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Popular Science Summary

In the modern world of today, we are surrounded with many electronic de-
vices which offer previously unseen performance. These devices constitute a
large part of the everyday consumer electronics such as laptops, tablets, smart
phones, etc., but are also used in wide variety of domains such as automotive
industry, avionics, medicine, etc. The constant demand for high performance
has resulted in a rapid development of semiconductor technologies. Tech-
nology scaling has pushed the boundaries enabling fabrication of miniature
devices. With such miniature devices, it is possible to integrate an entire sys-
tem on a single chip, commonly referred to as System-on-Chip. For example,
in a recent smart phone, the size of such chip is less than one square centime-
ter, and within this area, the number of transistors (the fundamental building
block of modern electronic devices) is over one billion. This example shows
that the gains of technology scaling are enormous. However, this comes at
a cost, and that is that devices manufactured in the latest technologies may
be affected by errors which cause malfunction. Lately, soft errors have been
named as one of the most serious threats to computer systems designed in
the latest semiconductor technologies.

Soft errors occur as a result of a particular type of faults, known as transient
faults. Transient faults have a limited lifetime, namely these faults occur,
remain present for a short time, but disappear afterwards. However, these
faults, despite their short duration, often result in soft errors that may lead
to a system failure. Therefore, soft errors have a significant impact on the
reliability of the computer systems manufactured in the latest semiconductor
technologies. While in the past soft errors were only a threat for devices
which operate in harsh environments such as nuclear plants where high level
of radiation exists, or avionics where at higher altitudes the cosmic radiation
is higher, nowadays soft errors are a threat for all devices irrespective of the
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operational environment. The reason for this is that the major source of soft
errors is the radiation of alpha-particles which are emitted from the package
of the device itself. In the digital world where everything revolves around
bits (a binary digit “1” or “0”), a transient fault can be interpreted as the
outside force that flips a bit from “1” to “0”, or vice-versa, and the flipped
bit is the representation of a soft error. If a soft error occurs in your smart
phone, tablet or laptop you easily handle it by restarting the device. However,
what happens if such an error occurs in a vital component of an airplane or a
nuclear reactor? Can we simply restart?

The field of research which tries to give answers to the previous questions
is called Fault Tolerance. As the name suggests, fault tolerance enables cor-
rect operation of a device even in the presence of faults (errors). As a research
topic, fault tolerance has been established along with the rise of the very first
devices used in safety-critical applications such as avionics. Lately, the popu-
larity of fault tolerance has been increased, especially when the manufactur-
ing process has moved down to deep sub-micron semiconductor technologies
where the size of the transistors has shrunk substantially, and their operation
has become more susceptible to soft errors. To enable correct operation in
the presence of errors, fault tolerance provides techniques that are capable
of error-detection, i.e. detect the presence of errors, and error-recovery, i.e.
recover the system from errors. Usually, this is achieved by introducing a
hardware and time redundancy.

Hardware redundancy techniques cope with errors by designing devices or
computer systems, such that multiple copies (replicas) of the physical building
blocks are used. Every block performs a given operation and provides some
kind of an output based on some inputs. If two identical copies process the
same inputs, it is expected that they would both produce the same outputs.
While these techniques ensure correct operation in the presence of errors, the
main drawback is that these techniques are rather expensive. The cost of a
device which contains multiple replicas is higher.

In contrast to the expensive hardware redundancy techniques, time redun-
dancy techniques cope with errors by repeating the same operation utilizing
the given hardware resources. The correct output is obtained by repeating the
same operation at least twice. This increases the time required to obtain the
final outcome, and therefore it results in much higher time overhead.

Roll-back Recovery with Checkpointing (RRC) is a well-known fault toler-
ance technique that efficiently copes with soft errors. Unlike traditional time
redundancy techniques, where upon error detection the program is restarted
from the beginning, RRC stores checkpoints (intermediate states of the exe-
cution of the program), and when errors are detected, it forces the program
to roll-back to the latest stored checkpoint. The advantage of this technique
over other fault tolerance techniques is that it does not require a substantial
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amount of hardware redundancy. However, the major drawback of RRC is
that it introduces time overhead that depends on the number of checkpoints
that are used. Thus, RRC introduces a time overhead that may have a negative
impact on the computer system where it is used.

In general, computer systems are classified into real-time systems (RTSs)
and non-RTSs, depending on the requirement to meet time constraints. For
RTSs, the correct operation is defined as producing the correct output while
satisfying a given time constraint (deadline). Depending on the consequences
when deadlines are violated, RTSs are divided into soft and hard RTS. For
soft RTSs, the consequences are not very severe. One example of a soft RTS
can be a mobile phone where eventual deadline violation results in a dropped
call. On the other hand, violating the deadlines in hard RTSs usually results
in catastrophic consequences. An example of a hard RTS can be the braking
control in a vehicle. RTSs are also affected by soft errors, and therefore there
is a need to employ fault tolerance in RTSs as well. However, special consid-
eration should be taken when employing fault tolerance in RTSs, due to the
fact that fault tolerance usually introduces a time overhead.

The time overhead due to usage of fault tolerance in RTSs, may result in
a missed deadline. To mitigate this effect, it is important to optimize the
usage of fault tolerance in RTSs. The optimization objectives differ among
soft and hard RTSs. For soft RTSs, where eventual deadline violation results in
some performance degradation, it is more important to minimize the average
execution time (the average time needed for the operation to complete), while
for hard RTSs, where it is crucial to meet the deadlines, it is more important
to maximize the probability that the deadlines are met.

During the early design stage of an RTS, a designer of an RTS receives a
specification of the RTS that is to be implemented. During this stage, the
designer needs to explore different fault tolerance techniques and choose the
one that satisfies the given specification requirements. To assist the designer
in the decision making process, in this thesis, we provide an optimization
framework for RRC when used in RTSs. By using this framework, the de-
signer of an RTS can first decide if RRC is a suitable fault tolerance technique
for the RTS that is to be implemented, and then if RRC is applicable, the
designer can acquire knowledge on the number of checkpoints that need to
be used and how these checkpoints need to be distributed. The proposed
optimization framework considers multiple optimization objectives that are
important for RTSs. In particular, for soft RTSs the optimization framework
considers optimization of RRC with respect to AET. For hard RTSs, the op-
timization framework considers optimization of RRC with the goal to maxi-
mize the Level of Confidence (LoC), i.e. the probability that the deadlines are
met. Since a specification of an RTS that is to be implemented may include
some reliability requirements, in this thesis, we have introduced the concept
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of Guaranteed Completion Time, i.e. a completion time that satisfies a given
reliability (LoC) constraint. The Guaranteed Completion Time varies with the
number of checkpoints used in RRC. Therefore, the optimization framework
considers optimization of RRC with respect to Guaranteed Completion Time.
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Abstract

Increasing soft error rates in recent semiconductor technologies enforce the
usage of fault tolerance. While fault tolerance enables correct operation in
the presence of soft errors, it usually introduces a time overhead. The time
overhead is particularly important for a group of computer systems referred to
as real-time systems (RTSs) where correct operation is defined as producing
the correct result of a computation while satisfying given time constraints
(deadlines). Depending on the consequences when the deadlines are violated,
RTSs are classified into soft and hard RTSs. While violating deadlines in soft
RTSs usually results in some performance degradation, violating deadlines
in hard RTSs results in catastrophic consequences. To determine if deadlines
are met, RTSs are analyzed with respect to average execution time (AET) and
worst case execution time (WCET), where AET is used for soft RTSs, and
WCET is used for hard RTSs. When fault tolerance is employed in both soft
and hard RTSs, the time overhead caused due to usage of fault tolerance may
be the reason that deadlines in RTSs are violated. Therefore, there is a need
to optimize the usage of fault tolerance in RTSs.

To enable correct operation of RTSs in the presence of soft errors, in this the-
sis we consider a fault tolerance technique, Roll-back Recovery with Check-
pointing (RRC), that efficiently copes with soft errors. The major drawback of
RRC is that it introduces a time overhead which depends on the number of
checkpoints that are used in RRC. Depending on how the checkpoints are dis-
tributed throughout the execution of the job, we consider the two checkpoint-
ing schemes: equidistant checkpointing, where the checkpoints are evenly
distributed, and non-equidistant checkpointing, where the checkpoints are
not evenly distributed. The goal of this thesis is to provide an optimization
framework for RRC when used in RTSs while considering different optimiza-
tion objectives which are important for RTSs.
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The purpose of such an optimization framework is to assist the designer
of an RTS during the early design stage, when the designer needs to explore
different fault tolerance techniques, and choose a particular fault tolerance
technique that meets the specification requirements for the RTS that is to be
implemented. By using the optimization framework presented in this thesis,
the designer of an RTS can acquire knowledge if RRC is a suitable fault tol-
erance technique for the RTS which needs to be implemented. The proposed
optimization framework includes the following optimization objectives.

For soft RTSs, we consider optimization of RRC with respect to AET. For
the case of equidistant checkpointing, the optimization framework provides
the optimal number of checkpoints resulting in the minimal AET. For non-
equidistant checkpointing, the optimization framework provides two adaptive
techniques that estimate the probability of errors and adjust the checkpointing
scheme (the number of checkpoints over time) with the goal to minimize the
AET.

While for soft RTSs analyses based on AET are sufficient, for hard RTSs
it is more important to maximize the probability that deadlines are met. To
evaluate to what extent a deadline is met, in this thesis we have used the sta-
tistical concept Level of Confidence (LoC). The LoC with respect to a given
deadline defines the probability that a job (or a set of jobs) completes before
the given deadline. As a metric, LoC is equally applicable for soft and hard
RTSs. However, as an optimization objective LoC is used in hard RTSs. There-
fore, for hard RTSs, we consider optimization of RRC with respect to LoC. For
equidistant checkpointing, the optimization framework provides (1) for a sin-
gle job, the optimal number of checkpoints resulting in the maximal LoC with
respect to a given deadline, and (2) for a set of jobs running in a sequence and
a global deadline, the optimization framework provides the number of check-
points that should be assigned to each job such that the LoC with respect to
the global deadline is maximized. For non-equidistant checkpointing, the op-
timization framework provides how a given number of checkpoints should be
distributed such that the LoC with respect to a given deadline is maximized.

Since the specification of an RTS may have a reliability requirement such
that all deadlines need to be met with some probability, in this thesis we have
introduced the concept Guaranteed Completion Time which refers to a com-
pletion time such that the probability that a job completes within this time is
at least equal to a given reliability requirement. The optimization framework
includes Guaranteed Completion Time as an optimization objective, and with
respect to the Guaranteed Completion Time, the framework provides the op-
timal number of checkpoints, while assuming equidistant checkpointing, that
results in the minimal Guaranteed Completion Time.
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1
Introduction

The constant demand for high performance has resulted in a rapid devel-
opment of semiconductor technologies. The development mainly relates to
the continuous shrinking of the transistor sizes reaching the sub-micron do-
main where the size of the transistors is measured in nanometers. Such small
transistor sizes offer the possibility of a very large scale integration process
which enables fabrication of very complex integrated circuits (ICs). With such
ICs it is possible to integrate an entire system onto a single chip commonly
referred to as a System on Chip (SoC). To further improve performance, an
SoC is often designed to include multiple processors, and it is referred to as a
Multi-Processor SoC (MPSoC).

While the latest semiconductor technologies offer previously unseen perfor-
mance, there is a drawback that comes along as we step into the sub-micron
domain. Shrinking feature sizes and lowering operation voltages make de-
vices more susceptible to soft errors [1], [2], [3], [4], [5]. Soft errors occur as a
result of a particular class of hardware faults known as transient faults [6], [7].
These faults have a short lifetime, i.e. they appear in the system, but disappear
after a short period of time, and usually they are caused by different external
factors, such as high-energy particle hits originating from different radiation
sources including cosmic rays, electromagnetic interference, etc. [8], [9], [10].
Despite the short lifetime of the transient faults, these faults often result in soft
errors. Taking no actions when soft errors are present in the system may lead
to a system failure. Thus, soft errors can significantly influence the system
reliability.

The soft error rate observed in recent technologies has increased by orders
of magnitude compared to earlier technologies, and the rate is expected to
grow in future semiconductor technologies [5], [11], [12], [13], [14]. There-
fore, it is becoming increasingly important to consider techniques that enable
detection and recovery from soft errors [11], [15], [16], [17].
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1.1. FAULT TOLERANCE

Fault tolerance is the property that enables a system to continue with its cor-
rect operation even in the presence of faults (errors), and it is generally imple-
mented by error detection and subsequent system recovery [18], [7], [19], [20].
Fault tolerance has been a subject of research for a long time, and significant
amount of work has been produced over the years [18], [21], [22], [23], [24],
[25], [26]. To provide fault tolerance, systems are usually designed such that
some redundancy is included. The common types of redundancy used are
information, hardware, and time redundancy.

Error-detecting and error-correcting codes provide fault tolerance while us-
ing information redundancy, i.e. the data includes additional information
(check bits) that can verify the correctness of the data before it is used (error-
detection), or even correct erroneous data bits (error-correction). Different
error-detecting and error-correcting codes have been proposed including par-
ity codes, cyclic codes, arithmetic codes etc. [27], [28], [29]. The major disad-
vantage of error-detecting and error-correcting codes is that they are limited
to errors that occur during transfer of data (system bus) or errors in memory.

Employing hardware redundancy is a very common practice to provide
fault tolerance. Already in 1952, John von Neumann introduced a redun-
dancy technique called NAND multiplexing for constructing reliable compu-
tation from unreliable devices [30]. N-Modular Redundancy (NMR) is an-
other method that provides fault tolerance at the cost of adding N hardware
replicas. The correct output in an NMR is obtained by voting on the outputs
generated from the N modules. An example of providing fault tolerance by
adding redundant hardware is the architecture of the fighter JAS 39 Gripen
which contains seven hardware replicas [31]. The most common form of NMR
is Triple Modular Redundancy (TMR) [7], [32], [33], [34], [35]. In TMR, a pro-
cess is executed on three functionally equivalent hardware modules, and the
output is obtained by using the two-out-of-three voting concept. Thus, even if
one of the hardware units in TMR fails, the system is still able to produce the
correct output. Multiple variations of NMR exist. Unit-level modular redun-
dancy applies the same concept as NMR at a higher granularity, i.e. instead
of only replicating entire modules, it replicates also units (subsystems) within
the modules [7], [36]. Dynamic redundancy is another variation of NMR, but
the major difference is that even though there are N replicated modules, only
one module is active at a time, and in case of errors, the active module is re-
placed by a spare module [37]. Hybrid redundancy requires even more hard-
ware redundancy because it assumes that all N module are active at a time,
and in case errors are detected in some modules, the erroneous modules are
replaced by spare modules [38]. In hybrid redundancy, the erroneous mod-
ules are detected by comparing the output of the voter with the outputs of the
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active modules, and all the active modules which are in disagreement with
the voter need to be replaced by spare modules. Sift-out modular redundancy
is another variation of NMR, but instead of using a majority voter, this tech-
nique uses comparator, detector, and collector circuits, where the comparator
and the detector circuits are used to exclude the erroneous modules from the
system, and the collector circuit is used to provide the system output [39].

The major advantage of NMR, and any of the similar techniques discussed
earlier, is that it is capable of error-masking (disabling propagation of errors),
as long as less than half of the modules are affected by errors. Still, if more
than half of the modules are effected by errors, NMR is able to detect errors,
and in such case a system recovery needs to be performed. The major dis-
advantage of NMR is that it is a costly solution to implement fault tolerance
because it requires substantial amount of hardware redundancy.

Time redundancy is another way to provide fault tolerance. However, fault
tolerance techniques that use time redundancy are only efficient if the faults
are of transient nature, i.e. faults that occur, but disappear after a short pe-
riod of time. These transient faults often result in soft errors. The simplest
technique that uses time redundancy copes with soft errors by executing the
same program twice, and it obtains the correct result if the outputs of the two
executions match. Roll-back Recovery with Checkpointing (RRC) is a well-
known fault tolerance technique that efficiently copes with soft errors. RRC
has been the focus of research for a long time [40], [41], [42], [43], [44], [45].
Unlike classical re-execution schemes where the task (job) is restarted once
an error is detected, RRC copes with soft errors by making use of previously
stored error-free states of the task, referred to as checkpoints. During the ex-
ecution of a task, the task is interrupted and a checkpoint is taken and stored
in a memory. The checkpoint contains enough information such that a task
can easily resume its execution from that particular point. For RRC it is cru-
cial that each checkpoint is error-free, and this can be done by for example
running acceptance tests to validate the correctness of the checkpoint. Once
the checkpoint is stored in memory, the task continues with its execution. As
soft errors may occur at any time during the execution of a task, an error
detection mechanism is used to detect the presence of soft errors. There are
various error detection mechanisms that can be used, e.g. watchdogs, duplica-
tion schemes etc. [7], [46], [47], [48]. In case that the error detection mechanism
detects an error, it forces the task to roll-back to the latest checkpoint that has
been stored.

Depending on the implementation, different RRC schemes exist, and they
differ among each other based on the following two key aspects. The first
aspect is how much information is stored at each checkpoint. With respect
to this, there are two different RRC schemes, i.e. full checkpointing [49], [50],
[51], and incremental checkpointing [52], [53], [54]. In a full checkpointing
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scheme, at each checkpoint the complete state of the job is stored, while in an
incremental checkpointing scheme only the changes with respect to the most
recent saved state are stored.

The second key aspect relates to when checkpoints are taken. With re-
spect to this, there are two different RRC schemes, i.e. equidistant checkpoint-
ing [55], [51], [50], [56], [57] and non-equidistant checkpointing scheme [58],
[59], [60], [61] . In equidistant checkpointing, the checkpoints are distributed
evenly throughout the execution of the job (meaning that the distance between
two successive checkpoints is always the same), while in non-equidistant
checkpointing, the checkpoints are not evenly distributed throughout the ex-
ecution of the job (the distance between two successive checkpoints is not
always the same).

As shown in this section, employing fault tolerance is often related to
adding an overhead which can result in: higher hardware cost, higher en-
ergy consumption, and even affect (degrade) system’s performance. There-
fore, there should be a clear goal to what extent fault tolerance is required
for a particular system. Minimizing the drawback caused by employing fault
tolerance usually requires optimization of the fault tolerance technique which
is used. The optimization goals for a given fault tolerance technique may
differ among the different classes of computer systems where fault tolerance
is employed. In general, computer systems are classified into non-real-time
and real-time systems depending on the requirement to meet a given time
constraint.

1.2. REAL-TIME SYSTEMS

A real-time system (RTS) is a computer system where the correctness of the
system behavior depends not only on the logical result of the computations,
but also on the physical time when these results are produced [62]. Thus, in
RTSs there exists a requirement of meeting time constraints (deadlines). These
systems are used in various domains including digital control, signal process-
ing, telecommunication, medical systems etc. Depending on the consequences
when the deadlines are violated, RTSs are often classified into soft and hard
RTSs [62]. For hard RTSs, it is a catastrophe if deadlines are not met, while
for soft RTSs, violating the deadlines usually degrades the quality of service,
but the consequences are not catastrophic [63]. An example of a hard RTS
can be the control system in an airplane, where the consequences of violating
the deadlines can be catastrophic. On the other hand, an example of a soft
RTS can be a system that provides a video streaming service, where missing
a deadline does not cause catastrophic damage to the system, but affects the
performance of the system negatively.
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To determine if an RTS meets its time constraints, schedulability analysis is
performed during the early design stage, i.e. before the system is deployed
(implemented). The schedulability analysis provides the answer to the ques-
tion if all jobs are able to meet their corresponding deadlines. During the
design of a soft RTS it is common to perform schedulability analysis based on
the average execution time (AET), while for a hard RTS it is common during
the design to perform schedulability analysis based on the worst case execu-
tion time (WCET) to ensure that deadlines are met.

Since for soft RTSs the schedulability analysis is based on AET, there is a
motivation to minimize the AET. Obtaining the minimal AET has some im-
portant advantages. For example, reducing the AET can lead to a lower power
consumption, and thus can save energy which is very important for systems
with limited power budget (the lifetime of many embedded RTSs depends
on a battery source). Minimizing the AET of a job can improve the system’s
throughput, i.e. the number of jobs executed over time, and by this improve
performance. For soft real-time control systems, where tasks are executed pe-
riodically, reducing the AET is important as it can affect the control quality, i.e.
tasks’ periods can be adjusted according to AET estimates while optimizing a
control performance criterion [64]. Despite the advantages of minimizing the
AET, the main drawback with AET is that it does not guarantee that deadlines
are met, and it lacks the distribution of the execution times, i.e. sometimes a
task (job) can complete much earlier in time, while sometimes it may take
much longer time.

For hard RTSs the schedulability analysis is based on WCET. Using WCET
guarantees that the deadlines are always met, and thus catastrophic conse-
quences are avoided. However, it is difficult to accurately estimate the WCET
which is a deterministic upper bound of the time required for a job to com-
plete [65], [66]. Furthermore, the WCET may be very pessimistic which can
lead to increased cost due to having over-designed systems, i.e. systems that
are equipped with more resources than normally needed to perform the in-
tended function.

1.3. FAULT TOLERANCE IN REAL-TIME SYSTEMS

Since RTSs, like any other computer system manufactured in the latest semi-
conductor technologies, are susceptible to soft errors, it is important to employ
fault tolerance in RTSs as well. However, fault tolerance usually introduces
a time overhead which negatively impacts RTSs. The time overhead due to
usage of fault tolerance may increase the AET, and it may lead to a missed
deadline. Therefore, special consideration should be taken when employing
fault tolerance in RTSs.
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The following studies have addressed usage of fault tolerance in RTSs. Pun-
nekkat et al. performed schedulability analysis while assuming that a fault can
adversely affect only one job at a time [67]. Kandasamy et al. considered a
fault model which assumes that only one single transient fault may occur in
any of the nodes during the execution of an application [68]. This model has
been generalized to address a number k of transient faults in the work of Pop
et al. [69]. Researchers have shown that the schedulability of an application
can be guaranteed for preemptive on-line scheduling, where a low priority
task can be interrupted by a higher priority task, under the presence of a
single transient fault [70], [71], [72], [73], [74].

The studies presented earlier, have considered schedulability analysis based
on WCET while considering that the number of faults (errors) is bounded to
a fixed number. For each error that occurs in the system, the employed fault
tolerance technique performs the error recovery step, and by doing so it in-
creases the execution time of the job, i.e. the time required for the job to
complete. When the number of errors is bounded to a fixed number, it is pos-
sible to estimate the WCET by using the maximum number of errors that can
occur, given that the time overhead introduced due to usage of fault tolerance
is deterministic (it is possible to estimate the upper bound of the time it takes
to perform the error recovery step). However, faults can occur unexpectedly
at any moment in time with some probability. In such case, it is not possible
to estimate the WCET. Instead, when errors occur with some probability, there
is a probability the deadlines might be missed. Therefore, when optimizing
the usage of fault tolerance in RTSs, another important aspect to consider is
optimization of fault tolerance such that the probability to meet the deadlines
is maximized, which is needed for hard RTSs, or at least the probability to
meet the deadlines is higher than a given reliability requirement, which may
be needed for soft RTSs.

1.4. RELATED WORK

In this section, we discuss related work in relation to the scope of this thesis.
Therefore, we discuss studies that address RRC in RTSs. As mentioned earlier,
the major drawback of RRC is the introduced time overhead that depends on
the number of checkpoints. The time overhead introduced by RRC impacts
soft and hard RTSs differently. For soft RTSs the time overhead increases the
AET and thus, degrades system’s performance, while for hard RTSs the time
overhead may be the reason that the time constraints (deadlines) are violated.
Therefore, to minimize the negative impact caused by the introduced time
overhead, it is important to consider optimization of RRC. Next, we discuss
the different optimization objectives that have been considered for RRC in soft
and hard RTSs.
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For soft RTSs, most of the work addressing RRC aims to optimize the RRC
scheme with the goal to minimize the AET [47], [50], [75], [61], [76], [57]. RRC
has an impact on the AET because the number of checkpoints that is taken
during the execution of a job affects the execution time. A high number of
checkpoints reduces the time overhead that is caused due to re-execution.
However, a high number of checkpoints increases the time overhead that is
caused due to taking the checkpoints. On the other hand, when a low num-
ber of checkpoints is used, the time overhead of taking the checkpoints is
lower, but then the time overhead caused due to re-execution is higher. From
this discussion, we conclude that there exists a trade-off when selecting the
number checkpoints to be used. Such trade-off motivates the existence of an
optimal number of checkpoints that minimizes the time overhead, and there-
fore minimizes the AET.

Most studies assume that the fault-free execution (computation) time is
given [50], [75], [76], [57]. Ziv et al. have presented a technique to analyze the
AET of four different checkpointing schemes based on task duplication [47].
Nakagawa et al. have analyzed the AET for three different checkpointing
schemes based on double modular redundancy and derived analytical expres-
sions for the optimal checkpoint intervals [75]. Common assumption in these
studies is that the checkpoints are evenly distributed throughout the execu-
tion of the job (equidistant checkpointing). Analyses on AET while assuming
that the checkpoints are not evenly distributed are presented in [61], [50].

Shin et al. derive analytical expressions for calculating the AET for two
different models: (1) basic model, where they use the assumption of perfect
coverage of the on-line detection mechanisms, and (2) extended model, where
they use the assumption of imperfect coverage of the on-line detection mech-
anisms and the acceptance tests [50]. For the basic model, due to the assump-
tion of perfect coverage of the on-line detection mechanisms, whenever a job
completes it always provides the correct results. For the extended model, due
to the assumption of imperfect coverage of the on-line detection mechanisms
and the acceptance tests, a job may complete with an unreliable (incorrect)
result. In [50], for the basic model, the authors obtain the optimal number
of checkpoints that results in the minimal AET. For the extended model, the
authors provide an algorithm to obtain the optimal placement of checkpoints
that minimizes the AET while the probability of an unreliable result is kept
below a specified level. An important conclusion from their work is that for
the basic model, the minimal AET is achieved while using equidistant check-
pointing. However, that is not necessarily the case for the extended model.
Similar conclusions to this have been presented by Ziv et al. [61].

For hard RTSs, most work addressing RRC focuses on providing guaran-
tees that time constraints are met [70], [72], [56], [51], [77], [78], [79]. This is
done either by analyzing the WCET when RRC is used, or by analyzing the



8 Introduction

probability to meet the deadline.
The following studies have analyzed RRC with respect to worst case execu-

tion time (WCET) [56], [69], [67]. Zhang et al. discuss fault recovery based on
checkpointing for hard RTSs [56]. In their work, the authors assume a hard
RTS that executes a set of n periodic real-time jobs, where each of the jobs is
modeled with three parameters: execution time under fault-free conditions,
period and deadline. For the given system they assume two different fault
models: (1) at most k faults can occur during the execution of a single job,
and (2) at most k faults can occur during a hyper-period (shortest repetitive
sequence of the schedule). To handle faults they assume that each job employs
checkpointing. The main contribution of their work is providing schedulabil-
ity tests to verify if a given hard RTS is schedulable, i.e. all jobs are periodically
executed and able to meet the given deadlines, under the given fault model. If
a system is schedulable under the given fault model, they report the required
checkpointing scheme, i.e. the number of checkpoints to be used for each job.
The schedulability analysis provided in this work is based on calculating the
response time (WCET). They show that employing checkpointing is very im-
portant to obtain schedulability for hard RTSs. Zhang et al. have shown that a
system that is schedulable under a given fault model when checkpointing is
employed, may not be schedulable under the same fault model if re-execution
is used instead of checkpointing [56]. The real-time guarantees that are pro-
vided in this work rely on the response time (WCET) analysis. The main
drawback with WCET is that accurate estimate of WCET is possible only for a
fault model where the number of faults is bounded to a fixed number. How-
ever, due to the fact that errors can occur at any moment in time, it is difficult
to predict the number of faults that can occur within an interval of time.

When RRC is employed in hard RTS, the number of checkpoints used af-
fects the probability to meet the deadlines [51], [78], [79]. Kwak et al. provide
analysis on the reliability of a checkpointed real-time control systems [51]. In
their work, the authors consider a control system that consists of a single con-
trol task for which the WCET, the period, and the deadline are given. For the
fault model, they consider that transient faults occur according to a Poisson
process with a fault arrival rate λ, and recovery rate µ. By utilizing Markov
models, they derive the reliability equation over a mission time (number of
consecutive sampling periods) of the control system. Kwak et al. model the
control system by a 3-state Markov chain, where within a sampling period
the control system can be in one of the following states: (1) the control task
has been correctly executed and the transient faults are in a fault-free state, (2)
the control task has been correctly executed and the transient faults are in a
fault-active state and (3) the control task has either been executed incorrectly or
has not finished within the sampling period. Kwak et al. have shown the im-
pact of the number of checkpoints on the system reliability, and therefore they
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have proposed an algorithm to find the optimal number of checkpoints with
the goal to maximize system reliability [51]. Further, they extend the model
to address system reliability for a control system which consists of multiple
control tasks, where for each control task given are the WCET, the period, and
the deadline Di which is equal to the period. For the case of multiple control
tasks, they propose a task allocation algorithm. The algorithm computes the
greatest common divisor of deadlines (GCDD), and divides each control task
into Di/GCDD equal length smaller chunks (subtasks). Each subtask is then
sequentially assigned on each GCDD interval. After running the task allo-
cation algorithm, they apply the system reliability model for a single control
task with a deadline equal to GCDD, assuming that all the subtasks assigned
within the GCDD interval are equivalent to one control task. Out of this,
they can obtain the optimal number of checkpoints to be used for each task
such that the system reliability is maximized. In another study, Kwak et al.
discuss multiple real-time tasks and derive an explicit formula of the proba-
bility that all tasks are successfully completed with a given set of checkpoint
intervals [78]. Using Markov model, Kwak et al. calculate the probability of
task completion against faults that occur in a Poisson process for a checkpoint
scheme [79].

The conclusion from the presented related work regarding RRC is that min-
imizing the AET is important for soft RTSs, while maximizing the probability
to meet deadlines is important for hard RTSs.

1.5. THESIS SCOPE

The scope of this thesis is employing fault tolerance in RTSs in order to cope
with soft errors which are caused by transient faults. Important to note is
that while fault tolerance is not limited only to transient faults, in this the-
sis we only address soft errors that occur as a result of transient faults. For
that reason, we consider Roll-back Recovery with Checkpointing (RRC) which
is a well-known fault tolerance technique that efficiently copes with soft er-
rors. The major drawback of RRC is that it introduces a time overhead which
negatively affects RTSs. The goal of this thesis is to provide an optimization
framework for RRC when used in RTSs while considering different optimiza-
tion objectives which are important for RTSs.

In this thesis, we consider a scheme for RRC that utilizes task duplication.
In such scenario, a task (job) is duplicated and concurrently executed on two
processing nodes. During the execution of the job a number of checkpoints
are taken. At each checkpoint the states of both processing nodes are com-
pared against each other. If the states match, the states are saved as a safe
point (correct checkpoint) from which the job can be resumed. If the states do
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not match, this indicates that an error has occurred in at least one of the pro-
cessing nodes, and to recover from the error, both processing nodes have to
load the latest saved safe state, and resume the execution of the job from that
point. By using this scheme we avoid the usage of acceptance tests to verify
the correctness of the checkpoints at the cost that errors can only be detected
at discrete time points, i.e when comparing the checkpoints from the two pro-
cessing nodes. Depending on how the checkpoints are distributed over the ex-
ecution of the job, we explore the two checkpointing schemes: equidistant and
non-equidistant checkpointing. For the considered RRC schemes we provide
an optimization framework which includes multiple optimization objectives.

The purpose of such an optimization framework is to assist the designer
of an RTS during the early design stage, when the designer needs to explore
different fault tolerance techniques and choose a particular fault tolerance
technique that meets the specification requirements for the RTS that is to be
implemented. The designer of an RTS can use this optimization framework to
acquire knowledge if RRC is a suitable fault tolerance technique for the RTS
which needs to be implemented. Next, we discuss the different optimization
objectives for RRC that are considered in this thesis.

For soft RTSs, we consider optimization of RRC with respect to AET. For
the case of equidistant checkpointing, the optimization framework provides
the optimal number of checkpoints resulting in the minimal AET. For non-
equidistant checkpointing, the optimization framework provides two adaptive
techniques that estimate the probability of errors and adjust the checkpointing
scheme (the number of checkpoints over time) with the goal to minimize the
AET.

While for soft RTSs analyses based on AET are sufficient, for hard RTSs
it is more important to maximize the probability that deadlines are met. To
evaluate to what extent a deadline is met, in this thesis we have used the sta-
tistical concept Level of Confidence (LoC). The LoC with respect to a given
deadline defines the probability that a job (or a set of jobs) completes before
the given deadline. As a metric, LoC is equally applicable for soft and hard
RTSs. However, as an optimization objective LoC is used in hard RTSs. There-
fore, for hard RTSs, we consider optimization of RRC with respect to LoC. For
equidistant checkpointing, the optimization framework provides (1) for a sin-
gle job, the optimal number of checkpoints resulting in the maximal LoC with
respect to a given deadline, and (2) for a set of jobs running in a sequence and
a global deadline, the optimization framework provides the number of check-
points that should be assigned to each job such that the LoC with respect to
the global deadline is maximized. For non-equidistant checkpointing, the op-
timization framework provides how a given number of checkpoints should be
distributed such that the LoC with respect to a given deadline is maximized.

Since the specification of an RTS may have a reliability requirement such
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that all deadlines need to be met with some probability, in this thesis we have
introduced the concept Guaranteed Completion Time which refers to a com-
pletion time such that the probability that a job completes within this time
is at least equal to a given reliability requirement. The optimization frame-
work includes Guaranteed Completion Time as an optimization objective, and
with respect to the Guaranteed Completion Time, the framework provides the
optimal number of checkpoints, while assuming equidistant checkpointing,
resulting in the minimal Guaranteed Completion Time.

In the next section, we detail the contributions of this thesis.

1.6. THESIS CONTRIBUTIONS

This section summarizes the contributions of this thesis. The contributions
are divided into two parts. First, we present our contributions with respect
to equidistant checkpointing and second, we present our contributions with
respect to non-equidistant checkpointing.

The contributions with respect to equidistant checkpointing are divided
into three groups based on the different optimization objectives. The op-
timization objectives considered for equidistant checkpointing are: Average
Execution Time, Level of Confidence and Guaranteed Completion Time.

The contributions with respect to Average Execution Time are as follows:

• we derive a mathematical framework to evaluate the average execution
time (AET) of a job when RRC is applied with a number of checkpoints;

• we derive a closed-form mathematical expression to compute the opti-
mal number of checkpoints such that the minimal AET is obtained;

The contributions with respect to Level of Confidence are divided into two
groups, i.e. (1) Level of Confidence (LoC) for a single job and (2) LoC for
multiple jobs. With respect to LoC for a single job, the contributions are as
follows:

• we derive an expression to evaluate the LoC with respect to a given
deadline when RRC is employed with a number of checkpoints;

• we provide theorems along with mathematical proofs to prove specific
properties of the expression used for evaluation of the LoC;

• we present a method, based on the presented theorems, to identify the
optimal number of checkpoints that results in the maximal LoC;

• we show that the optimal number of checkpoints that results in the
minimal AET, does not provide the maximal LoC.
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With respect to LoC for multiple jobs, the contributions are as follows:

• we show that performing a local optimization for each job and combin-
ing these local optima together does not result in the maximal LoC with
respect to the given global deadline;

• we show that handling the set of jobs as one single large job and obtain-
ing the optimal number of checkpoints for the single large job does not
result in the maximal LoC with respect to the given global deadline;

• we provide an expression to evaluate the LoC with respect to a given
global deadline for a given checkpoint assignment, where the check-
point assignment defines the number of checkpoints to be used by each
job in the given set of jobs;

• we show that a holistic solution (exhaustive search on possible check-
point assignments) is required to obtain the optimal checkpoint assign-
ment and the maximal LoC with respect to the given global deadline;

• we propose a method (heuristic) to speed up the computations and ob-
tain the results in significantly shorter time compared to the exhaustive
search method.

• we present experimental results to demonstrate that our method is ca-
pable of finding the optimal checkpoint assignment and the maximal
LoC while observing tremendous reduction in computation time com-
pared to the exhaustive search method.

The contributions with respect to Guaranteed Completion Time are as follows:

• we bridge the gap between soft and hard RTSs by introducing the
term Guaranteed Completion Time GCTδ which takes into considera-
tion both completion time and an LoC requirement;

• we propose an optimization method that finds the optimal number of
checkpoints that results in the minimal GCTδ, i.e. the minimal comple-
tion time that satisfies a given LoC requirement δ;

The contributions with respect to non-equidistant checkpointing are di-
vided into two groups based on the different optimization objectives. The
two optimization objectives considered for non-equidistant checkpointing are:
Average Execution Time and Level of Confidence.

The contributions with respect to Average Execution Time are based on the
assumption that the error probability may not be known at design time and it
may change during operation. In particular, these are the contributions with
respect to Average Execution Time:
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• we study the impact of inaccurate error probability estimates on the
AET;

• we present two techniques, namely Periodic Probability Estimation and
Aperiodic Probability Estimation, to estimate the error probability and
adjust RRC during runtime such that the AET is reduced.

The contributions with respect to Level of Confidence when non-equidistant
checkpointing is used are as follows:

• we study the impact of non-equidistant checkpointing on the LoC with
respect to a given deadline;

• we derive a mathematical expression to evaluate the LoC with respect
to a given deadline for a given distribution of a number of checkpoints;

• we analyze an exhaustive search method to get a better understanding
on how to find the optimal distribution of a given number of check-
points that maximizes the LoC;

• we propose a method (heuristic) that aims to find the optimal distri-
bution of a given number of checkpoints that maximizes the LoC at
significantly lower complexity than the exhaustive search method;

• we present experimental results which show that the proposed method
is capable of finding the optimal distribution of a given number of
checkpoints that results in the maximal LoC with respect to a given
deadline.

1.7. THESIS ORGANIZATION

The rest of the thesis is organized as follows. Chapter 2 details the common
assumptions that are used throughout the thesis. Important definitions and
notations are also defined and detailed in this chapter.

In Part I, we discuss optimization of RRC while assuming equidistant check-
pointing. Part I consists of four chapters, namely Chapter 3–6. Chapter 3
discusses RRC optimization with respect to AET. The steps of deriving the
mathematical framework used to compute the optimal number of checkpoints
that results in the minimal AET are covered in Chapter 3. Chapter 4 discusses
RRC optimization with respect to LoC. Two models are considered in Chap-
ter 4, i.e. single job and multiple jobs. For the single job model, derivation
of the expression for evaluation of the LoC with respect to a given deadline
is covered and a method for finding the optimal number of checkpoints that
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maximizes the LoC is presented. For the multiple jobs model, it is shown
that the findings presented for the single job model are not directly applicable
for the multiple jobs model. Therefore, a new expression for evaluation of the
LoC is derived, and a method that finds the optimal assignment of the number
of checkpoints for each job that maximizes the LoC is presented. Chapter 5
discusses RRC optimization with respect to the guaranteed completion time
GCTδ. Definition and properties of GCTδ along with an optimization method
that finds the optimal number of checkpoints that minimizes the GCTδ is pre-
sented in this chapter. Chapter 6 summarizes Part I.

In Part II, optimization of RRC while assuming non-equidistant checkpoint-
ing is discussed. Part II consists of three chapters, namely Chapter 7–9. Chap-
ter 7 focuses on optimization of RRC with respect to AET. Two approaches
that estimate the error probability over time (during the execution of the job),
and based on the estimates adjust the checkpointing scheme with the goal to
reduce the AET are presented in Chapter 7. Chapter 8 studies the impact
of non-equidistant checkpointing on the LoC. Mathematical expression for
evaluation of the LoC with respect to a given deadline is derived, and an opti-
mization method that aims to find the optimal distribution of a given number
of checkpoints that maximizes the LoC is presented. Chapter 9 summarizes
Part II.

Finally, Part III concludes the thesis where in Chapter 10 conclusions and
future work are presented.



2
Preliminaries

This chapter covers the preliminary concepts and assumptions that are used
throughout the thesis. The chapter is organized in three sections. First, we
provide the system model, i.e. the architecture of a system that enables the
usage of RRC. Second, we present the fault model and we present the fault
assumptions regarding occurrence of soft errors. Finally, we define some key
terms and notations that are later used in the thesis.

2.1. SYSTEM MODEL

The system model is presented in Figure 2.1. The architecture shown in Fig-
ure 2.1 consists of two processing nodes (processors), a shared memory and
a Compare & Control Unit (CCU) connected through a shared bus. In such
architecture RRC is performed as follows. Each job is duplicated and con-
currently executed on both processing nodes. At a given time (a checkpoint
request), the execution of the job is interrupted and a checkpoint is taken at
each node. The checkpoint includes sufficient information such that the job
can be resumed from that particular point. We consider a checkpoint to be
represented as the state (status) of a processing node. Once the states of both
nodes are obtained, each processing node sends its state to the CCU. The CCU
compares the states from both processing nodes. If the states match, i.e. no
errors are detected, the CCU stores one of the states in memory and signals
to the processing nodes to continue with the execution of the job. If the states
do not match, i.e. an error is detected, the CCU loads the most recently saved
state from memory and sends it to both processing nodes forcing them to
roll-back the execution of the job.

15
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Figure 2.1.: System model

2.2. FAULT MODEL AND FAULT ASSUMPTIONS

For the fault model, we consider that soft errors (faults) that occur in the
processing nodes cause erroneous outcome of the undergoing computation,
i.e. bit-flips in the result produced after some computation. The fault model
considers the occurrence of soft errors as an independent event. This means
that the occurrence of a soft error does not depend on previous soft errors
that have occurred. Further, the fault model considers that the probability
Pt that no errors occur in a processing node within an interval of length t is
given. This model is not limited to the number of faults that can occur within
a time interval, which is an assumption that has been used in other research
studies [67], [56], [77].

Due to the fact that the occurrence of soft errors is an independent event,
the model allows to compute the probability Pτ that no errors occur within
any interval of length τ, by using the following expression:

Pτ = P
τ
t

t (2.1)

Observe in Eq. (2.1) that to evaluate Pτ it is necessary that Pt is provided,
where Pt represents the probability that no errors occur in a processing node
within an interval of length t.

Next we elaborate on the fault assumptions that are used in the thesis.
While soft errors can occur in any part of a computer system, i.e. memories,

communication controllers, buses, etc., in this thesis, we address soft errors
that occur only in the processing nodes, and we assume that errors occurring
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elsewhere in the system are handled with conventional techniques for fault
tolerance, e.g. error-correction codes (ECC) for handling soft errors that oc-
cur in memory. Further, we assume that each soft error provides a unique
erroneous outcome. By using this assumption, if two soft errors occur, one in
each processing node, the states of both processing nodes will differ due to
that each soft error has caused a different erroneous outcome.

2.3. DEFINITIONS AND NOTATIONS

In this section, we define some useful terms related to RRC.
Checkpoint setup overhead is defined as the time needed for a processing

node to prepare the contents of a checkpoint that is to be taken. In other
words, the checkpoint setup overhead represents the time needed to generate
a checkpoint which usually involves operations such as extracting the values
of all registers in a processing node. We denote the checkpoint setup overhead
with τs.

Bus communication overhead is defined as the time needed for a check-
point to be transferred over the shared bus. A checkpoint can be either trans-
ferred from a processing node to the CCU, or from the CCU to one of the
processing nodes. Since in the system model a shared bus is used, only one
processing node at a time can exchange checkpoints with the CCU. We denote
the bus communication overhead with τb.

Comparison overhead is defined as the time needed for the CCU to com-
pare the checkpoints received from the processing nodes. After comparison,
the CCU sends the appropriate checkpoint to both processing nodes. In case
the checkpoints from both processing nodes match, the checkpoint is stored
in memory and it is sent to both nodes. In case the checkpoints from the
processing nodes do not match, the CCU retrieves the most recently stored
checkpoint from memory and sends it to both nodes. Observe that the opera-
tions done by the CCU to load or store a checkpoint in memory are considered
as a part of the comparison overhead. We denote the comparison overhead
with τc.

Checkpoint unload overhead is defined as the time needed to extract (un-
load) the information from a checkpoint into the registers of a processing
node. This overhead occurs after both processing nodes have received the
checkpoint sent from the CCU. We denote the checkpoint unload overhead
with τu.

Finally, we define the checkpointing overhead as the total time that is
needed to perform all the necessary checkpoint operations. The checkpoint-
ing overhead is a cumulative overhead that takes into account the checkpoint
setup, the bus communication, the comparison, and the checkpoint unload
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Figure 2.2.: Illustration of checkpointing overhead

overhead. We denote the checkpointing overhead with τ. Figure 2.2 illus-
trates the checkpointing overhead. As shown in Figure 2.2, at a checkpoint
request (the time when a checkpoint is to be taken) both processing nodes
spend some time to prepare the checkpoint, i.e. checkpoint setup overhead τs.
Once the checkpoint is ready, one at a time, each processing node transfers
the checkpoint over the shared bus, i.e. bus communication overhead τb. Af-
ter receiving the checkpoints from both processing nodes, the CCU compares
the checkpoints and depending on the comparison, it retrieves the checkpoint
that should be sent to both processing nodes, i.e. comparison overhead τc.
The CCU sends the corresponding checkpoint to both processing nodes, one
checkpoint at a time for each node, i.e. bus communication overhead τb. Fi-
nally, after both processing nodes have received the checkpoint from the CCU,
each processing node extracts the information from the checkpoint and loads
this information into its registers, i.e. checkpoint unload overhead τu. The
following expression applies to the checkpointing overhead:

τ = τs + 2τb + τc + 2τb + τu = τs + 4τb + τc + τu (2.2)

In RRC, the execution of a job is interleaved with the checkpoint operations,
i.e. checkpointing overhead is added each time a checkpoint request is issued.
Hence, the total execution of a job consists of two parts: useful execution,
where the job is executed, and redundant execution, where checkpointing op-
erations are performed. We define the term execution segment to refer to the
portion of job’s execution (useful execution) from the moment when a job is
resumed (or started) until a checkpoint request is issued. Thus, the execution
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Figure 2.3.: Graphical presentation of RRC scheme

of a job when RRC is employed can be seen as executing a set of execution
segments, where each execution segment is followed by a checkpointing over-
head. This is illustrated in Figure 2.3. In Figure 2.3, we show the execution
of a job when RRC is used with nc checkpoints. Using RRC with nc check-
points results in nc different execution segments which are denoted with ESi
where i ∈ [1, nc]. As shown in Figure 2.3, the first execution segment ES1
is executed on both processing nodes P1 and P2. After the execution of ES1,
checkpoints are taken from both processing nodes and the checkpoints are
compared against each other. This results in a checkpointing overhead which
follows the execution of ES1 (observe τ follows ES1 in Figure 2.3). Next, as-
suming that no errors have occurred, the job proceeds with the execution of
the next execution segment ES2. After the execution of ES2 another check-
pointing overhead τ is added. These steps are repeated until all the execution
segments are executed, i.e. the job completes after executing ESnc which is
followed by a checkpointing overhead τ. While in Figure 2.3 we showed the
execution of a job when RRC is used and no errors occur, in practice, soft
errors can occur at any point in time.

Whenever a soft error occurs during the execution of an execution segment,
the execution segment is re-executed on both processing nodes. Observe that
it is possible that a soft error occurs in only one processing node during the ex-
ecution of an execution segment. In such scenario, at the end of the execution
segment, i.e. at a checkpoint request, one of the processing node produces the
correct result, while the other processing node produces an erroneous out-
come. However, during the comparison performed by the CCU, this error
will be detected and re-execution of the execution segment will be enforced
on both processing nodes, i.e. re-execution of the execution segment will be
enforced also on the processing node that has produced the correct outcome.
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Figure 2.4.: Illustration of successful and erroneous execution
segments

In case that soft errors occur in both processing nodes during the execution of
an execution segment, following the assumption that each soft error produces
a unique erroneous outcome, after the execution of the execution segment,
during the comparison, the checkpoints from both processing nodes will dif-
fer, meaning that the errors will be detected, and therefore re-execution of the
execution segment will be enforced on both processing nodes.

We refer to an execution segment as an erroneous execution segment if soft
errors have occurred during the execution in at least one of the two processing
nodes, and we define a successful execution segment as an execution segment
where no errors have occurred in any of the processing nodes. Illustration of
successful and erroneous execution segments is depicted in Figure 2.4. As
shown in Figure 2.4, the first attempt to execute the first execution segment
ES1 results in an erroneous execution segment as errors occur in both process-
ing nodes. Using the assumption that each error results in a unique erroneous
outcome, the checkpoints from both processing nodes will be different, and
therefore ES1 has to be re-executed. During the re-execution of ES1, no errors
occur in any of the processing nodes, and this results in a successful execution
segment. Since ES1 is successfully executed, the job proceeds with the next
execution segment ES2. The first attempt to execute ES2 results in an erro-
neous execution segment as one error occurs in the processing node P2, and
therefore ES2 has to be re-executed. During the re-execution of ES2, no errors
occur in any of the processing nodes which results in a successful execution
segment. Next, the job proceeds with the execution of the next execution seg-
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ment ES3. The first attempt to execute ES3 results in an erroneous execution
segment as one error occurs in the processing node P1. In the second attempt
to execute ES3, no errors occur in any of the processing nodes which results
in a successful execution segment.





Part I
Equidistant Checkpointing
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In this part, we discuss optimization of RRC while assuming that the check-
points are evenly distributed throughout the execution of the job, i.e. equidis-
tant checkpointing. In equidistant checkpointing, all execution segments are
of equal length. For equidistant checkpointing, we discuss three optimiza-
tion objectives for RRC: (1) Average Execution Time, (2) Level of Confidence, and
(3) Guaranteed Completion Time. A separate chapter is dedicated to each of
the three optimization objectives. For each optimization objective, the prob-
lem formulation is provided and a solution is proposed. Each solution is
validated with some experimental results. Finally, a summary of the part is
provided.





3
Average Execution Time

While RRC is able to cope with soft errors, it introduces a time overhead that
impacts the execution time. The time overhead depends on the number of
checkpoints that are taken during the execution of a job. In this chapter, we
provide a mathematical framework to calculate the optimal number of check-
points that results in the minimal average execution time (AET). The chapter
is organized as follows. We provide the problem formulation in Section 3.1.
Derivation of a mathematical expression for calculating the AET of a job when
RRC is employed is presented in Section 3.2. In Section 3.3, we provide math-
ematical formulas for calculating (1) the optimal number of checkpoints and
(2) the minimal AET. Finally, experimental results are presented in Section 3.4.

3.1. PROBLEM FORMULATION

In this chapter we discuss the following problem. Given the following inputs:

• a job with a processing time T, i.e. the fault-free (error-free) execution
time of a job when RRC is not employed,

• a probability Pt the that no soft errors occur in a processing node within
an interval of length t,

• a checkpoint setup overhead τs,

• a bus communication overhead τb,

• a comparison overhead τc, and

• a checkpoint unload overhead τu,

compute the optimal number of checkpoints nc that minimizes the AET.

27
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3.2. CALCULATING THE AVERAGE EXECUTION TIME

In this section, we elaborate on how to calculate the AET for a job that employs
RRC. The AET depends on multiple parameters among which one important
parameter is the number of checkpoints that are taken during the execution
of the job. While the AET depends on multiple parameters (for example, the
processing time T), in the stated problem formulation we assume that all other
parameters, except for the number of checkpoints, are given. We denote the
number of checkpoints with nc, and we assume that equidistant checkpointing
is used. In equidistant checkpointing, all execution segments (see definition
in Chapter 2) are of the same length. Provided that the processing time T of
the job is given, i.e. the time needed for a job to complete when no errors
occur during the execution and RRC is not employed, and considering that
nc checkpoints are to be used, we calculate the length of a single execution
segment tES as expressed in Eq. (3.1).

tES =
T
nc

(3.1)

Due to the fact that soft errors can occur during the execution of an exe-
cution segment, we need to evaluate the probability of a successful execution
segment (see the definition of successful execution segment in Chapter 2). In
our problem formulation, given is the probability Pt that no errors occur in a
processing node within an interval of length t. Considering the fault model
presented in Chapter 2, we first compute the probability PT that no errors oc-
cur in a processing node within an interval of length equal to the processing
time of the job T. The probability PT is computed according to Eq. (3.2).

PT = Pt
T
t (3.2)

Next, we compute the probability p of an error-free execution segment by
using Eq. (3.3). Important to note is that p denotes the probability of an
error-free execution segment which is not equivalent to a successful execu-
tion segment. While an error-free execution segment refers to an execution
segment that has been executed on one processing node and no errors have
occurred during the execution, successful execution segment refers to an ex-
ecution segment that has been successfully (without any errors) executed on
both processing nodes. To compute the probability p of an error-free execu-
tion segment we use the probability PT , and p is evaluated as:

p = PT
tES

T = PT
T/nc

T = PT
1

nc (3.3)

Finally, to compute the probability of a successful execution segment Pε, we
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Figure 3.1.: Detailed execution of a job employing RRC with nc
checkpoints

use the expression presented in Eq. (3.4).

Pε = p2 = PT
2

nc =
nc
√

PT
2 (3.4)

As shown in Eq. (3.4), the probability of a successful execution segment is
calculated as the joint probability that both processing nodes have executed
an error-free execution segment, i.e. no errors have occurred in any of the
processing nodes during the execution of the execution segment. Having the
expression for computing Pε, we compute the probability of an erroneous
execution segment, denoted with Qε, by using Eq. (3.5).

Qε = 1− Pε (3.5)

Considering that nc checkpoints are used implies that the job is divided
into nc different execution segments. In such case, the job can complete only
after nc successful execution segments have been executed. However, due to
errors, a number of erroneous execution segments might have been executed,
and each erroneous execution segment must be re-executed. An illustration
of the execution of a job employing RRC, assuming that nc checkpoints are
used, is depicted in Figure 3.1. As illustrated in Figure 3.1, an error has
occurred during the execution of the execution segment ES2, and therefore
this execution segment is re-executed.

In general, each of the nc different execution segments must be executed
at least once. However, due to errors, an execution segment may need to
be executed several times. Therefore, we first need to compute the expected
number of times an execution segment has to be executed. For that reason, we
make use of a random variable X which represents the number of times an
execution segment has to be executed. The set of values that can be assigned
to the random variable X is S = [1, ∞), and this is because an execution
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segment must be executed at least once, but may need to be executed infinite
number of times. Further, for the random variable X there exists a probability
distribution function P(X = k) which for each value k in the set S represents
the probability that the actual value of the random variable X is equal to
k. Relating this to our particular case, we need to identify the probability
distribution function that provides the probability that an execution segment
has to be executed a number of times.

We derive the probability distribution function P(X = k) step by step. In
case an execution segment has to be executed once, the only alternative is
that the executed execution segment must have been a successful execution
segment. Since we have already introduced the probability Pε of a successful
execution segment, we evaluate P(X = 1) as Pε. In case an execution seg-
ment has to be executed twice, it means that the execution segment has to be
re-executed once since an error has occurred during the first execution. How-
ever, no errors have occurred during the re-execution (the second execution).
Thus, if an execution segment has been executed twice, the first execution has
resulted in an erroneous execution segment, while the second execution has
resulted in a successful execution segment. Therefore, P(X = 2) can be calcu-
lated as the probability of having one erroneous and one successful execution
segment, i.e. P(X = 2) = (1− Pε) × Pε. In the general case where an exe-
cution segment has to be executed k number of times, this means that in the
first k− 1 executions of the execution segment errors have occurred (k− 1 er-
roneous execution segments have been executed), and only the last execution
has been successful (the last execution segment has been a successful execu-
tion segment). Hence, we calculate the probability that an execution segment
has been executed k number of times as the joint probability of having k− 1
erroneous execution segments and a single successful execution segment, and
the expression is presented in Eq. (3.6).

P(X = k) = (1− Pε)
k−1 × Pε (3.6)

Finally, computing the expected number of times an execution segment has
to be executed is the same as computing the expected value for the random
variable X, which is given in Eq. (3.7).

E[X] = ∑
k∈S

k× P(X = k) (3.7)

By replacing P(X = xi) (Eq. (3.6)) in Eq. (3.7), we obtain a closed-form
expression to compute the expected number of times an execution segment
has to be executed, denoted with E[X], and this expression is presented in
Eq. (3.8).
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E[X] =
∞

∑
k=1

k× (

Qε︷ ︸︸ ︷
1− Pε)

k−1 × Pε =

= Pε ×
d

dQε

(
∞

∑
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Qk
ε

)
=

= Pε ×
d

dQε

(
Qε

1−Qε

)
=
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1−Qε
+ Pε ×

Qε

(1−Qε)2 =

= 1 +
Qε

1−Qε
=

1
1−Qε

=
1
Pε

(3.8)

Let us examine Eq. (3.8) in detail. The first part of Eq. (3.8) is shown in
Eq. (3.9). The execution of an execution segment can either be successful,
or erroneous. In the case of a successful execution, the execution of the job
proceeds with the following execution segment. In the case of an erroneous
execution, the execution of the job proceeds by re-executing the erroneous
execution segment. The re-execution of the erroneous execution segment can
be either successful or erroneous. The re-execution proceeds until the outcome
of the latest re-execution has been identified as successful. Eq. (3.9) captures
all possible outcomes. In Figure 3.2, we illustrate the possible outcomes when
executing an execution segment (ESi), and we show the expressions, for each
possible outcome, that contribute to obtaining E[X]. For k = 1, the equation
in Figure 3.2 shows the expression for executing the execution segment ESi
only once, while for k = j the equation shows the expression when ESi is
executed j times. As all possible outcomes may occur, a sum over all cases is
required, and such a sum results in the expression given in Eq. (3.9).

E[X] =
∞

∑
k=1

k× (

Qε︷ ︸︸ ︷
1− Pε)

k−1 × Pε (3.9)

Next, we detail the second equilibrium sign in Eq. (3.8). By using the rule
to calculate derivative of power functions, we rewrite the expression k×Qk−1

ε

as the derivative of Qk
ε, i.e. d

dQε

(
Qk

ε

)
, and this is presented in Eq. (3.10).
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ESi,k : k-th execution of the i-th execution segment (ESi)

k = 1 ESi,1 1× Pε

k = 2 ESi,1 ESi,2 2× (1− Pε)× Pε

k = 3 ESi,1 ESi,2 ESi,3 3× (1− Pε)
2 × Pεqqq

k = j ESi,1 ESi,2 ESi,3 q q q ESi,j j× (1− Pε)
j−1 × Pε

Figure 3.2.: Illustration of possible outcomes when executing an
execution segment

∞

∑
k=1

k× (

Qε︷ ︸︸ ︷
1− Pε)

k−1 × Pε =

= Pε ×
∞

∑
k=1

k×Qk−1
ε =

=

{
∞

∑
k=1

k×Qk−1
ε =

∞

∑
k=1

d
dQε

(
Qk

ε

)}
=

= Pε ×
∞

∑
k=1

d
dQε

(
Qk

ε

)
(3.10)

By further applying the sum rule in differentiation, we rewrite the expres-

sion ∑∞
k=1

d
dQε

(
Qk

ε

)
in Eq. (3.10) with d

dQε

(
∑∞

k=1 Qk
ε

)
, in which case we get

the same expression as presented in the second equilibrium sign in Eq. (3.8).

∞

∑
k=1

k× (

Qε︷ ︸︸ ︷
1− Pε)

k−1 × Pε =

= Pε ×
∞

∑
k=1

k×Qk−1
ε =
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=

{
∞

∑
k=1

k×Qk−1
ε =

∞

∑
k=1

d
dQε

(
Qk

ε

)}
=

= Pε ×
∞

∑
k=1

d
dQε

(
Qk

ε

)
=

= Pε ×
d

dQε

(
∞

∑
k=1

Qk
ε

)
(3.11)

Eq. (3.12) details the third equilibrium sign in Eq. (3.8). The term ∑∞
k=1 Qk

ε

represents a convergent geometric sum, because the common ratio, i.e. the
ratio between two successive terms from the sum, is lower than one. For the
given geometric sum, the common ratio is defined as Qε

k+1

Qε
k = Qε. Since Qε

represents the probability of an erroneous execution segment, by definition
the following inequality holds |Qε| < 1. The result of a convergent geometric
sum ∑∞

k=0 Qk
ε is equal to 1

1−Qε
.

Pε ×
d

dQε

(
∞

∑
k=1

Qk
ε

)
=

= Pε ×
d

dQε

(
Qε ×

∞

∑
k=1

Qk−1
ε

)
=

= Pε ×
d

dQε

(
Qε ×

∞

∑
k=0

Qk
ε

)
=

= Pε ×
d

dQε

(
Qε ×

1
1−Qε

)
=

= Pε ×
d

dQε

(
Qε

1−Qε

)
(3.12)

Eq. (3.13) details the final part of Eq. (3.8). To obtain the expression in
Eq. (3.13) we need to calculate the derivative of the term Qε

1−Qε
, which is pre-

sented as a product of two functions, i.e. f1 = Qε and f2 = 1
1−Qε

. The deriva-

tives of these functions are computed as d
dQε

f1 = 1 and d
dQε

f2 = 1
(1−Qε)2 .

We calculate the derivative of the term Qε
1−Qε

by applying the chain rule, and
thus we obtain the expression in Eq. (3.13) which provides the same result as
presented in Eq. (3.8).
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Pε ×
d

dQε

(
Qε

1−Qε

)
=

= Pε ×
d

dQε
(Qε)×

1
1−Qε

+

Pε ×Qε ×
d

dQε

(
1

1−Qε

)
=

= Pε × 1× 1
1−Qε

+ Pε ×Qε ×
1

(1−Qε)2 =

= Pε ×
1

1−Qε
+ Pε ×

Qε

(1−Qε)2 =

= {Pε = 1−Qε} =
1−Qε

1−Qε
+

(1−Qε)×Qε

(1−Qε)2 =

= 1 +
Qε

1−Qε
=

1−Qε + Qε

1−Qε
=

=
1

1−Qε
=

1
Pε

(3.13)

The expression that calculates the expected number of times an execution
segment has to be executed allows to calculate the expected (average) time that
is spent only on execution of execution segments. We denote this expected
time as TES, and we provide the expression that calculates TES in Eq. (3.14).

TES = nc × tES × E[X] =

=
nc × tES

Pε
=

nc × tES
p2 =

=
T

nc
√

PT
2 , 0 < PT < 1 (3.14)

Eq. (3.14) takes into account that a total of nc different execution segments
are to be executed, where each of these execution segments has the length
tES, and further each execution segment can be executed several times (E[X]).
Important to note is that TES does not include the time spent on performing
checkpointing operations which introduce an extra time overhead. Therefore,
next we show how to calculate the average time that is spent on performing
the checkpointing operations, denoted with TCO.

In Figure 3.1, we have already shown that after an execution segment is ex-
ecuted, no matter if errors have occurred or not during the execution, a check-
pointing overhead is added. The checkpointing overhead includes: the time
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to prepare the checkpoints (τs, checkpoint setup overhead), the time to trans-
fer the checkpoints over the shared bus (τb, bus communication overhead),
the time to compare the checkpoints (τc, comparison overhead), and the time
to load the checkpoints into the registers of the processing nodes (τu, check-
point unload overhead). According to the problem formulation presented in
Section 3.1, τs, τb, τc, and τu are known in advance, and they all depend on
the system’s parameters. As these overheads are added after the execution of
each execution segment, we calculate TCO by using the expression presented
in Eq. (3.15).

TCO = nc × E[X]× (τs + τc + τu + 4× τb) =

=
nc

Pε
× (τs + τc + τu + 4× τb) =

=
nc

p2 × (τs + τc + τu + 4× τb) =

=
nc

nc
√

PT
2 × (τs + τc + τu + 4× τb) , 0 < PT < 1 (3.15)

Finally, the AET for a job employing RRC is the sum of the average time
spent only on execution of execution segments TES and the average time
spent only on performing checkpointing operations TCO. Having this said,
we present the expression for computing the AET in Eq. (3.16).

AET =
T

nc
√

PT
2 +

nc
nc
√

PT
2 × (τs + τc + τu + 4× τb) (3.16)

Given the expressions for TES, TCO, and AET in Eq. (3.14), Eq. (3.15) and
Eq. (3.16), respectively, for the following set of inputs:

• T = 500 time units (t.u.), processing time of a job

• Pt = 0.9, probability that no errors occur in a processing node within
an interval of length 100 t.u.

• τs = 3 t.u., checkpoint setup overhead

• τb = 3 t.u., bus communication overhead

• τc = 3 t.u., comparison overhead

• τu = 2 t.u., checkpoint unload overhead

we plot the graphs for TES, TCO, and AET as functions of nc.
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Figure 3.3.: TES, average time that is spent only on execution of
execution segments

The plots for TES, TCO, and AET are presented in Figure 3.3, Figure 3.4 and
Figure 3.5, respectively. In Figure 3.3, the horizontal axis represents the num-
ber of checkpoints nc, while the vertical axis represents the average time spent
only on execution of execution segments TES. As illustrated in Figure 3.3, TES
decreases as the number of checkpoints increases. The reason for this comes
from the fact that when many checkpoints are used, the execution segments
become shorter. For shorter execution segments the probability of a success-
ful execution segment Pε (see Eq. (3.4)) increases (converges to one) and due
to this, the expected number of times that an execution segment has to be
executed E[X], which is the inverse of Pε (see Eq. (3.8)) decreases (converges
also to one). Since TES is computed as the product of the processing time T
and E[X], TES decreases (converges to T) when E[X] decreases (converges to
one), i.e. when nc is larger. However, for lower values of nc, the execution
segments become larger and therefore, Pε decreases. Since E[X] is inversely
proportional to Pε, E[X] increases as Pε decreases. As E[X] increases, TES also
increases due to the fact that TES is proportional to E[X]. Thus, to reduce TES
it is preferable to use a high number of checkpoints (see the decreasing trend
of TES with respect to nc in Figure 3.3).

Figure 3.4 shows the average time spent only on performing the check-
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Figure 3.4.: TCO, average time that is spent only on performing
checkpointing operations
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Figure 3.5.: AET, average execution time of a job employing RRC
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pointing operations TCO as a function of the number of checkpoints nc. The
horizontal axis represents the number of checkpoints nc, while the vertical
axis represents TCO. As illustrated in Figure 3.4, TCO increases with nc. The
reason that TCO increases with nc is due to that taking more checkpoints in-
creases the time overhead. Therefore, to reduce TCO it is preferable to use a
low number of checkpoints (see the increasing trend of TCO with respect to nc
in Figure 3.4).

In Figure 3.5, we show the AET (the vertical axis) as a function of the num-
ber of checkpoints nc (the horizontal axis). As shown in Figure 3.5, the AET
decreases as nc increases up to a certain breaking point. However, increasing
nc beyond the breaking point increases the AET. This clarifies that there exists
an optimal number of checkpoints that minimizes the AET. Obtaining the ex-
pressions for calculating the optimal number of checkpoints and the minimal
AET is discussed in the following section.

3.3. THE OPTIMAL NUMBER OF CHECKPOINTS

Before we proceed with the steps required to obtain the optimal number of
checkpoints, let us first discuss the reason why such optimal number of check-
points exists. For this, let us first focus on the time overhead. Reducing the
time overhead reduces the AET, which is our goal.

The time overhead can be divided into two parts: one part is the overhead
caused by performing the checkpointing operations, and the other part is
the overhead caused by re-executing the erroneous execution segments. Both
parts are tightly related to the number of checkpoints. When the number of
checkpoints is high, the overhead due to checkpointing increases because the
checkpointing operations are performed more frequently. At the same time,
when the number of checkpoints is high, the overhead due to re-execution
of erroneous execution segments is reduced because the execution segments
are shorter (expressed in Eq. (3.1)). On the other hand, when the number of
checkpoints is low, the overhead due to checkpointing decreases because the
checkpointing operations are performed less frequently. However, when the
number of checkpoints is low, the overhead due to re-execution of erroneous
execution segments increases because the execution segments are longer.

We explain this with an example. Assume a job with a processing time
T = 1000 t.u., a checkpointing overhead τ = 50 t.u., and assume that we need
to select between these two alternatives: (1) use a single checkpoint (nc = 1),
and (2) use five checkpoints (nc = 5). For the first alternative (nc = 1), the
length of the execution segment (only one segment for this alternative) is
the same as the processing time of the job, i.e. tES = 1000 t.u., while for
the second alternative (nc = 5), the length of the execution segments (five
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execution segments for this alternative) is tES = 200 t.u. For both alternatives,
we compare the completion time, i.e. the time needed for the job to complete,
for the following two scenarios: (1) no errors occur during the execution of
the job, and (2) a single error occurs during the execution of the job.

For the first scenario, where no errors occur during the execution of the job,
the completion time is computed as follows:

• for the first alternative (nc = 1), the job completes after executing
a single execution segment, followed by a single checkpointing over-
head. The completion time is evaluated as 1000× 1 + 50× 1 = 1050 t.u.

• for the second alternative (nc = 5), the job completes after executing five
execution segments each followed by a checkpointing overhead, and
hence the completion time is evaluated as 200× 5 + 50× 5 = 1250 t.u.

Important to note is that for this scenario, the only overhead that is added
is the overhead caused by performing the checkpointing operations. Since in
the second alternative the checkpointing operations are performed five times
(nc = 5), the completion time for this alternative is higher when compared
against the completion time for the other alternative (nc = 1), where the
checkpointing operations are performed only once. From this scenario, we
draw the conclusion that an alternative with a lower number of checkpoints
provides lower time overhead, and therefore lower completion time.

For the second scenario, where a single error occurs during the execution
of the job, the completion time is computed as follows:

• for the first alternative (nc = 1), the single execution segment must be
re-executed since an error has occurred during the execution, and there-
fore the completion time is evaluated as 1000× 2 + 50× 2 = 2100 t.u.

• for the second alternative (nc = 5), only one execution segment must be
re-executed, and therefore six execution segments are executed in total.
The completion time is evaluated as 200× 6 + 50× 6 = 1500 t.u.

For this scenario, the time overhead consists of two parts: (1) the overhead
caused by performing the checkpointing operations, and (2) the overhead
caused by re-executing the erroneous execution segments. For the first al-
ternative (nc = 1), the time overhead is 1100 t.u. where the overhead of
performing the checkpointing operations contributes with 50× 2 = 100 t.u.,
and the overhead due to re-execution of the single erroneous execution seg-
ment contributes with 1000 t.u. For the second alternative (nc = 5), the time
overhead is 500 t.u. where the overhead of performing the checkpointing
operations contributes with 50 × 6 = 300 t.u., and the overhead due to re-
execution of the erroneous execution segment contributes with 200 t.u. The
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reason that the completion time for the second alternative (nc = 5) is lower
than the completion time obtained for the first alternative (nc = 1) is because
the time overhead due to re-execution of erroneous execution segments is re-
duced when the number of checkpoints is higher. Hence, from this scenario,
we conclude that an alternative with a higher number of checkpoints can con-
siderably reduce the time overhead, and therefore the completion time can be
reduced (the completion time when nc = 5 is 1250 t.u., while the completion
time when nc = 1 is 2100 t.u.).

The previously discussed example points out that there is a trade-off that is
related to the overhead caused by performing the checkpointing operations,
and the overhead caused due to re-execution of erroneous execution segments.
To clarify this trade-off, we examine Figure 3.3 and Figure 3.4. As can be seen
from Figure 3.3, increasing the number of checkpoints reduces the average time
that is spent only on execution of execution segments TES and this is due to
the fact that the length of the execution segments becomes shorter when the
number of checkpoints is higher. Observe that TES includes also the time that
is spent on re-execution of erroneous execution segments, which is part of
the time overhead. On the other hand, one can observe from Figure 3.4, that
increasing the number of checkpoints increases the average time that is spent
only on performing checkpointing operations TCO, and this is due to the fact
that the checkpointing operations will be performed more frequently when
the number of checkpoints is larger. This trade-off motivates the existence of
an optimal number of checkpoints that minimizes the AET, and next we show
how to compute the optimal number of checkpoints and the minimal AET.

By closely observing the expression for the AET, given in Eq. (3.16), one
notes that AET depends on multiple parameters including the number of
checkpoints nc. Since in our problem formulation we consider that all the
other parameters, except nc, are given, we can consider that AET is a single-
variable function of nc. To find the optimum (minimum) of this function we
need to compute the first derivative with respect to nc and set it to be equal
to zero.

The first derivative of AET is provided in Eq. (3.17).

dAET
dnc

=

=
d

dnc

 T
nc
√

PT
2 +

τ︷ ︸︸ ︷
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nc
√
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2

 =
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− 2
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)
=
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(PT
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2
n2

c
× (ln PT)× PT
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2
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c
× (ln PT)× PT

− 2
nc =
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(
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2
n2

c
× (ln PT)

)
(3.17)

To obtain the number of checkpoints that finds the optimum of AET, we
need to find the roots of the equation presented in Eq. (3.17). This is given in
Eq. (3.18)

0 = PT
− 2

nc (τ + (T + τ × nc)×
2
n2

c
× (ln PT)) =
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2
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c
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=
τ
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2
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c
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=
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c
(ln PT)
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= n2
c + 2× (ln PT)× nc +

2× T × (ln PT)

τ
=

= (nc + (ln PT))
2 − (ln PT)

2 +
2× T × (ln PT)

τ
⇔

ns
c = −(ln PT) +

√
(ln PT)2 − 2× T × (ln PT)

τ
=

= −(ln PT) +

√
(ln PT)2 − 2× T × (ln PT)

τs + τc + τu + 4× τb
(3.18)

The expression provided in Eq. (3.18) evaluates the stationary point ns
c for

which the function AET reaches its optimum. To ensure that AET reaches
its minimum in the stationary point ns

c, it is necessary to examine the second
derivative of AET. If the second derivative, evaluated at the stationary point
ns

c, is positive, then the AET reaches its minimum at ns
c.

The second derivative of AET is presented in Eq. (3.19). As can be seen
from Eq. (3.19), whenever nc is positive the second derivative is always eval-
uated as positive. To justify the former statement, let us closely inspect the
expression given in Eq. (3.19). The expression presented in Eq. (3.19) rep-
resents a product of two terms. The first multiplicand is always negative
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because it involves multiplication of the term ln PT , which is negative due to
the fact that 0 < PT < 1. The second multiplicand of Eq. (3.19), i.e. the term in
brackets, consists of three terms, where two of the terms are added together
and the third term is subtracted. The terms that are added together are ob-
tained after a multiplication with (ln PT), thus each one of them is negative,
hence the sum of these two terms is also negative. The third term, i.e. nc × T
is positive, whenever nc is positive. Subtracting a positive term, i.e. nc × T,
from a negative term, i.e. the sum of the other two terms, results in a negative
term, and therefore the second multiplicand in Eq. (3.19) is negative (under
the condition that nc is positive). Finally, we conclude that the second deriva-
tive of AET is evaluated as positive because it is obtained as a product of two
negative terms, under the condition that nc is positive. Since the stationary
point ns

c is evaluated as a positive value, evaluating the second derivative of
AET at the stationary point will provide a positive value, which means that
the function AET reaches its minimum in the stationary point.

d2 AET
dn2

c
=

4× PT
− 2

nc × (ln PT)

n4
c

× (T × (ln PT) + τ × nc × (ln PT)− nc × T)

(3.19)

Out of this discussion we conclude that the optimal number of checkpoints
that results in the minimal AET can be obtained by using the expression given
in Eq. (3.18). For clarity, we denote with n∗c the optimal number of checkpoints
that minimizes the AET, and we re-write Eq. (3.18) as follows:

n∗c = −(ln PT) +

√
(ln PT)2 − 2× T × (ln PT)

τ
(3.20)

Finally, the expression to calculate the optimal number of checkpoints n∗c
(Eq. (3.20)) allows us to calculate the minimal AET. We denote the minimal
AET with AET∗ and compute it according to the expression presented in
Eq. (3.21).

AET∗ =
T

n∗c
√

PT
2 +

n∗c
n∗c
√

PT
2 × (τs + τc + τu + 4× τb) (3.21)

Observe that according to Eq. (3.20) n∗c may be evaluated as a real number.
However, if there is a practical limitation that the optimal number of check-
points should be an integer, then we need to examine AET for the lower and
the upper integer bound of n∗c . This is needed because rounding n∗c to the
closest integer number does not always result in the minimal AET.
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Scenario T τ PT

A 1000 t.u. 100 t.u. 0.9
B 1000 t.u. 10 t.u. 0.9
C 1000 t.u. 100 t.u. 0.7
D 1000 t.u. 10 t.u. 0.7

Table 3.1.: Input scenarios

3.4. EXPERIMENTAL RESULTS

The purpose of the results presented in this section is to show that the AET
varies with the number of checkpoints, and to show that the optimal num-
ber of checkpoints that results in the minimal AET can be obtained by using
the expression provided in Eq. (3.20). For that reason, we present results for
the input scenarios summarized in Table 3.1. For each input scenario, the
following three parameters are given: the processing time of the job T, the
checkpointing overhead τ and the error-free probability PT that no errors oc-
cur in a processing node within an interval of length T.

The input scenarios in Table 3.1 were chosen such that the impact of dif-
ferent error-free probabilities and different ratios T

τ on the AET can be ex-
plored. For that reason, we have considered two different error-free proba-
bilities, namely PT = 0.9 used in Scenario A and B, and PT = 0.7 used in
Scenario C and D, and two different ratios T

τ , namely T
τ = 10 used in Sce-

nario A and C, and T
τ = 100 used in Scenario B and D.

For the given input scenarios, we calculate the AET, using the expression in
Eq. (3.16), for different number of checkpoints. Tables 3.2–3.5 show the AET
obtained for nc ∈ [1, 20] for the given input scenarios A–D, respectively. As
can be seen in Tables 3.2–3.5, the AET varies with the number of checkpoints,
and there exists an optimal number of checkpoints that minimizes the AET.

Using Eq. (3.18), we compute the optimal number of checkpoints that re-
sults in the minimal AET for each of the presented scenarios. In such case,
the following results are obtained:

• n∗c = 1.561 for Scenario A,

• n∗c = 4.697 for Scenario B,

• n∗c = 3.051 for Scenario C, and

• n∗c = 8.810 for Scenario D.

If only integer values are allowed for the number of checkpoints, then we
need to evaluate the AET for both the lower and the upper integer bound of
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nc AET nc AET

1 1358.025 11 2140.616
2 1333.333 12 2238.973
3 1394.596 13 2337.585
4 1475.730 14 2436.397
5 1564.567 15 2535.368
6 1657.191 16 2634.469
7 1751.953 17 2733.676
8 1848.042 18 2832.971
9 1945.010 19 2932.342

10 2042.591 20 3031.775

Table 3.2.: AET obtained for nc ∈ [1, 20], for Scenario A

nc AET nc AET

1 1246.914 11 1131.469
2 1133.333 12 1139.841
3 1104.945 13 1148.466
4 1096.256 14 1157.288
5 1095.197 15 1166.269
6 1097.889 16 1175.378
7 1102.700 17 1184.593
8 1108.825 18 1193.895
9 1115.822 19 1203.271

10 1123.425 20 1212.710

Table 3.3.: AET obtained for nc ∈ [1, 20], for Scenario B

n∗c , i.e. (bn∗c c) and dn∗c e, and report the integer bound of n∗c that provides the
lower AET. For example, in Scenario A, n∗c is evaluated as 1.561, and therefore
we need to evaluate the AET for nc = 1 and nc = 2. Since for these two values
nc = 1 and nc = 2 lower AET is obtained for nc = 2, the upper bound of
n∗c will be used. The optimal number of checkpoints for each of the given
scenarios is as follows:

• nc = 2 for Scenario A,

• nc = 5 for Scenario B,

• nc = 3 for Scenario C, and

• nc = 9 for Scenario D.
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nc AET nc AET

1 2244.898 11 2240.698
2 1714.286 12 2334.746
3 1648.965 13 2429.735
4 1673.320 14 2525.458
5 1730.024 15 2621.764
6 1801.997 16 2718.542
7 1882.377 17 2815.707
8 1967.877 18 2913.194
9 2056.725 19 3010.949
10 2147.882 20 3108.934

Table 3.4.: AET obtained for nc ∈ [1, 20], for Scenario C

nc AET nc AET

1 2061.224 11 1184.369
2 1457.143 12 1188.598
3 1306.487 13 1193.739
4 1243.038 14 1199.592
5 1211.017 15 1206.011
6 1193.823 16 1212.888
7 1184.790 17 1220.140
8 1180.726 18 1227.703
9 1179.911 19 1235.528
10 1181.335 20 1243.573

Table 3.5.: AET obtained for nc ∈ [1, 20], for Scenario D





4
Level of Confidence

In the previous chapter, we presented an optimization approach for RRC with
the goal to minimize the AET. In general, minimizing the AET is important
as it can improve the system’s performance. However, the main drawback
with the minimal AET is that we lack the distribution of the execution times,
i.e. sometimes a job may complete much earlier in time, but sometimes it
may take much longer time. Having this said, the minimal AET does not
provide any guarantees that time constraints (deadlines) are always met. Even
when the AET is lower than the deadline, there are no guarantees that the
deadline will not be violated as sometimes a job may take much longer time
than the AET. For soft RTSs eventual violation of deadlines does not result in
catastrophic outcomes, and it is therefore justified to optimize RRC with the
goal to minimize the AET. However, for hard RTSs, violating the deadlines
may have severe consequences, and thus optimizing RRC with the goal to
minimize the AET is not sufficient. Instead, it is for hard RTSs more important
to ensure, with a very high likelihood, that the deadlines are met. To evaluate
to what extent a deadline is met, in this section, we use Level of Confidence
(LoC) as a metric to evaluate the probability that a given deadline is met.

The time overhead introduced by RRC may be the reason that deadlines in
RTSs are violated. Since for hard RTSs it is crucial to meet the deadlines, in
this chapter, we optimize RRC with the goal to maximize the LoC. Obtaining
the maximal LoC ensures, with the highest probability (often very close to
one), that deadlines in hard RTSs are met. The chapter is divided into two
sections. First, we discuss the LoC for a single real-time job, i.e. the completion
of the job is constrained by a given deadline. Second, we discuss the LoC for
multiple jobs with respect to a given global deadline.

47
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4.1. SINGLE JOB

In this section, we provide analysis for the LoC for a single real-time job
which uses RRC. The section is organized as follows. The problem formu-
lation is stated in Section 4.1.1. In Section 4.1.2, we present a mathematical
framework for evaluation of LoC with respect to a given deadline for a sin-
gle job. Important properties of the expression used to calculate the LoC are
discussed in Section 4.1.3. Section 4.1.4 focuses on maximizing the LoC for
a single real-time job. Finally, in Section 4.1.5 we show some experimental
results.

4.1.1. PROBLEM FORMULATION

In this section we discuss the following problem. Given the following inputs:

• a job with a processing time T,

• a deadline D,

• a checkpointing overhead τ, and

• a probability PT that no soft errors occur in a processing node within
an interval of length T,

compute the optimal number of checkpoints such that the maximal LoC of meeting the
given deadline is obtained.

4.1.2. EVALUATION OF THE LEVEL OF CONFIDENCE

In this section, we analyze the LoC for a single real-time job which uses RRC,
and we derive an expression to evaluate the LoC with respect to a given dead-
line D. As the LoC represents the probability that a job completes before the
deadline, it is determined as a sum of intermediate terms which represent the
probability that a job completes exactly at a given discrete point in time. These
terms are calculated according to a probability distribution function, and this
function must satisfy some necessary conditions. Thus, to compute the LoC,
we need to derive an expression for the probability distribution function.

This section is organized as follows. First, we construct an expression for
the probability distribution function. Next, we prove that the proposed ex-
pression can be used as a valid probability distribution function. At the end
of this section, we provide an expression to evaluate the LoC.

To derive the probability distribution function, we start by analyzing the
expected time for a job to complete. The expected completion time can be
described by a discrete variable due to the fact that an integer number of
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execution segments (each followed by a checkpointing overhead) must be ex-
ecuted before a job completes. Assuming that nc checkpoints are to be taken,
a job can complete only when nc successful execution segments have been
executed. Thus, in the best case, when no errors occur, a job completes after
nc execution segments have been executed each followed by a checkpointing
overhead. In equidistant checkpointing, the size of the execution segments
is determined as T

nc
. Therefore, the completion time when no errors occur,

denoted with nc t0, is calculated with the following expression:

nc t0 = nc × (
T
nc

+ τ) = T + nc × τ (4.1)

If errors occur, and these errors only affect the execution of one execution
segment, the affected execution segment is an erroneous execution segment.
This execution segment has to be re-executed, and therefore, in total, nc + 1
execution segments will be executed (one erroneous and nc successful execu-
tion segments). We denote the completion time when one execution segment
is re-executed, under the assumption that nc checkpoints are used, with nc t1,
and it is calculated as:

nc t1 = (nc + 1)× (
T
nc

+ τ) = T + nc × τ + (
T
nc

+ τ) (4.2)

In general, when there are k erroneous execution segments, nc tk denotes the
expected completion time, and it is calculated as:

nc tk = T + nc × τ + k× (
T
nc

+ τ) (4.3)

Next, we analyze the number of possible cases that a job completes exactly
at time nc tk. First, let us study the case that a job completes at time nc t0. This
can happen if and only if all the execution segments have been successful,
meaning that no errors have occurred during the execution of each of the ex-
ecution segments. This is the only possible alternative for a job to complete
at time nc t0. Now, let us assume that a job completes at time nc t1. If a job
completes at time nc t1, a single execution segment has been re-executed. This
can be any of the nc different execution segments. Thus, there are nc possible
cases where a job completes at time nc t1. If a job completes at time nc t2, it
means that two execution segments have been re-executed. It can either be
that two out of all nc different execution segments have been re-executed, or
a single execution segment has been re-executed twice (an error has been de-
tected after the first re-execution). In general, if a job completes at time nc tk,
a total of nc + k execution segments have been executed, i.e. nc successful
execution segments and k erroneous execution segments. Note that the last
execution segment among the nc + k execution segments must have been a
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Figure 4.1.: Number of cases Nnc (k) for nc = 3 and PT = 0.5

successful execution segment. Otherwise, if the last execution segment has
been erroneous, it contradicts the assumption that the job has completed at
nc tk (an erroneous execution segment always requires a re-execution). Hence,
the k erroneous execution segments are any of the nc + k − 1 execution seg-
ments (any execution segment except for the last one). Therefore, the number
of possible cases such that a job completes at time nc tk is the number of all the
combinations of k execution segments out of nc + k − 1 execution segments.
Nnc(k) denotes the number of possible cases that a job completes at time nc tk,
and Nnc(k) is defined as

Nnc(k) =
(

nc + k− 1
k

)
(4.4)

In Figure 4.1, we illustrate Nnc(k) (Eq. (4.4)) for nc = 3, PT = 0.5, and
k ∈ [0, 5]. For example, N3(1) = 3 shows that there are three cases that a job
completes at 3t1 (one erroneous execution segment has been executed before
the job has completed), since any of the three execution segments (nc = 3)
could have been re-executed.

Next, to calculate the probability that a job completes at time nc tk, we assign
a probability metric for each case where a job completes at nc tk. This proba-
bility metric is related to the probability of a successful execution segment Pε.
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Figure 4.2.: Probability metric per case Pnc
ε × (1− Pε)k for nc = 3 and

PT = 0.5

As discussed in Chapter 3, Pε is derived from the given probability PT that
no errors occur in a processing node within an interval of length T, and Pε is
evaluated with the following expression:

Pε = PT
2

nc =
nc
√

PT
2 (4.5)

When a job completes at time nc tk, nc + k execution segments are executed,
i.e. nc successful execution segments and k erroneous execution segments. Since
Pε represents the probability of a successful execution segment, the probabil-
ity of an erroneous execution segment is evaluated as (1− Pε). Due to the
fact that the execution segments are independent, the probability of having
nc successful execution segments is Pnc

ε , and the probability of having k er-
roneous execution segments is (1− Pε)k. Combining these two probabilities,
the probability of having nc successful and k erroneous execution segments
results in Pnc

ε × (1 − Pε)k, which is the probability metric per possible case
where a job completes at time nc tk. In Figure 4.2, we illustrate the probability
metric per possible case Pnc

ε × (1− Pε)k for nc = 3, PT = 0.5, and k ∈ [0, 5].
From Figure 4.2 it can be observed that Pnc

ε × (1− Pε)k has the highest value

at k = 0, and it is evaluated as Pnc
ε =

(
nc
√

PT
2
)nc

= PT
2 = 0.25.
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Figure 4.3.: Probability distribution function pnc (k) for nc = 3 and
PT = 0.5

To calculate the probability that a job completes at time nc tk, we need to
multiply the number of possible cases Nnc(k) with the probability metric per
case Pnc

ε × (1− Pε)k. We denote the probability that a job completes at time
nc tk with pnc(k), and we define it as:

pnc(k) = Nnc(k)× Pnc
ε × (1− Pε)

k =

(
nc + k− 1

k

)
× Pnc

ε × (1− Pε)
k (4.6)

Eq. (4.6) defines the probability distribution function. In Figure 4.3, we
illustrate the probability distribution function pnc(k) for nc = 3, PT = 0.5, and
k ∈ [0, 5].

To verify that the expression in Eq. (4.6) can be used as a valid probabil-
ity distribution function, we prove that this function satisfies the following
necessary condition which a probability distribution function must satisfy:

∞

∑
k=0

pnc(k) = 1 (4.7)

The proof is provided in Appendix A.
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Since Eq. (4.6) represents a valid probability distribution function, to com-
pute the LoC it is required to sum up all the terms from the probability dis-
tribution function pnc(k) (Eq. (4.6)) for which the discrete variable nc tk has a
value which is lower or equal to the given deadline D. We denote with Λnc(D)
the LoC with respect to a deadline D, and we compute Λnc(D) as:

Λnc(D) = ∑
nc tk≤D

pnc(k) = ∑
nc tk≤D

(
nc + k− 1

k

)
× Pnc

ε × (1− Pε)
k (4.8)

Observe that the given deadline D is not a discrete variable, and therefore
it may not necessarily be an instance of the completion time nc tk. On the other
hand, when RRC is used, a job can only complete at discrete time instances
which are defined with the completion time nc tk.

As expressed in Eq. (4.8), the LoC with respect to a given deadline D is
calculated as a sum of terms from the probability distribution function pnc(k)
where each term represents the probability that a job completes at a discrete
time nc tk. Further, only the terms from the probability distribution function
pnc(k) for which the discrete time nc tk is lower or equal to the given deadline D
are used to obtain Λnc(D). For any given nc, a finite number k† of instances of
the completion time nc tk satisfy the condition nc tk ≤ D, i.e. all instances of the
completion time nc tk where k ≤ k† are lower than the deadline D. This implies
that Λnc(D) is calculated as a sum of terms from the probability distribution
function pnc(k) where k ≤ k†. Important to note is that for different nc values
it is possible that the same number of instances k† of the completion time nc tk
satisfy the condition nc tk ≤ D. Therefore, for all such nc values Λnc(D) will
be computed as a sum of k† + 1 terms of pnc(k), i.e.:

Λnc(D) =
k†

∑
k=0

pnc(k) (4.9)

The LoC with respect to a given deadline D, denoted with Λnc(D), provides
the probability that a job completes before the deadline. On the other hand,
the LoC with respect to a given completion time nc tk† provides that probabil-
ity that a job completes after at most k† re-executions (at most k† erroneous
execution segments), and it is calculated as a sum of k† + 1 terms of pnc(k),
i.e.:

Λnc(
nc tk†) =

k†

∑
k=0

pnc(k) (4.10)

To distinguish between the LoC with respect to a given deadline D and
the LoC with respect to a given completion time nc tk, we introduce another
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notation (λnc(k)) when referring to the LoC with respect to a given completion
time. We denote with λnc(k) the LoC with respect to a given completion time
nc tk, and we calculate it as:

λnc(k) =
k

∑
i=0

pnc(i) (4.11)

Hence, we use the notation λnc(k) when we refer to the LoC with respect
to a given completion time, and we use the notation Λnc(D) when we refer to
the LoC with respect to a given deadline. Observe that for a given nc and a
given deadline D, the following equality holds:

Λnc(D) = λnc(k
†) (4.12)

where k†, in Eq. (4.12), represents the maximum number of re-executions, for
the given nc, that can take place without violating the given deadline D.

In the rest of the thesis, we use both notations depending on whether we
address the LoC with respect to a given deadline, or the LoC with respect to
a given completion time nc tk.

4.1.3. PROPERTIES OF THE LEVEL OF CONFIDENCE

In this section, we present some important properties of the expression which
is used to calculate the LoC. We summarize these properties with the follow-
ing theorems, and we provide a proof for each theorem.

Theorem 1. For any nc, the LoC with respect to a completion time (or a deadline)
that does not include any re-executions does not vary with nc and is calculated as:

λnc(0) = PT
2

Proof. Given that the completion time does not include any re-executions im-
plies that k = 0. By replacing k with zero and using Eq. (4.5), Eq. (4.6), and
Eq. (4.11), we get:

λnc(0) = pnc(0)

= Pε
nc

= PT
2 (4.13)

As shown in Eq. (4.13), λnc(0) does not depend on nc, i.e. the right-hand side
of Eq. (4.13) is a constant. �

Theorem 2. For any nc, k1, and k2, such that k1 > k2, the following condition holds:

λnc(k1) > λnc(k2)
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Proof. The proof comes from the definition of λnc(k) presented in Eq. (4.11).
By using k1 in Eq. (4.11) and assuming that k1 > k2, we get:

λnc(k1) =
k1

∑
i=0

pnc(i)

=
k2

∑
i=0

pnc(i) +
k1

∑
i=k2+1

pnc(i)

= λnc(k2) +
k1

∑
i=k2+1

pnc(i) (4.14)

The right-hand side of Eq. (4.14) is strictly larger than λnc(k2) as it obtained
as a sum of λnc(k2) and a number of terms from the probability distribution
function pnc(k). As each term pnc(k) represents a probability, it is only allowed
to be greater or equal to zero. By this we have shown that for any nc, k1, and
k2, such that k1 > k2, the following relation holds λnc(k1) > λnc(k2). �

Theorem 3. For any k, nc1 , and nc2 , such that nc1 > nc2 , the following condition
holds:

λnc1
(k) > λnc2

(k)

Proof. The proof is presented in Appendix B. �

Theorem 4. For any k there exists a limit λ̄k, such that for any nc the following
condition holds:

λnc(k) ≤ λ̄k

and λ̄k is defined as:

λ̄k = PT
2

k

∑
i=0

(−2 ln(PT))
i

i!

Proof. The proof is presented in Appendix C. �

4.1.4. MAXIMIZING THE LEVEL OF CONFIDENCE

In this section, we provide analysis on how to obtain the optimal number of
checkpoints n∗c that provides the maximal LoC Λn∗c (D) with respect to a given
deadline D. A straightforward approach would require computing Λnc(D) for
all nc ≥ 1, i.e.

Λn∗c (D) = MAX {Λnc(D) | nc ≥ 1} (4.15)

The straightforward approach can be improved by providing an upper
bound ncmax for the number of checkpoints, and thus it can be expressed as:

Λn∗c (D) = MAX {Λnc(D) | nc ∈ [1, ncmax ]} (4.16)
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However, even for the improved straightforward approach, the optimal
number of checkpoints n∗c can be obtained after computing Λnc(D) for ncmax

different nc values, i.e. nc ∈ [1, ncmax ].
Next, we show that it is possible to obtain the optimal number of check-

points n∗c without computing Λnc(D) for ncmax different nc values. Instead,
it is only sufficient to compute Λnc(D) for a number of specific nc values.
The number of such nc values is equal to the maximal number Kmax of re-
executions that can take place without violating the given deadline. Important
to note is that Kmax is much lower than ncmax . Obtaining the optimal number
of checkpoints n∗c by only computing Λnc(D) for at most Kmax specific nc val-
ues is possible due to the property of the expression used for evaluation of
the LoC, stated with Theorem 3.

As shown in Eq. (4.8), Λnc(D) is defined as a sum of intermediate terms
of the probability distribution function (see Eq. (4.6)). As we calculate the
LoC with respect to a given deadline, there is a limit on the number of terms
that can be included in the sum that calculates the LoC. This limit depends
on the number of checkpoints. When RRC is applied with a low number of
checkpoints, the execution segments are longer, and thus a single re-execution
is more costly in terms of time. This imposes a limit on the number of re-
executions that can take place without violating the deadline, and implies that
only a few terms from the probability distribution function can be included
in the sum. Increasing the number of checkpoints results in shorter execution
segments, and therefore more re-executions can take place without violating
the deadline which implies that more terms of the probability distribution
can be included in the sum. However, increasing the number of checkpoints
increases the checkpointing overhead which imposes a limit on the number
of re-executions that can take place without violating the deadline. This in
turn limits the number of terms from the probability distribution that can be
included in the sum. Therefore, we conclude that by increasing the number
of checkpoints up to a certain (breaking) point, the number of terms from
the probability distribution function included in the sum that calculates the
LoC increases along with the number of checkpoints. However, increasing the
number of checkpoints beyond the breaking point decreases the number of
terms from the probability distribution function that are included in the sum
which calculates the LoC. Furthermore, increasing the number of checkpoints
excessively may result in a very high checkpointing overhead which results in
a deadline violation. From this discussion we draw the following conclusions.
First, there exists a maximal number of checkpoints ncmax such that for any
nc > ncmax the checkpointing overhead violates the deadline. Second, for a
given number of checkpoints nc, where 1 ≤ nc ≤ ncmax , there exists a number
of re-executions k that can take place without violating the deadline, which
leads to the fact that the LoC with respect to the deadline is calculated as a
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sum of k + 1 intermediate terms from the probability distribution function, i.e.

Λnc(D) =
k

∑
i=0

pnc(i).

The maximal number of checkpoints ncmax can be obtained from the follow-
ing inequality:

T + nc × τ ≤ D (4.17)

From Eq. (4.17), we conclude that the maximal number of checkpoints ncmax

is calculated with the following expression:

ncmax =

⌊
D− T

τ

⌋
(4.18)

As discussed earlier, for any 1 ≤ nc ≤ ncmax , we can obtain the number of
re-executions k that can take place without violating the deadline. We obtain
the number of re-executions k from the following inequality:

T + ncτ + k× (
T
nc

+ t) ≤ D (4.19)

By using the expression in Eq. (4.19), we compute k with the following
expression:

k =
D− (T + nc × τ)

T
nc

+ τ
(4.20)

Note from the expression in Eq. (4.20) that for any 1 ≤ nc ≤ ncmax the
number of re-executions k is always greater than or equal to zero. The de-
nominator in Eq. (4.20) is always positive because T, τ, and nc are all positive
numbers. The numerator in Eq. (4.20) is positive for all 1 ≤ nc ≤ ncmax , which
directly follows from the inequality presented in Eq. (4.17). Hence, k ≥ 0 for
any 1 ≤ nc ≤ ncmax .

As can be seen from Eq. (4.20), k is a function of nc, and it is calculated by
dividing the time interval [nc t0, D], where nc t0 = T + nc × τ, with the cost of a
single re-execution, i.e. T

nc
+ τ. Increasing nc from 1 to ncmax , shrinks the time

interval [nc t0, D] and reduces the cost of a single re-execution. Observe that
the interval [nc t0, D] shrinks slowly, while the cost of a single re-execution
reduces more rapidly as nc increases. This indicates that k increases as nc
increases. However, increasing nc beyond a certain value will result in a sat-
uration of the cost of a single re-execution, while the interval [nc t0, D] will
continuously shrink as nc increases. Thus, increasing nc beyond that certain
value would decrease k. From this discussion, we conclude that there exists a
maximal number of re-executions Kmax that can take place without violating
the deadline. Next, we derive the expression to compute Kmax.
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To obtain the maximum of the function given with Eq. (4.20), first we cal-
culate the first derivative of Eq. (4.20) with respect to nc, and then set it to be
equal to zero.

d
dnc

(
D− (T + nc × τ)

T
nc

+ τ

)
=

=
d

dnc

(
nc ×

D− (T + nc × τ)

T + nc × τ

)
=

d
dnc

(
nc × D

T + nc × τ
− nc

)
=

d
dnc

(
nc × D

T + nc × τ

)
− d

dnc
(nc)

⇒ D× (T + nc × τ)− nc × D× τ

(T + nc × τ)2 − 1

=
D× T

(T + nc × τ)2 − 1 (4.21)

The expression in Eq. (4.21) represents the first derivative of Eq. (4.20). The
first derivative of Eq. (4.20) is equal to zero for a particular value of nc which
can be obtained by solving the following equation:

d
dnc

(
D− (T + nc × τ)

T
nc

+ τ

)
= 0 (4.22)

By using the expression in Eq. (4.21), solving the equation given in Eq. (4.22)
results in the following:

D× T
(T + nc × τ)2 − 1 = 0

=
D× T − (T + nc × τ)2)

(T + nc × τ)2 = 0

⇒ τ2 × nc
2 + 2× T × τ × nc − D× T + T2 = 0

⇒ nc1,2 =
−2× T × τ ±

√
4× D× T × τ2

2× τ2

nc1 = − 1
τ
× (
√

D× T + T) (4.23)

nc2 =
1
τ
× (
√

D× T − T) (4.24)

As we can observe, solving equation Eq. (4.22) results in two solutions, i.e.
nc1 represented by Eq. (4.23) and nc2 represented by Eq. (4.24). Note that nc1
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has a negative value and as such it cannot be a valid solution (only positive
integer values can be assigned to the number of checkpoints). Therefore, we
claim that the function representing the number of re-executions k, given in
(Eq. (4.20)), reaches its maximum at nc2 . To ensure that the maximum of the
function presented with Eq. (4.20) is obtained at nc2 , we need to verify that the
second derivative of Eq. (4.20) at nc2 is negative. By taking the first derivative
of Eq. (4.21), we calculate the second derivative of Eq. (4.20) as:

d
dnc

(
D× T

(T + nc × τ)2 − 1
)
=

=

[
u = T + nc × τ
du = τ × dnc

]
=

τ

τ
× d

dnc

(
D× T

(T + nc × τ)2 − 1
)

= τ × d
du

(
D× T

u2 − 1
)

= τ × d
du

(
D× T

u2

)
− τ × d

du
(1)

= −2× τ × D× T
u3

= −2× τ × D× T

(T + nc × τ)3 (4.25)

Since the deadline D, the processing time T, and the checkpointing overhead
τ are all positive numbers, the expression in Eq. (4.25) is negative for any
positive nc (including nc2 ). Hence, we have shown that the maximum of the
function presented with Eq. (4.20) is obtained at nc2 .

Next, we denote with n̂c the number of checkpoints for which the function
presented with Eq. (4.20) reaches its maximum, and as we have shown earlier
in Eq. (4.24), it is calculated as:

n̂c =
1
τ
× (
√

D× T − T) (4.26)

Using Eq. (4.26), and by replacing nc with n̂c in Eq. (4.20), we calculate the
maximum value k̂ of the function representing the number of re-executions k
with the following expression:

k̂ =
D + T − 2×

√
D× T

τ
(4.27)

Note that both expressions presented in Eq. (4.26) and Eq. (4.27) are eval-
uated as real numbers, i.e. k̂ ∈ R and n̂c ∈ R. However, in practice only



60 Level of Confidence

integer values are allowed for both nc and k. Thus, the maximum number of
re-executions, denoted with Kmax, is evaluated as:

Kmax =
⌊

k̂
⌋
=

⌊
D + T − 2×

√
D× T

τ

⌋
(4.28)

While the maximum value k̂ of the function that represents the number
of re-executions is obtained for a particular value for the number of check-
points (n̂c), the maximum number of re-executions Kmax, which is the closest
rounded integer value lower than or equal to k̂, can be obtained for a range of
different nc values. For each value of nc that belongs to this range, the number
of re-executions that can take place without violating the deadline is equal to
Kmax. We denote this range of values with Kmax NC = [Kmax ncL , Kmax ncU ], where
Kmax ncL and Kmax ncU denote the lower and the upper bound, respectively. Im-
portant to note is that in the rest of the text we will use the following notations
to address the lower and upper bounds of a range, i.e.

⌊Kmax NC
⌋
= Kmax ncL

and
⌈Kmax NC

⌉
= Kmax ncU . To calculate the bounds for Kmax NC, we need to

solve the following equation:

D−
(

T + nc × τ + Kmax ×
(

T
nc

+ τ

))
= 0

τ × nc
2 − (D− T − Kmax × τ)× nc + Kmax × T = 0

(4.29)

By solving Eq. (4.29) we get:

Kmax ncl =
D− T − Kmax × τ

2× τ

−
√
(D− T − Kmax × τ)2 − 4× Kmax × T × τ

2× τ

(4.30)

Kmax ncu =
D− T − Kmax × τ

2× τ

+

√
(D− T − Kmax × τ)2 − 4× Kmax × T × τ

2× τ

(4.31)

Hence, for any nc ∈ [Kmax ncl ,
Kmax ncu ], the number of re-executions that

can take place without violating the deadline is equal to Kmax. Observe that
both Kmax ncl and Kmax ncu , defined with Eq. (4.30) and Eq. (4.31) respectively,
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are evaluated as real numbers, i.e. Kmax ncl ∈ R and Kmax ncu ∈ R. However, the
number of checkpoints is only allowed to be an integer number. Therefore,
the bounds of the range Kmax NC are calculated as:

Kmax ncL =
⌈

Kmax ncl

⌉
=

⌈
D− T − Kmax × τ

2× τ

−
√
(D− T − Kmax × τ)2 − 4× Kmax × T × τ

2× τ

⌉
(4.32)

Kmax ncU =
⌊

Kmax ncu

⌋
=

⌊
D− T − Kmax × τ

2× τ

+

√
(D− T − Kmax × τ)2 − 4× Kmax × T × τ

2× τ

⌋
(4.33)

Observe that for any nc <
⌊Kmax NC

⌋
the number of re-executions k is strictly

lower than Kmax, and further k increases as nc increases from 1 to
⌊Kmax NC

⌋
.

On the other hand, for any nc >
⌈Kmax NC

⌉
the number of re-executions k

is again strictly lower than Kmax. However, k decreases as nc increases from⌈Kmax NC
⌉

to ncmax . This implies that the same number of re-executions can be
achieved for a discontinuous range of values of nc, i.e. a range of values to
the left of Kmax NC and a range of values to the right of Kmax NC. We denote
these discontinuous ranges with k NC, where the index k belongs to the range
[0, Kmax) (observe that the upper bound is not included in the range). Impor-
tant to note about a discontinuous range k NC is that for any nc ∈ k NC the
number of re-executions that can take place without violating the deadline is
exactly equal to the index k in the notation k NC. Next, we elaborate on how
to evaluate k NC.

The analysis is performed by assuming that given is the number of re-
executions k† for which we want to identify k†

NC and k† ∈ [0, Kmax). For the
given k†, we are only interested in those values of nc that would not violate
the given deadline D, and we can express that statement with the following
inequality:

T + nc × τ + k† × (
T
nc

+ τ) ≤ D (4.34)

The expression in Eq. (4.34) can be re-written as:

τ × n2
c + (T − D + k† × τ)× nc + k† × T ≤ 0 (4.35)
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The left-hand side of the expression given in Eq. (4.35) represents a quadratic
function with respect to nc that reaches a minimum point (the coefficient in
front of n2

c is τ which is positive). Such a quadratic function can have negative
values if and only if the roots of the quadratic function are two different real
numbers nc1 and nc2 , in which case the quadratic function will be evaluated
as negative for all nc ∈ (nc1 , nc2). Thus, to find the range of values of nc
for which the inequality given in Eq. (4.35) holds, it is necessary to solve the
following equation:

τ × n2
c + (T − D + k† × τ)× nc + k† × T = 0 (4.36)

The solutions of Eq. (4.36) are:

k†
ncL =

⌈
D− T − k† × τ

2× τ

−
√
(D− T − k† × τ)2 − 4× k† × T × τ

2× τ

⌉
(4.37)

k†
ncU =

⌊
D− T − k† × τ

2× τ

+

√
(D− T − k† × τ)2 − 4× k† × T × τ

2× τ

⌋
(4.38)

It is important to note that k†
ncL and k†

ncU , in Eq. (4.37) and Eq. (4.38) re-
spectively, depend on k†. The inequality in Eq. (4.35) holds for any nc that
belongs to [k

†
ncL , k†

ncU ], and it states that for each nc in the range [k
†
ncL , k†

ncU ]
at least k† re-executions can take place without violating the deadline D. How-
ever, it does not exclude the fact that for some nc values, which belong to the
same range, it is possible to have more than k† re-executions that can take
place without violating the deadline. Since our goal is to find the range of
values of nc for which exactly k† re-executions can take place without violat-
ing the deadline, we need to exclude all those nc values for which at least
k† + 1 re-executions can take place without violating the deadline. The range
of nc values for which at least k† + 1 re-executions can take place without vi-
olating the deadline is [k

†+1ncL , k†+1ncU ], where k†+1ncL and k†+1ncU can be
calculated by evaluating the equations Eq. (4.37) and Eq. (4.38) respectively
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at k† + 1. Finally, the discontinuous range of nc values for which exactly k†

re-executions can take place without violating the deadline is:

k†
NC = [k

†
ncL , k†+1ncL) ∪ (k†+1ncU , k†

ncU ], 0 ≤ k† < Kmax (4.39)

Observe that Eq. (4.37), Eq. (4.38) and Eq. (4.39) were derived while assum-
ing a particular value k† for the number of re-executions k, and therefore the
notation k† is present in all equations. However, the equations are valid for
any value of k that belongs to the range [0, Kmax], and therefore replacing the
notation k† with k in Eq. (4.37), Eq. (4.38), and Eq. (4.39) is justified.

From the presented discussion, we observe that the range [1, ncmax ] of nc
values can be divided into Kmax + 1 different ranges k NC defined as:

k NC =

{
[Kmax ncL , Kmax ncU ] k = Kmax
[kncL , k+1ncL) ∪ (k+1ncU , kncU ] 0 ≤ k < Kmax

A given nc can belong to only one k NC, and for all the nc values that belong
to the same k NC, the number of re-executions that can take place without
violating the deadline is the same, i.e. it is equal to k. When evaluating the
LoC with respect to a given deadline D, for any nc ∈ k NC, the expression
that computes Λnc(D) includes k + 1 terms from the probability distribution
function. This is shown with the following expression:

Λnc(D) =
k

∑
i=0

pnc(i), nc ∈ k NC (4.40)

For any given nc that belongs to k NC, Λnc(D) is exactly the same as λnc(k).
We have already shown in Theorem 3 that for a fixed number of re-executions
k, λnc(k) increases with nc. Since for all nc that belong to k NC the number of
re-executions is equal to k, according to Theorem 3, the highest LoC among
all nc ∈ k NC will be obtained for the upper bound the range k NC, i.e.
nc =

⌈
k NC

⌉
.

As the goal is to obtain the maximal LoC, for a given range k NC, there is
no need to explore Λnc(D) for all nc ∈ k NC. Instead, it is sufficient to explore
Λnc(D) only for the nc value that represents the upper bound of the range
k NC, i.e. nc =

⌈
k NC

⌉
.

Since there are a total of Kmax + 1 different ranges k NC (0 ≤ k ≤ Kmax),
and due to the fact that it is sufficient to explore Λnc(D) only for one nc
value per range, to obtain the optimal number of checkpoints which results
in the maximal LoC it is sufficient to compute Λnc(D) for a total of Kmax + 1
different nc values. These Kmax + 1 values of nc represent the upper bounds
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of k NC, 0 ≤ k ≤ Kmax. Observe that the value
⌈0NC

⌉
, i.e.

⌈
k NC

⌉
for k = 0,

is also included among the Kmax + 1 different nc values. However, we show
next that there is no need to explore this value as long as Kmax is greater than
one.

As stated in Theorem 1, if no re-executions can take place without violating
the deadline, i.e. nc belongs to 0NC, Λnc(D) is equal to PT

2 for any nc ∈ 0NC.
Therefore, if Kmax = 0, any nc value in the range [1, ncmax ] would provide the
same Λnc(D), i.e. PT

2. However, if Kmax > 0, a higher LoC than PT
2 can be

achieved for any k† that is greater than or equal to one. This can be shown
by simply re-writing Eq. (4.9) with the expression given in Eq. (4.41), while
assuming that k† is greater than or equal to one.

Λnc(D) =
k†

∑
k=0

pnc(k)

= pnc(0) +
k†

∑
k=1

pnc(k)

= PT
2 +

k†

∑
k=1

pnc(k) (4.41)

As shown in Eq. (4.41), Λnc(D) is strictly greater than PT
2 whenever k† ≥ 1.

This discussion justifies that there is no need to compute the LoC for
⌈0NC

⌉
.

Instead, it is sufficient to compute Λnc(D) for Kmax different nc values, and
these values are the upper bounds of k NC, 1 ≤ k ≤ Kmax.

Finally, the conclusion is that the maximal LoC with respect to a given
deadline is obtained as:

Λn∗c (D) = MAX
{

Λnc(D), nc =
⌈

k NC
⌉

k = 1, 2...Kmax

}
(4.42)

The maximal LoC is obtained at a specific nk
c , k ∈ [1, Kmax], computed as:

nk
c =

⌈
k NC

⌉
=

⌊
D− T − k× τ

2× τ

+

√
(D− T − k× τ)2 − 4× k× T × τ

2× τ

⌋
(4.43)

Important to note is that if Kmax is equal to zero, then the maximal LoC is
equal to PT

2, and it can be achieved for any nc ∈ [1, ncmax ].
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Scenario A Scenario B

T = 1000 t.u. T = 1000 t.u.

τ = 20 t.u. τ = 20 t.u.

PT = 0.99999 PT = 0.9

Table 4.1.: Input scenarios

4.1.5. EXPERIMENTAL RESULTS

The purpose of the experiments presented in this section is twofold. First, we
show that the LoC varies with the number of checkpoints, and we validate
our approach that finds the optimal number of checkpoints that results in
the maximal LoC. Second, we show that optimizing RRC towards soft RTSs
results in poor probabilistic guarantees of meeting the deadlines, i.e. low LoC
with respect to the given deadline or low LoC with respect to the minimal
AET.

For that purpose, we present results for the following experiments:

• P1: evaluation of the LoC with respect to a given deadline D;

• P2: evaluation of probabilistic guarantees when RRC is optimized for
soft RTSs. For this experiment, we consider the following two cases:

– P2A: evaluation of the LoC with respect to the minimal AET, and

– P2B: evaluation of the LoC with respect to a given deadline D,
when nc is optimized towards AET.

For each experiment, we use two input scenarios, Scenario A and Sce-
nario B, which are summarized in Table 4.1. For each scenario, the following
inputs are given: the processing time of a job T, the checkpointing overhead
τ, and the probability PT that no errors occur in a processor within an interval
equal to T. Additionally, for P1 and P2B, where we evaluate the LoC with re-
spect to a deadline, we assume given is a deadline D = 1500 time units (t.u.).

For P1, i.e. evaluation of LoC with respect to a given deadline D, the re-
sults are presented in Table 4.2 and Table 4.3. In Table 4.2 and Table 4.3, we
show the computed LoC with respect to the given deadline D, i.e. Λnc(D), at
various number of checkpoints nc. The results are obtained as follows. For
each nc, we first calculate the number of re-executions K that can take place
without violating the deadline, and then we sum all terms from the probabil-
ity distribution function pnc(k) (see Eq. (4.6)) for k ∈ [0, K]. The objective of
this experiment is to show that (1) the LoC with respect to the given deadline
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varies with the number of checkpoints nc, and (2) the optimization method
discussed in Section 4.1.4 finds the optimal number of checkpoints that re-
sults in the maximal LoC.

As can be seen from Table 4.2 and Table 4.3, the LoC with respect to the
given deadline D depends on the number of checkpoints nc. When the num-
ber of checkpoints is low, the LoC is also low. The LoC increases as the number
of checkpoints increases. The increase in LoC is either done by subtle incre-
ments or step-wise increments (observe the LoC for nc ∈ [1, 17] in Table 4.2
and Table 4.3). The subtle increments can be observed when nc changes from
3 to 5 and when nc changes from 6 to 17, while the step-wise increments are
observed when nc changes from 2 to 3 and when nc changes from 5 to 6.
Increasing the number of checkpoints above a certain point causes the step-
wise increments in the LoC to be replaced by sharp drops (observe the LoC
when nc changes from 17 to 18 and when nc changes from 21 to 22 in both Ta-
ble 4.2 and Table 4.3). However, increasing the number of checkpoints beyond
a value for which a sharp drop in the LoC has occurred, would increase the
LoC (observe the LoC when nc changes from 18 to 21 in both Table 4.2 and Ta-
ble 4.3). However, the recent increase is only done by subtle increments. This
trend of subtle increments followed by sharp drops proceeds as the number
of checkpoints increases. Finally, increasing the number of checkpoints above
a certain point leads to an LoC equal to zero. The reason for this behavior
is the following. When the number of checkpoints is low, the execution seg-
ments are longer, which means that only a limited number of re-executions
can take place without violating the deadline. This implies that only a small
number of terms from the probability distribution function (Eq. (4.6)) will
be summed, and therefore the LoC (Eq. (4.8)) is low. Increasing the number
of checkpoints, decreases the length of the execution segments, and thus al-
lows more re-executions to take place without violating the deadline on one
hand, but increases the total checkpointing overhead on the other hand. Each
time an extra term is added (one more re-execution can take place without
violating the deadline), results in a step-wise increase in the LoC. However,
after a certain point the total checkpointing overhead becomes very high, and
it reduces the number of re-executions that can take place without violating
the deadline. Whenever such scenario occurs, it results in a sharp drop in
the LoC. The subtle increments in the LoC are a consequence of Theorem 3.
When the number of checkpoints is excessively high, the overhead due to
taking the checkpoints may violate the deadline, i.e. LoC equal to zero. As
nc t0, the case when zero erroneous execution segments are executed, depends
on the number of checkpoints nc (see Eq. (4.1)), using many checkpoints may
result in that nc t0 violates the deadline D, i.e. nc t0 > D. For example, for the
given input scenarios when nc = 26, 26t0 = 1000 + 26× 20 = 1520 t.u., and
thus Λ26(D) = 0 (see Table 4.2 and Table 4.3). With the results obtained from
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D = 1500
nc Λnc(D) nc Λnc(D)

1 0.999980000100000000 14 0.999999999999998367
2 0.999980000100000000 15 0.999999999999998388
3 0.999999999733334814 16 0.999999999999998406
4 0.999999999750001250 17 0.999999999999998422
5 0.999999999760001120 18 0.999999999788889670
6 0.999999999999997925 19 0.999999999789474459
7 0.999999999999998040 20 0.999999999790000770
8 0.999999999999998125 21 0.999999999790476955
9 0.999999999999998189 22 0.999980000100000000
10 0.999999999999998240 23 0.999980000100000000
11 0.999999999999998280 24 0.999980000100000000
12 0.999999999999998314 25 0.999980000100000000
13 0.999999999999998343 26 0

Table 4.2.: Λnc (D) for different nc values, for Scenario A

D = 1500
nc Λnc(D) nc Λnc(D)

1 0.810000000000000000 14 0.998386333221060871
2 0.810000000000000000 15 0.998405709197021325
3 0.974827503159636872 16 0.998422589149847735
4 0.976266114316335439 17 0.998437425722750770
5 0.977137362167560214 18 0.979688847172390437
6 0.997980204415657095 19 0.979741032210778210
7 0.998085015474654920 20 0.979788017059326005
8 0.998162202793752259 21 0.979830542116846522
9 0.998221387037794418 22 0.810000000000000000
10 0.998268194669895683 23 0.810000000000000000
11 0.998306132813719019 24 0.810000000000000000
12 0.998337499909652013 25 0.810000000000000000
13 0.998363864473716882 26 0

Table 4.3.: Λnc (D) for different nc values, for Scenario B
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solving P1, we want to point out that it is useful to have a framework to cal-
culate the LoC because it makes it possible to optimize the RRC scheme such
that the optimal number of checkpoints that results in the maximal LoC can
be obtained. From the results presented in Table 4.2 and Table 4.3, we note
that the number of checkpoints that provides the maximal LoC is nc = 17
for both Scenario A and Scenario B. However, Λnc(D) for Scenario A is much
higher than Λnc(D) for Scenario B due to the different values used for PT .

In Section 4.1.4, we proposed a method to obtain the optimal number of
checkpoints that maximizes the LoC of meeting a given deadline. Next, we
verify that the results obtained by using this method adhere to the results that
we have presented in Table 4.2 and Table 4.3. The method suggests that it is
sufficient to examine the LoC for only Kmax different nc values which can be
obtained by using Eq. (4.43) for k ∈ [1, Kmax]. First, we evaluate the maxi-
mal number of re-executions Kmax that can take place without violating the
deadline D. The expression for calculating Kmax is presented in Eq. (4.28).
As we can observe from Eq. (4.28), Kmax depends on the following parame-
ters: the deadline D, the processing time T, and the checkpointing overhead
τ. Observe that all these parameters are the same for both Scenario A and
Scenario B, i.e. D = 1500 t.u., T = 1000 t.u., and τ = 20 t.u. Using these
inputs in Eq. (4.28), we evaluate Kmax as:

Kmax =

⌊
1500 + 1000− 2×

√
1500× 1000

2× 20

⌋
= 2

Since Kmax = 2, we need to examine the LoC for only two values of nc. As
we mentioned earlier in Section 4.1.4, those values can be obtained by using
Eq. (4.43) for k ∈ [1, Kmax]. By evaluating Eq. (4.43) for k ∈ [1, 2], using the
given inputs, we get:

n1
c =

⌊
1500− 1000− 1× 20

2× 20

+

√
(1500− 1000− 1× 20)2 − 4× 2× 1000× 20

2× 20

⌋
= 21

n2
c =

⌊
1500− 1000− 2× 20

2× 20

+

√
(1500− 1000− 2× 20)2 − 4× 2× 1000× 20

2× 20

⌋
= 17
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Since the deadline D, the processing time T, and the checkpointing over-
head τ are the same for both Scenario A and Scenario B, it leads to the fact that
nk

c , k ∈ [1, Kmax], obtained using Eq. (4.43), will be the same for Scenario A
and Scenario B.

By comparing the LoC for n1
c and n2

c , for both Scenario A and Scenario B,
we conclude that a higher LoC is achieved for n2

c . Thus, the optimal num-
ber of checkpoints that results in the maximal LoC for both Scenario A and
Scenario B is n∗c = n2

c = 17, which can also be seen in Table 4.2 and Table 4.3.
Observe that the presented results may mislead the reader into drawing

the conclusion that the optimal number of checkpoints n∗c which results in the
maximal LoC is always equal to nKmax

c . This in turn would mean that there
exists a closed-form expression to compute the optimal number of checkpoints
that results in the maximal LoC. However, we want to point out and clarify
that even though in many cases it can happen that n∗c = nKmax

c , in general, n∗c
can be evaluated only after comparing the LoC for all nk

c k ∈ [1, Kmax]. Next,
we present the results for the second experiment P2.

For P2, i.e. evaluation of probabilistic guarantees when RRC is optimized
for soft RTSs, we consider the RRC optimization approach discussed in Chap-
ter 3, where we obtain the optimal number of checkpoints n∗c that leads to
the minimal AET. Applying the equation for obtaining the optimal number of
checkpoints (see Eq. (3.20) in Section 3.3), we get the following results:

• For Scenario A, we compute the optimal number of checkpoints n∗c = 1
which provides the minimal AET=1020 t.u., and

• For Scenario B, we compute the optimal number of checkpoints n∗c = 3
which provides the minimal AET=1138 t.u.

The purpose of this experiment is to show that optimizing RRC with respect
to AET results in poor probabilistic guarantees that the job completes before
the minimal AET, or before a given deadline.

For P2A, i.e. evaluation of Λnc(AET), we evaluate the LoC with respect
to the minimal AET, while assuming that the number of checkpoints used
is equal to the optimal number of checkpoints n∗c that results in the mini-
mal AET. By computing the LoC for the calculated minimal AET, we observe
that Λnc(1020) = 0.99998 for Scenario A, and Λnc(1138) = 0.81 for Scenario B,
which may be acceptable for a soft RTS, but not for a hard RTS where a very
high LoC is required.

For P2B, i.e. evaluation of Λnc(D) when nc is optimized towards AET,
we present the LoC with respect to the given deadline, while considering
that the number of checkpoints is chosen such that minimal AET is achieved.
As shown earlier, we have computed the optimal number of checkpoints, i.e.
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n∗c = 1 for Scenario A and n∗c = 3 for Scenario B, that minimizes the AET.
Relying on this optimization implies the following results:

• for Scenario A, Λnc(D) = 0.99998 (see Table 4.2 for nc = 1)

• for Scenario B, Λnc(D) ≤ 0.975 (see Table 4.3 for nc = 3).

However, we observed earlier (see Table 4.2 and Table 4.3) that the highest
LoC that can be achieved is:

• for Scenario A, Λnc(D) = 0.999999999999998422 for nc = 17

• for Scenario B, Λnc(D) ≥ 0.99843 for nc = 17.

From the results presented for P2 (P2A and P2B), we conclude that relying
on RRC optimization for soft RTSs results in poor probabilistic guarantees. In
particular, we showed that the LoC with respect to the minimal AET is quite
low, which in turn shows that the probability that a job takes longer time than
the expected minimal AET is not negligible (observe the results for P2A).
Further, we showed that if the number of checkpoints is selected such that the
minimal AET is achieved, it results in a much lower LoC in comparison to
the maximal LoC that can be achieved for a different value of the number of
checkpoints (observe the results for P2B).

4.2. MULTIPLE JOBS

We showed in the previous section how to find the optimal number of check-
points that maximizes the LoC with respect to a given deadline for a single
job. In this section, we extend the problem to address multiple jobs. The ex-
tended problem consists of finding the optimal checkpoint assignment, i.e. the
number of checkpoints to be used by each job such that the LoC with respect
to a given global deadline is maximized.

While the solution to this problem seems to be a superset of the solution for
the single job problem, we show in this section that the problem with multiple
jobs is much more complex. The main issues we discuss in this section are as
follows:

• We show that performing a local optimization for each job and combin-
ing these local optima together does not result in the maximal LoC with
respect to the global deadline.

• We show that handling the set of jobs as a one single large job and
obtaining the optimal number of checkpoints for the single large job
does not result in the maximal LoC with respect to the global deadline.
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• We provide an expression to evaluate the LoC with respect to a given
global deadline for a given checkpoint assignment, where the check-
point assignment defines the number of checkpoints to be used by each
job in the given set of jobs.

• We show that a holistic solution (exhaustive search over all possible
checkpoint assignments) is required to obtain the optimal checkpoint
assignment and the maximal LoC.

• We propose a method (heuristic) to speed up the computations and ob-
tain the results in significantly shorter time compared to the exhaustive
search method.

• We present experimental results to demonstrate that our method is ca-
pable of finding the optimal checkpoint assignment and the maximal
LoC while observing tremendous reduction in computation time com-
pared to the exhaustive search method.

The rest of this section is organized as follows. We state the problem for-
mulation in Section 4.2.1. In Section 4.2.2 we review two approaches that aim
to solve the problem by directly applying the solution for the single job prob-
lem. In Section 4.2.3, we first present a mathematical expression to evaluate
the LoC for a given checkpoint assignment, and then we outline a method, i.e.
Exhaustive Search, that finds the maximal LoC. In Section 4.2.4 we propose a
method that aims to solve the problem optimally at a significantly lower com-
putational cost. Finally, experimental results are presented in Section 4.2.5.

4.2.1. PROBLEM FORMULATION

In this section, we analyze the LoC with respect to a given global deadline for
a set of jobs. The problem is described as follows. Given the following inputs:

• a set of m jobs, where each job has a processing time T,

• a checkpointing overhead τ,

• a global deadline D, and

• a probability PT that no errors occur in a processing node within an
interval of length T.

find the optimal checkpoint assignment n̄∗c = [nc1 , nc2 , ...ncm ], where n̄∗c represents a
vector where each element nci defines the number of checkpoints for each job, that
results in the maximal LoC with respect to the global deadline D.
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Important to note is that in the rest of the text, we use the notation �n̄c(D)
whenever we address the LoC for multiple jobs using the checkpoint assign-
ment n̄c, while we use the notation Λnc(D) whenever we address the LoC for
a single job using nc checkpoints.

4.2.2. MOTIVATION

In this section, we investigate two approaches that apply the solution for a
single job to solve the problem for a set of jobs. The approaches are:

1. Local Optimization: perform local optimization for a single job and
apply the results to all jobs, i.e. find the optimal number of checkpoints
for one job such that the LoC with respect to a local deadline is maximal
and apply this optimal number of checkpoints to all jobs.

2. Single Large Job: assume that the set of jobs is equal to one single large
job and find the optimal number of checkpoints for this job, such that
the LoC with respect to the global deadline is maximal.

The models for these two approaches along with the model for the stated
problem formulation are illustrated in Figure 4.4. The rest of this section
details each of the approaches.

LOCAL OPTIMIZATION The basic idea is to perform optimization for a
single job and apply the results to all jobs. The model for the Local Optimiza-
tion approach is illustrated in Figure 4.4(b). As shown in Figure 4.4(b), this
model requires the introduction of local deadlines. Instead of observing a set
of jobs running in a sequence and a global deadline D, the model suggests a
set of jobs, where each job has its own local deadline D′. Since all jobs have
the same processing time T, the local deadline can be calculated as D′ = D

m
where D denotes the global deadline, and m denotes the number of jobs in the
set. This approach computes the optimal number of checkpoints that results
in the maximal LoC with respect to the local deadline D′. A consequence of
this approach is that the same number of checkpoints is assigned to all jobs in
the set. It means that the resulting checkpoint assignment is represented as a
vector where all elements have the same value, i.e. n̄c = [nc1 , nc2 , ...ncm ] where
nci = ncj ∀ i, j ∈ [1, m].

The first step is to obtain the optimal number of checkpoints n∗c for a single
job that results in the maximal LoC with respect to the local deadline D′. The
optimal number of checkpoints n∗c is obtained as shown in Section 4.1.4. The
next step is to calculate the LoC with respect to the global deadline D, i.e.
�n̄∗c (D), while considering that a checkpoint assignment n̄∗c = [n∗c , n∗c , ...n∗c ] is
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(b) Model for the Local Optimization approach

JOB1 JOB2

-� -�D′ = D
2 D′ = D

2

(a) Model for the original problem formulation

JOB1 JOB2

-� D

(c) Model for the Single Large Job approach

JOB1 + JOB2

-� D

Figure 4.4.: Illustration of models used for (a) stated problem formu-
lation, (b) Local Optimization, and (c) Single Large Job
approach

used. One solution to calculate �n̄∗c (D) is given in Eq. (4.44).

�n̄∗c (D) =
m

∏
i=1

Λn∗c (D′) = Λn∗c (D′)m (4.44)

However, the expression in Eq. (4.44) does not calculate the correct �n̄∗c (D)
for the given checkpoint assignment n̄∗c . To show that Eq. (4.44) does not
calculate the correct �n̄∗c (D) consider the following scenario. Let us assume a
scenario of two jobs with a processing time T and a global deadline D. We
assume that local deadlines D′ = D

2 are introduced and n∗c is the optimal
number of checkpoints that results in the maximal LoC for a single job with
respect to the local deadline, i.e. Λn∗c (D′). In such scenario, for each job, there
is a limited number of re-executions k∗ that can take place without violating
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the local deadline D′, and Λn∗c (D′) is calculated as:

Λn∗c (D′) =
k∗

∑
k=0

pn∗c (k) (4.45)

According to Eq. (4.44), for the scenario of two jobs where the checkpoint
assignment n̄∗c = [n∗c , n∗c ] is used, �n̄∗c (D) is evaluated as:

�n̄∗c (D) = Λn∗c (D′)×Λn∗c (D′) (4.46)

Replacing the expression for Λn∗c (D′), given in Eq. (4.45), in Eq. (4.46), we
get:

�n̄∗c (D) =
k∗

∑
k=0

pn∗c (k)×
k∗

∑
k=0

pn∗c (k) (4.47)

From Eq. (4.47) one observes that �n̄∗c (D) is calculated while considering
that each job can have at most k∗ re-executions (erroneous execution seg-
ments). According to its definition, the LoC is the probability that a job (or a
set of jobs) completes before a given deadline. Such probability is calculated
as a sum of terms, where each term represents the probability that a job (or a
set of jobs) completes exactly at a given discrete time moment. Thus, obtain-
ing the LoC requires summing the probabilities for all discrete time moments
prior to the given deadline. Not including all terms in the sum, results in
incorrect LoC which is the drawback of Eq. (4.44). Since the expression in
Eq. (4.47), derived from Eq. (4.44), considers that each job can have at most k∗

re-executions, all terms are not included in the sum that calculates the LoC.
For example, if the first job has completed without any re-executions, then
the second job may tolerate more than k∗ re-executions (2× k∗ re-executions
in this example) before the global deadline D. However, the expression in
Eq. (4.47) considers k∗ re-executions for the second job even if the first one
has completed without any re-executions. With this discussion we justify that
the expression in Eq. (4.44) does not calculate the correct LoC with respect to
the given global deadline when the checkpoint assignment n̄∗c = [n∗c , n∗c ...n∗c ]
is used. Before we derive an expression to calculate �n̄∗c (D), we want to point
out that the expression in Eq. (4.44) would be correct as long as the execution
of the jobs is scheduled such that a job starts with its execution immediately
after the local deadline of its predecessor (as illustrated in Figure 4.4(b)). In
such schedule, each job must complete before its own (local) deadline, and
even if a job completes before its deadline, the next job will not start its execu-
tion immediately after the completion of its predecessor. However, according
to the stated problem formulation (see Figure 4.4(a)) a job starts with its exe-
cution immediately after the completion of its predecessor.
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Since Eq. (4.44) does not calculate the correct �n̄∗c (D), in the rest of this sec-
tion, we derive an expression on how to calculate �n̄∗c (D) when a checkpoint
assignment n̄∗c = [n∗c , n∗c ...n∗c ] is used. First, we derive the expression for a sce-
nario of two jobs, and then we provide the expression for a general scenario
that consists of m jobs.

Let us assume a scenario where given is a global deadline D and two jobs,
each with a processing time T. First, for a single job we compute the optimal
number of checkpoints n∗c by using the notion of local deadlines. Once n∗c
is obtained, n∗c checkpoints are assigned to both jobs. That means we con-
sider a checkpoint assignment n̄∗c = [n∗c , n∗c ]. For such checkpoint assignment,
the jobs can complete only at discrete time moments, which are computed
according to the following expression:

n̄∗c tk = 2× (T + n∗c × τ) + k× (
T
n∗c

+ τ) (4.48)

The first term in Eq. (4.48) calculates the minimum required time for both
jobs to complete, i.e. each job needs to spend at least T time units on execution
along with n∗c × τ time units that come from the checkpointing overhead of
taking n∗c checkpoints. The second term in Eq. (4.48) calculates the extra time
that is spent on execution of erroneous execution segments. The index k in
the expression for n̄∗c tk, presented in Eq. (4.48), denotes the total number of er-
roneous execution segments. For the given scenario there might be a number
of erroneous execution segments during the execution of the first job, which
we denote with k1, and a number of erroneous execution segments during the
execution of the second job, which we denote with k2. Thus, the total number
of erroneous execution segments is evaluated as k = k1 + k2.

To calculate the LoC with respect to the global deadline, we sum the proba-
bilities that both jobs complete at any time moment n̄∗c tk ≤ D. For this reason,
we need a probability distribution function p′n̄∗c (k) which calculates the prob-

ability that both jobs complete at a time moment n̄∗c tk, and this function is
defined as:

p′n̄∗c (k) =
k

∑
i=0

pn∗c (i) · pn∗c (k− i) (4.49)

The expression in Eq. (4.49) is derived as a sum of intermediate terms,
where each term represents the combined probability that i erroneous execu-
tion segments are executed during the execution of the first job, i.e. probability
of having i erroneous execution segments pn∗c (i), and k− i erroneous execu-
tion segments are executed during the execution of the second job, which is
denoted as pn∗c (k− i). Using Eq. (4.6), we re-write the expression for calculat-
ing the probability distribution function p′n̄∗c (k) as:
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p′n̄∗c (k) =
k

∑
i=0

pn∗c (i)× pn∗c (k− i)

= P2×n∗c
ε (1− Pε)

k ×
k

∑
i=0

(
n∗c + i− 1

i

)
×
(

n∗c + k− i− 1
k− i

)
=

(
2× n∗c + k− 1

k

)
P2×n∗c

ε × (1− Pε)
k (4.50)

Having the probability distribution function (Eq. (4.50)) allows us, for the
checkpoint assignment n̄∗c = [n∗c , n∗c ], to calculate �n̄∗c (D) using the following
expression:

�n̄∗c (D) = ∑
n̄∗c tk≤D

p′n̄∗c (k)

= ∑
n̄∗c tk≤D

(
2× n∗c + k− 1

k

)
P2×n∗c

ε × (1− Pε)
k (4.51)

The expression in Eq. (4.51) calculates �n̄∗c (D) for the assumed scenario
of two jobs and a global deadline. Following the same reasoning as for the
scenario of two jobs, we derive expressions for a general scenario that consists
of m jobs. For the general case of m jobs we derive the following expression:

n̄∗c tk =m · (T + n∗c × τ) + k× (
T
n∗c

+ τ) (4.52)

p′n̄∗c (k) =
(

m× n∗c + k− 1
k

)
Pm×n∗c

ε × (1− Pε)
k (4.53)

�n̄c(D) = ∑
n̄∗c tk≤D

(
m× n∗c + k− 1

k

)
Pm×n∗c

ε × (1− Pε)
k (4.54)

Important to note is that �n̄c(D) is calculated while assuming a checkpoint
assignment where each job is using n∗c checkpoints, and n∗c is obtained by
performing an optimization for a single job while using the notion of local
deadlines D′ which are not part of the stated problem formulation.

If we study the expressions in Eq. (4.3), Eq. (4.6), and Eq. (4.8), and compare
them with the expressions in Eq. (4.52), Eq. (4.53), and Eq. (4.54), respectively,
we see that the latter expressions are similar with the former ones. Indeed,
assuming a single job with a processing time m× T, which uses m× n∗c check-
points transforms the expressions Eq. (4.3), Eq. (4.6), and Eq. (4.8) into the
expressions we have presented in Eq. (4.52), Eq. (4.53), and Eq. (4.54), respec-
tively. Therefore, this motivates the second approach, i.e. Single Large Job.
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SINGLE LARGE JOB This approach suggests to treat the set of jobs as one
single large job, and thus makes the problem equivalent to the problem of
having a single job and a deadline (see Figure 4.4(c)). The approach considers
that a set of m jobs, where each job has a processing time T, is equivalent to
a single job with a processing time m× T. Using the optimization framework
for a single job, the approach finds the optimal number of checkpoints n∗∗c
that results in the maximal LoC Λn∗∗c (D). Observe that here n∗∗c is the optimal
number of checkpoints that should be used for the single job with a process-
ing time m× T. To obtain the number of checkpoints that should be used by
each job it is sufficient to divide n∗∗c with the number of jobs m. This results
in a checkpoint assignment where each job uses exactly n∗c = n∗∗c

m checkpoints.
The advantage of this approach in comparison to the Local Optimization ap-
proach (Section 4.2.2) is that we are able to identify the number of checkpoints
that should be used by each job without introducing local deadlines, which
are not part of the stated problem formulation. However, there are two main
disadvantages. First, the optimal number of checkpoints n∗∗c for the single
large job does not necessarily need to be a multiple of the number of jobs in
the set m, and thus we cannot guarantee that by adopting a checkpoint as-
signment such that each job uses n∗c = b n∗∗c

m c will provide the maximal �n̄c(D)
which we aim to find. Second, this approach imposes a limit that all jobs
need to use the same number of checkpoints. However, using a checkpoint
assignment n̄c where all jobs use the same number of checkpoints does not
guarantee that the achieved �n̄c(D) is the maximal LoC with respect to the
given global deadline. This motivates the need to investigate how to calculate
�n̄c(D) when the number of checkpoints is individually assigned to each job
in the set.

4.2.3. EXHAUSTIVE SEARCH

In the previous section, we investigated two approaches that directly apply
the solution for a single job. The main drawback of these approaches is
that they report an LoC which is achieved by assigning the same number
of checkpoints to all jobs. However, there is no guarantee that the maximal
LoC with respect to a given global deadline is achieved when all jobs use the
same number of checkpoints. To obtain the maximal LoC and the optimal
checkpoint assignment, in this section, we review an Exhaustive Search ap-
proach. This approach evaluates the LoC for all valid checkpoint assignments
n̄c = [nc1 , nc2 ...ncm ], where a valid checkpoint assignment is a checkpoint as-
signment that does not violate the global deadline when no errors occur (see
Eq. (4.61) and Eq. (4.62)). We denote with V the set of all valid checkpoint
assignments n̄c. For each checkpoint assignment n̄c, the LoC with respect to
the global deadline D is computed, and then the checkpoint assignment n̄∗c
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for which the maximal LoC is obtained is reported as the optimal assignment,
i.e.:

�n̄∗c (D) = MAX {�n̄c(D) : ∀ n̄c ∈ V}

Since the solution from this approach is obtained after exploring all valid
checkpoint assignments, we can guarantee its optimality. As the maximal LoC
is obtained after evaluating the LoC for all valid checkpoint assignments, there
is a need for an expression to calculate the LoC for a given checkpoint assign-
ment. Therefore, in the following text, we derive an expression to compute
the LoC for a given checkpoint assignment. To derive the expression, first,
we start with a scenario which consists of two jobs, and then generalize the
expression for a scenario which consists of m jobs.

Let us assume a scenario which consists of two jobs, each with a processing
time T, and a global deadline D. Further, let us assume that nc1 checkpoints
are assigned to the first job, and nc2 checkpoints are assigned to the second
job, i.e. a checkpoint assignment n̄c = [nc1 , nc2 ]. Each of the jobs is expected
to complete only at equidistant discrete time moments, that can be expressed
by a discrete variable as presented in Eq. (4.3). However, the discrete time
moments when both jobs complete are no longer equidistant. For the given
scenario, the expected time for both jobs to complete can be computed with
the following expression:

nc1,2 tk1,2 = T + nc1 τ + T + nc2 τ + k1(
T

nc1

+ τ) + k2(
T

nc2

+ τ) (4.55)

Eq. (4.55) includes: the processing time for the first job along with the
checkpointing overhead of taking nc1 checkpoints, the processing time of the
second job along with the checkpointing overhead of taking nc2 checkpoints,
the penalty of having k1 erroneous execution segments during the execution
of the first job, and the penalty of having k2 erroneous execution segments
during the execution of the second job.

In Figure 4.5 we illustrate the completion time nc1,2 tk1,2 for two jobs. The
first job uses four checkpoints, and the second job uses three checkpoints.
In the best case, when no errors occur, both jobs complete after executing
four execution segments for the first job and three execution segments for
the second job. This is illustrated with t0,0 (see Figure 4.5). However, in the
case that errors occur during the execution of each of the jobs, to handle the
errors each job needs to re-execute some execution segments. This affects the
completion time. For example, t1,1 in Figure 4.5 represents the completion
time when both jobs have re-executed (due to errors) one execution segment.

To compute the LoC with respect to a given global deadline D, we first cal-
culate the probability pnc1,2

(k1,2) that both jobs complete at time nc1,2 tk1,2 . Since
both jobs are independent processes, the probability that both jobs complete
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at time nc1,2 tk1,2 is the combined probability that the first job has completed at
time tk1 , and the second job has completed at time tk2 . This is given with the
following expression:

pnc1,2
(k1,2) = pnc1

(k1)× pnc2
(k2) (4.56)

Summing the terms of the probability distribution function, presented in
Eq. (4.56), for all nc1,2 tk1,2 ≤ D provides the LoC with respect to the given
global deadline D. Eq. (4.57) provides the LoC with respect to the global
deadline when the checkpoint assignment n̄c = [nc1 , nc2 ] is used.

�n̄c(D) = ∑
nc1,2 tk1,2

≤D

pnc1,2
(k1,2)

= ∑
nc1,2 tk1,2

≤D

pnc1
(k1)× pnc2

(k2) (4.57)

So far, we showed how to calculate the LoC with respect to a given global
deadline for a scenario of two jobs, where a number of checkpoints is assigned
to each job. Following the same reasoning, we show next how to calculate the
LoC for a scenario of m jobs, while assuming that a checkpoint assignment n̄c,
i.e. the number of checkpoints used by each job, is given.

For the general case, i.e. a set of m jobs, where for each job i the processing
time is T and the number of checkpoints is nci , the expected time for all jobs
to complete is expressed with the following expression:

n̄c tk̄ = m× T +
m

∑
i=1

nci τ +
m

∑
i=1

ki(
T

nci

+ τ) (4.58)

In Eq. (4.58), the index k̄ represents a vector, i.e. k̄ = [k1, k2...km], where each
element ki represents the number of erroneous execution segments during the
execution of job i.

For a given checkpoint assignment n̄c = [nc1 , nc2 ...ncm ], where nci denotes
the number of checkpoints assigned to job i, the probability that all jobs com-
plete at a given time n̄c tk̄ is evaluated with the following probability distribu-
tion function:

pn̄c(k̄) =
m

∏
i=1

pnci
(ki) (4.59)

Finally, the LoC with respect to a given global deadline D, for a given
checkpoint assignment, is computed with the following expression:

�n̄c(D) = ∑
n̄c tk̄≤D

pn̄c(k̄) = ∑
n̄c tk̄≤D

m

∏
i=1

pnci
(ki) (4.60)
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Using Eq. (4.60), the Exhaustive Search approach obtains the maximal LoC
by computing the LoC for all valid checkpoint assignments. A checkpoint
assignment n̄c is valid if and only if the following two conditions are satisfied:

nci ≥ 1, ∀i ∈ [1, m] (4.61)
m

∑
i=0

nci ≤ b
D−m · T

τ
c (4.62)

The condition in Eq. (4.61) expresses the lower bound for the number of
checkpoints to be used per job. Indeed, when RRC is applied, a job needs to
use at least one checkpoint (after its execution) to verify that it has completed
without any errors. The condition in Eq. (4.62) is related to the upper bound
of the total number of checkpoints, i.e. the sum of the number of checkpoints
used by each job. As we have presented in the expression for the expected
completion time (see Eq. (4.58)), even in the best case scenario when no er-
rors occur, i.e. n̄c t0̄ where 0̄ represents a null vector, the expected completion
time includes the processing time for each job along with the checkpointing
overhead per job due to taking nci checkpoints which is presented with the
following expression:

n̄c t0̄ =
m

∑
i=0

(T + nci · τ) = m · T + τ ·
m

∑
i=0

nci (4.63)

Observe, from Eq. (4.63), that n̄c t0̄ depends on the total number of checkpoints.
If the total number of checkpoints is very large, it may happen that the global
deadline is violated even in the best case scenario, i.e n̄c t0̄ > D. In such case,
the LoC with respect to the given global deadline is equal to zero. Thus,
we only need to investigate checkpoint assignments n̄c for which the best
case expected completion time n̄c t0̄ does not violate the global deadline D, i.e.
n̄c t0̄ ≤ D, which holds if the condition in Eq. (4.61) is satisfied.

Since this approach calculates the LoC of meeting the global deadline for
all valid checkpoint assignments, we can guarantee that this approach always
finds the maximal LoC and the optimal checkpoint assignment. However,
the main drawback of this approach is that it is computationally intensive,
and extremely time-consuming (this is shown in Section 4.2.5). The reason
is that the number of valid checkpoint assignments n̄c grows rapidly as the
number of jobs m increases. Therefore, in the following section, we propose
a search method (heuristic) that aims to maximize the LoC at a significantly
lower computational time.

4.2.4. SEMI-EXHAUSTIVE SEARCH

In this section, we propose a search method, i.e. Semi-Exhaustive Search,
that substantially reduces the time required to obtain the optimal checkpoint
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assignment and the maximal LoC in comparison to the Exhaustive Search
approach described in the previous section. For convenience, we divide the
section into two subsections. First, we provide the motivation for this method,
and then we discuss the method.

MOTIVATION The Semi-Exhaustive Search method is based on the idea
that even though the search space, i.e. set of all valid checkpoint assignments,
grows rapidly as the number of jobs in the set increases, there is no need
to explore all valid checkpoint assignments. There are two reasons for this,
expressed with the following statements:

• Statement I: Some checkpoint assignments are equivalent;

• Statement II: Some checkpoint assignments do not contribute in finding
the maximal LoC.

For Statement I, we first need to define the notion of equivalent checkpoint
assignments. For a given checkpoint assignment n̄c = [nc1 , nc2 , nc3 ...ncm ], we
denote each permutation of n̄c as an equivalent checkpoint assignment to n̄c.
Therefore, computing the LoC for a checkpoint assignment n̄c is sufficient,
and there is no need to compute the LoC for any other checkpoint assignment
which is a permutation of n̄c. Observe that the notion of equivalent check-
point assignments comes from the fact that in the stated problem formulation
we consider a set of jobs, where all jobs have the same processing time T.
Since all jobs have the same processing time, it is irrelevant how the number
of checkpoints are assigned to different jobs, and next we show that this state-
ment is valid. To justify this claim, let us examine carefully the expressions
for calculating the expected completion time and the LoC. The expected com-
pletion time n̄c tk̄ for a checkpoint assignment n̄c is calculated with Eq. (4.58).
The index k̄ represents a vector [k1, k2, ...km] where each element ki denotes
the number of erroneous execution segments (the number of execution seg-
ments that require re-execution) for each job i, and contributes in the expected
completion time with a factor ki(

T
nci

+ τ). When an equivalent checkpoint as-

signment n̄†
c (a permutation of n̄c) is used, there exists a vector k̄† which itself

is a permutation of k̄ such that n̄c tk̄ = n̄†
c tk̄† . The former equality comes from

the fact that for an arbitrary element nci in n̄c there is an element n†
cj

in n̄†
c

such that nci = n†
cj

, and further ki = k†
j . Thus, the set of expected completion

times {n̄c tk̄ : n̄c tk̄ ≤ D} when a checkpoint assignment n̄c is used is equivalent

with the set
{

n̄†
c tk̄† : n̄†

c tk̄† ≤ D
}

. Since the LoC is calculated as a sum of terms

from the probability distribution function pn̄c(k̄), equal number of terms are
summed for both equivalent checkpoint assignments. Observing the expres-
sion for pn̄c(k̄) given in Eq. (4.59), one notes that due to the commutative
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property of multiplication the following equality holds pn̄c(k̄) = pn̄†
c
(k̄†). Fi-

nally, since for two equivalent checkpoint assignments n̄c and n̄†
c the same

number of terms are used to calculate the LoC, and since all these terms are
equal for both checkpoint assignments, we conclude that �n̄c(D) = �n̄†

c
(D)

which justifies to abandon redundant computation of the LoC for equivalent
checkpoint assignments.

We demonstrate that the same LoC is obtained when equivalent checkpoint
assignment are used with the following example. Consider the following sce-
nario: given is a set of two jobs, where each of the jobs has a processing time
T = 1200 t.u., a global deadline D = 4000 t.u., a checkpointing overhead
τ = 20 t.u., and two checkpoint assignments n̄†

c = [3, 4] and n̄‡
c = [4, 3]. Ob-

serve that according to the definition of equivalent checkpoint assignments,
n̄†

c = [3, 4] and n̄‡
c = [4, 3] are equivalent due to the fact that n̄†

c is a permuta-
tion of n̄‡

c , and vice-versa. In Figure 4.6 and Figure 4.7, we depict the expected
completion time for n̄†

c and n̄‡
c , respectively. Both Figure 4.6 and Figure 4.7

use the same legend as depicted in Figure 4.5. As shown in Figure 4.6 and
Figure 4.7, in both cases for n̄†

c and n̄‡
c , the sets of discrete time moments

when both jobs complete are equivalent, e.g. t0,1 for n̄†
c is the same as t1,0 for

n̄‡
c etc. Further, calculating the probability that both jobs complete at a given

discrete time moment, by using the expression presented in Eq. (4.59), shows
that pn̄†

c
(k1, k2) is equal to p

n̄‡
c
(k2, k1). Since for both cases, i.e. when using

checkpoint assignments n̄†
c and n̄‡

c , the sets of discrete time moments when
both jobs complete are equivalent and the probabilities pn̄c(tk̄) are equal, leads
to the fact the LoC of meeting the global deadline D is the same when using
n̄†

c and n̄‡
c . Therefore, this justifies to discard redundant computation of the

LoC for equivalent checkpoint assignments.
To avoid exploration of equivalent checkpoint assignments, it is required to

only explore such checkpoint assignments for which the following expression
holds:

nc1 ≤ nc2 ≤ ... ≤ nci ≤ ... ≤ ncm (4.64)

To justify Statement II, i.e. some checkpoint assignments do not contribute
in finding the maximal LoC, we first provide some information on how we
explore the search space. We explore the search space by first removing all
valid equivalent checkpoint assignments, i.e. only checkpoint assignments that
satisfy the property in Eq. (4.64) are explored. Next, the checkpoint assign-
ments n̄c are ordered in an ascending order, and then iteratively are explored.
This ordering is done by consecutively sorting the checkpoint assignments in
an ascending order based on nci where i varies from 1 to m. Hence, once all
valid checkpoint assignments are sorted in an ascending order based on nc1 ,
the checkpoint assignments are next sorted in an ascending order based on
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nc2 (while preserving the ascending order of nc1 ), and this process is repeated.
For such ordering of the checkpoint assignment, after exploring a checkpoint
assignment n̄c, there exist a unique checkpoint assignment that follows. We
use the following function to obtain the next checkpoint assignment to be
explored:

n̄N
c = [nc1 , nc2 , ...nci + 1, nci + 1, ...nci + 1]

next(n̄c, i) =


n̄N

c , iff n̄N
c is valid and i ≥ 1

next(n̄c, i− 1), iff n̄N
c is not valid and i ≥ 1

∅, iff i = 0

The function next(n̄c, i) takes two arguments: a checkpoint assignment n̄c
and an update index i. First, the function calculates n̄N

c for the given n̄c by
incrementing the number of checkpoints at index i, i.e. nci → nci + 1, and
assigning nci + 1 to all ncj where j ∈ [i + 1, m]. If n̄N

c is a valid checkpoint
assignment, then n̄N

c is the next checkpoint assignment to be explored. How-
ever, if n̄N

c is not a valid checkpoint assignment, then the function steps into
a recursive call with the same checkpoint assignment n̄c and an update in-
dex i − 1, i.e. next(n̄c, i − 1). If the function is invoked with an update index
i = 0, the function returns an empty set, which means that n̄c is the last valid
checkpoint assignment in the search space.

To obtain the next checkpoint assignment for a given n̄c, next(n̄c, i) is always
invoked with the following arguments: the current checkpoint assignment n̄c
and the number of jobs in the set m, i.e. next(n̄c, m).

We demonstrate how to obtain the next checkpoint assignment for a given
n̄c with an example. Consider a set of three jobs, a checkpoint assignment
n̄c = [2, 3, 4], and assume that the total number of checkpoints must be lower
or equal to 10 (see the condition in Eq. (4.62)). To obtain the next check-
point assignment, we use next(n̄c, 3). Observe that the function is invoked
with the current checkpoint assignment n̄c = [2, 3, 4] and an update index 3,
which is equal to the number of jobs in the set. The function first calculates
n̄N

c = [2, 3, 5], which is a valid checkpoint assignment, i.e. the total number of
checkpoints, 2 + 3 + 5, is lower or equal to 10. Therefore, the next checkpoint
assignment that is explored is n̄c = [2, 3, 5]. After exploring n̄c = [2, 3, 5],
assume that we want to explore the next checkpoint assignment. Therefore,
we again invoke the function next(n̄c, 3), where n̄c = [2, 3, 5]. The function
first calculates n̄N

c = [2, 3, 6] which is not a valid checkpoint assignment due
to the fact that the total number of checkpoints is larger than 10. Therefore,
the function steps in a recursive call, but this time with different arguments,
i.e. next(n̄c, 2). According to its definition, the function calculates a new value
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for n̄N
c , i.e. n̄N

c = [2, 4, 4], which is a valid checkpoint assignment, and thus the
next checkpoint assignment to be explored. Hence, the checkpointing assign-
ment which is explored after n̄c = [2, 3, 5] is n̄c = [2, 4, 4]. Let us assume that
the current checkpoint assignment is n̄c = [3, 3, 4] and we want to find the next
one by using next(n̄c, 3). The function first calculates n̄N

c = [3, 3, 5], which is
not a valid checkpoint assignment as the total number of checkpoints is larger
than 10, and therefore the function steps in a recursive call, i.e. next(n̄c, 2).
After this recursive call, the new n̄N

c = [3, 4, 4] is calculated, and again this is
not a valid checkpoint assignment, which forces the function to step in another
recursive call, next(n̄c, 1). At this recursive call n̄N

c = [4, 4, 4] is calculated, and
again this is not a valid checkpoint assignment which forces the function to
step in yet another recursive call next(n̄c, 0). Since in the last recursive call
the function was invoked with an update index i = 0, the function returns an
empty set, which means that the checkpoint assignment n̄c = [3, 3, 4] is the
last valid checkpoint assignment in the search space.

As the search space is traversed in an iterative manner, we observe a set
of checkpoint assignments that only differ in the last index position. We in-
troduce the term sequence of checkpoint assignments {n̄c} to denote the set of
such checkpoint assignments. Two checkpoint assignments n̄†

c and n̄‡
c be-

long to the same sequence of checkpoint assignments {n̄c}, if and only if
n†

ci
= n‡

ci , ∀i ∈ [1, m− 1] and n†
cm 6= n‡

cm . Thus, a sequence of checkpoint assign-
ments {n̄c} consists of a set of checkpoint assignments

{
[nc1 , nc2 ...ncm−1 , X]

}
where X ∈ [ncm−1 , ncmax ]. Observe that we can always compute ncmax by using
Eq. (4.62).

To summarize the discussion on the exploration of the search space, we
state that the search space is traversed by exploring consecutive sequences
of checkpoint assignments. Next, we show that the search space can be effi-
ciently reduced by (1) not exploring all checkpoint assignments that belong to
a sequence of checkpoint assignments, and (2) discarding exploration of en-
tire sequences of checkpoint assignments. The reason for this is that all these
checkpoint assignments that are discarded do not contribute in finding the
maximal LoC.

To show that there is no need to explore all checkpoint assignments that
belong to a sequence of checkpoint assignments, let us now focus on the ex-
ploration of a given sequence of checkpoint assignments {n̄c}. The given
{n̄c} consists of checkpoint assignments where the number of checkpoints for
the first m − 1 jobs in the set is fixed, and only the number of checkpoints
for the last job varies. Thus, exploring a single sequence of checkpoint as-
signments {n̄c} becomes equivalent as exploring the number of checkpoints
to be used for a single job (only the number of checkpoints for the last job
varies). As we have already presented for the the case of a single job, in-
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creasing the number of checkpoints up to a certain value (breaking point)
improves the LoC. However, increasing the number of checkpoints beyond
this value degrades the LoC and may even lead to a zero LoC. The reason
is that by increasing the number of checkpoints beyond the breaking point,
the checkpointing overhead increases and limits the number of re-executions
that can take place without violating the deadline, which implicitly reduces
the number of terms from the probability distribution function that are used
to compute the LoC, resulting in a lower LoC. In the context of multiple jobs,
when exploring checkpoint assignments n̄c which belong to a given sequence
of checkpoint assignments {n̄c}, the number of checkpoints for all jobs ex-
cept for the last one is fixed, and only the number of checkpoints for the last
job varies. The number of checkpoints for the last job has to be larger than
or equal to ncm−1 to avoid exploration of equivalent checkpoint assignments
(see Eq. (4.64)). When exploring a single {n̄c}, the number of checkpoints for
the last job varies within the range [ncm−1 , ncmax ]. As consecutive checkpoint
assignments from the sequence are explored the number of checkpoints for
the last job increases, starting from ncm−1 . By increasing the number of check-
points used for the last job, the execution segments for the last jobs become
shorter. This allows more re-executions of execution segments (only execu-
tion segments from the last job) to take place without violating the deadline
at the cost of increasing the checkpointing overhead due to the higher num-
ber of checkpoints. However, increasing the number of checkpoints for the
last job, and therefore increasing the checkpointing overhead is the reason
to limit the number of re-executions of execution segments from other jobs.
To clarify this discussion, assume three jobs, each having the processing time
T = 1000 t.u., a global deadline D = 3600 t.u., and assume a checkpointing
overhead τ = 10 t.u. Further, assume we explore the sequence of checkpoint
assignments {n̄c} = [2, 2, X] where X ∈ [2, 56] (the upper bound is computed
according to Eq. (4.62)). When X = 2, only one execution segment from any
of the three jobs may be re-executed without violating the global deadline.
Increasing the number of checkpoints for the last job to X = 4 improves the
LoC with respect to the global deadline due to the fact that the deadline is
met even if one of the execution segments from the first or the second job has
to be re-executed, or even if two execution segments from the last job have to
be re-executed. Increasing X beyond 7 would allow more execution segments
from the last job to be re-executed at the cost that no re-executions of any
execution segments from the first two jobs would be tolerated. For example
when X = 8, the deadline will be met even if three execution segments from
the last job are affected by errors. However, for X = 8, the deadline will be
violated if a single execution segment in the first or the second job is affected
by errors which in turn degrades the LoC.



4.2. Multiple Jobs 89

From this discussion we conclude that for a given {n̄c}, there exist a check-
point assignment n̄c = [nc1 , nc2 , nc3 ...n∗cm ] that provides the locally optimal LoC.
Since exploring all the checkpoint assignments which belong to {n̄c} is the
same as varying the number of checkpoints for the last job in the range
[ncm−1 , ncmax ], we can guarantee that n∗cm ∈ [ncm−1 , ncmax ]. Important to observe
here is that as the number of checkpoints for the last job increases from ncm−1

to n∗cm the LoC constantly increases and reaches the highest value (highest
LoC among all checkpoint assignments in the given sequence) at n∗cm . How-
ever, increasing the number of checkpoints beyond n∗cm , i.e. when the number
of checkpoints for the last job increases from n∗cm + 1 to ncmax , results in a lower
LoC.

As the goal is to obtain the maximal (globally optimal) LoC, only check-
point assignments that are local optima can be candidates to reach this goal.
Therefore, for each sequence of checkpoint assignments {n̄c}, we do not need
to explore the entire sequence. Instead, we only need to explore the check-
point assignments

{
[nc1 , nc2 ...ncm−1 , X]

}
, where X ∈ [ncm−1 , n∗cm + 1] and the lo-

cal optimum is achieved for n∗cm . The rest of the checkpoint assignments from
{n̄c}, i.e.

{
[nc1 , nc2 ...ncm−1 , X]

}
, where X ∈ [n∗cm + 2, ncmax ], do not contribute

in finding the maximal LoC and evaluating the LoC for these checkpoint as-
signments only deviates from the maximal LoC.

Previously we introduced the function next(n̄c, i) to obtain the next check-
point assignment to be explored. To obtain the next checkpoint assignment
the function is invoked with the following arguments: n̄c the current check-
point assignment and m the number of jobs in the set, i.e. next(n̄c, m). The
currently explored checkpoint assignment n̄c belongs to a sequence of check-
point assignments {n̄c}. To avoid exploring the rest of the checkpoint assign-
ments that belong to the given sequence of checkpoint assignments, we use
the same function next(n̄c, i), but this time we invoke it with the following
arguments: n̄c and m− 1. By invoking next(n̄c, m− 1), the function returns
the first checkpoint assignment of the successive sequence of checkpoint as-
signments, thus skipping the rest of the checkpoint assignments that belong
to the current sequence of checkpoint assignments {n̄c}.

So far, we showed that the search space can be reduced by not exploring
all checkpoint assignments that belong to a sequence of checkpoint assign-
ments. However, as we mentioned earlier, further reduction of the search
space is possible by discarding exploration of entire sequences of checkpoint
assignments, and next we elaborate on this. The reason to discard exploration
of entire sequences of checkpoint assignments is that the total checkpoint-
ing overhead after exploring consecutive sequences of checkpoint assignments
becomes dominant and limits the amount of re-executions of execution seg-
ments of all the jobs in the set. As the search space is explored in an iterative
manner, it means that consecutive sequences of checkpoint assignments are
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explored. For consecutive sequences of checkpoint assignments the number
of checkpoints per job increases. That means the execution segments of all
jobs become shorter, which makes it possible to tolerate more re-executions
of execution segments without violating the global deadline. That improves
the LoC. However, at a certain point the total number of checkpoints, i.e. the
sum of the number of checkpoints used per job, becomes too high incurring
a very high checkpointing overhead which limits the amount of possible re-
executions despite the fact that the execution segments are shorter. Out of
this discussion, we conclude that the LoC with respect to the global deadline
increases as consecutive sequences of checkpoint assignments are explored.
However, after a given sequence of checkpoint assignments, due to the exces-
sive checkpointing overhead, the LoC starts decreasing. This justifies to dis-
card further exploration of consecutive sequences of checkpoint assignments.
Now that we have motivated how to effectively reduce the search space, we
detail our proposed search method, i.e. Semi-Exhaustive Search, that aims to
find the optimal checkpoint assignment which results in the maximal LoC.

METHOD The method consists of two major loops: one inner and one outer
loop. The inner loop iterates through checkpoint assignments that belong to
the same sequence of checkpoint assignments, and it is used to obtain the
locally optimal LoC. The outer loop iterates through consecutive sequences
of checkpoint assignments, and it is used to obtain the globally optimal (the
maximal) LoC. The block diagram of our proposed method is illustrated in
Figure 4.8. As shown in Figure 4.8, the method starts by exploring the most
pessimistic checkpoint assignment where the number of checkpoints that are
used for each job is set to one, i.e. n̄c = [1, 1, 1...1]. Since no checkpoint assign-
ments are explored yet, both the global optimum Λg and the local optimum Λl

are set to zero. Next, we compute �n̄c(D), by using the expression presented
in Eq. (4.60), for the current checkpoint assignment n̄c. After this step is taken,
we compare the recently computed �n̄c(D) against Λl . If for the current check-
point assignment n̄c we get that �n̄c(D) is higher than Λl , it means that we
have found a better candidate that provides higher LoC than the currently
evaluated Λl . Therefore, we set n̄l

c = n̄c, Λl = �n̄c(D) and continue by explor-
ing the next checkpoint assignment that belongs to the sequence {n̄c}, i.e. we
set n̄c = next(n̄c, m). However, if the comparison �n̄c(D) ≥ Λl is evaluated as
false, it means that we have reached a checkpoint assignment within the se-
quence {n̄c} that does not contribute in finding the global optimum. Observe
that in such case the current value of Λl already keeps the local optimum for
the current sequence {n̄c}, and this optimum is obtained for the checkpoint
assignment n̄l

c. Since the local optimum for {n̄c} is obtained, there is no need
to continue with exploration of checkpoint assignments that belong to the
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Figure 4.8.: Flow chart of the Semi-Exhaustive Search method
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same sequence {n̄c}. Instead, the recently computed Λl is compared against
Λg. If Λl ≥ Λg, we have obtained a checkpoint assignment that can provide
a higher LoC than the currently evaluated Λg. Therefore, we set n̄g

c = n̄l
c,

Λg = Λl and we continue by exploring checkpoint assignments that belong
to the successive sequence of checkpoint assignments. We reach the succes-
sive sequence of checkpoint assignments by setting n̄c = next(n̄c, m− 1). The
recently evaluated n̄c belongs to a new sequence of checkpoint assignments
that have not yet been explored. Therefore, the variable Λl , which keeps the
value of the local optimum for the current sequence {n̄c}, is set to zero. How-
ever, if the comparison Λl ≥ Λg is evaluated as false, it means the method
has reached a sequence of checkpoint assignments for which the local opti-
mum fails to exceed the currently computed Λg. According to the discussion
above, regarding the reduction of the search space by discarding exploration
of entire sequences of checkpoint assignments, we assume that if a sequence
of checkpoint assignments whose local optimum fails to exceed the currently
computed Λg is reached, then all consecutive sequences will also fail to pro-
vide higher LoC than Λg. Therefore, if the comparison Λl ≥ Λg is evaluated
as false, the method terminates by reporting Λg to be the maximal LoC of
meeting the global deadline, and this maximum is reached by using the opti-
mal checkpoint assignment n̄g

c .
Important to note is that the presented method is a heuristic to search for

the optimal checkpoint assignment that results in the maximal LoC. However,
we cannot guarantee that this method will always be able to find the optimal
checkpoint assignment. Still, in Section 4.2.5 we demonstrate that in all ex-
periments that we have conducted, the presented method always reports the
same checkpoint assignment as the Exhaustive Search method, i.e. the Semi-
Exhaustive Search for all conducted experiments reports the optimal solution.

4.2.5. EXPERIMENTAL RESULTS

The purpose of the experiments presented in this section is as follows. First,
we show that both approaches which directly apply the solution for a single
job, i.e. Local Optimization and Single Large Job, in the general case, do
not obtain the maximal LoC for a set of jobs. Second, we show that the
proposed heuristic, i.e. Semi-Exhaustive Search, is able to find, in most cases,
the optimal checkpoint assignment and the maximal LoC. Third, we show that
the Semi-Exhaustive Search is able to find the optimal checkpoint assignment
and the maximal LoC in much shorter computation time when compared
against the Exhaustive Search approach.

We present results for the following two experiments:

• P1: we compare the LoC with respect to the global deadline, �n̄∗c (D),
obtained from the four approaches: Local Optimization, Single Large
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Job, Exhaustive Search, and Semi-Exhaustive Search

• P2: we compare the computation time for the Exhaustive Search ap-
proach against the proposed Semi-Exhaustive Search method

For the experiments, we use the input scenarios presented in Table 4.4. Each
scenario is defined with the following parameters:

• m, the number of jobs in the set;

• T, the processing time for each job;

• τ, the checkpointing overhead;

• D, the global deadline; and

• PT , the probability that no errors occur in a processor during a period
of time T.

Scenario m T τ D PT

A 2 1000 10 2800 0.99999

B 2 1000 10 2600 0.99999

C 3 1000 10 3900 0.99999

D 4 1000 10 5200 0.99999

E 5 1000 10 6500 0.99999

Table 4.4.: Input scenarios

Since the values for �n̄∗c (D) are numbers which are very close to 1, the
difference 1− �n̄∗c (D) results in numbers that are more convenient to present
by using scientific notation. Therefore, instead of presenting the values for
�n̄∗c (D), we present the values for the expression �̄n̄∗c (D) = 1− �n̄∗c (D). One
observes that lower values for �̄n̄∗c (D) represent a better solution, i.e. �n̄∗c (D)
is higher.

For P1, i.e. comparing �n̄∗c (D) obtained from the four approaches, the re-
sults are summarized in Table 4.5. For the Local Optimization approach the
results are obtained as follows. For each scenario, first we calculate the local
deadline D′ for each job by dividing the global deadline D with the number
of jobs in the set m, i.e. D′ = D

m . Next, we obtain the optimal number of
checkpoints n∗c that provides the maximal LoC with respect to the local dead-
line D′, i.e Λn∗c (D′), as shown in Section 4.1.4. Once n∗c is calculated, we apply
the expression in Eq. (4.54) to calculate �n̄∗c (D). Important to note is that all
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jobs in the set use the same number of checkpoints, and therefore the reported
checkpoint assignment n̄∗c consists of m elements, all with the same value n∗c .

For the Single Large Job approach, the results are obtained by comput-
ing the optimal number of checkpoints n∗c , for a single job with a processing
time T′ = m× T, that provides the maximal LoC with respect to the global
deadline D, i.e. Λn∗c (D), as shown in Section 4.1.4. Once n∗c is calculated, the
reported checkpoint assignment n̄∗c is evaluated as a vector where all elements
have the same value b n∗c

m c. In Table 4.5 we present the highest LoC that can be
achieved by the Single Large Job approach. However, we cannot always rely
on the results obtained from this approach. Observe the reported results for
Scenario B and Scenario E (marked with asterisk). For example, when run-
ning the experiment for Scenario E, the Single Large Job approach reports the
highest LoC which is obtained when using n∗c = 92 checkpoints for a single
large job which is an equivalent of five jobs running in a sequence. Using
n∗c = 92 checkpoints implies existence of execution segments that consist of
portions of two different jobs, due to the fact that 92 is not a multiple of five
(the number of jobs in the set).

Scenario Approach �̄n̄∗c (D) and n̄∗c

A

LO
n∗c = 25→ n̄∗c = [25, 25]

4.863650178E-35

SLJ
n∗∗c = 50→ n̄∗c = [25, 25]

4.863650178E-35

EXS
n̄∗c = [25, 25]

4.863650178E-35

SES
n̄∗c = [25, 25]

4.863650178E-35

B

LO
n∗c = 25→ n̄∗c = [25, 25]

1.131502348E-14

SLJ
n∗∗c = 43→ n̄∗c = [21, 21]

1.221914117E-19*

EXS
n̄∗c = [14, 19]

8.767754710E-20

SES
n̄∗c = [14, 19]

8.767754710E-20
to be continued on next page
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Scenario Approach �̄n̄∗c (D) and n̄∗c

C

LO
n∗c = 25→ n̄∗c = [25, 25, 25]

5.842467599E-19

SLJ
n∗∗c = 60→ n̄∗c = [20, 20, 20]

8.259693303E-29

EXS
n̄∗c = [13, 16, 16]

5.768673354E-29

SES
n̄∗c = [13, 16, 16]

5.768673354E-29

D

LO
n∗c = 25→ n̄∗c = [25, 25, 25, 25]

3.013298280E-23

SLJ
n∗∗c = 76→ n̄∗c = [19, 19, 19, 19]

5.945230027E-38

EXS
n̄∗c = [13, 14, 14, 18]

5.231888327E-38

SES
n̄∗c = [13, 14, 14, 18]

5.231888327E-38

E

LO
n∗c = 25→ n̄∗c = [25, 25, 25, 25, 25]

1.563182901E-27

SLJ
n∗∗c = 92→ n̄∗c = [18, 18, 18, 18, 18]

4.422693488E-47*

EXS
n̄∗c = [14, 14, 14, 17, 17]

4.0544649088E-47

SES
n̄∗c = [14, 14, 14, 17, 17]

4.0544649088E-47

Table 4.5.: Comparison of �̄n̄∗c (D) for the Local Optimization (LO),
the Single Large Job (SLJ), the Exhaustive Search (EXS),
and the Semi-Exhaustive Search (SES) approach

We cannot have such execution segments, which leads to the fact that we
cannot use n∗c = 92. Instead, we use nc = 90 for the single large job, which
then implies that each of the five jobs uses nc = 18 checkpoints. Note that
using nc = 90 will result in a lower �n̄c(D) than the one reported (the highest
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LoC is achieved for n∗c = 92). The same discussion applies for Scenario B,
where the highest LoC obtained from the Single Large Job approach is com-
puted for n∗c = 43. However, just for comparison purposes in Table 4.5 we
report the highest LoC achieved by the Single Large Job, and mark the infea-
sible solutions with an asterisk (Scenario B and Scenario E). One observes that,
in general, the Single Large Job approach does not achieve the maximal LoC
(compared with Exhaustive Search and Semi-Exhaustive Search approach),
even for the infeasible solutions.

For the Exhaustive Search approach the results are obtained by computing
�n̄c(D), using Eq. (4.60), for all valid checkpoint assignments n̄c. Once all valid
checkpoint assignments are exhausted, the optimal checkpoint assignment n̄∗c
is reported along with �n̄∗c (D) in Table 4.5.

Finally, for the Semi-Exhaustive Search approach, similar to the Exhaus-
tive Search approach, the results are obtained by computing �n̄c(D), using
Eq. (4.60), for a subset of valid checkpoint assignments n̄c as discussed in
Section 4.2.4. The optimal checkpoint assignment n̄∗c along with �n̄∗c (D) are
reported in Table 4.5.

With the result set presented in Table 4.5 we want to point out that both
the Exhaustive Search and the Semi-Exhaustive Search approach provide the
same results for all input scenarios, and further both of these approaches
obtain the maximal �n̄∗c (D). From Table 4.5, we observe that sometimes even
the Local Optimization and the Single Large Job approach may provide the
maximal �n̄∗c (D) (observe the results for Scenario A). However, we cannot
guarantee that the results obtained from these two approaches are optimal
for a random input scenario (observe the results for Scenario B, C, D and E).
Next, we present results for the second experiment P2.

For P2, we compare the computation time for the Exhaustive Search ap-
proach TEXS against the computation time for the Semi-Exhaustive Search
approach TSES. We have already shown in the previous result set that both
approaches provide the same results for all input scenarios. Important to
note is that for this experiment we adjust the Exhaustive Search approach
such that it does not explore equivalent checkpoint assignments. The com-
putation time for both approaches and for each of the input scenarios is pre-
sented in Table 4.6. In addition to the reported computation time for both
approaches, in Table 4.6 we report the reduction ratio. The reduction ratio
shows the improvement of the Semi-Exhaustive Search over the Exhaustive
Search approach in terms of computation time, and it is calculated as the ra-
tio TEXS/TSES. As observed from Table 4.6, TEXS grows rapidly as the number
of jobs increases. We also observe from Table 4.6 that TSES also increases with
the number of jobs. However, TSES is always lower than TEXS. This is clearly
visible when we examine input scenarios that consist of larger sets of jobs.
One particular result that we want to point out is the result obtained for Sce-
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Scenario TEXS TSES Reduction ratio
(

TEXS
TSES

)
A 1965 ms 1162 ms 1.691

B 1396 ms 1023 ms 1.365

C 9131 ms 1906 ms 4.791

D 623710 ms 37918 ms 16.449

E 41380904 ms 2321786 ms 17.823

Table 4.6.: Comparison of the computation time for the Exhaustive
Search (EXS) and the Semi-Exhaustive Search (SES) ap-
proach

nario E in Table 4.6, where we observe that TSES is almost 18 times lower than
TEXS (the reduction ratio is 17.823). The reason that makes both of these ap-
proaches very time-consuming is that both approaches need to execute many
complex floating-point operations with a very high precision. However, as the
Semi-Exhaustive Search explores only a subset of all valid checkpoint assign-
ments, the computation time for this approach is drastically reduced when
compared to the Exhaustive Search approach.





5
Guaranteed Completion Time

So far, we discussed that minimizing the AET is more important for soft RTS
while maximizing the LoC is more important for hard RTS. However, a de-
signer might be given a system specification which includes some reliability
requirements. In such scenario, instead of optimizing RRC with the goal to
minimize the AET or maximize the LoC, it becomes important to optimize
RRC such that the minimal completion time is obtained while given relia-
bility requirements are satisfied. With respect to this we introduce the term
Guaranteed Completion Time (GCTδ) that refers to a completion time which
satisfies a given LoC requirement δ. Introducing the GCTδ opens another in-
teresting problem to consider, i.e. optimize RRC with the goal to minimize
the GCTδ and we discuss that problem in this chapter. The chapter is orga-
nized as follows. The problem formulation is stated in Section 5.1. Definition
and properties of GCTδ are provided in Section 5.2. A method for minimiz-
ing GCTδ is presented in Section 5.3. Finally, some experimental results are
presented in Section 5.4.

5.1. PROBLEM FORMULATION

In this section we discuss the following problem. Given the following inputs:

• a job with a processing time T,

• an LoC requirement δ,

• a checkpointing overhead τ, and

• a probability PT that no soft errors occur in a processing node within
an interval of length T,

99
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find the optimal number of checkpoints such that the Guaranteed Completion Time
(GCTδ), i.e. the completion time that satisfies the given LoC requirement δ, is mini-
mized.

5.2. DEFINITION AND PROPERTIES

We introduce the term Guaranteed Completion Time (GCTδ) which is a comple-
tion time nc tk that is guaranteed with a given LoC requirement δ. Hence, a
completion time nc tk represents a GCTδ, if the following condition holds:

λnc(k) ≥ δ (5.1)

Observe that in Eq. (5.1) we are using the notation λnc(k) since we evaluate
the LoC with respect to a given instance of the completion time nc tk. The
condition in Eq. (5.1) can be satisfied for many different pairs of values (k,nc).
The reason for this is a consequence of the properties of the expression which
is used to calculate the LoC, in particular Theorem 2 and Theorem 3 (see
Section 4.1.3 in Chapter 4). According to Theorem 2, if for a given n†

c and k†

the condition in Eq. (5.1) is satisfied, then the same condition will be satisfied
for any combination of n†

c and k where k > k†, i.e. Eq. (5.1) is satisfied for
all pairs (k, n†

c ) where k > k†. Hence, for any pair (n†
c , k) where k > k†, the

condition λn†
c
(k) > λn†

c
(k†) is satisfied (this is consequence of Theorem 2),

which means that also Eq. (5.1) is satisfied. On the other hand, according
to Theorem 3, if for a given n†

c and k† the condition in Eq. (5.1) is satisfied,
then the same condition will be satisfied for all pairs (k†, nc) where nc > n†

c ,
i.e. λnc(k

†) > λn†
c
(k†) when nc > n†

c . Thus, as a result of Theorem 2 and
Theorem 3, we conclude that the condition in Eq. (5.1) can be satisfied for
many different pairs of values (k,nc).

While Eq. (5.1) can be satisfied for many different pairs of values (k,nc),
there exists a lower bound kδ such that Eq. (5.1) can be satisfied only if k ≥ kδ.
This comes as a consequence of Theorem 4 (see Section 4.1.3 in Chapter 4).
According to Theorem 4, for a given k†, λnc(k

†) cannot be higher than λ̄k†

for any nc. Thus, if λ̄k† < δ, the condition in Eq. (5.1) cannot be satisfied for
any pair of values (k†, nc). This implies, that the condition in Eq. (5.1) can
be satisfied only for such values of k where λ̄k ≥ δ. We denote with kδ, the
lower bound (lowest integer value) for k that satisfies the condition λ̄k ≥ δ.
Obtaining kδ is important as Eq. (5.1) can be satisfied only if k ≥ kδ.

Observe that the condition k ≥ kδ is just necessary and not sufficient con-
dition to satisfy Eq. (5.1). The condition k ≥ kδ states that it is required k
to be greater than or equal to kδ in order to satisfy Eq. (5.1). However, not
all combinations of nc and k ≥ kδ satisfy Eq. (5.1). Instead, for any k ≥ kδ

there exists a value for nc, denoted with g
k nc, such that for any nc ≥ g

k nc and
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k ≥ kδ Eq. (5.1) is satisfied. As there is no closed-form expression to obtain
λnc(k) (see Eq. (4.11)), it is not possible for a given k to directly compute g

k nc.
However, it is possible to conclude that a relation exists between k and g

k nc.
The relation between k and g

k nc is such that g
k nc decreases as k increases.

To prove that such relation exists, we make use of Theorem 2 and Theo-
rem 3. Let us assume that for a given k† > kδ we obtain n†

c =
g
k† nc, such that

the following relation holds:

λn†
c
(k†) = δ (5.2)

Hence, the pair (k†, n†
c ) satisfies Eq. (5.1) with the “equality” sign as shown

in Eq. (5.2). According to Theorem 2, for a given k‡, such that k‡ > k†, the
following relation holds:

λn†
c
(k‡) > λn†

c
(k†) (5.3)

As a result of Theorem 2, the pair (k‡, n†
c ) will also satisfy Eq. (5.1). How-

ever, the pair (k‡, n†
c ) satisfies Eq. (5.1) with the strictly “greater than” sign,

i.e.:
λn†

c
(k‡) > δ (5.4)

According to Theorem 3, for any nc < n†
c the following condition holds:

λnc(k
‡) < λn†

c
(k‡) (5.5)

However, as the right-hand side of Eq. (5.5) is strictly greater than δ (see
Eq. (5.4)), it is still possible to obtain an n‡

c that is lower than n†
c =

g
k† nc, such

that the pair (k‡, n‡
c ) satisfies Eq. (5.1). Assuming that all the pairs (k‡, nc)

where nc < n‡
c do not satisfy Eq. (5.1), leads to g

k‡ nc = n‡
c . Since n‡

c is lower
than n†

c , we conclude that g
k‡ nc <

g
k† nc while assuming that k‡ > k†. By this,

we prove that g
k nc decreases as k increases.

So far, we have shown that the necessary condition, given in Eq. (5.1), for a
completion time nc tk to represent a GCTδ can be satisfied for many different
pairs of values (k, nc). However, using different values for nc and k affects the
completion time nc tk. Next, we study how nc and k affect the completion time.

As shown in the previous chapter, the completion time nc tk, given in Eq. (4.3),
depends on the number of checkpoints nc and the number of erroneous exe-
cution segments (number of re-executions) k. For convenience, we restate the
expression for the completion time nc tk, i.e.:

nc tk = T + nc × τ + k× (
T
nc

+ τ) (5.6)
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For a fixed number of checkpoints n†
c , the completion time monotonically

increases as k increases, i.e. n†
c tk+1 > n†

c tk. On the other hand, for a fixed num-
ber of re-executions k† > 0, there exists an optimal number of checkpoints

k† n∗c , such that for any given nc1 and nc2 the following two relations hold: if
nc1 < nc2 < k† n∗c , then nc1 tk >

nc2 tk, and if nc1 > nc2 > k† n∗c , then nc1 tk <
nc2 tk.

This means that for a fixed number of re-executions k†, where k† > 0, the
completion time decreases as the number of checkpoints nc increases up to a
certain point, i.e. as nc increases up to k† n∗c . However, increasing the number
of checkpoints nc beyond k† n∗c increases the completion time as well. In Fig-
ure 5.1, we illustrate the completion time as a function of nc and each curve in
Figure 5.1 represents a completion time corresponding to a fixed k. As can be
seen from Figure 5.1, for each k > 0 there exists an optimal number of check-
points kn∗c such that the minimal completion time for the given k is achieved
when kn∗c checkpoints are used.

To find, for a given k > 0, the optimal number of checkpoints kn∗c that
results in the minimal completion time, we take the first derivative of the
expression that represents the completion time, i.e. Eq. (5.6), with respect to
nc and set it to be equal to zero. Taking the first derivative of nc tk with respect
to nc and setting it to be equal to zero results in the following:

dnc tk
dnc

= 0

⇒ d
dnc

(
T + nc × τ + k× (

T
nc

+ τ)

)
= 0

⇒ d
dnc

(T) +
d

dnc
(nc × τ) +

d
dnc

(
k× T

nc

)
+

d
dnc

(k× τ) = 0

⇒ τ − k× T
nc2 = 0

⇒ kn∗c =

√
k× T

τ
(5.7)

Observe that the right-hand side of the expression in Eq. (5.7) is evaluated
as a real number. However, since kn∗c represents a number of checkpoints,
only integer values are allowed. Rounding kn∗c , given in Eq. (5.7), to the closest
integer value does not always provide the optimal number of checkpoints that
leads to the minimal completion time, for a given k > 0 (a discussion on this is
presented in Appendix D). To verify that we obtain the optimal kn∗c , we need
to compare the completion times for the upper and the lower integer bound
of the expression given in Eq. (5.7). Thus, we obtain the following expression
to compute, for a given k > 0, the optimal number of checkpoints kn∗c that
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Figure 5.1.: Illustration of the completion time nc tk as a function of
nc, for given T = 1000 t.u. (time units), τ = 110 t.u., and
k ∈ [0, 5]

results in the minimal completion time:

ncL =

⌊√
k× T

τ

⌋

ncU =

⌈√
k× T

τ

⌉

kn∗c =

{
ncL , if ncL tk <

ncU tk
ncU , if ncU tk ≤ ncL tk

(5.8)

When the number of re-executions k is greater than zero, there exists an
optimal number of checkpoints kn∗c that, for the given k, results in the mini-
mal completion time and kn∗c is computed as given in Eq. (5.8). However, the
number of re-executions k is also allowed to be zero. When k = 0, the com-
pletion time monotonically increases along as nc increases (observe the linear
trend for the curve k = 0 in Figure 5.1). For k = 0, the minimal (the lowest)
completion time is achieved for the lowest value that can be assigned to nc,
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i.e. nc = 1.
Observe that for k = 0, Eq. (5.8) evaluates the optimal number of check-

points 0n∗c as zero, i.e. 0n∗c = 0. However, we showed in the previous para-
graph, that when k = 0 the minimal completion time is achieved when a single
checkpoint is used, i.e. 0n∗c = 1. Therefore, we need to adjust Eq. (5.8) and use
the following expression to calculate the optimal number of checkpoints kn∗c ,
for any given k ≥ 0:

ncL =

⌊√
k× T

τ

⌋

ncU =

⌈√
k× T

τ

⌉

kn∗c =


1, k = 0

ncL , if ncL tk <
ncU tk, k > 0

ncU , if ncU tk ≤ncL tk, k > 0
(5.9)

So far, we showed that for a fixed nc, the completion time increases as k
increases and we showed that for a fixed k there exists an optimal kn∗c that
provides the minimal completion time for the given k. Another important
observation is that for each pair (k, kn∗c ) the completion time kn∗c tk increases as
k increases. This is illustrated in Figure 5.1 (observe the line that connects the
optimal points of the curves illustrated in Figure 5.1). By observing the opti-
mal points for each of the curves illustrated in Figure 5.1, we see an increasing
trend. The increasing trend is also shown with the following equation:

kn∗c tk = T +

√
k

T
τ
× τ + k×

 T√
k× T

τ

+ τ


= T + 2×

√
k× T × τ + k× τ (5.10)

The expression in Eq. (5.10) represents the completion time for the pair of
values (k, kn∗c ). Since we assume that the processing time T and the check-
pointing overhead τ are given, Eq. (5.10) represents a function that depends
only on the number of re-executions k. To show that this function, i.e. Eq. (5.10),
is monotonically increasing with k it is necessary to show that the first deriva-
tive of Eq. (5.10) is always positive. By calculating the first derivative of
Eq. (5.10) with respect to k we get:√

T × τ

k
+ τ (5.11)
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The expression in Eq. (5.11) is always evaluated as a positive number, which
means that the expression in Eq. (5.10) is a function that monotonically in-
creases with k. Since Eq. (5.10) represents the minimal completion time with
respect to k, i.e. kn∗c tk, we conclude that by increasing k, the minimal com-
pletion time kn∗c tk increases as well. The increasing trend is also shown in
Figure 5.1 (observe the line which connects the optimal points of the curves
for different values of k).

As shown in Figure 5.1, for any given k† > 0, the completion time nc tk†

reaches a minimum when the number of checkpoints nc is equal to kn∗c and
for any other nc value, nc tk† increases. However, even though nc tk† increases,
there exists a range of values for nc, such that the completion time nc tk† is still
lower than the minimal completion time kn∗c tk that is achieved for any k > k†.
This shows that in order to obtain a lower completion time, it is also important
to consider, for a given k, other values for nc besides the optimal kn∗c .

Next, we show how to obtain the range of values for nc, denoted with
[k

‡

k† ncL , k‡

k† ncU ], such that for given k† < k‡ the following relation holds:

nc tk† ≤ k‡ n∗c tk‡ (5.12)

By using Eq. (5.6), we re-write Eq. (5.12) as:

T + nc × τ + k† ×
(

T
nc

+ τ

)
≤ T + k‡ n∗c × τ + k‡ ×

(
T

k‡ n∗c
+ τ

)
⇔ nc × τ + k† ×

(
T
nc

+ τ

)
≤ k‡ n∗c × τ + k‡ ×

(
T

k‡ n∗c
+ τ

)
⇔ nc × τ +

(
k† − k‡ n∗c − k‡

)
× τ + k† × T

nc
− k‡ × T

k‡ n∗c
≤ 0

⇔ τ × nc
2 +

((
k† − k‡ n∗c − k‡

)
× τ − k‡ × T

k‡ n∗c

)
︸ ︷︷ ︸

C

×nc + k† × T ≤ 0

⇔ τ × nc
2 + C× nc + k† × T ≤ 0 (5.13)

The left-hand side of Eq. (5.13) represents a quadratic function of nc. Fur-
thermore, this function reaches a minimum point because the second deriva-
tive, which is evaluated as τ, is positive, i.e. τ > 0. The quadratic function
given in Eq. (5.13) is evaluated as either negative or equal to zero for any
value of nc that belongs to the range [nc1 , nc2 ] where nc1 and nc2 represent the
roots of the function. Observe that the function can be negative or equal to
zero if and only if the roots of the function are evaluated as real numbers, i.e.
nc1 , nc2 ∈ R. Otherwise, if nc1 , nc2 /∈ R (the roots are complex numbers), the
function is evaluated as positive for any value of nc. The roots of the quadratic
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function given in Eq. (5.13) are real numbers, because the discriminant, which
is given in Eq. (5.14), is positive.

C2 − 4× k† × T × τ =

=

((
k† − k‡ n∗c − k‡

)
× τ − k‡ × T

k‡ n∗c

)2
− 4× k† × T × τ (5.14)

Next, we prove that the discriminant, i.e. Eq. (5.14), is evaluated as positive.
Replacing k‡ n∗c , in Eq. (5.14), with Eq. (5.7) results in the following expression:(k† −

√
k‡ × T

τ
− k‡

)
× τ − k‡ × T√

k‡ × T
τ

2

− 4× k† × T × τ =

=
((

k† − k‡
)
× τ − 2×

√
k‡ × T × τ

)2
− 4× k† × T × τ

=
((

k† − k‡
)
× τ

)2
+ 4×

(
k‡ − k†

)
×
√

k‡ × T × τ + 4×
(

k‡ − k†
)
× T × τ

(5.15)

The expression in Eq. (5.15) consists of three terms and all these terms are
greater than zero. The first term

((
k† − k‡)× τ

)2 is always positive because it
is obtained as a power of two. The second term 4×

(
k‡ − k†)×√k‡ × T × τ

and the third term 4×
(
k‡ − k†)× T × τ are evaluated as positive due to that

k‡ is greater than k†. Since all the terms in Eq. (5.15) are greater than zero, the
discriminant of the quadratic function is also greater than zero. This implies
that the roots nc1 and nc2 will be evaluated as real numbers and furthermore,
Eq. (5.13) will be satisfied for any nc value that belongs to the range [nc1 , nc2 ].
The roots of the quadratic function represented with the left-hand side ex-
pression of Eq. (5.13) are evaluated with the following equations:

nc1 =
−C−

√
C2 − 4× k† × T × τ

2× τ
(5.16)

nc2 =
−C +

√
C2 − 4× k† × T × τ

2× τ
(5.17)

The constant C in Eq. (5.16) and Eq. (5.17) is evaluated with the following
expression:

C =
(

k† − k‡ n∗c − k‡
)
× τ − k‡ × T

k‡ n∗c
(5.18)

As k† < k‡, the constant C (see Eq. (5.18)) will be always evaluated as a
negative value. Since C is negative, both roots nc1 and nc2 will be evaluated
as positive (see Eq. (5.16) and Eq. (5.17)).
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Figure 5.2.: Illustration of k‡

k† ncL and k‡

k† ncU , for given T = 1000 t.u.,
τ = 110 t.u., and k ∈ [1, 5]

Finally, Eq. (5.13) will be satisfied for any nc ∈ [nc1 , nc2 ]. Since only integer
values can be assigned to nc, we define the boundaries of this range with the
following expressions:

k‡

k† ncL =

⌈
−C−

√
C2 − 4× k† × T × τ

2× τ

⌉
(5.19)

k‡

k† ncU =

⌊
−C +

√
C2 − 4× k† × T × τ

2× τ

⌋
(5.20)

To conclude, for any given k† < k‡, there exists a range of values for nc, i.e.
[k

‡

k† ncL , k‡

k† ncU ], such that Eq. (5.12) is satisfied. The boundaries k‡

k† ncL and k‡

k† ncU

are evaluated with Eq. (5.19) and Eq. (5.20) respectively.
We illustrate the notations k‡

k† ncL and k‡

k† ncU in Figure 5.2, where we show the
completion time for k ∈ [1, 5] as a function of nc. As shown in Figure 5.2, for
any nc that belongs to the range [52ncL = 2, 5

2ncU = 15], the completion time
along the curve k = 2 is lower than the minimum point of the curve k = 5.

We summarize this section with the following conclusions:
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• Many instances of the completion time nc tk may satisfy a given LoC
requirement δ and thus, represent a GCTδ;

• A GCTδ is always associated with a pair of values (k, nc);

• For a given δ, only instances of the completion time where k > kδ may
represent a GCTδ;

• For any given k ≥ kδ there exists a g
k nc, such that for any nc ≥ g

k nc all
instances (k, nc) represent a GCTδ; and

• g
k nc decreases as k increases

In Figure 5.3 we illustrate GCTδ for the following inputs: T = 1000 t.u.,
τ = 110 t.u., PT = 0.9, and δ = 0.99999998. The filled circles shown in
Figure 5.3 represent instances of the completion time which represent a GCTδ,
while the empty circles are instances of the completion time which do not
represent a GCTδ. As shown in Figure 5.3 many instances of the completion
time may represent a GCTδ. However, only instances for k ≥ kδ may represent
a GCTδ (observe k = 6 in Figure 5.3). Further, in Figure 5.3 we illustrate the
notations g

k nc. As shown in Figure 5.3, g
k nc decreases as k increases. For

example, g
k nc for k = 6 is 9 (observe g

6nc = 9 in Figure 5.3) and it is larger than
g
k nc for k = 8 which is 2 (observe g

8nc = 2 in Figure 5.3).
For a given k ≥ kδ, the lowest GCTδ with respect to k is achieved for a

value of nc which is either kn∗c or g
k nc. If for a given k, the following condition

holds g
k nc ≤ kn∗c , then the lowest GCTδ with respect to k is obtained for the

pair of values (k, kn∗c ). Otherwise, if for a given k, the condition g
k nc ≤k n∗c is

not satisfied, then the lowest GCTδ for the given k is obtained for the pair of
values (k, g

k nc).
If for all k ≥ kδ, the condition g

k nc ≤ kn∗c is satisfied, then the minimal GCTδ

is obtained for the pair of values (kδ, kδ
n∗c ). However, there is no straightfor-

ward relation to obtain the minimal GCTδ if the condition g
k nc ≤ kn∗c does not

hold for all k ≥ kδ. For that reason, in the next section, we propose a method
to obtain the minimal GCTδ and the optimal number of checkpoints n∗cδ

.

5.3. MINIMIZING GUARANTEED COMPLETION TIME

In this section, we present an optimization method for RRC where the opti-
mization goal is to find the optimal number of checkpoints n∗cδ

such that for a
given LoC requirement δ, the minimal GCTδ is achieved. Given the following
parameters: a processing time T, a checkpointing overhead τ, a probability PT
that no errors occur in a processing node within an interval of length T, and



5.3. Minimizing Guaranteed Completion Time 109

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

T
im

e

Number of Checkpoints (nc)

k=5
k=kδ=6

k=7
k=8

k=9

k=10

g
6nc

g
7nc

g
8nc

g
9nc

g
10nc

Figure 5.3.: Illustration of GCTδ and g
k nc, for given T = 1000 t.u.,

τ = 110 t.u., PT = 0.9, δ = 0.99999998, and k ∈ [5, 10]

an LoC requirement δ, the method finds the optimal number of checkpoints
n∗cδ

that results in the minimal GCTδ.
A flow chart for the method is illustrated in Figure 5.4. As shown in Fig-

ure 5.4, the method consists of four different stages. Next, we discuss each
stage in detail. In Stage I, the method obtains kδ, i.e. the lowest integer value
for the number of re-executions k that satisfies the following condition:

λ̄k ≥ δ (5.21)

Finding kδ is important because the necessary condition to obtain a GCTδ is
that the number or re-executions k has to be at least equal to kδ. To obtain
kδ, as shown in Figure 5.4, first, k is initialized to zero and then, the condition
in Eq. (5.21) is evaluated. If the condition in Eq. (5.21) is not satisfied, k is
incremented and the condition is re-evaluated. Otherwise, if the condition in
Eq. (5.21) is satisfied, then the current value of k represents kδ. Once kδ is
obtained, the method proceeds with Stage II.

In Stage II, for the first time, the method identifies a GCTδ. This GCTδ is
obtained by only exploring pairs of values (k, kn∗c ), where kn∗c represents the
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optimal number of checkpoints that provides the minimal completion time for
the given k. The optimal number of checkpoints kn∗c is calculated according to
Eq. (5.9). Already at this stage, it may be possible to obtain the minimal GCTδ

and the optimal number of checkpoints n∗cδ
. Next, we elaborate the case when

the minimal GCTδ and the optimal number of checkpoints n∗cδ
are obtained

during Stage II.
As shown in Figure 5.4, the first step in Stage II is to calculate the optimal

number of checkpoints kn∗c that results in the minimal completion time for the
given k (Eq. (5.9)). Since k is set to kδ after completing Stage I, the first step
in Stage II calculates the optimal number of checkpoints kn∗c = kδ

n∗c . Next,
the method checks whether the completion time that is obtained for the pair
of values (kδ, kδ

n∗c ) represents a GCTδ. This is achieved by evaluating the
condition given in Eq. (5.1). Only if the condition is satisfied, the method
obtains the minimal GCTδ, i.e. kδ

n∗c tkδ
, and the optimal n∗cδ

= kδ
n∗c during

Stage II. Observe that the minimal GCTδ is obtained at this point because it
represents the minimal completion time that is obtained for the lowest number
of re-executions kδ. As we already showed in the previous section, for a given
k, there exist a minimal completion time that is achieved when kn∗c checkpoints
are used and we showed that by increasing k the minimal completion time
kn∗c tk increases (observe the line that connects the optimal points of the curves
illustrated in Figure 5.1). Since the necessary condition to obtain a GCTδ

is that the number of re-executions k has to be greater than or equal to kδ,
if already for k = kδ the minimal completion time kn∗c tk represents a GCTδ,
then for any k > kδ the minimal completion kn∗c tk will also represent a GCTδ

(this is consequence of Theorem 2). However, for any k > kδ, the minimal
completion time kn∗c tk will be greater than kδ

n∗c tkδ
. Therefore, it is possible to

obtain the minimal GCTδ already at Stage II and the only alternative that the
method obtains the minimal GCTδ at this stage is when the pair of values
(kδ, kδ

n∗c ) satisfy Eq. (5.1). In such case, the method proceeds with Stage V (see
Figure 5.4).

While it may be possible to obtain the minimal GCTδ during Stage II, this
may not always be the case. For example, if the the pair of values (kδ, kδ

n∗c )
does not satisfy Eq. (5.1), Stage II proceeds with the following steps. As shown
in Figure 5.4, first, k is incremented and then, for the new value of k the opti-
mal number of checkpoints kn∗c is calculated using Eq. (5.9) and it is assigned
to nc. Next, the condition in Eq. (5.1) is evaluated for the pair of values (k, nc).
If the condition is not satisfied, then k is incremented, nc is calculated for the
latest value of k using Eq. (5.9) and the condition in Eq. (5.1) is re-evaluated.
If the condition is satisfied, then the method proceeds with Stage III. Observe
that before Stage III is reached, k has reached a value kmax such that the min-
imal completion time for this value represents a GCTδ. Note that for any
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value of k that is greater than kmax any GCTδ will be greater than the GCTδ

achieved for the pair of values (kmax, kmax n∗c ). Therefore, the minimal GCTδ

will be obtained for a pair of values (k, n∗cδ
) where k ∈ [kδ, kmax].

In Stage III, the method identifies the lowest value for the number of re-
executions that results in a GCTδ that is lower than or equal to the GCTδ

identified in Stage II (kmax n∗c tkmax ). We denote this value with kmin. As discussed
in the previous section, for any given k† and k‡ such that k† < k‡ there exists a
range of nc values [k

‡

k† ncL , k‡

k† ncU ] where for any nc that belongs to the range the

completion time nc tk† is lower than or equal to k‡
n∗c tk‡ . The boundaries of the

range, i.e. k‡

k† ncL and k‡

k† ncU , are calculated according to Eq. (5.19) and Eq. (5.20),
respectively. The reason to obtain kmin is to further reduce the range of values
for k, i.e. k ∈ [kmin, kmax]. The minimal GCTδ will be obtained for a pair of
values (k, n∗cδ

) where k ∈ [kmin, kmax].
To obtain kmin, a variable k† is first initialized to kδ (observe Stage III in

Figure 5.4). Observe that kmin has to be greater or equal to kδ in order to obtain
a GCTδ. Next, the upper bound kmax

k† ncU is calculated according to Eq. (5.20)
and it is assigned to nc. For the pair of values (k†, nc), the completion time
nc tk† is lower than or equal to the GCTδ that is obtained in Stage II (completion
time for the pair of values (kmax, kmax n∗c )). However, the completion time nc tk†

may not necessarily represent a GCTδ. Therefore, the condition in Eq. (5.1)
is evaluated. If the condition is not satisfied, then k† is incremented, nc is
calculated according to Eq. (5.20) for the latest value of k† and the condition is
re-evaluated. If the condition is satisfied, kmin is evaluated as the latest value
of the variable k† and the method proceeds with Stage IV. Observe that kmin is
either lower than or equal to kmax.

In Stage IV, the minimal GCTδ is obtained. The minimal GCTδ is either the
GCTδ obtained at Stage II, i.e. kmax n∗c tkmax , or a GCTδ obtained for a pair of
values (k, g

k nc) where k ∈ [kmin, kmax). The notation g
k nc represents the lowest

value for the number of checkpoints such that for a given k and nc ≥ g
k nc, the

pair of values (k, nc) always results in a GCTδ, i.e. the pair of values (k, nc)
satisfies Eq. (5.1).

As shown in Figure 5.4, the first step in Stage IV is to compare the variable
k† with kmax. Observe that the variable k† is set to kmin after completing
Stage III. If k† = kmax, it means that no GCTδ lower than the GCTδ obtained
at Stage II has been identified and therefore, the minimal GCTδ is the one
obtained at Stage II, i.e. kmax n∗c tkmax . However, if the value of the variable k†,
i.e. kmin, is lower than kmax, it means that for k ∈ [kmin, kmax) it is possible
to obtain a GCTδ lower than the GCTδ obtained at Stage II. In such case, the
minimal GCTδ is obtained for a pair of values (k, g

k nc).
As mentioned in the previous section, there is no closed-form expression to
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calculate g
k nc for a given k. However, for any k ∈ [kmin, kmax),

g
k nc is bounded

and it belongs to the range (kmax−1n∗c , kmax
kmin

ncU ]. Observe that the lower bound

is not included and therefore, g
k nc has to be greater than kmax−1n∗c . This implies

that all pairs of values (k, kmax−1n∗c ) do not satisfy Eq. (5.1). Next, we elaborate
on how the lower and the upper bound of g

k nc are obtained.
The lower bound of g

k nc, where k ∈ [kmin, kmax), is evaluated as kmax−1n∗c .
Since in Stage II for all k < kmax the pairs of values (k, kn∗c ) have not satisfied
the condition in Eq. (5.1), the pair of values (kmax − 1, kmax−1n∗c ) also does not
result in a GCTδ. If the pair of values (kmax − 1, kmax−1n∗c ) does not satisfy
Eq. (5.1), then according to Theorem 2, the pairs of values (k, kmax−1n∗c ) where
k < kmax also do not satisfy Eq. (5.1). Therefore, for any k < kmax, g

k nc has to
be greater than kmax−1n∗c .

The upper bound of g
k nc, where k ∈ [kmin, kmax), is evaluated as kmax

kmin
ncU .

Observe that in Stage III, the method has identified kmin, which represents
the lowest value for the number of re-executions that results in a GCTδ that
is lower than or equal to the GCTδ identified in Stage II (kmax n∗c tkmax ). Since
the pair of values (kmin, kmax

kmin
ncU ) satisfies Eq. (5.1), i.e. it represents a GCTδ,

according to Theorem 2, the pairs of values (k, kmax
kmin

ncU ), where k ∈ [kmin, kmax),

will also satisfy Eq. (5.1). Therefore, for any k ∈ [kmin, kmax),
g
k nc has to be

lower than or equal to kmax
kmin

ncU .

Although there is no closed-form expression to calculate g
k nc for a given k,

the fact that g
k nc is bounded and it belongs to the range (kmax−1n∗c , kmax

kmin
ncU ] for

any k ∈ [kmin, kmax) allows us to find g
k nc by using the search algorithm de-

scribed in Figure 5.5. The basic idea of the search algorithm is to successively
half the interval (ncL , ncU ] until an interval, where the difference between the
end points is equal to one, is reached. Next, we detail the search algorithm
given in Figure 5.5.

First, the search algorithm evaluates the difference ncU − ncL and compares
it with 1 (step 1 in Figure 5.5). If ncU − ncL = 1, then the algorithm returns
ncU . Since only the upper bound of the interval (ncL , ncU ] satisfies Eq. (5.1),
g
k nc is evaluated as ncU . However, if the difference ncU − ncL is not equal
to one, the algorithm proceeds with step 4. In step 4, the the median ncm

of the current interval is evaluated, i.e. ncm = b(ncL + ncU )/2c. Next, the
search algorithm checks whether the pair of values (k, ncm) satisfies Eq. (5.1)
(step 5 in Figure 5.5). If the pair of values (k, ncm) satisfies Eq. (5.1), then the
algorithm steps into a recursive call, where the upper bound of the interval
ncU is updated and set to ncm (step 6 in Figure 5.5). However, if the pair of
values (k, ncm) does not satisfy Eq. (5.1), the algorithm steps into a recursive
call, where the lower bound of the interval ncL is updated and set to ncm , and it
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8. return src(k, ncL , ncm )

7. else

6. return src(k, ncm , ncU )

5. if (λncm (k) < δ) then

4. ncm = b(ncL + ncU )/2c;

3.else

2. return ncU

1.if (ncU − ncL = 1) then

algorithm src(k, ncL , ncU )

Figure 5.5.: Search algorithm for obtaining g
k nc

keeps on searching g
k nc in the interval (ncm , ncU ] (step 8 in Figure 5.5). By using

this algorithm, g
k nc is obtained and this is important as the minimal GCTδ in

Stage IV may be evaluated for a pair of values (k, g
k nc) where k ∈ [kmin, kmax).

We mentioned earlier that the first step in Stage IV is to compare k† with
kmax and we concluded that only when the value of k†, i.e. kmin, is lower
than kmax, the minimal GCTδ will be obtained for a pair of values (k, g

k nc)

where k ∈ [kmin, kmax). Thus, if k† < kmax, the method identifies g
k† nc by using

the search algorithm given in Figure 5.5 (see the second step in Stage IV in
Figure 5.4). To obtain g

k† nc, the search algorithm is invoked with the following

arguments: k†, kmax−1n∗c and kmax
kmin

ncU . Observe that the GCTδ identified for

the pair of values (k†, g
k† nc) is lower than the GCTδ obtained during Stage II

and therefore, it is a candidate for the minimal GCTδ. However, it is not
guaranteed that the current pair of values (k†, g

k† nc) will provide the minimal
GCTδ since it may be possible that the minimal GCTδ is achieved for another
pair of values (k‡, g

k‡ nc) where k† < k‡ < kmax. Therefore, the method proceeds
with the following steps. First, k‡ is set to k† + 1. For k‡, it may be possible
(but not always) to find a range of values for nc, denoted with [k

‡

k† ng
cL , k‡

k† ng
cU ],

such that for any nc that belongs to this range, the completion time obtained
for the pair of values (k‡, nc) is lower than or equal to the completion time
obtained for the pair of values (k†, g

k† nc). This is expressed with Eq. (5.22).
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nctk‡ ≤
g
k† nc tk†

⇒ τ × nc
2 +

(
k‡ × τ −

(
g
k† nc × τ + k† ×

(
T

g
k† nc

+ τ

)))
︸ ︷︷ ︸

D

×nc + k‡ × T ≤ 0

⇒ τ × nc
2 + D× nc + k‡ × T ≤ 0 (5.22)

Eq. (5.22) is similar to Eq. (5.13). However, while the roots of Eq. (5.13) are
always evaluated as real numbers, the roots of Eq. (5.22) may not always be
evaluated as real numbers. Based on the discussion regarding Eq. (5.13) in the
previous section, if the roots of Eq. (5.22) are evaluated as complex numbers,
it means that Eq. (5.22) will not be satisfied for any nc value. In such case,
any GCTδ obtained for any k ≥ k‡ will be larger than the GCTδ obtained
for the pair of values (k†, g

k† nc) and therefore, the minimal GCTδ will be the
one obtained for the pair of values (k†, g

k† nc) (observe the “N” branch of the
decision box “Solve Eq. (5.22)” shown in Stage IV in Figure 5.4). However, if
the roots of Eq. (5.22), i.e. k‡

k† ng
cL and k‡

k† ng
cU , are evaluated as real numbers, that

means that Eq. (5.22) will be satisfied for any nc ∈ [k
‡

k† ng
cL , k‡

k† ng
cU ]. The roots

of Eq. (5.22), i.e. k‡

k† ng
cL and k‡

k† ng
cU are presented in Eq. (5.23) and Eq. (5.24),

respectively.

k‡

k† ng
cL =

⌈
−D−

√
D2 − 4× τ × k‡ × T

2× τ

⌉
(5.23)

k‡

k† ng
cU =

⌊
−D +

√
D2 − 4× τ × k‡ × T

2× τ

⌋
(5.24)

(5.25)

The constant D used in Eq. (5.23) and Eq. (5.24) is evaluated with the following
expression:

D = k‡ × τ −
(

g
k† nc × τ + k† ×

(
T

g
k† nc

+ τ

))
(5.26)

Thus, for a given k‡, if the roots of Eq. (5.22) are evaluated as real num-
bers, the completion time obtained for the pair of values (k‡, k‡

k† ng
cU ), where

k‡

k† ng
cU is calculated according to Eq. (5.24), will be lower than or equal to the

GCTδ obtained for the pair of values (k†, g
k† nc). However, the completion time
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obtained for the pair of values (k‡, k‡

k† ng
cU ), where k‡

k† ng
cU is calculated accord-

ing to Eq. (5.24), does not necessarily need to represent a GCTδ. Therefore,
in the next step, the condition in Eq. (5.1) is evaluated for the pair of values
(k‡, k‡

k† ng
cU ) (see the decision box “λnc(k

‡) ≥ δ” in Stage IV in Figure 5.4). If

the pair of values (k‡, k‡

k† ng
cU ) does not satisfy Eq. (5.1), k‡ is incremented and

Eq. (5.22) is solved for the latest value of k‡. These two steps, i.e. incrementing
k‡ and solving Eq. (5.22), are repeated until k‡ has reached a value such that
either (1) the roots of Eq. (5.22) are evaluated as complex numbers, in which
case the minimal GCTδ is obtained for the pair of values (k†, g

k† nc) or (2) the

pair of values (k‡, k‡

k† ng
cU ) represents a GCTδ.

If the pair of values (k‡, k‡

k† ng
cU ) represents a GCTδ, it means that even a

lower GCTδ can be obtained for the pair of values (k‡, g
k‡ nc). To find g

k‡ nc, the
search algorithm given in Figure 5.5 is invoked with the following arguments:
k‡, kmax−1n∗c and k‡

k† ng
cU . Next, the value of k‡ is assigned to k†. By this, it

is guaranteed that k† always points to a value for which the lowest GCTδ is
identified. Next, the method proceeds by checking if it is possible to find
another k‡ greater than k† such that it results in even lower GCTδ. If for any
k‡ > k† it is not possible to achieve lower GCTδ than the GCTδ obtained for
the pair of values (k†, g

k† nc), then the minimal GCTδ is obtained for the pair of
values (k†, g

k† nc), and the optimal number of checkpoints is evaluated as g
k† nc.

Finally, in Stage V, the optimal number of checkpoints n∗cδ
and the minimal

GCTδ are reported.
To clarify how the method finds the optimal number of checkpoints n∗cδ

and
the minimal GCTδ, in the following section, we present a detailed example.

5.3.1. EXAMPLE

In this section, we illustrate the different pairs of values (k, nc) that are ex-
plored by the method, discussed in the previous section, for the following
example. Important to note is that the example was designed such that all
different paths in the flow chart presented in Figure 5.4 are exercised.

Example 1. Given the following parameters:

• a processing time T = 1000 t.u.,

• a checkpointing overhead τ = 200 t.u.,

• a probability PT = 0.5 that no errors occur within an interval of length
T, and

• an LoC requirement δ = 1− 10−18

find the minimal GCTδ and the optimal number of checkpoints n∗cδ
.
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Figure 5.6.: Illustration on finding the minimal GCTδ, for given
T = 1000 t.u., τ = 20 t.u., PT = 0.5, and δ = 1− 10−18

For the given example, we illustrate in Figure 5.6 the different pairs of
values (k, nc) that are explored during the different stages of the method that
finds the minimal GCTδ, and the optimal number of checkpoints n∗cδ

.
After completing Stage I (see Figure 5.4), the method obtains the lowest

value for the number of re-executions for which a GCTδ can be obtained,
i.e. kδ = 21. Therefore, in Figure 5.6, we only plot the completion time for
k ≥ 21. Note that the empty circles shown in Figure 5.6 represent instances
of the completion time which do not represent a GCTδ while the filled circles
represent a GCTδ .

During Stage II (see Figure 5.4), the method explores the pairs of values
(k, kn∗c ), where kn∗c is calculated according to Eq. (5.9), until it finds the first
pair of values (kmax, kmax n∗c ) which satisfies Eq. (5.1). The pairs of values
(k, knc) that are explored during Stage II are illustrated with the points marked
with “1”–“7” in Figure 5.6 (observe that the points represent the minimum of
each of the different curves for 21 ≤ k ≤ 27 in the figure). As mentioned in the
previous section, if and only if the pair of values (kδ, kδ

n∗c ) represents a GCTδ,
the minimal GCTδ is obtained in Stage II. However, for the given example, this
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is not the case. As shown in Figure 5.6, the pair of values (kδ = 21, kδ
n∗c = 10),

marked with point “1”, does not represent a GCTδ (observe the empty cir-
cle next to “1” in the figure). If the minimal GCTδ is not obtained during
Stage II, this stage completes when a GCTδ is identified for the pair of values
(kmax, kmax n∗c ). Observe that the points marked with “1”-“6” in Figure 5.6 do
not represent a GCTδ (observe the empty circle next to each of these points
in the figure) and only the point marked with “7”, i.e. the pair of values
(k = 27, kn∗c = 12), represents a GCTδ (observe the filled circle next to the
point marked with “7” in the figure). Thus, after completing Stage II, for this
example, the method identifies kmax = 27.

In Stage III, the method identifies the lowest value kmin for the number of
re-executions that results in a GCTδ lower than or equal to the GCTδ identi-
fied in Stage II. As stated earlier, for the given example, the GCTδ in Stage II
was obtained for the pair of values (k = 27, kn∗c = 12) and it is illustrated
with the point marked with “7” in Figure 5.6. The pairs of values (k, knc)
that are explored during Stage III are illustrated with the points marked with
“8”–“12” in Figure 5.6. Observe that these points are instances of the comple-
tion time for 21 ≤ k ≤ 27 that lie just below the horizontal line that passes
through the point marked with “7”. The points marked with “8”–“12” in
Figure 5.6 represent the pair of values (k, kmax

k ncU ), where kmax
k ncU is calculated

according to Eq. (5.20). The first step in Stage III explores the pair of values
(k = 21, kmax

k ncU = 25) and it is illustrated with the point marked with “8” in
Figure 5.6. As shown in the figure, the point marked with “8” does not rep-
resent a GCTδ (observe the empty circle next to the “8”), and therefore kmin
is not yet evaluated. In the next step, the method explores the pair of values
(k = 22, kmax

k ncU = 23) which is illustrated with the point marked with “9” in
Figure 5.6. Again, this point does not represent a GCTδ. Finally, when the
pair of values (k = 25, kmax

k ncU = 18), illustrated with “12” in Figure 5.6, is
explored, a GCTδ is identified. Therefore, kmin = 25 is identified at the end of
Stage III.

The minimal GCTδ is obtained during Stage IV (see Figure 5.4). Since kmin
and kmax are not the same, i.e. kmin = 25 (identified during Stage III) and
kmax = 27 (identified during Stage II), the minimal GCTδ is obtained for a pair
of values (k, g

k nc) where 25 ≤ k < 27. The first step during Stage IV is to find
g
k nc for k = 25. This is done by using the search algorithm described in Fig-
ure 5.5. To obtain g

k nc for k = 25, the search algorithm requires the lower and
the upper bound of g

k nc. As discussed in the previous section, the lower bound
of g

k nc is evaluated as kmax−1n∗c and it represents the number of checkpoints for
which the minimum of the curve k = kmax − 1 = 26 is obtained. In Figure 5.6,
this minimum is illustrated with the point marked with “6”, i.e. the pair of
values (kmax − 1 = 26, kmax−1n∗c = 11). The lower bound of g

k nc for k = 25 is
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illustrated with the vertical line that passes through the point marked with
“6”, i.e. nc = 11. The upper bound of g

k nc is evaluated as kmax
kmin

ncU , and it
represents the number of checkpoints for the intersection point between the
curve representing the completion time for k = kmin = 25 and the completion
time obtained for the pair of values (kmax = 27, kmax n∗c = 12), illustrated by the
horizontal line that passes through the point marked with “7” in Figure 5.6.
The intersection point is illustrated with “12” and it represents the pair of
values (k = 25, kmax

k ncU = 18). Thus, the upper bound of g
k nc for k = 25 is illus-

trated with the vertical line that passes through the point marked with “12”,
i.e. nc = 18. Given that k = 25, ncL = 11, and ncU = 18, the search algorithm
presented in Figure 5.5 obtains the g

k nc while exploring the following pairs
of values (k, nc). Since the difference ncU − ncL is not equal to one, first, the
search method obtains ncm = b(11 + 18)/2c = 14, and then the pair of values
(k = 25, nc = 14) illustrated with the point marked with “13” in Figure 5.6
is explored. As shown in Figure 5.6, the point marked with “13” does not
represent a GCTδ. Therefore, the search algorithm proceeds by exploring the
interval (ncL = 14, ncU = 18]. Since again the difference ncU − ncL is not equal
to one, new ncm = b(14 + 18)/2c = 16 is calculated, and then the pair of val-
ues (k = 25, nc = 16) illustrated with the point marked with “14” in Figure 5.6
is explored. Observe from Figure 5.6 that the point marked with “14” does
not represent a GCTδ. Therefore, the search algorithm proceeds by exploring
the interval (ncL = 16, ncU = 18]. Once again, the difference ncU − ncL is not
equal to one. Therefore, ncm = b(16 + 18)/2c = 17 is calculated, and next the
pair of values (k = 25, nc = 17) illustrated with the point marked with “15”
in Figure 5.6 is explored. Observe that “15” represents a GCTδ. This forces
the search to proceed in the interval (ncL = 16, ncU = 17]. However, since the
difference ncU − ncL is equal to one, the search algorithm identifies g

k nc = 17
for k = kmin = 25. Once the search algorithm has identified g

k nc = 17 for
k = kmin = 25, the pair of values (kmin = 25, g

kmin
nc = 17), illustrated with “15”

in Figure 5.6, provides the lowest GCTδ that has been obtained until this point.
However, Stage IV does not end here (see Figure 5.4).

The next step after finding g
k nc for k = kmin = 25 in Stage IV, is to check

if it is possible to obtain a lower GCTδ for k = 26. Therefore, the method
solves Eq. (5.22). The roots of Eq. (5.22) are evaluated as real numbers. In Fig-
ure 5.6, this is shown with the intersection of the horizontal line that passes
through the point marked with “15” (the completion time for the pair of val-
ues (kmin = 25, g

kmin
nc = 17)) and the curve which represents the completion

time for k = 26. Using Eq. (5.24), the method first obtains k‡=26
k†=25ng

cU = 14, and

next it checks whether the pair of values (k‡ = 26, k‡=26
k†=25ng

cU = 14) illustrated
with “16” in Figure 5.6 represents a GCTδ. As shown in in Figure 5.6, the
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point marked with “16” represents a GCTδ. Therefore, the method proceeds
by finding g

k nc for k = 26. To obtain g
k nc for k = 26 the search algorithm is

invoked with the following arguments: k = 26, ncL = 11, and ncU = 14. The
lower and the upper bound of g

k nc for k = 26 are shown with the vertical lines
that pass through the points marked with “6” and “16”, respectively. Since
for the given ncL = 11 and ncU = 14 the difference ncU − ncL is not equal
to one, the search method first calculates ncm = b(11 + 14)/2c = 12, and next
it explores the pair of values (k = 26, nc = 12), which is illustrated with
“17” in Figure 5.6. As shown in Figure 5.6, the point “17” does not represent
a GCTδ. Therefore, the search proceeds in the interval (ncL = 12, ncU = 14].
Again, since the difference ncU − ncL is not equal to one, the search method
calculates ncm = b(12 + 14)/2c = 13, and next it explores the pair of values
(k = 26, nc = 13), which is illustrated with “18” in Figure 5.6. As shown
in Figure 5.6, the point “18” does not represent a GCTδ, and therefore the
search proceeds in the interval (ncL = 13, ncU = 14]. However, this time, the
difference ncU − ncL is equal to one, and therefore the search method finds
g
k nc = 14 for k = 26. The pair of values (k = 26, g

k nc = 14), illustrated with
“16” in Figure 5.6, represents the minimal GCTδ for the given example.

5.4. EXPERIMENTAL RESULTS

The purpose of the experiments presented in this section is to: (1) show that
GCTδ varies with the number of checkpoints and (2) validate the proposed
method that finds the minimal GCTδ and the optimal number of checkpoints
n∗cδ

. For that reason, we present results for the following experiment:

• P1: find the optimal number of checkpoints n∗cδ
that minimizes the

GCTδ, for a given LoC requirement δ.

For the given experiment, we use two input scenarios, Scenario A and Sce-
nario B, which are summarized in Table 5.1. For each scenario, the following
inputs are given: a processing time T, a checkpointing overhead τ, and a
probability PT that no errors occur in a processor within an interval equal to
T. Furthermore, we assume given is an LoC requirement δ = 1− 10−10.

The results for P1 are presented in Table 5.2 and Table 5.3 for Scenario A and
Scenario B, respectively. The results show, for different number of checkpoints
nc, the minimum number of re-executions k that are needed to provide a
GCTδ, along with the obtained GCTδ. The results are obtained as follows.
For each nc, we initialize k = 1 and check the following inequality λnc(k) ≥ δ.
If the inequality is not satisfied, then k is incremented until Λnc(tk) ≥ δ. In
other words, for each nc, we find the lowest instance of the completion time
that represents a GCTδ. In Table 5.2 and Table 5.3, for each nc, we present
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Scenario A Scenario B

T = 1000 t.u. T = 1000 t.u.

τ = 20 t.u. τ = 20 t.u.

PT = 0.99999 PT = 0.9

Table 5.1.: Input scenarios

δ = 1− 10−10

nc k GCTδ nc k GCTδ

1 2 3060 11 2 1442
2 2 2080 12 2 1447
3 2 1767 13 2 1454
4 2 1620 14 2 1463
5 2 1540 15 2 1474
6 2 1494 16 2 1485
7 2 1466 17 2 1498
8 2 1450 18 2 1512
9 2 1443 19 2 1526

10 2 1440 20 2 1540

Table 5.2.: GCTδ and the number of re-executions k included in GCTδ,
for Scenario A, at various number of checkpoints nc

(1) the minimum required number of re-executions k to obtain a GCTδ and
(2) the obtained GCTδ .

Table 5.2 shows the results for Scenario A. For the given PT = 0.99999 in
Scenario A, the given LoC requirement δ = 1 − 10−10 can be reached for
kδ = 2. Using Theorem 4 we evaluate for k ≥ 0 the limit λ̄k and compare it
with δ. For k = 0 and k = 1 the limit λ̄k is lower than δ. For k = 2 we obtain
a limit λ̄k larger than δ which leads to kδ = 2. As can be seen from Table 5.2,
already for nc = 1 a GCTδ is obtained for k = kδ = 2. As a consequence of
Theorem 3, all pairs (nc, kδ) will represent a GCTδ (observe that the value of
k is equal to 2 for all nc in Table 5.2). We have already discussed in Section 5.2
that for a fixed k ≥ 0 there exists an optimal number of checkpoints kn∗c such
that the pair of values (k, kn∗c ) results in the minimal completion time for the
given k. The optimal kn∗c is evaluated with Eq. (5.9). By using the inputs given
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δ = 1− 10−10

nc k GCTδ nc k GCTδ

1 13 14280 12 8 2066
2 11 6760 13 8 2036
3 10 4594 14 8 2012
4 9 3510 15 8 1994
5 9 3080 16 8 1980
6 9 2800 17 8 1971
7 8 2443 18 8 1965
8 8 2320 19 8 1962
9 8 2229 20 8 1960

10 8 2160 21 8 1961
11 8 2108 22 8 1964

Table 5.3.: GCTδ and the number of re-executions k included in GCTδ,
for Scenario B, at various number of checkpoints nc

for Scenario A in Eq. (5.9), we get:

ncL =

⌊√
2× 1000

20

⌋
= 10

ncU =

⌈√
k× 1000

20

⌉
= 10

(5.27)

As ncL = ncU , the optimal kn∗c = ncL = ncU = 10. By observing the results
in Table 5.2, we see that as nc increases from 1 to 10, the GCTδ decreases.
However, increasing nc above 10 results in a higher GCTδ. Thus, the minimal
GCTδ is reached at n∗cδ

= 10. The minimal GCTδ includes two re-executions,
and it is evaluated as GCTδ = 1000 + 10× 20 + 2× ( 1000

10 + 20) = 1440t.u. The
same results are produced when the method discussed in Section 5.3 is used.
In Stage I (see Figure 5.4), the method computes kδ = 2 for the given inputs
in Scenario A. Already at Stage II, the method obtains the minimal GCTδ. In
Stage II, the method first calculates kn∗c using Eq. (5.9) for k = kδ = 2 and
it evaluates kδ

n∗c = 10. Since the pair of values (kδ = 2, kδ
n∗c = 10) satisfies

Eq. (5.1), the method outputs the minimal GCTδ = 10t2 = 1440 t.u. and the
optimal number of checkpoints n∗cδ

= 10. The advantage of the method is
that it obtains the minimal GCTδ and the optimal n∗cδ

in much less iterations.
For Scenario A, the minimal GCTδ reported in Table 5.2 is achieved after 10
iterations, while the method obtains the minimal GCTδ in a single iteration
(only the pair of values (kδ = 2, kδ

n∗c = 10) is explored).
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Table 5.3 shows the results for Scenario B. For the given PT = 0.9 in Sce-
nario B, the given LoC requirement δ = 1− 10−10 can be reached for kδ = 8.
Observe in Table 5.3 that only when nc ≥ 7 a GCTδ can be achieved for
k = kδ = 8. Thus, for all nc ≥ 7 all pairs (nc, kδ) will represent a GCTδ. That
means that g

kδ
nc = 7. Observe that for all nc <

g
kδ

nc = 7 a GCTδ can only be ob-
tained for a k > kδ = 8, e.g. for nc = 3 a GCTδ is achieved for k = 10 > kδ = 8.
For the fixed k = kδ = 8 and the inputs given in Scenario B, the optimal kn∗c is
evaluated as 20 (using Eq. (5.9)). Since g

kδ
nc = 7 < kδ

n∗c = 20, as discussed in
Section 5.2, the minimal GCTδ will be obtained for the pair of values (kδ, kδ

n∗c ).
By observing the results in Table 5.3 we see that as nc increases from 1 to
20, the GCTδ decreases. However, increasing nc above 20 results in a higher
GCTδ. Thus, the minimal GCTδ is reached at n∗cδ

= 20 and it is evaluated as
GCTδ = 1000 + 20× 20 + 8× ( 1000

20 + 20) = 1000 + 400 + 8× 70 = 1960 t.u.
The same results are obtained when the proposed method, discussed in Sec-
tion 5.3, is used. Similar to Scenario A, the method obtains the minimal GCTδ

for Scenario B during Stage II, and therefore it obtains the minimal GCTδ in a
single iteration.

From the results, we conclude that GCTδ varies with the number of check-
points nc, and there exists an optimal number of checkpoints n∗cδ

that results
in the minimal GCTδ. To obtain the optimal number of checkpoints n∗cδ

that
results in the minimal GCTδ, we proposed a method in Section 5.3. As demon-
strated with the experiments in this section, the proposed method always
identifies the minimal GCTδ and the optimal number of checkpoints n∗cδ

. The
advantage of the proposed method is that n∗cδ

and the minimal GCTδ can be
identified in much less iterations in comparison to finding for each number
of checkpoints nc the lowest instance of the completion time that represents a
GCTδ.



6
Summary of Part I

This chapter presents a summary of Part I where we discussed optimization
of RRC for three different optimization objectives while assuming equidistant
checkpointing. The optimization objectives discussed in Part I are: (1) Average
Execution Time, (2) Level of Confidence and (3) Guaranteed Completion Time. Next,
we outline the contributions with respect to each of the optimization objectives
stated earlier.

For the optimization of Average Execution Time, we analyzed the impact of
the number of checkpoints on the execution time when RRC is used. We
developed a mathematical framework to compute the average execution time
(AET) for a given number of checkpoints. Furthermore, we derived a closed-
form mathematical expression to compute the optimal number of checkpoints
that results in the minimal AET. These results are of high importance for
soft real-time systems (RTSs) where minimizing the AET is one of the major
optimization objectives.

For the optimization of Level of Confidence, we analyzed the impact of the
number of checkpoints on the probability to meet a given deadline. While
AET is mainly applicable for soft RTSs, the Level of Confidence (LoC) is
equally applicable for both soft and hard RTSs as it provides the probabil-
ity to meet a given deadline. The analyses were conducted for the following
two cases: (1) a single job constrained with a deadline and (2) multiple jobs
constrained with a global deadline.

For the single job case, we derived a mathematical expression to evaluate
the LoC with respect to a given deadline, i.e. the probability to meet a given
deadline, for a given number of checkpoints. The expression was thoroughly
analyzed and important properties of the expression along with proofs were
provided. Using these properties, we provided directions on how to iden-
tify the optimal number of checkpoints that maximizes the LoC. The optimal
number of checkpoints is identified by only evaluating and comparing the
LoC for a specific set of values for the number of checkpoints. These values
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for the number of checkpoints are obtained by using a closed-form mathemat-
ical expression that was derived by using the properties of the expression that
is used to calculate the LoC.

For the multiple jobs case, we focused on optimizing the LoC with respect
to a given global deadline for a set of jobs. We showed that directly applying
the results obtained from optimization of the LoC for each individual job does
not provide the optimal solution for the case of multiple jobs. In particular,
we investigated two approaches: (1) Local Optimization approach, where the
number of checkpoints assigned to each job was obtained by optimizing the
LoC for a single job with respect to a local deadline; and (2) Single Large Job
approach, where the set of jobs was considered as one job. Both approaches
fail to provide the optimal solution, i.e. a checkpoint assignment (a vector
where each element defines the number of checkpoints to be used for each
individual job) that results in the maximal LoC with respect to the global
deadline. We derived a mathematical expression to compute the LoC with
respect to the given global deadline for a given checkpoint assignment. As one
solution to obtain the optimal checkpoint assignment is to explore all possible
checkpoint assignments, an exhaustive search approach was analyzed. The
exhaustive search approach is important because it always finds the optimal
checkpoint assignment. Due to the high problem complexity and the fact
that the exhaustive search approach is very time-consuming, we developed a
method that speeds up the computations and obtains the solution in much
shorter time. The proposed method was compared against the exhaustive
search method and in all the experiments, the proposed method was able to
find the optimal checkpoint assignment.

Important to note is that the mathematical framework developed for evalu-
ation of the LoC is equally applicable for both soft and hard RTSs. However,
optimizing RRC with respect to LoC is more important for hard RTSs where
obtaining the maximal LoC is one of the major objectives. Using the expres-
sion that calculates the LoC, we evaluated the LoC when RRC is optimized for
soft RTSs. The conclusion is that the probabilistic guarantees, such as LoC, are
very poor when RRC is optimized solely for soft RTSs. This shows an evident
gap between the optimization objectives for soft and hard RTSs and motivates
the need for other optimization objectives.

For the optimization of Guaranteed Completion Time, we analyzed the im-
pact of the number of checkpoints on the guaranteed completion time GCTδ,
i.e. an instance of the completion time such that the probability that a job
completes within the given GCTδ satisfies a given LoC requirement δ. With
respect to this, we have provided a method that finds the optimal number of
checkpoints that results in the minimal GCTδ. Obtaining the minimal GCTδ

bridges the gap between soft and hard RTSs as it takes into consideration both
the completion time and a given LoC requirement.



Part II
Non-Equidistant
Checkpointing
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In this part, we discuss optimization of RRC while considering that the
checkpoints are not evenly distributed, i.e. non-equidistant checkpointing.
For non-equidistant checkpointing, two different optimization objectives are
considered, i.e. (1) Average Execution Time and (2) Level of Confidence. One
chapter is dedicated to each of the two optimization objectives. For each
optimization objective, the problem formulation is stated and a solution is
provided. Each solution is validated with experimental results. Finally, a
summary of the part is presented.





7
Average Execution Time

In Chapter 3, we showed that it is possible to find the optimal number of
checkpoints that leads to the minimal AET. There, we considered that the
checkpoints are evenly distributed throughout the execution of the job. How-
ever, in practice, distributing the checkpoints evenly may not be desirable.
For example, if errors occur in bursts, it is not desirable to have all the execu-
tion segments to be of the same size. Instead, it is more desirable to have less
checkpoints, and thus larger execution segments, when errors occur seldomly,
and have more checkpoints, i.e. shorter execution segments, when errors oc-
cur more often. Furthermore, in Chapter 3, we relied on the assumption that
the error (or error-free) probability was given. However, not always, the prob-
ability of errors is known in advance. Further, the error probability depends
on many factors, including influence from the environment where the sys-
tem operates, which makes it difficult to estimate the error probability during
runtime.

In this chapter, we demonstrate that inaccurate estimates of the error prob-
ability lead to loss of performance. To avoid inaccurate estimates, we propose
two techniques that provide on-line estimation of the error probability. Fur-
ther, these techniques employ adjustment of the RRC scheme to regain the
lost performance, i.e. reduce the AET. The proposed techniques are: Periodic
Probability Estimation and Aperiodic Probability Estimation. Using a simu-
lator tool that has been developed to enable experimentation, the proposed
techniques are evaluated, and the results show that the proposed techniques
provide useful estimates of the error probability leading to near-optimal per-
formance of RRC.

The rest of this chapter is organized as follows. The problem discussed in
this chapter is presented in Section 7.1. Section 7.2 demonstrates the need of
accurate error probability estimates. Two estimation techniques are presented
in Section 7.3. Finally, experimental results are presented in Section 7.4.
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7.1. PROBLEM FORMULATION

In this chapter, we address the following problem. Given the following inputs:

• a job with a processing time T, and

• an initial error probability estimate, q

adjust the RRC scheme, using an on-line error probability estimation technique, such
that the AET is reduced.

7.2. MOTIVATION

In this section, we demonstrate the importance of having accurate error prob-
ability estimates by presenting the impact of inaccurate error probability es-
timates on the number of checkpoints and the resulting AET. As we have
already shown in Chapter 3, the optimal number of checkpoints n∗c depends
on the error-free probability, and we show this expression in Eq. (7.1).

n∗c = −(ln PT) +

√
(ln PT)2 − 2× T × (ln PT)

τs + τc + τu + 4× τb
(7.1)

In Eq. (7.1), PT denotes the probability that no errors occur (error-free prob-
ability) in a processing node within an interval of length T, where T denotes
the processing time, i.e. the fault-free execution time for a job when RRC is
not used. From Eq. (7.1) we observe that the optimal number of checkpoints
depends on PT , T, and the checkpointing overhead τ = τs + τc + τu + 4× τb.
Since the checkpointing overhead is architecture dependent, i.e. it depends on
the system architecture, for a given architecture, the checkpointing overhead
is constant, and therefore the optimal number of checkpoints is a function
that depends solely on the processing time T and the error-free probability
PT . If instead of the error-free probability PT , the error probability is given,
i.e. QT = 1− PT , the optimal number of checkpoints n∗c can be expressed as a
function of the error probability QT . This is shown in Eq. (7.2).

n∗c (QT , T) = −(ln(1−QT)) +

√
(ln(1−QT))2 − 2× T × (ln(1−QT))

τs + τc + τu + 4× τb
(7.2)

In Chapter 3, we have also defined the expression for calculating the min-
imal AET which depends on the error-free probability PT . In a similar way,
as for the optimal number of checkpoints, we re-write the expression for the
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minimal AET such that it becomes a function of the error probability QT . The
expression is given in Eq. (7.3).

AET(QT , T) =
T + n∗c (QT , T)× (τs + τc + τu + 4× τb)

n∗c (QT ,T)
√
(1−QT)

2
(7.3)

However, not always, the real (actual) error probability is known at design
time, and further it can vary over the product’s lifetime (time in operation).
Because of this fact, it is common that the initial chosen error probability,
which is used when calculating the optimal number of checkpoints that re-
sults in the minimal AET, will differ from the real error probability. Therefore,
the initial chosen error probability value represents an inaccurate error prob-
ability estimate.

The inaccurate error probability estimate, results in a value for n∗c which
will differ from the optimal, and thus lead to an AET larger than the optimal.
In such case, when the estimated error probability q is used to obtain the
optimal number of checkpoints n∗c (Eq. (7.2)), the AET is calculated as shown
in Eq. (7.4).

AETestq(QT , T, q) =
T + (4× τb + τs + τc + τu)× n∗c (q, T)

n∗c (q,T)
√
(1−QT)

2
(7.4)

It should be noted in Eq. (7.4) that the AET is equal to the minimal AET
when the estimated error probability q is equal to the real error probability
QT , and thus AETestq(QT , T, QT) = AET(QT , T).

To quantify the impact of an inaccurate error probability estimate, we use
the expression presented in Eq. (7.5):

AETdev(QT , T, q) =
AETestq(QT , T, q)− AET(QT , T)

AET(QT , T)
× 100% (7.5)

where QT is the real error probability, and q is the estimated error probability.
This equation represents the relative deviation in AET compared to the opti-
mum, when an estimate on the error probability is used in order to obtain the
number of checkpoints.

To illustrate the impact of inaccurate estimation of the error probability, in
Figure 7.1, we show the performance degradation (AETdev) at various esti-
mated error probabilities, for a job with a processing time T=1000 t.u. Three
cases are illustrated in Figure 7.1, where QT = 0.5 in the first case, QT = 0.2
in the second case, and QT = 0.1 for the third case. In Figure 7.1, the x-axis
represents the estimated error probability q, while the y-axis shows the rela-
tive deviation in AET, i.e. AETdev(QT , T, q) calculated according to Eq. (7.5).
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Figure 7.1.: Impact of inaccurate error probability estimation on AET
in terms of relative deviation from the optimal AET (%)

As can be seen from Figure 7.1, each curve shows no deviation in AET when
the estimated error probability q is equal to the real error probability QT .
However, as soon as q 6= QT , AETdev(QT , T, q) is increased. This means that
assuming an error probability other than the real one leads to an AET which
is not the optimal. The increase in AET due to inaccurate error probability
estimation represents the loss of performance.

7.3. ERROR PROBABILITY ESTIMATION AND CORRESPONDING
ADJUSTMENT

In this section, we present approaches that estimate the error probability with
the aim to adjust and optimize RRC during operation. To make use of the
estimates on the error probability, we need to estimate the error probability
during operation. One way to achieve this is to extend the architecture de-
scribed earlier in Chapter 2 (see Figure 2.1) by employing a history unit that
keeps track on the number of successful execution segments ns, and the num-
ber of erroneous execution segments ne. By using these statistics, the error
probability can be estimated during time either periodically or aperiodically.
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τ : checkpoint interval
ES : execution segment
q : initial error probability
qesti : estimated error probability
Tadj : adjustment period

Figure 7.2.: Graphical presentation of PPE

Thus, we come up with one periodic approach, which we address as Periodic
Probability Estimation (PPE), and one aperiodic, which we address as Aperi-
odic Probability Estimation (APE). For both approaches, we need some initial
parameters, i.e. initial estimate on error probability and an adjustment period.
It should be noted, that the adjustment period is kept constant for PPE, while
for APE it is tuned over time.

PERIODIC PROBABILITY ESTIMATION PPE assumes a fixed Tadj and
elaborates on qest as:

qest =
ne

ne + ns
(7.6)

where ns is the number of successful execution segments and ne is the number
of erroneous execution segments. As can be seen from Figure 7.2, estimates
on the error probability qest are calculated periodically at every Tadj. The
value of the most recent estimate qest is used to calculate the optimal number
of checkpoints n†

c = n∗c (qest, Tadj). During the next adjustment period Tadj,
n†

c equidistant checkpoints are taken. Therefore, the checkpoint frequency,
i.e. number of checkpoints during a time interval, changes according to the
changes of the error probability estimates.

APERIODIC PROBABILITY ESTIMATION APE elaborates on both Tadj
and qest. The idea behind this approach comes from the following discus-
sion. As this approach is an estimation technique, it is expected that during
operation the estimates will converge to the real values and therefore, we
should expect changes on the estimated error probability during time. These
changes can guide how to change the checkpointing scheme. If the estimates
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Figure 7.3.: Graphical presentation of APE

on error probability start decreasing, this implies that less errors are occur-
ring and then, less frequent checkpointing is required. Thus, in such case, the
adjustment period is increased. On the other hand, if the estimates on error
probability start increasing, this implies that errors occur more frequently and
therefore, to reduce the time spent in re-execution more frequent checkpoint-
ing is required. Thus, in such case, the adjustment period is decreased.

If the estimates on the error probability have not changed during two suc-
cessive adjustment periods, it means that during both adjustment periods the
system has employed a number of checkpoints larger than the optimal one.
This can be observed by the following inequality:

2× n∗c (QT , Tadj) > n∗c (QT , 2× Tadj) (7.7)

In APE, the error probability is estimated in the same manner as PPE, i.e. by
using Eq. (7.6). What distinguishes APE from PPE, is that the adjustment pe-
riod Tadj is updated during time by using an update factor α. The update fac-
tor α is used to either increase or decrease the adjustment period. The scheme
that is used for updating the adjustment period is described in Eq. (7.8).

i f qesti+1 > qesti then

Tadji+1
= Tadji − Tadji × α

else

Tadji+1
= Tadji + Tadji × α (7.8)

The APE approach is illustrated in Figure 7.3. After every Tadj time units,
a new error probability estimate qesti+1 is computed by using the Eq. (7.6).
The latest estimate qesti+1 is then compared against the most recent value qesti .
If the estimates on the error probability increase, meaning that during the
last adjustment period Tadji more errors have occurred, the next adjustment
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period Tadji+1
is decreased to avoid expensive re-executions. However, if the

estimates on error probability decrease or remain the same, meaning that less
or no errors have occurred during the last adjustment period Tadji , the next
adjustment period Tadji+1

is increased to avoid excessive checkpointing.

7.4. EXPERIMENTAL RESULTS

The purpose of the results presented in this section is to show that both ap-
proaches, i.e. Periodic Probability Estimation (PPE) and Aperiodic Probability
Estimation (APE), make a good estimation on the error probability, and by
doing so, they significantly reduce the AET compared against a Baseline Ap-
proach (BA) which takes checkpoints at a constant frequency, and does not
perform any adjustments during the execution of a job. For that reason, we
conducted the following two experiments:

• P1: evaluate and compare the AET for PPE, APE and BA when the real
error probability is constant;

• P2: evaluate and compare the AET for PPE, APE and BA when the real
error probability changes over time.

To conduct these experiments, we have developed a simulator that simu-
lates the execution of a job when one of the three approaches (PPE, APE or
BA) is used. There are two types of inputs that are given to the simulator,
designer inputs and environmental inputs. The designer inputs refer to inputs
that initialize the system, i.e. the initial estimate on the error probability q,
the adjustment period Tadj, and the update factor α. The environmental inputs
refer to the real error probability QT and the processing time T. Important
feature of the simulator is that the real error probability QT can be modeled
as a function that changes over time. The reason for this is that the error
probability does not need to be constant, and it may change over time. The
input QT is used to inject errors while simulating the approaches. The output
of the simulator is the execution time, i.e. the time required for a job with a
processing time T to complete given that errors occur according to QT , when
one of the three approaches (PPE, APE or BA) is used. Next, we discuss how
each of the three approaches uses the inputs that are given to the simulator.

The BA takes the following designer inputs, namely the initial estimate on
the error probability q, and the adjustment period Tadj, and it computes the
number of checkpoints n†

c = n∗c (q, Tadj) for these inputs by using Eq. (7.2).
Further, it takes checkpoints at a constant frequency n†

c /Tadj, and no adjust-
ments are done during the execution of the job. The PPE approach takes the
following designer inputs, namely the initial estimate on the error probability
q, and the adjustment period Tadj. In contrast to BA, PPE estimates the error



138 Average Execution Time

probability over time, and updates the number of checkpoints after each ad-
justment period Tadj (observe Figure 7.2). The APE approach takes all designer
inputs, namely the initial estimate on the error probability q, the adjustment
period Tadj, and the update factor α, and it updates the checkpointing scheme
as shown in Figure 7.3.

Since for the experiments it is required to obtain the AET for each of the
approaches, the AET is obtained by averaging the outputs of the simulator
after repeating the simulation for the same inputs 1000 times. For example, to
obtain the AET when BA is used, for a given set of designer and environmental
inputs, we simulate the execution of the job according to BA 1000 times while
using the same set of inputs in each simulation, and we obtain the AET by
calculating the average of the outputs obtained from each simulation. Next,
we provide the results for the two experiments P1 and P2.

For P1, we compare the AET obtained from the three simulated approaches:
PPE, APE, and BA against the optimal AET for different initial estimates on
the error probability q. The optimal AET is obtained by evaluating Eq. (7.3) for
the given environmental inputs, i.e. QT and T. We made several experiments by
varying both the designer and environmental inputs. In Figure 7.4, we present
the relative deviation from the optimal AET for the three approaches: PPE,
APE, and BA, for the following set of inputs:

• a processing time T = 1000000 time units (t.u.),

• a real error probability QT = 0.01,

• an adjustment period Tadj = 1000 t.u., and

• an update factor α = 0.15.

The horizontal axis, in Figure 7.4, represents the difference between the
initial estimate on the error probability q and the real error probability QT ,
while the vertical axis represents the relative deviation from the optimal AET,
expressed in percent. One can observe from Figure 7.4 that APE and PPE
do not depend significantly on the initial estimate on the error probability q.
Both APE and PPE always perform better than the BA approach. The small
relative deviation from the optimal AET observed for PPE and APE shows
that both approaches make a good estimation on the real error probability.
Further, Figure 7.4 shows that APE performs slightly better than PPE.

For P2, we evaluate the approaches in terms of relative deviation with re-
spect to the processing time T, when the real error probability is not con-
stant. For this purpose, we defined three error probability profiles according
to which the error probability changes over time, and then we ran simula-
tions for each of these profiles. The error probability profiles: Q1(t), Q2(t),
and Q3(t) are presented in Table 7.1. Important to note is that the error prob-
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stant real error probability QT = 0.01

Q1(t) =


0.01, 0 ≤ t mod T < 200000
0.02, 200000 ≤ t mod T < 400000
0.03, 400000 ≤ t mod T < 600000
0.02, 600000 ≤ t mod T < 800000
0.01, 800000 ≤ t mod T < 1000000

Q2(t) =


0.02, 0 ≤ t mod T < 350000
0.01, 350000 ≤ t mod T < 650000
0.02, 650000 ≤ t mod T < 1000000

Q3(t) =
{

0.01, 0 ≤ t mod T < 90000
0.10, 90000 ≤ t mod T < 100000

Table 7.1.: Three error probability profiles: Q1(t), Q2(t), and Q3(t)
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ability profiles are repeated periodically over time with a period equal to T.
According to the error probability profile Q1(t) the error probability increases
from 0.01 to 0.03 in the first half of the period, and then it decreases from 0.03
to 0.01 in the second half of the period (see Figure 7.5(a)). According to the
error probability profile Q2(t), the error probability drops from 0.02 to 0.01
during the second third of the period, and rises back to 0.02 in the last third of
the period (see Figure 7.5(b)). The error probability profile Q3(t) models the
scenario where errors occur in burst, i.e. the error probability is much higher
(0.1) during a short interval (the first 90000 t.u.) at the beginning of the period
(the period is 1000000 t.u.), but it drops to a much lower value (0.01) in the
rest of the period (see Figure 7.5(c)). For a given error probability profile Qi(t)
and the following set of inputs:

• a processing time T = 1000000 t.u.,

• an initial estimate on the error probability q = Qi(0),

• an adjustment period Tadj = 1000 t.u., and

• an update factor α = 0.15,

in Table 7.2, we present the relative deviation of the obtained AET, for each of
the simulated approaches, with respect to the processing time T. The results
are expressed as a percentage. As can be seen from Table 7.2, both PPE and
APE perform far better than BA, with a very small deviation with respect to
the processing time. Again we notice that APE gives slightly better results
than PPE approach. From the experimental results presented in this section,
we conclude that both approaches PPE and APE make a good estimation on
the real error probability and as a consequence, the obtained AET is very close
to (1) the optimal AET, when the real error probability is constant or (2) the
processing time T, when the real error probability changes over time according
to a given error probability profile.

Probability Profile Approaches

Qi(t) Baseline PPE APE

Q1(t) 55.93% 4.50% 2.84%

Q2(t) 50.69% 4.53% 2.74%

Q3(t) 56.02% 4.65% 2.50%

Table 7.2.: Relative deviation from the processing time T (%) for the
three error probability profiles Q1(t), Q2(t), and Q3(t)
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8
Level of Confidence

In Chapter 4, we showed how to find the optimal number of checkpoints that
results in the maximal LoC for a single job while assuming that the check-
points are evenly distributed. The assumption of equidistant checkpointing
dictates that the execution segments must be of the same size and thus, a
checkpoint has to be taken at an exact point in time during the execution of
a job. However, in practice, the execution of a job consists of executing a
set of instructions where an on-going instruction cannot be interrupted and
thus, a checkpoint can only be taken once an on-going instruction has com-
pleted. This conflicts with the assumption of equidistant checkpointing where
a checkpoint has to be taken at an exact point in time, and motivates the need
to study what is the impact on the LoC when the checkpoints are not evenly
distributed, i.e. non-equidistant checkpointing.

In this chapter, we discuss optimization of RRC with respect to LoC when
considering non-equidistant checkpointing. The chapter is organized as fol-
lows. In Section 8.1, we present the problem formulation. The motivation is
provided in Section 8.2. An expression to evaluate the LoC when the check-
points are not evenly distributed is derived and presented in Section 8.3. To
obtain the optimal solution for the stated problem, in Section 8.4, we discuss
an exhaustive search method and show that the complexity of this method
is extremely high. Therefore, in Section 8.5, we present the heuristic method
Clustered Checkpointing. Finally, experimental results are presented in Sec-
tion 8.6.

143
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8.1. PROBLEM FORMULATION

In this section, we address the following problem. Given the following inputs:

• a processing time T,

• a deadline D,

• a checkpointing overhead τ,

• a probability PT that no errors occur within an interval of length T, and

• a number of checkpoints nc,

find the optimal distribution of the given number of checkpoints nc that results
in the maximal LoC with respect to the given deadline D, while assuming that a
checkpoint can only be taken at an integer time unit.

8.2. MOTIVATION

In equidistant checkpointing, the checkpoints are evenly distributed. There-
fore, applying equidistant checkpointing with nc checkpoints for a job with
a processing time T results in nc execution segments with size T

nc
. While

equidistant checkpointing is justified from a theoretical point of view, in prac-
tice, this may not always be possible. Since the execution of a job consists of
executing a set of instructions where an on-going instruction cannot be inter-
rupted, a checkpoint can only be taken once an on-going instruction has com-
pleted. Therefore, if each instruction takes one time unit, a checkpoint can be
taken at any integer time unit (integer sized execution segments). The draw-
back with this is that it is not possible to distribute the checkpoints evenly, if
the processing time, measured in time units, is not a multiple of the number
of checkpoints. For example, if T = 10 t.u. (time units) and nc = 3, then
the limitation of integer sized execution segments results in having execution
segments of different size, i.e. two execution segments of size 3 t.u. and one
execution segment of size 4 t.u. Hence, in practice, equidistant checkpointing
may result in execution segments of different size (4 t.u and 3 t.u. for the ex-
ample above). This motivates the need for a mathematical framework for eval-
uation of LoC when the checkpoints are not evenly distributed. Having such
a framework makes it possible to answer the question: can a non-equidistant
distribution result in a higher LoC than equidistant checkpointing?
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8.3. EVALUATION OF LEVEL OF CONFIDENCE

In this section, we show how to calculate the LoC with respect to a given
deadline, for a given distribution of nc checkpoints. The distribution of the
nc checkpoints is represented by a vector n̄c of size nc, where the i-th ele-
ment (ESi) in the vector represents the size of the i-th execution segment,
i.e. n̄c = [ES1, ES2..., ESnc ]. Similarly to equidistant checkpointing, the LoC
is calculated as a sum of probabilities that a job completes at time points
lower or equal to the given deadline. While for equidistant checkpointing,
for a given number of checkpoints, the job is expected to complete only at
discrete equidistant time moments, in the case of non-equidistant checkpoint-
ing, the job is expected to complete at discrete time moments which are no
longer equidistant. This follows from the fact that in non-equidistant check-
pointing, the execution segments are not of the same size. Thus, re-execution
of different execution segments has different impact on the completion time
due to the different re-execution cost. The re-execution cost of an execution
segment is calculated as the sum of the size of the execution segment ESi,
and the checkpointing overhead τ. From the discussion above, it follows that
the completion time, for a given distribution n̄c of nc checkpoints, can be ex-
pressed as a discrete variable n̄c tk̄, where k̄ denotes a re-execution vector. The
re-execution vector k̄ represents a vector of size nc and each element ki in
k̄ indicates the number of re-executions of the i-th execution segment. The
expression in Eq. (8.1) is used to calculate n̄c tk̄.

n̄c tk̄ = T + nc × τ +
nc

∑
i=1

(ESi + τ)× ki (8.1)

The first two terms in Eq. (8.1), i.e. T + nc × τ, express the time required for
the job to complete when no errors occur in any of the nc execution segments,
i.e. ki = 0, ∀ i ∈ [1, nc]. The third term in Eq. (8.1) expresses the cost
of re-execution due to errors in any of the nc execution segments and it is
calculated as a sum of the individual re-execution costs of each of the nc
execution segments. The individual re-execution cost of an execution segment
ESi is calculated as a product of the re-execution cost, i.e. ESi + τ, and the
number of re-executions ki of the particular execution segment. For each
discrete value of n̄c tk̄ there exists a probability that a job completes at that
given instance in time. We denote the probability that a job completes at n̄c tk̄
with pn̄c(k̄). Next, we elaborate how to calculate pn̄c(k̄).

When a job completes at time n̄c tk̄, it means that each execution segment i
has been executed exactly ki + 1 times, and only the last execution has been
successful. Thus, for the i-th execution segment there have been ki erroneous
executions and a single successful execution. Since we assume that (1) the
occurrence of errors is an independent event and (2) the probability PT that
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no errors occur within an interval of length T is given, we can calculate the
probability of a successful execution segment of size ESi. Observe that an ex-
ecution segment can only be successfully executed if no errors have occurred
in any of the processing nodes during the execution of the segment. Since
PT represents the probability that no errors occur in a processing node within
an interval of length T, the probability that no errors occur in one processing
node during the execution of an execution segment of size ESi is evaluated as

PT
ESi
T . We denote with Pεi the probability of a successful execution segment

of size ESi and we calculate it with the following expression:

Pεi = PT
ESi
T × PT

ESi
T = PT

2×ESi
T (8.2)

Since in Eq. (8.2) we have the expression to calculate the probability of a
successful execution segment of size ESi, the probability of an erroneous exe-
cution segment of size ESi can be calculated as 1− Pεi . Given the probability
of a successful and erroneous execution segment, i.e. Pεi and 1− Pεi , the prob-
ability that a job completes at n̄c tk̄ is calculated with the following expression:

pn̄c(k̄) =
nc

∏
i=1

Pεi (1− Pεi )
ki (8.3)

The expression in Eq. (8.3) can be reduced due to the fact that the product
of all Pεi terms can be replaced by a single constant. This is shown in the
following equation:

pn̄c(k̄) =
nc

∏
i=1

Pεi (1− Pεi )
ki

=
nc

∏
i=1

Pεi

nc

∏
i=1

(1− Pεi )
ki

=
nc

∏
i=1

PT
2×ESi

T

nc

∏
i=1

(1− Pεi )
ki

= PT
∑nc

i=1 2×ESi
T

nc

∏
i=1

(1− Pεi )
ki

= PT
2×∑nc

i=1 ESi
T

nc

∏
i=1

(1− Pεi )
ki (8.4)

Since the sum of all execution segments ESi is equal to the processing time T,
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we replace the sum in Eq. (8.4) with T. Thus, we get the following expression:

pn̄c(k̄) = PT
2×T

T

nc

∏
i=1

(1− Pεi )
ki

= PT
2

nc

∏
i=1

(1− Pεi )
ki (8.5)

From Eq. (8.5) it follows that the probability that a job completes without any
re-executions (no errors), i.e. ki = 0, ∀ i ∈ [1, nc], is constant and it is the
same as the probability that a job completes at time nc t0 when equidistant
checkpointing is used, i.e. pnc(0) = PT

2 (see Eq. (4.6) in Section 4.1.2 in Chap-
ter 4 ). However, if errors occur and therefore, some execution segments are
re-executed, the probability depends on the number of re-executions and on
the size of the execution segments which have been re-executed.

Eq. (8.5) represents the probability distribution function pn̄c(k̄) and it com-
putes the probability that a job completes at a given time instance n̄c tk̄. To
compute the LoC with respect to a given deadline it is required to sum the
probabilities of all n̄c tk̄ which are lower or equal to the deadline. We denote
with Λn̄c(D) the LoC with respect to a given deadline D, for a given distribu-
tion n̄c of nc checkpoints, and it is calculated with the following expression:

Λn̄c(D) =

n̄c tk̄≤D

∑̄
k

pn̄c(k̄) (8.6)

From Eq. (8.6), one observes that to calculate the LoC it is required to obtain
all the discrete values of the completion time n̄c tk̄ that are lower or equal to
the given deadline. For a given distribution n̄c, the completion time n̄c tk̄ varies
with different re-execution vectors k̄ and only a set of these vectors produce
discrete values of the completion time which are lower or equal to the given
deadline. We refer to these re-execution vectors as valid re-execution vectors.
To obtain the set of valid re-execution vectors we use the function f (k̄, i) given
in Eq. (8.8). For a given valid re-execution vector, f (k̄, i) produces a new valid
re-execution vector if such vector exists, or it returns an empty set otherwise.
The function requires two input parameters: a valid re-execution vector (k̄)
and an update index (i). For the given parameters, f (k̄, i) first computes a
tentative re-execution vector k̄N by incrementing ki by one and setting to zero
all k j where j > i (see Eq. (8.7)). If k̄N is a valid re-execution vector and
i > 0, then f (k̄, i) returns k̄N . Otherwise, f (k̄, i) proceeds with a recursive call
f (k̄, i− 1). If the function is invoked with i = 0, f (k̄, i) returns an empty set,
meaning that all valid re-execution vectors have been identified. To identify
the entire set of valid re-execution vectors, f (k̄, i) is iteratively called with these
arguments: (1) the most recently obtained valid re-execution vector (the initial



148 Level of Confidence

valid re-execution vector is k̄ = [0, 0...0]) and (2) the number of checkpoints nc
is passed as the update index.

k̄N = [k1, k2, ...ki−1, ki + 1, 0...0] (8.7)

f (k̄, i) =


k̄N , iff k̄N is valid and i ≥ 1
f (k̄, i− 1), iff k̄N is not valid and i ≥ 1
∅, iff i = 0

(8.8)

Next, we demonstrate the usage of this function for the following scenario.
Given a job with a processing time T = 600 t.u., a deadline D = 1000 t.u.,
and a checkpointing overhead τ = 20 t.u., the function f (k̄, i) will be used
to obtain all valid re-execution vectors for the following distribution of three
checkpoints n̄c = [150, 200, 250]. As we mentioned earlier, the function is
iteratively invoked with the most recently obtained valid re-execution vec-
tor (starting with the initial vector k̄ = [0, 0...0]) and the number of check-
points. Thus, the function for the given scenario is first invoked with the
following inputs k̄ = [0, 0, 0] and i = 3 (observe that from the given distri-
bution n̄c = [150, 200, 250] there are three checkpoints). For these inputs, the
function first calculates a tentative re-execution vector k̄N = [0, 0, 1]. Using
Eq. (8.1), the re-execution vector k̄N results in a completion time equal to
600+ 3× 20+ (250+ 20) = 930 t.u. which is lower than the given deadline D.
Therefore, the tentative re-execution vector k̄N = [0, 0, 1] is a valid re-execution
vector, and it represents the output of f (k̄, i) which is invoked with k̄ = [0, 0, 0]
and i = 3. Next, f (k̄, i) is invoked with the most recently obtained valid re-
execution vector, i.e. k̄ = [0, 0, 1] and i = 3. For these arguments, the function
first calculates k̄N = [0, 0, 2]. However, k̄N is not a valid re-execution vector due
to that it results in a completion time 600+ 3× 20+ 2× (250+ 20) = 1200 t.u.
which violates the given deadline. For that reason, the function steps in a
recursive call with the following inputs k̄ = [0, 0, 1] and i = 2. For these
arguments, the function computes k̄N = [0, 1, 0]. Since the completion time
for k̄N = [0, 1, 0] is 600 + 3× 20 + (200 + 20) = 880 t.u. which is lower than
the deadline, the function returns the vector [0, 1, 0] as the most recently ob-
tained valid re-execution vector. Next, f (k̄, i) is invoked with k̄ = [0, 1, 0] and
i = 3. For these arguments, the function computes k̄N = [0, 1, 1]. How-
ever, k̄N is not a valid re-execution vector as it results in a completion time
600 + 3× 20 + (200 + 20) + (250 + 20) = 1150 t.u.. Therefore, the function
steps in a recursive call with the following arguments k̄ = [0, 1, 0] and i = 2,
and it computes a k̄N = [0, 2, 0]. The recently computed k̄N is again not valid
as it results in a completion time 600 + 3× 20 + 2× (200 + 20) = 1100 t.u..



8.3. Evaluation of Level of Confidence 149

Thus, the function steps into yet another recursive call, this time with the
following arguments k̄ = [0, 1, 0] and i = 1. For these arguments, the func-
tion computes k̄N = [1, 0, 0] which represents a valid re-execution vector as
the completion time 600 + 3 × 20 + (150 + 20) = 830 t.u. does not violate
the deadline. Therefore, the function returns the vector [1, 0, 0] as the latest
valid re-execution vector. Next, the function is invoked with these arguments
k̄ = [1, 0, 0] and i = 3. For this set of arguments, the function computes
k̄N = [1, 0, 1] which is not a valid re-execution vector, and therefore forces
the function to proceed with a recursive call with these inputs k̄ = [1, 0, 0]
and i = 2. For these arguments, f (k̄, i) computes k̄N = [1, 1, 0] which again
is not a valid re-execution vector, forcing the function to step in yet another
recursive call, this time with k̄ = [1, 0, 0] and i = 1. The function computes
k̄N = [2, 0, 0] which is valid and it represents the latest valid re-execution vec-
tor. Next, the function is invoked with these arguments k̄ = [2, 0, 0] and i = 3.
For these arguments, the functions steps into three consecutive recursive calls
computing the following not valid tentative re-execution vectors k̄N = [2, 0, 1],
k̄N = [2, 1, 0] and k̄N = [3, 0, 0]. For the latest obtained k̄N = [3, 0, 0], which
happens for input arguments k̄ = [2, 0, 0] and i = 1, due to the fact that it is
not a valid re-execution vector, the function is forced into yet another recursive
call with these arguments k̄ = [2, 0, 0] and i = 0. Since the last recursive call
invokes the function with an update index zero, the function returns an empty
set, meaning that k̄ = [2, 0, 0] is the last valid re-execution vector.

As shown earlier, the function f (k̄, i) finds all valid re-execution vectors k̄
that are needed to calculate the LoC with respect to the given deadline. The
LoC is calculated by performing the following steps. First, the re-execution
vector k̄ is initialized to zero, i.e. ki = 0 ∀ i ∈ [1, nc], and then, the following
steps are repeated until k̄ 6= ∅: (1) pn̄c(k̄) is calculated according to Eq. (8.5)
and added to the sum which calculates the LoC, and (2) k̄ = f (k̄, nc). How-
ever, there are two important considerations when evaluating the LoC for a
given distribution n̄c of a number of checkpoints. The first consideration is
about distributions which are permutation of each other, and the second con-
sideration is about distributions where a number of execution segments have
the same size.

Evaluation of the LoC for distributions which are permutation of each other
is redundant. This is due to the fact that the LoC for such distributions is
always the same. Therefore, if the LoC is evaluated for a given distribution n̄c,
then there is no need to evaluate the LoC for all other distributions which are
permutation of n̄c since all such distributions will results in the same Λn̄c(D).
The reason for this follows from these two important facts (1) the number of
terms that are included in the sum that calculates the LoC (the number of valid
re-execution vectors) is the same for any permutation of a given distribution
n̄c, and (2) all the terms that are included in the sum that calculates the LoC
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are the same for any permutation of a given distribution n̄c. These facts come
from the commutative property of addition and multiplication.

To show that the number of valid re-execution vectors (the number of terms
included in the sum that calculates the LoC) for a given distribution n̄c is
the same as the number of valid re-execution vectors for any permutation of
n̄c, we make use of the commutative property of addition. Consider a given
distribution n̄c and a valid re-execution vector k̄. For the given n̄c and k̄, n̄c tk̄
can be computed by using Eq. (8.1), and thus we get:

n̄c tk̄ = T + nc × τ + k1(ES1 + τ) + k2(ES2 + τ) + ... + knc(ESnc + τ) (8.9)

Due to the commutative property of addition, the right-hand side of Eq. (8.9)
can be re-written with the following expression:

T + nc × τ + knc(ESnc + τ) + ... + k2(ES2 + τ) + k1(ES1 + τ)

= T + nc × τ +
nc

∑
i=1

k†
i (ES†

i + τ) (8.10)

where ES†
i = ESnc−i+1 and k†

i = knc−i+1. Using the new notations ES†
i and

k†
i , the right-hand side of Eq. (8.9) is equal to n̄†

c tk̄† . Hence, n̄c tk̄ =n̄†
c tk̄† . This

shows that if k̄ is a valid re-execution vector for a distribution n̄c, then for each
distribution n̄†

c which is a permutation of n̄c there exists a valid re-execution
vector k̄† where k̄† is obtained from k̄ by applying the same permutation that
is used to construct n̄†

c . By this, we conclude that the number of valid re-
execution vectors (the number of terms included in the sum that calculates
the LoC) for a given distribution n̄c is the same as the number of valid re-
execution vectors for any permutation of n̄c.

To show that all the terms that are included in the sum that calculates the
LoC are the same for any permutation of a given n̄c we make use of the
commutative property of multiplication. Consider a given distribution n̄c and
a valid re-execution vector k̄. To calculate pn̄c(k̄) we use the Eq. (8.5), and thus
we get:

pn̄c(k̄) = PT
2 (1− Pε1)

k1 (1− Pε2)
k2 ...

(
1− Pεnc

)knc (8.11)

Due to the commutative property of multiplication, the right-hand side of
Eq. (8.11) can be re-written as:

PT
2 (1− Pεnc

)knc ... (1− Pε2)
k2 (1− Pε1)

k1

= PT
2

nc

∏
i=1

(
1− P†

εi

)k†
i (8.12)

where P†
εi
= Pεnc−i+1 and k†

i = knc−i+1. Using the recent notations, Eq. (8.12)
represents pn̄†

c
(k̄†), and since Eq. (8.12) is equal to Eq. (8.11), it implies that
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pn̄c(k̄) = pn̄†
c
(k̄†). This shows that all the terms that are included in the sum

that calculates the LoC are the same for any permutation of a given distribu-
tion n̄c.

For the second consideration, i.e. distributions where a number of exe-
cution segments have the same size, many different re-execution vectors k̄
may provide the same completion time, and for all these re-execution vectors
pn̄c(k̄) will be the same. For a given a distribution n̄c, where the first m exe-
cution segments have the same size, the re-execution vectors k̄ for which the
sum of the first m elements ki is the same will produce the same completion
time (see Eq. (8.1)), and furthermore pn̄c(k̄) for all those re-execution vectors
k̄ will be the same. Since the LoC is computed as a sum of pn̄c(k̄) for all valid
re-execution vectors, it becomes less efficient to add the same pn̄c(k̄) for many
different k̄. Instead, it would be more efficient to (1) find the number of differ-
ent k̄ for which pn̄c(k̄) is the same, and (2) multiply this number with pn̄c(k̄)
and add the product to the sum that evaluates the LoC. To achieve this, we
introduce the new notations ñc and k̃ to represent the reduced format of n̄c
and k̄, respectively.

A distribution n̄c which contains a number of execution segments which
have the same size can be expressed in a reduced format ñc by only including
the execution segments that have different size, and then for each of these
segments use an index to indicate how many execution segments have that
particular size. Thus, the reduced format of a distribution n̄c can be expressed
as ñc = [ESm1

1 , ESm2
2 ...ES

mq
q ], where ESmi

i is used to indicate that there are mi
execution segments of size ESi. Important to note is that the size of ñc is q,
while the size of n̄c is nc and q ≤ nc. In fact, q is equal to nc if all the execution
segments for a given distribution n̄c have a different size. When q is equal to
nc, then all the indices mi in ñc are equal to one. However, when a number of
execution segments have the same size, then q is always lower than nc.

For a distribution that is expressed in a reduced format ñc, we can associate
a re-execution vector that is also expressed in a reduced format. We denote
the reduced format of a re-execution vector with k̃. The size of k̃ is equal to
the size of ñc, and each ki ∈ k̃ denotes the number of re-executions for any
of the mi execution segments with size ESi given in ñc. Using the reduced
format for a given distribution and a re-execution vector, i.e. ñc and k̃, the
completion time can be expressed with the following equation:

ñc tk̃ = T + nc × τ +
q

∑
i=1

(ESi + τ)× ki (8.13)

Note that Eq. (8.13) is similar to Eq. (8.1). However, the difference between
Eq. (8.13) and Eq. (8.1) is that in Eq. (8.13) the sum goes from i = 1 to q (the
size of ñc), while in Eq. (8.13) the sum goes from i = 1 to nc (the size of n̄c).
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The advantage of using the reduced format notations ñc and k̃ is that for a
given ñc each re-execution vector represented with k̃ will result in a unique
completion time. Next, we show how to compute the probability distribution
function when the reduced format notations are used.

To express the probability distribution function with the new notations, i.e
ñc and k̃, we need to carefully consider what the notation pñc(k̃) represents.
According to the definition, the probability distribution function provides the
probability that a job completes at a given time, and therefore pñc(k̃) repre-
sents the probability that a job completes at a time ñc tk̃. When k̃ is used, the
completion time is unique, but there are different number of cases that would
result in the same completion time. To clarify this, let us consider that given
are ñc and k̃, and further consider that only the element ki in k̃ is non-zero,
while k j = 0 ∀ j 6= i. For the given example, the completion time includes
ki re-executions of an execution segment that has the size of ESi. However,
there may be mi different execution segments that are of size ESi (the i-th el-
ement in ñc is ESmi

i ), and therefore the ki re-executions may occur as a result
of erroneous execution of any of the mi different execution segments of size
ESi. This implies that there are multiple cases such that a job completes after
an execution segment of size ESi has been re-executed ki times. The number
of combinations that ki re-executions come from mi different execution seg-
ments is given as (mi+ki−1

ki
). Thus, the probability distribution function, given

the notations ñc and k̃, can be expressed with the following equation:

pñc(k̃) = PT
2

q

∏
i=1

(
mi + ki − 1

ki

)
(1− Pεi )

ki (8.14)

Finally, to compute the LoC, it is required to obtain all k̃ that result in a
completion time lower or equal to the deadline. To achieve this, the func-
tion f (k̄, i) (Eq. (8.8)) can be used, where instead of k̄, we use k̃ as the input
argument, and the size of k̃, i.e. q, is used as the update index. Hence, the
LoC is computed as follows. First, k̃ is initialized to zero (ki = 0 ∀ ki ∈ k̃),
and then the following steps are repeated until k̃ 6= ∅: (1) pñc(k̃) is evaluated
according to Eq. (8.14) and added in the sum that calculates the LoC, and (2)
k̃ = f (k̃, q). Observe that by using the reduced format of both the distribution
and the re-execution vector, i.e. ñc and k̃, the function f (k̄, i) will be used more
efficiently as it will only generate vectors k̃ that result in unique instances of
the completion time. This speeds up the computation of the LoC.

8.4. EXHAUSTIVE SEARCH

In the previous section, we showed how to evaluate the LoC with respect
to a given deadline for a given distribution of nc checkpoints. However, the
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problem we aim to solve is to obtain the optimal distribution, for a given
number of checkpoints nc, which results in the maximal LoC. As one way to
obtain the optimal distribution of nc checkpoints is to evaluate the LoC for all
possible distributions of the given nc checkpoints, in this section, we review
an exhaustive search method that finds the optimal distribution that results in
the maximal LoC. Further, we show that it is possible to speed up this method
by avoiding exploration of distributions which are permutation of each other.

While a trivial exhaustive search approach can always find the optimal so-
lution, the major drawback with any trivial exhaustive search algorithm is
the complexity. For this particular problem, the complexity is directly pro-
portional to the number of possible distributions of nc checkpoints, and this
number increases exponentially with nc. However, in the previous section, we
showed that the LoC for any distribution which is a permutation of a given
distribution n̄c will be the same as the LoC obtained for n̄c. This implies
that there is no need to explore all possible distributions to find the optimal
distribution that results in the maximal LoC. For that reason, in this section,
we discuss a method, namely Exhaustive Search (EXS), that finds the opti-
mal distribution by only evaluating the LoC for distributions n̄c which are not
permutations of each other. In particular, we show how to obtain these dis-
tributions, and we determine the number of different distributions that need
to be explored with this method. Furthermore, we compare the complexity
of the EXS method with a trivial exhaustive search method that explores all
possible distributions of a given number of checkpoints nc.

The complexity of the trivial exhaustive search method is directly propor-
tional to the number of all possible distributions of nc checkpoints in a job
with a processing time T, and this number is evaluated with the following
equation: (

T − 1
nc − 1

)
=

(T − 1)!
(T − nc)!(nc − 1)!

(8.15)

Assuming that a checkpoint can be taken at any integer time unit, for a job
with processing time T, expressed in time units, there are T different points
where a checkpoint can be taken. Since one checkpoint must be taken at
the end of the job, i.e. at time unit T, the rest of the nc − 1 checkpoints can
be taken at any of the remaining T − 1 time units. Therefore, the number
of combinations of nc − 1 checkpoints over T − 1 time points represents the
amount of all possible distributions of nc checkpoints as it is expressed with
Eq. (8.15).

In Table 8.1, we report the number of all possible distributions of nc check-
points in a job with a processing time T = 1000 t.u. at various instances of
nc. As can be seen from Table 8.1, the number of possible distributions grows
rapidly with nc.
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nc ( T−1
nc−1)

2 999

3 498501

4 165668499

5 41251456251

6 8209039793949

7 1359964259197551

8 192920644197595449

9 23922159880501835676

10 2634095604619702128324

Table 8.1.: Number of all possible distributions of nc checkpoints in a
job with a processing time T = 1000 t.u.

While the trivial exhaustive search approach explores all possible distribu-
tions of nc checkpoints, the EXS method does not need to evaluate the LoC for
all distributions, and instead, it should only explore distributions which are
not permutations of each other. To achieve this goal, it is sufficient to explore
distributions n̄c which satisfy the following condition:

ESi ≤ ESj ∀i ≤ j (8.16)

An important consequence that follows from the condition expressed in
Eq. (8.16) is that the size of the shortest execution segment in a distribution
n̄c, i.e. ES1, can never be larger than

⌊
T
nc

⌋
, where T represents the processing

time of the job and nc represents the number of checkpoints that are to be
distributed. Next, we elaborate how to obtain all those distributions that
satisfy the condition in Eq. (8.16).

To obtain the different distributions n̄c, we use the function next(n̄c, i),
given in Eq. (8.19), which for a given distribution n̄c and an update index i,
generates the next distribution to be explored. The function next(n̄c, i) first
computes a tentative distribution n̄N

c (Eq. (8.18)) by incrementing the size
of the i-th execution segments by one (ESi = ESi + 1), and assigning the
same incremented value to all execution segments with index in the range
[i + 1, nc − 1]. The size of the last execution segment, i.e. ESnc , is computed
such that the sum of all the execution segments is the same as the given
processing time of the job T (see Eq. (8.17)). If the tentative distribution n̄N

c
satisfies the condition in Eq. (8.16), then the function returns n̄N

c as output.
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Otherwise, the function steps in a recursive call by decrementing the update
index i, i.e. next(n̄c, i− 1). If the function is called with an update index i = 0,
the function returns an empty set, meaning that n̄c is the last distribution to
be explored.

ESnc = T −
i−1

∑
j=0

ESj − (nc − i)× (ESi + 1) (8.17)

n̄N
c = [ES1, ES2, ...ESi−1, ESi + 1, ESi + 1...ESnc ] (8.18)

next(n̄c, i) =


n̄N

c , iff Eq. (8.16) holds
next(n̄c, i− 1), iff Eq. (8.16) does not hold
∅, iff i = 0

(8.19)

When the function is used, the function is always invoked with the current
distribution n̄c that is being explored and nc − 1 as an update index. The
initial distribution is constructed by assigning the value of 1 (the shortest
size of an execution segment) to all execution segments except for the last
one. The size of the last execution segment is computed such that the sum
of all execution segments is equal to the processing time of the job T. In
other words, the initial distribution is presented with the following vector
n̄c = [1, 1...1, T − nc + 1].

By using this function, the number of distributions which are explored with
the EXS method is reduced when compared to the number of all possible
distributions given with Eq. (8.15). Next, we elaborate how to compute rnc [T],
the number of distributions of nc checkpoints in a job with a processing time
T, which are explored with the EXS method.

We denote with ri
nc [T] the number of distributions of nc checkpoints in a

job with a processing time T, where the size of the first execution segment,
i.e. ES1, is fixed to a value i. Due to the consequence which followed from
Eq. (8.16), the size of the first execution segment cannot be larger than

⌊
T
nc

⌋
.

Hence, we compute rnc [T] with the following expression:

rnc [T] =
b T

nc c
∑
i=1

ri
nc [T] (8.20)

When the size of the first execution segment in a distribution n̄c is fixed
to a value i, ri

nc [T] can be obtained by counting how many distributions of
nc − 1 checkpoints in a job with a processing time T − i exist, such that the
shortest execution segment among the nc − 1 execution segments has to be
larger or equal to i. Observe that when distributing nc − 1 checkpoints in a
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job with a processing time T − i, the shortest execution segment cannot be
larger than T−i

nc−1 (the consequence of Eq. (8.16)). Given this, the following
recurrence equation can be used to calculate ri

nc [T]:

ri
nc [T] =

b T−i
nc−1c
∑
j=i

rj
nc−1[T − i] (8.21)

The initial condition of the recurrence equation given with Eq. (8.21) is
expressed as:

ri
3[T] =

⌊
T − i

2

⌋
− i + 1 (8.22)

Namely, the expression in Eq. (8.22) is derived from the fact that there
exists only a single distribution of two checkpoints in a job with a processing
time T such that the size of the first execution segment is fixed to a given
value. When the size of the first execution segment in a distribution of two
checkpoints is fixed to a value i, the size of the second execution segment is
directly calculated by subtracting the value i from the processing time of the
job. Following the recurrence equation, Eq. (8.21), we get:

ri
3[T] =

b T−i
2 c

∑
j=i

rj
2[T − i]

ri
3[T] =

b T−i
2 c

∑
j=i

1

ri
3[T] =

⌊
T − i

2

⌋
− i + 1 (8.23)

In Table 8.2, we show rnc [T], obtained by using Eq. (8.20) and Eq. (8.21), for
different values of nc and a job with a processing time T = 1000 t.u.

To show the reduced complexity of the EXS method over the trivial ex-
haustive search approach, we compare the results presented in Table 8.1 and
Table 8.2. As shown in Table 8.1 and Table 8.2, the complexity of the EXS
method is significantly lower than the complexity of the trivial exhaustive
search approach. For example, we see that for nc = 10, the number of all pos-
sible distributions is ≈ 2× 1021 (observe Table 8.1 for nc = 10). However, by
excluding the distributions which are permutation of each other, the number
of different distributions that are explored by the EXS method is ≈ 1× 1015

(observe Table 8.1 for nc = 10). From this example, it should be evident that
by excluding the redundant distributions the complexity of the EXS method
is reduced tremendously in comparison to the trivial exhaustive search. Still,



8.5. Clustered Checkpointing 157

nc rnc [T]

3 83333

4 6965278

5 350697875

6 11835956777

7 287302124354

8 5274078114658

9 76037051194142

10 886745696653253

Table 8.2.: Number of distributions of nc checkpoints, explored
with the EXS method, for a job with a processing time
T = 1000 t.u.

the complexity of the EXS method is very high. For that reason, we developed
the Clustered Checkpointing (CC) method to find the distribution that results
in the highest LoC for a given nc.

8.5. CLUSTERED CHECKPOINTING

In this section, we present the Clustered Checkpointing (CC) method which
distributes a given number of checkpoints such that the LoC is maximized.
The CC heuristic explores only distributions n̄c which are made out of clusters
of execution segments, where all the execution segments that belong to the
same cluster have the same size and the maximum number of clusters in n̄c is
set to three.

Given the following inputs: a processing time of a job T, a deadline D,
a checkpointing overhead τ, a probability PT that no errors occur in a pro-
cessing node within an interval of length T, and a number of checkpoints nc,
the CC method outputs the distribution n̄∗c which provides the highest LoC
among all distributions n̄c which are explored with this method. A pseudo-
code algorithm for the CC method is presented in Figure 8.1. As shown in
Figure 8.1, the method consists of two loops: an inner loop (see steps 3-13 in
the figure) and an outer loop (see steps 2-14 in the figure). The inner loop
performs a total of nc − 1 iterations, and in each iteration, first, it constructs a
distribution n̄c, and then, it evaluates the LoC with respect to the given dead-
line for the constructed n̄c and compares it with the most recently computed
Λmax which holds the initial value zero (see step 1 in Figure 8.1). In the first
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15. return n̄∗c , Λmax

14. end for

13. end for

12. end if

11. n̄∗c = n̄c

10. Λmax = Λn̄c(D)

9. if (Λn̄c(D) ≥ Λmax) then

8. n̄c[k] =
⌈

T̂
n̂c

⌉
∀ k ∈ [i + 1 + n̂c − (T̂ mod n̂c), nc]

7. n̄c[j] =
⌊

T̂
n̂c

⌋
∀ j ∈ [i + 1, i + n̂c − (T̂ mod n̂c)]

6. n̂c = nc − i

5. T̂ = T − i× L

4. n̄c[i] = L

3. for i = 1 to nc − 1 do

2. for L = 1 to
⌊

T
nc

⌋
do

1. Λmax = 0

Algorithm CC(nc, T, τ, PT , D)

Figure 8.1.: Flow chart of the Clustered Checkpointing method
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iteration (i = 1), the inner loop starts by setting the size of the first execution
segment ES1 to a given value L (step 4 in Figure 8.1), while the size of the re-
maining execution segments is obtained by “equally” distributing the rest of
the checkpoints n̂c = nc− 1 over the remaining processing time, i.e. T̂ = T− L
(observe that T̂ and n̂c are evaluated in step 5 and 6 in Figure 8.1). Since T̂
is not necessarily a multiple of n̂c and only integer values are allowed for the
size of the execution segments, the following scheme is used to distribute the
remaining n̂c checkpoints. From the remaining n̂c execution segments, the size

of the first n̂c − (T̂ modulo n̂c) execution segments is set to
⌊

T̂
n̂c

⌋
(see step 7 in

Figure 8.1), and for the rest of the execution segments the size is set to
⌈

T̂
n̂c

⌉
(see step 8 in Figure 8.1). Therefore, n̄c consists of no more than three clusters
(two clusters if T̂ is a multiple of n̂c) which are ordered in non-decreasing
order based on the size of the execution segments, and the shortest size of
the execution segments is L. Such ordering is needed to prevent exploration
of distributions n̄c which may be permutation of each other. Finally, for the
constructed distribution n̄c, the LoC is evaluated and compared with the most
recently computed maximum (see step 9 in Figure 8.1). If Λn̄c(D) > Λmax, it
means that the distribution n̄c provides a higher LoC than Λmax, and there-
fore Λmax is set to Λn̄c(D) (step 10 in Figure 8.1) and n̄∗c is set to n̄c (step 11 in
Figure 8.1).

In the i-th iteration, ESi is set to the given value L (step 4 in Figure 8.1),
while the size of the remaining n̂c = nc − i execution segments is obtained
by “equally” distributing the rest of the checkpoints n̂c over the remaining
processing time T̂ = T − i × L (steps 5-8 in Figure 8.1). The LoC for the
constructed distribution is evaluated and compared against Λmax (step 9 in
Figure 8.1).

The outer loop is used to control the value of L which is utilized in the inner
loop (see step 2 in Figure 8.1). To ensure that the non-decreasing ordering
of the clusters in the explored distributions n̄c is preserved, the size of the
shortest execution segment cannot be larger than

⌊
T
nc

⌋
. Therefore, the outer

loop performs a total of
⌊

T
nc

⌋
iterations, i.e. L ∈ [1,

⌊
T
nc

⌋
].

Finally, the CC method outputs n̄∗c after exploring a total of
⌊

T
nc

⌋
× (nc − 1)

different distributions.
Illustration of how the different distributions explored by the CC method

are constructed is provided in the following example.

8.5.1. EXAMPLE

The purpose of this example is to illustrate the different distributions which
are explored with the CC method, and to clarify the notion of clusters. Few
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sample distributions are presented, and for each distribution the notion of
clusters is illustrated.

Example 1. Given the following set of parameters:

• processing time T = 24 t.u., and

• a number of checkpoints nc = 5,

we present how the different distributions which are explored with the CC
method are constructed. Observe that for this example, it is sufficient to only
have the two input parameters, i.e. the processing time T and the number of
checkpoints nc, since the rest of the input parameters used by the CC method,
i.e. the deadline D, the checkpointing overhead τ, and the probability PT
that no errors occur in a processing node within an interval of length T, are
used to compute the LoC with respect to the given deadline for each explored
distribution. Since the focus of this example is to show how the different dis-
tributions are constructed, only the two input parameters, stated previously,
are needed.

As shown in the previous section, the CC method only explores distribu-
tions n̄c where the execution segments are ordered in a non-decreasing order.
The reason for this is to avoid distributions which are permutation of each
other. In such ordering, there exists an upper bound on the size of the shortest
execution segment used in the distribution, and as shown in the previous sec-
tion, this bound is obtained as

⌊
T
nc

⌋
. For the given inputs, in this example, the

size of the shortest execution segment cannot be larger than
⌊

24
5

⌋
= 4. On the

other hand, due to the assumption that a checkpoint can be taken at every in-
teger time unit, the shortest size of an execution segment is one. Therefore, for
this example, the variable L used in the outer loop of the CC method iterates
through the range of values from 1 to 4 (observe step 2 in Figure 8.1). Next,
we illustrate the distributions n̄c that are constructed, given that the variable
L has reached the value L = 3. The distributions are illustrated in Figure 8.2.
Since the inner loop in the CC method performs nc− 1 iterations (observe step
3 in Figure 8.1) and in each iteration it constructs one distribution, for a given
value of L only nc − 1 different distributions are constructed. For this exam-
ple, since nc = 5, only 4 different distributions are constructed for L = 3. The
first distribution is illustrated in Figure 8.2 (a), and it is constructed as follows.
In the first iteration (i = 1) of the inner loop, the size of the first execution
segment is set to 3 (observe step 4 in Figure 8.1). This implies that the rest
of the processing time T̂ is 21 t.u. (see step 5 in Figure 8.1), and the number
of the remaining checkpoints n̂c that should be distributed is 4 (see step 6 in
Figure 8.1). Next, the CC method tries to evenly distribute the remaining four
checkpoints over the rest of the processing time T̂ = 21 t.u. Since 21 is not
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(d) Illustration of clusters for n̄c = [3, 3, 3, 3, 12]

Cluster 1 Cluster 2

ES1 = 3 t.u. ES2 = 3 t.u. ES3 = 3 t.u. ES4 = 3 t.u. ES5 = 12 t.u.

(c) Illustration of clusters for n̄c = [3, 3, 3, 7, 8]

Cluster 1 Cluster 2 Cluster 3

ES1 = 3 t.u. ES2 = 3 t.u. ES3 = 3 t.u. ES4 = 7 t.u. ES5 = 8 t.u.

(b) Illustration of clusters for n̄c = [3, 3, 6, 6, 6]

Cluster 1 Cluster 2

ES1 = 3 t.u. ES2 = 3 t.u. ES3 = 6 t.u. ES4 = 6 t.u. ES5 = 6 t.u.

(a) Illustration of clusters for n̄c = [3, 5, 5, 5, 6]

Cluster 1 Cluster 2 Cluster 3

ES1 = 3 t.u. ES2 = 5 t.u. ES3 = 5 t.u. ES4 = 5 t.u. ES5 = 6 t.u.

Figure 8.2.: Distributions explored by the CC method for the given
inputs L = 3, T = 24 t.u., and nc = 5

a multiple of 4, distributing the checkpoints evenly is not possible. Instead,
three execution segments need to be of size

⌊
21
4

⌋
= 5, and one execution seg-

ment needs to be of size
⌈

21
4

⌉
= 6. To preserve the non-decreasing ordering

in the distribution, the CC method first assigns ESj = 5 t.u. ∀ j ∈ [2, 4] (see
step 7 in Figure 8.1), and then it assigns ESk = 6 t.u. for k = 5 (see step 8 in
Figure 8.1). At this point the CC method has constructed the first distribution
n̄c = [3, 5, 5, 5, 6], and this distribution is illustrated in Figure 8.2 (a). As shown
in Figure 8.2 (a), the distribution n̄c = [3, 5, 5, 5, 6] consists of three clusters,
namely Cluster 1, Cluster 2, and Cluster 3, where all the execution segments
that belong to the same cluster have the same size, and they are marked with
the same color. Cluster 1 contains only one execution segment of size 3 t.u.
and it is marked with red (observe ES 1 in Figure 8.2 (a)), Cluster 2 con-
tains three execution segments of size 5 t.u. and these execution segments
are marked with green (observe ES 2, ES 3 and ES 4 in Figure 8.2 (a)), and
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Cluster 3 contains a single execution segment of size 6 t.u. and it is marked
with blue (observe ES5 in Figure 8.2 (a)).

The second distribution is constructed during the second iteration (i = 2) of
the inner loop of the CC method (step 3 in Figure 8.1), and it is illustrated in
Figure 8.2 (b). The distribution is constructed as follows. First, the size of the
second execution segment is set to 3 (see step 4 in Figure 8.1). At this point
the size of the first execution segment remains unchanged since the previous
iteration, i.e. the size of the first execution segments is 3 t.u.. Since the size
of the first two execution segments is fixed to 3 t.u., the rest of the process-
ing time T̂ is 24− 2× 3 = 18 t.u. (step 5 in Figure 8.1) and the number of
remaining checkpoints n̂c is set to 3 (step 6 in Figure 8.1). The size of the
remaining three execution segments is obtained by evenly distributing the re-
maining three checkpoints over the rest of the processing time. Since 18 is a
multiple of three, the size of the remaining three execution segments is set
to 6 t.u., and therefore the CC method assigns ESj = 6 t.u. ∀j ∈ [3, 5] (step
7 in Figure 8.1). Therefore, the constructed distribution during the second
iteration is n̄c = [3, 3, 6, 6, 6], and it is illustrated in Figure 8.2 (b). As shown
in Figure 8.2 (b), n̄c = [3, 3, 6, 6, 6] consists of two clusters, i.e. Cluster 1 which
contains two execution segments of size 3 t.u. (observe ES1 and ES2 in Fig-
ure 8.2 (b)), and Cluster 2 which contains three execution segments of size
6 t.u. (observe ES3, ES4 and ES5 in Figure 8.2 (b)).

The third distribution is constructed during the third iteration of the inner
loop, and it is illustrated in Figure 8.2 (c). First, the size of the third execu-
tion segment is set to 3 t.u., and hence the size of the first three execution
segments is set to 3 t.u.. The size of the remaining two execution segments is
obtained by evenly distributing the remaining two checkpoints over the rest
of the processing time T̂ = 24− 3× 3 = 15 t.u. Since 15 is not a multiple
of two, the CC method sets the size of one execution segment to 7 t.u. and
the size of the other execution segment to 8 t.u., and thus it constructs the
distribution n̄c = [3, 3, 3, 7, 8] which is illustrated in Figure 8.2 (c). As shown
in Figure 8.2 (c), n̄c = [3, 3, 3, 7, 8] consists of three clusters. Cluster 1 contains
three execution segments of size 3 t.u. (observe ES1, ES2 and ES3 marked
with red in Figure 8.2 (c)), Cluster 2 contains one execution segment of size
7 t.u. (observe ES4 marked with green in Figure 8.2 (c)), and Cluster 3 con-
tains one execution segment of size 8 t.u. (observe ES5 marked with blue in
Figure 8.2 (c)).

Finally, the fourth constructed distribution is n̄c = [3, 3, 3, 3, 12], and it is
illustrated in Figure 8.2 (d). As shown in Figure 8.2 (d), n̄c = [3, 3, 3, 3, 12]
consists of two clusters, i.e. Cluster 1 which contains four execution segments
of size 3 t.u. (observe ES1, ES2, ES3 and ES4 in Figure 8.2 (d)), and Clus-
ter 2 which contains one execution segments of size 12 t.u. (observe ES5 in
Figure 8.2 (d)).
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Scenario Scenario Scenario
A B C

T = 100 t.u. T = 1000 t.u. T = 1000 t.u.

D = 150 t.u. D = 1300 t.u. D = 1300 t.u.

τ = 2 t.u. τ = 10 t.u. τ = 20 t.u.

PT = 0.99999 PT = 0.99999 PT = 0.99999

Table 8.3.: Input scenarios

8.6. EXPERIMENTAL RESULTS

The objective of the experiments presented in this section is as follows. First,
we study the impact on the LoC when a checkpoint can only be taken at an
integer time unit. Second, given that a checkpoint can only be taken at an
integer time unit, we evaluate to what extent the proposed heuristic (the CC
method) is able to find the optimal solution which is obtained by using the Ex-
haustive Search (EXS) method. Third, we evaluate which of the two schemes,
i.e. equidistant and non-equidistant checkpointing, provides the highest LoC.
For that reason, we present results for the following two experiments:

• P1: for various number of checkpoints compare the LoC for the exact
equidistant checkpointing scheme (EEQC) and the LoC for the limited
equidistant checkpointing scheme (LEQC) where the checkpoints are
“evenly” distributed while applying the limitation that a checkpoint
can only be taken at an integer time unit;

• P2: given that a checkpoint can only be taken at an integer time unit,
for various number of checkpoints compare the LoC for the equidistant
and the non-equidistant checkpointing scheme.

For the given experiments P1 and P2, we use the input scenarios given
in Table 8.3. Each scenario is defined with the following parameters: the
processing time of the job T, the deadline D, the checkpointing overhead τ,
and the probability PT that no errors occur in a processing node within an
interval of length T.

As the goal in P1 and P2 is to evaluate the LoC for different checkpointing
schemes at various number of checkpoints, important to note is that for each
of the scenarios presented in Table 8.3 the range of values for the number of
checkpoints nc is different. This follows from the fact that if nc is sufficiently
high, the deadline will be violated (Λn̄c(D) = 0). Hence, there exists an upper
bound to determine the range of values for nc. The upper bound of nc, in all
scenarios, is obtained from the condition that the best case execution time, i.e.
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time required for the job to complete when no errors occur T + nc × τ, should
not violate the deadline. Therefore, for Scenario A nc ∈ [2, 25], for Scenario B
nc ∈ [2, 30] and for Scenario C nc ∈ [2, 15].

Important to note is that evaluating the LoC usually results in numbers
which are very close to 1, i.e. Λn̄c(D) ≈ 1. Since the values Λn̄c(D) are very
close to 1, the difference Λ̄n̄c(D) = 1− Λn̄c(D) results in numbers that are
more convenient to present by using scientific notation. Therefore, when we
present the results for P1 and P2 for the different scenarios given in Table 8.3,
we show the values Λ̄n̄c(D). One observes that lower values for Λ̄n̄c(D) are
better, i.e. Λn̄c(D) is higher. Next, we present the results for the two experi-
ments P1 and P2.

For P1, the results are summarized in Tables 8.4–8.6 for Scenario A, B, and
C, respectively. The results presented in Tables 8.4–8.6 show Λ̄n̄c(D) obtained
from the two checkpointing schemes EEQC and LEQC at various number of
checkpoints nc. Additionally, in Tables 8.4–8.6, the distribution of checkpoints
n̄c for the LEQC is presented for each nc, and for convenience we use the
reduced format of the distribution ñc. For each nc, we highlight which of the
two schemes provides the highest LoC (the result is marked with bold). With
these results, we study the impact on the LoC when a checkpoint can only be
taken at an integer time unit.

The EEQC scheme distributes the nc checkpoints evenly without any limi-
tation on the checkpoint placement, and considers that all execution segments
are of the same size T

nc
. On the other hand, the LEQC scheme distributes the

nc checkpoints as even as possible, and it considers that a checkpoint can only
be taken at an integer time unit. Therefore, when the processing time T, given
in time units, is not a multiple of the number of checkpoints nc, the LEQC
results in a distribution of checkpoints n̄c where the execution segments are
divided into two clusters, where all the execution segments that belong to the

first cluster have the size
⌊

T
nc

⌋
, and all the execution segments that belong

to the second cluster have the size
⌈

T
nc

⌉
. Observe that if the processing time

T is a multiple of the number of checkpoints nc, then both schemes evaluate
the LoC for the same distribution of checkpoints n̄c where the size of all the
execution segments is T

nc
, and therefore in such case, the LoC will be the same

for both schemes. Next, we discuss the results presented in Tables 8.4–8.6.
From the results shown in Tables 8.4–8.6, we draw the conclusion that the

limitation on the checkpoint placement, i.e. a checkpoint can only be taken at
an integer time unit, affects the LoC only in the following two cases: (1) the
processing time T is not a multiple of the number of checkpoints nc, and (2) for
the given number of checkpoints nc, at least one re-execution can take place
without violating the deadline. Since for Scenario C, for any nc ∈ [2, 15] it is
not possible to have even a single re-execution without violating the deadline,
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the results for all nc are the same, and therefore the LoC is not affected by
the limitation on the checkpoint placement. In most of the cases where the
LoC is affected, the limitation on the checkpoint placement degrades the LoC
(observe the results in Table 8.6). However, there are exceptional cases where
the limitation on the checkpoint placement may lead to an improved LoC
(observe the results for nc = 18 and nc = 22 in Table 8.4). Next, we elaborate
on these two exceptional cases.

For Scenario A and nc = 18, the size of the execution segments for the
EEQC scheme is 100

18 and with such size it is possible to re-execute a only
single execution segment without violating the deadline (this is evaluated
with Eq. (4.28) in Section 4.1.4 in Chapter 4). However, for the same inputs
the LEQC scheme results in a distribution where eight execution segments are

of size equal to
⌊

100
18

⌋
= 5 t.u., and 10 execution segments are of size equal to⌈

100
18

⌉
= 6 t.u. Furthermore, any of the eight execution segments can be re-

executed twice without violating the deadline. Therefore, the LoC obtained
from the LEQC scheme will be higher as it includes the probability that some
execution segments may be re-executed twice.

For Scenario A and nc = 22, the size of the execution segments for the
EEQC scheme is 100

22 and with such size any re-execution violates the deadline
(the maximum number of re-executions is evaluated as zero using Eq. (4.28)).
On the other hand, the LEQC scheme results in a distribution where 10 execu-
tion segments are of size

⌊
100
18

⌋
= 4 t.u. and 12 execution segments are of size⌈

100
18

⌉
= 5 t.u. Furthermore, any of the 10 execution segments of size 4 t.u.can

be re-executed once without violating the deadline. Therefore, the LoC ob-
tained from the LEQC scheme is higher. From these two cases we conclude
that the limitation on the checkpoint placement will have a positive effect on
the LoC (higher LoC) only when the following condition holds:D− T − nc × τ⌊

T
nc

⌋
 >

⌊
D− T − nc × τ

T
nc

⌋
(8.24)

The condition in Eq. (8.24) compares if the number of re-executions of an
execution segment of size

⌊
T
nc

⌋
is greater than the number of re-executions

of an execution segment of size T
nc

. Only when this condition is satisfied,
the LEQC scheme will outperform the EEQC scheme. Next, we present the
results for the second experiment P2.

For P2, the results are summarized in Tables 8.7–8.9, for Scenario A, B, and
C, respectively. These results show Λ̄n̄c(D) (along with n̄c) obtained from the
three methods, i.e. LEQC, CC, and EXS for different values of nc. For each
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nc EEQC LEQC nc EEQC LEQC

2
1.99999e-5 1.99999e-5

14
1.632651e-15 1.633438e-15

ñc = [502] ñc = [712, 82]

3
2.666651e-10 2.666785e-10

15
1.611850e-15 1.613358e-15

ñc = [332, 341] ñc = [65, 710]

4
2.499987e-10 2.499987e-10

16
1.593748e-15 1.595102e-15

ñc = [254] ñc = [612, 74]

5
2.399988e-10 2.399988e-10

17
1.577853e-15 1.578638e-15

ñc = [205] ñc = [52, 615]

6
2.074068e-15 2.074778e-15

18
2.111103e-10 1.751996e-10

ñc = [162, 174] ñc = [58, 610]

7
1.959179e-15 1.959915e-15

19
2.105255e-10 2.105992e-10

ñc = [145, 152] ñc = [514, 65]

8
1.874996e-15 1.875996e-15

20
2.099992e-10 2.099992e-10

ñc = [124, 134] ñc = [520]

9
1.810696e-15 1.811132e-15

21
2.095230e-10 2.095992e-10

ñc = [118, 121] ñc = [45, 516]

10
1.759997e-15 1.759997e-15

22
1.99999e-5 1.200002e-5

ñc = [1010] ñc = [410, 512]

11
1.719005e-15 1.719437e-15

23
1.99999e-5 1.99999e-5

ñc = [910, 101] ñc = [415, 58]

12
1.685183e-15 1.686429e-15

24
1.99999e-5 1.99999e-5

ñc = [88, 94] ñc = [420, 54]

13
1.656802e-15 1.658078e-15

25
1.99999e-5 1.99999e-5

ñc = [74, 89] ñc = [425]

Table 8.4.: Comparison of Λ̄nc (D) for different checkpointing
schemes at different nc values for Scenario A

nc, we highlight which of the three methods provides the highest LoC (the
result is marked with bold). Observe that since in Tables 8.7–8.9 we show
Λ̄n̄c(D), smaller values of Λ̄n̄c(D) indicate a better result, i.e. higher Λn̄c(D).
The objective with these results is to show that (1) the proposed heuristic (the
CC method) is able to find the optimal solution in most of the cases, and (2)
the LoC is improved when non-equidistant checkpointing is used. Next, we
discuss the results presented in Tables 8.7–8.9.

As can be seen from Tables 8.7–8.9, comparing the results from the EXS
method with the results from the CC method shows that the CC method in
most of the presented cases is able to find the optimal n̄∗c . The advantage of
the CC method is that it finds the solution in significantly shorter time than the
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nc EEQC LEQC nc EEQC LEQC

2
1.99999e-5 1.99999e-5

17
2.117639e-10 2.117644e-10

ñc = [5002] ñc = [583, 5914]

3
1.99999e-5 1.99999e-5

18
2.111103e-10 2.111112e-10

ñc = [3332, 3341] ñc = [558, 5610]

4
2.499987e-10 2.499987e-10

19
2.105255e-10 2.105264e-10

ñc = [2504] ñc = [527, 5312]

5
2.399988e-10 2.399988e-10

20
2.099992e-10 2.099992e-10

ñc = [2005] ñc = [5020]

6
2.333322e-10 2.333325e-10

21
2.095230e-10 2.095240e-10

ñc = [1662, 1674] ñc = [478, 4813]

7
2.285704e-10 2.285706e-10

22
2.090901e-10 2.090912e-10

ñc = [1421, 1436] ñc = [4512, 4610]

8
2.249990e-10 2.249990e-10

23
2.086949e-10 2.086960e-10

ñc = [1258] ñc = [4312, 4411]

9
2.222213e-10 2.222215e-10

24
2.083326e-10 2.083336e-10

ñc = [1118, 1121] ñc = [418, 4216]

10
2.199991e-10 2.199991e-10

25
2.079993e-10 2.079993e-10

ñc = [10010] ñc = [4025]

11
2.181809e-10 2.181811e-10

26
1.99999e-5 1.99999e-5

ñc = [901, 9110] ñc = [3814, 3912]

12
2.166658e-10 2.166663e-10

27
1.99999e-5 1.99999e-5

ñc = [838, 844] ñc = [3726, 381]

13
2.153837e-10 2.153839e-10

28
1.99999e-5 1.99999e-5

ñc = [761, 7712] ñc = [358, 3620]

14
2.142848e-10 2.142855e-10

29
1.99999e-5 1.99999e-5

ñc = [718, 726] ñc = [3415, 3514]

15
2.133325e-10 2.133332e-10

30
1.99999e-5 1.99999e-5

ñc = [665, 6710] ñc = [3320, 3410]

16
2.124992e-10 2.125000e-10

31
ñc = [628, 638]

Table 8.5.: Comparison of Λ̄nc (D) for different checkpointing
schemes at different nc values for Scenario B
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nc EEQC LEQC nc EEQC LEQC

2
1.99999e-5 1.99999e-5

9
1.99999e-5 1.99999e-5

ñc = [5002] ñc = [1118, 1121]

3
1.99999e-5 1.99999e-5

10
1.99999e-5 1.99999e-5

ñc = [3332, 3341] ñc = [10010]

4
1.99999e-5 1.99999e-5

11
1.99999e-5 1.99999e-5

ñc = [2504] ñc = [901, 9110]

5
1.99999e-5 1.99999e-5

12
1.99999e-5 1.99999e-5

ñc = [2005] ñc = [838, 844]

6
1.99999e-5 1.99999e-5

13
1.99999e-5 1.99999e-5

ñc = [1662, 1674] ñc = [761, 7712]

7
1.99999e-5 1.99999e-5

14
1.99999e-5 1.99999e-5

ñc = [1421, 1436] ñc = [718, 726]

8
1.99999e-5 1.99999e-5

15
1.99999e-5 1.99999e-5

ñc = [1258] ñc = [665, 6710]

Table 8.6.: Comparison of Λ̄nc (D) for different checkpointing
schemes at different nc values for Scenario C

EXS method. The reason that no results are reported for the EXS method for
nc values larger than five, in Tables 8.8–8.9, is that EXS is very time-consuming
which is due to the large number of distributions n̄c that need to be explored.
Given that the average time to compute Λn̄c(D) for a given n̄c is 10µs, and
that the number of different n̄c (excluding n̄c which are permutation of each
other) for nc = 6 is larger than 1011 for both Scenario B and Scenario C, it
would roughly take 280 hours to obtain the results. In contrast, for the same
example, the CC method explores less than 103 different n̄c (see Section 8.5),
and thus produces the results in less than 10ms. Given that the CC method
finds, in most cases, the optimal n̄∗c in substantially shorter time shows that it
is a good heuristic.

Comparing the results from the CC method with the results from the LEQC
method shows that the CC method is always able to find a distribution n̄c
which results in an LoC that is higher or at least equal to the LoC obtained
from the LEQC method (observe Tables 8.7–8.9). Important to note is that for
nc values close to the upper bound, both EQC and CC achieve the same LoC,
although n̄c is not same (observe nc ∈ [24, 25] for Table 8.7, nc ∈ [29, 30] for
Table 8.8 and nc ∈ [14, 15] for Table 8.9). For such nc values, no re-execution
of execution segments of any size is possible without violating the deadline,
and therefore all n̄c produce the same LoC.
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The major observation for all scenarios given in Table 8.3 is that the max-
imal LoC is achieved when the checkpoints are not evenly distributed. For
example, in Table 8.7 the maximal LoC is achieved for nc = 13 while using
ñc = [67, 92, 104], i.e. seven execution segments of size 6 t.u., two execution
segments of size 9 t.u., and four execution segments of size 10 t.u.

The results indicate that non-equidistant checkpointing can improve the
LoC when compared against LEQC. An important implication is that by us-
ing non-equidistant checkpointing the LoC can be improved in addition to
achieving a shorter best case execution time, i.e. completion time when no
errors occur T + nc × τ. For example, in Table 8.8, the maximal LoC for LEQC
is achieved for nc = 25, but higher LoC can be achieved for nc ∈ [7, 24] when
non-equidistant checkpointing (the CC method) is used (the highest LoC is
achieved for nc = 15 with the CC method). The same observation follows
from Table 8.7 and Table 8.9.
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nc LEQC
Non-Equidistant Checkpointing

EXS CC

2
1.99999e-5 1.12000e-5 1.12000e-5
ñc = [502] ñc = [441, 561] ñc = [441, 561]

3
2.66678e-10 2.55998e-10 2.55998e-10

ñc = [332, 341] ñc = [201, 402] ñc = [201, 402]

4
2.49998e-10 2.09559e-10 2.09559e-10
ñc = [254] ñc = [192, 312] ñc = [192, 312]

5
2.39998e-10 1.12000e-10 1.12000e-10
ñc = [205] ñc = [184, 281] ñc = [184, 281]

6
2.07477e-15 2.07477e-15 2.07477e-15

ñc = [162, 174] ñc = [162, 174] ñc = [162, 174]

7
1.95991e-15 1.95161e-15 1.95161e-15

ñc = [145, 152] ñc = [71, 153, 163] ñc = [71, 153, 163]

8
1.87599e-15 1.83839e-15 1.83839e-15

ñc = [124, 134] ñc = [72, 144, 152] ñc = [72, 144, 152]

9
1.81113e-15 1.70906e-15 1.70906e-15

ñc = [118, 121] ñc = [63, 132, 144] ñc = [63, 132, 144]

10
1.75999e-15 1.55958e-15 1.55958e-15
ñc = [1010] ñc = [86, 134] ñc = [86, 134]

11
1.71943e-15 1.58463e-15 1.58908e-15

ñc = [910, 101] ñc = [54, 81, 126] ñc = [54, 114, 123]

12
1.68642e-15 1.53599e-15 1.53599e-15
ñc = [88, 94] ñc = [54, 108] ñc = [54, 108]

13
1.65807e-15 1.53236e-15 1.53236e-15
ñc = [74, 89] ñc = [67, 92, 104] ñc = [67, 92, 104]

14
1.63343e-15 1.57695e-15 1.57695e-15

ñc = [712, 82] ñc = [43, 811] ñc = [43, 811]

15
1.61335e-15 1.57695e-15 1.57695e-15

ñc = [65, 710] ñc = [34, 811] ñc = [34, 811]

16
1.59510e-15 1.59510e-15 1.59510e-15

ñc = [612, 74] ñc = [612, 74] ñc = [612, 74]

17
1.57863e-15 1.57863e-15 1.57863e-15

ñc = [52, 615] ñc = [52, 615] ñc = [52, 615]

18
1.75199e-10 7.60007e-11 7.60007e-11

ñc = [58, 610] ñc = [516, 102] ñc = [516, 102]

19
2.10599e-10 1.36000e-10 1.36000e-10

ñc = [514, 65] ñc = [415, 104] ñc = [415, 104]
to be continued on next page
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nc LEQC
Non-Equidistant Checkpointing

EXS CC

20
2.09999e-10 1.84319e-10 1.84319e-10
ñc = [520] ñc = [312, 88] ñc = [312, 88]

21
2.09599e-10 2.07479e-10 2.07479e-10

ñc = [45, 516] ñc = [26, 52, 613] ñc = [26, 52, 613]

22
1.20000e-5 3.20015e-6 3.20015e-6

ñc = [410, 512] ñc = [421, 161] ñc = [421, 161]

23
1.99999e-5 1.12000e-5 1.12000e-5

ñc = [415, 58] ñc = [222, 561] ñc = [222, 561]

24
1.99999e-5 1.99999e-5 1.99999e-5

ñc = [420, 54] ñc = [420, 54] ñc = [423, 81]

25
1.99999e-5 1.99999e-5 1.99999e-5
ñc = [425] ñc = [425] ñc = [425]

Table 8.7.: Comparison of Λ̄nc (D) for different checkpointing
schemes at different nc values for Scenario A
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nc LEQC
Non-Equidistant Checkpointing

EXS CC

2
1.99999e-5 1.45999e-5 1.45999e-5
ñc = [5002] ñc = [2701, 7301] ñc = [2701, 7301]

3
1.99999e-5 9.60008e-6 9.60008e-6

ñc = [3332, 3341] ñc = [2602, 4801] ñc = [2602, 4801]

4
2.49998e-10 2.49998e-10 2.49998e-10
ñc = [2504] ñc = [2504] ñc = [2504]

5
2.39998e-10 2.36515e-10 2.36515e-10
ñc = [2005] ñc = [1151, 2213, 2221] ñc = [1151, 2213, 2221]

6
2.33332e-10

∅
2.08146e-10

ñc = [1662, 1674] ñc = [1103, 2232, 2241]

7
2.28570e-10

∅
1.87146e-10

ñc = [1421, 1436] ñc = [1054, 1932, 1941]

8
2.24999e-10

∅
1.44000e-10

ñc = [1258] ñc = [1006, 2002]

9
2.22221e-10

∅
1.22777e-10

ñc = [1118, 1121] ñc = [957, 1671, 1681]

10
2.19999e-10

∅
7.60008e-11

ñc = [10010] ñc = [909, 1901]

11
2.18181e-10

∅
6.00009e-11

ñc = [901, 9110] ñc = [8510, 1501]

12
2.16666e-10

∅
4.80011e-11

ñc = [838, 844] ñc = [8011, 1201]

13
2.15383e-10

∅
4.00011e-11

ñc = [761, 7712] ñc = [7512, 1001]

14
2.14285e-10

∅
3.60012e-11

ñc = [718, 726] ñc = [7013, 901]

15
2.13333e-10

∅
3.60011e-11

ñc = [665, 6710] ñc = [6514, 901]

16
2.12500e-10

∅
4.00011e-11

ñc = [628, 638] ñc = [6015, 1001]

17
2.11764e-10

∅
4.80010e-11

ñc = [583, 5914] ñc = [5516, 1201]

18
2.11111e-10

∅
7.60007e-11

ñc = [558, 5610] ñc = [5016, 1002]

19
2.10526e-10

∅
1.01547e-10

ñc = [527, 5312] ñc = [4516, 932, 941]
to be continued on next page
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nc LEQC
Non-Equidistant Checkpointing

EXS CC

20
2.09999e-10

∅
1.24560e-10

ñc = [5020] ñc = [4016, 904]

21
2.09524e-10

∅
1.52395e-10

ñc = [478, 4813] ñc = [3515, 795, 801]

22
2.09091e-10

∅
1.77848e-10

ñc = [4512, 4610] ñc = [3013, 672, 687]

23
2.08696e-10

∅
1.96153e-10

ñc = [4312, 4411] ñc = [2510, 574, 589]

24
2.08333e-10

∅
2.05724e-10

ñc = [418, 4216] ñc = [206, 482, 4916]

25
2.07999e-10

∅
2.07999e-10

ñc = [4025] ñc = [4025]

26
1.99999e-5

∅
5.00012e-6

ñc = [3814, 3912] ñc = [3025, 2501]

27
1.99999e-5

∅
9.60005e-6

ñc = [3726, 381] ñc = [2026, 4801]

28
1.99999e-5

∅
1.45999e-5

ñc = [358, 3620] ñc = [1027, 7301]

29
1.99999e-5

∅
1.99999e-5

ñc = [3415, 3514] ñc = [3428, 481]

30
1.99999e-5

∅
1.99999e-5

ñc = [3320, 3410] ñc = [3329, 431]

Table 8.8.: Comparison of Λ̄nc (D) for different checkpointing
schemes at different nc values for Scenario B
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nc LEQC
Non-Equidistant Checkpointing

EXS CC

2
1.99999e-5 1.51999e-5 1.51999e-5
ñc = [5002] ñc = [2401, 7601] ñc = [2401, 7601]

3
1.99999e-5 1.12000e-5 1.12000e-5

ñc = [3332, 3341] ñc = [2202, 5601] ñc = [2202, 5601]

4
1.99999e-5 8.00010e-6 8.00010e-6
ñc = [2504] ñc = [2003, 4001] ñc = [2003, 4001]

5
1.99999e-5 5.60014e-6 5.60014e-6
ñc = [2005] ñc = [1804, 2801] ñc = [1804, 2801]

6
1.99999e-5

∅
4.00016e-6

ñc = [1662, 1674] ñc = [1605, 2001]

7
1.99999e-5

∅
3.20017e-6

ñc = [1421, 1436] ñc = [1406, 1601]

8
1.99999e-5

∅
3.20017e-6

ñc = [1258] ñc = [1207, 1601]

9
1.99999e-5

∅
4.00015e-6

ñc = [1118, 1121] ñc = [1008, 2001]

10
1.99999e-5

∅
5.60012e-6

ñc = [10010] ñc = [809, 2801]

11
1.99999e-5

∅
8.00008e-6

ñc = [901, 9110] ñc = [6010, 4001]

12
1.99999e-5

∅
1.12000e-5

ñc = [838, 844] ñc = [4011, 5601]

13
1.99999e-5

∅
1.51999e-5

ñc = [761, 7712] ñc = [2012, 7601]

14
1.99999e-5

∅
1.99999e-5

ñc = [718, 726] ñc = [7113, 771]

15
1.99999e-5

∅
1.99999e-5

ñc = [665, 6710] ñc = [6614, 761]

Table 8.9.: Comparison of Λ̄nc (D) for different checkpointing
schemes at different nc values for Scenario C



9
Summary of Part II

In Part II, we discussed optimization of RRC for two different optimization
objectives while assuming that the checkpoints are not evenly distributed
throughout the execution of a job, i.e. non-equidistant checkpointing. The
optimization objectives discussed in Part II are: (1) Average Execution Time and
(2) Level of Confidence. Next, we outline the contributions with respect to each
of the optimization objectives stated earlier.

For the first optimization objective, i.e. Average Execution Time (AET), we
proposed two techniques that estimate the error probability over time and
based on the estimates adjust the checkpointing scheme with the goal to re-
duce the AET. The two proposed techniques are: Periodic Probability Esti-
mation (PPE) and Aperiodic Probability Estimation (APE). The consequence
of using these techniques is that since the checkpointing scheme is adjusted
over time, the checkpoints will not be evenly distributed throughout the ex-
ecution of the job. This implies usage of non-equidistant checkpointing. We
conducted experiments and showed that both techniques can make a good
estimation on the error probability and thus significantly reduce the AET. The
APE approach provided slightly better results (lower AET) when compared
against the PPE approach.

For the second optimization objective, i.e. Level of Confidence (LoC), we ana-
lyzed the impact on the probability of meeting a given deadline, i.e. the LoC,
when the checkpoints are not evenly distributed. First, we developed a math-
ematical expression to calculate the LoC for a given distribution of a number
of checkpoints (a vector where each element defines the size of each execu-
tion segment). Since the number of possible distributions increases drastically,
running exhaustive search to obtain the optimal distribution which results in
the maximal LoC is not always possible. Therefore, we proposed a method, i.e.
Clustered Checkpointing, that maximizes the LoC at much lower computation
cost when compared against the exhaustive search method. Experiments were
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conducted and results show that the proposed method is able in most cases
to find the optimal distribution of the checkpoints that results in the maximal
LoC.



Part III
Thesis Summary
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10
Conclusions and Future Work

Increasing soft error rates observed in the latest semiconductor technologies
enforce the usage of fault tolerance in various computer systems. While fault
tolerance enables correct operation even in the presence of errors, the major
drawback is that it often introduces a time overhead. The introduced time
overhead impacts negatively a particular class of computer systems commonly
referred to as Real-Time Systems (RTSs), where correct operation is defined
as producing the correct outcome while ensuring time constraints. Therefore,
for RTSs it is important to optimize the usage of fault tolerance such that the
negative effect of the introduced time overhead is minimized.

Fault tolerance is a well established research topic and it offers a wide va-
riety of techniques to achieve correct operation even in the presence of errors.
Roll-back Recovery with Checkpointing (RRC) is one technique that efficiently
copes with soft errors. The advantage of this technique over other fault toler-
ance techniques is that (1) it is not as costly as other techniques which require
a significant amount of hardware redundancy, and (2) in case of errors, RRC
only re-executes a portion of the job that is being executed instead of restart-
ing the job from the beginning, which is usually done in other techniques. The
main drawback of RRC is that it introduces a time overhead which depends
on the number of checkpoints that are used.

In this thesis, we studied the usage of RRC in RTSs. The goal of the thesis is
to provide an optimization framework where RRC can be optimized based on
different optimization objectives. Since in RRC the checkpoints can either be
distributed evenly or unevenly over the execution of the job, we considered
the two schemes: equidistant and non-equidistant checkpointing. The pre-
sented optimization framework considers optimization of RRC when equidis-
tant and non-equidistant checkpointing is used. The following optimization
objectives are considered: (1) Average Execution Time, (2) Level of Confidence,
and (3) Guaranteed Completion Time.
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The purpose of the presented optimization framework is to assist a de-
signer of an RTS, in the early design stage, with the following. First, to help
the designer decide if RRC is a suitable choice with respect to the different
specification requirements that the designer needs to deal with. Second, if
RRC is suitable, then this optimization framework should give the knowledge
to the designer of an RTS on how to select the number of checkpoints to be
used and how these checkpoints should be distributed, such that the specifi-
cation requirements are met.

The rest of the chapter is organized as follows. First, we provide conclu-
sions with respect to each of the different optimization objectives considered
in this thesis. Finally, at the end of this chapter, we outline directions for
future work.

10.1. AVERAGE EXECUTION TIME

Average Execution Time (AET) is an optimization objective which is mostly
suitable for soft RTSs where eventual deadline violation does not result in se-
vere consequences. With respect to AET, we showed that for an equidistant
checkpointing scheme it is possible to identify the optimal number of check-
points such that the minimal AET is achieved. Mathematical expressions were
derived to calculate the optimal number of checkpoints and the minimal AET.
As presented, both expressions depend on multiple parameters such as check-
pointing overhead, processing time and the probability that no errors occur
in a processing node within an interval of time. While the checkpointing
overhead and the processing time can be considered invariable over time, the
probability of errors may vary over time. In such scenario, non-equidistant
checkpointing is more preferable instead of equidistant checkpointing. Us-
ing adaptive techniques, such as the methods that we proposed in Chapter 7,
which estimate the error probability over time and correspondingly adjust
the checkpointing scheme, can provide better results in terms of reducing the
AET. Observe that even though non-equidistant checkpointing is preferred
over equidistant checkpointing with respect to AET, this does not diminish the
results obtained from optimizing RRC with respect to AET for the equidistant
checkpointing scheme. The adaptive techniques can estimate the error prob-
ability over time and then apply equidistant checkpointing with the optimal
number of checkpoints computed for the latest estimate of the error probabil-
ity until a new estimate of the error probability is provided. Both methods
presented in Chapter 7, i.e. Periodic Probability Estimation (PPE) and Aperi-
odic Probability Estimation (APE), used such a scheme and as it was shown
in the experimental results section, these methods resulted in significant re-
duction of the AET where the APE method performed slightly better than the
PPE method.
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10.2. LEVEL OF CONFIDENCE

Level of Confidence (LoC) is a useful metric to measure to what extent dead-
lines in RTSs are met. In contrast to AET, which is mostly suitable for soft
RTSs, LoC is equally applicable for both soft and hard RTSs. For soft RTSs,
the highest LoC may not be needed. However, for hard RTSs it is very impor-
tant that the LoC is almost equal to one. Therefore, to achieve the maximal
LoC, we considered optimization of RRC with the goal to maximize the LoC.

With respect to LoC, the important conclusions are as follows. The LoC
varies with the number of checkpoints used, and there exists an optimal num-
ber of checkpoints that results in the maximal LoC. We studied, for the case
of equidistant checkpointing, the impact of the number of checkpoints on the
LoC for two scenarios, i.e. (1) a single job with a deadline and (2) multiple jobs
(a set of jobs) with a global deadline. As shown in Chapter 4, the conclusion
is that optimizing RRC for a single job does not solve the problem of multiple
jobs. Two approaches that aim to reduce the problem of multiple jobs to a
single job were investigated and it was shown that neither of them is able to
optimally solve the problem of multiple jobs. In the first approach, the notion
of local deadlines was introduced. A local deadline was assigned to each job
in the set and the number of checkpoints for each job was selected such that
the LoC with respect to the local deadline was maximized. The results showed
that by using this approach there is no guarantee that such assignment of the
number of checkpoints to the jobs will result in the maximal LoC with respect
to the global deadline. In the second approach, the set of jobs was considered
as a single large job. Using the optimization method for a single job, the opti-
mal number of checkpoints that maximizes the LoC with respect to the global
deadline was identified and these checkpoints were evenly distributed among
the jobs in the set. The results showed that this method does not obtain, in the
general case, the optimal assignment of checkpoints that results in the maxi-
mal LoC with respect to the global deadline. To solve the problem for the case
of multiple jobs, we proposed a method to find the number of checkpoints for
each job such that the LoC with respect to the global deadline is maximized.
The important conclusion was that even though we assumed that all jobs
in the set have equal processing time, the maximal LoC with respect to the
global deadline was not achieved when the same number of checkpoints were
assigned to the jobs. Instead, different number of checkpoints was assigned to
different jobs. This implies that distributing the checkpoints evenly may not
result in the maximal LoC. Therefore, in Chapter 8, we studied the impact on
the LoC when the checkpoints are not evenly distributed, i.e. non-equidistant
checkpointing. The analysis was done only for the scenario of a single job
with a deadline. The results showed that non-equidistant checkpointing can
always improve the LoC in comparison to equidistant checkpointing. Impor-
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tant to point out is that the previous conclusion does not discard our findings
on optimizing RRC with respect to LoC when equidistant checkpointing is
used. Instead, we strongly advise that these two studies should be well com-
bined. For example, optimizing RRC with respect to equidistant checkpoints
makes it possible the find the optimal number of checkpoints that results in
the highest LoC. Once this number of checkpoints is obtained, further im-
provement on the LoC can be achieved by distributing these checkpoints in a
non-equidistant manner.

Another important conclusion that was drawn after studying the optimiza-
tion of RRC with respect to LoC is the following. The optimal number of
checkpoints that minimizes the AET decreases the LoC with respect to a
given deadline, and the optimal number of checkpoints that maximizes the
LoC with respect to a given deadline increases the AET.

10.3. GUARANTEED COMPLETION TIME

For soft RTSs, most of the work focuses on optimization of RRC with respect
to AET. While there are advantages to consider the AET as an optimization
objective, the main disadvantage with the AET is that it does not provide
any information on what is the probability to meet a given deadline. How-
ever, a designer of a RTS may have some reliability constraints which dictate
that deadlines must be met with some probability. In such case, optimization
based on AET is not sufficient. Instead, it is more important to minimize the
completion time while ensuring that some reliability constraints are met. For
that reason, in Chapter 5, we introduced the concept Guaranteed Completion
Time (GCTδ) which refers to a completion time such that the probability that
a job completes within this time is higher or equal to a given LoC require-
ment δ. In Chapter 5, we analyzed the GCTδ and showed that GCTδ varies
with the number of checkpoints that are used. Furthermore, we showed that
there exists an optimal number of checkpoints that minimizes the GCTδ. For
that reason, we developed a method to find the optimal number of check-
points that results in the minimal GCTδ. The advantage of the minimal GCTδ

over the minimal AET is that the minimal GCTδ satisfies a given reliability
constraint (a job will complete within an period of time equal to GCTδ with
a probability δ), while the minimal AET does not provide any information
about the probability that a job will complete within a period of time equal to
the minimal AET.
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10.4. FUTURE WORK

While in this thesis the overall goal was to provide an optimization framework
for RRC when used in RTSs, the presented optimization framework can be
further improved. Therefore, in this section, we provide directions for future
work in order to improve the optimization framework that was presented.

In this thesis, for both equidistant and non-equidistant checkpointing, we
presented a mathematical model to evaluate the LoC with respect to a given
deadline for a single job, and based on this model we proposed methods to
obtain the optimal number of checkpoints that results in the maximal LoC.
In the derived mathematical model, we assumed that the error-free probabil-
ity over a period of time is fixed. However, the error-free probability may
change over time (as discussed in Chapter 7), and this opens the following
research questions. What is the impact on the LoC when the error-free prob-
ability changes over time? If the number of checkpoints used is obtained
while using an estimate of the error-free probability, how should the check-
pointing scheme (the number of checkpoints) change in order to ensure with
sufficiently high LoC that deadlines will be met? These and similar questions
provide a foundation for future research work.

Another important aspect to address is how to evaluate the LoC with re-
spect to a given deadline for multiple jobs. In this thesis, only for equidis-
tant checkpointing we have addressed evaluation of LoC with respect to a
given deadline for multiple jobs, but we have not addressed this problem for
non-equidistant checkpointing. Furthermore, for the multiple job case that is
addressed in this thesis, we have considered a set of jobs that are executed
in a sequence. However, exploiting the multi-processor paradigm, it may be
possible to execute non-dependent jobs on different processors concurrently.
Therefore, another interesting problem to consider is how to evaluate the LoC
with respect to a given deadline for a set of jobs, where some jobs are executed
sequentially and some jobs are executed concurrently. How many checkpoints
should be assigned to each job, and how these checkpoints should be dis-
tributed such that the LoC with respect to the given deadline is maximized is
another optimization problem that can improve the optimization framework
that is presented in this thesis.

Another research direction that has not been addressed in this thesis is how
to minimize the GCTδ when non-equidistant checkpointing is used. Thus, the
framework can be improved by providing results (methods) to identify how
many checkpoints to be used and how these checkpoints should be distributed
in order to minimize the GCTδ for a given LoC requirement δ.

So far, we discussed some research directions in order to broaden the
scope of the optimization framework that was presented in this thesis. Next,
we present a research direction in order to strengthen the value of the pre-
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sented work. The optimization framework presented in this thesis has only
been tested on synthetic benchmarks (mathematical models and simulations).
However, to strengthen the value of this work it is important to test the pre-
sented optimization framework with practical benchmarks. Therefore, the
next goal is to implement RRC and validate the results presented in this the-
sis on more realistic examples.
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AAppendix

In this section we prove, that the following expression:

pnc(k) = Nnc(k)× Pnc
ε × (1− Pε)

k =

(
nc + k− 1

k

)
× Pnc

ε × (1− Pε)
k (A.1)

can be used as a valid probability distribution function, due to the fact that
it satisfies the following necessary condition which a probability distribution
function must satisfy:

∞

∑
k=0

pnc(k) = 1 (A.2)

To ensure that the sum of all terms from the probability distribution func-
tion pnc(k) is finite (Eq. (A.2)), we need to check if the terms of pnc(k) con-
verge. The property of convergence can be checked using the following ex-
pression:

lim
k→∞

pnc(k + 1)
pnc(k)

< 1 (A.3)

Next, we show that this property (Eq. (A.3)) is satisfied:

lim
k→∞

pnc(k + 1)
pnc(k)

< 1

⇒ lim
k→∞

(
nc + k
k + 1

)
Pnc

ε (1− Pε)k+1(
nc + k− 1

k

)
Pnc

ε (1− Pε)k
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= lim
k→∞

(nc+k)!
(k+1)!(nc−1)! Pnc

ε (1− Pε)k+1

(nc+k−1)!
k!(nc−1)! Pnc

ε (1− Pε)k

= lim
k→∞

nc + k
k + 1

(1− Pε)

= (1− Pε) lim
k→∞

k(1 + nc
k )

k(1 + 1
k )

= (1− Pε)
1 + lim

k→∞

nc

k

1 + lim
k→∞

1
k

= (1− Pε) < 1 (A.4)

Since the convergence property is satisfied, we can continue with the proof
to show that the sum of all terms of pnc(k) must be equal to one, (Eq. (A.2)).
To prove this we use mathematical induction. We introduce a new variable
Qε, such that Qε = 1− Pε, and we assume that the following expression holds:

∞

∑
k=0

(
nc + k− 1

k

)
Qk

ε(1−Qε)
nc = 1

≡
∞

∑
k=0

(
nc + k− 1

k

)
Qk

ε =
1

(1−Qε)nc
(A.5)

Let nc=1, then the following expression gives the left-hand side of Eq. (A.5):

∞

∑
k=0

(
1 + k− 1

k

)
Qk

ε

≡
∞

∑
k=0

(
k
k

)
Qk

ε =
∞

∑
k=0

Qk
ε (A.6)

This expression represents a sum of geometric series, and this sum is finite
and it is calculated as:

∞

∑
k=0

Qk
ε =

1
1−Qε

(A.7)

The result in Eq. (A.7) corresponds to the right-hand side of the assumption
that we presented earlier in Eq. (A.5) for nc = 1.
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Let nc = 2, then the left-hand side of Eq. (A.5) is evaluated as:

∞

∑
k=0

(
k + 1

k

)
Qk

ε

≡
∞

∑
k=0

(k + 1)!
k!1!

Qk
ε =

∞

∑
k=0

(k + 1)Qk
ε

≡
∞

∑
k=0

kQk
ε +

∞

∑
k=0

Qk
ε (A.8)

By calculating the derivative of the sum presented in Eq. (A.7) we get:

⇒ d
dQε

(
∞

∑
k=0

Qk
ε

)
=

d
dQε

(
1

1−Qε

)
⇒

∞

∑
k=0

d
dQε

Qk
ε =

1
(1−Qε)2

⇒
∞

∑
k=0

kQk−1
ε =

1
(1−Qε)2

⇒ 1
Qε

∞

∑
k=0

kQε
k =

1
(1−Qε)2

⇒
∞

∑
k=0

kQε
k =

Qε

(1−Qε)2 (A.9)

So going back to Eq. (A.8), and by using Eq. (A.9) and Eq. (A.7) we get:

∞

∑
k=0

(
k + 1

k

)
Qk

ε

=
∞

∑
k=0

kQk
ε +

∞

∑
k=0

Qk
ε

=
Qε

(1−Qε)2 +
1

1−Qε

=
Qε + 1−Qε

(1−Qε)2

=
1

(1−Qε)2 (A.10)

The result in Eq. (A.10) adheres to the assumption that we presented earlier
in Eq. (A.5) for nc = 2 (observe the right-hand side of Eq. (A.5) for nc = 2).
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Next, we perform the inductive step by replacing nc with nc + 1, thus the
left-hand side of Eq. (A.5) is evaluated as:

∞

∑
k=0

(
nc + k

k

)
Qk

ε

=
∞

∑
k=0

(nc + k)!
k!nc!

Qk
ε

=
∞

∑
k=0

(nc + k)(nc + k− 1)!
nc(nc − 1)!k!

Qk
ε

=
∞

∑
k=0

(nc + k− 1)!
(nc − 1)!k!

Qk
ε +

∞

∑
k=0

k(nc + k− 1)!
nc(nc − 1)!k!

Qk
ε (A.11)

The first term in Eq. (A.11) is the same as the assumption presented in
Eq. (A.5). To evaluate the second term in Eq. (A.11) we need to calculate
the derivative of the expression presented in Eq. (A.5). The derivative of the
expression presented in Eq. (A.5) is given in Eq. (A.12).

d
dQε

(
∞

∑
k=0

(nc + k− 1)!
(nc − 1)!k!

Qk
ε

)
=

d
dQε

(
1

(1−Qε)nc

)
⇒

∞

∑
k=0

d
dQε

(
(nc + k− 1)!
(nc − 1)!k!

Qk
ε

)
=

nc

(1−Qε)nc+1

⇒
∞

∑
k=0

(nc + k− 1)!
(nc − 1)!k!

d
dQε

(
Qk

ε

)
=

nc

(1−Qε)nc+1

⇒
∞

∑
k=0

(nc + k− 1)!
(nc − 1)!k!

kQk−1
ε =

nc

(1−Qε)nc+1

⇒ 1
Qε

∞

∑
k=0

k(nc + k− 1)!
(nc − 1)!k!

Qk
ε =

nc

(1−Qε)nc+1

⇒
∞

∑
k=0

k(nc + k− 1)!
(nc − 1)!k!

Qk
ε =

ncQε

(1−Qε)nc+1 (A.12)

By replacing the terms in Eq. (A.11) with Eq. (A.5) and Eq. (A.12), we get:

∞

∑
k=0

(
nc + k

k

)
Qk

ε

=
∞

∑
k=0

(nc + k− 1)!
(nc − 1)!k!

Qk
ε +

∞

∑
k=0

k(nc + k− 1)!
nc(nc − 1)!k!

Qk
ε
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=
∞

∑
k=0

(nc + k− 1)!
(nc − 1)!k!

Qk
ε +

1
nc

∞

∑
k=0

k(nc + k− 1)!
(nc − 1)!k!

Qk
ε

=
1

(1−Qε)nc
+

1
nc

ncQε

(1−Qε)nc+1

=
(1−Qε) + Qε

(1−Qε)nc+1

=
1

(1−Qε)nc+1 (A.13)

By this (the expression obtained in Eq. (A.13) is the same as the right-hand
side of the expression presented in Eq. (A.5) when using nc + 1) we prove that
the proposed function, given in (Eq. (A.1)), satisfies the necessary condition
presented in Eq. (A.2), and therefore can be used as a probability distribution
function.





BAppendix

In this section, we provide the proof for the following theorem:

Theorem 3. For any k, nc1 , and nc2 , such that nc1 > nc2 , the following condition
holds:

λnc1
(k) > λnc2

(k)

Proof. Theorem 3 states that for a fixed number of re-executions k, the LoC
λnc(k) increases along with the number of checkpoints nc.

The proof is based on the following lemmas:

Lemma 1. For any nc1 > nc2 , the following condition holds: pnc1
(1) > pnc2

(1).

Lemma 2. For any 0 < PT < 1, there exists a Kl , such that PT < e−
Kl−1

2 , and for
any nc1 > nc2 and k ≤ Kl the following condition holds pnc1

(k) > pnc2
(k).

Lemma 3. For any 0 < PT < 1, there exists a Ku, such that PT > Ku
√

Ku + 1− 1,
and for any nc1 > nc2 and k ≥ Ku the following condition holds pnc1

(k) < pnc2
(k).

Next, we provide the proof for each of the lemmas presented earlier, i.e.
Lemma 1, 2 and 3.

Lemma 1 states that the probability for a job to complete at time nc t1, i.e. af-
ter a single re-execution, increases as the number of checkpoints nc increases.
The probability that a job completes after a single re-execution, assuming that
nc checkpoints are used, is calculated with the following expression:

pnc(1) =
(

nc

1

)
× Pε

nc × (1− Pε) = nc × PT
2 ×

(
1− PT

2
nc

)
(B.1)

To prove that pnc(1) increases with nc, we can calculate the first derivative
of Eq. (B.1) with respect to nc and show that it is greater than zero for any
nc ≥ 1.
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The first derivative of Eq. (B.1) is given with the following equation:

PT
2
[

1− PT
2

nc + ln PT × PT
2

nc × 2
nc

]
(B.2)

From Eq. (B.2), it is difficult to come to the conclusion that the expression
in Eq. (B.2) is greater than zero for any nc ≥ 1. For that reason, we examine
whether the expression in Eq. (B.2) is increasing or decreasing with nc, by
computing its first derivative and check if that expression is positive (greater
than zero) or negative (less than zero) for all nc > 1. The first derivative of
Eq. (B.2) is evaluated as:

−PT
2+2nc

nc × 4
nc3 × (ln PT)

2 (B.3)

The expression in Eq. (B.3) is negative for all nc ≥ 1 due to the fact that
each of the three multiplicands is evaluated as positive ( 4

nc3 > 0 when nc ≥ 1,

(ln PT)
2 > 0, and PT

2+2nc
nc > 0). As the first derivative of Eq. (B.2) is negative

(less than zero) for all nc ≥ 1, it means that the expression in Eq. (B.2) is
monotonically decreasing with nc.

Next, we examine the limit of Eq. (B.2) when nc approaches infinity:

lim
nc→∞

PT
2
[

1− PT
2

nc + ln PT × PT
2

nc × 2
nc

]
= PT

2
[

1− lim
nc→∞

PT
2

nc + ln PT × lim
nc→∞

PT
2

nc × 2
nc

]
= PT

2 [1− 1 + ln PT × 0]

= 0 (B.4)

So far, we have shown that the first derivative of Eq. (B.1) is monotonically
decreasing for nc ≥ 1, and that it approaches zero as nc approaches infinity.
From this we conclude that the first derivative of Eq. (B.1) is greater than zero
for all nc ≥ 1, which implies that the expression in Eq. (B.1) is increasing with
nc.

Next, we provide the proof for Lemma 2, which states that pnc1
(k) > pnc2

(k)

for any nc1 > nc2 and any k < Kl , such that PT < e−
Kl−1

2 . The proof is derived
based on the ratio:

p2nc(k)
pnc(k)

(B.5)

The ratio in Eq. (B.5) is evaluated as:
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p2nc(k)
pnc(k)

=

(
2nc + k− 1

k

)
× Pε

2nc × (1− Pε)
k(

nc + k− 1
k

)
× Pε

nc × (1− Pε)
k

=

k−1

∏
i=0

(2nc + i)

k! ×
(

PT
2

2nc

)2nc
×
(

1− PT
2

2nc

)k

k−1

∏
i=0

(nc + i)

k! ×
(

PT
2

nc

)nc
×
(

1− PT
2

nc

)k

=

k−1

∏
i=0

(2nc + i)× PT
2 ×

(
1− PT

1
nc

)k

k−1

∏
i=0

(nc + i)× PT
2 ×

(
1− PT

1
nc

)k
×
(

1 + PT
1

nc

)k

=
k−1

∏
i=0

(
2nc + i
nc + i

)
× 1(

1 + PT
1

nc

)k (B.6)

When the ratio in Eq. (B.5) is greater than one implies that p2nc(k) > pnc(k).
Hence, we get the following inequality:

k−1

∏
i=0

(
2nc + i
nc + i

)
× 1(

1 + PT
1

nc

)k > 1 (B.7)

The inequality in Eq. (B.7) holds only when the following condition holds:

k−1

∏
i=0

(
2nc + i
nc + i

)
× 1(

1 + PT
1

nc

)k > 1

⇔
k−1

∏
i=0

(
2nc + i
nc + i

)
>
(

1 + PT
1

nc

)k

⇔ PT
1

nc < k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

⇔ PT <

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

(B.8)
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The right-hand side of the inequality in Eq. (B.8), is a decreasing function
with respect to nc. This statement comes from the fact that ax decreases with
x when 0 < a < 1.

Next, we show that the following condition holds:

k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1 < 1 (B.9)

We start by providing an upper bound for the term under the k-th square
root in Eq. (B.9), i.e.:

k−1

∏
i=0

2nc + i
nc + i

=
k−1

∏
i=0

(
2nc + i + i− i

nc + i

)

=
k−1

∏
i=0

(
2nc + 2i− i

nc + i

)

=
k−1

∏
i=0

(
2− i

nc + i

)
<

k−1

∏
i=0

2 = 2k

⇔
k−1

∏
i=0

2nc + i
nc + i

< 2k (B.10)

Using Eq. (B.10), we get:

k

√√√√k−1

∏
i=0

2nc + i
nc + i

<
k√

2k = 2 (B.11)

By subtracting one on both sides of the inequality given in Eq. (B.11), we
get:

k

√√√√k−1

∏
i=0

2nc + i
nc + i

− 1 < 2− 1 = 1 (B.12)

Eq. (B.12) shows that the condition in Eq. (B.9) holds, and by that it shows
that the right-hand side of Eq. (B.8) is a decreasing function with respect to
nc. Since the right-hand side of Eq. (B.8) is a decreasing function with respect
to nc, for any nc > 1 the function will be greater than the its limit when nc
approaches infinity, which we express with the following equation:

PT < lim
nc→∞

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

<

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

(B.13)
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To evaluate the limit of the right-hand side expression of Eq. (B.8), we make
use of the following property. Any function f (x) can be re-written as:

f (x) = eln f (x) (B.14)

The proof for Eq. (B.14) is straightforward by computing the natural loga-
rithm for both sides of the expression given in Eq. (B.14), i.e.:

f (x) = eln f (x)

⇔ ln f (x) = ln eln f (x)

⇔ ln f (x) = ln f (x) ln e = ln f (x) (B.15)

Let us denote with f (nc) the right-hand side of Eq. (B.8), i.e.:

f (nc) =

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

(B.16)

To evaluate the limit of f (nc) when nc approaches infinity, we use the prop-
erty given in Eq. (B.14), and thus we get:

lim
nc→∞

f (nc) = lim
nc→∞

eln f (nc) = e
lim

nc→∞
ln f (nc)

(B.17)

By denoting the expression ln f (nc) with v(nc), we get:

lim
nc→∞

f (nc) = e
lim

nc→∞
v(nc)

(B.18)

Thus, to evaluate the limit of f (nc) when nc approaches infinity, it is suffi-
cient to evaluate the limit of v(nc) when nc approaches infinity.

Given Eq. (B.16), we evaluate v(nc) as:

v(nc) = ln

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

= nc ln

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1


=

ln
(

k
√

(2nc+k−1)(2nc+k−2)···2nc
(nc+k−1)(nc+k−2)···nc

− 1
)

1
nc
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=
ln
(

k
√

Pk(nc)
Qk(nc)

− 1
)

1
nc

(B.19)

In Eq. (B.19), we have introduced the notations Pk(nc) and Qk(nc) to repre-
sent polynomial functions of nc of order k. Pk(nc) and Qk(nc) are evaluated
with the following equations:

Pk(nc) =
k−1

∏
i=0

(2nc + i) =
k

∑
i=1

(
bi × nc

i
)

(B.20)

Qk(nc) =
k−1

∏
i=0

(nc + i) =
k

∑
i=1

(
ai × nc

i
)

(B.21)

The following relation exists between the coefficients of the the polynomial
functions Pk(nc) and Qk(nc):

bi = 2k × ai, i = 1, 2, . . . k (B.22)

The relation between the coefficients of the the polynomial functions Pk(nc)
and Qk(nc) comes from the fact the Pk(nc) = Qk(2nc) (see Eq. (B.20) and
Eq. (B.21)). Observe that the coefficient ak (the highest order term coefficient)
of the polynomial function Qk(nc) is equal to one, i.e. ak = 1, and this implies
that bk = 2k (the highest order term coefficient of Pk(nc)). We represent these
facts with the following equations:

ak = 1 (B.23)

bk = 2k (B.24)

From Eq. (B.19), we observe that v(nc) is expressed as a ratio of two func-
tions v1(nc) and v2(nc), where v1(nc) and v2(nc) are evaluated as:

v1(nc) = ln

(
k

√
Pk(nc)

Qk(nc)
− 1

)
(B.25)

v2(nc) =
1
nc

(B.26)

Therefore the limit of v(nc) when nc approaches infinity can be evaluated
as:

lim
nc→∞

v(nc) =
lim

nc→∞
v1(nc)

lim
nc→∞

v2(nc)
(B.27)

Next, we evaluate the limits of v1(nc) and v2(nc) when nc approaches in-
finity.
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The limit of v1(nc) when nc approaches infinity is evaluated as:

lim
nc→∞

v1(nc) = lim
nc→∞

ln

(
k

√
Pk(nc)

Qk(nc)
− 1

)

= ln

(
k

√
lim

nc→∞

Pk(nc)

Qk(nc)
− 1

)

= ln

(
k

√
lim

nc→∞

bk × nck × p0(nc)

ak × nck × q0(nc)
− 1

)

= ln

(
k

√
lim

nc→∞

bk × p0(nc)

ak × q0(nc)
− 1

)

= ln

 k

√√√√√ bk
ak

lim
nc→∞

p0(nc)

lim
nc→∞

q0(nc)
− 1


= ln

(
k

√
bk
ak
− 1

)

= ln

(
k

√
2k

1
− 1

)
using Eq. (B.23) and Eq. (B.24)

= ln
(

k√
2k − 1

)
= ln (2− 1)

= ln (1)

= 0 (B.28)

The limit of v2(nc) when nc approaches infinity is evaluated as:

lim
nc→∞

v2(nc) = lim
nc→∞

1
nc

=
1

lim
nc→∞

nc

=
1
∞

= 0 (B.29)

Given Eq. (B.28) and Eq. (B.29), we evaluate the limit of v(nc) according to
Eq. (B.27) as:

lim
nc→∞

v(nc) =
lim

nc→∞
v1(nc)

lim
nc→∞

v2(nc)
=

0
0

(B.30)
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Note that the limit as evaluated in Eq. (B.30) is not defined. However, this
allows to use the l’Hôpital’s rule to evaluate the limit of v(nc) which states:

lim
nc→∞

v(nc) = lim
nc→∞

v1(nc)

v2(nc)
= lim

nc→∞

v′1(nc)

v′2(nc)
(B.31)

where v′1(nc) and v′2(nc) in Eq. (B.31) are the first derivatives of v1(nc) and
v2(nc), respectively.

Given Eq. (B.31), we evaluate the limit of v(nc) as:

lim
nc→∞

v(nc) =

= lim
nc→∞

1( Pk(nc)
Qk(nc)

) 1
k −1

× 1
k ×

(
Pk(nc)
Qk(nc)

) 1
k−1
× (Pk(nc))

′Qk(nc)−Pk(nc)(Qk(nc))
′

[Qk(nc)]
2

− 1
nc2

=− 1
k

lim
nc→∞

nc
2
[
(Pk(nc))

′ ×Qk(nc)− Pk(nc)× (Qk(nc))
′
]

[
Pk(nc)− (Pk(nc))

1− 1
k × (Qk(nc))

1
k
]

Qk(nc)

=− 1
k

lim
nc→∞

nc
2 [P̃k−1(nc)×Qk(nc)− Pk(nc)× Q̃k−1(nc)

][
Pk(nc)− (Pk(nc))

1− 1
k × (Qk(nc))

1
k
]

Qk(nc)
(B.32)

In Eq. (B.32), we have introduced the notations P̃k−1(nc) and Q̃k−1(nc) to
represent the first derivatives of Pk(nc) and Qk(nc), respectively. The deriva-
tives, P̃k−1(nc) and Q̃k−1(nc), of the polynomial functions of nc of order k,
i.e. Pk(nc) and Qk(nc), are again polynomial functions of nc, but the order of
these functions is k− 1. The polynomial functions P̃k−1(nc) and Q̃k−1(nc) are
evaluated as:

P̃k−1(nc) = (Pk(nc))
′

=

(
k

∑
i=1

bi × nc
i

)′

=
k

∑
i=1

(
bi × nc

i
)′

=
k

∑
i=1

i× bi × nc
i−1

=
k−1

∑
i=0

(i + 1)× bi+1︸ ︷︷ ︸
b̃i

×nc
i
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=
k−1

∑
i=0

b̃i × nc
i (B.33)

b̃i = (i + 1)× bi+1, i = 0, 1, . . . k− 1 (B.34)

Q̃k−1(nc) = (Qk(nc))
′

=

(
k

∑
i=1

ai × nc
i

)′

=
k

∑
i=1

(
ai × nc

i
)′

=
k

∑
i=1

i× ai × nc
i−1

=
k−1

∑
i=0

(i + 1)× ai+1︸ ︷︷ ︸
ãi

×nc
i

=
k−1

∑
i=0

ãi × nc
i (B.35)

ãi = (i + 1)× ai+1, i = 0, 1, . . . k− 1 (B.36)

Next, we evaluate the expression of the numerator in Eq. (B.32). We proceed
by introducing the notations X2k−1(nc) and Y2k−1(nc), which are defined as:

X2k−1(nc) = P̃k−1(nc)×Qk(nc) (B.37)

Y2k−1(nc) = Pk(nc)× Q̃k−1(nc) (B.38)

We re-write Eq. (B.37) as:

X2k−1(nc) =

=P̃k−1(nc)×Qk(nc)

=
(

b̃k−1nc
k−1 + b̃k−2nc

k−2 + P̃k−3(nc)
)
×
(

aknc
k + ak−1nc

k−1 + Qk−2(nc)
)

=b̃k−1aknc
2k−1 +

[
b̃k−1ak−1 + b̃k−2ak

]
nc

2k−2 + X2k−3(nc) (B.39)

Similarly, we re-write Eq. (B.38) as:

Y2k−1(nc) =

=Pk(nc)× Q̃k−1(nc)

=
(

bknc
k + bk−1nc

k−1 + Pk−2(nc)
)
×
(

ãk−1nc
k−1 + ãk−2nc

k−2 + Q̃k−3(nc)
)

=ãk−1bknc
2k−1 + [ãk−1bk−1 + ãk−2bk] nc

2k−2 + Y2k−3(nc) (B.40)
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Using Eq. (B.39) and Eq. (B.40), we evaluate the following expression:

X2k−1(nc)−Y2k−1(nc) =
(
b̃k−1ak − ãk−1bk

)
nc

2k−1

+
(
b̃k−1ak−1 + b̃k−2ak − ãk−1bk−1 + ãk−2bk

)
nc

2k−2

+ X2k−3(nc)−Y2k−3(nc)

=
(
b̃k−1ak − ãk−1bk

)
nc

2k−1

+
(
b̃k−1ak−1 + b̃k−2ak − ãk−1bk−1 − ãk−2bk

)
nc

2k−2

+ Z2k−3(nc) (B.41)

Next, we evaluate the coefficients in front of the terms nc
2k−1 and nc

2k−2

in Eq. (B.41). To evaluate these coefficients, we use Eq. (B.22), Eq. (B.23),
Eq. (B.24), Eq. (B.34) and Eq. (B.36).

The coefficient in front of the term nc
2k−1 in Eq. (B.41) is evaluated as:

b̃k−1ak − ãk−1bk = kbkak − kakbk = 0 (B.42)

The coefficient in front of the term nc
2k−2 in Eq. (B.41) is evaluated as:

b̃k−1ak−1 + b̃k−2ak − ãk−1bk−1 − ãk−2bk =

= kbkak−1 + (k− 1) bk−1ak − kakbk−1 − (k− 1) ak−1bk

= k2kak−1 + (k− 1) 2k−1ak−1 − k2k−1ak−1 − 2k (k− 1) ak−1

= 2k−1ak−1 (2− 1)

= 2k−1ak−1 (B.43)

Replacing the coefficients in front of the terms nc
2k−1 and nc

2k−2 in Eq. (B.41)
with the expressions given in Eq. (B.42) and Eq. (B.43), we get:

X2k−1(nc)−Y2k−1(nc) = 2k−1ak−1nc
2k−2 + Z2k−3(nc)

= nc
2k−2

[
2k−1ak−1 + z−1(nc)

]
(B.44)

Observe in Eq. (B.44), the term z−1(nc) is a polynomial function of nc where
the highest order is −1. Using Eq. (B.44), we re-write Eq. (B.32) as:

lim
nc→∞

v(nc) = −
1
k

lim
nc→∞

nc
2k
[
2k−1ak−1 + z−1(nc)

]
[

Pk(nc)− (Pk(nc))
1− 1

k × (Qk(nc))
1
k
]

Qk(nc)
(B.45)

Finally, we evaluate the limit of Eq. (B.45) when nc approaches infinity, by
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using Eq. (B.22), Eq. (B.24) and Eq. (B.23), as:

lim
nc→∞

v(nc) =

=− 1
k

lim
nc→∞

nc
2k
[
2k−1ak−1 + z−1(nc)

]
[

bknck p0(nc)−
(
bknck p0(nc)

)1− 1
k
(
aknckq0(nc)

) 1
k

]
aknckq0(nc)

=− 1
k

lim
nc→∞

nc
2k
[
2k−1ak−1 + z−1(nc)

]
[

2knck p0(nc)−
(
2knck p0(nc)

)1− 1
k
(
nckq0(nc)

) 1
k

]
nckq0(nc)

=− 1
k

lim
nc→∞

nc
2k
[
2k−1ak−1 + z−1(nc)

]
[
2knck p0(nc)− 2k−1nck−1 (p0(nc))

1− 1
k nc (q0(nc))

1
k
]

nckq0(nc)

=− 1
k

lim
nc→∞

nc
2k
[
2k−1ak−1 + z−1(nc)

]
[
2knck p0(nc)− 2k−1nck (p0(nc))

1− 1
k (q0(nc))

1
k
]

nckq0(nc)

=− 1
k

lim
nc→∞

nc
2k
[
2k−1ak−1 + z−1(nc)

]
nc2k

[
2k p0(nc)− 2k−1 (p0(nc))

1− 1
k (q0(nc))

1
k
]

q0(nc)

=− 1
k

lim
nc→∞

2k−1ak−1 + z−1(nc)[
2k p0(nc)− 2k−1 (p0(nc))

1− 1
k (q0(nc))

1
k
]

q0(nc)

=− 1
k

2k−1ak−1 + lim
nc→∞

z−1(nc)[
2k lim

nc→∞
p0(nc)− 2k−1

(
lim

nc→∞
p0(nc)

)1− 1
k
(

lim
nc→∞

q0(nc)

) 1
k
]

lim
nc→∞

q0(nc)

=− 1
k

2k−1ak−1[
2k − 2k−1

]
=− ak−1

k
(B.46)

From Eq. (B.46), one sees that the limit of v(nc) when nc approaches infinity,
depends on the coefficient ak−1 of the k-th order polynomial Qk(nc). Next, we
provide an expression on how to evaluate ak−1.

As discussed earlier, ak−1 is the coefficient of the term nc
k−1 in the poly-

nomial Qk(nc), presented in Eq. (B.21). Further more, let us use the notation
a(k)k−1 to denote the coefficient ak−1 of a k-th order polynomial. From Eq. (B.21),
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we can express Qk(nc) as:

Qk(nc) =
k−1

∏
i=0

(nc + i)

= (nc + k− 1)×
k−2

∏
i=0

(nc + i)

= (nc + k− 1)×Qk−1(nc) (B.47)

The polynomial Qk−1(nc) can be expressed as:

Qk−1(nc) =
k−1

∑
i=1

a(k−1)
i nc

i

= a(k−1)
k−1 nc

k−1 + a(k−1)
k−2 nc

k−2 + Qk−3(nc) (B.48)

Important to note, is that the coefficient a(k−1)
k−1 is always 1, for any k ≥ 1.

Replacing Qk−1(nc) in Eq. (B.47) with the expression in Eq. (B.48) leads to:

Qk(nc) = (nc + k− 1)×Qk−1(nc)

= (nc + k− 1)×
[

a(k−1)
k−1 nc

k−1 + a(k−1)
k−2 nc

k−2 + Qk−3(nc)
]

= nc
k +

[
k− 1 + a(k−1)

k−2

]
nc

k−1 + Qk−2(nc) (B.49)

From Eq. (B.48), we obtain the following recursive formula that computes
the coefficient a(k)k−1:

a(k)k−1 = k− 1 + a(k−1)
k−2 , k > 1

a(k)k−1 = a(1)0 = 0, k = 1 (B.50)

The recursive formula given in Eq. (B.50) has the following solution:

a(k)k−1 =
k (k− 1)

2
(B.51)

We prove that Eq. (B.51) is the solution for the recursive formula given in
Eq. (B.50) by using mathematical induction.

As the first step of mathematical induction is to check whether the assump-
tion is correct, let us assume k = 3. For k = 3, according to Eq. (B.51), a(3)2 = 3.
The polynomial Q3(nc) is evaluated as:

Q3(nc) =
2

∏
i=0

(nc + i) = nc
3 + 3nc

2 + 2nc (B.52)
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From Eq. (B.52), we note that the coefficient of the term n2
c is 3, and the same

result is obtained when Eq. (B.51) is used. This shows that the assumption is
correct for a base case.

Next, we apply the inductive step. Let us assume k = k† + 1, and assume
that Eq. (B.51) is satisfied for k = k†, i.e.:

a(
k†)

k†−1 =
k† (k† − 1

)
2

(B.53)

The recursive formula, given in Eq. (B.50), for k = k† + 1 is evaluated as:

a(
k†+1)

k† = k† + a(
k†)

k†−1 (B.54)

Using Eq. (B.53) and replacing the appropriate term in Eq. (B.54) we get:

a(
k†+1)

k† = k† + a(
k†)

k†−1

= k† +
k† (k† − 1

)
2

=
k† (k† − 1 + 2

)
2

=
k† (k† + 1

)
2

(B.55)

Observe that the expression in Eq. (B.55) is the same expression that we
would obtain if we use Eq. (B.51) for k = k† + 1. By this, we prove that
Eq. (B.51) is the solution of the recursive formula given in Eq. (B.50).

By replacing the expression of Eq. (B.51) in Eq. (B.46), we obtain the limit
of v(nc) when nc approaches infinity as:

lim
nc→∞

v(nc) = −
ak−1

k
= − k (k− 1)

2k
= − k− 1

2
(B.56)

Finally, by using Eq. (B.56), we evaluate the limit of f (nc), given in Eq. (B.18),
when nc approaches infinity as:

lim
nc→∞

f (nc) = e
lim

nc→∞
v(nc)

= e
−

k− 1
2 (B.57)

Thus for any k, which satisfies the following condition (see Eq. (B.13)):

PT < e
−

k− 1
2 (B.58)
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implies that for any nc1 > nc2 , pnc1
(k) > pnc2

(k).
As seen in Eq. (B.57), the limit of f (nc) when nc approaches infinity is a

decreasing function with respect to k. That means, if the condition in Eq. (B.58)
is satisfied for a given k†, the same condition will be satisfied for any k ≤ k†.
Furthermore, for any given 0 < PT < 1, we can find Kl (the largest value of
k that satisfies the condition in Eq. (B.58)), such that the following condition
will hold:

pnc1
(k) > pnc2

(k), ∀k ∈ [1, Kl ] (B.59)

for any nc1 and nc2 , such that nc1 > nc2 .
Another important observation is that Lemma 1 is a special case of Lemma 2.

Using Lemma 2 for the specific case when k = 1, leads to the same results as
given by Lemma 1. The limit of f (nc) when nc approaches infinity, for k = 1,
is evaluated, according to Eq. (B.57), as one. Due to the fact that 0 < PT < 1,
the condition in Eq. (B.58) will always be satisfied for k = 1, which means that
for any nc1 > nc2 , pnc1

(1) > pnc2
(1), which was stated in Lemma 1. However,

we have provided the proofs for Lemma 1 and 2 in two completely different
ways, and yet shown that the same results are obtained.

Next, we provide the proof for Lemma 3, which states that pnc1
(k) < pnc2

(k)
for any nc1 > nc2 and any k ≥ Ku, such that PT > k

√
k + 1− 1. Again, the proof

is based on the ratio:

p2nc(k)
pnc(k)

=
k−1

∏
i=0

(
2nc + i
nc + i

)
× 1(

1 + PT
1

nc

)k (B.60)

When the ratio in Eq. (B.60) is less than one, implies that p2nc(k) < pnc(k),
i.e. for nc1 = 2nc > nc2 = nc we get pnc1

(k) < pnc2
(k). Such inequality would

hold only when the following condition is satisfied:

PT >

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

(B.61)

While proving Lemma 2, we have shown that the right-hand side expres-
sion of Eq. (B.61) is a decreasing function with respect to nc. As nc ≥ 1,
the largest value of the right-hand side expression of Eq. (B.61) is reached at
nc = 1. This allows us to write the following inequality:

PT > k

√√√√k−1

∏
i=0

(
2 + i
1 + i

)
− 1 >

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

(B.62)
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Furthermore, the largest value of the right-hand side expression of Eq. (B.61)
can be expressed as:

k

√√√√k−1

∏
i=0

(
2 + i
1 + i

)
− 1

= k
√

(2+k−1)(2+k−2)···2
(1+k−1)(1+k−2)···1 − 1

= k
√

(k+1)(k)···2
(k)(k−1)···1

1
1 − 1

= k
√

(k+1)(k)···2·1
(k)(k−1)···1 − 1

= k
√

(k+1)!
(k)! − 1

= k
√

k + 1− 1 (B.63)

Eq. (B.63) allows us to re-write the condition in Eq. (B.62) as:

PT >
k√k + 1− 1 >

 k

√√√√k−1

∏
i=0

(
2nc + i
nc + i

)
− 1

nc

(B.64)

Hence, for any k that satisfies the following condition:

PT >
k√k + 1− 1 (B.65)

for any nc1 > nc2 , pnc1
(k) < pnc2

(k).
Important to note is that the condition in Eq. (B.65) can be satisfied if and

only if k > 1, given that 0 < PT < 1. Evaluating the condition in Eq. (B.65)
for k = 1, states that PT > 1. However, as PT is a probability, it can never be
larger than 1, which shows that at k = 1, for any nc1 > nc2 , pnc1

(k) cannot
be less than pnc2

(k). We showed while proving Lemma 1 and 2 that for any
nc1 > nc2 , pnc1

(1) > pnc2
(1).

Another important observation is that for any k > 1⇔ k ≥ 2 the right-hand
side of Eq. (B.65) is a deceasing function with respect to k. To show this, let
us denote the right-hand side of Eq. (B.65) with f (k), i.e.:

f (k) = k√k + 1− 1 (B.66)

We show that f (k) is decreasing with respect to k, for any k ≥ 2, by com-
puting its first derivative and comparing it with zero. The first derivative of
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f (k) is evaluated as:

f ′(k) =
(

k√k + 1− 1
)′

=
(

k√k + 1
)′

=

(
eln(k+1)

1
k
)′

=
(

e
1
k ln(k+1)

)′
= e

1
k ln(k+1)

[
− 1

k2 ln (k + 1) +
1

k (k + 1)

]
= e

1
k ln(k+1)

[
(1− ln (k + 1)) k− ln (k + 1)

k (k + 1)

]
(B.67)

The first derivative of f (k), as given in Eq. (B.67), can be negative (less than
zero) only if the term in the numerator is negative, i.e.:

f ′(k) < 0⇔ (1− ln (k + 1)) k− ln (k + 1) < 0 (B.68)

The term − ln (k + 1) is negative (less than zero) for any k > 0, and further
more 1 − ln (k + 1) is negative for any k > e − 1 ⇔ k ≥ 2. From this we
conclude that f ′(k) < 0, k ≥ 2, which implies that f (k) decreases with k ≥ 2.

Given that the right-hand side of Eq. (B.65) is decreasing with k, implies
that if for a given k† the condition in Eq. (B.65) is satisfied, the same condition
will be satisfied for any k ≥ k†. Furthermore, for any given 0 < PT < 1, we
can find Ku (the lowest k which satisfies the condition in Eq. (B.65)), such that
the following condition will hold:

pnc1
(k) < pnc2

(k), ∀ k ∈ [Ku, ∞) (B.69)

for any nc1 and nc2 , such that nc1 > nc2 .
Next, we construct the proof for Theorem 3, which states that for any

given nc1 > nc2 , and for a given fixed number of re-executions k†, the fol-
lowing relation holds λnc1

(k†) > λnc2
(k†). To construct the proof, we use

Lemma 1, 2 and 3, from which we obtain that for any 0 < PT < 1 there exist
Kl and Ku, such that for any given nc1 > nc2 the following inequalities hold:

pnc1
(k) > pnc2

(k), 1 ≤ k ≤ Kl (B.70)

pnc1
(k) < pnc2

(k), Ku ≤ k < ∞ (B.71)

We show that for any given k†, irrespective of PT (hence, irrespective of Kl
and Ku), λnc1

(k†) > λnc2
(k†) as long as nc1 > nc2 .

We find the relation between λnc1
(k†) and λnc2

(k†), for given nc1 > nc2

while assuming the following three cases:
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• Case I: k† ≤ Kl ;

• Case II: k† ≥ Ku; and

• Case III: Kl < k† < Ku;

Case I. Given nc1 and nc2 such that nc1 > nc2 , and k† ≤ Kl , we show that
λnc1

(k†) > λnc2
(k†). The proof is provided with the following set of equations:

λnc1
(k†) = pnc1

(0) +
k†

∑
k=1

pnc1
(k)

= PT
2 +

k†

∑
k=1

pnc1
(k)

> PT
2 +

k†

∑
k=1

pnc2
(k)︸ ︷︷ ︸

λnc2
(k†)

using Eq. (B.70)

> λnc2
(k†) (B.72)

Case II. Given nc1 and nc2 such that nc1 > nc2 , and k† ≥ Ku, we show
that λnc1

(k†) > λnc2
(k†). To proof the given inequality we use the following

equation:

∞

∑
k=0

pnc(k) = 1

k†

∑
k=0

pnc(k) +
∞

∑
k=k†+1

pnc(k) = 1

k†

∑
k=0

pnc(k) = 1−
∞

∑
k=k†+1

pnc(k)

λnc(k
†) = 1−

∞

∑
k=k†+1

pnc(k) (B.73)

Using Eq. (B.73), we express λnc1
(k†) and λnc2

k†) as:

λnc1
(k†) = 1−

∞

∑
k=k†+1

pnc1
(k) (B.74)



210 Appendix B

λnc2
(k†) = 1−

∞

∑
k=k†+1

pnc2
(k) (B.75)

Using Eq. (B.71) and the fact that k† ≥ Ku, the following equation holds:

∞

∑
k=k†+1

pnc1
(k) <

∞

∑
k=k†+1

pnc2
(k) (B.76)

By further re-working the expression given in Eq. (B.76), we get:

∞

∑
k=k†+1

pnc1
(k) <

∞

∑
k=k†+1

pnc2
(k)

⇔ −
∞

∑
k=k†+1

pnc1
(k) > −

∞

∑
k=k†+1

pnc2
(k)

⇔ 1−
∞

∑
k=k†+1

pnc1
(k) > 1−

∞

∑
k=k†+1

pnc2
(k)

⇔ λnc1
(k†) > λnc2

(k†) (B.77)

As seen from Eq. (B.77), the inequality λnc1
(k†) > λnc2

(k†) holds when
k† ≥ Ku.

Case III. Given nc1 and nc2 such that nc1 > nc2 , and Kl < k† < Ku, we
show that λnc1

(k†) > λnc2
(k†). Before we proceed, let us elaborate on the

relation between pnc1
(k) and pnc2

(k) for Kl < k < Ku. We have shown that
pnc1

(k) > pnc2
(k) for any nc1 > nc2 when k < Kl , and we have shown that

pnc1
(k) < pnc2

(k) for any nc1 > nc2 when k > Ku. For a given Kl < k < Ku,
there exists an n†

c such that for any nc2 < nc1 < n†
c the following relation

holds pnc1
(k) > pnc2

(k), and for any nc1 > nc2 > n†
c the following relation

holds pnc1
(k) < pnc2

(k). However, there is no evident relation between pnc1
(k)

and pnc2
(k) when nc1 > n†

c and nc2 < n†
c . Nonetheless, for given nc1 and nc2 ,

such that nc1 > nc2 , the fact that pnc1
(k) is certainly greater than pnc2

(k) for
any k ≤ Kl , and pnc1

(k) is certainly less than pnc2
(k) for any k ≥ Ku, implies

that there exists a k‡, where Kl < k‡ < Ku, such that for the given nc1 and nc2 ,
the following relations hold:

pnc1
(k) > pnc2

(k), Kl ≤ k ≤ k‡ (B.78)

pnc1
(k) < pnc2

(k), k‡ < k ≤ Ku (B.79)

Therefore, we split the case when Kl < k† < Ku into two sub-cases:
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• Case III.A.: Kl < k† ≤ k‡;

• Case III.B.: k‡ < k† ≤ Ku;

Case III.A. This case is very similar to Case I. The following equations show
that λnc1

(k†) > λnc2
(k†) when Kl < k† < k‡:

λnc1
(k†) =pnc1

(0) +
k†

∑
k=1

pnc1
(k)

=PT
2 +

k†

∑
k=1

pnc1
(k)

=PT
2 +

Kl

∑
k=1

pnc1
(k) +

k†

∑
k=Kl+1

pnc1
(k)

> PT
2 +

Kl

∑
k=1

pnc2
(k) +

k†

∑
k=Kl+1

pnc2
(k)︸ ︷︷ ︸

λnc2
(k†)

using Eq. (B.70) and Eq. (B.78)

>λnc2
(k†) (B.80)

Case III.B. This case is very similar to Case II. First, using Eq. (B.79) and
k‡ < k† ≤ k ≤ Ku, we get:

Ku

∑
k=k†+1

pnc1
(k) <

Ku

∑
k=k†+1

pnc2
(k) (B.81)

Second, using Eq. (B.71) and Ku ≤ k < ∞, we get:

∞

∑
k=Ku+1

pnc1
(k) <

∞

∑
k=Ku+1

pnc2
(k) (B.82)

By adding Eq. (B.81) and Eq. (B.82), we get:

Ku

∑
k=k†+1

pnc1
(k) +

∞

∑
k=Ku+1

pnc1
(k) <

Ku

∑
k=k†+1

pnc2
(k) +

∞

∑
k=Ku+1

pnc2
(k)

⇔
∞

∑
k=k†+1

pnc1
(k) <

∞

∑
k=k†+1

pnc2
(k)

⇔ −
∞

∑
k=k†+1

pnc1
(k) > −

∞

∑
k=k†+1

pnc2
(k)
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⇔ 1−
∞

∑
k=k†+1

pnc1
(k) > 1−

∞

∑
k=k†+1

pnc2
(k)

⇔ λnc1
(k†) > λnc2

(k†)

To conclude, for any k†, irrespective of Kl and Ku (hence irrespective of
PT), we have shown that λnc1

(k†) > λnc2
(k†) as long as nc1 > nc2 (stated in

Theorem 3). �
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In this section we provide the proof for Theorem 4.

Theorem 4. For any k there exists a limit λ̄k, such that for any nc the following
condition holds:

λnc(k) ≤ λ̄k

and λ̄k is defined as:

λ̄k = PT
2

k

∑
i=0

(−2 ln(PT))
i

i!

Proof. This theorem is a consequence of Theorem 3, and the fundamental
property of the LoC, i.e.

lim
k→∞

λnc(k) =
∞

∑
k=0

pnc(k) = 1 (C.1)

According to Eq. (C.1), the LoC is equal to one when k approaches infinity for
any given nc, and the proof was presented in Appendix A. Since Theorem 3
states that for a fixed k the LoC, λnc(k), increases along with nc, to satisfy
Eq. (C.1) it is necessary that for a fixed k there exists a limit of λnc(k) when
nc approaches infinity. We denote this limit with λ̄nc(k). Next, we derive the
expression to compute λ̄nc(k).

The limit λ̄nc(k) is defined as:

λ̄nc(k) = lim
nc→∞

λnc(k)

= lim
nc→∞

k

∑
i=0

pnc(i)

=
k

∑
i=0

lim
nc→∞

pnc(i) (C.2)
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As shown in the right-hand side of Eq. (C.2), to obtain λ̄nc(k) it is required
to compute the limit of pnc(i) , i ∈ [0, k], when nc approaches infinity.

The limit of pnc(k) when nc approaches infinity, is defined as:

lim
nc→∞

pnc(k) = lim
nc→∞

(
nc + k− 1

k

)
× Pnc

ε × (1− Pε)
k

= lim
nc→∞

(
nc + k− 1

k

)
× P2

T × (1− PT
2

nc )k

= lim
nc→∞

Pk(nc)

k!
× P2

T × (1− PT
2

nc )k

= lim
nc→∞

PT
2

k!
× Pk(nc)× (1− PT

2
nc )k (C.3)

The term Pk(nc) in Eq. (C.3) represents a polynomial of order k with respect
to nc, i.e.

Pk(nc) =
k

∑
i=1

ainc
i (C.4)

Furthermore, the coefficient ak for the polynomial Pk(nc) is ak = 1. Using
Eq. (C.3) and Eq. (C.4) we get:

lim
nc→∞

pnc(k) = lim
nc→∞

PT
2

k!
×

k

∑
i=1

ainc
i × (1− PT

2
nc )k

=
PT

2

k!
× lim

nc→∞

k

∑
i=1

ainc
i × (1− PT

2
nc )k

=
PT

2

k!
×

k

∑
i=1

ai lim
nc→∞

nc
i × (1− PT

2
nc )k

=
PT

2

k!
×

k

∑
i=1

ai lim
nc→∞

(
nc × (1− PT

2
nc )

k
i

)i

=
PT

2

k!
×

k

∑
i=1

ai

 lim
nc→∞

nc × (1− PT
2

nc )
k
i︸ ︷︷ ︸

f (nc)


i

=
PT

2

k!
×

k

∑
i=1

ai

(
lim

nc→∞
f (nc)

)i
(C.5)

In Eq. (C.5) we have introduced the term f (nc) which is defined as:

f (nc) =

{
nc × (1− PT

2
nc ) , if i = k

nc × (1− PT
2

nc )b , if i < k
(C.6)
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The parameter b used in Eq. (C.6), is defined as b = k
i , and it is always larger

than one (observe that the parameter b in Eq. (C.6) is used only for the case
i < k). As the expression f (nc) is defined for two different cases, i.e. when
i = k and when i < k, we evaluate the limit of f (nc) when nc approaches
infinity for both cases.

For the first case, i.e. when i = k, the limit of f (nc) when nc approaches
infinity is evaluated as:

lim
nc→∞

f (nc) = lim
nc→∞

nc × (1− PT
2

nc ) (C.7)

By directly replacing nc with infinity in Eq. (C.7) we get that the limit is
undefined as we need to multiply infinity with zero. However, this allows us
to use the l’Hôpital’s rule to evaluate the limit of f (nc). By using l’Hôpital’s
rule we get:

lim
nc→∞

f (nc) = lim
nc→∞

1− PT
2

nc

1
nc

= lim
nc→∞

− ln(PT)× PT
2

nc × −2
nc2

−1
nc2

= lim
nc→∞

−2× ln(PT)× PT
2

nc︸︷︷︸
1

= −2× ln(PT) (C.8)

The expression in Eq. (C.8) provides the limit of f (nc) when nc approaches
infinity for the case i = k. Next, we provide the expression for obtaining the
limit of f (nc) when nc approaches infinity for the case i < k.

For the second case, i.e. when i < k, the limit of f (nc) when nc approaches
infinity is evaluated as:

lim
nc→∞

f (nc) = lim
nc→∞

nc × (1− PT
2

nc )b (C.9)

Observe that the parameter b in Eq. (C.9) is strictly larger than one. By
directly replacing nc with infinity in Eq. (C.9) we get that the limit is undefined
as we need to multiply infinity with zero. However, this allows us to use the
l’Hôpital’s rule, in which case we get:
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lim
nc→∞

f (nc) = lim
nc→∞

nc × (1− PT
2

nc )b

= lim
nc→∞

(1− PT
2

nc )b

1
nc

= lim
nc→∞

b× (1− PT
2

nc )b−1 × (− ln(PT))× PT
2

nc × −2
nc2

−1
nc2

= lim
nc→∞

b× (1− PT
2

nc )b−1︸ ︷︷ ︸
0

×2× ln(PT)× PT
2

nc︸︷︷︸
1

= 0 (C.10)

Using Eq. (C.8) and Eq. (C.10), and replacing them in Eq. (C.5) we get:

lim
nc→∞

pnc(k) =
PT

2

k!
×

k

∑
i=1

ai

(
lim

nc→∞
f (nc)

)i

=
PT

2

k!
×

k−1

∑
i=1

ai

(
lim

nc→∞
f (nc)

)
︸ ︷︷ ︸

using Eq. (C.10)

i
+

PT
2

k!
× ak

(
lim

nc→∞
f (nc)

)
︸ ︷︷ ︸

using Eq. (C.8)

k

= 0 +
PT

2

k!
× ak︸︷︷︸

1

(−2× ln(PT))
k

=
PT

2

k!
× (−2× ln(PT))

k (C.11)

Using Eq. (C.2) and Eq. (C.11), we evaluate the limit λ̄nc(k) as:

λ̄nc(k) = PT
2

k

∑
i=0

(−2× ln(PT))
i

i!
(C.12)

Observe that the expression given in Eq. (C.12) is the same expression as
earlier stated in Theorem 4.

To verify that the limit is correct, we show that the fundamental property
of the LoC (see Eq. (C.1)) holds when nc approaches infinity, i.e.:

lim
k→∞

λ̄nc(k) = lim
k→∞

PT
2

k

∑
i=0

(−2× ln(PT))
i

i!

= PT
2 × lim

k→∞

k

∑
i=0

i!

(−2× ln(PT))
i

= PT
2 ×

∞

∑
i=0

(−2× ln(PT))
i

i!
(C.13)
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Observe that the right-hand side of Eq. (C.13) includes an infinite series of
the type:

∞

∑
i=0

xi

i!
(C.14)

The infinite series presented in Eq. (C.14) is evaluated with following closed-
form expression:

∞

∑
i=0

xi

i!
= ex (C.15)

Using Eq. (C.15), we re-write the expression in Eq. (C.13) with:

lim
k→∞

λ̄nc(k) = PT
2 ×

∞

∑
i=0

(−2× ln(PT))
i

i!

= PT
2 × e(−2×ln(PT))

= PT
2 × e

ln( 1
PT

2 )

= PT
2 × 1

PT
2

= 1 (C.16)

By this, we show that the fundamental property of the LoC holds also
when nc approaches infinity. We showed it while using the expression for
evaluating λ̄nc(k). This verifies the correctness of the expression presented
with Eq. (C.12).

�





DAppendix

In Section 5.2, we presented an expression to obtain kn∗c , which for a given
k > 0 provides the minimal completion time with respect to k. The expression
was given with the following equation:

kn∗c =

√
k× T

τ
(D.1)

The problem with the Eq. (D.1) is that its right-hand side may be evaluated as
a non-integer number. However, only integer values can be assigned to nc.

In this regard, the straightforward solution would be rounding the value,
evaluated with the right-hand side of Eq. (D.1), to the closest integer value.
However, we show in this section that simple rounding does not always pro-
vide the correct value of kn∗c . Instead, it is required to compare the completion
time for the values of nc which are equal to the upper and the lower integer
bound of the expression given in Eq. (D.1). Next, we show why rounding to
the closest integer does not always provide the correct optimal value of nc.

Let us assume that for a given k the expression in Eq. (D.1) is evaluated as
a real number, i.e. kn∗c ∈ R. In such case, the upper and the lower integer
bound of kn∗c can be expressed with the following expressions:

ncL = bkn∗c c =k n∗c − σ1 (D.2)

ncU = dkn∗c e =k n∗c + σ2 (D.3)

The terms σ1 and σ2 used in Eq. (D.2) and Eq. (D.3) represent real numbers
that belong in the interval (0, 1). Since the difference between ncU and ncL is
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exactly equal to 1, the following relation exist between σ1 and σ2:

ncU − ncL = 1

kn∗c + σ2 −k n∗c + σ1 = 1

σ2 + σ1 = 1 (D.4)

The following three cases exist:

• Case I: σ2 < σ1, meaning that kn∗c is closer to the upper bound ncU ;

• Case II: σ2 = σ1, meaning that kn∗c is exactly in the middle between ncL

and ncU ; and

• Case III: σ2 > σ1, meaning that kn∗c is closer to the lower bound ncL

Next, for each case we compare the completion time obtained for ncL and
ncU . We perform the comparison by evaluating the following expression:

ncU tk −ncL tk

= T + ncU × τ + k× (
T

ncU

+ τ)− T − ncL × τ − k× (
T

ncL

+ τ)

= (ncU − ncL)︸ ︷︷ ︸
1

×τ + k× T ×
−1︷ ︸︸ ︷

(ncL − ncU )

ncU × ncL

= τ − k× T
ncU × ncL

= τ ×
ncU × ncL − k×

α︷︸︸︷
T
τ

ncU × ncL

using Eq. (D.1), Eq. (D.2), Eq. (D.3) and α =
T
τ

= τ ×

(√
k× α + σ2

)
×
(√

k× α− σ1

)
− k× α(√

k× α + σ2

)
×
(√

k× α− σ1

)
= τ × k× α + (σ2 − σ1)×

√
k× α− σ2 × σ1 − k× α(√

k× α + σ2

)
×
(√

k× α− σ1

)
= τ × k× α + (σ2 − σ1)×

√
k× α− σ2 × σ1 − k× α(√

k× α + σ2

)
×
(√

k× α− σ1

)
= τ × (σ2 − σ1)×

√
k× α− σ2 × σ1(√

k× α + σ2

)
×
(√

k× α− σ1

)
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=
τ(√

k× α + σ2

)
×
(√

k× α− σ1

) × ((σ2 − σ1)×
√

k× α− σ2 × σ1

)
(D.5)

Observe that Eq. (D.5) can result in either a positive or a negative value. Since

τ is always positive, and the expression
(√

k× α + σ2

)
×
(√

k× α− σ1

)
is

strictly positive (it multiplies two integer values larger than one), then the
sign of Eq. (D.5) depends only on the following term:

(σ2 − σ1)×
√

k× α− σ2 × σ1 (D.6)

If Eq. (D.6) results with a negative value, then the minimal completion time
with respect to the given k is obtained for kn∗c = ncL . Otherwise, if Eq. (D.6)
results with a positive value, or zero, the minimal completion time with re-
spect to the given k is obtained for kn∗c = ncU . Observe that if Eq. (D.5) results
with zero, it means that the same completion time will be achieved for both
ncL and ncU . However, choosing ncU is more beneficial as for a larger value of
nc, λnc(k) is higher (see Theorem 3).

For Case I, the relation between σ1 and σ2 is as follows:

σ2 < σ1 (D.7)

Next, we show that when Eq. (D.7) holds, Eq. (D.6) results with a negative
value. Since both σ1 and σ2 are positive, the term σ1 × σ2 is also positive. This
justifies the following inequality:

(σ2 − σ1)×
√

k× α− σ2 × σ1 < (σ2 − σ1)×
√

k× α (D.8)

When Eq. (D.7) holds, the right-hand side of Eq. (D.8) will be strictly lower
than zero, i.e. σ2 − σ1 < 0. Thus, we get:

(σ2 − σ1)×
√

k× α < 0 (D.9)

Using Eq. (D.9) in Eq. (D.8) leads to the following inequality:

(σ2 − σ1)×
√

k× α− σ2 × σ1 < 0 (D.10)

Observe that the left-hand side of Eq. (D.10) represents the same expression as
Eq. (D.6). Thus, Eq. (D.10) shows that when Eq. (D.7) holds, Eq. (D.6) results
with a negative value. In other words, when kn∗c , computed with Eq. (D.1) is
closer to the upper bound, ncU (Eq. (D.3)), the minimal completion time with
respect to k is obtained for ncU . This suggests that simple integer rounding
would provide the correct optimal value of nc for the given k.
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For Case II, the relation between σ1 and σ2 is as follows:

σ2 = σ1 (D.11)

Eq. (D.11) reduces Eq. (D.6) to the following term:

−σ2 × σ1 (D.12)

Since both σ2 and σ1 are positive, the product term σ2 × σ1 is also positive.
Thus, the expression in Eq. (D.12) is evaluated as negative. By this we show
that when Eq. (D.11) holds Eq. (D.6) results with a negative value. Hence,
when kn∗c , computed with Eq. (D.1) is exactly in the middle between ncL

(Eq. (D.2)) and ncU (Eq. (D.3)), the minimal completion time with respect to k
is obtained for ncU . Observe that integer rounding with a tie-breaking rule to
always round half up would provide the correct optimal value of nc for the
given k.

For Case III, the relation between σ1 and σ2 is as follows:

σ2 > σ1 (D.13)

When Eq. (D.13) holds, it is not straightforward to deduct whether Eq. (D.6)
results in a positive or a negative value, as it was for Case I and Case II.

Using Eq. (D.4), we substitute σ2 with the following expression:

σ2 = 1− σ1 (D.14)

Replacing σ2, Eq. (D.14), in Eq. (D.13) leads to the fact that Eq. (D.13) holds
only for σ1 < 0.5. Using Eq. (D.14) transforms Eq. (D.6) into:

(σ2 − σ1)×
√

k× α− σ2 × σ1

= (1− 2× σ1)×
√

k× α− (1− σ1)× σ1

=
√

k× α− 2×
√

k× α× σ1 − σ1 + σ1
2

= σ1
2 −

(
2×
√

k× α + 1
)
× σ1 +

√
k× α (D.15)

The expression in Eq. (D.15) represents a quadratic function of σ1 that
reaches a minimum (the coefficient in front of the term σ1

2 is positive). Note
that the constant α used in Eq. (D.15) represents the ratio of the processing
time T and the checkpointing overhead τ, i.e. α = T

τ . The roots of Eq. (D.15)
are evaluated as:

σ11 =
1
2
−
√

4× k× α + 1− 2×
√

k× α

2
(D.16)

σ12 =
1
2
+

2×
√

k× α +
√

4× k× α + 1
2

(D.17)
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Since Eq. (D.15) reaches a minimum, and it has two different roots σ11 and
σ12 , this leads to the fact that Eq. (D.15) results with a positive value for any
σ1 that belongs to(−∞, σ11) ∪ (σ12 , ∞), and Eq. (D.15) results with a negative
value for σ1 ∈ (σ11 , σ12).

By observing Eq. (D.17) we conclude that σ12 is strictly larger than 0.5 (a
positive term is added to the term 1

2 ). On the other hand, by observing
Eq. (D.16) we conclude that σ11 is strictly lower than 0.5. However, σ11 is
larger than zero. This can be shown by re-writing Eq. (D.16) with the follow-
ing expression:

σ11 =
1
2
− 1

2
×
√

4× k× α + 1 + 2×
√

k× α√
4× k× α + 1 + 2×

√
k× α

(√
4× k× α + 1− 2×

√
k× α

)
=

1
2
− 1

2
× 4× k× α + 1− 4× k× α√

4× k× α + 1 + 2×
√

k× α

=
1
2
− 1

2
× 1√

4× k× α + 1 + 2×
√

k× α
(D.18)

Observe the second term in Eq. (D.18). It is obtained by multiplying the
constant 1

2 with the following expression:

1√
4× k× α + 1 + 2×

√
k× α

(D.19)

The expression in Eq. (D.19) is a positive term, and it is lower than one. This
comes from the fact that k is an integer greater than zero, and the constant
α only has meaning in the context of RRC if it is larger than one. Observe
that if α is equal to one, that means that the checkpointing overhead of taking
a single checkpoint takes the same amount of time as re-executing the entire
job. Thus, even if we assume the unlikely scenario of α = 1 and the lowest
integer greater than zero, i.e. k = 1, Eq. (D.19) results in a value which is lower
than one, i.e. 1/(2 +

√
5). This ensures that the second term in Eq. (D.18) will

be lower than 1
2 , which in turns ensures that σ11 will be larger than zero.

As Case III is applicable only when σ1 ∈ [0, 0.5), we conclude that σ11 splits
the interval [0, 0.5) into two disjoint intervals [0, σ11) and [σ11 , 0.5). When
σ1 ∈ [0, σ11) Eq. (D.6) results with a positive value. It means that the minimal
completion time with respect to k is obtained for ncL . Observe that since
σ1 < 0.5, ncL is the closest integer value to kn∗c computed with Eq. (D.1). Thus,
applying integer rounding would select ncL . However, when σ1 ∈ (σ11 , 0.5)
Eq. (D.6) results with a negative value or zero. It means that the minimal
completion time with respect to k is obtained for ncU , even though ncU is not
the closest integer to kn∗c computed with Eq. (D.1) (observe that σ1 is still lower
than 0.5). This shows that simple integer rounding cannot be used to obtain
the optimal value of nc for the given k.
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