
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Tobit Maximum-likelihood estimation of Censored Pathloss Data

Gustafson, Carl; Abbas, Taimoor; Bolin, David; Tufvesson, Fredrik

2015

Link to publication

Citation for published version (APA):
Gustafson, C., Abbas, T., Bolin, D., & Tufvesson, F. (2015). Tobit Maximum-likelihood estimation of Censored
Pathloss Data. (Technical report, Dept. of Electrical and Information Technology, Lund University, Sweden).
[Publisher information missing].

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/13a7706b-33da-4b15-b087-7ed98ee53a0a


Download date: 07. Feb. 2026



1

Tobit Maximum-likelihood estimation of Censored
Pathloss Data

Carl Gustafson, Taimoor Abbas, David Bolin and Fredrik Tufvesson

Abstract—Pathloss is typically modeled using a log-distance
power law with a large-scale fading term that is log-normal.
However, the received signal is affected by the dynamic range
and noise floor of the measurement system used to sound the
channel, which can cause measurement samples to be truncated
or censored. If the information about the censored samples are
not included in the estimation method, as in ordinary least
squares estimation, it can result in biased estimation of both the
pathloss exponent and the large scale fading. This is solved by
applying a Tobit maximum-likelihood estimator, which provides
consistent estimates for the pathloss parameters. This technical
report provides information about the Tobit maximum-likelihood
estimator estimator and its asymptotic variance under certain
conditions.

Keywords—Pathloss, maximum-likelihood estimation, ordinary
least squares, censored data, truncated data, vehicular communi-
cation.

I. INTRODUCTION

Pathloss describes the expected loss in received power as
a function of the transmitter (Tx) and receiver (Rx) separa-
tion distance and the effects of random large scale fading.
It includes losses due to the expansion of the radio wave
front in space as well as losses due to reflection, scattering,
diffraction and penetration. A number of pathloss models
have been developed for a variety of wireless communication
systems, e.g., cellular systems, Bluetooth, Wi-Fi, vehicle-to-
vehicle communications, and, mm-wave point-to-point com-
munications, operating over different frequency bands ranging
from hundreds of MHz to tens of GHz [1]–[4]. These models
have widely been used for the prediction and simulation of
signal strengths for given Tx-Rx separation distances. Pathloss
models are often developed based on channel measurements in
realistic user scenarios. The model parameters estimated from
measurement data are thus typically valid only for a particular
frequency range, antenna arrangement, and environment for
the targeted user scenario.

However, in practice, the observation of the received signal
power at the receiver is limited by the system noise, i.e., the
signals with power below the noise floor can not be measured
properly. In many vehicle-to-vehicle measurements, this limi-
tation due to the system noise is often present at longer dis-
tances [5]–[7]. Also, in mm-wave measurements, the pathloss
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values are in general larger than at lower frequencies, which
effectively can reduce the range in which the data is unaffected
by the noise floor. Due to the limited dynamic range of the
measurement system, sample data might be truncated, whereby
all data above or below a certain range are immeasurable,
or censored, meaning that all data above or below a certain
range are counted, but not measured. Estimation of the cluster
decay and cluster fading based on truncated data has previously
been addressed in [8]. For clusters, the data is modeled as
truncated, since it is generally impossible to measure or count
clusters that are below the noise floor. However, in pathloss
measurements, since the distances where the received power
falls below the noise floor are known, it is possible to model
the data as being censored. Estimating statistical parameters
without considering the effects of censored or truncated data
samples, can lead to erroneous results. The fact that this
can be a problem for pathloss data is acknowledged in [6],
however, the authors do not give any detailed information on
how to solve this issue. In this technical report, we discuss
the use of a Tobit model [9] for censored pathloss data and
a maximum-likelihood (ML) method for the estimation of
pathloss parameters [10].

II. PATHLOSS MODELING

Path loss is often modeled by a log-distance power law plus
a large scale fading term [11]. In units of dB this can be written
as

PL(d) = PL(d0) + 10nlog10

(
d

d0

)
+ Ψσ, d ≥ d0, (1)

where d is the distance, n is the pathloss exponent, PL(d0)
is the pathloss at a reference distance of d0 and Ψσ is a
random variable that describes the large-scale fading about the
distance-dependent mean pathloss. For measurement data, it is
here assumed that the effects of small scale fading is removed
from the data set. It is also assumed that the peak value of the
aggregated antenna gain is removed from the measurement
data [12]. Ideally, the variation of the aggregated antenna
gain should be small, so that it does not affect the measured
large-scale fading too much. The large-scale fading term is
usually modeled by a log-normal distribution, which in the dB-
domain corresponds to a zero-mean Gaussian distribution with
standard deviation σ, i.e., Ψσ ∼ N (0, σ2). Hence, the pathloss
is normally distributed with a distance dependent expected
value, PL(d) ∼ N (µ(d), σ2), where

µ(d) = PL(d0) + 10nlog10

(
d

d0

)
. (2)
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The reference value PL(d0) can be estimated based on
measurement data, or based on reference measurements at this
distance. For line-of-sight (LOS) scenarios, it is sometimes
deterministically modeled based on the free-space pathloss, as

PL(d0) = 20log10

(
4πd0
λ

)
. (3)

Here λ is the wavelength at the given frequency. Here, it
is worth noting that the approach of using the deterministic
reference value of Eq. (3) only provides theoretically correct
results if the pathloss exponent is equal to 2. If the pathloss
exponent is not equal to 2, but Eq. (3) is used to determine the
reference value, the data model of Eq. 1 is inconsistent, as it
depends on the choice of the reference distance d0. For non-
line-of-sight (NLOS) scenarios, it is clear that the free-space
equation (3) does not hold, which means that the reference
value in this case must be determined in another fashion. Due
to the above, it is preferable to use actual measurements of the
reference level, or, to estimate it based on the measurement
data. In some cases, it might be difficult to produce reliable
measurements of the reference value scenarios due to practical
reasons, especially considering that it might be hard to produce
a large number of uncorrelated measurement samples exactly
at d0.

III. ESTIMATION BY ORDINARY LEAST SQUARES

To completely model the pathloss and large-scale fading for
a given data set, we wish to estimate the three parameters
of (1), i.e., n, PL(d0) and σ2. The data under consideration
is implicitly assumed to be Gaussian since Ψσ is Gaussian
in the dB domain. Using (1) the data set for L path loss
measurements can be written as,

y = Xα + ε, (4)

where
y = [PL(d/d0)]L×1 ,

X = [1 10log10(d/d0)]L×2,

α = [PL(d0) n]T .

(5)

The term ε = [Ψσ]L×1 is a row vector describing the large-
scale fading term for each of the L different pathloss samples.

When there are no censored samples, the parameters of the
log-distance power law can be estimated by applying ordinary
least squares (OLS). The parameter α is then estimated as1

α̂ =
(
XTX

)−1
XTy. (6)

The variance of the large-scale fading, σ2, can then be esti-
mated as

σ̂2 =
1

L− 1
(y −Xα̂)T (y −Xα̂). (7)

1As the variance σ2 is assumed to be independent of delay, weighted least
squares (WLS) are not applied. However, we note that WLS could be of use
for cases when σ2 is being modeled with a distance dependence.

The estimate α̂ is Gaussian,

α̂j ∼ N
(
αj , σ

2(XTX)−1jj
)
, j = 1, 2, (8)

which alternatively can be expressed as

P̂L(d0) = α̂1 ∼ N
(
PL(d0), σ2

(
L−1 + x̄2S−1xx

))
,

n̂ = α̂2 ∼ N
(
n, σ2S−1xx

)
,

(9)

where

x̄ =
1

L

L∑
l=1

10log10(dl/d0),

Sxx =

L∑
l=1

(10log10(dl/d0)− x̄)
2
.

(10)

Using Eq. (9), standard errors2 for n̂ and P̂L(d0) can be found
by replacing the unknown standard deviation of the large scale
fading, σ, by its estimate, σ̂, which gives

ŜE(n̂) = σ̂
√
S−1xx ,

ŜE(P̂L(d0)) = σ̂
√
L−1 + x̄2S−1xx .

(11)

The standard errors are useful for evaluating the accuracy
of the estimated parameters. However, it should be stressed
that these standard errors only applies when the data actually
follows the log-distance power law model with a large-scale
fading variance that is independent of delay. For this reason, it
is often necessary to validate the measurement data against
the presumed model. This could be done by investigating
the residuals between the measured data and the regression,
to make sure that the residuals do not exhibit any sort of
distance dependence. If the data seems to be described by a
different model, then a different pathloss model would have to
be considered. The standard error of the parameters estimated
with OLS depend on the number of samples and the exact
pathloss sample distances that are used in the measurement.
However, if the data is being censored, OLS would provide
biased results, which means that Eq. (11) no longer applies.

IV. ESTIMATION OF CENSORED PATHLOSS DATA

In order to estimate the pathloss exponent and fading
variance of censored data, with a known number of missing
samples where only the distance is known, it is possible to
base the estimation on a censored normal distribution. Under
this assumption, the observations follow a censored normal
distribution [9]. The censoring occurs for data samples where
the pathloss is greater than or equal to c. The value −c is
a channel gain that corresponds to the noise floor of the
channel sounder or measurement device. In practice, c is
chosen with some margin with respect to the noise floor, so that
a limited number of samples dominated by noise are included
as measurement data. Using the data set model in (4), the data
is assumed to be censored so that observations with values at
or above c are set to c, i.e.,

2The standard error is the standard deviation of the sampling distribution
of a statistic.
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yi =

{
y∗i if y∗i < c
c if y∗i ≥ c

(12)

where

y∗i ∼ N (xiα, σ
2). (13)

The probability of observing a censored observation at a
distance d is given by

P (y ≥ c) = 1− Φ

(
c− xiα

σ

)
, (14)

where Φ is the cumulative distribution function (CDF) of the
standard normal distribution. Now, by using I as an indicator
function that is set to 1 if the observation is uncensored and
is set to 0 if the observation is censored, it is possible to write
down the likelihood function as [9]

l(σ,α) =

N∏
i=1

[
1

σ
φ

(
yi − xiα

σ

)]Ii [
1− Φ

(
c− xiα

σ

)]1−Ii
,

where φ is the standard normal probability density function
(PDF). The log-likelihood L(σ,α) = ln[l(σ,α)] can now be
written as

L(σ,α) =

N∑
i=1

Ii

[
−lnσ + lnφ

(
yi − xiα

σ

)]

+

N∑
i=1

(1− Ii)ln
[
1− Φ

(
c− xiα

σ

)]
.

(15)

Using the log-likelihood, the parameters σ and α are estimated
using

[σ̂, α̂] = arg min
σ,α

{−L(σ,α)}, (16)

which is easily solved by numerical optimization of α and
σ, using for instance the method of Newton [10]. In this
work, we have solved this by using the fminsearch function in
Matlab, which is based on a Nelder-Mead search method. The
estimates obtained from OLS were used as initial values for
the minimization. The presented method approach can easily
be further extended, so that it supports other pathloss models.

A. Asymptotic Variance of the ML estimator
The asymptotic variance of the ML estimator has been

derived in [10] for the problem with censoring of samples
where yi ≤ 0. We therefore transform the data in Eq. (4), by
letting

yt = −y + c = −Xα− ε + c = Xαt − ε, (17)

where
αt = [−PL(d0) + c − n]T . (18)

The parameters to be estimated for the transformed data are

θt = [αTt σ2]T . (19)

The asymptotic variance for the ML estimates of the original
parameters, θ, are however the same as for the parameters of
the transformed data, θt. Therefore, we can directly use the
equations found in [10] to calculate the asymptotic variance
as

Avar(θ) = Avar(θt) = diag


(

N∑
i=1

Ai(xi,θt)

)−1 , (20)

where
Ai(Xi,θt) =

(
aix

T
i xi bix

T
i

bixi ci

)
, (21)

with coefficients

ai = −σ−2
[
ziφi − φ2i /(1− Φi)− Φi

]
,

bi = σ−3
[
z2i φi + φi − ziφ2i /(1− Φi)

]
/2,

ci = −σ−4
[
z3i φi + ziφi − z2i φ2i /(1− Φi)− 2Φi

]
/4.

(22)

Here, φi = φi(zi) and Φi = Φi(zi) and zi = xiαt/σ. In order
to avoid numerical issues when calculating the coefficients in
Eq. 22, it is worthwhile to rewrite the ratio φi/(1− Φi) as

φi(zi)

1− Φi(zi)
=

1√
2π

exp(−z2i /2)

1− 1
2erfc(−zi/

√
2)

=
2√

2πerfcx(zi/
√

2)
, (23)

where erfc(·) is the complementary error function and erfcx(·)
is the scaled complementary error function.

As stated previously, the asymptotic variances of the pa-
rameters θt are the same as for θ. Therefore, the asymptotic
variance of the parameters PL(d0), n and σ2 are given by
the three main diagonal elements of the matrix in Eq. (20).
For measurement data, an estimate of the asymptotic variance
can be found by replacing the true parameter values with their
estimates, P̂L(d0), n̂ and σ̂2. Estimates of the standard errors
can then be obtained simply by taking the square root of the
asymptotic variance.

The standard errors of the estimated parameters depend on
many different things, such as the pathloss sample distances,
the level of the censoring, the number of samples as well as
the exact values of PL(d0), n and σ2. Therefore, it is often
necessary to evaluate the standard errors for each individual
measurement case. In order to give an illustrative example,
Fig. 1 shows the standard errors calculated for synthetic
pathloss data with known parameters, that is sampled at equally
spaced distances on a linear scale, starting from 1 m. The thick
lines are the standard errors for pathloss data that is censored
at a level of 90 dB, whereas the thin lines are for data that is
completely uncensored. The dashed line indicates the distance
at which the expected value of the pathloss is equal to the
censoring level. As the distance is increased, the standard error
for the case with censoring starts to deviate from the case with
no censoring, just as expected. This deviation seems to be
especially severe for the large scale fading variance. However,
for n and PL(d0), the standard errors are fairly similar for
the two cases even for distances beyond the point where the
pathloss starts to fall below the censoring level. Fig. 2 shows
virtually the same thing as Fig. 1, except that the distance is
sampled using equally spaced distances on a logarithmic scale.



4

101 102 103
100

101

102

103

D
is

ta
nc

e
[m

]
Standard error of PL(d0)

0.5
0.75
1
1.25
1.5

101 102 103
100

101

102

103

D
is

ta
nc

e
[m

]

Standard error of n

0.1
0.2
0.3
0.4
0.5

101 102 103
100

101

102

103

Number of pathloss samples, N

D
is

ta
nc

e
[m

]

Standard error of σ2

1
2
3
4
5

Fig. 1. Standard errors for pathloss parameters estimated with the ML
estimator. The true values of the parameters are PL(d0) = 47.9 dB, n = 2
and σ = 4. The thick lines are standard errors for data that is censored at a
level corresponding to pathloss values of 90 dB, whereas the thin lines are for
data that is completely uncensored (which corresponds to the standard errors
of OLS). The dashed lines indicate the distance at which the expected value
of the pathloss is equal to the censoring level. The data is sampled at equally
spaced distances on a linear scale, starting from 1 m.

This shows that logarithmically spaced measurement distances
requires fewer samples, compared to linearly spaced distances,
in order to reach the same standard error for the estimated
parameters.
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Fig. 2. Standard errors for pathloss parameters estimated with the ML
estimator, with the same conditions as in Fig. 2, except that the data is sampled
at equally spaced distances on a logarithmic scale, starting from 1 m.

V. RESULTS

As an example, synthetic data at 5.6 GHz was generated
according to Eq. (1) with known parameters (n = 2 and
σ = 4) and a synthetic censoring level at c. The parameters
were estimated using OLS and the ML method described
above. The result is shown in Fig. 3. The OLS method clearly
underestimates both the pathloss exponent, n̂, as well as the
standard deviation of the large scale fading, σ̂. The ML method
on the other hand, is able to correctly estimate both parameters
in this example. Fig. 4 shows the same thing as Fig. 3, but is for
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method underestimates n and σ.
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Fig. 4. Pathloss estimation of censored measurement data, using ML and
OLS estimation. The estimated standard error for the ML estimates are
SE(P̂L(d0)) = 0.72 dB, SE(n̂) = 0.04 and SE(σ̂2) = 1.6.

measured data from a vehicle-to-vehicle (V2V) measurement
campaign for NLOS scenarios at 5.6 GHz [13]. In this case,
the parameter estimates obtained using OLS show significantly
smaller values compared to the parameter estimates for the
ML method. This large discrepancy is due to the large
number of censored samples in this data set; about 45 % of
the measurement data points are censored. As a result, the
OLS, which does not consider the censored samples, greatly
underestimates the pathloss exponent and large scale fading.
This shows the importance of taking censored samples into
account when estimating the pathloss parameters.

VI. CONCLUSIONS

In this technical report, we suggest the use of a Tobit ML
method [9] for the estimation of pathloss parameters based

on censored data. When the data is censored, the standard
approach of OLS, which has been widely used in the literature,
is inconsistent, and yields biased estimates. The suggested
ML estimator solves this problem by jointly estimating the
parameters based on a censored normal distribution. Equations
for the standard errors of this estimator are also provided.
Using these equations, we show that the sampling distribution
of the measurement samples can have a significant effect on
the standard error in typical pathloss measurements. Using
synthetic pathloss data that is censored, we also show that
the ML method is able to correctly estimate the pathloss
parameters, whereas OLS is biased and underestimates the
pathloss exponent and the large-scale fading variance. Lastly,
by using measured pathloss data from a V2V measurement
campaign, we see that the ML method yields drastically
different and more realistic estimates compared to the OLS
method. In the appendix, we provide Matlab codes for the
ML estimator and the asymptotic variance of the parameter
estimates as well as an example on how to use these codes.
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APPENDIX

A. Maximum-likelihood estimator

% CENSOREDML Numerical maximum-likelihood estimation of a censored normal
% distribtuion.
%
% CENSOREDML(X,Y,C,T,A,S2) performs a numerical optimization of the parameters
% for the log-likelihood of a censored normal distribution.
% The data is assumed to be of the form Y=alpha*X+e, where alpha are regression
% coefficients and e is r.v. that is Gaussian with zero mean.
%
% C is a constant describing the censoring level and T is a vector indicating if
% the samples are censored or uncensored (0 indicates that the sample is
% censored and 1 indicates that it is uncensored). A and S are initial values for
% the regression parameters and the variance of the error, respectively.
% For pathloss estimation, A contains the initial values of [PL(d0); n] and S is
% the initial value of the large scale fading variance sigma2. If You use this
% code, or parts of it, please cite the following paper:
% C. Gustafson, T. Abbas, D. Bolin and F. Tufvesson,
% "Statistical Modeling and Estimation of Censored Pathloss Data",
% IEEE Wireless Communications Letters, 2015.
%
% Copyright (C) 2015, David Bolin, Carl Gustafson.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.

function est=censoredml(x,y,c,t,a_est,s2e)

opts = optimset('GradObj','off', 'Largescale','off','MaxFunEvals',20000);
pars = fminsearch(@(pars) censoredllh(pars),[a_est;log(s2e)],opts);
est=[pars(1:2); sqrt(exp(pars(3)))];

function l = censoredllh(p)
L = zeros(size(y));
L(t==1)=-0.5*(y(t==1)-x(t==1,:)*p(1:2)).ˆ2/exp(p(3))-log(sqrt(2*pi))-p(3)/2;
L(t==0)=log(1-normcdf((c-x(t==0,:)*p(1:2))/exp(p(3)/2)));
l = -sum(L);

end
end

B. Asymptotic Variance

% CENSOREDVAR Computes the theoretical asymptotic variance for
% the estimates of the censored ML estimator.
%
% CENSOREDVAR(X,C,PLd0,N,SIGMA) uses the equations from T. Amemiya,
% "Regression Analysis when the dependent variable is truncated normal",
% Econometrica, 1987. C is the censoring level, PLd0, N and SIGMA are
% either true or estimated pathloss parameter values. If You use this
% code, or parts of it, please cite the following paper:
% C. Gustafson, T. Abbas, D. Bolin and F. Tufvesson,
% "Statistical Modeling and Estimation of Censored Pathloss Data",
% IEEE Wireless Communications Letters, 2015.
%
% Copyright (C) 2015, David Bolin, Carl Gustafson.
%
% This program is free software: you can redistribute it and/or modify
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% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.

function censvar=censoredvar(x,c,PLd0,n,sigma)

z=x*[-PLd0+c -n]'/sigma;
phi=normpdf(z);
Phi=normcdf(z);

zp = z.*phi;
r=2./(sqrt(2*pi)*erfcx(z/(sqrt(2))));
ai=-(zp-phi.*r-Phi)/sigmaˆ2;
bi=(z.*zp+phi-zp.*r)/(2*sigmaˆ3);
ci=-(z.ˆ2.*zp+zp-z.*zp.*r-2*Phi)/(4*sigmaˆ4);
bx =sum(bsxfun(@times,bi,x));
censvar=(diag(inv([bsxfun(@times,ai,x)'*x bx'; bx sum(ci)])));

C. Example on how to use the code

% EXAMPLE An example on how to use the Matlab codes CENSOREDML and
% CENSOREDVAR.
%
% EXAMPLE defines synthetic pathloss data with given pathloss parameters
% and a given censoring level, c. Then, estimates for the pathloss
% parameters of censored data are calculated using ordinary least squares
% (OLS) and the maximum-likelihood (ML) estimator found in CENSOREDML.
% Standard errors for the parameter estimates of the ML estimator are
% calculated using CENSOREDVAR. If You use this code, or parts of it,
% please cite the following paper: C. Gustafson, T. Abbas, D. Bolin
% and F. Tufvesson, "Statistical Modeling and Estimation of
% Censored Pathloss Data", IEEE Wireless Communications Letters, 2015.
%
% Copyright (C) 2015, David Bolin, Carl Gustafson.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.

% Define synthetic parameters
d=linspace(10,200,200)'; %Distances [m]
d0=1; % Reference distance [m]
PLd0=20*log10(4*pi*d0/(3e8/5.9e9)); %Reference pathloss value at d0.
n=2; %Pathloss exponent.
sigma=4; %Large scale standard deviation [dB].
c=90; %Censoring level [dB]

% Generate synthetic data
y=PLd0+10*n*log10(d/d0)+sigma*randn(length(d),1);
x=[ones(length(y),1) 10*log10(d/d0)];

%Define indicator for censore and uncensored samples
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t=zeros(1,length(d));
t(find(y<c))=1;
t(find(y>=c))=0;

%Censoring of the synthetic data
yt=zeros(length(d),1);
yt(find(y<c))=y(find(y<c));
yt(find(y>=c))=c;
xt=x(find(y<c),:);

%Ordinary Least Squares (OLS) estimates
a_est = inv(xt'*xt)*xt'*yt(find(t));
sigma2_est = var(yt(find(t))-xt*a_est);

%Maximum likelihood (ML) estimates
thetahat=censoredml(x,yt,c,t,a_est,sigma2_est)

%Asymptotic variance
Avarhat=censoredvar(x,c,thetahat(1),thetahat(2),thetahat(3));
Avar=censoredvar(x,c,PLd0,n,sigma);

%S=['PL(d0)';'n';'sigma'];
disp(' Estimate OLS ML | True value');
disp(sprintf(' PL(d0) %.2f %.2f | %.2f', a_est(1), thetahat(1),PLd0))
disp(sprintf(' n %.3f %.3f | %.3f', a_est(2), thetahat(2),n))
disp(sprintf(' sigma %.3f %.3f | %.3f', sqrt(sigma2_est), thetahat(3),sigma))
disp(' ---------------------------------');
disp(' Asymptotic standard errors (SE) of ML estimates');
disp(' SE(true value) SE(estimated value)');
disp(sprintf(' SE(PL(d0)) %.2f %.2f', sqrt(Avar(1)), sqrt(Avarhat(1))))
disp(sprintf(' SE(n) %.3f %.3f', sqrt(Avar(2)), sqrt(Avarhat(2))))
disp(sprintf(' SE(sigmaˆ2) %.3f %.3f', sqrt(Avar(3)), sqrt(Avarhat(3))))


