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THE SHAPE OF THE NUCLEAR PHOTO-RESONANCE IN
DEFORMED NUCLEI
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Abstract: The characteristic features of photonuclear resonance spectra of deformed nuclei
are discussed on the basis of some simple estimates in which we employ nucleonic wave
functions in the approximate, “‘asymptotic” form. The likelihood, in different regions of
deformed nuclei, of a resolution of the resonance spectrum into two separate peaks is
discussed. Finally, in the appendix, we exhibit a convenient operator method for deriving
various nuclear matrix elements in the representation based on the “asymptotic” wave
functions.

1. Introduction

In an ellipsoidal potential the frequency of particle motion is higher for
motion along the symmetry axis than for motion perpendicular to that axis.
Thus, one expects that the nuclear dipole photo-resonance will be split or at
least broadened in deformed nuclei, and indeed such an effect has recently
been observed t1. This effect has been discussed earlier by D. H. Wilkinson
(ref. 5)), who calculated the actual resonance shape for a few representative
nuclei, employing the detailed wave functions of ref. ¢). The present calcu-
lations are based on the more approximate ‘“‘asymptotic’’ wave functions
(see the appendix). In the latter case one can obtain simple estimates in a
closed form, which may facilitate the understanding of the different physical
b effects that determine the resonance shape.

If we start from an axially symmetric, but non-isotropic, harmonic oscillator
- potential for the single-particle motion, we would expect the photo-resonance
to consist of two lines, one at #w,, corresponding to excitation of particle
motion along the symmetry axis, and one at %o, for excitation of motion in
a plane perpendicular to the symmetry axis. Since all the well-known non-
spherical nuclei have a prolate shape, o, is smaller than w, . Also, the total

strength of the line at %w, is twice that of the line at 7iw,.
These lines will be broadened by a number of effects. First, the nucleus

t On leave from the University of Lund, Sweden.
1 For a summary of the theoretical and experimental data on this effect see ref.l); cf. also
refs. 274),
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may be set into rotation as a consequence of its interaction with the photon.
If the ground-state spin is /,, the rotational states with total angular mo-
menta [,+1, I, and Iy—1 may be excited. In the rare-earth nuclei and for
the heavy elements the energy difference between these states will be only a
few hundred keV; however, in the region of deformed nuclei around 4 = 25
these rotational energies should amount to about 2 MeV (for I, = 5). In any
case for [, = 0 (as in even nuclei) the E1 process can excite only states with
I =1

A second source of broadening of the lines is associated with the deviations
from a harmonic oscillator potential. It is easy to see that the types of
deviation which have been especially considered ¢) will tend systematically
to broaden the line at #iw, more than the line at #w,. Thus, the spin-orbit
force depends, in first approximation, only on the component of the orbital
angular momentum of the particle along the symmetry axis, A; for the
transitions corresponding to fiw, this angular momentum is not changed,
and the corresponding line is not split by this term. The transition with
fiw, is associated with a change 44 = 4-1, and there is thus a splitting of

“the high-frequency line due to the spin-orbit force. Also deviations from the

harmonic oscillator potential that are proportional to the square of the angu-
lar momentum of the particle, 1%, are found to broaden the high-frequency
line more than the lower one. It is the main purpose of this note to consider
these effects somewhat more quantitatively in order to obtain a better esti-
mate of the systematics to be expected for the dipole resonance in deformed
nuclei.

Finally, another important source of broadening should be mentioned.
The final state of motion described by a single, highly excited nucleon
moving with respect to the rest of the nucleus is of course very far from a
stationary state of the system; the excited nucleon may either fly out of the
nucleus or, more likely, make a collision with one of the other nucleons,
leading eventually to the complicated many-particle states of motion
characteristic of the compound nucleus. This mechanism, which tends to
damp the single-particle motion, will thus also lead to a broadening of the
photo-resonance. One may obtain an estimate of these effects from the
magnitude of the absorptive part of the optical potential used to describe
the interaction of nucleons with the nucleus. From this source we might
expect a broadening of a few MeV. The absorptive potential is an increasing
function of excitation energy in this region; in the energy interval between
fiw, and fiw , one might expect a change of the order of about 30 9%,.

2. Photo Excitation Spectrum in the Asymptotic Limit

The sum of the transition intensities of the E1 transitions leading from a
state (I, K) associated with a wave function yg D}, to all members of a
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rotational band based on an intrinsic state y,. is proportional to the squared
matrix element of the multipole operator involving only the intrinsic wave
functions of initial and final states:

2

’ 16 1 w : % ’
TELGIK »K') =Y (—) | |70 M EL K —K)gede|. (1)

fi

As a basis for a description of the intrinsic states we first assume an aver-
age potential of a pure harmonic oscillator type. An anisotropy of the
oscillator potential corresponding to w, # w, = w, = w, removes some of the
degeneracy, and the states can now be characterized by the quantum num-
ber n,, the number of nodal planes perpendicular to the z-axis, in addition to
the quantum number N, the total number of nodes of the nucleonic wave
function.

Further, 4, the component of orbital angular momentum along the
nuclear symmetry axis, is a constant of the motion by virtue of the assumed
rotational symmetry about the z-axis. We may characterize the state of the
nucleonic spin by the quantum number 2 = -3, representing the component
of spin along the symmetry axis. And finally 4 and X add up to K, the
component of total angular momentum characterizing the intrinsic state.
There is of course in this description a complete degeneracy among the
different values of 2'and /1 (consistent with a certain value of n, = N—u,).
The wave functions may be written in product form as

INn, A2 = [z, n) | y; ny 45|12, (2)

where |z; n,) denotes that the state vector associated with the quantum
number 7, depends solely on the z-coordinate, etc.

We first note from eq. (1) that there occur two groups of E1 transitions in
this limit: one group represents transitions with AK = 0 and corresponds to
the multipole operator z, the other group corresponds to AK = 41 and the
operator 2-#(z4-4y). From the form of the wave function (2) it is immedi-
ately apparent that the AK = 0 transitions obey the selection rules 4n, =
= A4 = 42 = 0 and 4dn, = £ 1 and involve a change of energy equal to
fiw,. The other types of transitions, 4K = +1, are associated with the
selection rules An, = AX =0, An, = 41, 44 = 4 1. The fundamental
frequency of these transitions is %, . This simplified situation is illustrated
in fig. 1, where we have taken as an example a filled N = 2 shell from which
nucleons are excited into the empty N = 3 shell. As a consequence of the
fact that the transitions are associated with 4K equal to both 41 and —1,
the #iw, transition line is twice as strong as the #w, line in this description.

Introduction of other terms in the nucleon potential of the type
— (21 - s+pud?)ufiwy will now remove the 4 and 2 degeneracy. However, the
“asymptotic quantum’’ numbers (N, n,, A, 2) still remain useful as long as
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these added terms are small compared with the splitting, fiw, —%w,,
caused by the deformation of the nuclear field. This condition seems to be
fairly well satisfied (i.e. with an accuracy of about 10 % for the greatly
deformed nuclei, and thus we may still use the wave function (2) as a first
approximation.

0,20 n=3 AsE3E

N=3 ,[ ny=l m=2 A=120
,[ T T ng=2 m=l Astl
n,=3 ny=0 A=0
Ne=0 nu=2 Ast2D
N=2
ne=l nust Astl

nz=2 nu=0 A<0

——— — —

A4K=0 AK=1 AK=-1
Fig. 1. The diagram illustrates possible single-particle E1 excitations from a filled harmonic
oscillator shell N = 2 into an empty N = 8 shell. Part of the spherical degeneracy of the N shell
is removed by a quadrupole deformation of the oscillator field having w, < wy.In this example,
however, in contrast to the case of fig. 2, the levels are assumed degenerate in A and 2.

The energy eigenvalues of each intrinsic orbital may now be written (to
lowest approximation)

E(ngn, AZ) = (1,4 Do+ (a-t3)es
—ihwy[ 24X+ p(2n,m, + o, +n,+4%)]  (3)
2.1 TRANSITION LINES CORRESPONDING TO 4K =0

The multipole operator corresponding to 4K = 0, being associated with
the selection rules An, = A4 = AY = 0 and An, = +1, connects states
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En,+1,n, AX)—E@n,n, AX) = fiw,+3E 2ufiw,,

SE! = —

(n,+1).

(42)

occurrence of the quadratic terms proportional to #,#, in eq. (3).

The different transitions within the group 4K = 0 and the corresponding

intensities are listed below in table 1.

TaBLE 1

Ny ny —JE! degeneracy | 2|matr. elem.|? deg. X 2|matr. elem.|?

0 N N+1 N41 1 (N+1) - 1

1 N—-1 N N 2 N-2

2 N-—-2 N—1 N—1 3 (N—1)-3

Mg N—n, | N—n,+1 N—n,+1 ny+1 (N—n,+1) - (n,+1)
N-—1 1 2 2 N 2N

N 0 1 1 N+1 1- (N41)

The intensity of the transitions from a state of given #, and characterized
by 4K = 0 is thus proportional to the following expression:

fz(nz) = (N—%z-}-].)(%,—l—l) (5)

We can now combine (5) with the expression (4) for the energies of the
various transitions to obtain the line shape for the transitions with 4K = 0,
i.e. those transitions which for « = 0 would have the energy %w,. Several
examples illustrating the effect of the added terms in broadening the line
are shown in the figures. The line width may be characterized by the mean
square deviation

2I(E)(E—-E)
21(E)

o = = (uciog) LN (N 4-4). (6)
2.2. TRANSITION LINES CORRESPONDING TO 4K = 41

The AK = +1 transitions will be broadened by both the 12 and thel-s
term in the nuclear potential. The energy differences connected with these
transitions are then given in the asymptotic limit as

Emn,, n,+1, A+1, Z)—E(n,n, AX) = ko, +2urhiw, - SEY, (1)
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where
6E“=—(N-|—1)$§1/—LZ+2{:'}, for Ad = +1, (7a)
with
2y =n,+4, 2s= n, —A, (7b)

s and # thus corresponding, in eq. (7a), to AA= 41 and 44 = —1 respec-
tively.

The quantum numbers 7 and s are especially convenient for the discussion
of the spectrum and matrix elements in the asymptotic limit (cf. the appen-
dix). Considering first, for instance, the case of AK = -1, the energy

Relalive
intensily

{- N+ 2uhwo 2ihiw, 2N 2pifiwe 4E
ﬁuyg\ :6ﬁwo
heu :
=fiwe

Fig. 2. The diagram exhibits the theoretical line spectrum in the giant-resonance region,

calculated on the basis of the single-particle energies of a harmonic oscillator potential, where

diagonal terms of 1- s and 12 have been included. The effect of these added terms is to remove the

degeneracy of the single-particle spectrum in /A and X (the components of angular momen-

tum and spin) and thereby to broaden the two fundamental peaks of energy fiw, and fiwy
(ctf. fig. 1).

differences are expressible solely in terms of Z and s (see eq. (7)). Each
such energy difference is associated with a degeneracy in 7, since 7 may be
6,1,...,N—s,and each of these transitions is in its turn connected with an
intensity oc(r+1). The total oscillator strength attributed to the radiation
energy E(s, 2) is thus proportional to

N-s

S +1) = HN—s+ 1) (N —s+2) = £1(6)- ®)

r=0
We obtain the line shape by combining f,(s) with the expression (7) and
letting s take on each of the allowed values 0 = s = N. There are then two
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line spectra of the type f, (s), transposed an energy «%w, with respect to one
another, corresponding to the two values of X = +% (see eq. (7)).

The intensity distribution corresponding to the case of AK = —1 is
identical with the AKX = -+1 spectrum. One may note that for this latter
spectrum 2’ corresponds to —2 and # to s in the former case.

We may now write the total intensity distribution corresponding to
AK = 41 as

Wiy 1 1
(N+1+ — —x) (N—|-2+ — ~—x),
=0 =L 4/1, 4:,(,6
ap
where the integral values of # correspond to equidistant spectral lines with a
spacing equal to 4uxfiw,. For this line shape we have a mean square width

o= [Vt () ] Gucton (10)

2.3. CHARACTERISTICS OF THE TOTAL RESONANCE SPECTRUM

Comparing the two peaks associated with #w, and %w,, for instance for
the case of u &~ 0.5 and N ~ 4—5 (corresponding to the “rare earth’ region
and the “heavy element” region of nuclei, displaying large equilibrium
deformations), one finds a ratio between the mean square widths of the order
L.7.

In figs. 3 and 4 we have smeared out the sharp lines given by this model
over energy intervals of the order 0.5 MeV in the heavy-element region *.
Fig. 3 illustrates the expected type of resonance spectrum at the beginning
of the “rare earth’’ region of deformed nuclei 1, say Tb'%, corresponding to
a very large deformation § & 0.35. Fig. 4 is representative of the expected
resonance spectra of the heavy elements beyond 4 ~ 230 [and also of nuclei

T We have so far, in deriving the spectral distributions (5) and (9), implicitly assumed that
the single-particle states are filled through the whole shell Ny. Only nucleons of the shell N,
may then be excited and lifted up to the shell Ny+41.

We have thus neglected the fact that, owing to the spin-orbit forces, these shells may largely
overlap. The result will be that some orbitals of the N, 1 shell are filled before the N, shell is
completed. This effect will tend to slightly broaden both resonance peaks in a similar way. It
can be approximately provided for by the use of an intermediate value of N between N, and
Ny+1 in calculating the widths.

Furthermore, in two of the regions of large nuclear deformation the neutron and proton
numbers differ considerably, and actually the N, shell is filled for protons simultaneously with
the N+ 1 shell for neutrons. Of course one may take this effect into account simply by calcu-
lating the neutron and proton spectra (with the respective effective charges) separately and
finally adding them up. This correction is small, of the order 1/N, and parallel for the two
resonance peaks.

tt Cf. the new experimental results by E. G. Fuller and M. S. Weiss (ref. 4)), which may
indicate a resolved double peak for Tb and Ta.
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at the end of the “rare earth’ region, say Tal®l], where the deformation is
smaller, 6 ~ 0.25, and the width of each of the two peaks is larger,

Relative
intensity N=b4
H =005
H=05
§=035
! T T T T T T T T T
0 05 0.6 0.7 0.8 0.9 1.0 Al 1.2 13 dEfpw,

Fig. 3. Histogram plotted on the basis of the theoretical line spectrum of fig. 2 for the case of
N — 4 and 6 ~ 0.35. The shell parameters of this spectrum are chosen so as to be applicable to
nuclei at the beginning of the rare-earth region, say 153 < 4 < 170. It appears that it might
be possible to resolve experimentally the two peaks of the spectrum in this region of nuclei.

o2

20

55

SE
N=5
1=005
H=05
é=025

—

T T

T
0 05 06 07 08 09 10 M 12 13 AE/hu,

eters N = 5 and 6 ~ 0.25. The theoretical spectrum

Fig. 4. The same as fig. 3 with the param
s of deformed

is meant to show the general features of giant-resonance spectra in the region
nuclei 4 = 230 and 170 S 4 < 190.

owing to a larger effective N-value. Here the two peaks appear no longer to
be resoluble, even when the broadening due to additional effects discussed in

‘the introduction is neglected.




the deformation is
o peaks is larger,

N=4

A =005
H=05
6=035

T

:
12 13 dEfpy,

, of fig. 2 for the case of
so as to be applicable to
[t appears that it might
in this region of nuclei.

ST ==z
" n o n
coowm
N oo
2] a

[ S—

T
12 13 AE/puw,

The theoretical spectrum
the regions of deformed

 appear no longer to
| effects discussed in

THE SHAPE OF THE NUCLEAR PHOTO-RESONANCE IN DEFORMED NUCLEI 289
.
Appendix

CONSTRUCTION OF ASYMPTOTIC STATES f

It is well known that one can construct one-dimensional oscillator wave
functions by the aid of the following creation and annihilation operators:

rx = (C— (%) (A.1a)
1’2=~1—(c+ﬁ), (A.1b)
V2 o
which obey the commutation relation
r, r;} =1 (A.2)
The dimensionless coordinate ¢ is related to the coordinate z as follows:
Mw,
= V 7 2,

A normalized state corresponding to #, oscillator quanta can then be
expressed by means of the operator I'*:

1
|7, = :/7 (Fz*)nz|0>l (A3)

where |0) is the “vacuum’’ state, corresponding to #, = 0.

We denote by I', and I', etc. the corresponding operators in the z and
dimensions. They obviously fulfil relations analogous to (A.2). It is useful
to consider I'*, I';¥, I';*, and Iy, I',, I',, as components of the vector
operators I'* and I

We now want to construct eigenstates corresponding to a three-dimen-
sional oscillator with rotational symmetry only about the z-axis, i.e. with
frequencies w, and w, equal to one another (denoted w, ), but different from
,. The energy only depends on #, (= #,+#,) and %,. Of the (n +1)-fold
degenerate eigenstates with given #, one may then form linear combinations
which are eigenfunctions of the z-component of the angular momentum
operator L,.

Such states are denoted |n, A, where A is the eigenvalue of L,, and may
now be constructed in analogy with (A.3) by the aid of the following opera-
tors:

1 .
Iy¥ =5 (DA aly*) = R, (Ada)
1 .

t Note added in proof: Similar operator methods have been employed by Dr. B. Bayman
in constructing wave functions for the case considered here as well as for the three-
dimensional isotropic case with L? and L, being constants of the motion (private com-
munication from B. Bayman). Cf. also ref.?).
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%« 1 S .
I% =25 (IF—il¥) = S¥, (A.dc)

1 .
I = v (I, —iI',) =R, (A.4d)
which, apart from a sign, are the conventional spherical components of the

vector operators I'* and I
These operators obey the commutation relation

[S,S*] = [R, R*] =1 (A.5)
in analogy with (A.2). All other commutators vanish identically.

The selection rules of the operators (A.4a),..., (A.4d) may be studied
in table A.1. Thus, for instance, I',* increases the number of quanta in #
TasLE Al

Any a4 Ar = A%(ny+A)|4s = A (n—A)
I'® = R* +1 +1 +1 0
r, =s -1 +1 0 —1
I = S* +1 -1 0 +1
I. =R ~1 -1 -1 0

by one unit, which is obvious, since it is linear and homogeneous in I',* and
I,*. Furthermore it increases 4 by one unit, which is apparent from the
fact that, apart from a sign, it is the 41 component of the vector operator I'*.

One may also directly verify the relation
LI, A0} = (A+ DT, 4}, (A.6)

As is clearly indicated by the table, the quantum number associated with
R and the hermitian conjugate R* is# = $(n, +4), while s = §(n, —4) may
be associated with S and S*.

In summary, we now have a system of operators, R, R*, S, S*, and
I',, I'*, which fulfil the commutation relations (A.2) and (A.5), while all
other commutators between any two of these operators vanish. The cigen-
values associated with these operator pairs are 7, s and #», respectively.

The total three-dimensional eigenfunction may now be constructed as

1 )7 1 <)s 1 \ 75
[P Is) ey = -7 (R¥)10) o (S*)10) 7 (757)"]0). (A7)
In a representation in terms of the previously used quantum numbers
n, and / one may rewrite the —y part of the wave function
1
n, Ay =
D = et ) Gl )]

One may note at this point that the quantum numbers # and s provide a
useful basis for the classification of the asymptotic states. We have so far

(I (1) GratB00). (A.8)
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labelled the latter by 7, and 4, allowing #, to take on the values 0, 1, 2, .. .,
N for a given n,-value, permissible values of A are

A= 4n,, +(n,—2), +n,—4),...,0 or 1,
depending on whether #, is even or odd. If one uses the alternative classifi-

cation, one must let 7 take on all values 0, 1, 2, . . ., N, while for a given 7 the
quantum number s can assume all values 0, 1, 2, ..., (N—7).

MATRIX ELEMENTS

Matrix elements of various transition operators between asymptotic
states are most easily derived by expressing the operators in terms of R and
S. Thus

-3
( " ) (@+iy) = E+in = S+R*, (A.92)
Mo,
( f )_é’ (w—iy) = E—in = S*+R A.9b)
Mo, v= n= ' (A
Using the relations -
R¥lp> = Vr41r+1) (A.10)
and B
Rlry = Vrlr—1), (A.11)

which hold, in accordance with the commutation relations (A.2) and (A.5),
for all the operator pairs R, R* and S, S* as well as I',, I'}*, one immediately
obtains the matrix elements

(1, slginlrsy = V1 (A.12a)
r, s—1|E+inlrsy = Vs (A.12b)
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