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StateGraph — A Modelica Library for Hierarchical State Machines

Martin Otterl, Karl-Erik Arzénz, and Isolde Dressler?
'DLR Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany, Martin.Otter@dlr.de
’Lund Institute of Technology, Lund, Sweden, {karlerik, Isolde.Dressler} @control.Ith.se

Abstract

The new library Modelica.StateGraph is a free
Modelica package providing components to model
discrete event and reactive systems in a convenient
way. It has a similar modeling power as Statecharts,
but avoids some deficiencies of Statecharts by using
elements of JGrafchart and by using Modelica as an
“action” language. An overview of the StateGraph
library is given, the available components and an
application example. The implementation of the
library in Modelica is sketched, especially the
needed extension to Modelica that will be available
in release 2.2 of the Modelica language.

1 Introduction

This section shortly discusses discrete event formal-
isms and the relationship to the StateGraph library.

Grafcet [3], or the industrial alias Sequential
Function Charts (SFC), is a state-transition based
computational model that has been widely accepted
in the industrial automation industry for representing
sequential control logic. It is defined in the standards
IEC 848 and IEC 61131-3. States are represented by
steps to which actions can be associated, and the
steps are interconnected by transitions with associ-
ated Boolean conditions or event expressions. The
activity in a Grafcet diagram flows downwards from
the top of the diagram. It supports alternative
branches, parallel branches, and repetition. Hierar-
chies are supported in the form of macro steps.

Although Grafcet has the same formal power of
expression as an ordinary state machine, it is cum-
bersome to use for representing larger state-machine
oriented models. For these applications the State-
charts formalism is better suited [6]. Statecharts use
a syntax that is similar to ordinary state machines
and supports hierarchical states through the concept
of superstates, a considerably more powerful concept
than the macro steps of Grafcet.

Grafchart is the name of a graphical language
aimed at supervisory control applications developed
at Lund University [1]. It combines the function
chart formalism of Grafcet with the hierarchical
states of Statecharts. It also supports parameterized
function chart procedures. Through this the best con-
cepts from both Grafcet and Statecharts are com-
bined. JGrafchart is the name of a Java implementa-
tion of Grafchart [2]. It is a combined graphical edi-
tor and run-time system, and can be viewed as a soft-
PLC. It is also possible to use JGrafchart only as a
graphical editor generating executable code. In [4]
code generation from JGrafchart to Modelica is pre-
sented. Code generation has also been provided to C
and Java.

The StateGraph library is based on a subset of
JGrafchart. Besides minor modifications to arrive at
a suitable Modelica implementation, the essential
difference is to use Modelica as an “action” lan-
guage. The “single assignment rule” of Modelica
makes it completely different to the action languages
used in the formalisms from above. It will be shown
that this has significant advantages.

2 Users View

In this section the components of the StateGraph li-
brary are introduced by examples to show how it can
be used in applications.

2.1 Steps and Transitions

The basic elements of StateGraphs are steps and
transitions as shown in the next figure. Steps repre-
sent the possible states a StateGraph can have. If a
step is active the Boolean variable active of the step
is true. If it is deactivated, active = false. At the ini-
tial time, all ordinary steps are deactivated. The Ini-
tialStep objects are steps that are activated at the
initial time. They are characterized by a double box
(see next figure at the left).

The Modelica Association

569

Modelica 2005, March 7-8, 2005



M. Otter, K.-E. Arzén, 1. Dressler

Transitions are used to change
the state of a StateGraph. When
the step connected to the input of
a transition is active, the step
connected to the output of this
transition is deactivated and
when the transition condition be-
comes true, then the transition

dBEIE!HU‘!—‘

any
L I
LUDIPELE

" fires. This means that the step

ol connected to the input to the tran-

sition is deactivated and the step

F connected to the output of the

:‘c;" i transition is activated. The transi-
N % tion condition is defined via the

parameter menu of the transition
object. Clicking on object "transi-
tionl" in the above figure, results in the following
menu:

Sitransition1 in State 2l
General IAdd modifiers |

—Component |

an

Name |t|ans||mn1 Transition

Comment I

—Model
Path Modelica.StateGraph. Transition

Comment Transition where the fire condition is set by a modification of variable condition
Fire: condition
’7 conditioh I

—Timer

;I ¥ =te, if transition may fire [time varying expression]

true ﬂ »

1» & ‘Wait time before transition fires

enableTimer I = true, if timer iz enabled

waitTirne: |

ok | Infa | Cancel |

In the input field "condition", any type of time vary-
ing Boolean expression can be given (in Modelica
notation, this is a modification of the time varying
variable condition). Whenever this condition is true,
the transition can fire. Additionally, it is possible to
activate a timer, via enableTimer (see menu above)
and provide a waitTime. In this case the firing of the
transition is delayed according to the defined wait-
Time. The transition only fires if the condition re-
mains true during the waitTime. The transition con-
dition and the waitTime are displayed in the transi-
tion icon.

In the above example, the simulation starts at ini-
tialStep. After 1 second, transitionl fires and step1
becomes active. After another second transition2
fires and initialStep becomes again active. After a
further second step1 becomes active, and so on.

In Grafchart, Grafcet and SFC the network of steps
and transitions is drawn from top to bottom. In
StateGraphs, no particular direction is defined, since
Modelica models do not depend on the placement of
components and connection lines. Usually, it is more
practical to define the network from left to right,

since it is easier to read the labels on the icons. The
example from above has then the following layout:

initialStep transitiont tranzition2

1 1

step

e

true true

2.2 Conditions and Actions

With the block TransitionWithSignal, the firing
condition can be provided as Boolean input signal,
instead as entry in the menu of the transition with
block Transition, see example in the next figure:

initialStep transition step transition2

1 0

-

active

timer

.

Component "step" is an instance of "StepWithSig-
nal" that is a usual step where the active flag is avail-
able as Boolean output signal. To this output, com-
ponent "Timer" from library "Modelica.Blocks.-
Logical" is connected. It measures the time from the
time instant where the Boolean input (i.e., the active
flag of the step) became true up to the current time
instant. The timer is connected to a comparison
component. The output is true, once the timer
reaches 1 second. This signal is used as condition
input of the transition. As a result, "transition2" fires,
once step "step" has been active for 1 second. Of
course, any other Modelica block with a Boolean
output signal can be connected to the condition input
as well, especially blocks of the Modelica.Blocks.-
Logical library, see next figure. The Logical library
will be extended in the future. It is also easy for a
user to define his own, specialized logical blocks.

» and > or P xor » nor bnaﬂd}> » not F > pre F
> » » »>. >

And Or ot Mor Nand Not Fre

»}, ..<}>

LessThreshold

» edge »falling - change > >

Edge FallingE dge Change GreaterThreshald GreaterEqualThies...

B & F E K |

LessE qualThreshold Greater

N S B A E

Switch

Greaterf qual Less lessEqual  ZemCiossing

LogicalSwitch Hysteresis OnOffController  TriggeredT rapezaid Tirmer
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Instead of using logical blocks, via the Mode-
lica.Blocks.Sources.SetBoolean component any type
of logical expression can be defined in textual form,
as shown in the next figure:

initial=tep transitiont step transition2
| | -
I active

true i

——

Jawn

timer .y = 1

With the block "SetBoolean", a time varying expres-
sion can be provided as modification to the output
signal y (see block with icon text "timer.y > 1" in the
figure above). The output signal can be in turn con-
nected to the condition input of a TransitionWith-
Signal block.

The "SetBoolean" block can also be used to compute
a Boolean signal depending on the active step. In the
figure above, the output of the block with the icon
text "step.active" is true, when "step" is active, oth-
erwise it is false (note, the icon text of "SetBoolean"
displays the modification of the output signal "y").
This signal can then be used to compute desired ac-
tions in the physical systems model. For example, if
a valve shall be open, when the StateGraph is in
"stepl" or in "step4", a "SetBoolean" block may be
connected to the valve model using the following
condition:
stepl.active or step2.active

Via the Modelica operators edge(..) and change(..),
conditions depending on rising and falling edges of
Boolean expressions can be used when needed.

In Grafchart, Grafcet, SFC and Statecharts, actions
are formulated within a step. Such actions are dis-
tinguished as entry, normal, exit and abort actions.
For example, a valve might be opened by an entry
action of a step and might be closed by an exit action
of the same step. In StateGraphs this is not possible
due to Modelicas "single assignment rule" that re-
quires that every variable is defined by exactly one
equation. Instead, the approach explained above is
used. For example, via the "SetBoolean" component,
the valve variable is set to true when the StateGraph
is in particular steps.

This feature of a StateGraph is very useful, since it
allows a Modelica translator to guarantee that a
given StateGraph has always deterministic behav-
iour without conflicts. In the other methodologies
this is much more cumbersome. As an example, in
the next figure a critical situation in Stateflow is
shown (Mathworks Stateflow is similar to a State-

graph but has, e.g., a slightly different visual appear-
ance, and is integrated in Mathworks Simulink):

The two substates “filll” and “fill2” are executed in
parallel. In both states the variable “openValve” is
set as entry action. The question is whether open-
Valve will have value 0 or 1 after execution of the
steps. Stateflow changes this non-deterministic be-
haviour to a formally deterministic one by defining
an execution sequence of the states that depends on
their graphical position. The light number on the
right of the states shows in which order the states are
executed. In the figure above this means that “open-
Valve=0" after leaving the two states. If the second
state “fill2” is changed a little bit graphically

ventry: openiYalve=1 1

“openValve=1" after “filll” and “fill2” have been
executed. This is a dangerous situation because (a)
slight changes in the placement of states might
change the simulation result and (b) if the parallel
execution of actions depends on the evaluation order,
errors are very difficult to detect.

Note, similar problems occur in other StateGraph
variants, SFC, Grafcet and Graphcharts: Variables
are changed according to an evaluation sequence of
the simulator. It seems not possible to provide an
easy-to-grasp rule about evaluation order of actions
that are executed in parallel. Therefore, either the
simulator just uses an internal evaluation order, or
non-obvious rules are present as in Stateflow that do
not solve the underlying problem.

In a StateGraph, such a situation is detected by the
translator resulting in an error, since there are two
equations to compute one variable. The user is
forced to reformulate the network by explicitly de-
fining priorities. For example, if “filll” and “fill2”
are steps that are executed in parallel, there might be
a “SetBoolean” block that defines:
openValve =
if filll.active then 1 else
if fill2.active then 0 else 2

Therefore step filll has a higher priority as step fill2.
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In a Stategraph or Graphchart it is difficult to modu-
larize a sub chart if the used actions reference vari-
ables in an outer scope: Assume, for example, that a
state machine “control” has the following hierarchy:
control.superstatel.stepl

Within "stepl" a Statechart would, e.g., access vari-
able '"control.openValve", say as "entry action:
openValve = true". This typical usage has the draw-
back that it is difficult to use the hierarchical state
"superstatel" as component in another context, be-
cause "stepl" references a particular name outside of
this component.

In a StateGraph, there would be typically a "SetBoo-
lean" component in the "control" component stating:

openValve = superstatel.stepl.active;

As a result, the "superstate]l" component can be used
in another context, because it does not depend on the
environment where it is used.

The disadvantage of the StateGraph approach is that
the user might not be able to formulate the network
directly as desired. For example, in order to fill a
tank usually several actions are necessary, €.g., to
close one valve and to open another one. In a SFC all
actions to “fill a tank” would be defined as actions to
a “fill_a tank” step and this might be more conven-
ient for the user. For example, copying or deleting a
“fill a tank” step would require only a change at one
place in a SFC whereas it would require changes at
several places in a StateGraph.

2.3  Parallel and Alternative Execution

Parallel activities can be defined by component
StateGraph.Parallel and alternative activities can be
defined by component StateGraph.Alternative. An
example for both components is given in the next
figure. Here, the branch from "step2" to "step5" is
executed in parallel to "stepl". A transition

transition3  steps  transtions
1 1

step? transitiond  stepd  transtiond
N 1 1

transitionda stepda transtionSa
1 2

connected to the output of a parallel branch compo-
nent can only fire if the final steps in all parallel
branches are active simultaneously. The figure above
is a screen-shot from the animation of the State-
Graph: Whenever a step is active or a transition can

fire, the corresponding component is marked in
green color.

The three branches within "step2" to "step5" are exe-
cuted alternatively, depending which transition con-
dition of "transition3", "transition4", "transition4a"
fires first. Since all three transitions fire after 1 sec-
ond, they are all candidates for the active branch. If
two or more transitions would fire at the same time
instant, a priority selection is made: The alternative
and parallel components have a vector of connectors.
Every branch has to be connected to exactly one en-
try of the connector vector. The entry with the lowest
number has the highest priority.

Parallel, Alternative and Step components have vec-
tors of connectors. The dimensions of these vectors
are set in the corresponding parameter menu. E.g. in
a "Parallel" component:
=1Parallell in Statel x|

General | Add modfiers |
—Component lcon

|Paraleit

Name

Comment I

—Model
Path StateGraph.Parallel
Caomment Parallel splitting of execution path [use component between bwo transitions)

=

rBranches 2

Mumber of parallel branches that are executed in parallel

oK | Infi | Cancel |

Currently in the Modelica tool Dymola the following
menu pops up when a branch is connected to a vector
of components in order to define the vector index to

Connect ta only partz of the connectars, by giving indicies below,

I ake the connection:

4|

connect] Parallell . zplit

|[2] 4

AinPort |[1] I

o |

which the component shall be connected. There are
discussions to improve the Modelica language to
handle such situations more conveniently.

4|+

stepl

Cancel |

Note, alternative branches can also be defined with-

|~ out the “Alternative” component by just connecting

several transitions to the outputs of the same step as
shown in the next figure:
T

Stepd * Stepd

true
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2.4 Composite Steps

A StateGraph can be hierarchically structured by
using a component that inherits from State-
Graph.PartialCompositeStep. An example is given
in the next figure:

makeProduct
start level2 = 0.001
0 i i 0
Ll—’suspend resume T2
L]
“ ©
g oo £

)

The CompositeStep component contains a local
StateGraph that is entered by one or more input tran-
sitions and that is left by one or more output transi-
tions. Also, other needed signals may enter a Com-
positeStep. The CompositeStep has similiar proper-
ties as a "usual" step: The CompositeStep is active
once at least one step within the CompositeStep is
active. Variable active defines the state of the Com-
positeStep.

Additionally, a CompositeStep has a suspend port.
Whenever the transition connected to this port fires,
the CompositeStep is left at once. When leaving the
CompositeStep via the suspend port, the internal
state of the CompositeStep is saved, i.e., the active
flags of all steps within the CompositeStep. The
CompositeStep might be entered via its resume port.
In this case the internal state from the suspend transi-
tion is reconstructed and the CompositeStep contin-
ues the execution that it had before the suspend tran-
sition fired (this corresponds to the history ports of
Statecharts or JGrafcharts).

A CompositeStep may contain other Compo-
siteSteps. At every level, a CompositeStep and all of
its content can be left via its suspend ports (actually,
there is a vector of suspend connectors, i.e., a Com-
positeStep might be aborted due to different transi-
tions).

The CompositeStep can be used in the same way as a
superstate in Statecharts. In a superstate it is possible
to enter the state in different ways ending up in dif-
ferent internal states. This can be modeled in a
StateGraph or a Graphchart by having multiple input
transitions, each leading to a different internal step.

In a superstate it is possible to exit a superstate in
different ways depending on which internal state that
is active. This is modeled in a StateGraph or Graph-
chart by associating different output transitions to the
different internal steps. In a superstate it is, finally,
also possible to exit the state independently from
which internal state that is active. This is achieved
with the suspend port here. The conditions connected
to the transitions attached to the suspend port can
also be conditioned by the status of the internal steps
of the CompositeStep. In this way it is possible to
suspend the step if a certain condition holds and
unless a certain internal step is active. The history
arcs in Statecharts correspond to the resume port.
Superstates with parallel subparts, so called XOR
superstates, can be modeled using parallel constructs
inside the CompositeStep.

In addition to using CompositeSteps for modeling
hierarchical states they can also be used to simply
aggregate a part of a larger StateGraph. This can be
useful to improve the structure

2.5 Execution Model

The execution model of a StateGraph follows from
its Modelica implementation: Given the states of all
steps, i.e., whether a step is active or not active, the
equations of all steps, transitions, transition condi-
tions, actions etc. are sorted resulting in an execution
sequence to compute essentially the new values of
the steps. If conflicts occur, e.g., if there are more
equations as variables, of if there are algebraic loops
between Boolean variables, an error occurs. Once all
equations have been processed, the active variables
of all steps are updated to the newly calculated val-
ues. Afterwards, the equations are again evaluated.
The iteration stops, once no step changes its state
anymore, i.e., once no transition fires anymore.
Then, simulation continuous until a new event is
triggered, i.e., when a relation changes its value.

With the Modelica "sampled(..)" operator, a State-
Graph might also be executed within a discrete con-
troller that is called at regular time instants. In a fu-
ture version of the StateGraph library, this might be
more directly supported.

3 Example of a Tank Controller

In this section a more realistic, still simple, applica-
tion example is given, to demonstrate various fea-
tures of the StateGraph library. This example shows
the control of a two tank system from [4]. In the fol-
lowing figure the top level of the model is shown.
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source

l2aE

start tank1

tankController
start valvel

walve2

ZanEA

stop P stop

shut
lewel
3

walvE:
leel?

shut

tank2

L

canEA

This model is available as Modelica.StateGraph.-
Examples.ControlledTanks. In the right part of the
figure, two tanks are shown. At the top part, a large
fluid source is present from which fluid can be filled
in tank1 when valvel is open. Tank]1 can be emptied
via valve2 that is located in the bottom of tank2 and
fills a second tank2 which in turn is emptied via
valve3. The actual levels of the tanks are measured
and are provided as signals levell and level2 to the
tankController.

The tankController is controlled by three buttons,
start, stop and shut (for shutdown) that are mutually
exclusive. This means that whenever one button is
pressed (i.e., its state is true) then the other two but-
tons are not pressed (i.e., their states are false). The
buttons could be implemented as dynamic elements
that react when clicking on them. In the example,
they are implemented with logical tables, i.e., block
Modelica.StateGraph.Temporary.RadioButton, in
order that the result of the simulation is reproducible.

When button start is pressed, the "normal" operation
to fill and to empty the two tanks is processed:

1. Valve 1 is opened and tank 1 is filled.

2. When tank 1 reaches its fill level limit, valve 1 is
closed.

3. After a waiting time, valve 2 is opened and the
fluid flows from tank 1 into tank 2.

When tank 1 is empty, valve 2 is closed.

5. After a waiting time, valve 3 is opened and the
fluid flows out of tank 2

6. When tank 2 is empty, valve 3 is closed

The above "normal" process can be influenced by the
following buttons:

e Button start starts the above process. When this
button is pressed after a "stop" or "shut" opera-
tion, the process operation continues.

e Button stop stops the above process by closing
all valves. Then, the controller waits for further
input (either "start" or "shut" operation).

e Button shut is used to shutdown the process, by
emptying at once both tanks. When this is
achieved, the process goes back to its start con-
figuration. Clicking on "start", restarts the proc-
ess.

The implementation of the tankController is shown
in the next figure. When the "start" button is
pressed, the stateGraph is within the CompositeStep
"makeProduct". During normal operation this
CompositeStep is only left, once tank2 is empty. Af-
terwards, the CompositeStep is at once re-entered.
When the "stop" button is pressed, the "makePro-
duct" CompositeStep is at once terminated via the
"suspend" port and the stateGraph waits in step "s2"
for further commands. When the "start" button is
pressed, the CompositeStep is re-entered via its re-
sume port and the "normal" operation continues at
the state where it was aborted by the suspend transi-
tion. If the "shut" button is pressed, the stateGraph
waits in the "emptyTanks" step, until both tanks are
empty and then waits at the initial step "s1" for fur-

ther input.
makeProduct filTank! active F—‘
atvel

waitTime = lirmit =

I =

makeProduct

start
1 start lewel2 < 0.001
D I° I°
T ’—’ uspendresume Tz
stop =
alve
£ T
" g B 2 i
-

52 T5
| - | -
shut

emptyTanks  T6
| I
’ shut level + level2 < 0.001
makeProduct filTank2 active or emplyTanks active l::.
makeProdLict smptyTank2.active or emptyTanks active

A

lewelt
lewel2

The opening and closing of valves is not directly
defined in the StateGraph. Instead via the "set-
ValveX" components, the Boolean state of the
valves are determined. For example, the output y of
"setValve2" is computed as:

y = makeProduct.fillTank2.active

or emptyTanks.active
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ie.,, wvalve2 is open, when step '"makePro-
duct.fillTank2 or when step "emptyTanks" is active.
Otherwise, valve2 is closed. The main part of the
composite step “makeProduct” is shown in the next
figure. Step “fillTank1” is left, once the highest level

fillTank1 T it T2 fillTank2
I o Iwa'rtTime
| i I s
lewvel! = lirmit true
T3 a2 T4 emptyTank2
N I u] N Iwa'rtTime
lewell < 0.001 true

for the tank is reached (levell > limit). The State-
Graph remains in step “waitl” during the defined
“waitTime”. Afterwards, step “fillTank2” remains
active until tank1 is empty (levell < 0.001). After a
waiting phase, the “emptyTank2” step is entered.

4 Implementation

In this section the implementation of the most impor-
tant parts of the library is sketched.

4.1 Steps and Transitions

Steps and transitions are implemented according to

the method described in [7][5] to define Petri nets
with an equation based language.

A transition has one inPort and one outPort connec-
tor and is basically defined by the following equa-
tions (if no timer is present):
fire = condition and
inPort.available and not
outPort.occupied;
inPort.reset fire;
outPort.set fire;

Note, that the inPort connector of a transition con-
sists of the Boolean variables “available” and “reset”
and the outPort connector consists of the Boolean
variables “occupied” and “set”. The above equation
states that “fire = true”, if (1) the firing condition is
true, (2) the inPort step is active and (3) the outPort
step is not active. The “fire” value is reported to the
two steps to which the transition is connected.

A step has a vector of input and a vector of output

connectors. It is basically defined as:

active
newActive

pre (newActive) ;
anyTrue (inPort.set) or active
and not anyTrue (outPort.reset)

The function “anyTrue(..)” returns true, if any ele-
ment of the input vector is true. The step becomes
active in the next iteration when one of the transi-
tions connected to the inPort connectors fires (set =

true if a transition fires). The step remains active if it
was active and no transition connected to the outPort
connectors fires (reset = true, if a transition fires).

A step reports its active flag to the transition con-
nected to its first outPort by the equation:

outPort [1] .available = active;

In order to make sure that only one of the transitions
connected to the outPorts can fire, the active flag is
hidden to the second outPort transition if the first
transition decides to fire and sends a reset condition:
outPort [2] .available =

outPort[1l] .available and not
outPort [1] .reset;

The general case can be written in Modelica as

for i in 1:size(outPort,1)
outPort[i] .available =
if 1 == 1 then active else
outPort[i-1] .available and not
outPort [i-1] .reset;
end for;

loop

A step needs to signal to its inPort transitions
whether it is possible to activate it or whether it is
about to become active via transitions with higher
priorities. This is described as
for i in 1l:size(inPort,1)
inPort [i] .occupied =
if i == 1 then active else
inPort [1-1] .occupied or
inPort [i-1] .set;
end for;

loop

The inPort and outPort connectors contain appropri-
ate “input” and “output” prefixes of the connector
variables, in order that steps can only be connected
to transitions and vice versa. Furthermore, the anno-
tation “Hide = true” is set on all connector variables,
in order that these variables do not show up in the
plot browser, because these are internal variables that
are of no interest for the user of the StateGraph li-
brary.

In a parameter menu of a component usually only
variables are displayed that are declared as parame-
ters. In the parameter menu of a transition, addition-
ally the time varying variable “condition” is dis-
played as shown in section 2.1. This is implemented
by adding the annotation “Dialog” to the variable
declaration:

Boolean condition annotation (Dialog) ;

Usually, the “Dialog” annotation has additional sub-
entries, such as “group” or “tab”. However, if no
subentries are present, this annotation just means to
include the variable in the parameter menu.

In a JGraphchart there is a timer associated with
every step by providing the time difference between
the actual time and the time when the step became
active via variable “t”. In a StateGraph no time vari-
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able is associated with a step, but an optional timer is
provided in a transition and via the connector “ac-
tive” of a step a timer from the Logical library can be
attached to the step. This provides similar functional-
ity as for a JGraphchart. One reason for this change
was to improve the efficiency. For example, in a
transition the following code fragment to define a
timer is present:

if enableTimer then
when enableFire then

t_start = time;

end when;

t_dummy = time - t_start;

t = if enableFire then t dummy else 0;

fire = enableFire and

time >= t start + waitTime

else
end if;

A Modelica translator triggers an event when time
reaches “t start + waitTime”. Since “t start” is a
variable that is set in the same scope in a when
clause and “waitTime” is a parameter, a Modelica
translator can easily trigger a time event.

The situation is different, if the when clause “when
enableFire then t_start = time; end when” is present
within a step and the relation “time >= t start +
waitTime” is present in another component, e.g., in a
“condition” of a transition. A Modelica translator
will then usually trigger a state event because in the
scope of the relation it is not known that “t start” can
change its value only at event instants.

4.2 Parallel and Alternative Execution

The parallel component has the following icon

,,,,,,,,,,,,,,,,,,,,,,,, join
Y

split

7 RN

inPort outPort

and consists of 4 connectors. The “inPort” and out-
Port” connectors allow only a connection to transi-
tions. The “split” and “join” connectors are vectors
of connectors that are drawn in a quite “lenghty”
format to resemble the usual visual layout of parallel
execution in SFC. They allow only a connection to
steps. After dragging this icon in a model, it is usu-
ally enlarged until the desired elements can be placed
between the “split” and the “join” connectors.

Besides appropriate “assert” statements to guarantee
the desired connection structure, the Parallel compo-
nent consists of the following equations only:

n = size(split,1);

split.set = fill(inPort.set, n);

join.reset = fill (outPort.reset,n);

inPort.occupied =anyTrue(split.occupied) ;

outPort.available=allTrue (join.available) ;
The second and third equation report the “set” and
“reset” flags of the inPort and outPort connectors to
the “split” and “join” connectors. The two last equa-
tions perform the synchronization of the parallel
branches: Via function “anyTrue(..)” it is defined
that the input transition can only fire if none of the
steps connected directly to the “split” connector ar-
ray is active. Via function “allTrue(..)” it is defined
that the output transition can only fire if all steps
connected directly to the “join” connector array are
active.

The implementation of the “Alternative” component
is performed in a similar way.

Both the Parallel and the Alternative component
have the (slight) disadvantage that they can be mis-
used. For example, in a Parallel Component it is pos-
sible to connect from a step in the parallel branches
to a transition that is connected to a step outside of
the Parallel component, see the example in the next

figure:
steps T3
] 1
stepl steps
-+ " —
T T4 steph
I 1 1
I - step T2 stepd
- _.Hi. |

It would be desirable to prevent such types of net-
works in a StateGraph. However, it seems not possi-
ble to formulate a corresponding restriction with the
Modelica language. There are currently Modelica
scripting functions under development that allow to
traverse a Modelica model and extract information
about the model. It might be that such functionality
will allow to detect such undesirable networks.
These types of function charts are also known as un-
safe or unreachable. In commercial SFC editors it is
common that the editor makes it impossible to enter
these types of charts, rather than including these
global constraints in the language itself.
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4.3 Composite Steps

A composite step is a model that extends from Par-
tialCompositeStep. The icon and diagram layer of
this superclass is shown in the next figure:

name

suzpend  resume
o A

icon layer diagram layer

There is one default “inPort” and “outPort” connec-
tor on the left and right side. More connectors to en-
ter and leave a composite step may be added. In the
icon layer a vector of “suspend” and a vector of “re-
sume” connectors is present. These connectors are
not visible in the diagram layer and therefore it is in
the graphical editor not possible to connect a compo-
nent in a composite step to them. The “suspend” and
“resume” connector instances are not visible in the
diagram layer of a composite step, because the un-
derlying connector classes have an empty diagram
layer.

A composite step is active, if at least one step in the
composite step is active, and a composite step is de-
activated, and also all steps in the composite step, if
a transition fires that is connected to one of the “sus-
pend” connectors. This means a communication
channel between a composite step and all steps
within a composite step is necessary. This is imple-
mented by having a connector

connector CompositeStepStatePort
Boolean suspend;
Boolean resume;
flow Real activeSteps;

end CompositeStepStatePort;

and use an inner definition of this connector in Par-
tialCompositeStep:

inner CompositeStepStatePort root;

activeSteps =
root .suspend =
root.resume =

-integer (root.activeSteps) ;
anyTrue (suspend.reset) ;
anyTrue (resume.set) ;

newActive = activeSteps > 0 and not
anyTrue (suspend.reset) or
anyTrue (resume.set) ;
active = pre (newActive) ;

Via flow variable “activeSteps in the inner root con-
nector, the number of active steps is reported from
the steps to the composite step. The composite step is
active if this number is greater than zero and no tran-
sition at the suspend connector fires (“any-

True(suspend.reset)”) or a transition at one of the
“resume” connectors fires. The information about the
“suspend” and “resume” connector settings are re-
ported to the steps inside the composite step again
via the inner root connector.

In a step, a corresponding “outer” declaration of
connector “root” is present and the code of section
4.1 of a step is slightly changed to:

protected
outer CompositeStepStatePort root;
CompositeStepStatePort localRoot;
equation

connect (localRoot, root) ;

localRoot.activeSteps =
if active then 1 else 0;

active = pre (newActive) ;

newActive =
if localRoot.resume then oldActive
else (anyTrue (inPort.set) or
active and not
anyTrue (outPort.reset))
and not root.suspend;

when localRoot.suspend then
oldActive = active;

end when;
Via outer flow variable activeSteps, the active setting
is reported to the composite step. Additionally, a
memory is introduced via variable “oldActive” to
remember the current value of the “active” flag when
the composite step is terminated via its “suspend”
port (“when localRoot.suspend then ...”). The as-
signment to “newActive” is slightly changed to in-
clude the transitions via the “suspend” and “resume”
connectors in the composite step.

A composite step may contain not only steps but
other composite steps. The implementation above
does not handle this case. In fact, with the Modelica
language version 2.1 it is not possible to provide a
proper implementation. Therefore, an extension was
needed that is defined in the coming version 2.2 of
the Modelica language (it is already supported in
Dymola):
In a composite step a construct of the following form
would be needed:

// wrong Modelica code

inner CompositeStepStatePort root;

outer CompositeStepStatePort root;
where the “inner root” connector is used in all steps
inside the current composite step and the “outer root”
connector refers to the composite step outside of the
current scope in order to have a communication
channel to the outside scope. However, this is wrong
Modelica code because there are two declarations
with the same name. Note, the names must be the
same, because in a step a communication channel to

The Modelica Association

577

Modelica 2005, March 7-8, 2005



M. Otter, K.-E. Arzén, 1. Dressler

the “nearest” composite step is needed and the name
used in the “outer” declaration of a step must be
identical to the name used in the “inner” declaration
of a composite step.

In the Modelica language version 2.2 the following
extension was introduced:

// Modelica 2.2 code

inner outer CompositeStepStatePort root(..)
to define actually a new “inner” variable “root” and
at the same time reference an “outer” variable “root”.
References to “root” inside the current scope, refer-
ences the “outer” variable. Modifications to “root”
are not allowed for “outer” variables and therefore
apply to the “inner” variable. In other words, inside
a composite step the “outer root” is accessed by vari-
able “root” and settings for the “inner root” have to
be performed via a modification in the declaration of
“root”.

The previous code fragments must be slightly modi-
fied to include the new “inner outer” declaration, and
to handle the case of composite steps that are inside
and/or outside the current one.

5 Summary

The free Modelica.StateGraph library offers new
features to conveniently define discrete event and
reactive systems in Modelica models. Since Mode-
lica is used as an action language, a Modelica trans-
lator can guarantee that a StateGraph has determinis-
tic behaviour. StateGraph models can be combined
with components of any other Modelica library and
can therefore be very easily used to control a con-
tinuous plant.

StateGraph is based on Grafchart, which contains
several features that not, so far, have been imple-
mented in StateGraph. Some of these features, such
as function chart procedures, assume support for dis-
patching at run-time, which does not match well with
the philosophy of Modelica. Other features such as
lists could very well be included in StateGraph.

It is also planned to improve the graphical handling
of StateGraphs in the future and to add more func-
tionality especially also to the Modelica.Blocks.-
Logical library that is often used in a StateGraph.
Improvement suggestions and contributions are wel-
come.
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