in MATLAB. Through the interface, parameters such as
sampling rate, input channel(s), amplifier gain, session length and mode of op-
eration can be set. Figure 4 shows a screenshot of the GUIL. Old measurement
data can be accessed through the same graphical interface and frequency anal-
ysis, spectrogram, digital filtering and audio playback of selected segments of
the measurement data can be activated. The user can enter a comment apply-
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Figure 3: The analog front-end of the wearable telemetry device consists of a
single amplifier chain. Channels are time-division multiplexed at the amplifier
inputs after highpass filtering of the channels.

ing to the capture session that is saved with the measurement data for later
reference. Sampling rate calibration can be initiated from the GUIL

3 Verification of Performance

The performance of the telemetry system was evaluated by measuring some im-
portant parameters and comparing with results from simulations and expected
values according to component specifications. Table 1 shows a summary of the
results. Spice simulations were done in NI Multisim 10.

3.1 Analog Front End

Input Impedance

The input impedance of amplifier was measured to be 2.2 MQ at 10 kHz.
Simulations gave an input impedance of 1.5 M, also at 10 kHz.

Amplifier Gain and Bandwidth

The amplifier gain was measured at all gain settings to range between 58 and
73 dB. Simulations gave gain values corresponding to those given by the de-
sign criteria, 55 to 70 dB. With the 1.22 V internal bandgap voltage as A/D
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Figure 4: The wearable device is controlled via a graphical user interface im-
plemented in MATLAB.

converter reference, the amplifier is capable of full-scale amplification of signal
amplitudes from 270 pV to 1.5 mV. Measured amplifier bandwidth was some-
what lower than the simulations indicated. This discrepancy is assumed to be
a result of stray effects and inaccurate modeling of some of the components.

Amplifier Noise

The input referred amplifier noise was measured at all gain settings and the
average was found to be 5.6uV (rms). The simulations gave an input referred
noise of 6.7 uV (rms). The difference may be due to approximations in calcu-
lations.

3.2 Sampling Rate

Sampling rate was measured in diffent modes of operation. When running
in burst-mode, the total sampling rate was measured to be 25 ksps. When
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Table 1: A summary of performance evaluation

Property Expected Measured
/ Simulated | / Observed
Input impedance @ f = 1kHz [MQ] 1.5 2.2
Amplifier gain [dB] 55 to 70 58 to 73
Input referred amplifer noise (rms) [uV] 6.7 5.6
Amplifier current 160 150
consumption [pA]
Current consumption of >3 3.5t09
nRF24 and peripherals [mA]
Physical dimensions of wearable device [mm?] - 30 X 37 x 3

approaching the nRF24E1 limitations, the sampling rate was found to rely
heavily on efficient programming of the device. Assuming continuous mode
(sampling and transmitting one sample at a time), a sampling rate of 3.7 ksps
was achieved.

3.3 Physical Dimensions

The physical dimensions of the first prototype of the wearable device were
measured to be 30 x 37 x 3 mm? (not including the battery). These dimensions
are assumed to be acceptable for a “backpack” version of the wearable system
[15].

3.4 Current Consumption and Lifetime

The current consumption of the amplifier was measured as the total current
drawn from the battery with the nRF24E1 disconnected. It was measured to
be 150 pA.

The current consumption of the nRF24E1 transceiver module was measured
when running in different modes. With the measurement system running but
the radio transceiver turned off, the current consumption was 3.5 mA. When
the system was waiting for start signals from the basestation, the current con-
sumption was 5 mA and when active (continuous mode), it was 9 mA. Current
consumption depends strongly on efficient programming of the device firmware.

The system was powered by a GP CR2032 Li 3 V battery. This battery
has a capacity of 210 mAh. Assuming a total current consumption of 9 mA in
active continuous mode, this results in a lifetime of approximately 23 hours of
continuous usage.
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Figure 5: The amplitude of the amplifer transfer function at the four different
gain settings.

3.5 Channel Selection

The time it takes to switch from one input channel to another was measured
to be 60 ms. This is not due to multiplexer switching speed, but due to long
settling time of the input amplifier chain.

4 Conclusions and Future Work

A wearable system for telemetric acquisition of neurophysiological signals has
been designed, implemented and tested. Design criteria were set with signal
properties such as amplitude and bandwidth in mind. The overall system
performance has been evaluated and most parameters have been shown to
meet the design criteria and behave according to expectations.

The choice to carry out channel selection early in the amplifier chain was
done in order to simplify the amplifier design and save space on the PCB.
However, the long settling time when switching channels makes cyclic sampling
schemes between channels impractical. This suggests that the channel selection
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be carried out later in the amplifier chain. An important factor to keep in mind
in this regard is the the increased area consumption when increasing the size
of channel-dedicated amplifier chains.

For an explicit set of design criteria to be set for the telemetry device,
further studies will have to be made on the properties of the acquired signals,
that is extracellular action potentials from different parts of the CNS. Some
work based on simulations has been carried out [4][5][16]. However, flexibility
and the presented system’s ability to adapt to different situations makes it
usable even when the exact characteristics of the signals are knot known. The
system has been designed with flexibility in mind and will be further tested
under various conditions in order to verify its degree of flexibility.

The wearable device will be developed further in terms of physical layout,
system architecture and programming. The physical structure of the wearable
telemetry device can be improved and reduced in size by using a module-based
approach. The amplifier and the transceiver parts can be implemented in
separate modules and stacked on top of each other. The size reduction will
make it possible to implant the device in a small animal.
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Spike Library Based Simulator for
Extracellular Single Unit Neuronal
Signals

Abstract

A well defined set of design criteria is of great importance in the process of design-
ing brain machine interfaces (BMI) based on extracellular recordings with chroni-
cally implanted micro-electrode arrays in the central nervous system (CNS). In order
to compare algorithms and evaluate their performance under various circumstances,
ground truth about their input needs to be present. Obtaining ground truth from
real data would require optimal algorithms to be used, given that those exist. This
is not possible since it relies on the very algorithms that are to be evaluated. Using
realistic models of the recording situation facilitates the simulation of extracellular
recordings. The simulation gives access to a priori known signal characteristics such
as spike times and identities. In this paper, we describe a simulator based on a library
of spikes obtained from recordings in the cat cerebellum and observed statistics of
neuronal behavior during spontaneous activity. The simulator has proved to be useful
in the task of generating extracellular recordings with realistic background noise and
known ground truth to use in the evaluation of algorithms for spike detection and
sorting.

Based on: P. T. Thorbergsson, H. Jorntell, F. Bengtsson, M. Garwicz, J. Schouen-
borg, A. J Johansson: “Spike Library Based Simulator for Extracellular Single Unit
Neuronal Signals”, Conference Proceedings of the International Conference of IEEE
Engineering in Medicine and Biology Society, pp. 6998 — 7001, 2009.
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1 Introduction

One of the current promising trends in the field of brain-machine interfaces
(BMI) is development toward long term extracellular recordings with chron-
ically implanted multi-electrode arrays (MEA) in the central nervous system
(CNS). Detection and classification of spikes are of major importance to suc-
cessful implementation of a BMI based on extracellular recordings.

The algorithms chosen for spike detection and classification will determine
the design criteria for signal acquisition hardware. However, the task of choos-
ing an algorithm is not a trivial one making qualitative evaluation of their
performance necessary.

In order to evaluate the performance of algorithms for spike detection and
classification under various hardware implementations, we have chosen to im-
plement a simulator to generate extracellular recordings. Simulation gives
access to ground truth about spiking activity in the recording and thereby
facilitates a quantitative assessment of algorithm performance since the char-
acteristics of the signals are known a priori.

Similar approaches have been taken by others to perform the task of algo-
rithm assessment. However, not many simulators have been fully published,
making it necessary for researchers to implement their own versions. Previous
works include [1], [2] and [3], where simulators based on the same ideas as
ours were used. A fully documented simulator based on analytical models has
been published in [4]. In contrast, we have developed a simulator based on
large amounts of extracellular recordings that is more readily applicable to our
experimental setups.

The simulator described in this paper is fully documented and will be pub-
lished for general use under a Creative Commons license [5] as a library of
MATLAB functions along with an extensive and expandable spike library. The
performance of the simulator has been successfully verified by comparing fea-
tures such as firing statistics, power spectral density and autocorrelation of
simulated and real signals.

2 Models

2.1 Neuronal Distribution and Density

Neuronal density varies among structures in the CNS. We have chosen to use
a modified density estimate provided by [6]. In this work, the number of hip-
pocampal CA1 pyramidal cells contained within a cylinder of a given radius
was estimated.
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Our modification involves replacing the cylinder with a sphere of equal
radius but assuming the same number of neurons. The motivation behind this
modification is that we want to simulate activity in CNS structures that do
not necessarily have the prominent laminar organization that is encountered
in the hippocampus [7]. We further assume an isotropic neuronal distribution.
Figure 1 shows how the recording environment is modeled.

Electrode

100 |

Z (nm)

Y (um)

X (wm)

Figure 1: A model of the recording environment. The white dots in the far
field represent noise units. Target units are placed in the near field.

2.2 Unit Isolation

In the default setup of the simulator we assume the volume surrounding the
electrode to be divided into two parts; “near field” and “far field”. The surfaces
of the inner and outer spheres shown in Figure 1 bound the two volumes. Spikes
coming from neurons within the near field and the far field are referred to as
target units and noise units respectively. We assume a small amount of active
target units to be present in the near field and we assume those to be separable
from the noisy background activity contributed by the noise units in the far
field.
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2.3 Extracellular Spike Amplitude

The variation in spike shape and amplitude has been studied by [6], [8] and [9].
Our amplitude model for the noise units is based on the result in [9] that at large
distances (in the electrode’s far field), the amplitude decays as 1/r™ where n is
between 2 and 3. We have not included the spatially dependent lowpass filtering
also described in [9] since the spike prototypes in our library are obtained from
actual recordings and are therefore assumed to have undergone this filtering
already.

Based on observations of simulated and real signals in combination with the
work mentioned above, we model the normalized spike amplitude decay as

1 . .

— for noise units

A= (Kr+1)? . (1)
1 for target units

where K is a scaling factor that specifies the rate of decay. Within the near
field of the electrode we currently assume a constant amplitude of one.

2.4 Inter Spike Interval and Refractory Period

To generate spike times for our target and noise units, we assume a renewal
process with gamma distributed inter spike intervals (ISI). An advantage of
this assumption is that both the absolute and relative refractory periods are
directly implemented in the model [10]. The spike times 7,(n) for unit p are
thus given by

Tp(n)zzn:IS’Ij , ISI~T(k,0) (2)

where k and 0 are the shape and scale factors of the gamma distribution re-
spectively. The value of the shape factor varies among units with different
mean firing rates f, but an appropriate value can be obtained by estimating
parameters in a real IST distribution (see Figure 4). By definition of the gamma
distribution, the scale factor is determined by the mean ISI, ISI, and shape

factor k

g 5T

1
T (3)

2.5 Noise

We assume that the background noise mainly consists of the sum of scaled
spike trains generated by noise neurons in the far field of the electrode. The
scaling factor is the same as the amplitude decay in Equation 1. Apart from
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the amplitude decay, the noise contributing spike trains are generated in the
same way as the target unit spike trains. Instead of assuming a common mean
firing rate for all noise units, the firing rate for each noise unit is drawn from
a uniform distribution bounded by values given by the user.

We assume thermal noise to be present at the input of the recording am-
plifier. The root-mean-square (RMS) of the thermal noise can be expressed
as

e2 = V4kTRB (4)

where k is Boltzmann’s constant, 7" is the temperature, R is the input resis-
tance of the recording system (electrode and amplifier) and B is the system’s
bandwidth [11]. The values of those parameters can be adjusted to match an
actual setup, but typical values for an implanted system (T = 310K, R = 1MQ,
B = 10kHz) will give RMS values around 13V at the amplifier input.

2.6 Model limitations

The models have limitations in the assumptions of the dynamics and stationar-
ity of the underlying processes. Correlation between different spike trains and
bursting activity is not accounted for and we assume constant spike morpholo-
gies throughout the duration of the simulation. Further, non-spiking activity
(passive signaling [7]) is not accounted for and the assumptions of isotropic
neuronal distribution and absence of amplitude decay in the electrode’s near
field are simplifications worth bearing in mind.

3 Spike Library

Spike waveforms were detected in and extracted from recordings performed in
various regions in the cat cerebellum [12] and sorted using the open-source
software package Chronuz [13][14]. Thresholds for spike detection were set
automatically using the method described in [1]. The average waveforms were
upsampled to 100ksps and stored. Executing this process on an ensemble of
recordings containing well isolated single unit activity resulted in a library
consisting of 85 different waveforms.

To obtain a qualitative measure of the characteristics of the spike library,
we looked at features such as spike duration, frequency contents and general
morphology of the stored spikes. The results of the frequency analysis are not
shown here since they correlate strongly with spike duration. This examination
showed us that the library is sufficient as a basis for modeling the recordings
needed for our future algorithm assessment.
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We define spike duration as the time period where the absolute amplitude
of the largest phase of the spike is above half its peak value. The spike duration
histogram in Figure 2 shows that the vast majority of spikes have durations
that classifies them as fast spikes [8]. This provides us with an upper bound
for testing the algorithms since fast spikes are assumed to pose the biggest
challenge to them and is therefore regarded as a desirable feature. Figure 2
also shows five representative spikes from the library.
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Figure 2: Spike duration histogram (upper) and five spike from the spike library
that demonstrate various spike morphologies present in the library (lower).

4 Algorithm

The basic ideas behind the simulation algorithm are inspired by the simulator
described in [1]. The algorithm is summarized in Algorithm 1.

The user provides the algorithm with input such as duration of the recording
(D), sampling rate (fs), number of target neurons (V,), standard deviation of
physiological background noise (o,,), parameters of thermal noise (T, R, B),
mean firing rate of target units (f,), a range of firing rates for noise units (f,)
and rate of amplitude decay in far field (K). For each noise neuron, a firing
rate is drawn from a uniform distribution bounded by the given values. In the
case of multiple target units, the mean firing rates of the individual units can
be set separately.

For each of the target units, spike times are generated (Equation 2) and a
random spike waveform is chosen from the spike library. The waveform is then
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added to the recording with unchanged amplitude at the obtained spike times.

To generate the background noise, each noise unit is assigned a random
position in the far field of the recording electrode (see Figure 1) and a random
firing rate is chosen. The amplitude of the unit is then derived from it’s distance
from the electrode tip (Equation 1). The noise units’ spike times are generated
in the same way as the target units’ and they are added to the recording trace
in the same manner as well. White noise is generated according to Equation 4
and added to the recording.

The output of the simulation is the spike times and labels of all (target)
spikes in the recording, the simulated recording and background noise as well
as the actual waveforms of the target units as taken from the spike library.

Input: Duration of recording, sampling rate, number of target units,
standard deviation of physiological noise, thermal noise
parameters, mean firing rates, rate of amplitude decay in far
field.

Output: Target unit spike times, entire recording, noise component of

recording, target unit waveforms.

foreach Noise/target unit P do

Generate a spike train s,(t) of N spikes wy, with amplitude A,

(Equation 1) occurring at 7,(n) (Equation 2):

N
sp(t) = Ap Y wi(t —(n)) , k~U(LL)

where k is the index of the selected spike waveform and L is the
number of spikes in the library.

end

Add the spike trains and thermal noise e(t) to obtain the final signal v(¢):

v(t) =) sp(t) +e(t)

p=1

Algorithm 1: The extracellular recording simulator.
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5 Verification of Performance

5.1 Methods

To evaluate the performance of the simulator, we selected a set of segments
from our recordings and roughly estimated features such as number of separa-
ble units, mean firing rates and level of background noise. In order to try to
mimic the real recordings, these estimates were used as input parameters to
the simulator. Since the modeling of the background noise has proved to be the
most challenging task in the implementation, we focused our attention toward
segments with low target unit activity and low signal-to-noise ratio (SNR). We
then compared the autocorrleation [3] and its Fourier transform, the power
spectral density (PSD), for real and simulated signals to get a qualitative as-
sessment of the similarities. The PSD was estimated with Welch’s method.
Results from both analyses (averages over four segments of data) are shown in
Figure 3 to facilitate comparison with results from earlier studies. To evalu-
ate the validity of the assumption of gamma distributed inter spike intervals,
we fitted a gamma distribution to inter spike intervals obtained from in-vivo
recordings.

To demonstrate the usefulness of the simulator in the task of calculating
the probability of detection and false positives in spike detection, we ran a
batch of simulated signals through a spike detection algorithm and calculated
the resulting probabilities.

5.2 Results

The comparison between the power spectral densities of the real and simulated
signals revealed strong similarities (see Figure 3(a)). The densities resemble
those obtained by [8] when studying frequency contents of background activity
in extracellular recordings.

The properties of the PSD are influenced by the modeling of the background
noise. Assuming varying activity among neurons and assigning random mean
firing rates to the noise neurons gave a good match.

The autocorrelation of the simulated and real signals (Figure 3(b)) showed
strong similarities. Reference [3] reported significant autocorrelation at delays
up to around 1.2 ms. The shorter interval in our results is mainly caused by the
fact that our spike library is dominated by fast spikes. We ran simulations with
synthetic spikes of various durations as well and saw a clear connection between
the duration of significant autocorrelation and “dominating” spike duration in
the library.

Figure 4 shows a histogram of measured ISI during typical spontaneous
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(a) Power spectral density of real and simulated recordings. The simulation parame-
ters were N, = 5, fy, = 10, fn ~ U(1,50), o, = 0.2, K = 0.05.
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(b) Autocorrelation of real and simulated recordings.

Figure 3: A comparison of real and simulated recordings

activity of a single neuron in the cat cerebellum. The histogram and the fitted
gamma distribution show close resemblance and support the assumption of
gamma distributed ISI [10].

Figure 5 shows a short segment of a simulated signal and demonstrates the
usability when testing spike detection with a threshold crossing criterion. In
this case, the probability of detection and false positives was Pp = 95.35% and
Ppp = 4.13% respectively.

6 Conclusions and Future Work

A simulator based on extracellular spikes and observed statistics of neuronal
firing has been implemented and tested. The simulator has proved to be useful
for providing simulated extracellular recordings to use in the evaluation of
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Figure 4: Measured ISI during spontaneous activity of a single neuron. The
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Figure 5: A short segment of a simulated recording. The diamonds (¢) and
triangles (V) at the bottom indicate the beginning of spikes belonging to two
target units present in the recording (ground truth). The arrows at the top
indicate detected spike times obtained with a double amplitude threshold (dot-
ted lines). The circles and crosses at the top indicate false positives and missed
spikes respectively.

algorithms for spike detection and sorting.

The simulator will be fully published along with an expandable spike li-
brary. In [14], some problems behind diverse conventions in methodology are
mentioned. We believe that a joint effort would make the resulting research
more straight forward and applicable. Our aim is to establish an open venue
for researchers to submit their spike libraries and additions to the algorithm.
Increased size of the library and more detailed information on specific regions
in the CNS will facilitate the simulation of activity in specific areas of the CNS.

Reducing the limitations of the simulator is a work in progress. We plan
to investigate appropriate and biologically valid ways of modeling the correla-
tion between target units and implement time-varying firing statistics. These
features will be added to the simulator as they come along.
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Statistical Modelling of Spike Libraries
for Simulation of Extracellular
Recordings in the Cerebellum

Abstract

Brain machine interfaces with chronically implanted microelectrode arrays for sig-
nal acquisition require algorithms for successful detection and classification of neural
spikes. During the design of such algorithms, signals with a priori known character-
istics need to be present. A common way to establish such signals is to model the
recording environment, simulate the recordings and store ground truth about spiking
activity for later comparison. In this paper, we present a statistical method to expand
the spike libraries that are used in a previously presented simulation tool for the pur-
pose described above. The method has been implemented and shown to successfully
provide quick access to a large assembly of synthetic extracellular spikes with real-
istic characteristics. Simulations of extracellular recordings using synthesized spikes
have shown to possess characteristics similar to those of in-vivo recordings in the cat
cerebellum.

Based on: P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson: “Sta-
tistical Modelling of Spike Libraries for Simulation of Extracellular Recordings in
the Cerebellum”, Conference Proceedings of the International Conference of IEEE
Engineering in Medicine and Biology Society, pp. 4250 — 4253, 2010.
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1 Introduction

Brain Machine Interfaces (BMIs) are an emerging field within neuroscience.
BMIs allow uni-/bidirectional communication with the central nervous sys-
tem (CNS), facilitating studies of neuronal mechanisms as well as extraction
of control signals for operating prosthetic devices. One class of BMIs uses
extracellular recordings in the cerebral cortex as their input signals. These
recordings are done with chronically implanted electrode arrays connected to
external devices for data acquisition and signal processing. A major problem
in this type of BMIs is the amount of data obtained from the recordings. This
makes it necessary to implement efficient algorithms for extraction of relevant
information and thereby reduction of data to be stored or transmitted through
the system.

The extracellular recordings consist of two major components; a low fre-
quency local field potential, representing mainly synaptic activity, and high
frequency “spiking activity”, representing activity of single neurons [1]. Ex-
traction of information from single-unit spiking activity depends on success-
ful detection and classification of spikes. During development of algorithms
for these tasks, signals with a priori known characteristics (spike times and
classes) are needed. We have previously implemented and reported on a simu-
lator that is based on statistical models for spike times and basic assumptions
about the recording environment [2], [3]. The simulator assigns a spike wave-
form to every contributing neuron and assumes that the waveform does not
change during the recording. The waveforms are randomly selected from an
assembly of experimentally obtained spikes. Such an assembly is referred to
as a spike library. Spike shapes depend on several factors, including type and
geometry of the neuron and spatial relationship between the neuron and the
recording electrode [4], [5]. Although the original spike library spans a wide
range of waveform morphologies, its discrete and sparse nature poses obvious
restrictions in this regard.

In this paper we report on a method to expand a spike library to an arbitrary
size in order to cover a wider range of waveform morphologies. We find the basis
waveforms (principal components) that describe the original spike library and
estimate parameters in a statistical model describing their weights. We then
use the model to generate new weights that, when applied to the principal
components, result in new spike waveforms that follow the statistics of the
original data. The method has been shown to be successful in synthesizing an
arbitrary number of spike waveforms to use in the simulation of extracellular
recordings for testing of spike detection and sorting algorithms.
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2 Background

2.1 The Original Spike Library

Spikes were detected in and extracted from several recordings in the cat cere-
bellum [6]. Spikes from each recording were sorted using Chronuz [7], [8],
ensemble averaging was used for noise reduction and average spike waveforms
were stored. The original spike library consists of 85 spike waveforms. In the
simulations presented in this paper, some of the spikes in the original library
are considered to be outliers due to excessive deviations in location and shape
of major waveform landmarks and are therefore discarded in the modelling
procedure described here.

2.2 Principal Component Analysis

When performing principal component analysis (PCA) on an ensemble of
spikes, we find an orthonormal basis to describe the spikes by applying sin-
gular value decomposition (SVD) on the original spike matrix with the mean
waveform subtracted from each spike. The output of the analysis are the
basis vectors (principal components), their relative contributions to the total
variability in the dataset (eigenvalues of the covariance matrix of the data,
“latent roots”), and component weights for every spike in the dataset [9]. By
using all the principal components, the dataset can be entirely described by

S =PW (1)

where the i-th original spike is in column i of the matrix S, principal component
7 is in column j of the matrix P and the weight of principal component j for
spike 7 in column ¢ and row j of the matrix W.

We estimate the number of principal components needed to describe the
information contained in the data by looking at the relative contributions of
the principal components to the variance in the data. The remaining compo-
nents are assumed to describe background noise and are discarded. By setting a
threshold for what percentage of variance should be considered to contain infor-
mation, we can automatically find the number of principal components needed
do describe the data. Since the number of principal components needed is usu-
ally smaller than the number of samples in each spike, this allows us to reduce
the dimension of the problem from the original number of samples/spike to the
number of principal compoents used to describe the data. This is a commonly
used approach in spike sorting, where principal component weights are used as
spike features. An approximation of the spike matrix in the first N principal
components is

S=PyWy (2)
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where Py contains the first N columns of P and W y contains the first N rows
of W in Equation (1).

2.3 Weight Distributions

The statistics of the spike waveforms can be examined by looking at the dis-
tributions of the weights of the first N principal components across the entire
original dataset. The distributions of individual component weights can be vi-
sualized in a histogram over the rows of Wy in Equation (2). However, it is
assumed that certain combinations of principal components are less likely than
others. This motivates us to look at the joint distributions of all component
weights and assume that the component weight distribution is described by a
Gaussian mixture model in N dimensions and with K mixture components.
Le. the columns of Wy in Equation (2) are assumed to be stochastic variables
coming from an N—dimensional K —modal Gaussian distribution.

A key assumption of this paper is that the original spike library is a sample
drawn from a large population of spikes. This sample can be used to derive
information about the statistical properties of the underlying population. By
estimating model parameters, we get an idea of what the rest of the spikes in
the population might look like and by generating principal component weights
according to this model, we can synthesize an arbitrary number of spikes with
similar characteristics as the original spikes, and with shapes within the spec-
trum of “possible” shapes.

3 Methods

3.1 Derivation and Utilization of Model Parameters

Principal component analysis is performed on the original spike library to ob-
tain principal components, component weights and latent roots. The cumula-
tive sum of latent roots is plotted and a variance threshold of 99% is applied to
select the number of principal components to use, N. The component weights
are fitted to an N-dimensional K-modal Gaussian mixture model using the
function gmdistribution.fit in MATLAB. Since the number of modes, K, is un-
known, the parameter estimation is carried out for one to six modes (K € [1, 6])
and the model with the lowest Bayesian information criterion (BIC) is selected.
The BIC is used as it favors models with low complexity. The estimated model
is used to generate a matrix of random principal component, weights, W and
the new spikes are constructed by

S=PyW. (3)
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The entire procedure is illustrated in Figure (1).

Estimate Generate
Weights GMM i
parameters WelghtS

Combine

_ PG PCs with
VAR new weights
W
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spike library spike library

Figure 1: Principal component analysis (PCA) is performed on the original
spike library and the parameters of a Gaussian mixture model describing the
resulting weight distribution are estimated. The model is used to generate new
weights which are applied to the first N principal components, resulting in a
synthesized spike with similar characteristics as the original spikes.

3.2 [Evaluation of Synthesized Spike Libraries

To evaluate the overall quality of the modelling, we carry out several compar-
isons between the original and synthesized spike libraries. The library features
of interest are distribution of spike durations, distribution of Euclidean inter-
spike distances and sample intensity. The features are examined in histograms
across the spike libraries. Usability in simulation of extracellular recordings is
evaluated by running simulations in EAPSim [2], [3] with a real and synthe-
sized spike library and comparing the power spectral densities of the simulated
recordings. General appearance of spikes is evaluated in a double blind test on
neuroscientists with long experience in working with spike data.

Feature Comparison: Original vs. Synthesized Spike Libraries

We define spike duration as the time period during which the absolute ampli-
tude of the largest phase of the spike is above half its peak value [2]. Spike
duration is calculated for all spikes in the real and synthesized spike library
and the distributions are compared in histograms.



Statistical Modelling of Spike Libraries for Simulation of Extracellular
Recordings in the Cerebellum 103

Euclidean interspike distance between spikes s; and s; is defined as

M

dij = \| D (si(m) = s;(m))2. (4)

m=1

where m is the sample index. For each spike library, the distance is calculated
for every spike pair in that library.

We define sample intensity as the histogram across every row of the spike
matrices S and S. Sample intensity provides a qualitative measure of the
range of spike morphologies spanned by a spike library. A similar measure
has previously been used in [7] to visualize dominating spike waveforms in an
assembly of spikes in spike sorting.

Evaluation of Simulated Recordings

Four sets of simulated extracellular recordings are generated with EAPSim [2],
[3]. Each set consists of five recordings. In two sets, we use the original spike
library and in two sets, we use a synthesized library with 2000 spike waveforms.
The sets have zero and four target units present respectively. Power spectral
density (PSD) is estimated for all recordings using Welch’s method and the
mean of the PSDs of all recordings at a given setting is compared between the
datasets.

Double Blind Test

To evaluate the quality of synthesized spikes with respect to general appearance,
we present two experienced neuroscientists with a double blind test. A 9 x 10
matrix of spike figures, each showing either an original or synthesized spike,
is shown to the subjects and they are asked to identify synthesized spikes.
For each of the spike figures, we first select (with equal probability) either the
original or synthesized library. We then select (without replacement) a random
spike from that library. The only information given to the subjects is that each
figure either shows an original or synthesized spike. The results are evaluated
with the VassarStats statistical tool [10].

4 Results

4.1 Model Parameters

Figure (2) shows the relative contribution of the first N principal components
to the variance in the original spike library. A 99% variance threshold is ap-
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Figure 2: The relative contribution of the first N principal components to the
variance in the original spike library. N = 6 principal components capture 99%
of the variance in the data.

plied and we conclude that the first six principal components capture 99% of
the variance in the data. According to the Bayesian information criterion, we
model the weight distribution with two components (K = 2). As a result, the
weight distribution is assumed to be described by a 6-dimensional 2-component
Gaussian mixture model. Table (1) summarizes the results from the parame-
ter estimation. Figure (3) shows the first six principal components and their
individual weight distributions in the original spike library.

4.2 Feature Comparison: Original vs. Synthesized Spike
Libraries

Feature Comparison

Figure (4) shows the comparison between features of the original and synthe-
sized spike libraries. A qualitative analysis of the figures shows that we obtain
close matches between original and synthesized spike libraries in all cases.

Evaluation of Simulated Recordings

Figure (5) shows means of power spectral densities for five simulated record-
ings with four target units, using original and synthesized spike libraries. The
results for background noise only (zero target units) are very similar and are
not shown here. In [2], we showed that a good match in power spectral den-
sities of simulated and in vivo recordings could be obtained with our original
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Figure 3: The first 6 components and their original weight distributions (inset
histograms).

spike library. The close match between the curves in Figure (5) among with
the previously mentioned observations shows that realistic spectral features in
simulated extracellular recordings can be obtained even when using simulated
spike libraries.

Double Blind Test

Analysis of the double blind tests show, within a 95% confidence interval, that
none of the subjects performed significantly better than chance when discrim-
inating between original and synthesized spikes.

5 Conclusions and Future Work

In this paper, we have described a method in which we use principal com-
ponent analysis to obtain a statistical model to describe the waveforms in an
experimentally obtained spike library. The statistical model, among with the
originally obtained principal components, is used to synthesize a spike library
of arbitrary size. Our results show that the modelling and synthesis result
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Table 1: Gaussian MixtureModel Parameters

| Parameter | Component, 1 |

Mixing proportion 0.62
Mean [2.66 —0.11 —-0.08 0.08 —0.02 70.01}

[ 046  0.67 0.27 —023 0.15 0.14]
0.67 529 —0.64 —049 000 0.13
0.27 —0.64 057 —0.05 0.16 0.11
-0.23 —0.49 —0.05 0.19 0.00 —0.05
0.15 0.00 0.16 0.00 029 0.00
0.14 013 011 —0.05 0.00 0.08

Component 2 |

Covariance matrix

| Parameter

Mixing proportion 0.38
Mean | [-44 018 013 —0.12  0.03  0.02]

[ 0.53 0.18 046 —0.49 —0.03 —0.05]
0.18  4.49 1.02 0.84 —-0.01 -0.22
0.46 1.02 1.62 0.11 —-0.27 -0.19

-049 084 0.11 0.9 0.01 0.09
-0.03 —-0.01 -0.27  0.01 0.31 0.00
-0.05 -0.22 -0.19 0.09 0.00  0.29

Covariance matrix

in spikes with realistic features, usable for realistic simulation of extracellular
recordings in the cerebellum.

The model will be implemented into EAPSim [3] for common use. By
allowing principal component weights to move within the modelled distribution,
we can model variations in spike shapes over time within or between recordings.
These variations would facilitate studies on algorithms for spike tracking and
spike sorting under dynamic conditions.

Our results show that six principal components are sufficient to describe
99% of the variance in the original spike library of cerebellum recordings. This
result is consistent with the independent results reported in [11] where the
authors performed principal component analysis on a large ensamble of spikes
coming from different neurons and concluded that 99% of the variance was
described by the first six principal components. These results give us reason to
suspect that spike sorting algorithms with correlation against a constant set of
basis shapes (PCs) might be feasible.
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Figure 4: Feature comparison between the original (whole lines in a) and b))
and synthesized (dashed lines in a) and b)) spike libraries. Figures a) and
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Figure 5: Power spectral density of simulated extracellular recordings with
original and simulated spike libraries.
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Minimizing data transfer with sustained
performance in wireless brain-machine
interfaces

Abstract

Brain machine interfaces (BMIs) may be used to investigate neural mechanisms or to
treat the symptoms of neurological disease and are hence powerful tools in research
and clinical practice. Wireless BMIs add flexibility to both types of applications
by reducing movement restrictions and risks associated with transcutaneous leads.
However, since wireless implementations are typically limited in terms of transmis-
sion capacity and energy resources, the major challenge faced by their designers is
to combine high performance with adaptations to limited resources. Here, we have
identified three key steps in dealing with this challenge: 1) the purpose of the BMI
should be clearly specified with regard to the type of information to be processed, 2)
the amount of raw input data needed to fulfill the purpose should be determined, in
order to avoid over- or under dimensioning of the design, 3) processing tasks should
be allocated among the system parts such that all of them are utilized optimally with
respect to computational power, wireless link capacity and raw input data require-
ments. We have focused on step 2) under the assumption that the purpose of the
BMI (step 1) is to assess single- or multiunit neuronal activity in the central nervous
system with single channel extracellular recordings. The reliability of this assessment
depends on performance in detection and sorting of spikes. We have therefore per-
formed absolute threshold spike detection and spike sorting with principal component
analysis and fuzzy c-means on a set of synthetic extracellular recordings while varying
sampling rate and resolution, noise level and number of target units, and used known
ground truth to quantitatively estimate the performance. From the calculated perfor-
mance curves, we have identified sampling rate and resolution breakpoints, beyond
which performance is not expected to increase by more than 1-5%. We have then
estimated the performance of alternative algorithms for spike detection and spike
sorting in order to examine the generalizability of our results to other algorithms.
Our findings indicate that the minimization of recording noise is the primary factor
to consider in the design process. In most cases there are breakpoints for sampling
rates and resolution that provide guidelines for BMI designers in terms of minimum
amount raw input data that guarantees sustained performance. Such guidelines are



essential during system dimensioning. Based on these findings we conclude by pre-
senting a quantitative task allocation scheme that can be followed to achieve optimal
utilization of available resources.

Based on: P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson: “Mini-
mizing data transfer with sustained performance in wireless brain-machine interfaces”,
Journal of neural engineering, pp. 036005, 2012.
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1 Introduction

The substantial progress made within the field of neuroscience in recent decades
depends in part on the development of brain-machine interfaces (BMIs). By
providing a connection between the central nervous system (CNS) and the
external world, BMIs constitute powerful tools for both the investigation of
neural mechanisms in awake, freely moving animals and for clinical applications
[1, 2, 3]. Many of the approaches to BMI implementation to date rely on wired
connections between the different parts of the system [4, 5], which restrict the
subject from moving around and are associated with increased risk for infections
and other complications due to transcutaneous leads. The implementation of
wireless communication links within the BMI (Figure 1 (a)) solves many of these
problems. However, with an ever increasing number of recording channels [6],
designers of wireless BMIs are challenged with increased demands, which must
be met by careful system dimensioning.

The primary building blocks of a BMI are the acquisition unit, the process-
ing unit and the actuation unit (Figure 1(a)). The acquisition unit acquires a
signal that carries information about ongoing neural activity within the CNS
and forwards it to the processing unit. The role of the processing unit is gen-
erally to extract that information from the acquired signal. The output from
the processing unit is passed on to the actuation unit that executes commands
based on the measured neural activity. The actuation unit provides feedback
to the subject, e.g. electrical stimulation of nerves or muscles, the driving of
a prosthetic limb or wheelchair or the operation of a personal computer. In
research applications, the researcher makes use of either the raw (unprocessed)
acquired signal or the processed signal from any of the stages within the pro-
cessing unit. In a wireless BMI, the acquisition unit is implanted along with
some or all parts of the processing unit and the wireless link.

Typically, the signal is acquired through implanted microelectrodes [7]. The
recorded signal then consists of background noise reflecting the activity of dis-
tant neurons, low frequency local field potentials representing synaptic activity
and a higher frequency spiking activity, representing APs from close-by neu-
rons [8], here referred to as target units. When acquisition is performed in this
manner, the processing unit typically extracts information about the compound
activity of a group of neurons (multi unit activity) by detecting spikes in the
acquired signal [9], or the firing patterns of the individual neurons (single unit
activity) by sorting the spikes upon their detection [10] (Figure 1(b)).

From this point on, we assume that the acquisition unit digitizes the
signal at a certain sampling rate (samples/second) and sampling resolution
(bits/sample) and that all signal processing is performed on the digitized signal
in the processing unit. We also assume that the objective of the processing



114 PAPER IV

Acquisition

e

pod
<

i

e s
T AT
1

Neural stimulation

Actuation

l

Muscular stimulation

Prosthesis control

O\

Wheelchair control

Output

Unit 1 [ (]
Unit2 [ [}
Unit 3 O O

EEE B E B

Single unit
activity

Computer interaction

Multiunit
activity

(a) (b)

Figure 1: (a) A brain-machine interface (BMI), acquires signals from the central
nervous system (CNS), processes them and forwards the output to an actuator
or to a research application. The actuator provides feedback that is modulated
by the acquired neural activity. The feedback can be in the form of neural
stimulation, prosthetic limb control, muscle stimulation, wheelchair operation
or the operation of a personal computer. Wireless links between the parts of
a BMI are an attractive solution to problems related with decreased freedom
of movement and increased risk for post surgical complications that are often
associated with wired BMIs. The wireless link(s) can be implemented in dif-
ferent parts of the system, depending on how processing tasks are allocated
among the system parts. (b) Implanting microelectrodes into the extracellular
space of the CNS is a common way of acquiring signals in BMI applications.
Extracellular recordings in the CNS can be used to assess the gathered activity
of a group of neurons close to the electrode (multi unit activity) or that of
the individual neurons (single unit activity). The processing steps involved are
spike detection and spike sorting.

unit is to extract information about neuronal firing, i.e. single or multi unit
activity. The amount of information needed, i.e. the accuracy in the detection
and sorting of spikes, depends on the application. For instance, in applications
involving the control of prosthetic limbs, BMIs can be trained to work with a
fairly high error tolerance but in applications where the objective is to perform
analysis of detailed network functions, high accuracy is of key importance.
However, both applications profit from increased performance in terms of
accuracy in detection and sorting of spikes.

During the design of a wireless BMI, several competing goals need to be
carefully considered and balanced. Reliable assessment of neuronal firing pat-
terns requires accurate detection and sorting of spikes. In turn, accuracy in
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spike detection and sorting relies on high-quality recordings that capture an
adequate amount of information. However, wireless links are highly power-
consuming and limited in data transmission capacity compared to their wired
counterparts. Hence, the balancing act of the wireless BMI designer involves
minimizing the amount of raw data passed to the wireless link without jeopar-
dizing information transfer in terms of accurate assessment of neuronal firing
patterns, and without excessively burdening the resources available on the im-
planted part of the system.

This leads us to identifying three crucial steps in the process of designing
BMIs:

1. Specify the purpose of the BMI
What type of information should the processing unit extract?

2. Determine the amount of data needed
How much raw data needs to be acquired for the output of the processing
unit to be as accurate as possible? Le. what sampling rate and resolution
need to be employed in the acquisition unit to ensure maximum achievable
performance in a given recording situation?

3. Allocate processing tasks
How should processing tasks be allocated among the system parts in order
to obtain a balance between performance and resource utilization and to
avoid over- or underdimensioning?

For wireless BMIs, these steps aid in obtaining a balanced design as described
above and for wired BMIs, they help in minimizing the amount of data to be
stored for off-line analysis. Such a minimization is beneficial both in terms of
lowering the cost of data storage and reducing post-processing time. Step 3
is of particular importance in the wireless case due to the distributed system
configuration that obviously characterizes wireless BMIs. Figure 2 illustrates
the demands posed by the processing task allocation onto the individual parts
of the BMI. Increasing processing task allocation on the implant decreases
the demand on the wireless link, but increases the demands on computational
resources, and vice versa.

There has been great interest in the development of wireless BMIs in recent,
years and the implementations suggested so far differ in terms of all three key
steps mentioned above. These include the transmission of the raw signals from
a large number of channels, either in analog [11, 12, 13] or digital form [14],
the transmission of timestamps representing the occurrence of spikes in the
signal [15], the transmission of digitized spike waveforms [16, 17] and neuronal
assignment labels of sorted spikes [18].



116 PAPER IV

[ Allocation of processing tasks ] [ Demand on implant parts ]

I I

External Wireless link

On implant Processing

C B
Low High

Figure 2: The allocation of processing tasks among the parts of a wireless BMI
and its influence on the demands placed on the implanted parts of the system
need to be considered during BMI design. High/low color intensities indicate
high/low task allocation and high/low demand on the implant’s parts (wireless
link and processing part). Given a purpose for the BMI, the minimum amount
of data needed to fulfill the purpose and the resources available, processing
tasks should be allocated among the parts of the BMI in a way that ensures
high output reliability and optimum utilization of the resources at hand.

Despite the diversity among wireless BMI implementations, arising mostly
from differences in BMI purposes (step 1) and task allocation (step 3), cur-
rent knowledge of the actual need for raw input data maximum achievable
performance (step 2) is sparse. Efforts have been made to quantify these re-
quirements, which are reported in [8, 19, 20, 21, 22]. All of these focused on
the spike sorting step, using various estimations of spike waveform bandwidth
and performance measures to conclude that spike sorting required a sampling
rate between 16 and 30 kHz and a sampling resolution above 4 bits. Sampling
resolution was only considered in one of the studies [21]. Two of the studies
[21, 22] considered the influence of waveform misalignments introduced by spike
detection jitter, i.e. when spikes from the same neuron are sampled at different
times and concluded that it gave rise to spurious clusters in the spike feature
space. In [22], this effect was assumed to be significant at sampling rates below
10kHz, but in [21] the limit was found to be at 30kHz.

Although the investigations summarized here are important steps in the di-
rection of balanced BMI designs, they differ somewhat in their conclusions and
are incomplete in the sense that they do not fully address the entire processing
chain, i.e. both spike detection and spike sorting. There is still a need for
systematic, quantitative and objective approaches to exploring the influence of
the amount of raw input data on the reliability of the processing unit’s out-
put and the minimum amount of data needed to ensure maximum achievable
performance in a given situation. This need becomes even greater when the
number of recording channels increases.
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The contributions of this work can be divided into four parts. First, we have
performed a detailed estimation of the performance of spike detection with an
absolute threshold and spike sorting with principal component analysis (feature
extraction) and fuzzy c-means (clustering) as a function of sampling rate and
resolution, noise level and number of target units. These estimations provide a
description of the relationship between the amount of raw input data and the
accuracy of the processing unit’s output under various circumstances. Second,
we have quantitatively identified sampling rate and resolution “breakpoints” at
which performance falls below 1% to 5% below the maximum achievable per-
formance in each case. The breakpoints provide an estimation of the minimum
amount of raw input data needed to ensure minimal loss of accuracy in the as-
sessment of single and multi unit activity. Third, in order to see how the results
from these analyses generalize to other algorithms, and to explore the effects on
performance introduced by increasing the amount of computational resources,
we have performed the same type of performance analysis for other algorithms
(detection with nonlinear energy operator, stationary wavelet transform and
matched-filter based detection, and spike sorting with discrete wavelet trans-
form), but at a lower level of detail. The results from these preliminary analyses
show that the algorithms in many cases have similar dependencies on sampling
rate and resolution. Our results for absolute value threshold detection and prin-
cipal component analysis with fuzzy c-means thus allow us to draw qualitative
conclusions about the amount of raw data required by the other algorithms
for accurate processing unit output. Last, we have summarized our findings
in a diagram that relates the allocation of processing tasks to the demands on
the wireless link and the computational resources at hand. Our results pro-
vide useful guidelines for the selection of sampling rate and resolution when
dimensioning wireless BMIs.

2 Methods

2.1 Synthesized Recordings

The simulator described in [23] was used to synthesize 150 extracellular neural
recordings, each with a duration of 30 seconds. A library of 2000 synthetic
spikes was used for the synthesis [24]. The recordings were divided into 3 sets
of 50 recordings each, containing 1, 2 and 4 target units respectively. The tar-
get unit spike waveforms were chosen randomly from the spike library. Ground
truth (true spike times, identities and waveforms) was stored with all record-
ings. Target unit spike amplitudes were drawn from a uniform (rectangular)
distribution between 0.5 and 1.0 (U(0.5,1.0)) and were then normalized with
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respect to the largest one. The strongest unit in each recording thereby had a
amplitude of 1 (unipolar), assumed to correspond to 100 xV. In all recordings,
target units had a mean firing rate of 20 spikes/second and gamma distributed
inter-spike intervals.

White noise was added to represent thermal noise generated in the recording
electronics. The thermal noise amplitude was set according to

v, =\VAkTBR (1)

where k is Boltzmann’s constant, 7' is the temperature and B and R are the
bandwidth and input resistance of the analog front end, respectively [25]. With
parameters set to T = 310K, B = 50 kHz and R = 200 k2, this gave an in-
put referred noise of 13 uV,.,s, or 0.13 when normalized to the largest spike
amplitude. Physiological background noise was synthesized by simulating the
spiking activity of distant neurons with mean firing rates chosen randomly
from a uniform distribution between 1 and 50 spikes/second. Signal compo-
nents (target unit activity, physiological background noise and thermal noise)
were stored separately, allowing us to scale the physiological background noise
to any desired level and study its influence on processing unit output. Phys-
iological background noise was referred to in terms of its standard deviation,
on, normalized to the maximum spike amplitude. Figure (3) shows an ex-
ample of a synthesized recording, sampled at 25 kHz, with 2 target units and
physiological background noise scaled to 0.05, 0.1 and 0.2 respectively prior to
downsampling.

Dynamic recording properties such as varying noise level, spike amplitude,
number of target units etc. were left out of the simulations in order to ensure
objectivity and full control over simulation variables. Real recordings with dy-
namic properties can be modeled as a continuous series of stationary recording
segments. Thus, the results presented here can be applied to the dynamic
case by considering either the “worst segment” or the “mean segment” in the
recording.

The recordings were synthesized at a sampling rate of 100 kHz and a sam-
pling resolution determined by machine precision. When exploring the effects
of sampling rate and resolution on the performance in spike detection and
spike sorting (see following sections), the recordings were downsampled using
MATLAB’s function resample, that includes antialiasing filtering. Sampling
resolution was defined in terms of the least significant bit (LSB) amplitude
relative to the maximum spike amplitude of 1, and was varied by discretizing
the sample values as multiples of the LSB amplitude with MATLAB’s func-
tion quant. The number of effective bits for each sampling resolution was then
calculated as

Nb == logQ(Vmaz/VLSB) (2)



Minimizing data transfer with sustained performance in wireless
brain-machine interfaces 119

Table 1: 150 recordings with 1, 2 and 4 (50 each) target units were synthesized
and stored along with ground truth about neuronal activity. Ground truth was
used to quantify the performance in spike detection and spike sorting while
altering simulation variables according to the table values.

Simulation Variables Values
Number of target units (N,,) 1,2, 4
Target unit amplitude 0.5-1.0%
Std. deviation of background noise (o) 0.01 - 0.3°
Std. deviation of thermal noise (vy,.,,.) 0.13¢
Sampling rate (fs) 0.5 - 100 kHz
Sampling resolution (Qs) 1 - 14 bits?

“The largest unit has an amplitude of 1, corresponding to 100 pV'

bRelative to a spike amplitude of 100uV .

cRelative to a spike amplitude of 100 pV at a bandwidth of 50kHz

dEffective bits, assuming full utilization of the ADCs dynamic range of & 1 relative to a
spike amplitude of 100 puV

where N, is the number of effective bits, V.., is the analog-to-digital con-
verter’s (ADC’s) dynamic range and Vg5 is the LSB amplitude. For the sake
of generalization, we assumed the dynamic range of the analog-to-digital con-
verter to be fully utilized and hence set V4. to 2 (£1), i.e. the maximum
peak-to-peak spike amplitude. The breakpoints obtained and presented in our
results can hence be adapted to a real situation in which the ADC’s dynamic
range is larger than the spike amplitude by adding one extra bit of sampling
resolution for every doubling of the dynamic range relative to the maximum
spike amplitude. Table (1) provides an overview of the simulation variables
and their covered ranges.

2.2 Spike Detection

Several spike detection algorithms have been described in the literature, varying
in both complexity and performance. Some of these that have been described
within the context of low-power, low-complexity BMI applications, are ABSo-
lute value threshold detection (ABS) [26], Nonlinear Energy Operator detection
(NEO) [27], Stationary Wavelet Transform Product detection (SWTP) [28] and
Matched-Filter based detection (MF) [29].

In [30] the authors compared ABS, NEO and SWTP and concluded that
NEO provided the highest accuracy, ABS the second highest (only slightly be-
low NEO) and SWTP the lowest. In terms of chip area and computational
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Figure 3: A synthesized recording with two target units and physiological back-
ground noise scaled to three different levels (o = standard deviation of phys-
iological background noise). Ground truth (true spike waveforms, target unit
identities and spike times) stored with the synthesized recordings allowed for
quantitative assessment of performance in spike detection and spike sorting.
True spike times of the two units are shown along the lower edge of the fig-
ure (“o” and “x”) and the true spike waveforms are shown in the inset. The
dotted lines represent spike detection thresholds for absolute value threshold
detection, obtained with Equation (3).

complexity, ABS had the lowest cost, NEO the second and SWTP the high-
est. In [29] the authors compared ABS, NEO and MF (along with others)
and concluded that ABS was as effective as NEO and MF. In terms of com-
putational complexity, ABS had the lowest cost, NEO the second and MF the
highest. Their results also indicated that in order to improve spike detection,
maximizing signal-to-noise ratio (SNR) was superior to employing advanced
preprocessing.

We stress the fact that the main focus of this work is on wireless autonomous
implants with limited resources, making the choice of fully automatic low-
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complexity algorithms for signal processing essential. With this in mind, and
considering the small differences in reported performance but significant dif-
ferences in complexity between the proposed algorithms, we chose to perform
the identification of sampling rate and resolution breakpoints on absolute value
threshold detection; that being a feasible choice in terms of both performance
and complexity. We also carried out a preliminary analysis of the performance
of the other algorithms. These are briefly described in Section 2.4.
In ABS, spike detection is performed by applying a threshold of

. . v
T=46n=4- medlan{ 0.|67|45} (3)

where 6y is the estimated standard deviation of background noise and |v| is
the absolute value of the digitized signal’s amplitude [26].

Estimation of Spike Detection Accuracy

Detected spike times (sample indices of threshold crossings) were compared
to the ground truth (spike onset and duration) and the results were used to
quantify performance in terms of true and false positive detection rates, as
explained in Figure 4. A recovery time of 2 ms, during which a new spike
detection could not occur, was applied after each detection. From the true spike
onsets and durations, time frames of true spike occurrences were established.
Every detected spike time was then compared with the true spike time frames
and detection scores were assigned according to the number of true spike time
frames, N, covering the detected spike time:

Case 1: No true spike time frame (N = 0)
Number of false positives, Npp increased by 1.

Case 2: Exactly 1 true spike time frame (N = 1)
Detection score d = 1 assigned to the true spike whose true time frame
covered the detection time.

Case 3: More than one true spike time frames (N > 1)
Detection score d = 1/N assigned to the true spikes whose true time
frames covered the detection time.

In case of a double detection, i.e. two detection times being covered by the same
true spike time frame, the second detection was classified as a false positive
detection (Case 2’). However, in case the second of these two detection times
was covered by yet another true spike time frame, the first true spike did not
influence the treatment of the second (Case 3).
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Figure 4: Spike detection performance was quantified by comparing spike de-
tection times with the known presence of spikes according to the ground truth
stored during recording synthesis (spike onset and duration). Three main cases
were identified: 1) the detected spike time was not covered by any true spike,
2) the detected spike time was covered by exactly N =1 true spike and 3) the
detected spike time was covered by N > 1 true spikes. In case 1, the detection
was classified as a false positive detection. In case 2, the detection was classified
as a true positive detection and a detection score of d,,, = 1 was assigned to
the true spike. In case 3, the detection was classified as a true positive detec-
tion with weight 1/N and detection scores of d,,, = 1/N were assigned to the
true spikes. In rare cases, 2 detections could occur during the same true spike
interval. In such cases, only the first detection was classified as a true positive
detection and the second was classified as a false positive detection (case 2).
An exception from this was made when the second detection was covered by
yet another true spike, in which case the first detection did not influence the
treatment of the second (case 3’).

Probability of true positive detection, Prp, was estimated by the rate of
true positive detection, Prp and was calculated according to

M
- = dm
Prp = L= @ 100% (4)
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where M is the number of true spikes in the recording and d,, is the detection
score assigned to true spike m, obtained by the above procedure. A detection
score of zero was assigned to missed spikes.

Probability of false positive detection, Prp, was estimated by the rate of
false positive detections, Ppp, defined as and calculated according to

Nrp

Prp = —Nep
an/Nrecovery

-100% (5)
where Npp is the total number of false positive detections obtained by the
above procedure, N, is the number of samples in the recording not covered by
any true spike time frame and Ny.ccovery i the recovery time of the spike detec-
tor. The ratio Nys/Nyecovery i hence a measure of the maximum achievable
number of false positive detections in the recording.

Sampling Rate and Resolution Breakpoints for Absolute Value
Threshold Detection

When identifying sampling rate breakpoints, the true positive detection rate,
Prp, was interpolated (cubic spline) and thresholds of 1% and 5% below Prp
at full sampling rate were applied. The sampling rate breakpoint for each of
the thresholds was taken as the sampling rate at which the true positive de-
tection rate curve crossed the threshold. Two different thresholds were applied
since the breakpoint locations varied strongly with the error tolerance, espe-
cially at high noise levels. Since the detection threshold was adapted to the
noise level (Equation 3) to avoid false positive detections, the false positive de-
tection rate was consistently negligible compared to the true positive detection
rate. Therefore, it was neglected when identifying sampling rate breakpoints.
Sampling resolution was held fixed at a level determined by machine precision
while sampling rate was varied.

For sampling resolution, we included both true and false positive detection
rate in the breakpoint estimation since, with lowered resolution, both true and
false positive detection rates became significantly unstable. The instability
was caused by rounding of both the signal and the detection threshold (see
Section 3.1). We applied thresholds of 1% below the true positive detection
rate at full sampling resolution and above the false positive detection rate
at full sampling resolution to identify the sampling resolution at which the
onset of the instability occurred. Thus we obtained two sampling resolution
breakpoints, one at the resolution where true positive detection rate dropped
below its threshold and one at the resolution where false positive detection rate
rose above its threshold. The final sampling resolution breakpoint was taken
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as the higher resolution breakpoint of these two. Sampling rate was held fixed
at 25 kHz while sampling resolution was varied.

2.3 Spike Sorting and Feature Extraction

Although there has been great interest in the task of spike sorting, no stan-
dard algorithm exists and the algorithms proposed differ in terms of feature
extraction as well as clustering approaches. We considered Principal Compo-
nent Analysis (PCA) [10], the Discrete Wavelet Transform (DWT) [26] and
Discrete Derivatives (DD) [30, 31] for feature extraction and Fuzzy C-means
(FCM) [32] for clustering.

In [26], the authors compared PCA and DWT and concluded that DWT
was superior in performance. This conclusion was mainly based on the ob-
servation that although the first principal components capture the majority
of the variance in the original data, they do not necessarily provide the best
cluster separation. In [33], the authors also compared PCA and DWT and
also concluded that DWT was superior, but only in cases where it was well
tuned to the data. In addition, they concluded that the DWT suffered from
difficulties in finding the best wavelet-parameters to be used in clustering. In
[30], the authors compared PCA, DWT and DD, in terms of both performance
and computational complexity. They concluded that there was little differ-
ence in performance, but a significant difference in computational complexity
— DD being the simplest and PCA the most complex. In [31], the performance
of PCA, DWT and DD was compared. The differences varied somewhat be-
tween the cases studied, and from the results, it seems difficult to derive a
general conclusion regarding the ranking of the methods across all cases. From
a computational complexity point of view, DD should be a feasible alterna-
tive. However, it suffers from the same problems as DWT regarding selection
of features and the selection of time scales to calculate slopes is arbitrary.

From the above, we conclude that there is no obvious best choice in these
comparisons. However, PCA is well defined, well established and a widely used
algorithm for feature extraction [30]. It is not the simplest in most computa-
tional terms, but it is generic in the sense that it has no case specific parameters
that need to be set. Therefore it is straightforward and suitable to use for quan-
titative analysis over a wide range of cases. The other algorithms that were
considered for preliminary analysis are described briefly in Section 2.4.

In PCA, an ordered set of orthonormal basis waveforms (principal compo-
nents), that describe the variation in the set of spike waveforms presented to
the algorithm, is found. The spike waveforms can then be completely described
as linear combinations of the basis waveforms and the weights applied to the
basis waveforms can be used as spike features in spike sorting. Since the set, of
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basis waveforms is ordered — the first waveform describing the most variation
— dimensionality reduction is achieved by simply selecting the first N weights
as spike features. IV was set to 3 in our simulations.

Estimation of Spike Sorting Accuracy

True spike times and durations, obtained from ground truth, were used to
extract spikes from synthesized recordings with 2 and 4 target units at full
sampling rate (100 kHz). This was done in order to exclude any errors possibly
induced in the spike detection step.

Spikes were sorted using fuzzy c-means clustering (FCM) [32] and were
assigned to the cluster with the strongest membership grade. To ensure con-
sistency in the processing, we assumed the number of target units to be known
and provided it to the clustering algorithm as input (number of clusters). We
are aware that such an assumption does not reflect reality, but we assume it
to be valid for the sake of comparing clustering results while varying the sim-
ulation parameters of interest. The probability of correct spike classification,
Prp, was estimated as the correct classification rate, PTP, by comparing the
cluster assignments with the true spike identities according to ground truth, as
explained by examples in Figure 5.

Correct classification rate, PT p, was calculated by hierarchical examination
of the evidence for mappings between cluster ¢ and target unit j. Such an ap-
proach was necessary since the mappings between cluster identities and target
units is non-deterministic. An evidence matrix, F, of size N, X N,,, where N, is
the number of target units, was constructed. Entry e; ; in the evidence matrix
was set to the number of spikes truly coming from target unit j, assigned to
cluster ¢ by FCM. The evidence matrix was then processed according to the
following procedure:

1. Set hierarchical level counter, n, to 1.

2. Find the n—th largest value, €44, in the evidence matrix, representing
the n — th largest evidence for mapping between a target unit and a
cluster, assuming that evidence on higher hierarchical levels is true.

3. Set all values in the row and column of €44, to zero (eliminate evidence
assumed to be false).

4. Increase hierarchical level counter, n, by 1.

5. Repeat from step 2 until the number of non-zero entries in the processed
evidence matrix is lower than or equal to NN,,.
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[ 15 J 3 4]
5 7 8 0o 7 8
E= 9 % 9
0

.

[15 0 $ 0] 15 0 0 07
0 0 8 -0—0—0 [8]
-0—0 [10-9 0 0 103
0 21 0 0 0 21 0 0 |

Prp = 25048 100% = 54%

Figure 5: Spike sorting performance was measured as the percentage of cor-
rectly classified spikes, Pr p, as obtained by the procedure described by exam-
ples 1 and 2. In both examples, 100 spikes coming from 4 units (25 from each)
have been sorted with fuzzy c-means with the number of units (4) given as
input. After clustering, the assigned cluster identities are compared with the
true unit identities according to ground truth and the evidence matrix E is
constructed. The entries of the evidence matrix, e; ; represent the number of
spikes in cluster ¢ belonging to unit j according to ground truth. In Example 1,
all spikes have been correctly classified and cluster identities 1, 2, 3 and 4 corre-
spond to target unit identities 1, 4, 3 and 2 respectively. This demonstrates the
non-deterministic mapping between cluster and target unit identities described
in the text. In Example 2, some of the spikes have been misclassified. Compar-
ing this with Example 1, this can be described as “leakage” between the entries
of the evidence matrix. “Leakage” between rows represents spikes coming from
the same unit being classified as coming from different units (cluster splitting)
and “leakage” between columns represents spikes coming from different units
being classified as the same unit (cluster merging). The evidence matrix is pro-
cessed in a hierarchical manner (arrows) by successively finding the strongest
mappings between units and clusters, assuming previously found evidence to
be true.
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After completing this procedure, the number of correctly classified spikes was
taken as the sum of the elements in the processed evidence matrix and the rate
of correct classification, PT p was taken as the ratio between that number and
the total number of spikes present in the recording. Since fuzzy c-means is
a non-deterministic algorithm, we performed the clustering 10 times for each
case and kept the result with the largest rate of correct classification only.

Sampling Rate and Resolution Breakpoints for Spike Sorting with
PCA and FCM

We applied a threshold of 1% below the correct classification rate at full sam-
pling rate or resolution and the breakpoints were taken as the sampling rate
or resolution where the curves fell below the threshold. In the sampling rate
case, the curves were interpolated (cubic spline) prior to applying the threshold.
When varying sampling rate, sampling resolution was held fixed at the original
value determined by machine precision. When varying sampling resolution, the
recordings where first downsampled to a fixed sampling rate of 25 kHz.

PCA Feature Space Representation as a Quantitative Measure of
Performance

Quantifying spike sorting performance relies on some subjective assumptions
(see Section 2.3) regarding the number of clusters and the choice of method
for assessing the sorting results. Therefore, we found that using an objective
measure that neglects the spike sorting algorithm and only considers the in-
formation provided to it would be a sound approach. Such a measure would
greatly simplify the work of characterizing system behavior in terms of spike
sorting performance.

We therefore examined the development of the feature space representation
(PCA) of spikes as an objective, indirect measure of spike sorting performance.
The measure was taken as the mean squared error (MSE) between the nor-
malized feature matrix (first 3 principal component weights) at a given sam-
pling rate or resolution and the normalized feature matrix at full sampling rate
or resolution. Our expectation was that a convergence in the feature space
representation as sampling rate or resolution was increased would lead to a
convergence in spike sorting results, independent of the clusterability of the
spikes. Therefore, optimization of performance in terms of the feature matrix
MSE instead of spike sorting accuracy should be a valid and feasible approach.
However, since this measure is not easily interpreted in terms of quality of the
system output, namely the accuracy in single unit activity assessment, it is still
victim to subjectivity when setting performance thresholds for breakpoint esti-
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mation. Therefore, we chose to only look at the correlation coefficient between
the correct classification rate and the MSE at this stage as a first step in em-
ploying such a measure in future studies. The correlation coefficient indicates
the strength of the linear relationship between the two measures.

Effects of Spike Detection Jitter on Spike Sorting

Spike sorting and feature extraction analyses for PCA described so far were
carried out in both the presence and absence of simulated spike detection jitter
(Section 1). Spike detection jitter was simulated by applying a random time
shift to every spike waveform once the waveforms were extracted and downsam-
pled. The magnitude of the time shift is limited by the sample period and was
hence drawn from a uniform (rectangular) distribution between -1/2 and 1/2
a sample period. Therefore, the effects of spike detection jitter were expected
to be reduced as sampling rate was increased. Additional spike detection jitter
caused by noise was not taken into account.

The effect of spike detection jitter on spike sorting performance was quanti-
fied as the difference between correct classification rate with and without jitter.
The breakpoint was taken as the sampling rate at which the difference dropped
below a threshold of 1%. The influence of spike detection jitter was examined
in the same manner while altering sampling resolution.

Joint Effects of Sampling Rate and Resolution on Spike Sorting Per-
formance

To account for any possible effects on spike sorting performance caused by a
combination of employing both a low sampling rate and resolution, we calcu-
lated correct classification rate while jointly varying sampling rate and resolu-
tion on a subset of the values spanned when varying the individual parameters
as described in previous sections. We assumed spike detection and extraction
to have been performed on the signal at a sampling rate of 25 kHz, which is
high enough for the effects of spike detection jitter to be negligible (Figure
11). We therefore did not include spike detection jitter in this part. We then
calculated the correct classification rate, PTP, as a function of sampling rate
and resolution at all noise levels studied for 2 and 4 target units. A threshold
of 1% below correct classification rate at full sampling rate and resolution was
applied and the breakpoint was taken as the point, in the region where Prp
was above the threshold, that minimized bitrate (sampling rate x sampling
resolution, bits/second).
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2.4 Generalization to Other Algorithms

In order to investigate how the sampling rate and resolution breakpoints ob-
tained by the above analysis would generalize to the other algorithms consid-
ered (NEO, SWTP and MF for spike detection and DWT for spike sorting),
we performed preliminary analysis on the influence of varying sampling rate
and resolution on their performance. This preliminary analysis also provided
insight into how an increase in available computational resources, and thus
the possibility of employing more demanding algorithms, would influence the
requirement for raw input data to the processing unit. These analyses were
performed in the same way as described for ABS and PCA in Sections 2.2 and
2.3. The alternative algorithms considered are briefly described here. We chose
not to implement DD for spike sorting in our analysis due to the arbitrariness
in the choice of time scales for slope calculation.

Spike Detection

Nonlinear Energy Operator:
A threshold T is applied to the nonlinear energy operator W(n) for the
signal v(n). ¥(n) is obtained by

U(n) =v3(n) —v(n+1)-v(n —1). (6)

and T is set as

T =CU(n) (7)
where U(n) is the mean of the ¥(n) and C is a scaling factor adjusted
empirically and then used as a constant [27]. C' was set to 20 in our
simulations.

Stationary Wavelet Transform Product
The stationary wavelet transform (SWT) of the signal v(n) is calculated
at 5 consecutive dyadic scales (W (27,n), j € [1,5]). The scale with the
maximum sum of absolute values is found (27me=) and the point-wise
product P(n) of wavelet coefficients over three consecutive scales up to
2Jmaz is calculated as

JImazx

Pm)= [[ W@l (®)

J=Jmaz—2

P(n) is then smoothed by convolution with a Bartlett window w(n) (half
the spike length) and a threshold 7" is applied to the smoothed Py(n). T
is set as

T = CP,(n) 9)
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where C is a scaling factor and Ps(n) is the mean of Ps(n) [28]. C' was
set to 2 in our simulations.

Matched Filter
The signal is convolved with a spike waveform that is the mean of spikes in
the spike library used to generate the synthetic recordings (Section 2.1).
A threshold T is applied to the absolute value of the resulting signal. T’
is set to a percentage of the input range of the (convolved) signal. T" was
set to 20% in our simulations.

Spike Sorting

Discrete Wavelet Transform:

The wavelet transform of each spike is calculated using a four-level mul-
tiresolution decomposition with Haar wavelets. The wavelet coefficients
thus describe the spike waveforms at various scales and times [26]. The
number of wavelet coefficients is the same as the number of samples in
the spike waveforms. In contrast to PCA, the coefficients are not ordered
and the set of coefficients used in clustering needs to be identified. Thus,
every coefficient distribution needs to be tested and coefficient selection
is based on the obtained test statistics.

Modified Lilliefors Test:

The Lilliefors test for normality employed in [26] provides a measure
of deviation from normality for the coefficient distributions. In or-
der to further reward coefficients with multimodal distributions, we
modified the test to include a measure of separation between mul-
tiple modes. The empirical cumulative distribution function of the
coefficients ECDF(c) is calculated and compared to the cumulative
distribution function of a normal distribution NCDF(c) with the
same mean and variance as the coefficient distribution. The test
statistic is then taken as

K = |Ap| +[ldl|/]|dmaz|l (10)

where A, is the distance between the first and last peak of the
function d = |[ECDF(c) — NCDF(c)| and ||.|| denotes Euclidean
norm. dy,q. is set to be 0.5 — NCDF'(c)|. Thus, a large mode sep-
aration and large deviation from normality (first and second term
of Equation 10 respectively) lead to a high test statistic. The coef-
ficients with the three highest test statistics are selected for feature
extraction.
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Maximum-Difference Test:
The coefficients with the three largest variations are selected for
feature extraction (see [30] for details on implementation).

3 Results

3.1 Spike Detection with Absolute Value Threshold

1 unit, 5% threshold 2 units, 5% threshold 4 units, 5% threshold
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Figure 6: True and false positive detection rates, PT p and PF p, were used to
quantify spike detection performance while varying the number of target units
present (1, 2 and 4), standard deviation of background noise (o = 0.01 to 0.3),
sampling rate (0.5 to 100 kHz) and sampling resolution (1 to 14 bits). (a) to (c)
show the mean true positive detection rates (across all recordings) as functions
of sampling rate at three of the noise levels studied for 1, 2 and 4 target units.
Thresholds of 1 and 5% below true positive detection rate at full sampling rate
were applied to find performace breakpoints. The stars indicate the location
of the 5% breakpoints obtained for the mean curves. (d) to (f) and (g) to (i)
show the mean true and false positive detection rates respectively as functions
of sampling resolution. Thresholds of 1% below true positive detection rate
at full sampling resolution and above 1% false positive detection rate at full
resolution were applied and the overall sampling resolution breakpoint was
taken as the higher one of the two resulting breakpoints. Breakpoints obtained
for the mean curves are indicated with stars. 95% confidence intervals for the
mean are indicated with thin lines. (Continued on page 132)

Figure 6 shows mean true and false positive detection rates (across all
recordings) as functions of sampling rate and resolution at a subset of the noise
levels studied (false positive detection rate as a function of sampling rate is
not shown). The mean curves illustrate the general relationship between spike
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Figure 6: True and false positive detection rates for spike detection with ab-
solute value threshold detection as functions of noise level, number of target
units and sampling resolution (continued from page 131).

detection performance and sampling rate, sampling resolution, noise level and
number of target units. Breakpoints obtained from the mean curves according
to the procedure described in Section 2.2 are shown in the figure. Close to the
sampling rate breakpoints, we generally observed a “knee” or plateauing in per-
formance. As noise level increased, the knee in the true positive detection rate
curves for sampling rate generally became less clear. Close to the sampling res-
olution breakpoints, we observed an increased instability in performance. This
behavior is explained by the fact that as sampling resolution is lowered, the
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signal-to-noise ratio switches between being enhanced and degraded as some
resolutions lead to noise being suppressed (rounded downwards) and spikes be-
ing enhanced (rounded upwards), and some lead to both being either enhanced
or suppressed. For absolute value threshold detection, this behavior is ampli-
fied since the detection threshold is locked to the same quantization levels as
the signal (the threshold is obtained from signal median). As a result, per-
formance was actually better at some low resolutions than at full resolution.
However, since sampling resolution was varied in terms of least significant bit
amplitude relative to the maximum spike amplitude, a change in either spike
or noise amplitude would cause a change in the effective sampling resolution
and thereby also a potentially dramatic change in performance when operating
at these low resolutions.

We recall that we assume a system architecture where signal digitization
is performed in the acquisition unit and all processing is performed on the
digitized signal. One way of excluding the threshold’s contribution to the oscil-
lating behavior is to consider an alternative architecture, in which the detection
threshold would be either analog or set with a higher resolution than that em-
ployed for signal acquisition. In order to see the effects of such an alternative
architecture, we tried using the threshold obtained from the signal at full res-
olution and observed that the onset of the oscillating behavior consistently
occurred at a lower resolution. In other words, such an architecture would be
more robust to lowered sampling resolution than the one studied here. With
the intention to study a worst case scenario, we only present the results for the
original thresholds (sampling resolution dependent), since it consistently over-
estimates the sampling resolution breakpoint compared to the full-resolution
threshold.

Figure 7 shows the distributions of sampling rate and resolution breakpoints
for all cases studied. The 1% sampling rate breakpoints are omitted in the
figure. At the high-end noise levels, their locations were significantly higher
than the 5% breakpoints due to the diminishing plateauing of performance
curves. The 5% breakpoint was observed to provide a closer estimate of the
curve knees. Maximum achievable spike detection performance decreased with
increased noise level and number of target units. The maximum true positive
detection rate deteriorated significantly at noise levels of oy = 0.1 to 0.15
(Figure 7(b)).

Sampling rate breakpoints were obtained at 1.4 to 90.7 kHz and 1.2 to 49.0
kHz (upper limit of 5% median comparison interval) for the 1% and 5% thresh-
olds respectively, depending on noise level and number of target units present,
(Figure 7(a)). Lowering the threshold (error tolerance) from 5% to 1% hence
caused a noticable increase in the demands with respect to sampling rate. How-
ever, in the cases where the highest of those breakpoints were encountered, the
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Figure 7: The distributions of sampling rate and resolution breakpoints for
spike detection with an absolute threshold. (a) and (b) show sampling rate
breakpoints and true positive detection rate at the breakpoints for the 5%
threshold. (c) and (d) show sampling resolution breakpoints and true positive
detection rate at the breakpoints. The number of target units present in each
case is indicated with 1, 2 and 4. oy is the standard deviation of the physio-
logical background noise in each case. Median comparison intervals (p = 0.05)
are marked with triangles (A/v7). (Continued on page 135)

maximum achievable true positive detection rate suffered a significant decrease
due to the increased noise level, as mentioned above. Therefore, the major con-
sideration in these cases was not which sampling rate to employ, but whether
the noise level could be lowered by any means. Assuming an upper limit of
0.15 on the noise level, we would obtain maximum sampling rate breakpoints of
30.6 kHz and 16.1 kHz for the 1% and 5% thresholds respectively (ony = 0.15,
4 target units). Sampling rate breakpoints were generally shifted upwards with
increasing noise level and number of target units, except at high noise lev-
els, where the breakpoints were lowered when increasing the number of target
units. This is explained by the differences in the plateauing behavior of the
performance curves at high noise levels (see Figure 6).
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Figure 7: The distributions of sampling rate and resolution breakpoints for
spike detection with an absolute threshold (continued from page 134).

Sampling resolution breakpoints were obtained at 6.8 bits to 9.3 bits (upper
limit of 5% median comparison interval) (Figure 7(c)). The noise dependency of
breakpoints was somewhat inconsistent, displaying a local maximum within the
range of noise levels studied. However, this inconsistency was observed for all
numbers of target units. Again, assuming a maximum noise level of o = 0.15,
a maximum sampling resolution breakpoint of 9.0 bits was obtained.

3.2 Spike Sorting with Principal Component Analysis
Spike Sorting

Figure 8 shows the correct classification rate, feature matrix mean squared er-
ror, feature space representation and cluster assignments as functions of sam-
pling rate and resolution for a representative example recording with 4 target
units at a noise level of o = 0.01, both in the presence and absence of spike
detection jitter.

Figure 9 shows sampling rate and resolution breakpoint distributions for
spike sorting for all cases studied. Maximum correct classification rate was
robust to an increase in noise level up to oy = 0.3 when 2 target units were
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Figure 8: Performance in spike sorting and development of feature space repre-
sentation were quantified as the correct classification rate (PTP, upper curve,
red), and the feature matrix (principal component weights) mean squared er-
ror (MSE, lower curve, green) respectively. The feature matrix MSE at a given
sampling rate or resolution was taken as the mean squared error between the
feature matrix at that specific sampling rate or resolution and the feature ma-
trix at full sampling rate or resolution. (a) and (b) show the Ppp and MSE
as functions of sampling rate in the absence and presence of spike detection
jitter respectively for one representative recording with 4 target units at noise
level of oy = 0.01. (c) and (d) show the same, but as functions of sampling
resolution. The insets show snapshots of the feature space representation of
the spikes and cluster assignments after spike sorting with fuzzy c-means (red,
green, blue, gray). The snapshot locations on the sampling rate and resolution
axes are marked with stars on the PT p and MSE curves.
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present, both in the presence and absence of spike detection jitter (Figure
9(b)). When 4 target units were present, a significant decrease in the maximum
correct classification rate was seen already at a noise level of o = 0.05. The
presence of spike detection jitter caused no significant change in maximum
correct classification rate. This is not surprising when considering that at the
maximum sampling rate (100 kHz), spike detection jitter has no significant
influence on spike sorting performance (Section 3.2, Figure 11).

Sampling rate breakpoints between 0.7 kHz to 11.6 kHz (upper limit of 5%
median comparison interval) were obtained, depending on the number of tar-
get units and the presence of spike detection jitter (Figure 9(a)). Increasing
noise level and the number of target units and introducing spike detection jitter
generally caused an upward shift in the breakpoints. Differences in breakpoint
locations per case across noise levels were generally insignificant. However, re-
moving spike detection jitter generally caused a significant downward shift in
breakpoint locations. Achieving spike alignment before the spike sorting step
by any means (adequate sampling rate in the spike detection step or realign-
ment in post-processing) therefore proved to be an important factor in lowering
sampling rate breakpoints for spike sorting.

Sampling resolution breakpoints were obtained between 1.4 bits and 3.1
bits (upper limit of 5% median comparison interval), depending on noise level
and the number of target units (Figure 9(c)). Spike detection jitter did not
have significant influence on the location of sampling resolution breakpoints.
Again, sampling resolution was varied while keeping sampling rate fixed at 25
kHz, high enough for the spike misalignments caused by spike detection jitter to
have negligible effects on spike sorting performance (Section 3.2, Figure 11). As
noise level was increased, the difference between the cases studied was generally
reduced. Maximum correct classification rates (Figure 9(d)) were essentially
the same as in the sampling rate part, again due to the employment of the
sampling rate of 25 kHz (9(a)).

PCA Feature Space Representation as a Quantitative Measure of
Spike Sorting Performance

Comparing the correct classification rate curves and feature matrix mean
squared error curves as exemplified in Figure 8, we saw that in general, the
correct classification rate seemed to converge faster than the feature space
mean squared error. The correlation between the feature matrix MSE and the
correct classification rate, Pr p, was found to be significant (p = 0.05) in 97.2%
and 92.3% of the recordings studied for sampling rate and resolution respec-
tively. The median correlation over all recordings per case (noise level, number
of target units and presence/absence of spike detection jitter) was significantly
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Figure 9: The distributions of sampling rate and resolution breakpoints for
spike sorting with principal component analysis and fuzzy c-means. (a) and
(b) show sampling rate breakpoints and correct classification rate at the break-
points. (c) and (d) show sampling resolution breakpoints and correct classifi-
cation rate at the breakpoints. The number of target units present in each case
is indicated with 2 and 4 and the presence of spike detection jitter is indicated
with an appended “j”. o is the standard deviation of physiological background
noise in each case. Median comparison intervals (p = 0.05) are marked with
triangles (A /7). (Continued on page 139)

(p = 0.05) different from 0 in all cases. Although clustering with fuzzy c-means
seemed to be robust to some changes in feature space representation of spikes,
as illustrated by the example in Figure 8, these results provide support to our
expectation that optimization of performance in terms of the feature matrix
MSE instead of Prp is a feasible approach in future studies.

Effects of Spike Detection Jitter on Spike Sorting

Figure 10 shows the mean difference in correct classification rate between cases
with and without spike detection jitter for 2 and 4 target units at some of the
noise levels studied. In general, the influence of spike detection jitter decreased
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Figure 9: The distributions of sampling rate and resolution breakpoints for
spike sorting with principal component analysis and fuzzy c-means (continued
from page 138).

with increased noise level and clearly seemed to converge to become insignificant,
as sampling rate was increased.

Figure 11 shows the distributions of sampling rate breakpoints for correct
classification rate decrease caused by the introduction of spike detection jitter.
Sampling rate breakpoints between 2.3 kHz and 11.5 kHz were obtained (upper
limit of 5% median comparison interval). Noise level did not have significant
influence on breakpoint locations per case, but a significant difference was seen
between cases with 2 and 4 target units at all noise levels.

It may seem counterintuitive that the loss in spike sorting performance is
the smallest at high noise levels. However, as noise level is increased, the correct
classification curves are shifted downwards for both cases, i.e. with and without
jitter, and the higher the noise level, the less becomes the difference between
the two curves. Therefore, at high noise levels, there is less to be gained in
spike sorting performance by achieving spike alignment.

This suggest that as long as spikes are detected in and extracted from
the signal at a sampling rate of 11.5 kHz or higher, the spike detection jitter
introduced will not decrease spike sorting performance by more than 1% in
correct classification rate and hence no further measures need to be taken to
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establish spike alignment in post-processing prior to the spike sorting step.

The breakpoints reported here are considerably lower than those reported in
[21]. A possible explanation for this difference is the robustness towards changes
in input data displayed by fuzzy c-means clustering (see Section 3.2). In [21] the
authors identified the sampling rate at which the feature space representation
converged. As qualitative examination of the example in Figure 8(b) indicates,
the feature matrix MSE converges at a considerably higher sampling rate than
the correct classification rate.

Spike detection jitter did not cause significant effects on spike sorting per-
formance when sampling resolution was varied. Again, this is due to the fact
that sampling resolution was altered while keeping the sampling rate fixed at
25 kHz, which is above sampling rate breakpoints in all cases (Figure 11).
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Figure 10: The influence of spike detection jitter on the performance of spike
sorting was quantified as the difference in correct classification rate caused by
the introduction of jitter, Pr J ]5ij. The upper and lower panel show the
mean difference over all recordings at three different noise levels (o) for 2 and
4 target units respectively. The stars indicate the 1% breakpoints obtained for
the mean curves. 95% confidence intervals for the mean are indicated with thin
lines.
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Figure 11: The distributions of sampling rate breakpoints for correct classifi-
cation rate difference caused by spike detection jitter. The number of target
units is indicated with 2 and 4. oy is the standard deviation of physiological
background noise. Median comparison intervals (p = 0.05) are marked with
triangles (A /7).
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Joint Effects of Sampling Rate and Resolution on Spike Sorting Per-
formance

Figure 12 shows the mean correct classification rate (across all recordings) as
a function of sampling rate and resolution for 4 target units at a subset of the
noise levels studied. As noise level increased, the maximum achievable correct
classification rate was decreased. Figure 13 shows the distributions of joint
sampling rate and resolution breakpoints for spike sorting.

Maximum correct classification rate was robust to noise levels up to oy =
0.2 when 2 target units were present but deteriorated significantly already at
a noise level of o = 0.05 when 4 target units were present.

Sampling rate and resolution breakpoints were obtained at 1.0 to 13.5 kHz
and 2.2 to 4.6 bits respectively. However, at the higher sampling rate limit,
which occurred at a noise level of o = 0.3, the maximum correct classification
rate was just above 50%, meaning that the noise level was the primary factor
to concern rather than sampling rate or resolution.

These breakpoints are similar to the breakpoints obtained when individu-
ally varying sampling rate and resolution (Section 3.2), although the individual
treatment of sampling resolution seems to provide a somewhat lower breakpoint
estimation. Therefore, when estimating performance breakpoints, a joint treat-
ment of sampling rate and resolution appears to be a more reliable approach,
although separate treatment provides a good approximation.

These results show that spike sorting performance does not suffer a loss in
correct classification rate by more than 1% as long as spikes passed to the spike
sorting algorithm are aligned, either by employing a sufficiently high sampling
rate prior to spike detection (Section 3.2) or by post-processing, and sampled
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Figure 12: Joint effects of sampling rate, fs, and resolution, Qs, on spike
sorting performance were quantified by calculating the correct classification
rate, Prp, while jointly varying the two variables on a subset of the values
spanned by the dedicated parts (Section 3.2). The figure shows the mean Prp
surface across all recordings for 4 target units at a noise level of o = 0.15.
A threshold of 1% below Prp at full sampling rate and resolution was applied
to the surface and the breakpoint was taken as the point in the area of the
fs-Qs plane fulfilling the threshold criteria (dark area) that minimized bitrate
(sampling rate x sampling resolution, bits/second). The bitrate is shown as
the surface below the I5Tp surface, normalized to the maximum PTP value for
the sake of visual clarity. The breakpoints obtained for the mean surfaces are
indicated with stars and are projected onto the fs-, Q- and Prp-axes and the
bitrate surface. Breakpoints obtained for the individual recordings are shown
with dots for comparison.

at a sampling rate and resolution of at least 13.5 kHz and 4.6 bits respectively.
However, assuming a noise level of oy = 0.2 or lower, and thereby raising
the maximum performance further above the 50% limit, the sampling rate
breakpoint is lowered to 5.4 kHz.
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Figure 13: The distributions of joint sampling rate (a) and resolution (b) break-
points for spike sorting with principal component analysis and fuzzy c-means.
The number of target units is indicated with 2 and 4 and oy is the stan-
dard deviation of physiological background noise. Median comparison intervals
(p = 0.05) are marked with triangles (A/5/).

3.3 Generalization to Other Algorithms

Figure 14 shows the mean performance (across all recordings) of the algorithms
considered for spike detection and spike sorting as a function of sampling rate
and resolution for representative cases (noise level and number of target units).

Spike Detection

For all of the algorithms studied, the effect of sampling rate on false positive
detection rate was insignificant in comparison with true positive detection rate.
False positive detection rate did however increase slightly with increased noise
level for all algorithms. Thus, we focus our discussion regarding sampling
rate towards true positive detection rate. At low noise levels, ABS and NEO
performed similarly and had a similar dependency on sampling rate. As noise
level increased, NEO outperformed ABS and the curve knee for true positive
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Figure 14: Comparison of algorithms for spike detection and spike sorting. (a)
and (b) show mean true and false positive detection rates (across all recordings)
respectively as functions of sampling rate. (c) and (d) show mean true and
false positive detection rates (across all recordings) respectively as functions of
sampling resolution. (a) and (b) show mean correct classification rates (across
all recordings) as functions of sampling rate and resolution respectively. The
cases shown here (noise levels and numbers of target units) are representative
the cases studied. 95% confidence intervals for the mean are indicated with
thin lines. (Continues on page 145)

detection rate became less clear. SWTP seemed to be the most robust to noise
level, but had the least clear curve knee throughout. The unclear curve knee for
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Figure 14: Comparison of algorithms for spike detection and spike sorting
(continued from page 144).

NEO at high noise levels and SWTP at all noise levels was similar to what was
observed for ABS at high noise levels (see Section 3.1). The behavior of MF
was rather inconsistent with the behavior of the other algorithms. At low noise
levels it had the lowest achievable performance but in terms of true positive
detection rate, it showed a relatively high robustness to increased noise level
compared to ABS. Increasing the number of target units did not influence the
relative performances between the algorithms.

Out of all of the algorithms, ABS showed the clearest dependency on sam-
pling resolution (oscillations in performance curves as described in Section 3.1)
and it’s breakpoint estimates (onset of oscillations) consistently seemed to over-
estimate the breakpoints for the other algorithms. SWTP seemed to be the
most robust algorithm to lowered sampling resolution, which is in line with the
observation that it is the most robust to noise level, since lowering sampling
resolution can be seen as an introduction of increased noise level.

Spike Sorting

PCA and DWT (with both feature selection methods) showed similar depen-
dency on both sampling rate and resolution. In the mean cases, PCA consis-
tently performed slightly better than DWT, but the curve knee seemed to occur
at similar sampling rate and resolution for both algorithms. The difference in
performance between PCA and DWT seemed to increase with increased noise
level. The performance of DWT was not influenced significantly by the choice
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of feature selection method.

4 Discussions and Conclusions

In this work we have explored the influences of varying sampling rate, sampling
resolution, level of physiological background noise and number of target units
on the performance in spike detection and spike sorting with absolute value
threshold and principal component analysis with fuzzy c-means. From the
results we have identified sampling rate and resolution breakpoints by applying
thresholds of 1% to 5% below the maximum achievable performance level or
the performance level at full sampling rate or resolution for each case. We have
examined the development of the feature space representation of spikes as a
means of quantifying the information provided to the spike sorting algorithm
with the simplification of estimating performance breakpoints in mind. We
have looked at how the presence of spike detection jitter influences spike sorting
performance. Finally, with the intention to explore the generalizability of our
results, we have performed a preliminary comparison of the performance of
other algorithms for spike detection and spike sorting. Besides shedding light
on generalizability, the results from that comparison also provide insight into
the performance gain that increased computational resources would facilitate.

We conclude that performance curves for spike detection and spike sorting
plateau in most cases and that sampling rate and resolution breakpoints can be
estimated in order to find the minimum amount of raw input data that ensures
maximum accuracy in assessment of single and multiunit activity. At high
noise levels, breakpoints for spike detection are less clear since the plateauing
in true positive detection rate is decreased (Figure 6) and maximum achievable
performance for both spike detection and spike sorting is severely decreased
(Figures 7 and 9). Therefore the minimization of noise should be the primary
point of consideration in the design process. This is in agreement with the
results reported in [29)].

Maximum achievable performance decreased with increased number of tar-
get units in all cases (Figures 7 and 9). For spike detection, this is presumably
due to an increased probability of overlapping spikes. We note that we consid-
ered the case where all target units had a mean firing rate of 20 spikes/second,
which we consider to reflect a high overall degree of neuronal activity and thus a
worst-case-scenario in this sense. For spike sorting, this is explained by the fact
that the difficulty of the clustering problem increases with increased number of
clusters and with increased similarity between clusters.

Our results show that the alignment of spike waveforms is an important
factor in lowering the sampling rate breakpoints for spike sorting. The align-
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ment can be achieved either by employing a sufficiently high sampling rate in
the initial digitization step or by post-processing. The significant correlation
between the PCA feature matrix MSE and correct classification rate in spike
sorting indicates that optimization of performance in terms of feature matrix
MSE instead of spike sorting accuracy is a feasible approach in future studies.

Coming back to the crucial steps in BMI design presented in Section 1,
assuming that the assessment of single or multiunit activity is the purpose of
the BMI (step 1) and that an adequate noise minimization (on < 0.15) has
been achieved, our results provide general guidelines for the choice of sampling
rate and resolution (step 2) to be employed in the analog-to-digital converter
of the acquisition unit.

For absolute threshold spike detection and the assessment of multi unit ac-
tivity, a sampling rate of 16 to 31 kHz (5% and 1% performance loss tolerance
respectively) and an effective sampling resolution of 9 bits (1% performance
loss tolerance) should be employed (Section 3.1, Figure 7). For spike sort-
ing with principal component analysis and fuzzy c-means, assuming that the
spike detection guidelines are followed, the extracted spike waveforms do not
need realignment and can be lowpassfiltered and downsampled to a sampling
rate of 5 kHz and an effective sampling resolution of 5 bits (1 % performance
loss, Section 3.2, Figure 13). For a recording containing 2 target units with
a firing rate of 20 spikes/second each and assuming a spike duration of 3 ms,
transmitting the extracted spike waveforms over a wireless link would imply an
approximately eightfold reduction in bitrate as compared to transmitting the
raw signal. Transmitting the waveforms after downsampling them would imply
a total of approximately a fifty- to hundredfold bitrate reduction, depending on
the initial sampling rate employed (16 to 31 kHz). We stress the precautions
regarding sampling resolution and the dynamic range of the ADC mentioned
in Section 2.1. The guidelines for spike sorting are applicable for noise levels
up to oy = 0.2, although spike detection performance is significantly affected
at such a high noise level.

Having observed that the performance of the algorithms considered in most
cases have similar dependencies on sampling rate and resolution, we conclude
that the breakpoints obtained for spike detection with absolute value thresh-
olding and spike sorting with principal component analysis can be used to
provide an indication of breakpoint locations for the other algorithms studied
(Figure 14). Sampling rate breakpoints for NEO are expected to be similar to
those for ABS, especially at low noise levels (at least up to oy = 0.15). At
higher noise levels (on = 0.3), the performance of NEO converges slower with
increased sampling rate, but it’s maximum performance is significantly higher
than that of ABS. In general, SWTP converges slower than ABS, indicating
that it requires a higher sampling rate to reach it’s maximum performance. In
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the high noise case however, it’s maximum performance is higher than that of
both ABS and NEO. MF’s dependency on sampling rate was inconsistent with
that of the other algorithms. This is possibly explained by the suboptimality
in it’s implementation, i.e. using the mean of all stored waveforms as a filter
waveform. Out of all of the spike detection algorithms, ABS was influenced the
most, by reduced sampling resolution. However, it consistently seemed to over-
estimate the sampling resolution breakpoints of the other algorithms. From
this we conclude that NEO and SWTP are feasible alternatives to ABS at high
noise levels, but at the cost of increased sampling rate and computational com-
plexity. We also conclude that the amount of raw input data (sampling rate
and resolution) should be taken into account when comparing the performance
of spike sorting algorithms. Both sampling rate and resolution breakpoints for
spike sorting with DWT seemed to be similar to those for PCA. In contrast with
the conclusions of [26], PCA performed better than DWT in the mean case.
However, according to [33] PCA should be expected to perform better when
the differences between target unit waveforms are mainly large-scale, which is
likely to be the case in our synthesized recordings.

We emphasize that all of the algorithms considered involve some free pa-
rameters such as scaling factors for setting thresholds, length of smoothing
windows, feature selection methods etc., and optimizing those for each specific
case might boost their performance. In the fully unsupervised case however,
such optimization might not be possible. We have thus kept all algorithm-
specific parameters fixed throughout our simulations and in that sense we have
tested a worst-case-scenario.

Recordings with non-stationary properties can be modeled as series of seg-
ments with stationary properties. Thus, the dimensioning of a BMI could be
based on either the most challenging stationary segment in the recording or
the “mean segment”.

Given a set of resources in terms of computational and wireless link ca-
pacity, our guidelines give rise to a processing task allocation scheme (step 3),
presented in Figure 15. By following the guidelines presented here and allo-
cating processing tasks based on the resources available, the bitrate of data
into the wireless link can be minimized without jeopardizing the reliability of
the output information, namely that regarding single or multi unit activity.
Thereby, a balanced BMI design is achieved — a design that neither suffers
from over- nor underdimensioning. The guidelines presented here are based on
spike detection with ABS and spike sorting with PCA.

Some sources of epistemic uncertainty related to this work should be men-
tioned. First, the simulation parameters were chosen to represent challenging
scenarios in terms of high target unit activity, without taking into account
the possibility of a low degree of activity. However, breakpoint estimations
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Figure 15: We conclude by presenting a task allocation scheme for wireless BMI
designs, based on available resources (computational and wireless link capacity)
and the purpose of the BMI in terms of processing unit output. The arrows
indicate alternative processing task allocations. For each suggested task allo-
cation, the bitrate and the type of data fed into the wireless link are provided
for a typical case. The bitrate estimations are based on the sampling rate and
resolution breakpoints obtained from our results and ensure minimum loss of
performance in spike detection and spike sorting, and thereby sustained relia-
bility in single and multiunit activity assessment, provided that minimization
of noise has been performed (on < 0.15 to 0.2).

based on such worst, case scenarios should provide upper limits that can be
adjusted (lowered) to match more specific situations. The workflow presented
here can be used to estimate breakpoints for any given situation that devi-
ates from the ones studied here in terms of e.g. number of target units, firing
characteristics of contributing neurons and stationarity /non-stationarity of the
recordings. Second, full breakpoint analysis was not performed for all of the
algorithms considered. Instead, we showed that we can draw qualitative con-
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clusions regarding their breakpoints, based on the breakpoints for ABS and
PCA. At last, we assume single channel recordings to be performed. Again,
this reflects a worst case scenario in terms of spike detection and spike sorting
performance since multi channel recordings allow for improving performance
by utilizing the correlations between near by channels. The introduction of ad-
ditional recording channels would presumably lower the requirements for raw
input data to each individual channel, provided that that there is some degree
of correlation between the activity measured by the individual channels.
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Spike-Feature Based Estimation of
Electrode Position in Extracellular
Neural Recordings

Abstract

Detecting and sorting spikes in extracellular neural recordings are common procedures
in assessing the activity of individual neurons. In chronic recordings, passive electrode
movements introduce changes in the shape of detected spike waveforms, and may
thus lead to problems with identification and tracking of spikes recorded at separate
instances in time, which is an important step in long-term monitoring of individual
neurons. Information about electrode movements after implantation is crucial to the
evaluation of mechanical stability of different electrode designs. In this paper, we
present a preliminary study of the relationship between electrode movements and
the resulting movements of spike-features in feature space. We show that there is a
characteristic relationship between the two movements and that this relationship can
be modeled as a linear transformation between two coordinate systems. Finally, we
show how the relationship can be used for estimating electrode positions based on
measured spike waveforms without any prior knowledge about the type of neuron by
introducing a learning procedure during electrode insertion.

Based on: P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson: “Spike-
Feature Based Estimation of Electrode Position in Extracellular Neural Recordings”,
Conference Proceedings of the International Conference of IEEE Engineering in
Medicine and Biology Society, pp. 3380 — 3383, 2012.
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1 Introduction

Extracellular recordings with chronically implanted microelectrodes are a com-
mon means of acquiring signals reflecting the activity of individual neurons in
the central nervous system [1]. The recorded signal then consists of the spiking
activity of near-by neurons (target neurons), the combined spiking activity of
a large number of far-away neurons (noise neurons), thermal noise generated
in the front-end electronics and local field potentials [2], [3].

When the target neurons are sufficiently close to the recording electrode,
their spikes can be detected [4] and sorted [5] in order to reveal the firing
patterns of individual neurons. Assuming that the detection has been success-
ful, the sorting step involves extracting features from the spike waveforms and
classifying similar waveforms as originating from the same neuron. Feature
extraction is commonly carried out by projecting the spike waveforms onto a
set, of basis waveforms that can be obtained through e.g. principal component
analysis (PCA) of the acquired spike waveforms.

Differences in spike waveforms arise from differences in neuron morphology
and differences in electrode position relative to the different neurons [6], [7].
While spike sorting relies on these differences, they can become problematic
in dynamic situations, i.e. where the recording electrode can move in relation
to the target neuron(s). This becomes especially challenging when compar-
ing identified units in recordings from a specific electrode that are executed at
separate time instances. While small electrode movements can slightly change
the feature space representation of detected spikes from a given neuron, larger
movements can put that neuron out of range from the electrode and new neu-
rons into range. Solving this problem is commonly referred to as spike-tracking
[8], [9] and involves comparing units between separate recording instances and
concluding that they either originate in the same neuron or in different neurons.

Gaining insight into how electrode movements are translated into spike
movements in feature space would be of great benefit both in terms of solv-
ing the spike-tracking problem and in terms of being able to estimate electrode
movements based on observed spike waveforms. In this paper, we present a pre-
liminary study of the relationship between physical movements of the recording
electrode and the corresponding movements of spike-features in feature space.
Using mathematical models to simulate multi-electrode recordings, we demon-
strate how electrode movements along a given path are translated into spike-
feature movements along a similar path in feature space. Exploring this insight,
we present a method for using recorded spike waveforms to estimate the elec-
trode position, based on the relationship between the two domains. Our results
show that there is a characteristic relationship between electrode movements
in the physical domain and spike-feature movements in the feature domain.
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This relationship is evident even when employing sub-optimal feature spaces.
Our results also show that recorded spike waveforms provide information about
the recording electrode position if a training procedure is carried out during
implantation of the electrode.

2 Methods

2.1 Dataset

As test data, we used synthetic multi-electrode recordings where the electrode
sites were placed along the paths of electrode movements we wished to test in
each case. We used a recently developed simulation tool that employs dimen-
sionality reduction techniques to compactly describe the spatial dependency of
the measured spike waveform. This allows for an efficient simulation of mul-
tielectrode recordings with realistic properties [10]. The model was derived
by compressing the information obtained when calculating spike waveforms in
measurement points surrounding a compartment model of a CA1 pyramidal
neuron using the simulation environment NEURON [6], [11], [12].

oZNORODN

SN OION0O S s

Figure 1: (a)-(c) Three different recording setups were simulated, one for each
of the electrode array configurations shown in (a) - (c¢). One target neuron
(purple ellipsoid) was placed close to the electrode array and approximately 500
interfering neurons (dark ellipsoids) were placed at random positions at least
150 pwm away from the target neuron. (d) The effects of electrode movements
were mimicked by extracting spikes from the recording channels from a time
frame of length 7' s (T = 15 s in the figure) while successively sweeping the
window across the channels.

Fig. 1 shows the target neuron and the electrode locations considered for
each of the three test recordings. The electrode paths we considered were 1)
linear movement, 2) movement along an ellipse and 3) movement along a P-
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shaped path. Fig. 1 (d) shows how electrode movement was mimicked by
extracting spikes in a time frame of duration 7' that was swept across the
channels. This corresponds to the assumption that the electrode stays in place
for the duration of the window, 7. The linear movement was assumed to
represent the practical case where electrodes are inserted and then assumed to
move along one axis. The elliptic and P-shaped paths were included to show
that complex electrode movements were translated to similar movements of
spikes in the feature space.

Twenty electrode sites were simulated in each case and the duration of each
recording was 5 minutes. One neuron was placed in the origin and approxi-
mately 600 noise neurons were placed at random positions, but at a minimum
distance of 150 m from the target neuron. Each noise neuron was given a ran-
dom mean firing rate between 1 and 50 spikes/second. A mean firing rate of 20
spikes/second was assigned to the target neuron. Spike times were generated
by assuming gamma-distributed inter-spike intervals [13]. All spike times were
stored at the time of simulation and used to extract spike waveforms.

2.2 Feature-Space Representation of Spike Waveforms

The P-dimensional feature-space representation of sampled spike waveforms
of length N (N = number of samples) was obtained by projecting the spike
waveforms onto a set of P (P = number of feature space dimensions) N sample
long basis waveforms. To explore the effects of the selection of basis waveforms,
we considered three sets of basis waveforms, where the j-th set of basis wave-
forms was contained in the columns of the N x P matrix B;. The columns of
the matrix B; were obtained as the first P basis waveforms from the principal
component analysis of each of the following matrices:

1. The matrix containing the mean spike waveforms in each electrode posi-
tion in its columns (optimal basis).

2. A matrix of the same size as that in 1), but whose elements were normally
distributed random numbers (sub-optimal basis).

3. The matrix containing the three very first waveforms in the first electrode
position.

The P x M feature space representation W; of the spike waveforms in the
N x M matrix S in the space spanned by the basis waveforms in B; was thus
obtained through the projection and normalization
T
B;S

W, = —3J 1
1= B7s, @
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where ||.||2 denotes the Euclidean norm.

2.3 Comparison of Movement Paths between Spaces

To explore the similarity between electrode paths in the physical space and
detected spikes in the feature space we defined the path measure d that sum-
marizes the path in a given Q-dimensional space (Q > 1) in a 1-dimensional
sequence of normalized Euclidean distances of points along the path to the
mean point of the path. For a path whose i-th coordinate in the original Q-
dimensional space is given by p; and whose mean coordinate is given by pg, the
distance measure in the i-th point is given by

di = ||po — pill2- (2)

The i-th point corresponds to electrode site 7 out of 20. For the feature spaces,
we only considered the first three dimensions in this comparison. All distance
measure sequences were normalized by first subtracting their respective mean
values and then dividing by the Euclidean norm of the resulting sequence.

Although interpreting these one-dimensional path measures in terms of ac-
tual paths in a three-dimensional space is not straight forward, especially for
more complex paths, they do provide a means for assessing the geometrical
similarity between two paths in separate domains.

2.4 Spike-Feature Based Estimation of Electrode Position

Based on the observation that electrode movements along a given path are
translated to spike waveform movements along a similar path in the feature
space, we assumed that there existed a P x 3 matrix A that transformed
the 3-dimensional vector of Cartesian electrode coordinates to corresponding
P-dimensional spike waveform coordinates in the feature space. This transfor-
mation is described by the linear model

B'S=AX 47 (3)

where B and S are the basis- and spike waveform matrices respectively, X is
the matrix containing the Cartesian coordinates of the electrode positions and
7 is a matrix containing noise or variations not captured by the transformation
matrix.

For a known matrix of Cartesian measurement point coordinates Xy, a cor-
responding matrix of measured mean spike waveforms Sy and a set of basis
waveforms B, an estimator for the transformation matrix is obtained by mul-
tiplying both sides of Eq. 3 by the Moore-Penrose psesudoinverse [14] of the
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Cartesian coordinate matrix, X+, so that XX* = I, from the right, or
A =B7S X (4)

Having obtained the estimate for the transformation matrix, it can now be
used to estimate the electrode position for a given set of measured mean spike
waveforms S by multiplying Eq. 3 with the Moore-Penrose pseudoinverse of
the estimated transformation matrix from the left, or

X = A*BTS. (5)

To perform and evaluate feature space based electrode positioning, we di-
vided the test data for the linear electrode movement (Sec. II-A) into two
parts - odd-numbered channels (training data) and even-numbered channels
(test data). The mean spike waveforms and Cartesian electrode coordinates of
the odd-numbered channels, Sy and X respectively, were used for estimating
the transformation matrix according to Eq. 4. This corresponds to a train-
ing period during which the position of the electrode is known. The resulting
transformation matrix was then used to estimate the electrode positions of the
even number channels X by projecting the corresponding mean waveforms S
onto the basis that was used to estimate the transformation matrix according
to Eq. 5.

To examine the sensitivity of positioning to the choice of basis waveforms
and the number of basis waveforms (number of feature space dimensions), we
performed the above procedure using the optimal basis and the random basis
(Sec. II-B) while successively increasing the number of dimensions and calcu-
lating the estimation error. The estimation error for each case was taken as
the mean distance between true and estimated positions across all sites for that
case.

3 Results

3.1 Comparison of Movement Paths

Fig. 2 shows the path measure d that characterizes the electrode movements
and the movements of the spike-features of mean waveforms in the feature
spaces spanned by the three different bases described in Sec. II-B. In all feature
spaces, the path measure was similar to that of the electrode path, indicating
that electrode movements gave rise to similar spike movements in feature space.
This was evident even for the random basis.

Increasing the length of the time spent in each position (7" in Fig. 1 (d)),
and thus increasing the number of spike waveforms used for forming the mean
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Normalized path measure
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Figure 2: The path measure d for the electrode movements and corresponding
movements of mean spike waveforms in the feature spaces spanned by three
different sets of basis waveforms. (a) Linear path, (b) elliptical path, (c¢) P-
shaped path. The path measures in the feature spaces were in all cases similar
to those in the electrode movement space.

waveform in each position, increased the similarity between the path measures.
As expected, the random basis required the largest number of waveforms to
reach the high similarity shown in Fig. 2. The figure shows the case where the
maximum amount of time is spent in each channel (7" = 15 seconds).

3.2 Spike-Feature Based Estimation of Electrode Position

Fig. 3 shows the mean estimation error (in m) as a function of the number
of feature space dimensions used in the electrode position estimation for the
optimal basis and one realization of a random basis. The inset illustrates the
true and estimated positions obtained using the 40-dimensional optimal basis.

The estimation error converged at approximately 8 dimensions when us-
ing the optimal basis. For the random basis, this limit was dependent on the
realization, sometimes being lower than 8 and sometimes higher. In the case
show in Fig. 3 the error converged at approximately 22 dimensions to approx-
imately the same error as that obtained by using the optimal basis. For the
case studied, the error converged onto a value of approximately 1tm.

4 Conclusion

In this paper we have presented preliminary findings regarding the relationship
between physical movements of a recording electrode in extracellular neural
recordings and the corresponding movement of spike-features in a feature space
spanned by various basis waveforms. We have shown that there appears to be
a characteristic relationship between the movements in these two domains and
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Figure 3: Feature-space based estimation of electrode position during linear
movement. The mean positioning error generally converged to a minimum
value for both the optimal basis (obtained through PCA of the entire set of
mean waveforms in training positions) and the random basis (obtained through
PCA of a random matrix). However, the random basis generally converged at
a higher number of dimesion. The inset shows the true (red) and estimated
(blue) positions when using the 40-dimensional optimal basis. For the sake of
clarity, the position of each channel is indicated by a specific symbol.

that this relationship can be interpreted as a linear transformation between two
coordinate systems, not necessarily of equal dimensions. We have shown that,
for linear electrode movements, this transformation can be acquired during a
training period and then applied to estimate electrode position based on the
feature space representation of spike waveforms. Due to the introduction of a
training procedure during electrode insertion, no prior information about the
type of neuron is required. In our study, placing the electrode in the odd-
numbered locations corresponds to the training period.

Future work involves verification of our findings by in vivo experiments, the
full implementation of a practical framework for acquiring the coordinate trans-
formation during electrode implantation and the utilization of the acquired
transformation for post-implantation assessment of electrode movements. Fu-
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ture work also involves the utilization of this type of modeling for the purpose
of tracking identified units between recording sessions.

Although the present study only addresses electrode positioning along a

linear path, our results indicate that the estimation procedure is directly ap-
plicable during three-dimensional electrode movements. However, this has not
been confirmed and thus requires further investigation.
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Computationally efficient simulation of
extracellular recordings with
multielectrode arrays

Abstract

In this paper we present a novel, computationally and memory efficient way of model-
ing the spatial dependency of measured spike waveforms in extracellular recordings of
neuronal activity. We use compartment models to simulate action potentials in neu-
rons and then apply linear source approximation to calculate the resulting extracellu-
lar spike waveform on a three dimensional grid of measurement points surrounding the
neurons. We then apply traditional compression techniques and polynomial fitting
to obtain a compact mathematical description of the spatial dependency of the spike
waveform. We show how the compressed models can be used to efficiently calculate
the spike waveform from a neuron in a large set of measurement points simultaneously
and how the same procedure can be inversed to calculate the spike waveforms from
a large set of neurons at a single electrode position. The compressed models have
been implemented into an object oriented simulation tool that allows the simulation
of multielectrode recordings that capture the variations in spike waveforms that are
expected to arise between the different recording channels. The computational sim-
plicity of our approach allows the simulation of a multi-channel recording of signals
from large populations of neurons while simulating the activity of every neuron with
a high level of detail. We have validated our compressed models against the original
data obtained from the compartment models and we have shown, by example, how
the simulation approach presented here can be used to quantify the performance in
spike sorting as a function of electrode position.

Based on: P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson:
“Computationally efficient simulation of extracellular recordings with multielectrode
arrays”, Journal of neuroscience methods, vol. 211, pp. 133 — 144, 2012.
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1 Introduction

Recently, there has been great interest in the development of brain machine
interfaces (BMIs) with the aim to control prosthetic devices, conduct basic
research on the central nervous system (CNS) and to treat the symptoms of
neurological disease. One way of performing signal acquisition in BMIs is to
use chronically implanted microelectrode arrays [1] to measure the variation
in extracellular potential resulting from discharges of action potentials in near
by neurons. The extracellular representation of the action potential is usually
referred to as a spike. Detecting spikes [2] in the extracellular signal and as-
signing them to their neurons of origin thus provides information about the
activity patterns of individual neurons. The assignment part of that proce-
dure is usually referred to as spike sorting [3]. Since the performance in these
processing steps is what determines the quality of the extracted information,
the algorithms used for spike detection and spike sorting play a crucial role
for the function of BMIs. Apart from the purely functional aspect, they are
also important in the context of compressing the information contained in the
neural signal for e.g. wireless transmission and/or memory-efficient storage for
off-line analysis.

The development of algorithms for information extraction is an important
aspect of BMI development. During design and evaluation of such algorithms,
test signals are needed with a priori known information content, in which the
spike times of each individual neuron in the recording are known and can be
compared with the output of the algorithms. In addition to having a priori
known characteristics, the test signals need to have realistic signal proper-
ties and these properties need to be controllable to some extent. Realism is
important for the future applicability of the results and controllability is im-
portant since it allows the algorithm designer to perform studies of algorithm
performance in a wide range of scenarios that might be encountered in future
applications.

The approaches to obtaining adequate test signals can be roughly divided
into three categories, (1) simultaneous intra- and extracellular recordings, (2)
purely synthetic recordings and (3) hybrid recordings. In simultaneous intra-
and extracellular recordings, the intracellular membrane potentials of the cells
of interest are measured directly and since the signal-to-noise ratio in these is
normally high, they can be used as ground truth when assessing the perfor-
mance in spike detection and sorting applied to the extracellular signal [4, 5].
This class of test signals provides a high level of realism — the signals in ques-
tion being real. However, they lack in some practical aspects since keeping
track of all true neuronal activity is difficult or even impossible in many cases.
Besides these practical problems, controllability of the recording properties is
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limited. Despite these downsides, simultaneous intra- and extracellular record-
ings could serve as ultimate benchmark signals in later steps of the algorithm
design process.

Purely synthetic recordings are based on mathematical models of the signal
generation process. The mathematical models can in turn be divided into
two subcategories, (1) models based on compartment models of the neurons
and (2) models based on fixed spike templates. Compartment models rely
on more or less detailed models of the mechanisms involved in producing the
action potential across the cell membrane and of the resulting signal measured
outside the cell [6, 7, 8]. The extracellular signal is calculated by considering
the voltage contribution of each point on each contributing neuron at each
given time instance. The amount of details captured by such models thus leads
to high computational demand, which makes them unpractical when modeling
large populations of neurons. However, they are realistic in the sense that
they do capture the variations in the spike waveform’s shape that arise when
placing the recording electrode in different measurement points [7]. This feature
is of great importance when modeling recording setups with multiple and/or
positionally unstable recording electrodes, both of which are important factors
to consider during development of algorithms for spike detection and spike
sorting in realistic scenarios.

Models based on fixed spike templates assume that the extracellular spike
waveform measured from a given cell can be selected from a library of spike tem-
plates and then scaled according to the cells distance from the electrode [9, 10].
Apart from the amplitude scaling, template based models do not capture any
spatial variations in the shape of measured spike waveforms. Therefore, despite
their computational simplicity, they are not suitable for simulating recordings
with multiple and/or positionally electrodes. A possible solution to this limi-
tation is to first employ a compartment model to calculate spike waveforms on
a three dimensional grid of measurement points surrounding the neuron and
then to interpolate the resulting waveforms to obtain waveforms in measure-
ment points not lying on the simulation grid [11]. Despite the increased level of
realism introduced with this approach, it requires extensive waveform interpo-
lation and may therefore not be suitable for simulating very large populations
of neurons.

In hybrid recordings, synthetic spike trains are overlaid on real recordings
of background noise [12]. They are thus advantageous in the sense that they
have highly realistic signal properties, but lack in controllability for the same
reasons as simultaneous intra- and extracellular recordings.

Considering the above, there is an obvious trade-off between realism and
computational complexity when selecting among the available modeling ap-
proaches. Despite the ever increasing availability of computational resources
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that indeed contributes to minimizing the impact of this trade-off, we reason
that computational efficiency should be striven for. General availability to fast
and simple ways of modeling complex recording scenarios would be of great
value to researchers during the development of algorithms for signal process-
ing. The possibility of quickly generating test data to match a specific recording
setup would speed up the development phase and save valuable time.

In this paper, we present a novel, computationally and memory efficient
approach to generating test signals that combines the detail of compartment
models with the computational simplicity of template based models. To achieve
this combination, we applied traditional dimensionality reduction techniques
and polynomial fitting to compress the description of the spatial dependency
in spike waveforms provided by compartment models. We used the NEURON
simulation environment [13] to simulate an action potential in a compartment
model of a CA1 pyramidal neuron originally modeled in [14] and used in [7]
and computed the extracellular spike waveforms on a three dimensional grid of
measurement points using the line source approximation (LSA) [15]. We then
performed singular value decomposition (SVD) on the matrix containing the
calculated spike waveforms and thereby obtained a set of basis waveforms de-
scribing the original spike matrix and their respective contributions to each of
the original waveforms. Since most of the information describing the waveforms
is contained in the first few (six) [16, 17] components of this decomposition, we
achieved dimensionality reduction (compression) by discarding all other com-
ponents. The result of this was a trivariate field of six dimensional vectors,
whose elements described the basis waveform weights as functions of the mea-
surement point coordinates relative to the neuron in question. To obtain a com-
pact description of the spatial dependency of the basis waveform weights, we
individually fit the elements of the weight vector field to polynomial functions
of the measurement point coordinates. The modeling procedure was carried
out for four different neuronal compartment models (cases A to D in [7]) and
the parameters of the compressed models were optimized for each neuron to
provide a good match between the spike waveforms provided by the NEURON
simulations and our compressed models. The models were implemented into an
object oriented simulation tool, written in Matlab, that facilitates fast and real-
istic simulations of multielectrode recordings with arbitrary geometries. Model
validation was performed by comparing spikes from the original NEURON sim-
ulations with spikes generated by our models in terms of shape and amplitude,
as well as by examination of synthetic signals in terms of noise properties.
The applicability of our approach was evaluated in an example application by
estimating the performance in spike sorting as a function of electrode position.
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2 Methods

2.1 Neuron models
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Figure 1: An illustration of the procedure of modeling the spatial dependency
of the measured spike waveform for one of the neurons considered (neuron 1).
(A) The CA1 pyramidal neuron model adopted from [7] was used to calculate
extracellular spike waveforms in measurement points surrounding the neuron.
(B) Spikes within an ellipsoid (overlaid ellipsoid) centered in the origin (cell
soma) were used to derive the model. The ellipsoid was taken as the largest
inscribed ellipsoid into the volume where spike amplitudes (maximum absolute
amplitude) were at least A, (typically around 20 pV. The spike waveforms
are color coded according to their maximum amplitude (blue and red indicate
low and high maximum amplitude respectively). (Note that for the sake of
clarity, not all initial waveforms are shown here.) (C) Spikes with amplitudes
below A, (measured in points outside the model ellipsoid in (B)) were used
to model the amplitude attenuation as a function of distance from the model
ellipsoid along a line of sight from the measurement point to origin. (Continued
on page 177)

Figure 1 illustrates the procedure we followed to derive the compressed
neuron models. We used the CA1l pyramidal neuron compartment models
employed in [7] as a starting point for obtaining spike waveforms on a three di-
mensional grid of measurement, points around the neuron. An action potential
was simulated in the model neuron with four different ionic channel densities
(referred to as cases A to D in [7], referred to here as neuron 1 to neuron
4) and the extracellular spike waveform was calculated in measurement points
on a three dimensional grid surrounding the neuron using the line source ap-
proximation (LSA) [15]. The measurement points were distributed within a
volume of 140 x 140 x 140 wm and the spacing between the points was var-
ied between 5 and 20 pm in each dimension (z,y,z). Close to the cell soma
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Figure 1: An illustration of the procedure of modeling the spatial dependency
of the measured spike waveform for neuron 1 (continued from page 176). (D)
Singular value decomposition was used to find an orthonormal set of basis wave-
forms u,, and their weights wy,, describing spikes within the model ellipsoid.
(E) The weight distributions were then individually fit to trivariate polynomial
functions of measurement point coordinates, wy,(z,y, 2).

({z,y, 2z} < {60}um), the spacing was 5 wm and further away, it was succes-
sively increased to 10 wm and 20 pm. This resulted in a total of 42.875 initial
measurement points.

To verify that this measurement point density was sufficient, we calculated
the correlation coefficients between spike waveforms in all pairs of measurement
points within a distance of 60 pum from the origin and then calculated the mean
and standard deviation of the correlation coefficient as a function of distance
between measurement points. The mean minus one standard deviation was
above 0.99 for all neurons at a measurement point distance of 5 um. At a
measurement, point distance of 20 pum, the mean minus one standard devia-
tion of correlation coefficients was above 0.97. This indicates that the chosen
measurement point densities were adequate to capture the spatial variation in
spike waveforms.

The first step in the modeling procedure for each of the neurons was to find
a volume within which the model would be derived. For points outside that
volume, amplitude scaling was applied (discussed later in this section). The
volume was taken as an ellipsoid, concentric with the cell soma, inscribed into
the volume bounded by the measurement points in which the spike amplitude
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exceeded a case-specific value of A,,;,. Spike amplitude was defined as the
maximum absolute amplitude of the spike waveform. Finding the optimal
value of A,,;, was part of a model selection procedure that is discussed later in
this section. Having identified the model ellipsoid, spikes within the ellipsoid
were arranged into columns of the spike matrix Sp. Sg was then decomposed
using singular value decomposition (SVD) according to

Sy =UxZV! = UW, (1)

where the columns of the matrix U contain an ordered set, of orthonormal basis
waveforms describing the original spike matrix Sy and the columns of the matrix
product VT = W, contain the contributions (weights) of each of the basis
waveforms in constructing the original set of spike waveforms in Sy. Since most
of the spike waveform variation is described by the first few basis waveforms,
we discarded all but the first six components of the decomposition to achieve a
dimensionality reduction [16, 17]. In order to assure that no information about
spike waveform variability was lost by discarding the other components, we
calculated the amount of total variance described by the first six components

as
D6 = me:l o
1 0
where oy, is the n-th singular value. This ratio was larger than 0.99 in all cases,
indicating that the first six components adequately described the waveform
variability.
We now modeled the weight of the n-th basis waveform as a trivariate poly-
nomial function of the measurement point coordinates (x,y, z) in a coordinate
system with origin in center of the cell soma, i.e.

(2)

Wn, (1’, Y, Z) - Z Ci,, meivlyeiJ i3 (3)
7

where ¢;,, is the i-th polynomial coefficient and e is a matrix whose i-th row
contains the i-th combination of x, y and z exponents included in the model.
For instance, if the i-th polynomial term is c;2%y?, the corresponding row in
the exponent matrix e is [3 2 0]. The exponent matrix was constructed
by assuming maximum orders of pure terms (including only one of the three
coordinates) and mixed terms (including more than one of the three coordi-
nates). These orders were referred to as Npyre and Nyizeq and together with
the minimum spike amplitude A,,;,, they determined the model properties
and were selected to provide a good match between original and modeled spike
waveforms (discussed later in the current section).
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The polynomial fitting was performed by solving the equation system

(AD)C =W,
r.eii1 ez _eis €21 €22 €33 er.1 era _ers
T Y S A S SO Wiy
1,1 €1,2 €13 2,1 €22 €23 1,1 €er2_e€er,s
Lo Yo %2 Lo Yo 22 o T Yo R
D
€1,1 €1,2 €13 €2,1 €22 €23 er,1_€er2_¢€ejr3
LT YL 2L Trp Yr *r T Ypo AL (4)
cll 612 e 616 wll wlz e w16
621 622 e 626 w21 w22 ... w26
_CI1 C[2 CIG le wL2 st

where L is the number of measurement points used in the fitting, I is the total
number of polynomial terms in the fitted model, A is the multivariate Vander-
monde matrix, D is an I x I diagonal matrix whose i-th diagonal element is the
reciprocal of the Euclidean norm of the i-th column of A, C is the coefficient
matrix to be estimated (c;, is the estimated polynomial coefficient of the i-th
term for the p-th basis waveform) and Wy is the original weight matrix (wy, is
the weight of the p-th basis waveform in the [-th measurement point). The pur-
pose of the matrix D was to scale the columns of the Vandermonde matrix to
improve the conditioning of the problem. The number of measurement points
was in all cases larger than the number of polynomial terms (i.e. L > I). The
equation system was thus overdetermined and solving it yielded a least-squares
solution.

For measurement points outside the model ellipsoid (in the far-field of the
neuron) we assumed the measured spike waveform to be an attenuated version
of the spike waveform measured in the point of intersection between the model
ellipsoid and the line of sight from the measurement point to the origin. We
assumed the attenuation g to be a power-law function of the distance r between
the measurement point and the point of intersection, i.e.

o) = ¢ ! (5)

L4 afarr)iior
The coefficients a4, and by, were estimated by fitting the amplitudes of spikes
with amplitudes below A,,;, to a power-law function of their corresponding
measurement point distances (along the line of sight to origin) to the model
ellipsoid. The power-law was estimated assuming the distance r to be in mi-
crometers. Thus, the unit of the coefficient afq, is [pm~=']. The form of the
power-law was chosen to provide an attenuation of 1 at a distance of 0 from the
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model ellipsoid. This way of modeling the spike waveforms in the far-field as-
sured a continuous variation in the spike waveform when moving the electrode
out of the model ellipsoid and between points outside the model ellipsoid.

As mentioned before, each neuron model was characterized by three pa-
rameters — Apin, Npure and Npizeq. For each of the neurons, we performed
the modeling procedure for all combinations of model parameters in the ranges
Apin € [16,26]uV (steps of 2 uV'), Npure € [10,24] (steps of 1) and Npized €
[2,8] (steps of 2), resulting in a total of 360 models per neuron. The spike
waveforms calculated by each of the models were compared with those ob-
tained from the original NEURON simulations and a score was assigned to
each model based on how the waveforms matched in terms of shape and ampli-
tudes. To lower the computational demand during the comparison, we selected
two random sets of measurement points to use in the comparison — 20% of the
entire set of points within the near field (NF, inside the model ellipsoid) and
20 % of the entire set of points in the far field (FF). The following metrics were
calculated to obtain the model scores:

e enp, = 1 —mean(correl. coeffs. between spikes in NF)

e cnp, = std(correl. coeffs. between spikes in NF)

e ey, = mean(abs. diff. between spike amplitudes in NF)
e cyp, = std(abs. diff. between spike amplitudes in NF)

e crp, = mean(abs. diff. between spike amplitudes in FF)
o crp, = std(abs. diff. between spike amplitudes in FF)

The metrics were normalized to range from 0 to 1, 0 indicating the closest
match and 1 the worst match. Based on the normalized metrics, the following
model scores were then defined (* denotes the normalized metrics):

e Near field score:

_ [ 52 52 2
SNF = \/GNF1 teNm T enp T CNE, (6)

SFF = 1/ é2FF1 + é%«“FQ (7)
Stot = 1/ S?VF + SQFF (8)

e Far field score:

e Total score:
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We wanted to select a model that, apart from minimizing the total score s,
also minimized the difference between the near and far field scores. Thus, we
selected the model that minimized the function

E = \/ Ag + g%ot (9)

where A, is the normalized (0 to 1) absolute difference between near- and
far-field scores and §;,; is the normalized (0 to 1) total score. This procedure
consistently resulted in the automatic selection of a model that provided a high
overall match with the original data while simultaneously performing well in
both the near- and far-field.

Having selected the best model for a specific neuron, the model description
was saved for implementation into the simulation algorithm. The main param-
eters included in the model were the basis waveforms (sampled at 25 kHz),
the matrix product DC, the exponent matrix e, the axial radii of the model
ellipsoid and the coefficients of the far-field attenuation power-law. The model
parameters Apmin, Npure, Nmizea Were also included for descriptive purposes.
The model files were typically around 40kB of size which is three orders of
magnitude smaller than the original spike matrix obtained from the NEURON
simulations that were typically around 31MB.

The stored model parameters could now be used to efficiently calculate
spike waveforms from neurons in a large set of arbitrary measurement points.
Using the same procedure, we could also calculate the spike waveforms from a
large set of neurons sharing the same neuron model in a single measurement
point. Figure 2 illustrates this procedure. Assuming that we have a single
electrode placed in (x., Y., ze) and N neurons where the n-th neuron is placed in
(Zn, Yn, 2n), the waveforms from the neurons can be calculated in the following
way:

Step 1: Calculate the relative positions of the electrode
For every neuron placed in (2, Y, zn), calculate the position of the elec-
trode relative to that neuron, i.e.
(I;qulwz;l) = (Ieayevze) - (xnvynazn)- (10)
The problem is now that of calculating the spike waveform from a sin-
gle neuron in N separate measurement points where the n-th point is

(%0, Yps 21)-

Step 2: Construct Vandermonde and attenuation matrices
For every (relative) measurement point, (z,,y,, z), check if the point is
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Figure 2: An illustration of how the derived models can be used to calculate the
extracellular spike waveforms from two neurons measured with a single elec-
trode. In the original coordinate system, the electrode is located in (z, ye, ze)
and the neurons are located in (x1,y1,21) and (z2,ys,22) respectively. As-
suming that the neurons are of the same type (share the same neuron model),
the first step is to calculate the positions of the electrode relative to the two
neurons, (z,,y,, 2. ). Relative measurement points inside the model domain of
the neuron (yellow ellipsoid) are left unchanged (2, v}, z1) and measurement
points outside the model domain are replaced with the point of intersection
between the model ellipsoid and a line of sight to origin. In the first case, the
attenuation is set to 1 (element (1,1) in the attenuation matrix G) and in the
second case it is set to 1/(1 + afqrrpe )’ o where afq, and by, are estimated
model coefficients and 7. is the distance of the relative measurement point
from the model ellipsoid along the line of sight to origin before it was replaced
with the intersection point. The Vandermonde matrix is constructed using the
exponent matrix e (obtained from the neuron model) and relative measurement
points and finally the matrix S containing the spike waveforms in its columns
is calculated with a simple matrix multiplication. The basis waveform matrix
U and model coefficient matrix DC are parts of the derived model.

inside or outside the model ellipsoid by evaluating the quantity
12

12 12
x Y z
n n n
Tcheck = + + (]‘ 1)
7"2 2 2
er ey e,
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where .. is the radius of the model ellipsoid along the --axis. If repecr is
larger than 1, the point is outside the model ellipsoid and is thus replaced
with the point of intersection between the line of sight to origin and the
model ellipsoid. If repecr is smaller than or equal to 1, the point is inside
the model ellipsoid and is left unchanged. If the point is outside the model
ellipsoid, the n-th diagonal element of the N x N diagonal attenuation
matrix G is set to 1/(1 + afarrpe)bf” where rp. is the distance of the
point to the ellipsoid along the line of sight to origin. If the point is inside
the model ellipsoid, the attenuation value is set to 1. After performing
the above check and replacing/keeping the relative measurement point
coordinates, the [-th element of the n-th row of the Vandermonde matrix
A is set t0 2ty R 2wt
Step 3: Calculate the spike matrix

The spike matrix S whose n-th column contains the modeled spike wave-

form from the n-th neuron can now be calculated as

S = UADC)TG. (12)

Note that the above procedure assumes that all neurons share the same
neuron model. If the volume to be simulated contains several types of neurons,
the entire population of neurons can be divided into subpopulations according
to type and the subpopulations can then be treated individually according to
the above procedure.

2.2 Firing Models

Three models were implemented for generating spike times — gamma distributed
inter spike intervals, bursting and correlated spike trains. In the current imple-
mentation, each neuronal population is assumed to have the same basic firing
model, although the model parameters are set individually for each neuron.
For instance, a population of neurons can have gamma distributed inter spike
intervals, but each neuron in the population has an individual mean firing
rate. For bursting neurons, inter-burst-intervals were assumed to be gamma
distributed and the number of spikes within a burst was assumed to follow a
Poisson distribution [18]. Changes in the spike waveform during a bursting
period were not accounted for. We included the methods in [19] to generate
correlated spike trains. Having used firing models to generate spike times for
every neuron in the simulation volume, the measured signal at each recording
channel was assembled by adding the calculated spike waveforms from each
neuron at that channel at the spike times of that neuron in the same manner
as described in [9].
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2.3 Noise Models

We assumed noise to consist of two components, namely the spiking activity of
distant neurons and thermal noise caused by random charge movements. This
is a common way of modeling noise in extracellular recordings [10, 9, 20]. The
thermal noise amplitude depends on recording bandwidth, temperature and
input resistance of the recording electrode [21, 20] and we assumed it to be
zero-mean normally distributed with a standard deviation determined by these
parameters. We used the results presented in [20] to derive a quantitative
model for setting the standard deviation. We approximated an extrapolation
of the resistive part of the electrode impedance for an electrode size of 177 um?
to include frequencies from 100 Hz to 50 kHz and obtained an estimation of
the power spectral density,

P(f) = 2kTR(f) (13)

where k is the Boltzmann constant, T is temperature in Kelvin (set to 37°C)
and R(f) is the resistance as a function of frequency, f. The standard deviation
of the thermal noise, oy,, , was then obtained as a function of recording band-
width by taking the square root of the integral of the power spectral density
over the recording bandwidth,

fB
o () = / P(f)df (14)

where f, is the recording bandwidth. A general description of this relationship
was obtained by fitting oy, to a power-law function of log(f),

on. (fB) = alog(fp)". (15)

Physiological background noise was assumed to come from the spiking ac-
tivity of distant neurons. To be able to make a distinction between the noise
component of the signal and the spiking activity, we assumed the noise con-
tributing neurons to be located at a minimum distance of r; from the electrode
(or origin) and we assumed them to have random mean firing rates selected
from a uniform distribution between 1 and f, spikes/second. The minimum
distance r; and the upper level of firing rates were then used to set the back-
ground noise level (see Section 2.5). Due to the computational efficiency of the
methods described in Section 2.1, we were able to generate the background noise
using the relative positions of the noise contributing neurons, thus employing
the entire variability in spike waveforms described by the neuron models in the
noise generation process also. Thus, although we make a distinction between
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noise- and signal contributing neurons from the perspective of the recorded
signal, the two categories of neurons were treated in exactly the same way in
the simulation process. We did, however, include the possibility of not storing
the true spike times for neurons far away from all recording electrodes, thus
further decreasing the memory requirements and simulation time (See section
2.4).

2.4 Simulator Implementation

The simulator was implemented in Matlab using object oriented programming.
We assumed the core components of the simulation to be the neuronal popu-
lations contributing to the signal, the array of electrodes recording the signals
and a recorder that kept track of ground truth data and recorded signals. This
abstract structure was implemented with three object models, one for each of
these core components. A brief description of the properties of each object
model follows:

The neuron class

An object of the neuron class contains information about the properties
of a population of neurons that share the same model, both in terms of
the spatial dependency of spike waveforms and firing times. The infor-
mation contained is the absolute coordinates of the neurons, the volume
density within the population, a description of the volume containing the
population, the spike model associated with the population and the firing
statistics and spike times for the individual neurons. The neuron class
has methods to generate spike times for its neurons based on the dura-
tion of the recording and the individual neuronal firing statistics. In order
to simulate a specific recording setup where several types of neurons (in
terms of spike and/or firing models) exist in specific regions, one neuron
object is constructed for each population within the volume.

The electrode class
An object of the electrode class contains the absolute coordinates of each
electrode site and the spike waveforms from every neuron in every pop-
ulation calculated at the position each electrode. The electrode class
contains methods to calculate the spike waveforms and to assemble the
signal measured at each electrode site from the calculated spike wave-
forms and the spike times contained by the neuron objects.

The recorder class
An object of the recorder class contains information about the structure of
the HDF5 simulation file (see following paragraph) where the simulation
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data is stored and methods to interact with the simulation file during
and after simulation. This interaction includes writing the information
contained in and generated by the neuron and electrode objects to the
simulation file as well fetching the information once it is written to the
file. The recorder class also contains several methods to visualize the
simulation results.

In order to minimize memory requirements, we employed the HDF5 (Hier-
archical Data Format file format [22] for data storage during simulation. The
HDF5 file format is suitable for fast read and write access for large and complex
datasets and allows database-like queries to be made once the file structure has
been defined. Figure 3 illustrates the HDF5 file structure that we designed.
When a recorder object is constructed in write mode, it creates a new HDF5
file for the recording that is to be simulated and then it provides read/write
access to the simulation data as long as it exists. After simulation, a recorder
object can be constructed in read mode with the name of the simulation file as
input, thus allowing quick post-simulation access to all simulation data. The
recorder object also allows for instance quick plotting of the synthetic signals,
true spike waveforms as measured at the individual recording channels and the
3D geometry of the simulated volume.

2.5 Validation

The validity of our results was examined in terms of similarity between orig-
inal and model-generated spike waveforms and noise properties of simulated
recordings. The shapes of the spike waveforms were visually compared within
the near-field (inside the model ellipsoid). Spike amplitude (maximum abso-
lute amplitude) was examined as a function of distance from origin (cell soma)
and by qualitative comparison of spike amplitude fields around the neuron.
The amplitude fields were visualized by plotting three-dimensional isosurfaces
around the neurons at spike amplitudes of 25, 50 and 100 V. The spike am-
plitude distributions for the original data (NEURON generated spikes) were
estimated by selecting approximately half of the original measurement points
at random and calculating the mean and standard deviation of spike ampli-
tudes in measurement points within 10 um wide distance bins from the origin.
For the spikes generated with our models, we used the same coordinates as for
the true spikes, but with a small random shift. The random shift was intro-
duced in order to make sure that the model captured the overall appearance
of the amplitude distribution, even in measurement points that were off the
original measurement point grid. In addition, evaluating the amplitude dis-
tribution in off-grid measurement points would reveal any potential problems
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Figure 3: An illustration of how simulation data is organized into HDF'5 files. In
order to lower memory requirements, all information is written to the HDF5 file
as soon as it becomes available during simulation. Upon starting a simulation,
a new HDF5 file is created and a recorder object that provides read/write
access to it is constructed. After the simulation is complete, it can be loaded
in read-mode by calling the recorder object constructor function with the file
name as input. The functions implemented in the recorder object provide fast
access to all simulation data in a database-query type of way.

with “over-fitting”. The spike amplitude isosurfaces were estimated in the same
way, i.e. using an equally large random set of measurement points and applying
a random shift for the model-generated spikes. Apart from these comparisons,
we also included the metrics calculated during the model selection procedure
(Section 2.1) as validity measures.

Noise properties of simulated single channel recordings were examined in
terms of sample histograms, normalized power spectral density and standard
deviation of noise. We assumed the noise properties to be mainly determined
by the radius of the “silent volume” around the recording electrode and the
distribution of firing rates among the neurons contributing to the background
noise (see Section 2.3). To estimate the noise properties as functions of these
parameters, we set up a recording scenario with a single electrode placed in the
origin and we then created four populations of noise neurons (one population
of each type of neuron) surrounding the electrode. The noise neurons were
placed at random positions within a hollow cylindrical volume centered along
the z-axis. The outer boundaries of the volume were defined by a cylinder with
a radius of 250 pum and z between -250 um and 250 um. The inner boundaries
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were defined by a cylinder with a variable radius r; ranging from 50 pum to
150 pm and z between -150 um and 250 pm. Assuming a neuronal density
of 9.5 x 105 neurons/cm? [20], gamma distributed inter-spike intervals [9] and
a minimum firing rate of 1 spike/second, we synthesized 30 second long noise
recordings while varying the minimum distance of noise contribution neurons,
r;, and the upper limit of firing rates, f,. r; and f, were varied between 50
and 150 pm and 5 and 80 spikes/second respectively. The recordings were
synthesized at a sampling rate of 100 kHz, but were downsampled to 25 kHz
and then bandpass filtered (300 Hz to 5 kHz). We then estimated the power
spectral density using Welch’s method, the sample amplitude histogram and
the standard deviation of the resulting noise signal. Thermal noise was included
since that was assumed to be an inevitable part of the recorded noise in a real
situation. Besides allowing us to compare the noise properties of our simulator
with those of previously reported simulators, this analysis provided basic means
for controlling the noise properties by altering the parameters mentioned above.

2.6 Application Example: Spike Sorting Performance

The applicability of our work was evaluated by an example application in which
we explored the effects of electrode position on the performance in spike sorting.
Noise neurons were created in the same manner as described in the previous
section. The inner radius of the the hollow noise cylinder was set to r; = 150um
and the upper limit of noise neuron firing rates was set to 50 Hz. Four tar-
get neurons (one of each type, cell 1 to 4) were placed in (10,20, —2) um,
(—2,18,20) wm, (—20,—5,10) wm and (16,—13,15) pum respectively (Carte-
sian coordinates of cells 1 through 4, um). All target neurons had gamma
distributed inter-spike intervals and random mean firing rates between 1 and
10 Hz. Nineteen electrodes were placed along the z axis (x = y = 0) at positions
ranging from z = —30um to z = 60um (5 uwm spacing) and a 60 second long
recording was synthesized (a close-up of the electrodes and the target neurons
is shown in Figure 7 A).

Having obtained the HDF5 simulation file, we used the interface provided by
the recorder class to extract the spike waveforms for each of the target neurons
at each of the electrode sites at the known spike times. We thus obtained
nineteen sets of extracted spike waveforms, each corresponding to one electrode
position. The spikes from each position were then sorted separately and the
sorting accuracy was estimated. Principal component analysis (PCA) [3] was
used to extract spike features and the first two principal component weights (PC
1 and PC 2) were used to perform sorting of the spikes using K-means clustering
[23]. Since we were only interested in comparing the performance in spike
sorting while varying the electrode position, and not the absolute performance
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of the selected spike sorting algorithm, we provided the true number of clusters
(4 cells) to the K-means algorithm as input. We only employed the first two
principal component weights in the clustering since that allowed for a straight
forward visual interpretation of the spike sorting performance in terms of a two
dimensional illustration of the PCA feature space representation of the spikes
(Figure 7 D).

Having obtained the sorting results for a given set of spikes (a given po-
sition), the spike sorting accuracy was estimated in terms of true and false
positive classification rates per cell (Prp and Prp respectively) and an overall
sorting accuracy (Prp). The true positive classification rate (Prp) for a given
cell in a given electrode position was calculated as the ratio between the num-
ber of spikes correctly assigned to that cell and the total number of spikes truly
coming from that cell. False positive classification rate (Prp) for a given cell
in a given electrode position was calculated as the ratio between the number
of spikes wrongfully assigned to that cell and the total number of spikes truly
coming from any other cell. Overall spike sorting accuracy (Prp) for a given
electrode position was calculated as the ratio between the overall number of
correctly classified spikes and the total number of spikes.

3 Results and Discussion

3.1 Model Parameters

The estimated neuron model parameters are summarized in Table 1. The
minimum spike amplitude (4,,;,) included ranged from 18 to 24 pV, and the
maximum degree of pure and mixed polynomial terms was 10 to 24 and 6 to 8
respectively. The model domain ellipsoid had a radius of approximately 45 to
65 pm in the z —y plane and 104 to 142 along the z axis. A maximum distance
of 50 um between a neuron and the electrode is assumed for the neuron’s spikes
to be distinguishable from the background noise [1]. The model ellipsoids of
all neurons approximately cover that range. For neuron 4, the z-axial radius is
below 50 pm, which is explained by the smaller (in the x — y directions) spike
amplitude field for neuron 4 (see Figure 5 B), which in effect would lower the
50 pwm distance threshold mentioned before.

The estimated power law describing the standard deviation of thermal noise
as a function of recording bandwidth is shown in Figure 4. The parameters of
the fitted power law according to Equation 15 where a; = 0.36 and b; = 2.25.
The coefficient of determination between the standard deviations adopted from
[20] and the fitted power-law was R? = 0.98, indicating a good match.
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Table 1: A summary of derived model parameters. A,,;, is the spike amplitude
threshold applied to determine the model ellipsoid volume. Npyre and Npizeq
are the maximum orders of pure and mixed polynomial terms respectively and
I is the resulting number of polynomial terms. (rg,7y,7,) are the axial radii
of the model ellipsoid and af,, and by, are the coefficients of the amplitude
decay power-law in the far field according to Equation 5.

Neuron  Apip Npure Nnized I (Tx; Ty, rz) (afa'm bfa'r')
(uV) (um) (um™1, unitless)
1 24 10 8 735  (53,58,104)  (6.8E-3,4.2)
2 18 16 8 753 (62,64,106)  (5.6E-3,4.3)
3 18 13 8 744 (65,78,142)  (T.4E-33.4)
4 22 24 6 397 (45,63,108) (5.7E-3,4.1)
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Figure 4: The standard deviation of thermal noise, oy,, at a temperature of
37°C fitted to a power law function (R? = 0.98) of the logarithm of recording
bandwidth fp for an electrode of 177 um? extrapolated from [20].

3.2 Validation
Spike Waveforms and Amplitude

All four models provided a good match in terms of spike waveforms and spike
amplitudes when compared to the original data. Figure 5 A shows the true spike
waveforms (black) and spike waveforms calculated by the neuron models (red
dots) in an example set of measurement points. By visual inspection of these
waveforms, we see that the models produce essentially identical waveforms
to those generated by the original NEURON simulations. Mean correlation
between true and modeled spike waveforms in the near field was larger than
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Figure 5: Validation of neuron models in terms of spike waveforms and spike
amplitude. (A) Spike waveforms obtained with NEURON in an example set of
measurement points (black) and spike waveforms calculated in those points by
our models (red dots). (B) Spike amplitude fields displayed as spike amplitude
isosurfaces at 25, 50 and 100 uV (blue, red and green respectively). (C) Spike
amplitude (mean and standard deviation) as a function of distance from the
origin (cell soma). The mean and standard deviation are taken across all spikes
within 10 pum wide distance bins.

0.99 (standard deviation < 0.02) for all neurons (metrics exp, and enp,).
Mean amplitude deviation in the near field was below 2 pV' (standard deviation
< 5uV) for all neurons (metrics exp, and enp,). Mean amplitude deviation
in the far field was below 0.4 x4V (standard deviation < 2.1uV) for all neurons
(metrics epp, and epp,).

Figure 5 B shows the spike amplitude isosurfaces (25, 50 and 100 uV') for
NEURON generated spikes and spikes generated by the compressed models.
In all four cases, the compressed models capture the major features of the
amplitude fields at all three amplitudes examined. This also applies to most
“non-regular” features, such as the surface irregularities at the top of the 25
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1V surface for neuron 4 and the following of the 50 pV surface along the axon
for neuron 4.

Figure 5 C shows the mean and standard deviation of spike amplitudes as
a function of distance from the origin (cell soma) within 10 pum wide distance
bins. Also here, there is no noticeable difference between the original spike
amplitudes and those produced by our models. In all cases, the models capture
most of the local variations in spike amplitudes (for instance at local decrease in
standard deviation of spike amplitudes at 90 to 100 um for neuron 3). These
local variations are caused by the non-uniform structure of the neuron, i.e.
some points far away from the soma are in fact very close to other parts of the
neuron.

Noise Properties

Figure 6 shows the noise level (o), power spectral density (PSD) and sample
histogram as functions of the upper limit of noise neuron firing rates, f,, and
minimum distance of noise contributing neurons, r;. The figure shows that by
varying those parameters we can control the amplitude and spectral properties
of the recording noise. The figure also shows that we can obtain a good match
with previously reported spectral properties and sample histograms [24, 10].

Increasing the maximum firing rate of noise neurons and decreasing the
minimum distance to them increased the noise level and concentrated the noise
towards the lower part of the spectrum, in which most of the spike energy is
contained.

At large distances to the noise neurons (rightmost column in Figure 6),
the change in noise neuron firing rate had less impact on the noise amplitude
than at small distances (leftmost column in Figure 6). This observation can be
interpreted in terms of how the variances of the contributions of individual noise
neurons are influenced by their respective firing rates and distances from the
recording electrode. In order to simplify this interpretation, we assume that the
noise contributing neurons are statistically independent and that the variance
of the spike train from a given neuron is approximately linearly dependent on
the neuron’s firing rate. Then, at a given distance, a linear increase in firing
rate will cause a linear increase in variance. Since spike amplitude decreases
with distance as a power law, this linear increase in variance with an increase
in firing rate will be larger as the distance becomes smaller.

Thus, if the variance of the spike train from the n-th neuron o2 relates to
the neuron’s firing rate f,, and the neuron’s distance from the electrode r,, as
a power law function of the distance, scaled with the firing rate, or

o~ 1n (16)

m
Tn
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where m is the amplitude power law coefficient, the variance of the total record-
ing (sum of all N spike train variances due to the statistical independence
assumption) relates to the properties of the individual neurons as

N
2 fn
n=1 "
Therefore, an overall increase in the firing rate of noise neurons makes the
standard deviation of noise (the square root of the variance) more sensitive to
an overall decrease in the distance to noise neurons.

Application Example: Spike Sorting Performance

Figure 7 A shows the example recording scenario considered in our application
example. The recorded signal at four example locations (z = —20um, z =
10pum, z = 30um and z = 50um) is shown in Figure 7 B along with extracted
spike waveforms (mean waveforms =+ standard deviation) for each of the four
neurons at each of the four example locations. Figure 7 C shows the true and
false positive classification rates (Prp and Ppp for the individual neurons as
well as the overall classification performance (P;p and 1 — Prp) as functions
of the electrode position (z). Finally, Figure 7 D shows the PCA feature space
development (first two PC weights) for the extracted spikes at ten example
positions.

As expected, spike sorting performance varied significantly with the elec-
trode position, both in terms of overall performance (P;p) and for individual
neurons (Prp and Prp). Overall performance (Prp) was maximal at z = 30um,
which also appeared to generally provide the best performance with regard to
individual neurons.

The example locations in Figure 7 A were selected to demonstrate the vary-
ing similarity between the spikes coming from different neurons, depending on
the electrode position. At z = —20um, the true positive classification rates
(Prp) were low for neurons 1 and 2 in comparison to neurons 3 and 4. At the
same position, the false positive classification rates (Prp) for neurons 1 and
2 were high. Also, the true and false positive classification rates for neuron 4
were almost maximal and minimal, respectively, and for neuron 3, essentially
the same applied. At z = 30um, all neurons had similar true and false positive
classification rates, those being high and low respectively. At z = 50um how-
ever, the performance was low for neurons 1 and 3, but high for neurons 2 and
4.

This varying performance can be explained both in terms of the varying sim-
ilarity between spike waveforms (Figure 7 B, right part) and how the PCA clus-
ters develop as the electrode position is altered (Figure 7 D). At z = —20um,
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Figure 6: The recording noise properties as functions of the minimum distance
of noise contributing neurons, r;, and the upper limit of their firing rates, f,.
The individual firing rates of the neurons were selected from uniform distribu-
tions between 1 and f,, spikes/second. The red solid line show the normalized
power spectral density (PSD) of the noise, the black broken line shows the
sample histogram and the text inset shows the values of r; and f, for each case
as well as the obtained standard deviation of the noise, o for each case. The
background color indicates the standard deviation of the noise.

the spike waveforms from neurons 1 and 2 were very similar and those from neu-
ron 3 were somewhat similar to those from neurons 1 and 2. However, spikes
from neuron 4 had a distinctive shape when compared to all other neurons.
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This is clearly seen in the PCA feature space where clusters 1 and 2 overlap
heavily, cluster 3 is close to, but not overlapping clusters 1 and 2, and cluster
4 is well isolated from all other clusters.

At z = 30pm, all waveforms had distinctive characteristics, which was also
reflected in the PCA feature space, where all clusters were well isolated. At
z > 30um, spikes from neurons 1 and 3 became more and more similar, which
was seen in the PCA feature space as a gradually increased overlap between
clusters 1 and 3.
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Figure 7: A demonstration of how our modeling and simulation can be used
to evaluate spike sorting performance as a function of electrode position. (A)
Nineteen electrodes (brown colored spheres along the center of the figure) were
placed along the z axis (z = y = 0), each representing one electrode position
to be evaluated. The electrodes were placed at z = —30um to z = 60um
with a spacing of 5 pum. Four target neurons (neurons 1 to 4, green, light-
blue, blue and purple ellipsoids) were placed close to the array of electrodes
and noise neurons (gray ellipsoids) were placed far away. The size of the neu-
rons corresponds approximately to the size of the cell soma in the NEURON
model (see Figure 1). (B) Known spike times were used to extract spike wave-
forms from the recorded signals at each of the nineteen electrode locations and
the extracted spike waveforms were sorted using principal component analysis
(PCA) for feature extraction and K-means clustering for classification. (C) At
each electrode location, true and false positive classification rates (Prp and
Ppp) were calculated for the individual neurons and the overall classification
performance (Prp) was estimated. (Continued on page 196)
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Figure 7: A demonstration of how our modeling and simulation can be used
to evaluate spike sorting performance as a function of electrode position (con-
tinued from page 195). (D) The first two dimensions of the PCA feature space
development at every other electrode position, showing how the overlapping
of the clusters varied with the electrode location. The varying overlapping of
clusters in (D) and the varying similarities/dissimilarities between spike wave-
forms in (B) relate directly to the varying classification performance that is
evident in (C).

4 Conclusions

In this paper we have described a novel approach for generating synthetic test
signals to facilitate the development and testing of signal processing algorithms
for neuronal signals. Our approach combines the powers of compartment mod-
els and template based signal models to provide a computationally and memory
efficient way of simulating large scale recordings without discarding the spatial
variability in spike waveforms. We have shown that we can use traditional
compression techniques to obtain a compact description of the spatial variabil-
ity in measured spike waveforms predicted by compartment models and linear
source approximations. The compressed models have been implemented into a
simulation algorithm by which we generate synthetic spike trains as measured
at an arbitrary number of electrode sites. The electrode sites can in turn be ar-
bitrarily placed. The simulator has proved to be useful for providing synthetic
multielectrode recordings in which the measured spike waveforms differ realis-
tically between recording channels due to their different positions relative to
the neurons. This property facilitates the development of algorithms for mul-
tichannel neuronal signal processing, the studying of the effects of electrode
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array geometry on the performance in information extraction and the studying
of algorithms to handle moving electrodes.

We have performed the modeling for four different compartment models
and our validation procedures have shown that despite the heavy compression,
we can use the model to recreate the major features of the spatial variation in
spike shape and amplitude. They also show that by adjusting the minimum
distance and maximum firing rate of noise contributing neurons, we can control
the amplitude and spectral properties of the physiological background noise.

We emphasize that the modeling procedure we have presented here is in not
restricted to compartment models of pyramidal cells. Due to the generic char-
acter of our method, constructing a database of compressed models for various
types of neurons would provide a way of efficiently simulating the measured
neuronal activity in specific brain structures where multiple types of neurons
might be present.

In the initial compartment model simulations we generated 42.875 spike
waveforms (corresponding to the same number of measurement points), each
being 100 samples of length. A file containing the spike waveforms in these
discrete measurement points was thus roughly 31MB of size. With our com-
pressed models we are able to obtain a file size of around 40kB, or 775 times
smaller than the original data matrix. Besides being smaller in size, the model
is not restricted to discrete coordinates and thus does not require any wave-
form interpolation for off-grid measurement points as would the initial spike
waveforms from the compartment model.

To underline the computational efficiency of our simulation approach, we
measured the time it took to generate recordings of various lengths with one
and four simulated recording channels respectively. The measured simulation
time was approximately 1.2 seconds/minute/channel and we tested recording
lengths up to 16 minutes. In [10] the authors reported that the simulation time
was 270 seconds/minute for a single channel, or a factor 225 longer than what
we observed with our simulator. With our previously reported simulator [9] we
measured a simulation time of 16.5 seconds/minute for a single channel, or a
factor of 13.75 times longer than the simulation time for the current simulator.
Note that in contrast to the current simulation approach, the other simulators
in this comparison neither capture the spatial variation in spike waveforms as a
function of electrode position, nor do they facilitate the simulation of multiple
electrode sites.

In comparison with other simulation approaches that have the ability to
capture the spatial variation of spike waveforms, our simulator is significantly
more efficient. An alternative approach would be to pre-calculate membrane
currents for a given neuron model and use the LSA [15] to calculate spike wave-
forms in the given electrode locations, which corresponds to the first step in
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the modeling procedure presented in this paper. When initially calculating the
LSA, we obtained simulation times of around 0.1 second/waveform. In the ap-
plication example presented in Section 2.6, a total of 744 neurons were present
(740 noise neurons and 4 target neurons) and 19 electrode sites — requiring
the total number of 744 x 19 = 14.136 spike waveforms to be pre-calculated.
Assuming direct scaling of calculation time with the number of waveforms, the
direct LSA approach would require a total time of approximately 24 minutes to
calculate all spike waveforms at all electrode sites. However, using our method,
the entire set of 14.136 spike waveforms was calculated in approximately 2.4
seconds, or a factor of 600 times faster.

Another alternative approach would be to pre-calculate the LSA on a grid
of measurement points and interpolate the waveforms for off-grid measurement,
points, as discussed in the Introduction [11]. However, interpolating such a
high number of waveforms from a grid of 42.875 measurement points would
be significantly more demanding than calculating the matrix multiplication of
Equation 12.

Judging from our results, we conclude that our current simulator is both
very computationally and memory efficient and offers increased realism in terms
of spike waveform variability compared to current state-of-the-art simulators.
Future work includes improving the user interface of the simulator and making
it available to the research community as a tool for providing multi-channel
test signals with realistic properties.
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Compression of neural spikes with fixed
generic bases for wireless brain-machine
interfaces

Abstract

Brain-machine interfaces (BMIs) provide means of studying the neuronal mechanisms
that govern behavior and they offer ways of overcoming disabilities caused by neuro-
logical disease. By removing the physical link between the subject and the external
components of the BMI, wireless BMIs decrease the risk of post-surgical complica-
tions and increase the mobility of the subject. However, the information-carrying
capacity of a wireless communication channel is limited by bandwidth, noise and
various channel properties. When the number of recording channels in the BMI is
increased, the channel’s capacity immediately becomes a significant limitation. Data
reduction techniques can be applied to overcome this limitation. First, the amount
of raw acquired data can be minimized by minimizing sampling rate and resolution.
Second, low complexity autonomous compression algorithms can be employed. In
this paper, we address the second step in the data reduction procedure, focusing on
compression with fixed compression bases. We show that detected neuronal spikes
can be compressed with fixed generic compression bases without influencing spike
reconstruction and spike sorting accuracies. Our results show that employing a fixed
generic compression basis obtained by performing singular value decomposition on
a matrix containing a large assembly of experimentally obtained spike waveforms
that cover a wide range of shapes eliminates the need for implementing optimization
procedures on the implant to pursue an optimal basis or the selection of optimal
compression coefficients. This approach ensures a high degree of compression with
minimal computational effort on the implant and thus also efficient utilization of the
wireless channel capacity and minimum power consumption on the implant, both of
which are highly desirable characteristics of wireless BMIs.

Based on: P. T. Thorbergsson, M. Garwicz, J. Schouenborg, A. J Johansson:
“Compression of neural spikes with fixed generic bases for wireless brain-machine
interfaces”, manuscript to be submitted for publication, 2012.
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1 Introduction

Brain-machine interfaces (BMIs) have become important research tools in neu-
roscience. By providing a bidirectional connection between the central nervous
system (CNS) and the outside world, BMIs may be used for studying behav-
ior at the level of neuronal mechanisms or control of external devices such as
wheelchairs or a cursor on a computer screen. BMIs can be divided into differ-
ent classes based on their level of invasiveness and means of signal acquisition.
One such class employs intracranially implanted microelectrodes to pick up
changes in extracellular voltage induced by activities of neurons surrounding
them [1]. The signal resulting from such extracellular recordings is composed
of spiking activity from neurons in the vicinity of the recording electrode, noise
from distant neurons, local field potentials (LFPs) and thermal noise generated
in the analog front-end electronics [2].

The detection, sorting and analysis of spikes in the recording allows the
characterization of firing patterns of individual near-by neurons, that can in
turn be correlated with events or learning processes in the motor or sensory
domains [3]. The typical processing chain involves first detecting spikes and
their timing in the recording, extracting the spike waveform that is assumed
to extend over a short period (typically 2-3 milliseconds) of the signal immedi-
ately before and after the estimated spike time and finally using classification
algorithms to sort the extracted waveforms and thereby assigning them to their
neurons of origin. A spike alignment step is often included as well to increase
the spike sorting accuracy [2]. Spike detection is commonly based on detecting
the local increase in signal energy or amplitude followed by the occurrence of a
spike. Spike sorting involves two steps — feature extraction and classification.
The first step of those involves extracting features that are characteristic for
the spikes and allow spikes from the same neuron to be grouped together in
the second step.

Although the class of BMIs described above have great potential in both
research and clinical applications, their level of invasiveness and need for wired
connections are associated with risks of post-surgical complications and limita-
tions of subject mobility. Wireless BMIs ideally solve both of these problems,
since they remove the need for transcutaneous leads and they allow the subject
to move around freely without restrictions posed by instrument cables.

Despite these advantages of wireless BMIs, they do not come without chal-
lenges as they are limited in terms of energy supply and information carrying
capacity. The fundamental requirement that the implanted part of a wireless
BMI is self-contained makes it necessary to consider low-power designs that
maximize battery life and/or include means of wirelessly recharging the bat-
tery. Transmitting the raw signal from each electrode sampled at 25 kHz and
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10 bits leads to a bitrate of 250 kbps per channel. According to Shannon, the
maximum theoretical channel capacity for a Single-Input-Single-Output Addi-
tive White Gaussian Noise Channel is determined by the channel bandwidth,
the signal-to-noise ratio (SNR) and the channel’s transfer function [4]. For
a lossless frequency-flat channel at a bandwidth of 1 MHz and an SNR of 0
dB, the maximum capacity is about 1 Mbps, which allows the raw data from
four neural recording channels to be transmitted. Thus the channel capacity
becomes an obvious bottleneck when increasing the number of neural measure-
ment channels to hundreds or even thousands. The only ways to overcome
this bottleneck are to either increase the channel capacity or to remove any
redundancies from the data that are to be transmitted, the latter being the
most effective and practically feasible. Apart from facilitating efficient use of
the channel capacity, data reduction techniques also minimize the power used
to transmit each bit of actual information.

Data reduction can be performed in two steps. The first step is to minimize
the amount of raw acquired data by minimizing sampling rate and resolution
and the second step is to implement low-power, automatic compression algo-
rithms that extract only the relevant information from the recorded signal.
The first step was addressed in [5], in which we found that a sampling rate
and resolution of 16-31 kHz and 9 bits respectively were sufficient for maxi-
mizing performance in spike detection and spike sorting at realistic recording
SNR. The second step — low-complexity autonomous compression algorithms
that ensure maximal information transfer and channel utilization with minimal
computational resources — is the subject of the present paper.

A common way of obtaining compression is to project the detected spike
waveforms onto a set of sparsifying basis waveforms. Sparsification implies
that the waveforms are mainly described by a small portion of the transform
coefficients. By only considering these coefficients and discarding the rest,
compression — or dimensionality reduction — is achieved.

The selection of a compression basis is crucial with regard to the sufficient
represention of the compressed spike waveforms. Optimally, the compression
basis is derived directly from the spike waveforms that are to be compressed
by means of, for instance, singular value decomposition (SVD), ensuring that
the majority of the data is described by a minimal number of compression
coefficients — i.e. maximizing the sparseness of the data in the compression ba-
sis. The SVD provides compression coefficients that are ordered by significance
and the coefficient selection simply involves selecting the first K coefficients.
However, this approach requires that the computationally demanding task of
finding the optimal compression basis is carried out for each scenario in which
new spike waveforms are encountered and is thus unpractical in low-complexity
autonomous implants.
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Another approach, which is more feasible in terms of computational com-
plexity on the implant, involves using a fixed generic compression basis. The
basis then captures the “general” characteristics of spike waveforms that may
be encountered in a wide range of scenarios and thus eliminates the need for
adapting to the data in each case. Here, we divide the types of fixed compres-
sion bases into two major categories. The first category includes general trans-
formation bases, such as the discrete Fourier transform (DFT), the discrete
cosine/sine transform (DCT/DST) or the discrete wavelet transform (DWT).
It also includes the transform representation of the simplest form of data reduc-
tion, namely that of downsampling, or discarding samples. These bases may be
efficient in compressing spike data, but their common drawback is that the sig-
nificance of the compression coefficients varies between cases, and therefore the
implementation of an adaptive coefficient selection procedure is a prerequisite
for optimal performance.

Fixed bases in the second category are derived from spike data by means
of, for instance, SVD and are therefore similar to the optimal bases. However,
these bases are not derived from the detected spike waveforms each time as in
the optimal case, but from a large pre-recorded assembly of spike waveforms
that cover a wide range of shapes. Thus, for a given recording scenario, it is
likely that the majority of the information about the detected spike waveforms
resides within the lower end of the coefficient spectrum, and the coefficient
selection becomes straight-forward.

In [6] we used a large set of mean spike templates extracted from recordings
in the cat cerebellum for the purpose of modeling extracellular recordings with
known properties. In [7] we used principal component analysis and Gaussian
mixture models to obtain a statistical model that could be used to interpolate
the discrete experimentally obtained spike library used in [6]. In that second
paper, we showed that six principal components were adequate to describe the
spike library, that covered a wide range of spike morphologies. These results
were in agreement with the results presented in [8], where a similar analysis
was carried out. These findings indicate that the same principle could be used
to obtain a generic fixed basis for compressing spike waveforms in a wireless
BMI.

In this paper we study the compression of extracted spike waveforms with
various system architectures, spike detectors and compression bases. We imple-
mented various system architectures that involved spike detection, spike align-
ment, spike compression, spike reconstruction and spike sorting. The system
architectures differed with regard to the presence and allocation of processing
tasks. Spike detection was performed with absolute value threshold detection
(ABS) and nonlinear energy operator detection (NEO). Five different compres-
sion bases were included. These were 1) the optimal basis in each case, 2) a fixed
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basis derived (by SVD) from a large assembly of synthetic model-generated
spikes (fized 1), 3) a fixed basis derived (by SVD) from a large assembly of ex-
perimentally obtained spikes (fized 2), 4) a downsampling basis and 5) a Haar
wavelet basis. The simulator described in [9] was used to generate synthetic
recordings with various noise levels and the recordings were then processed by
all combinations of a system architecture, spike detector and compression basis
and the results were compared in terms of spike reconstruction accuracy and
spike sorting accuracy. These results allowed us to assess whether or not a
given compression basis combined with a given spike detector and a given ar-
chitecture would cause a decrease in performance in spike analysis compared to
when the uncompressed spike waveforms were transmitted and analysed. Due
to their generic nature and straight-forwardness in coefficient selection — both
of which are beneficial characteristics in terms of lowering computational com-
plexity on the implant — fixed compression bases of the second category were
of special interest to us. The fized 2 basis represents this category and was
therefore treated in more detail than the other compression bases. Our results
show that compressing detected spike waveforms with a generic compression
basis derived from an arbitrary set of spike waveforms can lead to similar spike
sorting performance as the optimal basis, and only a somewhat lower accuracy
in spike reconstruction.

2 Methods

2.1 Test Data

The simulator described in [9] was used to synthesize three nineteen-channel
test recordings with varying signal-to-noise ratios (high, medium and low SNR).
The recordings were five minutes long. In all three recordings, a linear array
of nineteen evenly spaced electrodes was placed along the z-axis (zx =y = 0,
—30um < z < 60pwm, 5um spacing). Noise neurons were placed at random
positions (density of 9.5 x 105 neurons/cm? [10]) within a hollow cylinder con-
centric with the z-axis. The inner and outer boundaries of the hollow cylindrical
volume were at 120 pm and 250 pm respectively and its floor and ceiling were
at + 250 pm respectively.

Four target neurons (one of each neuron model derived in [9]) were placed
inside the hollow space of the noise neuron cylinder. For the high SNR record-
ing, the neurons were placed at positions of (10,20,-2)um, (-2,18,20)um, (-20
-5 -10)um and (16,-13,15)um. For the medium and low SNR recordings, these
coordinates were multiplied by factors of 1.5 and 2 respectively, i.e. moving
each neuron along a linear path from the origin. Moving the neurons away
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Figure 1: One of nineteen electrode sites and a snapshot of the corresponding
signal from each of the multi-channel test recordings (high, medium and low).
The SNR, was varied by varying the distance of neurons 1 to 4 from the linear
electrode array array placed along the z axis. The left part of the figure shows
one second of the total of five minutes of recording with the true spike identities
labeled and color coded. The right part of the figure shows the placements of
the target neurons (colored dots around origin), noise neurons (gray dots far
away from origin) and the electrode site (z,y,z) = (0,0,0) (yellow dot in
origin). The sizes of the indicators do not reflect the true sizes of the neurons
and the electrode, but only their positions. Only the X-Y and X-Z views are
shown. Note that each test recording contained eighteen additional electrode
sites, arranged along the z-axis.
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from the electrode array resulted in decreasing their spike amplitudes and thus
decreasing the SNR since the noise neuron cylinder was not altered. The mul-
tiplication factors were chosen empirically to provide clearly varying SNRs and
resulted in the neurons being at distances of approximately 20, 30 and 40 um
from the electrode array (in the x — y domain) for the high, medium and low
SNR respectively. Assuming that spikes from neurons within a distance of 50
um can be detected [11], these distances are reasonable.

Figure 1 illustrates the arrangement of neurons and the electrode site used in
each case for the first part of the performance estimation, i.e. (z,vy,z) = (0,0,0)
(see later section) as well as a one second long segments of the signal in each
SNR case. Note that each test recording contained eighteen electrode sites in
addition to the one shown in Figure 1. Note also that the three test signals were
generated individually, meaning that the actual locations of noise neurons and
actual spike times of all neurons varied between the recordings. However, the
statistical properties used to generate locations and spike times did not vary
between the recordings. The recordings were sampled at 25 kHz and bandpass
filtered between 300 Hz and 5 kHz.

All neurons were assumed to have gamma distributed inter-spike intervals
[12]. For each noise neuron, a random mean firing rate was chosen from a
uniform distribution between 1 and 50 spikes/second. For each target neuron,
a random mean firing rate was chosen from a uniform distribution between 1
and 10 spikes/second.

Signal to noise ratio was calculated in a similar manner as described in [13].
For a given recording and a given electrode site, we defined the SNR for the
n-th neuron as

SNR, = 20log,, (Sm’ﬂ) (1)

oN
where s, is the peak-to-peak amplitude of the mean spike waveform of the

neuron measured at the electrode site and oy is the standard deviation of
background noise estimated according to [14]

N |v]
oN = med1an<0.6745 (2)

where v is the sampled signal. We then reported the mean SNR across the
neurons for any given case.

2.2 System Architectures

Three different system architectures involving spike waveform compression were
considered in our comparison (architectures 1 to 3 in Figure 2), in addition to



Compression of neural spikes with fixed generic bases for wireless

brain-machine interfaces 213
Implanted unit External unit
| Detect I" Process ))) ProcessQ Sort |
Arch.0 | None [ | Aign |
' Arch.1 | Compress| | Reconstruct | |
Arch. 2 Compress Recon§truct
oo ) &align
Arch.3 sl Reconstruct
compress

Figure 2: An illustration of the system architectures considered in the compar-
ison. The “Tx” and “Rx” blocks refer to the wireless transmitter and receiver,
respectively. In architecture 0 (the reference architecture) uncompressed spikes
were transmitted, aligned and sorted. In architectures 1 to 3, spikes were com-
pressed, reconstructed and sorted and in architectures 2 and 3, spike alignment
was performed at different stages.

a reference architecture in which no compression was performed (architecture
0 in Figure 2). We assumed the main task of the system to be the character-
ization of the firing patterns of individual neurons through the detection and
sorting of neuronal spikes in extracellular neuronal recordings. We assumed
spike detection to be performed on the implanted unit and spike sorting on the
external unit. Further, in order to minimize the computational burden on the
implant, we assumed compression of detected waveforms to be primarily car-
ried out with a fixed compression basis (see later section), so that no learning
needed to take place on the implant.

The architectures varied in terms of the arrangement of processing tasks
carried out between the spike detection and spike sorting tasks. The main
intermediate processing tasks were assumed to be the compression and recon-
struction of detected spike waveforms. A secondary — but nevertheless im-
portant — processing step, was assumed to be spike alignment. Each of these
processing steps is discussed in more detail in the following sections.

Architecture 0 was included as the reference architecture, i.e. the case
where the extracted spike waveforms were transmitted without compression
and aligned on the external unit prior to spike sorting. In architecture 1,
spikes were extracted and compressed on the implanted unit and reconstructed
and sorted without alignment on the external unit. Architecture 2 was similar
to architecture 1, but with the additional alignment step on the external unit
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prior to spike sorting. In architecture 3, spikes were extracted, aligned and
compressed on the implant and reconstructed and sorted on the external unit.

2.3 Spike Detection

We assumed ABSolute value (ABS) and Nonlinear Energy Operator (NEO)
spike detection, both of which have been shown to provide a good combination
of performance and computational complexity [15, 16, 5]. NEO has been shown
to be more robust to background noise and provide less spike detection jitter
which is beneficial for spike sorting, but its computational complexity is higher
[15, 5, 17]. Spike detection jitter refers to the misalignment of extracted spike
waveforms that arises when different spikes cross the detection threshold at
different time instances within the waveform [2]. ABS is attractive due to its
simplicity, but it requires an extra spike alignment step (see Section 2.4) due
to the more severe spike detection jitter it introduces (see Figure 4). Spike
duration was assumed to be 2.5 milliseconds.

In order to eliminate any errors in estimation of spike sorting accuracy
caused by false positive detections, we used true spike times provided with
the synthetic recordings to extract spike waveforms from the recordings and
then introduced the spike detection jitter afterwards. Detection thresholds
(see Sections 2.3 and 2.3) were used to find the detection time (time instance
of threshold crossing) for each extracted waveform that did pass the threshold.
Spikes that did not pass the threshold were discarded. We then used a discrete-
time delay filter to shift each waveform in time to have the threshold crossing
occur at the most frequent detection time across all the spikes. Spikes whose
threshold crossing time deviated by more than 1.5 standard deviations from the
most frequent value were discarded as outliers. These cases usually represented
overlapping spikes. Spike waveforms were upsampled to a sampling rate of 100
kHz before introducing the jitter and were then downsampled to 25 kHz again
afterwards. ABS and NEO spike detection are briefly described below.

ABSolute value Spike Detection
In ABS detection, a threshold of

A — (o)
T=46n =4 med1an<0'6745 (3)

where 6y is the estimated standard deviation of background noise and |v| is
the digitized signal’s amplitude, is applied to the absolute value of the signal
[14]. This is equivalent to simultaneously applying a positive and a negative
threshold to the raw signal.
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Nonlinear Energy Operator Spike Detection

In NEO detection, a threshold T is applied to the nonlinear energy operator
U(n) of the signal v(n). The nonlinear energy operator is given by

U(n) =v*(n) —v(n+1)-vn—1) (4)

and the threshold is taken as

T=8-U(n) (5)

where * represents the sample mean [18, 15].

2.4 Spike Alignment

For the architectures that involved a spike alignment step (architectures 0, 2
and 3), spikes were aligned at their maximum absolute amplitude within a time
interval of approximately half a millisecond after the detection time. This was
assumed to correspond to aligning the spikes on the maximum value of the
detected peak or valley. We chose maximum amplitude alignment due to its
simplicity, since it only involves finding the maximum absolute value of the
signal within a short time window. More sophisticated approaches have been
reported, such as the center-of-mass alignment [2], which takes into account
the entire waveform and is thus less sensitive to noise. However, it is more
complex than maximum value alignment, and therefore less feasible to use in
the implanted unit (architecture 3) from an energy consumption point of view.
Therefore, we selected the approach that introduced the lowest complexity in
the implanted unit and used that for the other architectures as well for the
sake of comparison.

For architectures 0 and 2 (spike alignment on the external unit), spikes were
upsampled to a sampling rate of 100 kHz prior to alignment and were then
downsampled to 25 kHz after alignment. For architecture 3 (spike alignment
on the implant), the alignment was performed at the initial sampling rate of 25
kHz in order to minimize the increase in computational complexity introduced
by placing the alignment step in the implant. The alignment was performed
using delay filters in the same way as when applying spike detection jitter
(Section 2.3).

2.5 Spike Compression and Reconstruction

Spike compression was performed by projecting detected spike waveforms onto
a sparsifying basis, referred to as compression basis and transmitting a fixed
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Figure 3: (Continued from page 216 caption) Eight basis waveform from the
five compression bases that were included (optimal, fized 1, fized 2, downsample
and Haar) and 32 compression coefficients of the spikes from the high SNR
recording at electrode site (x,y,z) = (0,0,0). The coefficients are given as
mean plus/minus one standard deviation for the spikes of each of the four target
units (green, light blue, dark blue and pink). The coefficient spectra show the
varying sparsification levels provided by the different bases, the optimal basis
providing the highest sparsification and the downsampling basis the lowest.

number of transformation (compression) coefficients. The transformation was
obtained as
WwW.=B!S (6)

where the M x N matrix S contains the M sample long spike waveforms in its
columns, the M x M matrix B, contains the M sample long basis waveforms
of the compression basis in its columns and the M x N matrix W, contains the
full set of transformation coefficients. Since compression involves discarding all
but K of the total set of M (K < M) transformation coefficients, we introduced
the K x N dimensionality reduction matrix By;. The transmitted coefficients
were thus given by

W, =B,W,. =B;B!S. (7)

The compression and dimensionality reduction bases were assumed to be
known at the external unit and were used to reconstruct the spike waveforms
according to

S =B.BjW, (8)

where S is the reconstructed spike matrix. For compression with the downsam-
pling basis, the reconstruction involved an additional lowpass filtering step for
interpolation (see Section 2.5).

We included five different compression bases in our analysis. These are
briefly discussed below. Figure 3 illustrates the first eight basis waveforms
of each basis and 32 compression coefficients in each basis for the high SNR
recording at electrode site (x,y, z) = (0,0,0). The distributions of compression
coefficients show that all bases introduced sparsity, but to a varying degree.
Apart from providing different levels of sparsity, the bases also provided differ-
ent distributions of coefficients within the coefficient spectra. As touched upon
in the introduction, the bases derived by SVD (optimal, fized 1 and fized 2)
have the attractive property of providing coefficients that are concentrated at
the lower end of the spectrum, making the selection of coefficients straightfor-
ward (the first K coefficients are selected). This is in contrast to the downsam-
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pling and Haar bases, in whose coefficient spectra the first K coefficients are
not necessarily the most significant ones. Also, the SVD based bases generally
tend to provide a greater degree of sparsification, indicating that they allow a
smaller number compression coefficients to be transmitted.

Optimal Basis

This basis was found by performing singular value decomposition (SVD) on
the matrix S containing the detected spike waveforms in its columns. The
optimal basis was included as a reference case since it involves basis waveforms
that are derived directly from the waveforms that are to be compressed. The
basis waveforms were obtained as the columns of the unitary matrix U in the
decomposition

S=UxV%Z, (9)
Since the dimensions of the basis given by the SVD are arranged in a decreasing
order of significance, the dimensionality reduction matrix B, was taken as the
first K rows of the M x M identity matrix. As mentioned previously, this is
an attractive property of SVD-based compression bases and is due to the fact
that most of the waveform information is concentrated in the lower range of
the transform coefficients.

Fixed Basis 1

This basis was found by performing SVD on a matrix containing 40.000 syn-
thetic spike waveforms obtained by calculating the measured spike waveform
in 10.000 random measurement points surrounding each of the four model neu-
rons addressed in [9]. This basis was assumed to represent the generic basis
that was well tuned to the data, since it was derived from the same neuron
models as the test data but not derived from the test data. The dimensionality
reduction matrix was the same as that for the optimal basis.

Fixed Basis 2

This basis was obtained by performing SVD on the matrix of spike waveforms
contained in the library used in [6]. Since this basis had no connection to the
test data, it was assumed to represent the generic case, i.e. basis waveforms
obtained from a set of spike waveforms extracted from an arbitrary set of
recordings. The dimensionality reduction matrix was the same as that for the
optimal basis. This basis was the most interesting one within the context of this
paper, since it represents the generic compression basis where the derivation
of the basis waveforms is entirely independent of the spike data that is to be
compressed.
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Downsampling Basis

This basis was included as the simplest form of data reduction, namely that
where samples are simply discarded. The compression matrix B, was taken as
the M x M identity matrix and the dimensionality reduction matrix B, was
obtained by removing all but every R-th row from the M x M identity matrix
where R was the downsampling factor obtained by rounding the ratio M /K to
the nearest integer.

Having obtained the reconstructed spike matrix S according to Eq. 8, the
reconstructed waveforms were filtered in the frequency domain by a lowpass
interpolation filter [19]. Note that since we wanted to examine the effects of
simply discarding samples, no antialiasing filtering was applied prior to down-
sampling.

Haar Wavelet Basis

This basis was obtained by constructing the M x M Haar matrix, whose
columns contain the discrete time Haar basis waveforms. Although not nec-
essarily optimal, the dimensionality reduction matrix was taken as the first
K rows of the M x M identity matrix. This choice was made since selecting
the optimal transform coefficients to transmit would result in the need for im-
plementing an optimization procedure on the implant, which would lead to a
significant increase in complexity.

2.6 Spike Sorting

We performed feature extraction and clustering at the external unit with princi-
pal component analysis (PCA) and K-means respectively. In PCA, an ordered
set, of orthonormal basis waveforms is derived from the spike waveforms and the
projections of the spikes onto the first P dimensions of this basis are used as
features in spike sorting [20]. In K-means, data points are assigned to clusters
that form gradually and ideally their means converge to the true cluster means
[21]. We provided the true number of clusters (four neurons) as input to the
K-means algorithm.

PCA is a widely used approach for feature extraction in spike sorting and
has been shown to perform well in comparison to other feature extraction ap-
proaches, such as the discrete wavelet transform (DWT) and discrete deriva-
tives (DD) [15]. For the DWT, this applies especially when the wavelet basis
is badly tuned to the data [22] or when feature selection is not straightforward
[5]. DD has been shown to provide similar performance as PCA, but as DWT,
it requires a feature selection step [15]. We used the first three PCA weights as
spike features. Since we assumed spike sorting to be performed at the external
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unit, the need for prioritizing computationally simple spike sorting algorithms
was essentially eliminated.

2.7 Estimation of Performance

System configurations (combination of a spike detector, system architecture
and compression basis) were compared in terms of spike sorting accuracy and
spike reconstruction accuracy. Spike reconstruction accuracy was calculated
for each reconstructed spike as the maximum value of the cross-correlation
function between the reconstructed spike and the mean spike for the neuron
in question. This waveform similarity measure is similar to the one employed
in [23]. Overall spike sorting accuracy (Prp) for a given case was estimated in
the same way as described in [9], i.e. in terms of the total percentage of spikes
that were classified correctly.

First, we selected the channel corresponding to the electrode site (z,y, z) =
(0,0,0) in each of the test recordings (high, medium and low SNR) and esti-
mated performance for all combinations of spike detectors, architectures and
compression bases. This first step illustrated the relative performances of the
alternative system setups at different noise levels.

Second, we focused on the generic compression basis, i.e. the fized 2 basis
and estimated performance in spike sorting and reconstruction at all electrode
sites for each test recording, using the ABS detector with architecture 3 and the
NEO detector with architecture 1. These detector-architecture combinations
were chosen due to their simplicity and their good performances according
to the first part. We also included NEO detection with architecture 0 (no
compression) as a reference.

Figure 4 illustrates the procedure for spikes from electrode site (x,y,z) =
(0,0,0) in the high SNR recording for ABS detection, the fized 2 basis and ar-
chitecture 3. The spikes were aligned at their ABS detection threshold, aligned
at the absolute maximum, compressed with an 8 dimensional fized 2 basis,
reconstructed and sorted with PCA and K-means.

2.8 Computational Complexity on the Implant

We used similar complexity measures as those employed in [15], where one
operation was defined as a one-bit addition. Subtraction was assumed to involve
the same number of operations as addition and multiplication and division were
assumed to involve ten times as many operations as addition. We assumed
a wordlength of 10 bits and a sampling rate of 25 kHz, both of which are
within reasonable limits for successful spike detection and spike sorting [5].
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Figure 4: The upper panel shows detected and reconstructed spikes using the
ABS detector and compression with the fized 2 basis (8 dimensions) and archi-
tecture 3 (high SNR, (z,y, z) = (0,0,0)). Mean spike waveforms are color coded
according to their neurons of origin. The lower panel shows the projections of
reconstructed spikes onto the first three principal components (marked (1,2),
(1,3) and (2,3)). In the upper and lower rows, spikes in the PCA feature space
are color coded according to their true and assigned identities, respectively.
Clustering was performed with K-means. The overall spike sorting accuracy in
this case was Prp = 0.88.
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Computational complexity was only considered for the cases studied in the
second part of the performance estimation (see previous section).

3 Results and Discussion

3.1 First Part: All Architectures, Detectors and Com-
pression Bases

Figure 5 shows spike reconstruction and sorting accuracies as functions of the
number of compression basis dimensions for all cases studied at high, medium
and low SNR (first step of performance estimation procedure, see Section 2.7)
for the electrode position (z,y,z) = (0,0,0).

As expected, all the best performances for all architectures were obtained at
high SNR, both in terms of spike reconsruction accuracy and spike sorting accu-
racy. For a given combination of a spike detector and a compression basis, the
spike reconstruction accuracy did not vary significantly between the architec-
tures, but was noticeably dependent on SNR and the number of compression
basis dimensions included. As expected, the optimal and fized 1 bases con-
sistently provided the highest reconstruction accuracy, those being directly or
indirectly mathematically related to the spike waveforms being compressed. In-
terestingly, the fized 2 basis (generic compression basis) provided only slightly
lower performance than the optimal and fized 1 bases, indicating that spike
compression with a fixed generic basis was indeed a feasible alternative. The
Haar basis consistently performed the worst in terms of spike reconstruction.
This is not surprising since no measures were taken to select the most signifi-
cant Haar transform coefficients, but instead, the first coefficients were selected.
This is generally not optimal since the Haar basis waveforms are localized in
both time and frequency.

At high SNR, the spike sorting performance of architecture 1 with NEO
detection gradually became similar to that of the reference architecture, archi-
tecture 0. This applied to all compression bases. However, when employing
ABS detection with architecture 1, spike sorting performance was significantly
lower than for the reference case for all compression bases. This difference is
explained by the absence of the spike alignment block in architecture 1 and
indicates that the spike detection jitter introduced by NEO detection does not
negatively influence spike waveform compression or sorting, but rather directly
provides an alignment that is beneficial in terms of both tasks. As noise level
increased, the difference in performances between ABS and NEO detection with
architecture 1 became less significant. Also at low SNR, spike sorting accuracy
for architecture 1 generally fell behind compared to architecture 0.



Compression of neural spikes with fixed generic bases for wireless

brain-machine interfaces 223
Architecture 0 Architecture 1 Architecture 2 Architecture 3
1 N —4A— abs-optimal
& 0% _ —~A— abs-fixed1
% g 09 § —4— abs-fixed2
= o 0.85 ) —4— abs-downsample
éﬁ : ; —=&A— abs-haar
0.8 kL 8l i o oot
10 20 30 10 20 30 10 20 30 10 20 30 heo-gptimal
—o— neo-fixed1
1 —&— neo-fixed2
% ©—— neo-downsample
0N < 0.95, & D —©— neo-haar
g £ o9 g
2 oss °
st
9 0.8 !
= 10 20 30 10 20 30 10 20 30
1
% _ 095
o #=r
¢ 09 .
DE Spike
2" o085 )
3 reconstruction
038 10 20 accuracy
1 .
ks Spike
% o 08 sorting
Do accuracy
< 06
0
T o4
10 20
1
Z
2 L 08
R
= 0.6
5
0.4
= 10 20
1
~
Z a -
o
2 [oX
5]
— 04 04 0.4°
10 20 30 10 20 30 10 20 30
Number of compression basis dimensions

Figure 5: Spike sorting (upper panel) and spike reconstruction (lower panel) as
functions of the number of compression basis dimensions at high, medium and
low signal-to-noise ratio (SNR). Each column corresponds to each architecture
studied (architecture 0 to architecture 3) and each subfigure shows the accuracy
for each combination of spike detectors and compression basis.

Architecture 2 provided similar spike sorting performance for both spike
detectors and all compression bases, with the exception of the Haar basis con-
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sistently providing the lowest performance and NEO detection with the fized
2 basis converging at a somewhat higher number of compression basis dimen-
sions than the other cases. This is explained by the suboptimal selection of
compression coefficients for the Haar basis. This relative performance applied
at all noise levels.

For architecture 3, the relative spike sorting performances between the con-
figurations did not vary noticeably with SNR. For a given compression basis,
the selection of a spike detector did not seem to influence the performance.
This is not surprising, since the main difference between the detectors from
the point of view of spike compression/reconstruction and spike sorting is the
alignment, which is removed by the pre-compression alignment step in archi-
tecture The downsampling basis consistently provided the slowest converging
performance.

3.2 Second Part: NEO and Fixed 2 with Architecture 1
and ABS and Fixed 2 with Architecture 3

Figure 6 shows the distributions of accuracies in spike reconstruction and spike
sorting for NEO detection with architecture 0 (no compression, reference case),
NEO detection with architecture 1 and compression with the fized 2 basis and
ABS detection with architecture 3 and compression with the fized 2 basis at
high, medium and low SNR. Significant difference (p = 0.05) between cases is
indicated with stars and brackets.

In general, an decreased SNR led to a decrease in spike reconstruction
accuracy, the decrease being the least significant when spikes were compressed
with at least four dimensions. Thus, the benefit of performing compression also
increased as SNR decreased. This is due to the noise reduction introduced by
the compression. Note however, that the spike detection performance generally
decreases with decreased SNR [15, 5] and this is not an indication that low SNR
is beneficial — but rather that given a low SNR, compression is an efficient way
of reducing noise in the detected spike waveforms.

As expected, increasing the number of compression basis dimensions in-
creased the reconstruction accuracy for both compression architectures. Except
at medium SNR and four compression basis dimensions, no significant differ-
ence was seen in the reconstruction accuracy for the compression architectures.
In the single exceptional case, although significant, the difference was noticably
small. Both compression architectures required at least four compression basis
dimensions for the spike reconstruction accuracy to be equal to or higher than
that of the reference architecture.

Spike sorting accuracy generally decreased with a decreased SNR and
tended to decrease with a decreased number of compression basis dimensions
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Figure 6: Spike reconstruction accuracy (upper row) and spike sorting accuracy
(lower row) for NEO detection with architecture 0 (no compression, reference
case), NEO detection with architecture 1 and compression with the fized 2 basis
and ABS detection with architecture 3 and compression with the fized 2 basis
at high, medium and low SNR. The distributions describe the performance
across all nineteen electrode sites in each case. Median comparison intervals
(p = 0.05) are marked with triangles and significantly different cases are marked
with a star and a bracket.

employed. When two compression basis dimensions were used, both com-
pression architectures provided spike sorting accuracy that was significantly
lower than that of the reference architecture. When at least four compression
basis dimensions were used at high and medium SNR, there was no significant
difference in spike sorting performance between any of the architectures. At
low SNR, the spike sorting accuracy of NEO with architecture 1 was the signif-
icantly lowest but no significant difference was seen between the performances
of the reference architecture and ABS with architecture 3.

The computational complexity at the implant for NEO with architecture
1 and ABS with architecture 3 was 5.5 MOPS/spike/dimension and 0.51
MOPS/spike/dimension respectively. The large (factor 10) difference between
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the complexities was due to the increased complexity introduced by performing
spike detection with NEO.

4 Conclusions

In this paper, we have studied how various combinations of spike detectors,
compression architectures and compression bases influence the performance in
spike sorting and spike waveform reconstruction at various signal-to-noise ra-
tios, compared to the case where uncompressed spike waveforms are transmit-
ted and analyzed. Due to the need for minimizing the computational burden
on the implant, we have focused on non-adaptive implant designs, i.e. designs
where compression is performed with fixed compression bases. This eliminates
the need for finding and maintaining an optimal compression basis on the im-
plant.

We have shown that compression with a fixed generic compression basis,
obtained by performing singular value decomposition on a set of empirically
found mean spike waveforms, is possible, given the appropriate system archi-
tecture. The basis we used to show this (fized 2) was obtained from extra-
cellular recordings in the cat cerebellum and is thus entirely independent on
the test recordings used in this paper (synthetic multichannel recordings using
compressed models of CA1 pyramidal neurons).

Based on the comparison of all combinations of detectors, architectures and
bases (part 1), we selected NEO detection with architecture 1 and ABS de-
tection with architecture 3 as feasible candidates for implementation. Both
candidate designs provided similar performance in both spike sorting and spike
reconstruction. However, the complexity at the implant for ABS with architec-
ture 3 was about 10 times lower than that for NEO with architecture 1, thus
making that the most feasible alternative in terms of spike sorting and recon-
struction accuracy. A possible argument for selecting NEO for spike detection
would be it’s superior performance at low SNR.

To summarize, for a future hardware implementation of a wireless BMI,
we propose a spike compression architecture that consists of absolute value
threshold detection, spike alignment at the implant and compression with a
fixed basis that is derived from a large assembly of empirically found spike
waveforms. Such a configuration has been shown to provide spike reconstruc-
tion and sorting accuracies that differ insignificantly from those obtained when
no compression is performed, given that at least four compression basis coeffi-
cients are transmitted per detected spike waveform.

Transmitting four compression coefficients per detected spike waveform and
assuming 10 bits per sample, this results in a data rate of 40 bits per trans-
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mitted spike waveform, or a factor of 16 times less than when transmitting
the uncompressed spike waveforms (assuming 25 kHz sampling rate and 2.5 ms
spike duration). In order to simplify these comparisons, we do not consider
overhead data such as timestamps and channel IDs. Assuming a mean of four
neurons per recording channel and a mean firing rate of 10 spikes per second per
neuron, this corresponds to a mean total data rate of 1.6kbps. Assuming the
same maximum channel capacity as in the example taken in the introduction
(1 Mbps), this would allow the transmission of spike data from 625 recording
channels, or a factor of 156 times more than when transmitting the raw neural
data (four channels maximum).
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