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Introduction

In 2011, 8382 Swedish women were diagnosed with breast cancer [1]. It is by far
the most common cancer diagnosis among Swedish women, constituting 30% of
all newly diagnosed cancers [2]. Several subgroups of breast cancer exist both on a
histological as well as a molecular level, and prognosis and treatment options may
differ widely between subgroups. The presence or absence of the estrogen receptor
(ER) has long been indicative of two distinct biological entities of breast cancer,
and research over the last decade based on gene expression analysis in breast
tumours have revealed additional molecular subgroups with prognostic
implications [3-5].

In this thesis, the overall aims have been to identify and delineate subgroup
specific behaviours relating to proliferation, migration and stem-like cell
properties in breast cancer cells, and to try to identify factors important for
response to the commonly used endocrine therapy tamoxifen. Both in vitro
methods and clinical tumour materials from patient cohorts have been used in the
studies. Our focus has mainly been on cell cycle proteins that are frequently
deregulated in breast cancer.

We have explored a contrasting link between proliferative and migratory
behaviour in cancer cells, linking the cell-cycle proteins to migration.
Furthermore, we have investigated how treatments affecting the cell cycle may
increase or deplete the number of cells with stem-like cell properties. We also
identified a functional retinoblastoma tumour suppressor protein (RB) pathway as
important for predicting response to tamoxifen, and finally we determined the
significance of yes-associated protein (YAP1) in breast cancer molecular
subgroups and its relationship to tamoxifen response.

Taken as a whole, this thesis aims to underline both the importance of the cell
cycle in breast cancer pathogenesis, and the necessity to analyse biomarkers in the
context of specific, well-defined patient subgroups.






The normal and malignant breast

Normal development of the breast

The rudimentary ductal tree of the human breast is already present in the foetus
and is identical in the two sexes until the onset of puberty [6]. The glands of the
breast consist of two cellular compartments; the epithelium and the surrounding
stroma. During puberty, the epithelial compartment develops into a more mature
branched ductal system termed ‘terminal duct lobular units’ (TDLUs) and
following pregnancy, the lobuloalveolar compartment required for lactation is
further expanded and differentiated (Fig. 1). Subsequent to lactation, the glands
undergo involution by massive cell death, resulting in reinstatement of the ductal
architecture resembling that before pregnancy. The very dynamic changes to the
breast tissue occurring after the foetal stadium are largely dependent on hormonal
signalling, primarily executed by estrogen- and progesterone receptor pathways

[7].

There are two major cell types in the breast, the luminal epithelial and
myoepithelial cell type. During lactation, the luminal epithelial cells of the alveoli
are responsible for the secretion of milk into the lumen of the ducts, whereas the
myoepithelial cells contract in response to the hormone oxytocin, creating a flow
of milk through the ducts towards the nipple [8]. The two cell types are suggested
to arise from a common progenitor, a breast stem cell, situated suprabasally in the
TDLUs (Fig. 1) [9].

Several of the signalling molecules important for normal breast development have
been implicated in breast cancer, including cyclin D1 and the estrogen receptor
(ER). The signalling pathways involving these proteins will be further addressed
in later sections.
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Figure 1. Schematic illustration of the normal breast.

The ducts and TDLUs (Terminal Duct Lobular Units) constitute the functional units of the
breast. During lactation, milk is produced and secreted by the luminal epithelial cells of the
alveoli and transported to the nipple through the ducts. A cross section of the alveoli shows
the luminal epithelial and myoepithelial cells; cell types which are also present in the

structure of the ducts.



The normal and malignant breast

Breast cancer

Epidemiology and aetiology

Breast cancer is the most common cancer diagnosis among women in the Western
world with approximately 700 000 new cases every year, of which 8000 are
diagnosed in Sweden [1, 10]. Despite an increase in breast cancer incidence over
the last 20 years, mortality rates are decreasing and the 5-year and 10-year survival
rates in Sweden are 87.8% and 78.8%, respectively [1, 2]. The majority of breast
cancers are sporadic and non-familial. Germ-line mutations of BRCAI and
BRCA2, associated with a high risk of developing breast cancer, are only detected
in 15-20% of cases in families with a history of breast cancer. This implies
additional genes of low to medium penetrance contributing to breast cancer risk,
that have not yet been identified [11].

There are multiple factors of different significance likely to contribute to an
individual’s overall risk of developing breast cancer. Established risk factors are
early menarche and late menopause, as well as nulliparity or late age at first child-
birth, age and geographical location [12]. Risk factors exerting a modest impact on
breast cancer risk are hormone replacement therapy and life style factors such as
body mass index, alcohol consumption and smoking, whereas a family history of
breast cancer and previous history of breast cancer or benign breast disease are
high risk factors [12-14].

A meta-analysis of approximately 35 500 breast cancer patients examining
different risk factors and the risk of developing a specific breast tumour subtype
revealed that reproductive factors and body mass index was mainly associated to
hormone-receptor positive tumours. This suggests that breast tumours negative of
hormone receptors and HER2 (human epidermal growth factor 2), also referred to
as triple-negative tumours, might have a distinct aetiology separate from the risk
factors of hormone-dependent tumours [15].

Breast cancer initiation, progression and cell of origin

Breast cancer is believed to arise mainly in the TDLUs (Fig. 1). The progression
of breast cancer has been proposed to follow a linear multi-step process of
aberrant proliferation. Morphologically it may be described as starting with flat
epithelial atypia followed by atypical ductal hyperplasia and ductal carcinoma in
situ (DCIS), which eventually may progress into an invasive ductal carcinoma
with potential metastatic properties (Fig. 2) [16, 17]. Corresponding stages for
lobular invasive carcinoma would be atypical lobular hyperplasia and lobular
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carcinoma in situ (LCIS). There are molecular data on both the genomic and
transcriptomic level supporting this linear process, however all steps are not
required for invasive cancer to develop [16].
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Normal duct Atypical Ductal Ductal Carcinoma Invasive Ductal
Hyperplasia in situ (DCIS) Carcinoma (IDC)
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(1%t clonal expansion)

(2" clonal expansion)

@=® Myoepithelial cell ® Inflammatory cell @ Tumour cell 2

Putative breast stem cell @ Tumourcell 3
(3" clonal expansion)

— Basement membrane ® Putative cancer
stem cell (CSC)

Figure 2. Illustration of the main steps of breast cancer progression.

Aberrant proliferation leads to atypical ductal hyperplasia which may subsequently
develop into ductal carcinoma in situ, in which the basement membrane is still intact.
When cancer cells break through the basement membrane the cancer becomes invasive,
depicted in the last step. The cell types of the duct are indicated and the heterogeneity of
cancer cells is illustrated by different tumour cell populations.

There are two proposed models attempting to explain the evolution and initiation
of breast cancer; the sporadic clonal evolution model and the cancer stem cell
model. The first non-hierarchical model proposes that any breast epithelial cell
may acquire mutations eventually leading to cell transformation. Selection of cells
experiencing advantageous genetic and epigenetic alterations, “survival of the
fittest”, will subsequently lead to tumour progression. The second, hierarchical
model, often referred to as the cancer stem cell (CSC) model, suggests that there
exists a pool of tumour stem cells responsible for initiation and maintenance of
tumour growth. The current view of the field tends to favour a model
encompassing both scenarios, where for example the proposed CSCs are subjected
to clonal evolution during tumour progression (Fig. 2) [16, 18, 19].
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Furthermore, to explain the heterogeneity of breast cancer, two hypothetical
models have been proposed. The first model suggests that a different cell of origin
is accountable for the different subtypes observed, and this cell is generally
assumed to be either a stem- or progenitor cell. The second hypothesis proposes
that the cell of origin may be the same for different subtypes but depending on the
acquired specific genetic and epigenetic events, different phenotypes arise
resulting in heterogenic subtype classifications [20]. Recently, a luminal
progenitor cell was identified as the cell of origin in basal-like breast tumours
contradicting the general belief that this molecular tumour subtype arise from
basal stem cells [21].

Common genetic alterations in breast cancer

Activation of proto-oncogenes by for example point mutations or DNA
amplification combined with inactivation of tumour suppressor genes by
mutations, promoter methylation or deletions, all contribute to breast cancer
development [22]. In a study analysing the genomes of 100 human breast tumours,
mutations defined as driver mutations were found in at least 40 cancer genes, and
73 different combinations of mutated genes were found [23]. These observations
highlight the notion of breast cancer as a disease with great genetic diversity. In
the following section, a number of oncogenes and tumour suppressors implicated
in breast cancer will be addressed.

The PIK3CA gene encoding the p110 catalytic a-subunit of the heterodimeric PI 3-
kinase is considered an oncogene, targeted by point mutations in 30-36% of all
breast cancers [23, 24]. Mutations of PIK3CA is reported to be enriched in ERT
breast cancers and in the HER2 breast cancer subgroup [24, 25]. Another
implicated oncogene in breast cancer is CCND/ (encoding cyclin D1) located at
chromosome 11q13 and amplified in 8-15% of all breast cancers [26, 27]. The
ERBB?2 gene (17q12) encoding HER2 is amplified in 10-34% of breast cancers,
and MYC (8q24) is amplified in approximately 11% [28, 29]. The AIBI gene
(Amplified in breast cancer-1) on chromosome 20q13 functions as a co-activator
of ER and is amplified in 5-10 % of breast cancers [30, 31].

Genetic alterations such as the hereditary germ-line mutations of BRCAI and
BRCA2 are examples of tumour suppressor genes where loss of function
contributes to malignant cell behaviour. Additional examples of tumour suppressor
genes are the TP53 and RB genes, both shown to be deleted or inactivated by
somatic point mutations in 15-34% and 39% of all breast cancers, respectively [32,
33]. Point mutations or promoter gene methylation of the CDHI gene encoding E-
cadherin is reported in up to 85% of lobular invasive carcinomas [34]. Additional
genes identified as tumour suppressors in breast cancer are PTEN (antagonising

11
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the PI 3-kinase pathway), NCORI1, CASP8, MAP3K1 and CDKNIB. Their overall
frequency of alteration is however low; ranging from 1-6% [23]. The transcription
factor GATA3 has been shown to harbour point mutations in approximately 18%
of ER* tumours [23].

There are still an unknown number of tumour suppressor genes to be discovered,
most likely residing in gene regions commonly subjected to deletion during breast
cancer progression. Examples of chromosomal regions frequently deleted or
displaying loss of heterozygosity (LOH) in breast cancer are 1p, 1q, 3p, 6q, 8p,
11q, 13q, 16q, 17p, 17q and 22q, to mention a few [33].

Prognostics and treatment

Prognostics

Histologic classification

Histologic classification refers to the growth pattern of a tumour. A large
histologic diversity exists in breast tumours, whereby 17 different special types
make up 25% of all diagnosed cases. The most common histological type is the
invasive ductal carcinoma which is diagnosed in about 50-80% of all breast
carcinomas, followed by invasive lobular carcinoma, prevalent in 5-15% [35, 36].
Histologic type does in most cases not confer much prognostic information with
the exception of medullary carcinoma, which despite a high histological grade has
a relatively good prognosis [35].

The Nottingham Histological Grade and TNM staging

Grading tumours according to the Nottingham Histological Grade (NHG) has
proven very useful in terms of predicting disease aggressiveness. Tumours are
assigned a grade from I (well differentiated) to III (poorly differentiated), by
evaluating morphological features of the tumour such as tubule formation, nuclear
polymorphism and mitotic count [37]. The prognostic implication of NHG has
been validated in several independent patient cohorts [38].

An additional measure of classifying breast tumours to obtain prognostic
information is the use of TNM staging, where tumour size (T), lymph node
involvement (N) and distant metastasis (M) are taken into account. By combining
three factors all holding prognostic information, an estimate of the clinical stage of
the disease is obtained [39].

12
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Immunohistochemical markers

Several immunohistochemical markers are assessed in the clinic to provide both
prognostic, and perhaps most importantly, treatment predictive information. The
estrogen receptor (ER) and progesterone receptor (PgR) are both evaluated to
determine possible benefit of endocrine targeted treatments, and a cut-off level at
10% positive nuclei is used for both markers. The growth factor receptor HER2 is
evaluated initially by immunohistochemistry, followed by a FISH/CISH analysis
(fluorescent or chromogenic in situ hybridisation) to determine amplification
status of the ERBB2 gene. The evaluation of HER2 is used in guiding treatment
with the HER2-targeted antibody trastuzumab, and also serves as a prognostic
factor indicative of aggressive disease [40]. The proliferative marker Ki-67 is
evaluated immunohistochemically to determine the proliferative activity of a
tumour. However, consensus regarding its clinical use has not been reached, partly
due to lack of a clearly defined cut-off value and difficulties in standardising the
immunohistochemical method [40, 41].

Molecular subgroups of breast cancer

Research over the last decade utilising gene expression profiling of breast cancer
tissue have provided new insights into the heterogenic molecular composition of
breast cancer, and has led to the identification of several molecular subgroups with
prognostic, and possibly also treatment predictive, implications. Initially proposed
by Perou et al. in the year of 2000, four molecular subgroups were identified by
hierarchical clustering of gene expression data from 38 invasive breast cancers; the
luminal, normal breast-like, HER2 and basal-like subgroups [3]. This work was
soon followed by a report from the same group where the luminal subgroup was
further divided into luminal A and luminal B subgroups. Most importantly, the
subtype classification was now also demonstrated to hold prognostic information,
with luminal A and basal-like breast cancers displaying the best and worst
prognosis, respectively [5].

Both luminal A and B subgroups are characterised by hormone receptor positivity,
but luminal B cancers display increased proliferation and are more often of higher
histological grade. Luminal A breast cancers are usually of lower grade and
present with a low proliferation index (Table 1). In the luminal B subgroup,
chromosomal aberrations such as amplification of the 11q13 gene CCNDI as well
as amplification of FGFRI at 8pll are frequently found [42, 43]. Tumours
harbouring functional loss of retinoblastoma tumour suppressor protein (RB) may
also be found in the luminal B subgroup, although this specific molecular event is
more common in the basal-like subgroup [32]. The basal-like subgroup also
comprises  the so-called  triple-negative = tumours, negative for
immunohistochemical markers ER, PgR and HER2 [44]. The HER2 subgroup is,
as the name implies, enriched for tumours with amplification of the ERBB2 gene,

13



The normal and malignant breast

however tumours may fall in this subgroup regardless of presence of the specific
amplification event. One study reported the normal-like subgroup to be enriched
for patients currently using HRT (hormone replacement therapy) and these
tumours were generally smaller and of low grade [45].

Table 1. Summary of molecular subgroup characteristics

Subgroup ER+ PgR+ HER2+  Histological — Proliferation Outcome
grade’ Ki67
Luminal A 91-100% 70-74%  8-11%  I/II: 70-87% Low Good

III: 13-30%

Luminal B 91-100%  41-53%  15-24%  I/IL: 38-59% High Intermediate
III: 41-62% or poor
HER2 29-59%  25-30%  66-71%  I/1I: 11-45% High Poor

III: 55-89%

Basal-like 0-19% 6-13%  9-13%  I/1I: 7-12% High Poor
III: 88-93%

Normal- 44-100%  22-63%  0-13%  I/II: 37-80% Low or Intermediate
like III: 20-63%  intermediate

“Nottingham histological grade LII or III. ER=estrogen receptor o, PgR= progesterone
receptor, HER2=human epidermal growth factor 2. Information obtained from reference
[46].

Molecular subgroup classification was initially thought to be indicative of cell of
origin, hence luminal and basal subgroups were suggested to originate from
luminal and basal progenitor cells, respectively [5S]. However, it has been reported
that deletion of Brcal (loss of which is closely associated to a basal-like
phenotype in human breast cancer) in the mouse mammary epithelial luminal
progenitors, and not in the basal cells, give rise to the basal-like phenotype [21]. In
addition, carriers of BRCAI mutations have been shown to harbour an aberrant
luminal progenitor cell population [47]. This suggests a luminal progenitor to be
the cell of origin for basal-like breast cancers, contrary to the initial belief.

Gene expression profiling is a dynamic research area and recently an integrated
genomic and transcriptomic analysis of 2000 breast tumours identified 10 novel
subgroups with prognostic implications. One of the subgroups identified was a
high-risk ER™ subgroup characterised by 11q13/14 amplification, highlighting the
importance of this specific genetic aberration in breast cancer [48]. Additional
subgroups identified are the claudin-low, characterised by enrichment in markers
of epithelial-to-mesenchymal transition (EMT), immune response genes and

14
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features reminiscent of cancer stem cells, and the androgen receptor (AR) positive
molecular apocrine subgroup, symptomatic of increased androgen signalling [46,
49, 501.

Gene expression assays which have been approved for clinical use are the
Oncotype DX® and MammaPrint® assays [51, 52]. The Oncotype DX® test
measures the expression of 21 genes of which 5 are reference genes, and may be
used in patients with ERT node-negative breast cancer. The MammaPrint®
signature is based on 70 genes and is approved for determining the prognosis in
patients with node-negative, stage I or Il invasive breast cancer with a tumour size
of less than 5 cm. However, these tests are not currently employed in the Swedish
treatment guidelines [40].

To conclude, the importance of adapting a subgroup perspective even in basic
research is now apparent. Placing results from the lab bench in a molecularly
relevant breast cancer subgroup context is necessary in order to further our
understanding of the complexity of breast cancer.

Treatment

Surgery and radiotherapy

Surgery has a prominent role in breast cancer treatment. The primary tumour may
be removed either by performing breast-conserving surgery or mastectomy [40].
Several adjuvant therapies may subsequently be added, guided by tumour
characteristics such as expression of ER and PgR, HER2 status and overall
prognostics described previously. During the surgical procedure, a sentinel lymph
node biopsy is performed to determine the potential presence of malignant cells. In
the case of a negative biopsy, further resection of the lymph nodes is not
necessary, sparing the patient of side effects associated with lymph node removal
[53].

Chemotherapy

Chemotherapy may be offered after surgical removal of the primary tumour as a
means of eradicating dormant micrometastases. In case of an inoperable primary
tumour, neoadjuvant or preoperative chemotherapy may be given to render it
surgically removable. The more common chemotherapy treatment regimes used
are the anthracyclin-based polychemotherapies FAC (fluorouracil, doxorubicin,
cyclophosphamide) and FEC (fluorouracil, epirubicin, cyclophosphamide) as well
as the combination therapy CMF (cyclophosphamide, methotrexate, fluorouracil)
[54]. Chemotherapy is associated with severe side effects and toxicity, hence
identifying patients who would do equally well on e.g. only endocrine therapy is
an extremely important and ongoing research area.
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The normal and malignant breast

Endocrine therapy

Several types of endocrine therapy which target the estrogen receptor (ER) may be
allocated to patients diagnosed with ERT breast cancer. Tamoxifen is a non-
steroidal drug categorised as a ‘selective estrogen receptor modulator’ (SERM)
widely used in the adjuvant setting. Its functional mechanisms are more closely
addressed in the section of Tamoxifen and resistance mechanisms. Raloxifene,
another compound from the SERM family, has been approved as a
chemopreventive drug in women experiencing a high risk for developing breast
cancer but has failed as an alternative to tamoxifen in breast cancer treatment [55].

The Aromatase Inhibitors (Als) are designed to attenuate estrogen synthesis by
targeting the enzyme aromatase, involved in the process of converting androgens
into estrogens. Als have proven to be more efficient in ERT postmenopausal
patients compared to treatment with tamoxifen, and are now the recommended
treatment for this patient group [56].

Fulvestrant, a compound belonging to the group of ‘selective estrogen receptor
downregulators’ (SERDs) functions by binding the ER and inducing rapid
degradation of the receptor. It is considered to have a more “pure” anti-estrogenic
effect compared to tamoxifen, which has estrogenic effects (i.e. induction of
proliferation) in for instance uterine tissue [57, 58]. At present, fulvestrant is
indicated for use as a second-line treatment in postmenopausal patients with
advanced ERT disease who have progressed on adjuvant endocrine therapies [40].
A clinical trial evaluating tamoxifen and fulvestrant in postmenopausal patients
with advanced ERT disease, previously untreated with endocrine therapy, showed
no significant differences in time to progression between the two treatment arms
[59].

HER2-targeted therapy

The monoclonal antibody trastuzumab (Herceptin®) was designed to target and
inhibit HER2 which is amplified or overexpressed in 20-30% of all breast cancers
[60]. HER2 functions both as a prognostic and treatment predictive factor, and
patients with HER2-positive tumours experience a worse prognosis despite
specific HER2-targeting treatments. Recently, evidence has emerged indicating a
possible clinical benefit of adjuvant trastuzumab in patients with HER2-negative
breast cancer, and a prospective clinical trial (NSABP B-47) has been initiated to
clarify these observations [61]. HER2 signalling has been suggested to regulate the
mammary stem- or progenitor population of a breast tumour, and this is an
attractive explanation to why adjuvant HER2 targeting might be efficient in
patients with tumours not overexpressing HER2 [62].
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Key characteristics of breast cancer:
Proliferation, migration and breast cancer stem cells

The cell cycle

The fundamental process of cell growth and division is a tightly regulated course
of actions, carried out by oscillating levels of a family of proteins known as the
cyclins. The cyclins associate to and activate members of the serine/threonine
cyclin-dependent kinase (CDK) family in a cell cycle phase specific manner [63].
Their order of expression is illustrated in Fig. 3.

The main phases of the cell cycle are:

Gy (G stands for Gap phase) in which the cell is residing in a quiescent, resting
state awaiting an external stimuli to trigger the start of a cell cycle. The majority of
the cells in the body reside in this phase.

G (Gap 1 phase) is entered once the cell receives an external mitogenic signal and
involves preparation of DNA duplication.

S phase (Synthetic phase) during which the cell replicates its DNA.
G; phase (Gap 2 phase) in which the cell prepares for M phase and cell division.

M phase (Mitosis) involves the separation of the replicated chromosomes into two
daughter cells. This phase consists of several distinct subphases namely prophase,
metaphase, anaphase and telophase. M phase is ended by cytokinesis, the actual
cell division.

In the normal cell, several so-called ‘checkpoints’ are present throughout the
different phases to ensure proper execution of the various steps towards cell
duplication [64]. Cancer cells may be described as cells with acquired features
which allow them to override such checkpoints, leading to uncontrolled
proliferation. The restriction point was initially described in yeast as a checkpoint
exerting its control of cell cycle progression in late G; phase, but is no longer
defined as a checkpoint per se [65]. Instead, the restriction point is described as a
point of no return for cell cycle progression, and it denotes the point in time of the
cell cycle in which the cell may switch from dependence on external mitogenic
stimuli to independence of them. One of the hallmarks of cancerous cells is the
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Proliferation, migration and stem cells

independence of external signals for cell proliferation, and events involved in the
regulation of the restriction point are frequently altered in cancer [66, 67]. The
following section will address cell cycle proteins mainly involved in the transition
of the restriction point in late G,/S phase.
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Figure 3. The cell cycle and regulation of G; and G,/S transition.

The main phases of the cell cycle and corresponding cyclin-CDK complexes are indicated.
In a resting cell (Gy), RB actively represses E2F-mediated transcription. Upon mitogenic
signalling, cyclin D is synthesised. Cyclin D-CDK4/6 complexes phosphorylate RB which
becomes partly inactive, resulting in cyclin E transcription. Cyclin E-CDK2 complexes
continue to phosphorylate RB which becomes completely inactivated, leading to
transcription of S phase genes. p27 acts as an assembly factor for cyclin D-CDK4/6
complexes, but inhibits cyclin E-CDK2. R denotes the restriction point and indicates the
transition from early G, mitogen-dependence to late G, independence. Partly modified
from [67] and [68].

Cell cycle molecules of the G4/S phase
The first cyclins to be expressed once the cell receives an external mitogenic
signal are the D-type family of cyclins, such as cyclin D1 [69]. Several signalling

cascades have been described to converge on cyclin D1 expression, including the
Ras/Raf/MAPK, ER and PI 3-kinase pathways [70, 71]. Various cytokines may
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induce cyclin D1 expression through STAT3 and STATS [72, 73]. Binding of Wnt
to its receptor Frizzled leads to B-catenin-mediated cyclin D1 transcription [74].

Cyclin D forms a complex with the catalytic subunits CDK4 and CDK6, allowing
for phosphorylation and thereby inactivation of the retinoblastoma tumour
suppressor protein (RB). The conformational change inflicted on RB by
phosphorylation leads to the release of transcription factors belonging to the E2F
transcription factor family, triggering expression of target genes such as cyclin E
and cyclin A. In addition to E2Fs, the RB complex includes transcriptional
repressors such as histone deacetylases and chromosomal remodelling SWI/SNF
complexes, and these interactions are also disrupted by the phosphorylation event
(reviewed in [75]). The subsequent cyclin E-CDK2 and cyclin D-CDK4/6
complexes continue to phosphorylate RB, creating a positive feed-back loop
increasing cyclin E and cyclin A transcription levels. The cell is pushed further in
G, towards S phase. If no negative signals (e.g. withdrawal of mitogens) are
received inhibiting further phosphorylation of RB, the restriction point is passed
and progression of the cell cycle is now completely reliant on intrinsic signalling,
for the moment exerted by cyclin E-CDK2 complexes. As the cell enters S phase,
cyclin A becomes the dominant cyclin bound to CDK?2 (Fig. 3) [75].

The family of cyclins has been described as proto-oncogenes due to their
proliferation-promoting capabilities, and overexpression or deregulation of cyclin
D1 and cyclin E is frequently observed in breast cancer [76]. The tumour
suppressor RB is recurrently reported to be either lost or functionally inactivated
in the cancer setting [67].

Cell cycle inhibitors

CDK inhibitors (CKIs) such as pl6™* (encoded by CDKN2A4), pl5™**®
(CDKN2B), p21VA*! (CDKN1A) and p27*'""" (CDKN1B) exert another level of cell
cycle control, mainly by hindering the formation of active cyclin-CDK complexes.
p27%"" inhibits the actions of CDK2 but also functions as an assembly factor for
cyclin D-CDK4/6 complexes. In an actively cycling cell, practically all p27*""
molecules are bound to cyclin D-CDK4/6 complexes. This leaves insufficient
amounts of p27""' to inhibit cyclin E-CDK2 complexes, thereby facilitating cell
cycle progression. When cyclin E-CDK2 becomes the prevailing complex in late
G, it may actually antagonise its own inhibitor by phosphorylating p27<"™
targeting it for degradation [77]. These events all contribute to transition through
the restriction point (Fig. 3). Another CKI, p15™** has been shown to be induced
upon signalling of the growth arresting cytokine TGF-B (transforming growth
factor beta) resulting in p15™** binding of CDK4 and CDKS6, and subsequent
inhibition of cyclin D-dependent kinase activity [78]. p16™"* is also an inhibitor
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of CDK4/6 whereas p21“*"! binds and inhibits CDK2. p21V*"" is reported to be
one of the main effectors of the cell cycle arrest resulting from p53 signalling,
initiated by the sensing of DNA damage [79, 80]. Proteins of the CKI family are
considered tumour suppressors and loss of CKI expression is frequently observed
in human cancers, including breast cancer [67].

Concluding remarks

It should be underlined that the proliferative status in combination with grade of a
breast tumour is repeatedly demonstrated to hold great prognostic implication.
Several of the more advanced gene expression signatures with prognostic value
have later been shown to merely mirror the tumour grade and proliferation, despite
measuring expression of unique sets of gene transcripts [81, 82]. Patterns of cell
cycle aberrations have been shown to correlate to specific tumour subtypes and
outcome, and could potentially add prognostic as well as predictive information
[26, 83-85].

Migration

The ability of a cell to acquire a migratory phenotype is essential for processes
such as developmental morphogenesis and tissue repair. However, initiation of a
migratory programme in cancerous cells can lead to invasion into the surrounding
tissue and vasculature, constituting the initial step of tumour metastasis [66].

The process of migration involves a very complex network of signalling resulting
in cell polarisation and membrane extension, followed by contraction and thereby
movement. Several comprehensive reviews have been published describing the
events of a migratory cycle [86-88]. A brief overview of the main steps of
migration and associated molecules are outlined below.

Polarisation

The first step in the onset of migration is cell polarisation. Upon sensing a
migratory-promoting agent, the cell takes on a polarised morphology, involving
the establishment of a distinction between the cell front and back. Examples of
molecules involved in this process are Cdc42 and Rac of the Rho GTPase family,
and PIP; which is produced locally in the cell front by action of PI 3-kinase. The
formation of activated integrin receptor complexes are also of importance in the
polarisation process [88].
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Membrane extension

Second, cell protrusions are formed which bind ECM (extracellular matrix) or
adjacent cells to subsequently allow for the cell to pull its way forward. There are
several types of protrusions with differences in their morphology, for example the
broad lammelipodia, spike-like filopodia and cylindrical finger-like pseudopods.
These protrusion events are driven by activated Cdc42 and Rac, resulting in
activation of the Arp2/3 complex which in turn leads to actin polymerisation [89].
Rac activation has also been associated to microtubule polymerisation [90]. The
protrusions are stabilised by the formation of adhesion complexes binding to the
ECM or surrounding cells. The adhesion complexes consist of molecules
belonging to the transmembrane integrin receptor family which cluster in the cell
membrane to form focal contacts. The focal contacts are of a dynamic nature and
may both adhere stably to the substrate or loosen their grip as the cell moves along
a path. Signalling through the focal contacts involves for example the focal
adhesion kinase (FAK), which binds the integrin cytoplasmic tail and
subsequently recruits both actin-binding proteins and regulatory molecules such as
PI3-kinase and Rho-family GTPases [86].

Cell body contraction and rear release

In the last step of migration, a contractile force is required to regulate the actual
movement of the cell [87]. This event involves the motor protein myosin II which
interacts with and pulls on the actin filaments. Myosin II is activated through
phosphorylation of myosin light-chain (MLC) which in turn is regulated by the
kinases MLCK (myosin light-chain kinase) and ROCK (Rho kinase). As the cell
moves forward, adhesion disassembly and retraction occur at the rear of the cell.
Myosin II and FAK have been shown to be important for retraction, and the
tension itself, coming from the pulling forward of the cell, has been shown to
contribute to detachment [87, 88].

Breast cancer stem cells

The concept of breast cancer stem cells (CSCs) has attracted a lot of attention
during the last decade. Cancer stem cells are in general defined as cells with
tumour-initiating properties, capable of self-renewal and differentiation [19].
Breast cancer stem cells may be propagated in vitro by use of the mammosphere
assay, which enrich for cells with stem-like properties [91].
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The first CSC identified from human solid tumours was derived from primary
human breast cancers [92]. Breast CSCs (or tumour initiating cells) were identified
by a cell surface expression phenotype of CD44TCD24-/low in flow cytometry
experiments. As few as 100 cells of this particular phenotype were required for
tumour formation in mice, and the defined cell population was capable of re-
generating the heterogenic phenotype present in the initial tumour. Thousands of
cells with alternate phenotypes were on the other hand unsuccessful in establishing
tumours [92].

Breast cancer cell subpopulations defined by high ALDH (aldehyde
dehydrogenase) activity have also been suggested to be enriched in
stem/progenitor properties [93]. Identified by use of the ALDEFLUOR® assay,
only ALDH positive breast cancer cells were able to form tumours in mice even
when transplanted in numbers as low as 500. The CD44tCD24-/low phenotype and
ALDH activity was shown to overlap in a small fraction (1%) of the investigated
cancer cell populations. This double phenotype appeared to be highly enriched in
cancer stem cells and a mere of 20 cells from this subpopulation were able to
initiate tumour growth [93].

Combinations of phenotypes reported to be enriched for cancer stem cells have
further proven useful in predicting outcome in breast cancer patients [94, 95]. As
cancer stem cells have been postulated to be involved in drug resistance and
tumour persistence, increased frequencies of cancer stem cell subpopulations in a
tumour have been hypothesised to correlate to a worse prognosis [96, 97]. Some
attempts have been made to use immunohistochemistry for CSC identification
instead of flow cytometry. In two recent studies, primary breast tumours were
stained with specific antibodies for CD44, CD24 and ALDH1 among others. The
combination of multiple markers had greater prognostic value compared to
individual marker expression [94, 95].

Epithelial-to-mesenchymal transition (EMT) has also been linked to CSCs. When
EMT was induced in an immortalised human mammary epithelial cell line, cells
acquired stem cell-like features such as the ability to form mammospheres. This
suggests involvement of the EMT process in the self-renewal feature of CSCs
[98].

CSC theories remain controversial and there is debate regarding both theoretical
and experimental issues. Take for example the xenograft model, in which CSCs
are tested for their tumour-initiating properties. This model does not allow for
evaluation of the importance of the tumour microenvironment and the immune
system, which is a notable drawback given that CSCs may arise as a consequence
of microenvironmental signals or other external cues [99]. In solid tumour models,
the need to dissociate tumour tissue into single cells may affect viability and
behaviour of the cancer stem cells. In addition, parameters including the duration
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of the experiment and the type of mouse model used may have a critical impact on
model outcome [99, 100].
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Cell cycle associated proteins

The focus in this thesis primarily lies on the well-known cell cycle associated
proteins cyclin D1 and RB. This section will describe these two molecules in
further detail, both from a cell cycle- and breast cancer perspective. YAP1, the
protein of interest in paper IV, has been closely linked to proliferation but its
precise role in the cell cycle has not been as thoroughly defined as for cyclin D1
and RB. Hence, YAP1 will be addressed from a more general cancer perspective.

Cyclin D1

The cyclin D family

CCND1 was identified in 1991 as a gene involved in chromosomal rearrangements
in a subset of benign parathyroid tumours [101]. Cyclin D1 was soon recognised
as a protein with oncogenic growth-promoting properties, and its overexpression
and amplification is reported in various cancer types [67]. Cyclin D1 consists of
295 amino acids and has several functional domains. The N-terminal of cyclin D1
holds an RB-binding domain, and a conserved domain termed the cyclin box
which is important for the binding of CDKs, is found in the central part. A
sequence present in the C-terminal has proven to be important for CDK-
independent functions of cyclin D1 [102].

CCNDI is located at chromosome 11q13, whereas the loci of CCND2 and CCND3
map to chromosomes 12p13 and 6p21, respectively [103]. The three D-type
cyclins constitute a subfamily within the cyclin family and share a similar exon-
intron organisation [103]. They display an average of 57% identity in their coding
regions and the cyclin box harbours 78% identity between the three family
members. This should be compared to the 39% identity seen when compared to
cyclin A, 36% compared to cyclin E and 29% identity when compared to cyclin B
[104]. During mouse embryonic development, the different cyclin D proteins are
expressed in a dynamic and often highly exclusive expression pattern although co-
expression of all D-type cyclins may be observed as well [105]. Apart from the
growth-promoting activities of the D cyclins they are also implicated in promoting
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cell differentiation of specific cellular compartments [106]. Mice lacking all D-
type cyclins have been shown to develop normally until mid/late gestation, after
which they die [107]. This implies that normal proliferation in the developing
mouse embryo may occur to some extent despite lack of all D-type cyclins.

Single cyclin D knock-outs as well as combinations of knock-outs of the D-type
cyclins in mouse development have also been analysed [106]. All single cyclin D
knock-outs were viable but presenting with varying phenotypes. Cyclin D2 knock-
out lead to female sterility and impaired proliferation of peripheral B-lymphocytes
[108]. Disrupting the cyclin D3 gene resulted in a phenotype of hypoplastic
thymus with loss of T-cell maturation [109]. Mice lacking cyclin D1 were of small
body size and suffered from underdeveloped retinas. The cyclin D1 null phenotype
was also characterised by a defective development of the lobuloalveolar
compartment during pregnancy, and lactation could not occur [110]. This
observation together with several studies on primary human breast cancers
identifying frequent overexpression specifically of cyclin D1, constitute the
background to why cyclin D1 is the most extensively studied cyclin in the breast
cancer setting [111, 112].

Cyclin D1 in models of breast cancer

Specific overexpression of cyclin D1 in the virgin mammary gland is reported to
lead to increased proliferation and development of the lobuloalveolar
compartment, reminiscent of early pregnancy. Around the age of 18 months,
MMTV-cyclin DI mice developed multiple independent adenocarcinomas [113].
These experiments manifested the oncogenic capacity of cyclin D1 but also
indicated cyclin D1 as a rather weak oncogene, considering the long time-frame
before tumour onset. In comparison, MMTV-neu mice have tumour onset within
an average of 3 months [114].

Cyclin D1 has been shown to be of importance for the development of mammary
cancers induced by c-neu and v-Ha-ras, but not for those induced by c-myc or
Wnt-1 [115]. This suggests that not all oncogenic pathways are reliant on the
induction of cyclin D1 for initiation of mammary neoplasia. Further studies have
revealed that in the MMTV-neu mouse model, cyclin DI is mediating its
oncogenic effects by the activation of CDK4 [116].

CDK4 and CDK6

Cyclin D1 interacts specifically with two CDKs, CDK4 and CDK®6 [117]. They
are exclusive CDK-partners of the cyclin D family. CDK4 gain and amplification
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has been reported in 14%, 25% and 24% in the luminal A, B and HER2 molecular
breast cancer subgroups, respectively [24]. CDK4 null mice survive
embryogenesis but display a phenotype reminiscent of the small body sized cyclin
D1 knock-out mice. In addition the mice are sterile, a phenotype observed in the
cyclin D2 knock-out mice [108, 110, 118]. Amplification of CDK4 has been
associated to increased proliferation in breast cancer [119].

CDK6 null mice are viable and only display minor defects in hematopoietic cell
populations, whereas the double CDK4/CDK6 knock-out results in late embryonic
or postnatal lethality [120]. CDK6 has so far not been extensively studied in breast
cancer. One study reported the protein to be downregulated in breast cancer and
suggested that CDK6 might restrain rather than stimulate breast epithelial cell
proliferation [121]. In addition, CDK6 has been implicated in blocking
differentiation, a feature not shared with CDK4 [122].

CDK-independent effects of cyclin D1

Cyclin D1 may also be involved in activities unrelated to its function as a CDK
regulatory subunit [123]. By interacting with the ER and SRC-family co-
activators, cyclin D1 has been reported to activate ER in a ligand-independent
manner [124, 125]. In breast tumours there is a strong correlation between
overexpression of cyclin D1 and ER positivity, possibly supporting activation of
ER mediated by cyclin D1 [126, 127]. Other transcription factors known to be
affected by cyclin D1 in a CDK-independent fashion are DMP-1 (cyclin D1-
interacting myb-like protein 1), androgen receptor, STAT3 (signal transducer and
activator of transcription 3) and SP-1 [128-131]. However in contrast to the
activating effect of cyclin D1 on ER transcription, in these examples cyclin D1
functions as a transcriptional co-repressor.

Furthermore, cyclin D1 has been implicated to function in a CDK-independent
manner during DNA repair [132]. One of the first reports of a functional role for
cyclin D1 in DNA repair came from Li ef a/. in 2010 [133]. Upon DNA damage
cyclin D1 was shown to tether to the chromatin which subsequently resulted in
recruitment of RADS1, known to play a critical role in the recombination repair of
double-strand breaks. Further studies have shown that depletion of cyclin D1
results in increased sensitivity to ionizing radiation in both in vitro and in vivo
experimental systems [134].
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Cyclin D1 in breast cancer: amplification and overexpression

CCNDI amplification of chromosome 11ql13 is frequently reported in breast
cancer with numbers ranging from 8-15%. Protein overexpression is observed in
19-67% of all breast cancers and the event of CCNDI amplification is in general
linked to protein overexpression [26, 27, 112, 126, 135-140].

Several reports conclude that high cyclin D1 expression is associated to a better
outcome [27, 126, 135] whereas some report the opposite or no difference [136,
140, 141]. The amplification of CCND] is more consistently reported to correlate
to a worse outcome [26, 27, 135, 136], implying that cyclin D1 protein
overexpression and amplification of CCNDI are in fact two separate events in
breast cancer, despite involvement of the same protein. It is reported that the
amplification of chromosome 11q13 is accompanied by deletion of the distal part
of 11q in up to 70 % of cases [42, 142]. Hence, the amplification of CCNDI is
frequently associated to loss of several putative tumour suppressor genes of
unknown importance. One such gene located at 11q22 and thus often deleted upon
CCNDI amplification is YAPI, the main focus of paper IV which will be
addressed below.

Yes-associated protein (YAP1)

Introduction to YAP1

Deletions of the distal part of chromosome 11q is a common event in breast cancer
and reports of loss of heterozygosity (LOH) range from 37-63 % depending on the
patient cohort studied [143-147]. The YAPI gene is located at 11g22 and functions
as a transcriptional co-regulator [148].

There are eight different isoforms of YAPI, resulting from alternative splicing
[149]. YAP1 contains several functional domains, of which the WW domain
involved in protein-protein interactions has been most extensively studied [150].
Depending on the isoform, YAP1 contains one or two WW-domains which are
characterised by presence of two highly conserved tryptophane (W) residues. The
WW domains may bind and interact with proteins containing a proline rich
sequence (PPXY, also known as PY-motif, where P stands for proline, Y
designates tyrosine and X any amino acid). Since identified in YAP1, WW
domains have been found in many proteins [151].

YAP1 was initially identified in 1994 when shown to bind the SH3 domain of the
yes proto-oncogene through a proline-rich sequence [152]. Two proteins were
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shortly thereafter identified and characterised as putative ligands of YAPI,
binding with high specificity to the WW domain. These proteins were named
WBP-1 and WBP-2 (WW domain binding protein 1 and 2) [153]. WBP-2 has later
been identified as a co-regulator of ER, constituting a possible link between YAP1
and estrogen receptor signalling [154, 155].

In mice, disruption of Yapl results in lethality at embryonic day 9.5. TAZ
(transcriptional  co-activator with PDZ-binding motif), which displays
approximately 50 % amino acid identity with YAP1 and is implicated in exerting
functions similar to YAP1, can not compensate for the lost YAP1 expression in
the developing mouse embryo [156, 157].

Cell cycle function of YAP1

YAP1 is implicated as one of the key players in the conserved tumour suppressive
Hippo signalling network. This network is important for organ size control
through regulation of cell growth, proliferation and apoptosis [158]. When there
are no signals relayed through the Hippo pathway, nuclear YAP1 binds and
activates TEAD transcription factors which result in transcription of e.g. CTGF
(connective tissue growth factor). This leads to stimulation of cell growth and
proliferation [159]. Active signalling through the Hippo network results in
phosphorylation of YAP1 at serine residue 127, ultimately resulting in YAP1
inactivation by sequestering of the protein in the cytoplasm [160]. The growth-
promoting activities of YAP1 are thereby inhibited. Inhibitory signalling may be
initiated for example by cell-cell contacts, and is important for mediating
prevention of tissue overgrowth. If signalling through the Hippo pathway on the
other hand is lost, YAP1 remains constitutively active in the nucleus which may
result in improper oncogenic signalling [160].

YAP1 as an oncogene

In hepatocellular carcinoma, YAP1 has been identified together with the inhibitor
of apoptosis cIAP1 (gene name B/RC?2) as key oncogenes of the 11g22 amplicon
[161]. In addition it was established that YAP1 and cIAP1 drive oncogenesis in a
cooperative fashion. YAP1 has further been implicated as an oncogene in several
cancer types such as esophageal squamous cell carcinoma, non-small-cell lung
carcinoma, ovarian clear cell carcinoma, colorectal carcinoma and
medulloblastoma [162-166].
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YAP1 in breast cancer — a subgroup specific tumour suppressor?

In breast cancer, reports of YAP1 function have been contradictory. In 2008, Yuan
and co-workers published a report suggesting YAP1 to function as a tumour
suppressor in breast cancer [167]. They reported downregulation of YAP1 to result
in increased migration and invasion, suppression of anoikis, and enhancement of
tumour growth in nude mice. However, several reports suggest YAP1 to be
oncogenic in breast cancer and expression of constitutively active YAP1 in murine
mammary epithelial cells rendered these untransformed cells highly metastatic
[168-171]. These conflicting results could possibly be explained by YAPI
exerting separate functions in different cell types. Possibly, YAP1 might have
oncogenic or tumour suppressive features dependent on breast cancer subgroup
context.

Retinoblastoma tumour suppressor protein (RB)

RB — the first tumour suppressor protein identified

In 1971, after observing the incidence rate of sporadic and hereditary
retinoblastoma (a childhood tumour arising from retinal cells), Alfred Knudson
proposed his now famous “two-hit hypothesis” [172]. The paper concluded that
both copies of the gene associated with retinoblastoma had to be disrupted for the
tumour to develop. The hypothesis later became the ground for the concept of
tumour suppressor genes, and when the RB gene was identified in 1986 and found
associated with retinoblastoma, the first tumour suppressor gene had been
identified [173].

Cell cycle function of RB

RB is located at chromosome 13ql14 and belongs to a gene family of “pocket
proteins”, also including p107 and p130 [174]. The pocket domain of RB consists
of domains A and B and contains a recognition site for histone deacetylases
(HDACS) and proteins related to the SWI/SNF nucleosome remodelling complex
[175, 176]. A second binding site in the pocket domain allows for RB to bind
members of the transcription factor family E2F, with strong preference for E2F-1,
E2F-2 and E2F-3 [177]. The resulting complex of RB, HDACs and E2F sits on the
DNA, thereby inhibiting transcription of genes required for cell cycle progression
[178]. In the nucleus, RB also binds and represses the function of the non-receptor
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tyrosine kinase c-Abl. Upon phosphorylation of RB, c-Abl is released and
activated, contributing to cell cycle progression [179].

The sequential phosphorylation of RB by different cyclin-CDK complexes is
fundamental to cell cycle progression. Sixteen phosphorylation sites have been
identified in RB. During progression of the cell cycle, RB is initially
unphosphorylated (active repression), followed by hypo- (partial repression) and
hyperphosphorylated (inactive repression) forms of the protein (Fig. 3) [180, 181].
A model has been proposed in which cyclin D-CDK4/6 phosphorylate RB in the
carboxy-terminal region resulting in the displacement of HDACs from the pocket
region. This event is sufficient to relieve the transcriptional inhibition of the cyclin
E gene, required for further cell cycle progression. In addition, the cyclin D-
CDKA4/6 mediated phosphorylation of RB appears to function in the recruitment of
cyclin E-CDK2 complexes. This interaction facilitates the phosphorylation of Ser-
567 by cyclin E-CDK2, resulting in a conformational change of the RB pocket
domain and complete disruption of E2F inhibition [182]. The free E2F complex is
ultimately able to initiate transcription of genes driving cell cycle progression.

RB and apoptosis

RB has been reported to be involved in mediating apoptosis through a p53-
dependent pathway. Unbound, free E2F-1 complexes are implicated in the
transcription of the ARF gene. The ARF gene product can in turn inhibit the
MDM2-mediated turnover of p53. Accordingly, loss of RB function may trigger
apoptosis through the accumulation of p53, acting as an intrinsic protective
mechanism in cells where the RB pathway is deregulated [183, 184]. Reports
indicate that sufficient accumulation of free E2F only occurs if RB function is
completely abolished. Consequently, in a proliferating cell under the control of
RB, the ARF/p53 pathway is not activated due to insufficient levels of free E2F
complexes [185].

RB alterations in cancer

Many of the germ-line mutations of the RB gene are confined to the pocket region,
and most tumour-derived mutations also result in a disrupted pocket function [186,
187]. Besides the close association of RB germ-line mutations and retinoblastoma,
inherited RB mutations also predispose to small-cell lung cancer and melanoma
[188].

RB loss or mutation is reported in various cancer forms. Germ-line mutations of
RB associate to cancer initiation, whereas loss or mutational inactivation of RB in
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sporadic cancers is associated to tumour progression [188]. In breast cancer, RB
loss or mutations are enriched in the luminal B and basal-like subtypes [32].

Several studies have linked RB loss to chemotherapy sensitivity, reviewed in [68].
One study reported RB loss of protein expression to be an independent factor in
predicting response to chemotherapy in ER-negative patients [189].
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The Estrogen receptor pathway
and tamoxifen resistance

The benefit of estrogen withdrawal by ovariectomy, which resulted in tumour
regression in breast cancer patients, was observed as early as 1899 by the surgeon
Stanley Boyd [190]. Preceding his study, the British physician Beatson had made
similar observations when removing the ovaries in premenopausal women with
breast cancer [191]. The recognition of an estrogen receptor was first described in
the 1960s by Jensen and Jacobson, when tissue uptake and retention of radio-
labelled estradiol was detected in the uterus of rats [192]. A description of the
basic biochemical function of the ER soon followed and by the end of the 1970s it
was established that patients with ER-rich tumours were more likely to respond to
endocrine treatment compared to patients with ER-negative tumours [193, 194].
ER is still today a critical predictive marker for the response to endocrine
treatments. Nevertheless, a number of patients with ER-positive breast cancer will
eventually present with recurrent disease, and many researchers are focusing on
finding additional markers for predicting endocrine response. Below is an
introduction to the structure and function of ER followed by a brief overview of
what is known thus far of the mechanism by which tamoxifen functions, and of
why certain tumours are resistant to the drug.

Estrogen receptor signalling

The estrogen receptor

ERa and ERp isoforms

The ER is a nuclear hormone receptor belonging to the family of hormone-
activated transcription factors [195]. ER exists in two isoforms, ERo and ER(,
transcribed from two distinct genes located on separate chromosomes [196, 197].
ERa is the predominant isoform expressed in the uterus, mammary gland, testis,
pituitary, liver, kidney, heart and skeletal muscle. The ERP transcript on the other
hand is significantly expressed in the ovary and prostate, as determined by studies
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in mice and rats [198, 199]. Co-expression of the receptors may be seen in a
number of tissues, however the two transcripts are rarely expressed within the
same cell type, implying disparate functions of the two isoforms [198, 200]. ERa
knock-out mice display impaired development of the mammary gland and the
architecture of the gland resembles that of newborn mice throughout the mice’s
lifespan [201]. Conversely, ERB knock-out mice have mammary glands with
normal ductal structures which appear to undergo normal differentiation during
pregnancy and lactation, suggesting ERa. to be the predominant receptor in normal
mammary gland development and regulation [198, 202]. In this thesis, ER will
refer to ERa if not otherwise specified.

ER protein structure

The ER consists of six functional domains, schematically depicted in Fig. 4.
Located within domains A and B is the activation function-1 (AF-1) which in
conjunction with the activation function-2 (AF-2) of domain E is involved in
mediating transcription. The ligand-binding domain (LBD) is located in the same
region as AF-2 and in between the AFs is the DNA binding domain of region C,
required for the activated receptor to bind to specific DNA elements for
transcription initiation. Domain D functions as a flexible hinge between regions C
and E and contains one of several nuclear localisation signals (NLS) [203, 204].
Specific regions of the F domain have proven to be important for the response to
ligand stimulation and for the binding of receptor co-activator proteins [205, 206].

1 595
N IR oo
AF-1 DBD AF-2
LBD

Figure 4. Protein structure of ER.

The ER consists of six functional domains termed A, B, C, D, E and F, further described in
the text. The N-terminal AF-1 domain is regulated by phosphorylation and is constitutively
active, wheras AF-2 is activated upon hormone binding.

ER=estrogen receptor, AF-1=activation function-1, AF-2=activation function-2,
DBD=DNA-binding domain, LBD=ligand-binding domain

Activation of ER signalling

Estrogen and the estrogen receptor are key regulators of complex biological
networks regulating diverse functions within a cell such as proliferation, apoptosis,
invasion and angiogenesis [207-209]. The ER is activated by the female hormone
estrogen which exists in three major forms in the human body, namely estrone,
estradiol and estriol. In premenopausal women, ovaries produce between 70 and
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500 pg of an estradiol known as 17f-estradiol (E2) daily and although the
different estrogens all have a high affinity for ER, E2 is the more potent activating
ligand [199, 210]. Upon binding of E2 to the ligand-binding domain, the ER
undergoes a transformational change into a dimerised active receptor complex
which translocates into the nucleus. Several co-factors such as the steroid receptor
co-activators (SRCs), and p300/CBP (CREB-binding protein) are also recruited to
the complex [211]. The various pathways through which ER may activate
transcription are outlined below and illustrated in Fig. 5.

Nuclear-initiated steroid signalling pathway (NISS)

The ER nuclear-initiated steroid signalling pathway may be divided in three
categories; A) the classical ligand-dependent, B) the non-classical ligand-
dependent and C) the ligand-independent pathway of genomic signalling. In the
classical pathway, the ligand-activated ER complex binds directly to DNA motifs
knows as Estrogen Response Elements (EREs) located in the proximity of target
gene promoters (Fig. 5A). In the non-classical pathway, the activated ER complex
tethers to already bound transcription factors such as the AP-1 (activator protein-
1) or SP-1 (specificity protein-1) complexes, acting as a co-regulator (Fig. 5B)
[212-214]. In addition, the ER may be activated in a ligand-independent manner
by direct phosphorylation of key residues (serine 106/107, 118, 167 and 305)
primarily in the receptor AF-1 function by kinases such as extracellular regulated
kinase (ERK) 1/2, p38 mitogen-activated protein kinases (MAPKs), epidermal
growth factor receptor (EGFR) and AKT/PKB (Fig. 5C) [215-219].

Membrane-initiated steroid signalling pathway (MISS)

In addition to acting as a nuclear transcription factor, the ER has also been
suggested to be activated near the plasma membrane where it may modulate and
interact with several different pathways (Fig. 5D) in a rapid, non-genomic mode
referred to as the MISS pathway [220]. ER may in this fashion alter the expression
of genes normally regulated by growth factor receptors such as the PI3K/AKT and
Ras/ERK1/2/MAPK pathways [221]. HER2 has also been suggested to interact
with ER in this manner. This interaction is most likely a factor contributing to the
resistance to tamoxifen frequently observed in ERT and HER2-overexpressing
tumours [222, 223].

Transcriptional output of ER signalling

Up to 1000 genes have been suggested to be regulated by ER [224]. Gene
expression profiling of E2 stimulated breast cancer cells have shown that the
majority of the affected transcripts are in fact downregulated, yet the net result is
still an increase in proliferation-associated processes and suppression of apoptosis
[208]. Some of the well-known upregulated transcripts upon E2 stimulation are
Myec, cyclin D1 and the progesterone receptor (PgR) [225-227].
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Figure 5. Activation of ER signalling pathways.

A. The classical ligand-dependent pathway. Upon ER binding of E2, the receptors
dimerise and bind to ERE elements in the DNA. B. In the non-classical ligand-dependent
pathway, E2 activates ER which dimerise and bind to already tethered transcription factors
in the nucleus. C. In the ligand-independent ER pathway, the ER is phosphorylated by
activated growth factor receptors, leading to nuclear transcription. D. ER is activated by E2
near the plasma membrane and may subsequently activate growth factor signalling
pathways.

ER=estrogen receptor, E2=estrogen, ERE=estrogen response element, TF=transcription
factor, AP-1=activator protein-1, SP-1=specificity protein-1, GF=growth factor,
P=phosphorylation, RTKs=receptor tyrosine kinases
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Tamoxifen and resistance mechanisms

Tamoxifen is widely used in both the treatment of breast cancer and in the
preventive setting for patients with a high risk of developing breast cancer. The
use of tamoxifen has reduced breast cancer recurrences and increased survival
rates significantly [54, 228]. However, one-third of women treated with the
recommended 5-year course of tamoxifen will relapse within 15 years, pointing to
the necessity of identifying new and better biomarkers predicting response to
tamoxifen [54].

Mechanism of tamoxifen

AF-1 and AF-2 in ER signalling — the basis for understanding the mechanism of
tamoxifen

The two activation function domains of ER, AF-1 and AF-2, have been reported to
promote transcription both independently and through functional cooperation.
Their relative contribution to the transcriptional output varies in a promoter- and
cell type-specific fashion [229-232]. The disparate transcriptional activities of AF-
1 and AF-2 have been shown to be important for treatment using the class of drugs
known as selective estrogen receptor modulators (SERMs) to which tamoxifen
belongs, as these drugs may antagonise the AF-2 function of ER but concurrently
activate AF-1. Hence, tamoxifen may have opposite effects in different tissues
depending on the transcriptional impact of AF-1 and AF-2 in the specific cell type.

Tamoxifen is an orally administered drug converted in the body to its active
metabolites, mainly 4-hydroxitamoxifen (4-OH-tam) and endoxifen [233, 234].
The converted molecules bind the ligand-binding domain of ER in the proximity
of AF-2 in an estrogen competitive manner [204, 235]. Instead of recruitment of
co-activator proteins, the co-repressors N-CoR (nuclear receptor co-repressor) and
SMRT (silencing mediator for retinoid and thyroid receptors) have been reported
to associate to AF-2 upon tamoxifen binding resulting in transcriptional repression
[236, 237]. In tissues dependent on AF-2 mediated transcription such as the breast,
the binding of tamoxifen results in an antagonistic response and transcription of
ER target genes is inhibited. However, in tissues dependent on AF-1 activation,
the binding of tamoxifen is interpreted by the cell as if estrogen has activated the
receptor and ER target genes are upregulated. This is the case in bone and uterine
tissues [238]. Clinically, these selectively modulating effects of tamoxifen are
manifested in beneficial effects on bone density where tamoxifen acts as an
estrogen, but also results in an increased risk for the patient of developing
endometrial cancer due to the estrogenic (i.e. proliferative) effects of tamoxifen in
this tissue type [239, 240].
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Mechanisms of tamoxifen resistance

Resistance to tamoxifen can be described as either intrinsic or acquired, where the
intrinsic or de novo resistance is primarily mediated by lack of ER expression.
Conversely, the acquired resistance which develops during the course of
tamoxifen administration is not as easily defined and a number of different
mechanisms have been suggested to contribute to resistance, comprehensively
reviewed in references [241-243]. There are several markers originating from
clinical observations which have hinted on the mechanisms underlying acquired
resistance, such as decreased or lost ER and PgR expression and upregulation of
HER?2 in patients treated with tamoxifen [243]. A brief overview of some of the
suggested resistance mechanisms, summarised in Fig. 6, will be addressed in this
section.

Co-regulators

First, co-regulators of ER constitute a group of proteins repeatedly associated to
tamoxifen resistance. The ER co-activator protein SRC-3 (also known as AIBI,
amplified in breast cancer-1 or NCoA3/TRAM-1), is frequently amplified and
overexpressed in breast cancer [30, 31]. Studies of this co-activator both in vitro
and in xenograft models have linked its overexpression to tamoxifen resistance.
High SRC-3 levels have been associated to an impaired tamoxifen response in
patients [244]. Expression of an additional ER co-activator SRC-1 (alternative
name NCoAl) has also been clinically implicated in mediating tamoxifen
resistance [245]. In a paper by Redmond et al., SRC-1 and ER co-association were
shown to be increased in a tamoxifen resistant cell line and SRC-1 was further
shown to be a strong independent factor of reduced disease-free survival (Fig. 6)
[246].

Co-repressors recruited to the tamoxifen-bound receptor, such as N-CoR, have
been suggested to be important in mediating the inhibitory effect of tamoxifen.
Accordingly, low N-CoR mRNA expression was significantly associated to
decreased relapse-free survival in a patient cohort exclusively treated with
tamoxifen, and supporting results have been obtained using a xenograft mouse
model [236, 247].

Growth factor receptor signalling

Secondly, another suggested resistance mechanism is cross-talk between ER and
growth factor receptor signalling pathways, providing alternative pathways to
proliferation and survival of tumour cells in the presence of tamoxifen.
Overexpression of HER2 as well as excessive EGFR, PI3K/AKT and Erk
signalling may lead to improper activation of ER, suggested to contribute to
tamoxifen insensitivity [216, 248, 249]. The mechanism by which HER2

38



The Estrogen receptor pathway and tamoxifen resistance

overexpression contributes to tamoxifen resistance has been well characterised
[215] and results from a clinical trial co-targeting ER and HER2 in a metastatic
breast cancer setting showed improvements in progression-free survival [250].
Members of the FGFR (fibroblast growth factor receptor) family are also
implicated in resistance to tamoxifen. FGFR-1 amplification and overexpression
have been associated to endocrine resistance both in patient cohorts and in cell
lines [43]. One report recently demonstrated that expression of FGFR-3 was
increased in breast tumours insensitive to tamoxifen, and that direct activation of
FGFR-3 promotes proliferation in tamoxifen-resistant breast cancer cell lines (Fig.
6) [251].

Several studies have linked specific phosphorylation of ER to tamoxifen response.
Phosphorylation of ER at serine-118 has been associated to increased tamoxifen
sensitivity whereas phosphorylation of serine-305 has been correlated to
tamoxifen resistance [252, 253].

Cell cycle regulators

The third category of pathways implicated in tamoxifen resistance comprises cell
cycle regulatory proteins, where cyclin D1 has been extensively studied. Notably,
overexpression of cyclin D1 has been implicated in mediating tamoxifen
resistance in patients [141, 254]. In vitro studies have suggested the events
underlying resistance to be the association of ER and cyclin DI, leading to
recruitment of SRC-1 and P/CAF (p300/CBP-associated factor). This interaction
results in a hormone-independent transcriptional activation of ER, shown to be
insensitive to 4-OH-tam [124, 125, 255]. However, results have not been
consistent. Neuman and co-authors have reported efficient inhibition of cyclin D1-
activated ER by 4-OH-tam [256]. A recent report from the TransATAC
(Translational research cohort of Arimidex, Tamoxifen, Alone or in Combination)
trial found no difference in outcome in the tamoxifen treated arm when stratifying
patients for cyclin D1 expression [27].

The role of cyclin D1 in tamoxifen resistance remains unclear. Lack of subgroup
stratification for patients with CCNDI amplified tumours in some analyses renders
interpretation of the role of cyclin DI in endocrine resistance difficult. The
CCNDI amplification event clearly signifies a subgroup with a worse prognosis
and poorer tamoxifen response, and it is therefore advisable to analyse this
subgroup separately [48, 257].

As the third paper reports in this thesis (Lehn ef al. 2011) inactivation of the RB
pathway has been suggested to lead to tamoxifen insensitivity. Studies of cell lines
and xenograft models, as well as patient tumour materials, all indicate that a non-
functional RB pathway is associated with tamoxifen resistance [83, 84, 258]. The
exact molecular mechanisms underlying these observations are not known, but
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deregulation of RB/E2F target genes have been proposed to be one of the
functional consequences of RB inactivation mediating resistance [83].

The role of additional cell cycle regulators such as cyclin E and the CDK
inhibitors p21 and p27 (encoded by the genes CDKNIA and CDKNIB,
respectively) have not been as extensively studied as cyclin D1. Regarding cyclin
E, overexpression has been associated with endocrine resistance [259]. However,
in a study including an untreated control group in the experimental design, no
significant impact of cyclin E expression on tamoxifen response was found [260].
High expression of p27 has been associated to predict response to tamoxifen,
whereas exclusive cytoplasmic expression of p2l1 was associated to AKT
activation and tamoxifen resistance in patients [85, 261, 262].

Growth factor receptors

cell membrane

Tamoxifen

Co-regulators

Cell cycle proteins

nucleus

Figure 6. A simplified illustration of mechanisms implicated in tamoxifen resistance.
Overexpression of co-activators such as SRC-1 and SRC-3, and loss of the co-repressor N-
CoR have been suggested to confer tamoxifen insensitivity. Aberrant growth factor
receptor signalling results in phosphorylation of ER and mediates transcription despite
presence of tamoxifen. Loss of cell cycle proteins p27 and RB have been reported to
abolish the tamoxifen inhibitory effect. Overexpression of cyclin D1 might be involved in
tamoxifen resistance by acting as an ER co-activator, however reports are inconsistent. For
references, please see the text.
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Clinical impact of research on tamoxifen resistance

At present, immunohistochemical analysis of ER with a cut-off level at 10%
positive nuclei is the only marker used in the clinic to decide whether or not to
recommend endocrine treatment [40]. Gene signatures such as the commercially
available Oncotype DX® and MammaPrint® have proven useful in adding
prognostic information and guiding overall treatment of breast cancer patients.

In many instances, endocrine treatment will be given in combination with
chemotherapy. However, overtreatment of patients with harsh chemotherapy
regimes is a major problem and several clinical trials have been initiated to
identify the subgroup of ER™ patients who will do equally well without adjuvant
chemotherapy. The MINDACT trial (Microarray In Node-negative and 1 to 3
positive lymph node Disease may Avoid ChemoTherapy) [263] and TAILORx
(Trial Assigning Individualized Options for Treatment (Rx)) [264] will make use
of the Oncotype DX® and MammaPrint® gene signatures for stratifying patients
with the aim of identifying the right patient for the right treatment. Both these trial
designs include randomised arms for endocrine therapy and hopefully new
clinically validated markers or gene expression signatures for predicting tamoxifen
response will emerge from these trials.
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Aims

The general aim of this thesis was to study the relationship between proliferation,
migration and stem-like cell activity in breast cancer cells, focusing on cyclin D1
and associated proteins in breast cancer subgroups. An additional main objective
was to study the cell cycle protein retinoblastoma tumour suppressor (RB) and the
chromosome 11q yes-associated protein (YAPI), and their role in tamoxifen
resistance.

Specific aims
e To examine the influence of cell proliferation on migratory capacity in
breast cancer cells

e To analyse the role of cyclin D1 and CDK4/6 in migratory- and stem-like
cell activities in ERT and ER- breast cancer subgroups

e To determine the prognostic and tamoxifen predictive value of a
functional RB signalling pathway in premenopausal breast cancer patients

e To examine the function of YAP1 in breast cancer molecular subgroups in
regards to recurrence-free survival and tamoxifen resistance
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Results and discussion

Cell cycle proteins cyclin D1 and CDK4/6, and associations to
proliferative, migratory and stem-like cell activities (paper I and II)

Previous studies have implied a contrasting relationship between the proliferative
and migratory activities of cancerous cells, also referred to as the go-or-grow
hypothesis [265-269]. This concept suggests that an actively dividing cell cannot
simultaneously execute efficient migration. To increase the understanding of the
very complex behaviours of tumour cells, we wanted to investigate both in general
and in detail, the relationship between proliferation and migration in breast cancer
cells. Paper I was initiated using this contrasting theory as a starting-point with
specific focus on cyclin D1, known to have a prominent role in breast cancer
biology as previously addressed. In paper II, results from paper I were further
validated and a subgroup perspective in terms of ER* and ER- disease was added.
Also, consequences of cell cycle inhibitory treatment using two different drugs
currently undergoing testing in clinical trials were investigated and related to
migratory and stem-like cell activities.

Proliferation and migration are two contrasting events in the MDA-MB-231
breast cancer cell line (paper I)

We wanted to investigate in detail how migratory behaviour in breast cancer cells
relates to proliferation, as these processes are critical in the progression of breast
cancer. The breast cancer cell line MDA-MB-231 was synchronised by serum
starvation, resulting in approximately 90% of the cell population residing in the
Go/G; cell cycle phase. Following addition of serum medium, cells progressed
through the cell cycle in a synchronised manner, enabling assessment of the
migratory ability of cells in different cell cycle phases. Cell populations in which
the majority of cells were present in the G¢/G; phase displayed significantly
increased migration compared to later time points when cells had progressed to S-
and G,/M phases, a result which supports a contrasting relationship between
migration and proliferation in breast cancer cells. This result was verified by
sorting actively cycling cells according to cell cycle phase using a Fluorescent
Activated Cell Sorter (FACS) which allows for assessment of migratory ability in
separate cell cycle phases independently of serum stimulation. Cells present in
Go/G, phase displayed a significantly increased migratory capacity compared to
cells in S- or Gy/M-phases, supporting the result obtained from the synchronised
cell population experiments.
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Decreased cyclin DI expression correlates to increased migration in an actively
cycling cell population (paper I)

To test for a possible role for the G;-cyclin cyclin D1 in the migratory differences
of cell cycle phases, siRNA was employed to attenuate cyclin D1 expression.
Migration was measured in an actively cycling MDA-MB-231 cell population,
consisting of approximately 60% of cells in G¢/G;-, 30% in S- and 10% in G,/M-
phase. Upon cyclin D1 siRNA treatment, cell cycle phase distributions were
changed; the G¢/G; fraction was increased whereas S- and G,/M fractions
decreased. A significant migratory increase was observed upon cyclin DI
silencing, implying a role for cyclin D1 in regulating migratory behaviour in
breast cancer cells. A similar Go/G, phase accumulation was achieved by silencing
CDK4 and CDK6, known to associate with cyclin D1 to form an active kinase
complex required for cell cycle progression [270]. However, the silencing of
CDK4 and CDKG6 did not confer any differences in migratory capacity despite
changes in cell cycle phase distribution, pointing to cyclin D1 modulating
migratory behaviour independently of CDK4 and CDKG6.

There was a relatively modest increase in migration upon silencing cyclin D1 in
actively cycling cells (1.7-fold) compared to migratory changes in the
synchronised cell population (3-fold). This could partly be explained by the fact
that the effect of cyclin D1 downregulation was most prominent in S- and G,/M-
phases, which in our study were identified to have a lower basal migratory
activity. This result stresses the complexity of the interplay between the
proliferative and migratory processes. We might conclude that cells in S- and
G,/M-phases do retain some migratory capacity, although it is decreased, which in
addition may be modulated by cyclin D1. Furthermore, as these cell cycle phases
constitute the lesser fraction of an actively cycling cell population, it is likely that
the cyclin D1-mediated increase in migration is partly subdued by the larger Go/G,
population, in which cyclin D1 silencing had no significant effect on migration.

To further validate the result of cyclin D1 modulating migration, cyclin D1 was re-
introduced in MDA-MB-231 cells silenced for cyclin D1 to rescue the original
phenotype. When reintroducing cyclin D1, cells migrated less, in support of cyclin
D1 inhibiting migration.

The two assays used to study migration (modified Boyden chamber Transwell
assay and Time lapse microscopy) measure different aspects of migration. In the
Transwell assay, cells suspended in serum-free medium migrate towards a serum
gradient, assessing ability for directional migration as a response to chemotactic
signals. In contrast, time lapse microscopy measures random migration, and the
level of intrinsic migratory cues of cells is calculated by tracking cell motility
during a defined time frame. Decreased cyclin D1 resulted in increased migration
in both systems, implying that chemotactic signals are not critical for the increased
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cell movement. Proliferation may in some cases be a confounding factor when
assessing migration. However, migration was in general assessed after or during 3
to 5 hours; hence proliferation should not be a critical parameter in our
experiments as it takes significantly longer (approximately 24 h) for a cell to
complete one cell cycle.

Low cyclin D1 protein expression is independently associated to decreased
recurrence-free survival (paper I)

In an attempt to translate our results to an in vivo situation, a premenopausal
primary breast cancer tumour material was analysed for cyclin D1 expression. It
should be stressed that in premenopausal breast cancer, aggressive tumour
subtypes such as the basal-like are generally over-represented. This may be due to
BRCAI and to some extent BRCAZ2 hereditary gene mutations which are associated
to early onset of breast cancer and to the mentioned subtype [271, 272].

Interestingly, strong cyclin D1 nuclear intensity was significantly associated to a
less infiltrative growth pattern of primary breast tumours, and to a smaller tumour
size. Considering the previous associations of downregulated cyclin D1 and
increased migration in cell lines, this implied that cyclin D1 might have a function
in restraining infiltrative tumour cell behaviour in vivo. Furthermore, when
combining subgroups of high/low cyclin D1 and high/low expression of the
proliferative marker Ki-67, the subgroup of low cyclin D1/high Ki-67 expression
displayed a significantly decreased recurrence-free survival, compared to the high
cyclin D1/high Ki-67 subgroup in an untreated (only surgery) patient cohort. This
suggests that decreased expression of cyclin D1 in combination with increased
proliferation is associated with a more aggressive progression in ERT breast
cancer. The impact on recurrence could potentially be explained by the observed
in vitro effect of cyclin D1 on restraining migratory behaviour.

Cyclin D1 was in addition found to be an independent prognostic factor in the
ERT untreated patient cohort, after adjustment of known prognostic factors
including grade, node involvement, tumour size and Ki-67. These results further
emphasise the complexity of how proliferating cells relate to migration, and
suggests that a variety of factors most likely are contributing to the observed
correlations.

Microarray analysis to identify gene candidates mediating the migratory increase
upon cyclin D1 silencing (paper I)

In search of a more specific mechanism involved in the CDK-independent, cyclin
D1 associated migratory changes, a microarray analysis was performed.
Transcripts significantly changed upon cyclin D1 silencing, but not CDK4/6
knockdown, were further analysed. Using a GoMiner approach [273], cellular
processes associated with the cytoskeleton and microtubules were shown to be
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significantly more altered in cyclin D1- over CDK4/6 silenced cells. In addition, a
number of genes were identified as plausible mediators of the migratory effect.
Another study from our group has identified one of the upregulated genes, ID/
(Inhibitor of differentiation), as partly mediating the migratory effect of cyclin D1
silencing through upregulation of EMT markers [274].

In conclusion, we have illustrated a new function for the cell cycle protein cyclin
D1 in regulating breast cancer migration, where decreased expression is associated
to an increased migratory activity. The paper also indicates that high cyclin D1
expression correlates to a better prognosis in an ERT untreated patient cohort,
independently of other known prognostic factors such as histological grade, lymph
node involvement and proliferation.

Cell cycle modulation of cyclin D1 and CDK4/6 — associations to migratory and
stem-like cell activities in ERT and ER- subgroups (paper II)

To date, several clinical trials are evaluating proliferation inhibiting treatment
regimes. From a clinical perspective, arresting cell proliferation is one main
endpoint manifested in shrinkage of a tumour mass. However by affecting
proliferation, other important processes such as migration and stem-like cell
activities might be altered. A worst-case scenario would be that by inhibiting
proliferation, migratory or invasive and stem-like cell activities would be
concurrently increased. We have examined the consequences of downregulating
cyclin D1 and CDK4/6, and also overexpressing cyclin D1 in a panel of breast
cancer cell lines and primary tumours of both ERT and ER- origin, with specific
focus on migration and stem-like features.

Decreasing cyclin D1 expression in the ER- cell lines MDA-MB-231 and MDA-
MB-468 resulted as previously observed in increased migration. In two ER™ cell
lines tested, results were the opposite and migration was decreased upon cyclin D1
and CDK4/6 silencing. A mammosphere formation assay was used as a measure
of stem-like cell activity. This assay measures the capability of a cell to self-renew
and form spheres in non-adherent culture, a measure of anoikis resistance. Hence,
the assay is a way to evaluate stem-like cell characteristics. The mammosphere
experiment resulted in changes analogous to those found in the migration assay.
Decreasing cyclin D1 in ER- cell lines led to increased mammosphere formation,
whereas in ERT cell lines, a decrease was observed. Primary breast cancer samples
were also included and the same trends as for cell lines were noted.

Overexpression of cyclin D1 was able to reverse the observed phenotypes. ER-
cell lines and primary samples displayed decreased migratory activities and
mammosphere formation, whereas overexpression in ERT cells resulted in an
increase of these features.
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To examine the implied dependence of our results on expression of ER, ER- cell
lines were transfected with an ER vector. In line with our previous observations,
the ER converted cell lines now mimicked the response to cyclin D1 silencing or
overexpression observed in ERT cell lines, with decreased and increased
migratory and stem-like cell activities, respectively.

In conclusion, the expression of ER appears to determine the type of response to
cell cycle inhibition by cyclin D1 and CDK4/6 siRNA. ER negative cells adopted
a more aggressive phenotype with increased stem-like cell activity and migration,
whereas ERT cells displayed less aggressive features with decreased
mammosphere formation and migration upon cyclin D1 and CDK4/6
downregulation. In addition, these results suggest that ER- cells may respond
positively to cyclin D1 and CDK4/6 silencing (decreasing migratory and stem-like
cell activities) in a fashion similar to ERT cells, simply by the re-expression of ER.

Cell cycle inhibitors undergoing clinical trials have opposing effects dependant on
ER expression in cell lines and primary cells (paper II)

In order to evaluate our observations in a clinical context, two agents currently
tested in clinical trials of breast cancer (www.Clinicaltrials.gov 2012-11-29) were
tested, namely Flavopiridol and PD0332991. The flavone Flavopiridol is
synthetically derived from an alkaloid found in the leaves and stems of an Indian
plant, and it has been reported to function in inhibiting transcription and CDKs,
causing cell cycle arrest [275, 276]. Specific inhibition of cyclin D1 by
Flavopiridol has also been reported [277, 278], and as such is referred to as a
cyclin D1 inhibitor in paper 11, although a diverse cross-section of proteins are
affected. PD0332991 is a small molecule inhibitor, specifically inhibiting CDK4/6
activity [279]. Treatment with these two compounds mirrored that of siRNAs and
resulted in increased migratory and stem-like cell activity in ER- cell lines and
primary breast cancer samples, whereas treatment in ER™ equivalents resulted in
decreased migration and mammosphere formation. Re-expression of ER could
reverse the effect of the two drugs in ER- cell lines, in support of our previous
results.

To summarise, we have confirmed the previously reported effect of cyclin D1 in
modulating migration (paper I). However, in all cell lines tested except MDA-
MB-231, CDK4/6 silencing yielded results similar to cyclin D1 downregulation.
This implies a more general cell cycle-associated effect in all cell lines but MDA-
MB-231. Our results suggest that treatment with Flavopiridol or PD0332991 in a
breast cancer setting possibly should be limited to patients presenting with ERT
breast cancer, as both migratory and stem-like cell activities were increased in ER-
cell lines and primary samples upon treatment with the two drugs. The importance
of identifying subgroups which may benefit from cell cycle modulating treatments
have recently been addressed in a comprehensive review discussing cyclin D1 as a
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therapeutic target in cancer [280]. Our results add to the notion of subgroup
importance in breast cancer and in treatment modulating cell cycle activities.

Studies of tamoxifen resistance in subgroups of breast cancer (paper
IIT and IV)

Tamoxifen is a widely prescribed drug for ERT breast cancers; however one-third
of patients treated with tamoxifen will eventually present with recurrent disease
[54]. An important area within breast cancer research is therefore the identification
of biomarkers that may provide additional information on whether or not a patient
will respond to tamoxifen. Subgroups of patients with ERT tumours predicted not
to respond to tamoxifen could then be considered for treatments with therapies
based on other mechanisms of action than tamoxifen, for example aromatase
inhibitors.

In paper III and paper IV, two markers were tested of their ability to predict
response to tamoxifen. In both studies, tumour material from a patient cohort
originating from a tamoxifen randomised clinical trial was analysed. This trial was
initiated in 1986 to examine the benefit of tamoxifen treatment in premenopausal
breast cancer patients. The randomised setting with one treated and a
corresponding untreated control group renders this tumour material unique in
character, and enables the analysis of a true tamoxifen response. Only patients
presenting with stage Il disease were included, irrespective of ER status, and a
total of 564 patients were recruited [281]. This patient cohort will be referred to as
the tamoxifen randomised cohort in the following text. In paper IV, an additional
tumour material was analysed, originating from a patient cohort used for the
screening of antibodies for the Human Atlas Protein project, referred to as the
screening cohort [282, 283]. All patients diagnosed with primary invasive breast
cancer at Skane University Hospital in Malmé during the years of 2001 and 2002
were eligible for inclusion. Both pre- and postmenopausal patients were included
and all patients underwent surgery followed by treatment according to guidelines.

To study protein expression, tumours were arranged in so-called tissue
microarrays (TMAs), a technique used to simultaneously study tumours from
many different patients. Development of the TMA technique in the late nineties
has made it possible to retrospectively study large tumour materials in a high-
throughput manner [284]. To construct a TMA, cylindrical tumour core “biopsies”
are taken from formalin-fixed, paraffin-embedded tumour tissues from a number
of patients (the donor block, Fig. 7A). The “biopsies” are then placed in a defined
order in a new paraffin block (receiving block, Fig. 7B). The receiving block is
subsequently sectioned and stained immunohistochemically (Fig. 7C). For each
section, a different antibody may be used for the staining process, and this allows
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for analysis of hundreds of markers in the same patient set. Studies have shown
that although the tissue cores taken from the tumours are of small size, they
adequately represent the whole-section staining pattern in 95% of cases [285].

Donor block Receiving block

Figure 7. Basic description of tissue microarray construction.

A. Cylindrical tumour core “biopsies” are taken from one single tumour embedded in
paraffin (donor block). This step is repeated for e.g. 100 individual tumours. B. The
cylindrical tumour biopsies are placed in the receiving paraffin block. The receiving block
shown in the figure contains tumour samples from 60 patients (two biopsies for each
tumour). C. The donor paraffin block is sectioned, mounted on a glass slide and stained
with a specific antibody. The protein expression is evaluated and subsequently correlated
to clinical patient data. Please note: tumours shown are not necessarily of breast origin.
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Status of the cell cycle regulator RB is important for tamoxifen response
(paper I1I)

RB plays a key role in controlling cell cycle progression, and we aimed to
determine the importance of a functional RB pathway in tamoxifen response.

Definition of a non-functional RB signalling pathway (paper I1I)

Phosphorylated RB (phos-RB) protein was immunohistochemically stained and
scored in the tamoxifen randomised tumour material in groups of 0-10%, 11-25%,
26-50% and >50% of positive nuclei. Phos-RB expression was subsequently
compared to the proliferative marker Ki-67 to determine which tumours presented
with an aberrant RB signalling pathway. A normal and functional RB pathway can
be described as a linear relationship between the degree of RB phosphorylation
and Ki-67 staining, illustrated by the grey line in Fig. 8. Unphosphorylated RB
normally inhibits cell cycle progression, reflected by lack of Ki-67 expression. In
the actively dividing cell, different cyclin/CDK complexes phosphorylate RB,
resulting in conformational changes which lead to inactivation of the protein. This
ultimately results in the release of E2F transcription factors, driving the
proliferative cycle [270]. Hence, tumours displaying a low fraction of
phosphorylated RB, yet concurrently had an elevated Ki-67 expression, were
considered to harbour a non-functional RB signalling pathway (illustrated by red
dots in Fig. 8).
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Figure 8. Schematical plot over phosphorylated RB and Ki-67 parameters illustrating
the definition of a functional vs. non-functional RB pathway.

In patients with tumours harbouring a functional RB pathway, the degree of
phosphorylated RB is followed by an increase of Ki-67 staining (black dots). A low degree
of RB phosphorylation accompanied by a high fraction of Ki-67 positive cells is indicative
of a non-functional RB pathway (red dots).

Dots are merely illustrative and are not representative of number of patients.
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Phosphorylation of the two RB serine residues (807/811) scored in this study have
previously been reported to be crucial for efficient RB phosphorylation and cell
cycle progression. By mutating the Ser-807/811 sites of the RB protein, efficient
phosphorylation of RB was prevented in the SAOS-2 cell line, and even
overexpression of cyclin A could not overcome the growth suppressing activity of
the mutated RB Ser-807/811 protein [181]. Cells negative of phosphorylated Ser-
807/811 staining but highly positive for Ki-67 staining clearly proliferate
independently of RB, rendering these two sites in combination with a proliferative
marker well suited for identifying tumours with a non-functional RB signalling
pathway.

A non-functional RB pathway is associated to aggressive tumour features, but
holds no prognostic value (paper I11)

The two identified patient groups with either a functional (n=273) or a non-
functional (n=57) RB pathway was further studied. Correlations to
clinicopathological parameters revealed associations of a functional RB pathway
and a less aggressive disease, i.e. smaller tumours of lower histological grade that
were ER and PgR positive. There was a larger fraction of lymph node positive
patients in the RB functional group compared to the RB non-functional (75% vs.
53%) however lymph node involvement was not linked to recurrence-free survival
in the RB functional subgroup (data not shown). Furthermore, a non-functional
RB pathway was correlated to high cyclin E/low cyclin D1 expression.
Conversely, a functional RB pathway was associated to high cyclin D1/low cyclin
E expression. For a tumour cell with a functional RB pathway to be able to
proliferate, the repressive function of RB has to be inactivated by phosphorylation.
This may be achieved by an increased cyclin D1 expression, which together with
CDKA4/6 phosphorylate and thereby inactivate RB. However, a cell harbouring a
non-functional RB pathway is not reliant on the cyclin D1-CDK4/6 axis. Instead,
loss of RB function results in constitutive activity of the E2F transcription factors,
ultimately yielding high cyclin E expression stimulating cell proliferation [286,
287].

RB pathway status was not correlated to outcome in the untreated patient group,
despite associations to more aggressive tumours. This has been reported
previously, however in some cases treated patients have been included in the
analyses and as such do not represent the true prognostic value of RB [288-290].

Loss of a functional RB pathway is associated with an impaired tamoxifen
response (paper I111)

To determine the importance of RB pathway status in relation to tamoxifen
response, recurrence-free survival was examined in the ER* patient cohort.
Patients with a defined functional RB pathway who received tamoxifen had a
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significantly increased recurrence-free survival compared to the corresponding
untreated patient group (p=0.003). There was however no difference in outcome
when comparing treatment in patients with a non-functional RB pathway
(p=0.270). An interaction analysis further demonstrated a significant difference in
tamoxifen response between the RB groups.

Notably, gene expression signatures of RB deregulation have also been used to
study endocrine resistance in breast cancer, resulting in conclusions similar to ours
[83, 291]. Analysis of RB pathway disruption is likely to be one of future
predictive tools in guiding treatment options, but it remains to be determined how
to uniformly identify the unresponsive subgroup.

We conclude that a non-functional RB pathway predicts resistance to tamoxifen
treatment. Our study has confirmed and built upon the pre-existing literature
regarding RB loss of function and its importance in endocrine resistance [83, 258,
291]. Our approach in combination with gene expression analyses has the potential
to identify an ER™T subgroup of patients with a non-functional RB pathway who
would benefit from treatment options other than tamoxifen.

Studies of yes-associated protein in breast cancer and links to tamoxifen
resistance (paper IV)

Previous studies have implicated YAP1 as an oncogenic driver of proliferation in
several cancer forms [164-166, 292-294]. In breast cancer, YAP1 has been
associated to both oncogenic and tumour suppressive features [167-171, 295].
Given that the YAPI gene is located in the 11922 region, reported to be frequently
deleted in breast cancer and previously implicated in tamoxifen resistance, we
wanted to investigate YAP1 further [296]. Whilst YAP1 was one of the transcripts
identified as specifically downregulated by cyclin D1 silencing in paper I,
attempts to confirm its ability to mediate cyclin D1’s effect on migration were
unsuccessful. Hence, studies of YAP1 were recommenced from a general breast
cancer perspective with specific focus on tamoxifen response.

YAPI is associated to both less and more aggressive features in breast cancer
subgroups, in an ER-dependent manner (paper IV)

YAP1 overall protein intensity was scored as either absent, weak, intermediate or
strong in the tamoxifen randomised- and screening patient cohorts. In the ERT
subgroup of the tamoxifen randomised cohort YAP1 was negatively correlated to
grade and proliferation, whereas in the ER- subgroup YAP1 was positively
associated to proliferation and a borderline significance for histological grade was
also observed (p=0.062). In the screening patient cohort, absent YAP1 expression
correlated to lymph node positivity in the ERT subgroup, and in this subgroup a
borderline significance was again observed where YAP1 correlated negatively to
histological grade (p=0.060). YAP1 mRNA expression was further analysed in a
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gene expression meta-dataset consisting of six previously published gene
expression datasets with clinical follow-up, including data from 1107 breast
cancer patients. YAPI mRNA was not associated to clinical parameters such as
histological grade, lymph node status or tumour size in the ERT subgroup,
however in the ER- subgroup there was a positive correlation of YAP1 mRNA and
larger tumour size (p=0.037).

In conclusion, while the correlations of YAP1 in the patient cohorts are not
consistent, the trends are that decreased YAPI in the ERT subgroup is linked to
more aggressive features, whereas in the ER- subgroup, increased YAP1 correlates
with aggressiveness.

YAPI protein intensity and Y AP1 copy number are negatively correlated to
amplification of 11q13 CCND1 gene (paper IV)

A persistent inverse correlation between cyclin D1 and YAPI expression on both
protein and mRNA level was observed in all ERT patient subgroups of the cohorts
studied. The YAPI gene is located at 11q22 and the distal part of 11q is frequently
lost upon amplification of the known oncogene CCND]/ located at 11q13 [42,
142]. Analysis of copy number changes in an aCGH (array Comparative Genomic
Hybridisation) patient cohort (n=171) revealed significant associations of CCND/
copy number gain and YAPI loss, although there were cases present where YAP!
was lost without concomitant CCND1 amplification. Hence, we reasoned that the
recurrent inverse correlation of YAP1 and cyclin D1 protein and mRNA could be
the result of chromosomal gains coupled with concurrent losses.

In the randomised patient cohort, CCND/ status was known for 209 patients of
which YAP1 intensity had been successfully scored. The inverse correlation of
YAP1 and cyclin DI protein expression persisted after removing all known
CCNDI-amplified tumours from the analysis (n=33), possibly indicating
additional mechanisms other than chromosomal aberrations for maintaining the
inverse relationship. However, it should be noted that cyclin D1 is reported to be
overexpressed in up to 44% of breast cancers, whereas YAPI expression is
repeatedly reported to be decreased [112, 126, 135-138, 140, 167, 295]. Hence, it
cannot be excluded that the inverse correlation could be occurring randomly.

Absent YAPI protein expression correlates to an impaired tamoxifen response
(paper IV)

To examine the impact of YAP1 expression on patient outcome, dichotomised
YAP1 mRNA expression (divided by the median) was correlated to recurrence-
free survival in the different molecular subgroups of the gene expression dataset.
In the luminal A subgroup (n=286) low YAP1 expression was significantly
correlated to a decreased recurrence-free survival (p<0.001). YAPI expression
was not associated to outcome in any of the other subgroups (luminal B, HER2,
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basal- and normal-like). This result led us to hypothesise that decreased YAPI
expression could be linked to tamoxifen resistance. The greater part of the luminal
A subgroup would most likely receive endocrine targeted treatment since tumours
falling within this category are often low-proliferative, and ER and/or PgR
positive. Subsequent analysis of the tamoxifen randomised patient cohort
demonstrated that patients with tumours scored as weak, intermediate or strong
YAPI1 intensity had a significantly increased recurrence-free survival (p=0.001)
when treated with tamoxifen. There was however no response to tamoxifen in
patients with tumours lacking YAPI expression (p=0.522) and an interaction
analysis proved there to be a significant difference in tamoxifen response between
weak, intermediate or strong, and absent YAP1 expressing tumours (p=0.042).
Further analyses showed that in the control patient group (no adjuvant tamoxifen),
YAP1 was not correlated to recurrence-free survival. In conclusion, YAP1 is not a
prognostic factor in ERT breast cancer, but is important in predicting response to
tamoxifen therapy.

On a side note, YAP1 was dichotomised by the median in the gene expression
dataset, which on protein level would translate into two groups where absent/weak
and intermediate/strong YAPI intensity constitutes the cut-offs. However, the
tumours in the group of absent YAP1 intensity clearly represented a subgroup with
a distinctive biology, providing adequate evidence for tumours lacking YAPI1
intensity to be analysed against the remaining YAP1 intensity scores.

YAPI is an independent predictor of outcome in the luminal A subgroup compared
to a selection of 11q22 genes (paper IV)

As previously mentioned, the chromosomal region of YAP! is frequently deleted
in breast cancers, indicating that YAP/ may not directly explain the observed
results but merely act as a marker for 11q chromosomal aberrations. Utilising the
gene expression meta-dataset, we analysed a selection of genes in the proximity of
YAPI (two genes centromeric and six distal to YAPJ) in an attempt to rule out the
possibility of co-deletions mediating the prominent negative effect of decreased
YAPI expression on recurrence-free survival. The genes found to correlate the
strongest to YAP! in the luminal A subgroup (BIRC2 and TMEM123), possibly
due to co-deletions, were further analysed in a multivariate analysis. Low YAPI
expression remained the only factor indicative of outcome (p=0.019) after
adjustment of the two 1122 genes, cyclin D1 expression, grade, tumour size and
lymph node involvement.

In conclusion, YAP1 predicts outcome in the luminal A subgroup independently
of a selection of 1122 gene products. This points to YAP1 specifically
modulating outcome in luminal A breast cancers.
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The tamoxifen response is delayed and decreased upon YAP1 downregulation in
the breast cancer cell line T47D (paper IV)

WST-1 analysis measuring cell viability was further employed to measure
tamoxifen response in vitro, in the presence or absence of YAPI. A cell line
classified as luminal A (T47D) was transfected with two different siRNAs
targeting YAP1 mRNA and treated with ethanol (control), 17B-estradiol (E2) or
E2 combined with 4-hydroxi-tamoxifen (4-OH-tam). After four days of treatment,
viability was analysed. The two siRNAs did not yield a completely identical result.
The decrease in viability upon tamoxifen treatment was not evident in siYAP #8
downregulated cells until concentrations reached 1 pM, whereas siCtr cells
responded to a tamoxifen concentration 10-fold less. By utilising a luciferase
assay, the activity of the Estrogen Response Element (ERE) to which estrogen-
activated ER can bind and induce transcription, was measured to assess the
influence of YAP1 on the activity of this particular DNA element. Results showed
that the inhibitory action by tamoxifen on ERE activity was not as efficient when
YAP1 was downregulated. However, the differences were not major and it is
likely that YAP1 may affect other DNA elements involved in mediating estrogen
and tamoxifen response, such as the cAMP response-like DNA element implicated
in transcription of the CCND! gene upon estrogen stimulation [70].

The T47D cell line was further examined for changes in protein expression using
immunocytochemistry. YAP1 was downregulated using siRNA and cells were
treated for four days with control, E2 or combined E2 and 4-OH-tam treatment.
Interestingly, YAP1 downregulation resulted in a marked increase of PgR protein
expression, particularly in control treated and E2/4-OH-tam treated cells.
Treatment with E2/4-OH-tam in siCtr cells resulted in a distinct decrease of PgR
expression whereas no difference was detected in siYAP1 cells, implying an
aberrant activation of the ER pathway upon YAP1 downregulation. The PgR
promoter is reported not to contain any classical EREs [297] explaining why the
ERE luciferase construct did not reflect the distinct effects on PgR expression
observed on immunocytochemistry.

In conclusion, YAP1 downregulation results in a delayed and decreased tamoxifen
response in vitro, possibly due to an aberrant activation of the ER signalling
pathway as illustrated by increased PgR and ER protein levels.
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Conclusions

The studies have identified cell cycle regulators cyclin D1 and CDK4/6 as of
importance for migratory and stem-like cell activities, and we have shown RB and
YAP1 to be important factors for tamoxifen response.

We may conclude that:

Actively dividing MDA-MB-231 breast cancer cells display impaired
migration whereas cells in Go/G; phase are highly migratory (paper I)

Downregulating cyclin D1 in MDA-MB-231 cells results in increased
migration, an effect most prominent when cells are in S-phase (paper I)

Downregulation of cyclin D1 and CDK4/6 results in increased migration
and mammosphere formation in ER- breast cancer cell lines, but results in
a decrease in ERT cell lines (paper I and paper II)

Treatment with Flavopiridol and PD0332991 in ER- breast cancer cell
lines results in increased migration and mammosphere formation, but in
ERT cell lines, these activities are decreased (paper II)

A non-functional RB pathway is not a prognostic factor in premenopausal
breast cancer patients but confers tamoxifen resistance (paper I1I)

YAPI correlates negatively to aggressiveness in ERT breast cancer, but
positively in ER- breast cancer (paper 1V)

Absent YAP1 protein expression is associated with an impaired tamoxifen
response (paper 1V)

Downregulation of YAP1 in vitro results in increased ER and PgR protein
levels, possibly contributing to the decreased tamoxifen sensitivity (paper
V)
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Brostcancer dr den vanligaste cancerdiagnosen hos kvinnor, och under ar 2011
fick 6ver 8000 svenska kvinnor denna diagnos. Termen brdstcancer ar egentligen
ett samlingsnamn for alla de olika typer av cancer som kan uppsta i brostet. En del
typer av brdstcancer har en bra prognos medan andra trots aggressiv behandling
alltjamt har en dalig prognos.

Cancer dr en sjukdom dar kroppens egna celler felprogrammeras genom att skador
uppstar pa cellens DNA. Detta kan leda till att celldelningsprocessen, som
vanligtvis dr strikt kontrollerad i cellen, initieras felaktigt. Cellen forokar sig utan
att det finns ett behov av fler celler. Samtidigt fallerar andra celluldra
sdkerhetssystem som ska forhindra att skadade celler forokar sig, t.ex. slutar cellen
reparera skadat DNA och forlorar formégan att sjdlvddo. De felaktigt
nyproducerade cellerna innehéller alla det muterade DNA:t, som kopierats under
celldelningen. P& si sitt okar de felaktiga cellerna i antal.

Med tiden ackumuleras fler DNA-skador i cancercellerna vilket leder till att de far
nya odnskade egenskaper, som t.ex. formégan att invadera omkringliggande
vivnad. 1 vérsta fall kan cancercellerna nd fram till blodkérl eller ta sig in i
lymfsystemet. Om detta sker kan cancern spridas till andra organ i kroppen och
bilda nya dottertumdrer. Denna process kallas metastasering, och det dr forst nir
cancern sprider sig vidare i kroppen som den kan bli livshotande.

For att cancerceller ska na ett blodkarl maste de kunna rora pé sig, migrera. Vi har
undersokt hur en cancercells rorlighet forhéller sig till dess forméga att dela sig.
Experimentella forsok har tidigare visat att en cell som migrerar séllan forokar sig
just nér den befinner sig i rorelse. Detta resonemang brukar kallas the go-or-grow
hypothesis. Vi har forsokt identifiera proteiner i cellen som skulle kunna ha
inverkan pa bade celldelning och migration, for att battre forstd hur dessa tva
processer hianger samman. [ delarbete I har vi studerat ett protein som kallas cyklin
D1 och som tillverkas i cellen i borjan pa den cykel av hdndelser som resulterar i
att en cell delar sig. Vi kunde visa att nédr cyklin D1 blockerades i cancerceller
delade de sig i mindre utstrickning, samtidigt som deras rorlighet 6kade. Néar
cyklin D1 istéllet aktiverades, minskade cellernas rorlighet. 1 patientstudier har
man tidigare noterat att hdga nivaer av cyklin D1 i en tumor ofta dr associerat till
en béttre prognos fOr patienten, trots att cyklin D1 &ar intimt kopplat till
celldelning. Véra resultat tyder pa en ny migrationshimmande funktion for cyklin
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DI, som delvis skulle kunna forklara kopplingen mellan cyklin D1 och bittre
prognos.

Inom cancerforskning finns en teori att cellerna som utgdr kdrnan av en tumor ar
av en sarskild sort, som man bendmner cancerstamceller. En stor del av de
behandlingar man anvidnder mot cancer slar mot celler som aktivt delar sig.
Cancerstamceller befinner sig ofta i ett vilande stadium och det ar darfor svart att
f4 behandlingen att sld ut denna celltyp. Konsekvensen kan bli att patienten far
aterfall 1 sin cancersjukdom trots att behandlingen varit framgangsrik i ovrigt. I
delarbete II har vi med hjilp av laborativa metoder undersokt hur olika typer av
behandlingar som blockerar cellcykel-associerade proteiner, som t.ex. cyklin DI,
paverkar andelen cancerstamceller. Vi fann att olika typer av brostcancerceller
reagerade olika pa samma behandling. I den ena celltypen minskade andelen
cancerstamceller, medan andelen okade i den andra. Véra resultat understryker
vikten av att definiera vilken typ av cancerceller som en tumor bestar av for att
battre kunna forutse effekten av behandlingar som inhiberar cellcykeln.

Brostcancertumorer karaktiriseras fraimst utifran forekomsten av ett protein som
kallas Ostrogenreceptorn. Antingen klassas tumdren som positiv eller negativ i
forhéllande till denna receptor. Nér det kvinnliga konshormonet Gstrogen, som
cirkulerar i kroppen, kopplas till dstrogenreceptorn aktiveras celldelning. Denna
mojlighet till aktivering utnyttjar vissa brostcancerceller genom onormalt hoga
nivder av Ostrogenreceptorn. Man brukar sdga att dessa tumdrer &r
hormonberoende. Ett vanligt likemedel som anvdnds vid hormonberoende
brostcancer dr tamoxifen. Tamoxifen kan, liksom Ostrogen, binda till
Ostrogenreceptorn med skillnaden att tamoxifen blockerar istéllet for att aktivera
celldelningsprocessen. Tamoxifen dr en mycket effektiv behandling 1 ménga fall,
men ibland uppstér okénslighet, resistens, mot likemedlet. Om man kan forutse
hos vilka patienter tamoxifen-resistens kommer att uppstd, kan man ersitta
tamoxifen med annan forhoppningsvis mer verksam behandling. 1 delarbete III
och IV har vi undersokt betydelsen av tvd proteiner, retinoblastomprotein (RB)
och yes-associerat protein (YAP1), och om de kan ge information om huruvida en
patient kommer att ha nytta av tamoxifen eller inte. Vi studerade proteinnivéer av
RB och YAPI i en stor samling av brostcancertumorer frén patienter dir vi dven
har tillgang till klinisk uppfoljningsdata och information som t.ex. vilken typ av
behandling som anvénts och om, och i sa fall nér, aterfall i bréstcancer har skett.
Med hjélp av detta material kunde vi konstatera att for att en patient ska ha nytta
av tamoxifen, bor RB-proteinet kunna detekteras i tumoren. Resultaten indikerade
ocksé att YAP1 ar viktigt for att tamoxifenbehandling ska fungera. Nu fortsatter
vart arbete med att forsoka forstd de molekylidra mekanismerna som ligger bakom
vara resultat.

Sammanfattningsvis har vi kommit fram till att cellcykel-proteinet cyklin D1 kan
paverka cellers rorlighet, vilket 1 forldngningen kan ha betydelse for cancercellens
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formaga att metastasera. Vi har pavisat att cellcykel-inhiberande behandling kan
oka andelen cancerstamceller i vissa typer av brdstcancerceller. Slutligen har vi
identifierat tvd proteiner, RB och YAP1 som viktiga faktorer for
tamoxifenbehandlingens blockerande effekt.
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