
Demosaicing using a Convolutional Neural Network approach

Authors
Karin Dammer∗ karindammer@live.se
Ronja Grosz† rongr946@student.liu.se

Supervisors
Magnus Oskarsson∗ magnuso@maths.lth.se
Pierangelo Dell’Acqua† pierangelo.dellacqua@liu.se

Examiners
Anders Heyden∗ heyden@maths.lth.se
Reiner Lenz† reiner.lenz@liu.se

June 16, 2017

Abstract

This thesis is about investigating the feasibility to use convolutional neural networks as a demosaicing ap-
proach. Three loss methods and different layer structures have been evaluated as well as changing different
parameters and layers in the convolutional neural network to find which changes are beneficial to make a
neural network perform demosaicing well.

The convolutional neural network has been compared to a fully convolutional neural network, a multi-
layer perceptron and the Hamilton Adams demosaicing algorithm. The prospect of demosaicing raw image
sensor data and images with noise was also investigated.

The conclusion is that a convolutional neural network can indeed perform demosaicing with good
results, even when using a small and less complex network. The convolutional neural network was also
able to demosaic raw images as well as remove noise from images, although with not as good result as
when demosaicing artificial data. The convolutional neural network on average performed demosaicing
with a peak signal to noise ratio of 34 dB. This compares to the Hamilton Adams method that has a peak
signal to noise ratio of 37 dB, although when measured with the structural similarity our method performs
better than the Hamilton Adams method.

Index Terms: Convolutional neural networks, fully convolutional neural network, demosaicing, image
sensor data, noise reduction.

∗Lund University
†Linköping University

Preface

This master thesis was made in cooperation with the Department of Science and Technology at
Linköping University, the department of Mathematics at Lund University and Axis Communica-
tions AB. It was carried out in Lund at Axis premises during the spring of 2017.

Acknowledgements

We would like to thank our supervisors and examiners Pierangelo Dell’Acqua, Reiner Lenz,
Magnus Oskarsson and Anders Heyden at LiU and LTH for enabling us to work together on
this thesis and for all the guidance during the thesis. Thanks to all supervisors at Axis for
providing guidance and the freedom to shape our thesis freely and thanks to all Core Technology
employees for showing such an interest in our thesis. We will also like to thank our friends and
family for all the support you have given us.

We would like to dedicate some special thanks to:
Gunnar Dahlgren for an excellent code base to start on.
Andreas Nilsson for providing your famous tool and knowledge about demosaicing and the
image processing pipeline.
Per Wilhelmsson for guiding us in the right direction early on in our thesis.
Jakob Grundström for providing guidance in the setup of the environment, your enthusiasm
towards machine learning and for providing us with relevant scientific papers and data sets.
Johan Jeppsson for stepping in after Per, driving us to rubber duck our thesis.

Contents

1 Introduction 6
1.1 Purpose and problem statements . 6
1.2 Limitations . 6

2 Background 7
2.1 Demosaicing . 7

2.1.1 Color filter array patterns . 7
2.1.2 Color models . 8
2.1.3 Demosaicing methods . 8

2.2 Image sensor noise . 10
2.3 Neural networks . 11

2.3.1 Loss functions . 13
2.3.2 Optimization methods . 15
2.3.3 Convolutional neural network . 17
2.3.4 Fully convolutional neural networks . 17

2.4 Related work . 18

3 Method 21
3.1 Implementation . 21
3.2 Data . 21
3.3 Architecture of the network . 22
3.4 Standard setup for the training . 23
3.5 Standard setup for validation . 24

4 Results 25
4.1 Establishing properties of the baseline network . 25
4.2 Parameters in convolutional neural networks . 28
4.3 Classical demosaicing method . 29
4.4 Loss metrics . 30
4.5 Demosaicing of raw images . 30
4.6 Residual layer . 32
4.7 Fully convolutional neural network . 32

5 Discussion 36
5.1 Property changes in the convolutional network structure . 36
5.2 Demosaicing raw images . 38
5.3 Fully convolutional neural networks . 39
5.4 Demosaicing demosaiced images . 39

1

6 Further work 40

7 Conclusions 42

A Images 46

2

List of Figures

1 A Bayer color filter pattern. Each 2× 2 sub mosaic contains two green, one blue and one
red filter, where each filter covers one pixel sensor. 7

2 Moire artifacts in the fence. 8
3 Zippering artifacts along an edge. 8
4 Shapes of the curves for the sigmoid, TanH and ReLU functions, from left to right respectively. 12
5 A simplification of the architecture of the patch to pixel neural network. The input is a patch

of the mosaiced image, where the different channels have been divided into layers. A set of
convolutions are then applied, followed by an optional residual layer. The convolved layers
are then arranged into RGB layers and a final full connection results in an RGB pixel. L
denotes the number of channels in each convolutional layer. 23

6 The residual matrix. The first three layers contains the mosaiced RGB patches and the last
three layers are the joined color layers from the previous convolutions. 23

7 Kodak lighthouse ground truth image. 25
8 Adobe fiveK color corrected ground truth image. 25
9 Error maps of demosaiced images using the same network with different output structures. . 26
10 Error maps of demosaiced images using different networks structures. 26
11 Error maps of demosaiced images using different sampling step lengths. 27
12 Error maps of demosaiced images using different patch sizes. 27
13 Error maps of demosaiced images using different numbers of layers. 28
14 Error maps of demosaiced images using different numbers of filter channels. 28
15 Error maps of demoasiced images from a CNN using different kernel sizes. 29
16 Error maps of demosaiced images using different networks structures. 29
17 Error maps of demosaiced images using different loss functions for the optimization method. 30
18 Error maps of the demosaiced Kodak image using networks trained with different image

data sets. 31
19 Error maps of the demosaiced raw Adobe fiveK image using networks trained with different

image data sets. 31
20 Error maps of the demosaiced noisy raw Adobe fiveK image using networks trained with

different image data sets. 31
21 Demosaiced images using Hamilton Adams. 31
22 Error maps of demosaiced images using a CNN with and without a residual layer. 32
23 Error maps for a CNN, a CNN with a residual layer and an FCNN. 32
24 Error maps for an FCNN using different kernel sizes. 33
25 Error maps for an FCNN using different numbers of filter channels. 33
26 Error maps for an FCNN using different number of convolutional layers. 34
27 Error maps from using different upsampling methods. 34
28 Error maps of demosaiced images using different output layers for an FCNN. 35

3

List of Tables

1 Results from using different output structures, measured using different error metrics. 26
2 Results from comparing a convolutional neural network to a multilayer perceptron. 26
3 Results from changing sampling step length. 27
4 Results from comparing different patch sizes. 27
5 Results from using different numbers of convolutional layers in the convolutional neural

network. 28
6 Results from using different numbers of filter channels in the convolutional neural network. . 28
7 Results for a CNN using different kernel sizes. 29
8 Results for a CNN using different receptive fields. 29
9 Results from comparing a convolutional neural network to the Hamilton Adams method. . . 29
10 Results from using different loss functions for the optimization method. 30
11 Results from using different validation images to validate a baseline convolutional neural

network trained with different images. 30
12 Results from demosaicing images using the Hamilton Adams method. 30
13 Results from using a CNN with and without a residual layer. 32
14 Results from comparing an FCNN to other networks. 32
15 Results from using different kernel sizes for an FCNN. 33
16 Results from using different numbers of filter channels. 33
17 Results from using different numbers of convolutional layers. 33
18 Results from using different upsampling layers for an FCNN. 34
19 Results for using different placements of the upsampling layer in an FCNN. 34
20 Results from using different output layers for an FCNN. 35

4

Nomenclature

CCD Charge-coupled device, page 7

CFA Color filter array, page 6

CMOS Complementary metal-oxide-semiconductor, page 7

CNN Convolutional neural network, page 6

FCNN Fully convolutional neural network, page 6

HDR High dynamic range, page 15

Hyperparameter Parameter describing the properties of the network. This parameter is not updated during
the training session, page 25

MLP Multilayer perceptron, page 17

MS-SSIM Multi-scale structural similarity index, page 19

MSE Mean square error, page 13

PSNR Peak signal-to-noise ratio, page 13

ReLU Recitifier linear unit, page 11

RGB Additive color model which combines the three primary colors red, green and blue, page 8

SSIM Structural similarity, page 13

VDP Visual difference prediction, page 15

YCbCr Color model using luminance and chrominance measures, page 8

5

1 Introduction

Most color cameras use a single image sensor over-
laid with a color filter array (CFA). Consequently,
some form of interpolation, called demosaicing is
needed to get a full resolution color image. De-
mosaicing is usually done through different inter-
polation algorithms such as bilinear interpolation or
the Hamilton Adams method [1]. This master the-
sis has been about investigating the suitability to use
neural networks to demosaic raw image data. This
has been done by comparing results from different
neural networks, such as a convolutional neural net-
work (CNN) and a fully convolutional neural net-
work (FCNN), to conventional interpolation meth-
ods. For the CNN and FCNN different parameters
and structures have been analyzed such as loss met-
ric, optimizer, number of epochs and different num-
bers and types of layers to characterize properties
of a successful neural network for the demosaicing
problem. The work also aims to investigate and
quantify whether a CNN can perform noise reduc-
tion simultaneously with the demosaicing.

1.1 Purpose and problem statements

The purpose of this master thesis is to investigate if
a convolutional neural network approach can replace
the classical interpolation methods for demosaicing
color filter arrays. To do so a number of problem
statements were formulated.

• Compare a convolutional neural network with a
multilayer perceptron on the ability to demosaic
a color filter array.

• Compare a method using convolutional neural
networks with a method using bilinear interpo-
lation.

• Compare different loss methods as the error
metric in the network: L2, SSIM, PSNR.

• Investigate the benefit of using a residual layer.

• Compare a fully convolutional neural network
with a convolutional neural network using fully
connected layers on the ability to demosaic a
CFA.

• Investigate the possibility to train and validate a
convolutional neural network using raw image
data from an image sensor.

• Investigate the possibility of a convolutional
neural network performing noise reduction.

1.2 Limitations

To answer the problem statements, limitations to the
problem have to be set. This thesis has not been
about finding the best convolutional network for de-
mosaicing purposes, but more about finding which
parts could be beneficial for demosaicing purposes.
The investigations have been limited to relatively
shallow networks, e.g. networks with a small num-
ber of operational layers such as convolutions. This
is to limit the complexity of the network and the
training time. For the same reasons the kernel width
is kept low.

Training and validation data has mostly been lim-
ited to artificially produced mosaic data since pro-
cessed images are easier to find than raw images.
The data sets for training and validation are also kept
relatively small if comparing to corresponding exper-
iments encountered in the literature study. The num-
ber of epochs for the training is also considerably
low. The main reason for this is to lower the train-
ing and validation time. Therefore the full potential
of our method will not be achieved but rather gives
a measurement of the potential the neural network
could have when applied to demosaicing.

6

2 Background

This section gives some background to the demosaic-
ing problem and to neural networks and their compo-
nents.

2.1 Demosaicing

Demosaicing is a digital image process for produc-
ing color images from incomplete color data pro-
duced by an image sensor overlaid with a color fil-
ter array. Three charge-coupled device (CCD) sen-
sors or complementary metal-oxide-semiconductor
(CMOS) sensors can both be used to get three
full-channel color images directly, although this ap-
proach is costly and still needs spectral bandpasses,
often in the form of beam splitters with half transpar-
ent mirrors. A more cost effective solution, that most
digital cameras on the market use, is to put a CFA in
front of the sensor to capture one color component
per pixel and interpolate the missing color compo-
nents. CFAs are used to separate the color infor-
mation, since the typical photo sensor only detects
light intensity without information about the wave-
length. The CFA consists of spectrally selective fil-
ters arranged in certain patterns. The sparsely sam-
pled color channels collected from the color filter ar-
ray are called CFA images or mosaic images.

2.1.1 Color filter array patterns

The choice of CFA pattern mostly depend on the
camera manufacturer but the Bayer pattern [2] is the
most commonly used CFA [3]. Demosaicing CFA’s
may cause image artifacts. A common reason for im-
age artifacts is aliasing, which occurs when a signal
is sampled at a less than twice the highest frequency
present in the signal. In images, aliasing is caused
by a low sampling in the spatial domain. Moiré pat-
terns, which is a large scale interference pattern, oc-

Figure 1: A Bayer color filter pattern. Each 2× 2
sub mosaic contains two green, one blue and one red
filter, where each filter covers one pixel sensor.

cur when sampling a repetitive pattern of high spa-
tial frequency at a low frequency. The interference
appears as repetitive patterns, color artifacts or pix-
els arranged in an unrealistic maze-like pattern. An
example of a Moire artifact can be seen in figure 2.
Demosaicing may also cause other false color arti-
facts. These often manifest themselves along edges
where the interpolation might have been done across
an edge. Zippering artifacts is another artifact that is
commonly occuring along edges. Zippering is preva-
lent when the demosaicing algorithm averages pixel
values over an edge, causing the edge to become
blurred in a zipper pattern. An example of zipper-
ing can be seen in figure 3.

The Bayer pattern is a CFA pattern which mea-
sures the green image on a checkerboard grid with
half of the image resolution and the red and blue im-
ages on rectangular grids with each a quarter of the
image resolution, see figure 1. The green channel is
thus measured at a higher sampling rate. This is mo-
tivated by the fact that the human visual system has

7

Figure 2: Moire artifacts in the fence.

Figure 3: Zippering artifacts along an edge.

its peak sensitivity at the wavelength corresponding
to green. This property is used in most color filter ar-
rays beyond the Bayer pattern. Since the Bayer pat-
tern is common to use, most previous work on demo-
saicing only covers methods for the Bayer pattern.

Two other wide-spread color filter array patterns is
Sony’s RGBW Bayer pattern and the Aptina Clarity+
pattern. The Sony RGBW pattern has the same struc-
ture as the Bayer pattern except every other green
filter is replaced with clear filters making the pixels
register light of all wavelengths. This gives a pattern
structure with all four different filter types in rectan-
gular grids. The Aptina Clarity+ pattern also has the
same structure as the Bayer pattern except all green
filters are replaced with clear filters.

2.1.2 Color models

Colors are often described and organized through
different color coordinate systems. A common color
model is the RGB color model where the color is ex-
pressed as an additive combination of the three pri-
mary colors red, green and blue.

Another widely used representation is the YCbCr
model. The colors are decorrelated and separated
into a luminance channel and two chrominance chan-
nels. The luminance channel is constructed as a lin-
ear combination of the red, green and blue chan-
nels and the chrominance channels are defined as
the weighted difference between the red respectively
blue channel and the luminance channel.

2.1.3 Demosaicing methods

Demosacing is commonly done through interpolat-
ing the missing color channel information. The fol-
lowing section describes some demosaicing methods
operating in the spatial dimension.

8

Bilinear interpolation

The simplest bilinear (or linear) interpolation
method simply estimates the pixel value as the mean
value of the nearest surrounding pixels in each color,
i.e. to estimate the green pixel value of a non-green
pixel, four values can be used whereas a red or blue
pixel value only has access to two nearby pixels in
the correct color. This simple method does not use
the correlation between different color layers and
therefore performs poorly and yields blurred images.
The method can be expanded to include more of the
corresponding pixels, including the pixel value in the
current pixel. An example of this is a method by
Malvar et al. [4] where 9 pixel values are used to es-
timate the green channel and 11 values are used to
estimate the red and blue channels. This makes bet-
ter use of the correlation between the different color
channels. To calculate the pixel value a weighted
sum of the corresponding pixels are calculated ac-
cording to certain weight patterns.

Sequential demosaicing

The green part of a mosaiced image often contains
twice as many pixels (and more information) than the
red or blue part. A common approach is to interpo-
late the green (or luminance) channel first and then
use the fully interpolated green channel to estimate
the red and blue (or chrominance) channels [3]. The
reason for this is to avoid aliasing which is less likely
to occur in the green channel as it encodes twice as
much information. As described by Li et al. [3] the
interpolation is many times done by an initial edge-
detection algorithm to find edges to interpolate along
to avoid zippering effects along the edges.

The chrominance channel is interpolated by as-
suming constant hue and estimating the difference
between the blue and green hannels, and the red
and green channels. The pixel values for the green
channel are subtracted and an estimation for the red

and blue channels is obtained. The downfall of this
method is primarily that errors from the interpolation
of the green channel propagate into the red and blue
channels which, in the end can create large errors in
the demosaiced image.

Another approach is the luminance channel inter-
polation where the missing data in the green channel
is interpolated through heuristic edge-direct rules.
The local edge direction is estimated from available
data on the green, red or blue channel and the sec-
ond order gradients of the chrominance channels can
be used as a correction term. Local covariance, es-
timated based on geometric duality, can be used to
adapt the interpolation.

Iterative demosaicing

Sequential demosaicing can have a fundamental
weakness of error propagation where any errors ren-
dered during the interpolation of the luminance chan-
nel inevitably propagate to the chrominance chan-
nels. This can be solved through iterative reconstruc-
tion. The green, red and blue channels are iteratively
refined based on color ratio rules.

Machine learning methods

As machine learning techniques gain more ground
in the image processing field a number of different
machine learning methods have been tried for demo-
saicing purposes. Neural networks using both con-
volutional kernels and multilayer perceptrons have
been proven useful and can, if designed properly, be
used for both demosaicing and denoising [5].

Super resolution is a method that aims to increase
the resolution of a low resolution image by non-
linearly interpolating new values between the exist-
ing pixels. This approach can be applied channel-
wise on a mosaiced image to find the missing values.
A machine learning method that has been proven
successful for super resolution tasks is Generative

9

adversarial networks [6]. The generative adversar-
ial network is a network structure with two parallel
networks, one generative and one discriminative, that
are trained together and challenge each other to im-
prove the performance of the requested task.

Adaptive color plane interpolation

In 1996 Hamilton and Adams proposed a method
for demosaicing using adaptive color plane interpo-
lation [1]. The method uses a sequential demosaicing
approach which separates the image into RGB color
channels. It first interpolates the green channel and
uses it to interpolate the red and blue color channels.
The interpolation is done using an edge-detection ap-
proach that allows the interpolation to be done along
edges and not across them.

2.2 Image sensor noise

Data from the image sensor contains unavoidable im-
age noise in the form of variations of brightness and
color information that was not present in the pictured
scene [7]. The sensor noise is a problem since it
creates grainy images. Therefore the noise needs to
be removed or limited prior to demosaicing or after.
Noise in the sensor data is for the most part caused
by photon transfer noise which can originate from
several different sources. There are four fundamen-
tal noise sources: signal shot noise, Fano noise, fixed
pattern noise and read noise. Signal shot noise and
Fano noise are two signal deviations that are related
to photon interactions and are thus dependent on the
signal strength. Fixed pattern noise is associated
with pixel to pixel sensitivity irregularities and read
noise includes all other noise sources that are not de-
pendent on signal strength. These four noise sources
can be approximated through Gaussian distribution,
although the shot noise is Poisson distributed.

Signal shot noise is related to how photons arrive

on an image sensor. The number of photon inter-
actions per pixel can vary and is described by the
standard deviation that is called photon shot noise.
The interacting photon shot noise variance can be de-
scribed as

σSHOT (PI)
2 = PI

ehc/λkT

ehc/λkT −1
(1)

where h is the Planck constant, λ is the photon wave-
length, k is the Boltzmann’s constant, c is the speed
of light and T is the absolute temperature in kelvin.

The signal shot noise generated by interacting
photons can be described as

σSHOT = (ηiS)1/2 (2)

where ηi is the quantum yield gain and S is the sig-
nal.

Fano noise is a multiple electron-hole charge gen-
eration and is described as

σFN = (Ff ηi)
1/2 = (Ff

hv

Ee−h
)1/2 (3)

where Ff is the Fano factor which is the variance of
the number of electrons generated divided by the av-
erage number of electrons generated per interacting
photon.

The pixel’s collection process of the charge from
the photoelectrons’ interaction is not perfect since
some pixels collect charges more efficiently than oth-
ers. This results in pixel to pixel sensitivity differ-
ences which generates fixed pattern noise in an im-
age. Fixed pattern noise is defined as

σFPN = PNS (4)

where σFPN is the fixed pattern noise and PN is the
fixed pattern noise quality factor.

Read noise is defined as any noise source that is
not a function of the signal. It is added together with

10

the signal shot noise, Fano noise and the fixed pattern
noise to produce the total noise equation,

σTOTAL = (σ2
READ +σ

2
FN +σ

2
SHOT +σ

2
FPN)

1/2. (5)

2.3 Neural networks

Neural networks are inspired by how neurons in the
brain work, firing signals only when certain condi-
tions are met, i.e. the combined input in a neuron
has to exceed some kind of threshold value (bias) to
produce an output. The concept of threshold logic
was proposed by McCulloch and Pitts [8] in 1943
and can be described as

y =


1, if

N

∑
i=1

wixi ≥ b

0, if
N

∑
i=1

wixi < b

(6)

where wi is a weight, xi is an input value and b is a
threshold value. The neuron is activated at y = 1.

Neural networks are suitable for many computing
tasks such as classification and clustering and the use
of neural networks has increased for various kinds
of mathematical and computational applications as
they possess desirable characteristics. These include
good ability to fit to non-linear data, ability to per-
form parallel computations and the ability to update
and learn [9].

Hidden layers

A neural net consists of layers of neurons where the
input of a layer is connected to the output of the
previous layer. The simplest neural network con-
sists of an input layer, an output layer and one or
more hidden layers. The hidden layers contain learn-
able weights and biases that are optimized by the

backpropagation process, which is a two phase cy-
cle propagation for updating the weights of the neu-
ral network. The weights decide how much of each
input should be added in the neuron and the bias sets
the threshold value. Hidden layers can be fully con-
nected layers connecting all input variables to all out-
put variables. They can also consist of convolutional
layers or locally connected layers.

Activation layers

Hidden layers often contain a non-linear activation
layer such as a rectifier linear unit (ReLU) or a
sigmoid function. The activation function is what
makes the network non-linear and makes the net-
work more complex and able to learn more complex
functions. If the activation functions were omitted
the network could be reduced to a linear regression.
Equation 6 shows the simplest activation function in
terms of a step function. The ReLU function is de-
fined as

f (x) = max(0,x) (7)

and is currently the most commonly used activation
function for neural networks [10].

Several recent studies such as Krizhevsky et
al. [11] have shown that the ReLU function increases
the convergence of the neural network in comparison
to the sigmoid function. Developments of the ReLU
functions are the leaky ReLU and parametric ReLU.
The leaky ReLU adds a small slope to the negative
part and is defined as

f (x) =

{
x, if x > 0

αx, if x≤ 0
(8)

where α is a small constant. The parametric ReLU
is defined in the same way with the difference that α

is a trainable parameter.
The sigmoid function is defined as

f (x) =
1

1+ e−x . (9)

11

Figure 4: Shapes of the curves for the sigmoid, TanH and ReLU functions, from left to right respectively.

The sigmoid function has a value region of [0,1]
which gives it a non-zero mean value.

The tanh function is similar to the sigmoid func-
tion and is defined as

f (x) =
2

1+ e−2x −1. (10)

The tanh function has a value region of [−1,1] and a
mean value of zero.

The sigmoid, tanh and ReLU function shapes can
be seen in figure 4.

Training

To establish the ultimate set of weights and biases
for the net it has to be trained to produce an output
as similar as possible to a known ground truth im-
age, e.g. the image that the network should learn to
reproduce through demosaicing. This is done by an
optimization algorithm. The optimization algorithm
minimizes the loss function i.e. a quantification of
the difference between the result from the net and
the ground truth. The gradient of the loss function
is computed to establish in what direction the opti-
mization algorithm should update the weights. The
process is ideally iterated until the result converges.
True convergence, when the produced image is the

same as the ground truth image, is hard to achieve
and the training is iterated until the loss function
yields a sufficiently low value.

Epoch

An epoch is a measurement of when the neural net-
work runs through the whole training data set once.
With limited data, a neural network needs to be
trained for several epochs to reach convergence. The
number of epochs can vary and can either be set to
a fixed number, as done by Kapah et al. [12] or vary
over iterations as the training continues until a cer-
tain termination criteria is met, as done by Gharbi et
al. [5].

Regularization

Neural networks can become overfitted, which is
when the network performs well on training data
but does not achieve good results on new data. To
prevent overfitting it is common to regularize the
weights. This means that large weights are penal-
ized and the training procedure is encouraged to find
smaller values for the weights. A simple method for

12

regularization can be described as

Ẽ(w) = E(w)+λ · 1
2

w2 (11)

where E is the loss function, w is the weights and λ

is a small constant. When used in neural networks
this regularization is referred to as weight decay.

Dropout layers

Another method for avoiding overfitting is to apply
a dropout layer to each layer. The dropout layer in-
hibits a given fraction of the neurons and sets them
to zero. Which neurons that are dropped out are ran-
domly distributed and is changed for every batch of
training data. It can also be seen as several differ-
ent networks with different connections between the
neurons that are sub-sampled and trained simultane-
ously [13]. All neurons are used to produce an out-
put, taking the dropped out values into account as
zero values. Dropout layers are not used during vali-
dation.

2.3.1 Loss functions

The loss function is the quantification of the dif-
ference between the output from the net and the
ground truth and is used to measure the convergence.
Several methods have been proposed throughout the
years, both simple methods using norm values and
more advanced methods using correlation between
the result and ground truth.

Norm based methods

A common loss function to evaluate neural networks
is the L2 loss function [14]. The method simply com-
putes the square of the Euclidean norm of the differ-
ence between the result and the ground truth and can

be described as

L2(x,y) =
n

∑
i=0

(yi− xi)
2 (12)

where n is the number of pixels in the image sam-
ple. The L2 method is considered to be the standard
method but does not always achieve the best perfor-
mance [14].

The least absolute deviation, the L1 loss,

L1(x,y) =
n

∑
i=0
|yi− xi| (13)

is also commonly used, although it is not as stable as
the L2 loss function.

PSNR

The peak signal-to-noise ratio uses the L2 norm to
compute the mean square error (MSE) and compare
it to the maximal image value (255 in an 8-bit repre-
sentation). The PSNR and MSE are calculated as

LPSNR(x,y) = 10log10(2552/MSE(x,y))

MSE(x,y) =
1

MN

M

∑
i=1

N

∑
j=1

(xi j− yi j)
2.

(14)

The PSNR does not give much more information
than the MSE value as it is used in the calculations
but the measurements are often presented in the loga-
rithmic decibel scale due to the wide range of results.
This way of presenting the error can give a better in-
tuition of the image quality. The logarithmic mea-
sure also benefits from being normalized with the
maximum value of the data. This gives a metric that
is independent of the bit depth in the image.

SSIM

The structural similarity (SSIM) method aims to get
a better representation of what metrics the human vi-
sual system percepts. As the L2 and PSNR loss does

13

not correlate well with the human perception of im-
age quality [15] another method with better estima-
tion for what the human visual system is expecting
in terms of image quality is needed. Therefore a
method for measuring the structural similarity was
proposed by Wang et al. [16]. The properties of the
SSIM index includes giving information of how sim-
ilar adjacent pixels are instead of just a metric of their
closeness to the ground truth. The structural similar-
ity index measures the difference in the luminance
channel and the contrast between images as well as
the correlation between images. The luminance is
calculated as

l(x,y) =
2µxµy +C

µ2
x +µ2

y +C
(15)

where µ is the mean value for the images and C =
(K1L)2 is a constant preventing zero division. L is
chosen as the maximum pixel value, 255 for 8-bit
gray scale images, and K1� 1 is a small constant.

The mean luminance is then extracted from the
image as the structural features of the images are in-
dependent of the illumination. The standard devia-
tion is defined as

σx =
(1

N−1

N

∑
i=1

(xi−µx)
2
)1/2

. (16)

It is natural to compute the contrast as a function
of the standard deviation. The contrast comparison
function accordingly measures the differences in the
standard deviation and is described as

c(x,y) =
2σxσy +D

σ2
x +σ2

y +D
(17)

where D = (K2L)2 and K2� 1.
The structural information defined as the informa-

tion about objects in the image is independent of lu-
minance and contrast and is computed with a nor-
malization of the standard deviation, i.e. the standard

deviation is set to one as the expression is divided
with its standard deviation. The correlation coeffi-
cient is defined as

σxy =
1

N−1

N

∑
i=1

(xi−µx)(yi−µy) (18)

and the structure function is calculated according to

s(x,y) =
σxy +E

σxσy +E
(19)

where E = (K3L)2 and K3� 1.
The final value for the SSIM index has values in

the range ∈ [−1,1] and reaches its maximum when
x = y. It is calculated as

LSSIM(x,y) = l(x,y) · c(x,y) · s(x,y). (20)

If the constant E = D/2 the full expression can be
re-written as

LSSIM =
(2µxµy +C)(σxy +D)

(µ2
x +µ2

y +C)(σ2
x +σ2

y +D)
(21)

as suggested by Wang et al. [16].
As the properties of structural similarity are better

examined locally than globally Wang et al. [16] pro-
posed a method where the SSIM index is calculated
by an 11× 11 circular-symmetric Gaussian weight-
ing kernel w with a standard deviation of 1.5 and the
unit sum being swept pixel by pixel over the image.
This makes the estimations of µx, σx and σxy able to
be expressed as

µx =
n

∑
i=1

wixi, (22)

σx =
(N

∑
i=1

wi(xi−µx)
2
)1/2

, (23)

σxy =
N

∑
i=1

wi(xi−µx)(yi−µy). (24)

14

To get a single value for the SSIM index a mean
value is calculated from the local SSIM indices.

The SSIM index only works on one dimensional
images and can thereby only be applied to gray scale
images.

HDR-VDP2

To further improve error metrics to better repre-
sent the human visual system, Mantiuk et al. [17]
proposed a method for Visual Difference Predictor
for High Dynamic Range images (HDR-VPD). The
method compares the ground truth image to a recon-
struction of the image and predicts both the visual
difference between the images as well as the quality
loss from the original image.

The HDR-VDP2 is a progression proposed by
Mantiuk et al. [18] adapted to find artifacts salient
to the human visual system. It is used by Gharbi
et al. [5] to mine patches with luminance artifacts.
Due to the complexity of the implementation this is
not one of the loss methods examined in this the-
sis. Among the articles encountered in the literature
study a trend was to use a more simple loss function.
For example Gharbi et al. [5] used L2 loss for the
training even though they had used more advanced
error metrics for their patch mining.

2.3.2 Optimization methods

The essence of neural networks is their ability to
learn and adapt in order to find an optimal solution to
the problem the network is trying to solve. To do this,
an optimization method is needed. The optimization
method updates the weights of the neural network to-
wards values that improve the result of the network.
This section discusses different optimization meth-
ods.

Gradient descent optimization

A common method for optimizing a neural network
is the gradient descent optimization method [19].
The gradient descent optimization method calcu-
lates, as the name suggests, the gradient of the func-
tion containing the optimization parameters. The pa-
rameters are then updated in the direction where the
magnitude of the gradient descend is the steepest.
This is optimally iterated until the magnitude of the
gradient is close to zero which means that the param-
eter space has reached a local minimum. In reality
the optimization is terminated when the loss is be-
low a threshold value. The parameter θt is updated
according to

θt = θt−1−µ∇ f (θt−1), (25)

where µ is the step size for the optimization and f is
the function containing the parameters. The downfall
of this method is that the whole data set has to be
processed to perform one update of the parameters.

Stochastic gradient descent optimization

To improve the optimization the stochastic gradient
descent method is able to update the parameters in
every iteration according to

θt = θt−1−µ∇ f (θt−1;xi;yi). (26)

This method could improve the convergence rate as
opposed to the gradient descent method, but also
make it fluctuate more and it may have trouble find-
ing the exact minimum.

Mini-batch optimization

A compromise of these two methods is the mini-
batch optimization method. The mini-batch opti-
mization uses the data samples of a small batch and
computes the gradient as an average of the gradients

15

of each data sample according to

θt = θt−1−µ∇ f (θt−1;xi:i+n;yi:i+n), (27)

where n is the batch size.

Momentum optimization

The stochastic gradient method may have trouble
with oscillations which makes it hard to hit the ex-
act minimum. The momentum optimization method
allows a fraction of the previous update vector to be
a part of the new update vector [20]. This makes
the update path less oscillating and the minimum is
reached faster [21]. The weight update is done ac-
cording to

vt = γvt−1 +µ∇ f (θt−1), (28)

θt = θt−1− vt , (29)

where γ is the momentum constant and vt is the up-
date vector.

ADAM optimization

The ADAM optimization is a development of the
momentum optimization and uses an adaptive mo-
mentum estimation [22]. This is done by using two
momentum constants β1 ∈ [0,1] and β2 ∈ [0,1] and
two momentum vectors mt and vt . The weight update
is done according to

gt = ∇ f (θ), (30)

mt = β1 ·mt−1 +(1−β1)gt , (31)

vt = β2 · vt−1 +(1−β2)g2
t , (32)

m̂t =
mt

1−β t
1
, (33)

v̂t =
vt

1−β t
2
, (34)

θt = θt−1−
α · m̂t√
v̂t + ε

, (35)

where g2
t should be interpreted as the element-wise

multiplication of the gradients and β t
1 and β t

2 are the
constants β1 and β2 to the power of t.

The steps of the ADAM optimization can be ex-
plained in the following way:

• mt is the first order momentum and is calculated
as the convex combination of the previous first
order momentum and the gradients. This can be
compared to the momentum, see (28).

• vt is the second order momentum and is cal-
culated in a similar way as the first order mo-
mentum as a convex combination of the previ-
ous second order moment and the element wise
multiplicated gradients.

• m̂t and v̂t are the bias-corrected momentums.
These operations are done to decrease the influ-
ence of the bias arisen from the initializations
of mt and vt . Since β < 1 the influence of this
operation will decrease as the number of itera-
tions increases and m̂t will converge to mt and
v̂t converges to vt .

• The parameters θ are then updated using the
bias-corrected momentums and the step size α .
The term ε is used to prevent division with zero.

Kingma et al. [22] recommends the following con-
stant values: α = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 10−8. According to both Kingma et al. [22]
and Ruder [19] the ADAM optimization method has
the best performance for both ordinary and convolu-
tional neural networks and is the preferred optimiza-
tion algorithm for the authors of several recent arti-
cles in the field such as Gharbi et al. [5].

16

2.3.3 Convolutional neural network

A convolutional neural network is a type of neu-
ral network that has one or more convolutional lay-
ers. They are inspired by the mammalian vision sys-
tem, and are mostly used for image processing, video
recognition and natural language processing. A con-
volution is a specialized kind of linear operation. The
convolution can be described as

S(i, j) = (K ∗ I)(i, j) = ∑m ∑n I(i−m, j−n)K(m,n) (36)

where a kernel K of size i× j sweeps over an input
image I of size m×n [23].

A convolutional layer provides advantages such
as sparse interactions, parameter sharing and equiv-
ariant representations. The sparse interactions are
consequences of local connectivity, i.e. of the ker-
nel being smaller than the input, making the limiting
of connections for each output possible. Parameter
sharing is achieved by using the same parameter for
more than one function in a model. The parame-
ter sharing leads to translation equivariance, which
means that if the input changes the output changes in
the same way. For example a function f (x) is equiv-
ariant to a function g if f (g(x)) = g(f (x)).

Receptive field

An important concept when discussing neural net-
works in general and convolutional neural networks
in particular is the receptive field. The receptive field
for a layer is the part of the input that a single pixel
in the output of that layer depends on. In a convolu-
tional neural network, the receptive field of a layer is
the spatial dimensions of the filter kernel, e.g. 3×3.
The receptive field for the entire network is the re-
gion of the input of the network that affects a single
pixel in the network output. By making the network
deeper, the receptive field is increased linearly.

The effective receptive field is smaller than the
theoretical receptive field. Due to the properties of

the forward and backward pass in the loss function
the gradient of the central pixels of the receptive field
has a larger magnitude [24]. The distribution of the
impact of the receptive field is Gaussian and decays
rather quickly from the center yielding an effective
receptive field that is only a small part of the theo-
retical receptive field. The receptive field for a mul-
tilayer perceptron (MLP) is always the entire input
due to the full connectivity in each layer.

2.3.4 Fully convolutional neural networks

A development of convolutional neural networks is
fully convolutional neural networks. The FCNN
has no fully connected layers and use convolutional
layers throughout the entire network. This feature
makes the network invariant of the input geometry as
the network only has to train the variables in the con-
volutional kernels, which has predefined sizes, and
can exclude the bias variables. Another benefit of
changing the fully connected layer to a convolutional
layer is that the spatial dimension remains unaltered.
Most implementations of the fully connected layers
throw away the spatial dimensions to achieve matrix
multiplications in two dimensions rather than four
while convolutional kernels work independently of
the matrix shape [25]. This makes it possible to use
the information from the spatial correlation through-
out the entire network.

Fully connected layers offer a simple way to alter
the dimension of the data. As they consist of ma-
trix multiplications it is trivial to modulate the out-
put shape by assigning a suitable shape to the weight
matrix. To achieve the same effect in an FCNN, a
common operation to use is the 1×1 convolution or
a transposed convolution.

The 1×1 convolutions are often used to reduce the
channel dimension to avoid computationally heavy
convolutions with larger convolutional kernels and
a large number of channels. It can also be seen as

17

a cross channel parametric pooling as the existing
channels are mapped to a single output channel for
each convolution. This methodology is used in the
Inception modules by Szegedy et al. [26] and in the
Network in network modules by Lin et al. [27].

Transposed convolution or "deconvolution" is an
operation which can be used to upsample a matrix.
The convolution is done by separating the input pix-
els, applying zero padding between them and letting
the convolutional kernel sweep over the padded ma-
trix. This can be compared to a bilinear interpola-
tion using trainable weights. The size of the convo-
lutional kernels decides how many values from the
previous layer the interpolation should be taken into
account.

The upsampling itself is closely related to the de-
mosaicing problem as they both deal with interpola-
tion of missing data. The FCNN has the property of
doing a proper upsampling using the spatial corre-
lations whereas the networks using fully connected
layers do an expansion of the data, not necessarily
using the information from the spatial correlations.

An advantage of the FCNN is the ability to do
fully convolutional training, i.e. training on a set of
full images. This is is possible due to the invariance
of the size of the training data. A fully connected
layer requires that the input size is fixed and patch-
wise training is therefore the most common prac-
tice [25].

A disadvantage of the FCNN is the connectivity.
The FCNN works with local connectivity as they
connect the pixels in a layer to the surrounding pixels
in the previous layer due to the kernel size. The re-
ceptive field of a pixel increases as the number of lay-
ers are augmented and the receptive field for a deep
net with small patches often exceeds the size of the
input. The connection between two consecutive lay-
ers remains local. A fully connected layer has on the
other hand the ability to have a full connectivity as
all pixels in a layer can be connected to all pixels in

the previous layer.
Another disadvantage of an FCNN is the difficulty

to implement bias variables. As the data samples
that are processed in the net have undefined size and
the bias variables need to have the same spatial di-
mensions as the training data, an implementation of
such variables is impossible. An implementation of a
channel-wise bias, i.e. a constant bias for each chan-
nel, is possible as the number of channels is rarely
undefined.

2.4 Related work

The following section depicts previous work relevant
to the goal of demosaicing using neural networks.

Joint denoising and demosaicing

Gharbi et al. [5] introduce a new approach for jointly
demosaicing and denoising images while minimiz-
ing artifacts such as Moiré and zippering. A deep
neural network is trained to demosaic difficult im-
ages with luminance artifacts around thin structures,
e.g. zippering, and color Moiré artifacts. The
method successfully handles complex patterns and
generates artifact-free results. The limitation of the
method is that it relies on detecting challenging
patches for use in training and if ground-truth images
already contain artifacts such as Moiré, the network
will learn to make images containing artifacts.

Demosaicing using a multilayer neural network

Another method based on neural networks is the
work by Wang [28]. A 4× 4 patch based multi-
layer neural network was used for image demosaic-
ing. Compared to state of the art demosaicing algo-
rithms the multilayer neural network handles abrupt
color transitions well, however it fails at recovering
high frequency patterns. A hypothesis was that us-
ing larger patches would make the network recover

18

better for high frequency patterns.

Linear interpolation

A high quality linear interpolation technique for de-
mosaicing Bayer patterned color filter arrays was de-
veloped by Malvar et al. [4]. The method exploits the
correlation among the RGB channels and is based on
the assumption that the chrominance component in
the luminance/chrominance decomposition does not
vary much across pixels. The green channel is in-
terpolated bilinearly and the red and blue channels
are interpolated such as to maintain a constant hue.
Their method leads to an improvement in PSNR of
over 5.5 dB compared to bilinear demosaicing. It
also outperforms many nonlinear algorithms.

Loss function for image restoration using neural
networks

Zhao et al. [29] investigated the loss function for im-
age restorations using neural networks. The focus
was on finding a loss function with a perceptually
motivated good result. Critique is aimed at the popu-
lar L2 loss which does not produce image quality that
correlates with image quality perceived by a human
observer. The alternative error metrics such as L1,
SSIM, multi-scale structural similarity index (MS-
SSIM) and a combination of L1 and MS-SSIM are
examined to find an alternative to L2. The error met-
rics are evaluated using tasks such as image super
resolution, JPEG artifacts removal and joint denois-
ing and demosaicing. They found that their own loss
function, a combination of L1 and MS-SSIM, outper-
formed other loss function.

Demosaicing using artificial neural networks

Kapah et al. [12] early examined demosaicing with
the help of artificial neural networks. The percep-
tron, the backpropagation model, the selector model

and the quadratic perceptron model were compared
to each other. It was found that the perceptron
was good at demosaicing low frequency regions and
failed at high frequency regions which contain sat-
urated colors. Contrariwise the backpropagation
model was good at demosaicing high frequency re-
gions and at enhancing color contrast although in
low frequency areas it failed to reconstruct the cor-
rect colors. The selector model was trained to be
able to choose when the perceptron and backpropa-
gation model were going to be used to demosaic the
region of an image. Consequently high frequency
regions could be demosaiced using the backpropa-
gation model and low frequency regions were demo-
saiced using the perceptron. The last method that
was investigated was the quadratic perceptron model
which preformed good in both high and low fre-
quency regions and performed the best among all of
the examined methods.

Fully convolutional neural networks for semantic
segmentation

An implementations of a fully convolutional neu-
ral network for segmentation and classification have
been proposed by Long et al. [25]. The network
implementation emanated from a number of pre-
vious implementations such as AlexNet [11] and
GoogLeNet [26]. The precursors’ network struc-
ture was kept except for the fully connected layers
that were changed into convolutional layers and the
data process was changed to process data of arbitrary
size. This enables the classification to be done us-
ing heat maps instead of statistical classifications us-
ing an output vector. The heat maps showed where
in the image it was the most likely to find the de-
tected objects. The efficiency of fully convolutional
training to patch-wise training as well as dense out-
put maps and non-spatial output were compared to
each other. Three different implementations were

19

done where the most accurate one combined three
different outputs from different levels of the network.
The implementations also used a method of forward
passes where coarser data was combined with finer
data from previous layers. It was found that the
FCNN performed better than its ordinary convolu-
tional equivalent with shorter execution time.

20

3 Method

Different kinds of neural networks were developed to
find the answer for the problem statements. This sec-
tion describes the architecture, variables, hardware
and software used to achieve this.

3.1 Implementation

The training was done using a quad-core Intel i7
CPU and an NVIDIA GeForce GTX 1070 GPU. The
implementation was written in Python version 3.4.2
with the Tensorflow machine learning library version
0.12.0.

3.2 Data

The training data was taken from the data set of dif-
ficult patches from the work of Gharbi et al. [5] and
consists of 500 128×128 RGB JPG patches. These
patches have been extracted from a large number of
sRGB images chosen by the authors due to their low
performance in their original settings for their net.
The patches are chosen using two criteria: luminance
artifacts such as zippering, and Moiré artifacts. The
luminance artifacts arise around edges in the image
as the demosaicing algorithm takes an average of the
pixels over the edge. To find patches yielding lumi-
nance artifacts they measured the HDR-VDP2 error
and chose images with low scores. HDR-VPD2 is
especially suitable for this task as it is specialized
in finding perceptual artifacts such as zippering. To
find patches with high probability of yielding Moiré
artifacs Gharbi et al. [5] created their own error met-
ric specialized in finding such errors. This was done
by taking the Fourier transform of the image to find
images with high frequencies. As no neural network
method is better than its ground truth data it is im-
portant to find data with as little bias from previ-
ously used demosaicing methods. To avoid this bias

Gharbi et al. [5] downsampled their images used as
ground truth by a factor 4 using bicubic interpola-
tion.

For the noise reduction part of the thesis, raw im-
ages from the Adobe fiveK data set were used [30].
The offset was removed from the raw images and
they were white balanced. To create ground truth
images, the raw images were bilinearly demosaiced
and applied with a Gaussian blur to get better images
when applying a downsampling. The images were
downsampled to create an oversampling to limit the
occurrence of artifacts when demosaicing. For noisy
training data a noise was added onto the image at this
stage using a sensor noise model. After the down-
sampling (and added noise for the noisy images), the
images were gamma and color corrected and saved
with an 8-bit precision to use as ground truth. To get
training data, the gamma and color corrected images
with and without nosie were subsampled to obtain
the mosaic pattern again and also saved with an 8-bit
precision.

For the training the input data was saved in 1×
1× 3 RGB triplets as ground truth for the patch to
pixel network and 32× 32× 3 pixel RGB patches
as ground truth for the patch to patch network along
with the associated 16× 16× 4 pixel Bayer patches
as training data. The original shape of the Bayer
patches was 32× 32× 1, but for this implementa-
tion each patch is downsampled by a factor of 2 and
the data separated in color layers to ensure transla-
tional invariance. Since the green pixels are twice as
many as the red or blue pixels, they are sampled into
two layers. The patches were originally extracted
from the original image with a step length of one and
the training data consisted of one training sample per
pixel in the original image. The data is then normal-
ized to an interval of [−0.5,0.5] to avoid saturation
in the tanh units in the network and to work in the lin-
ear region of the function. The data is throughout the
training and validation shaped into 4D matrix with

21

the shape batchsize×height×width×channels, e.g.
64×16×16×4.

3.3 Architecture of the network

This section explains the architecture of the different
neural network approaches.

Convolutional neural network

The standard setting of the convolutional neural net-
works used consists of four convolutional layers and
one fully connected layer. All convolutional layers
have the same width except the last one which has a
width of three layers to match the data to the output
channels. The spatial kernel sizes of the filters are
equal for all layers and all convolutional layers use
zero-padding to maintain the same size of the same
spatial dimensions of the data patch throughout the
training. The fully connected layer maps the output
from the final convolutional layer to an RGB-triplet
of desired spatial size. All convolutional layers use
parametric ReLU activations on the output and the
fully connected layer uses a tanh activation to map
the data back to the normalized region.

Patch to pixel approach
As the data dimensionality is to be reduced in the
spatial dimensions for the patch to pixel approach
the fully connected layer is implemented as a con-
volution using a filter kernel with the same spatial
dimensions as the data patch and no zero-padding.
This resulted in an output of a single RGB-triplet.

Patch to patch approach
The patch to patch approach used a fully connected
layer using matrix multiplication for calculating the
output. The output was an RGB patch with a spatial
dimension of 32×32×3.

Multilayer perceptron

The MLP uses three fully connected layers. As
the fully connected layers operate by matrix mul-
tiplication the 4D input data has to be reshaped.
The spatial dimensions as well as the information
about the number of input channels are discarded as
the input image is reshaped to a column and chan-
nel stacked image, i.e. the data is reshaped in the
shape batchsize× height ×width× channels. The
first layer increases the dimension of the data and the
last layer reduces the dimension to match the output
channels. The first two layers use a dropout layer to
avoid overfitting.

Residual learning

Residual learning was applied between the third and
the fourth convolution in the patch to patch CNN.
The residual layer is a mix of mosaiced data and data
from the previous convolutional layer. The 12 chan-
nels from the previous convolution are joined into
three separate channels to form the RGB representa-
tions, see figure 6. These are concatenated below the
three upsampled channels of the RGB mosaic chan-
nels. A convolution is applied to the residual layer
before resuming the regular structure of the network.
A simplification of the structure of the network can
be seen in figure 5.

Fully convolutional neural network

To investigate the properties of fully convolutional
neural networks the performance of a number of dif-
ferent network setups were investigated. The fully
convolutional version of the baseline network shares,
as stated, many features with its precursor. The net-
works are identical until the residual layer with four
convolutional layers with 16 channels each. The
residual layer is replaced with a deconvolutional
layer which serves as an upsampling layer to achieve

22

Figure 5: A simplification of the architecture of the patch to pixel neural network. The input is a patch of the
mosaiced image, where the different channels have been divided into layers. A set of convolutions are then
applied, followed by an optional residual layer. The convolved layers are then arranged into RGB layers
and a final full connection results in an RGB pixel. L denotes the number of channels in each convolutional
layer.

Figure 6: The residual matrix. The first three lay-
ers contains the mosaiced RGB patches and the last
three layers are the joined color layers from the pre-
vious convolutions.

the desired output size as the input is the same down-
sampled four channel structures. The deconvolu-
tional layer is followed by an additional convolu-
tional layer in full resolution. The output is then
produced using a final convolutional layer with a
1× 1 convolutional kernel which maps the 16 pre-
vious channels to the three output channels.

3.4 Standard setup for the training

The data was processed in batches of 64 samples and
trained for 10 epochs. The spatial dimensions for the
filters where set to 3×3. All convolutional layers ex-
cept the last used 16 filter channels. The training was
optimized using ADAM optimization with a learning
rate with an initial value of 5 · 10−4. All other vari-
ables in the optimization were left as suggested by
Kingma et al. [22]. The training aimed to minimize
the L2-loss of the training data and a weight decay
of 5 · 10−2 for the weights of the convolutional lay-
ers was used. The learning rate had an exponential
decay which decreased with a factor of 0.95

x
s where

x is the batch number and s is the size of the train-
ing data. The weights in the convolutional layers

23

and the fully connected output layer were initiated to
be normally distributed with a standard deviation of√

2/n ≈ 0.044, where n is the number of input val-
ues per channel (1024), according to He et al. [10].
The biases in both convolutional layers and the fully
connected layer were initialized as 0.01 to avoid too
many neurons to be throttled in the ReLU activations
and thereby excluded in the gradient computations.

3.5 Standard setup for validation

To validate the network an image is preprocessed in
the same way as the training data with patch extrac-
tion and normalization. The patches are then sent
into the network in batches of 64 and the result is
saved as an image file. The output from the patch to
pixel network is easily saved as the number of pix-
els in the input image is the same as the number of
pixels from the network. In the patch to patch net-
work a Gaussian circular kernel with the same size
as the output patch is element-wise multiplied with
the output patch. This makes values in the center of
the patch more significant in the final evaluation of
the image. All patches are then placed in the correct
places on top of each other in the resulting image and
the sum of all contributing pixel values in every pixel
is computed. The quality of the reconstructed image
is then quantified by two error metrics, PSNR and
SSIM. The validation is done on 5 images for which
a mean SSIM index and PSNR value is computed.
For all images an error map containing the contrast
sensitivity from the SSIM is saved. These error maps
highlight parts of the image with salient errors to the
human visual system.

24

4 Results

By comparing different network types and network
structures to the baseline network, the performance
of different variable and structure changes can be
isolated. This section gives an account of these
changes and their result. All table measurements are
an average out of five validation images. The SSIM
measurement in the image texts is for the pictured
image, and not the result from the average valida-
tion images. The lighthouse image from the Kodak
data set, which can be seen in figure 7, is used for
comparison since image artifacts are prone to occur
in the fence and panels in the image. Comparisons
between raw images with and without noise is done
using figure 8 from the Adobe fiveK data set.

Figure 7: Kodak lighthouse ground truth image.

Figure 8: Adobe fiveK color corrected ground truth
image.

4.1 Establishing properties of the baseline
network

To establish the outline of our baseline network we
experimented with hyperparameters outside the ac-
tual network structure such as output properties and
patch size. These investigations were done to be
able to discard some of the properties we expected
to lower the performance of the network.

25

Network output

In order to establish which output was most suitable
for further investigations a network using pixel out-
put was compared to a network using patch output.
To make reasonable comparisons L2 loss was used
for training and validation since it is the only suit-
able loss for pixel output out of the three examined
loss methods. The result can be seen in the table 1
and figure 9. As can be seen the patch output yields
better results and therefore further research only uses
this approach as the baseline network.

Network output SSIM PSNR Total training time
Patch output 0.949 32.40 1 h 38 min
Pixel output 0.887 28.85 1 h 22 min

Table 1: Results from using different output struc-
tures, measured using different error metrics.

(a) Patch output, SSIM:
0.929

(b) Pixel output, SSIM:
0.871

Figure 9: Error maps of demosaiced images using
the same network with different output structures.

Network structure

To achieve a comparison of a simpler implementa-
tion of a network a four layer perceptron (fully con-
nected network) was used. This was done to confirm
that the convolutional neural network structure was
more suitable for this kind of task. The compari-
son to the convolutional neural network can be seen
in table 2 and in figure 10. The convolutional neu-
ral network yields much better results, therefore the
MLP method was discarded.

Network structure SSIM PSNR Total training time
CNN 0.949 32.40 1 h 38 min
MLP 0.763 25.26 1 h 28 min

Table 2: Results from comparing a convolutional
neural network to a multilayer perceptron.

(a) Convolutional neural
network, SSIM: 0.929

(b) Multilayer per-
ceptron, SSIM:
0.763

Figure 10: Error maps of demosaiced images using
different networks structures.

Sampling of training data

The first approach for sampling training patches
from the input images used a step length of one, mak-

26

ing the CFA change over patches, since the Bayer
pattern spans over a 2× 2 pixel block. To make
the Bayer pattern consistent over the patches, a step
length of 2 was introduced. This enables the patches
to always start at the same color, making the com-
parison between patches easier. The result from us-
ing different step lengths can be seen in table 3 and
figure 11.

Sampling step length SSIM PSNR Total training time
1 0.949 32.40 1 h 38 min
2 0.991 34.44 34 min

Table 3: Results from changing sampling step
length.

(a) Sampling step length
1, SSIM: 0.929

(b) Sampling step length
2, SSIM: 0.990

Figure 11: Error maps of demosaiced images using
different sampling step lengths.

Input patch size

The first network had 16×16 pixels large patches as
input which translates to a 8×8×4 pixels large input
matrix for the network. This approach showed some
limitations, the receptive field covers more than the
spatial dimensions of the input patch for networks

using more than 4 layers (kernel size 3×3) or a ker-
nel size of 4×4 or larger. Because of this the patch
size was increased to 32× 32 yielding 16× 16× 4
pixels large matrices as network input. The compari-
son can be seen in table 4 and figure 12. The baseline
network is a convolutional neural network with over-
lapping patch output. The training data consists of
32× 32 pixels large patches sampled from the orig-
inal image with a step length of two. Table 4 de-
scribes the training time for different network struc-
tures using 16×16 and 32×32 patches. This allows
to draw some conclusions about the complexity of
different model structures.

Patch size SSIM PSNR Total training time
16×16 0.991 34.44 34 min
32×32 0.989 33.93 1 h 56 min

Table 4: Results from comparing different patch
sizes.

(a) 16 × 16 patches,
SSIM: 0.990

(b) 32 × 32 patches,
SSIM: 0.988

Figure 12: Error maps of demosaiced images using
different patch sizes.

27

4.2 Parameters in convolutional neural net-
works

To see what effect different parameter changes had
on the result of the network, different parameters
were altered, one at a time. The following section
depicts the effects of the different parameters choices
for the baseline network.

Number of layers

To determine the impact of the number of convolu-
tional layers three different networks were compared
using 2, 4 respectively 8 convolutional layers respec-
tively. The networks had 16 channels in each layer.
The result can be seen in table 5 and figure 13.

Number of convo-
lutional layers

SSIM PSNR Total training time

2 0.989 34.08 1 h 52 min
4 0.989 33.93 1 h 56 min
8 0.990 34.13 2 h 20 min

Table 5: Results from using different numbers of
convolutional layers in the convolutional neural net-
work.

(a) 2 convolutional
layers, SSIM:
0.988

(b) 4 convolutional
layers, SSIM:
0.988

(c) 8 convolutional
layers, SSIM:
0.990

Figure 13: Error maps of demosaiced images using
different numbers of layers.

Number of filter channels

To evaluate the impact of the number of filter chan-
nels in each layer the result of using 8, 16 respec-
tively 32 channels were compared to each other. The
network had 4 convolutional layers. The result can
be seen in table 6 and in figure 14. The result shows
an improvement by increasing the number of filter
channels.

Number
of filter
channels

SSIM PSNR Total training time

8 0.988 33.40 1 h 27 min
16 0.989 33.93 1 h 56 min
32 0.990 34.30 3 h 3 min

Table 6: Results from using different numbers of fil-
ter channels in the convolutional neural network.

(a) 8 filter chan-
nels, SSIM:
0.987

(b) 16 filter chan-
nels, SSIM:
0.988

(c) 32 filter chan-
nels, SSIM:
0.989

Figure 14: Error maps of demosaiced images using
different numbers of filter channels.

Size of filter kernels

To examine the behavior of the network when the
kernel size was altered the network was trained using
a 5× 5 kernel in all convolutional layers. All filter

28

kernels used 16 channels. The results can be seen in
table 7 and figure 15.

Kernel shape SSIM PSNR Total training time
3×3 0.989 33.93 1 h 56 min
5×5 0.990 33.96 2 h 3 min

Table 7: Results for a CNN using different kernel
sizes.

(a) 3 × 3 kernel,
SSIM: 0.988

(b) 5 × 5 kernel,
SSIM: 0.990

Figure 15: Error maps of demoasiced images from a
CNN using different kernel sizes.

Further increased receptive field

To further examine the effects of a receptive field that
covers more than the spatial dimension of the input
patches a network using both 8 convolutional layers
and a kernel size of 5×5 was compared to the base-
line network, a CNN with a 5× 5 kernel and 4 con-
volutional layers and a CNN using 8 convolutional
layers with a 3×3 kernel. The results can be seen in
table 8

Conv layers Kernel shape SSIM PSNR Tot. training time

4
3×3 0.989 33.93 1 h 56 min
5×5 0.990 33.96 2 h 3 min

8
3×3 0.990 34.13 2 h 20 min
5×5 0.990 34.24 2 h 48 min

Table 8: Results for a CNN using different receptive
fields.

4.3 Classical demosaicing method

As a reference to the neural network method for de-
mosaicing the same validation process was done us-
ing the Hamilton Adams method. The results can be
seen in table 9 and figure 16. As can be seen the
Hamilton Adams method suppresses the Moiré ar-
tifact in the fence well but amplifies artifacts in all
other areas.

Demosaicing method SSIM PSNR Total training time
CNN 0.989 33.93 1 h 56 min
Hamilton Adams 0.979 37.10 N/A

Table 9: Results from comparing a convolutional
neural network to the Hamilton Adams method.

(a) Convolutional neural
network, SSIM: 0.988

(b) Hamilton Adams,
SSIM: 0.979

Figure 16: Error maps of demosaiced images using
different networks structures.

29

4.4 Loss metrics

To evaluate the impact of the loss metric during train-
ing, three different loss metrics were used: L2, SSIM
and PSNR. The result can be seen in table 10, fig-
ure 17.

Loss metric SSIM PSNR Total training time
L2 0.989 33.93 1 h 56 min
SSIM 0.952 31.00 2 h 11 min
PSNR 0.990 34.29 1 h 57 min

Table 10: Results from using different loss functions
for the optimization method.

(a) L2 loss, SSIM:
0.988

(b) SSIM loss,
SSIM: 0.950

(c) PSNR loss,
SSIM: 0.990

Figure 17: Error maps of demosaiced images using
different loss functions for the optimization method.

4.5 Demosaicing of raw images

Demosaicing of raw images was investigated in two
different ways. It was first compared how well the
baseline network, trained on the mined data set, val-
idated using the same five Kodak images versus five
raw images and the same five raw images with added
noise, see table 11. Secondly, the network was fur-
thermore trained on color and gamma corrected raw
images with and without noise and validated using

the same procedure. The result can also be seen in ta-
ble 11. The different images validated on the differ-
ent networks can be seen in figure 18, 19 and 20. The
images were demosaiced using Hamilton Adams as
a reference which can be seen in table 12 and fig-
ure 21.

Training images Validation images SSIM PSNR Tot. training time

Mined
Kodak 0.989 33.93
Raw 0.975 30.3 1 h 56 min
Noisy raw 0.813 27.94

Raw
Kodak 0.709 23.76
Raw 0.753 24.05 1 h 5 min
Noisy raw 0.627 23.25

Noisy raw
Kodak 0.786 25.86
Raw 0.826 25.77 1 h 5 min
Noisy raw 0.804 25.53

Table 11: Results from using different validation im-
ages to validate a baseline convolutional neural net-
work trained with different images.

Image SSIM PSNR
Kodak lighthouse 0.990 34.21
Adobe fiveK raw 0.987 36.89
Adobe fiveK noisy raw 0.834 29.37

Table 12: Results from demosaicing images using
the Hamilton Adams method.

30

(a) Mined data set,
SSIM: 0.988

(b) Raw data set,
SSIM: 0.685

(c) Noisy raw data,
set SSIM: 0.763

Figure 18: Error maps of the demosaiced Kodak im-
age using networks trained with different image data
sets.

(a) Mined data set,
SSIM: 0.987

(b) Raw data set,
SSIM: 0.693

(c) Noisy raw data
set, SSIM:
0.778

Figure 19: Error maps of the demosaiced raw Adobe
fiveK image using networks trained with different
image data sets.

(a) Mined data set,
SSIM: 0.848

(b) Raw data set,
SSIM: 0.595

(c) Noisy raw data
set, SSIM:
0.757

Figure 20: Error maps of the demosaiced noisy raw
Adobe fiveK image using networks trained with dif-
ferent image data sets.

(a) Kodak light-
house, SSIM:
0.990

(b) Adobe fiveK
raw, SSIM:
0.987

(c) Adobe fiveK
noisy raw,
SSIM: 0.834

Figure 21: Demosaiced images using Hamilton
Adams.

31

4.6 Residual layer

To investigate the impact of the residual layer a net-
work using the residual layer was compared to the
baseline network. The results can be seen in table 13
and figure 22.

Residual layer SSIM PSNR Total training time
Without residual layer 0.989 33.93 1 h 56 min
With residual layer 0.990 34.23 5 h 36 min

Table 13: Results from using a CNN with and with-
out a residual layer.

(a) Baseline net-
work, SSIM:
0.988

(b) Network with
residual layer,
SSIM: 0.989

Figure 22: Error maps of demosaiced images using
a CNN with and without a residual layer.

4.7 Fully convolutional neural network

To investigate the performance of the fully convo-
lutional neural network the performance of the net-
work was compared to the performance of the orig-
inal baseline network using a residual layer. The re-
sults can be seen in table 14 and figure 23. The fol-
lowing paragraphs presents the results from chang-
ing different parameters of the FCNN.

Network structure SSIM PSNR Total training time
CNN 0.989 33.93 1 h 56 min
CNN with residual layer 0.990 34.23 5 h 36 min
FCNN 0.987 34.00 2 h 45 min

Table 14: Results from comparing an FCNN to other
networks.

(a) CNN, SSIM:
0.988

(b) CNN using
residual layer,
SSIM: 0.989

(c) Baseline FCNN

Figure 23: Error maps for a CNN, a CNN with a
residual layer and an FCNN.

32

Size of filter kernels

To examine the behavior of the network when the
kernel size was altered the network was trained using
a 5×5 kernel in all convolutional layers to compare
with the baseline network that has a 3×3 kernel. The
results can be seen in table 15 and figure 24.

Kernel shape SSIM PSNR Total training time
3×3 0.987 34.00 2 h 45 min
5×5 0.989 34.17 2 h 53 min

Table 15: Results from using different kernel sizes
for an FCNN.

(a) 3×3 kernel (b) 5×5 kernel

Figure 24: Error maps for an FCNN using different
kernel sizes.

Number of filter channels

To examine the performance due to number of filter
channels, the width of the network, a version of the
network using 8 filter channels and a version using
32 filter channels were used. The results can be seen
in table 16 and figure 25.

Channels SSIM PSNR Total training time
8 0.989 33.53 2 h 17 min
16 0.987 34.00 2 h 45 min
32 0.989 34.18 3 h 22 min

Table 16: Results from using different numbers of
filter channels.

(a) 8 channels,
SSIM: 0.985

(b) 16 channels,
SSIM: 0.990

(c) 32 channels,
SSIM: 0.989

Figure 25: Error maps for an FCNN using different
numbers of filter channels.

Number of layers

To examine the effects of the number of layers in the
network versions using 2 and 8 convolutional layers
were compared to the baseline version. The results
can bee seen in table 17 and figure 26.

Layers SSIM PSNR Total training time
2 0.986 33.51 2 h 19 min
4 0.987 34.00 2 h 45 min
8 0.987 33.91 3 h 21 min

Table 17: Results from using different numbers of
convolutional layers.

33

(a) 2 layers, SSIM:
0.984

(b) 4 layers, SSIM:
0.990

(c) 8 layers, SSIM:
0.989

Figure 26: Error maps for an FCNN using different
number of convolutional layers.

Upsampling layer

To investigate the effect of the performance due to
the upsampling layer a comparison was made be-
tween an FCNN with a deconvolutional layer in
place of a residual layer and an FCNN with a resid-
ual layer. The results can be seen in table 18 and
figure 27.

Upsampling layer SSIM PSNR Total training time
With residual layer 0.914 29.14 3 h 28 min
With deconvolutional layer 0.987 34.00 2 h 45 min

Table 18: Results from using different upsampling
layers for an FCNN.

(a) Residual layer (b) Deconvolutional
layer

Figure 27: Error maps from using different upsam-
pling methods.

Placement of upsampling layer

To further examine the performance due to the up-
sampling layer two networks with different place-
ments of the upsampling layer were compared. The
baseline network, which has the upsampling layer
preceeding the last convolutional layer (excluding
the output layer), was compared to a network where
the upsampling layer was succeeding the first con-
volutional layer, yielding four convolutional layers
(excluding output layer) in full resolution. The up-
sampling was done using deconvolution. The results
can be seen in table 19.

Placement of upsampling layer SSIM PSNR Total training time
Early 0.988 34.02 4 h 0 min
Late 0.987 34.00 2 h 45 min

Table 19: Results for using different placements of
the upsampling layer in an FCNN.

34

Output layers

To examine the effects due to the output layer, three
different output layers were tested; a convolutional
layer with a 3× 3 convolutional kernel, a convolu-
tional layer using a 1×1 kernel (channel wise para-
metric pooling) and a fully connected layer. The re-
sults can be seen in table 20 and figure 28.

Output layer SSIM PSNR Total training time
3×3 convolution 0.986 33.97 3 h 7 min
Fully connected 0.949 31.11 4 h 55 min
1×1 convolution 0.987 34.00 2 h 45 min

Table 20: Results from using different output layers
for an FCNN.

(a) 3 × 3 convolu-
tion

(b) Fully con-
nected layer

(c) 1 × 1 convolu-
tion

Figure 28: Error maps of demosaiced images using
different output layers for an FCNN.

35

5 Discussion

This section discusses the results of the different net-
work structures and configuration changes. It also
discusses the possibilities to use neural networks for
denoising and the differences in properties for ordi-
nary neural networks and fully convolutional neural
networks.

5.1 Property changes in the convolutional
network structure

Both outer and inner parameters affected the network
in different ways. This section discusses the effect of
property changes of the baseline network.

Outer configurations of the network

The patch output format gives a better result than
the pixel output. This seems reasonable since ev-
ery pixel gets multiple suggested output values in the
patch approach. The output can draw benefits from
using both spatial correlation to estimate the pixel
value and the large number of output values for all
pixels. As the number of suggested values for every
pixel is large (1024) outliers have little impact on the
final result. The results from the patch network can
also draw benefit from the weighting function as the
accuracy of the output pixel value decreases as you
approach the border of the patch.

A convolutional neural network produces a better
result than a multilayer perceptron. This could also
be predicted as the convolutional neural network has
a more complex structure than the multilayer per-
ceptron and is thereby able to learn more complex
structures, even though the MLP has more trainable
weights. It was however an important part of the
project to rule out the MLP as a promising approach
to continue working with.

The sampling step length is the property that

makes the largest difference in the result. This is
however not surprising as the validation and training
is done on input data with a consistent CFA pattern.
This allows the network to draw conclusions us-
ing the correlation between between the color chan-
nels recognizing specific correlations between spe-
cific color channels and using these conclusions in
an efficient way in the validation.

A good patch size is a trade-off between an im-
proved result and an increase in the complexity of
the calculations. Increasing the input patch size from
16×16 to 32×32 increased the image quality of the
demosaiced image considerably when using a sam-
pling step length of 1. When changing the sampling
step length to 2, the change was not as dramatic. The
input patch size of 16×16 showed a better result ac-
cording to the SSIM and PSNR measurements, al-
though when comparing the demosaiced images im-
age artifacts appears to be less prominent in the im-
age demosaiced using 32× 32 patches. This could
be explained by Wang’s [28] hypothesis that larger
patches would make a multilayer neural network re-
cover better for high frequency patterns, limiting im-
age artifacts. Therefore continued development was
done using a patch size of 32×32. The change from
a smaller patch size to a larger patch size also made
the difference between other parameter changes less
prominent as measured by the error metric and on the
current validation set.

An increase in patch size increased the training
time. As can be seen in table 2, an MLP slows down
the training session considerably. This is due to the
high numbers of weights in the fully connected lay-
ers. This is most prominent when comparing the
training time of an MLP using 16× 16 patches and
the same network training on 32× 32 patches. This
is expected as the weight matrices need to contain
four times as many weights and four times as many
multiplications are needed in the case with 32× 32
patches compared to the case with 16× 16 patches.

36

When using an FCNN, which does not contain any
fully connected layers and thus takes better advan-
tage of parameter sharing, the difference in training
time is not prominent at all.

Network depth

The depth of the network (the number of operation
layers) is of importance for the result even though
the changes are small. As can be seen in table 5 the
results for the PSNR measurement increase slightly
with the depth of the net while the SSIM remains
more or less unchanged. The changes between four
and eight layers are small and as the training time in-
creases with 21% this appears to be an unnecessary
change. When looking at the images in figure 13 it
appears as if the network with 8 convolutional lay-
ers gives an image with less artifacts in the fence.
The reduction of the aliasing artifact is probably due
to the deeper network being able to process the data
additionally with its additional layers and can there-
fore use the increased abstraction level to draw more
conclusions. A deep network with a large kernel size
makes the receptive field cover more than the spatial
dimension of the input patch. This makes the net-
work process data in the padded regions instead of
expanding its receptive field. This can result in bor-
der effects, which can be seen in figure 13c. The
effective receptive field can, however, be expected to
not exceed the input patch. To benefit more from a
deeper network the patch size needs to be increased.

Network width

The width of the network is also of importance for
the result and the results are more apparent than in
the case with the number of layers as can be seen
in table 6. This is expected as the complexity in-
creases and is well confirmed in the literature such
as by Gharbi et al. [5]. The increased number of
filter channels allows the network to express more

features in each convolutional layer which yields a
better result. The execution time is also increased as
the complexity of the network increases which is ex-
pected. In contrary to the case with network depth
the number of filter channels in each layer could be
increased to almost any number only limited by the
memory capacity for storing the weights and a rea-
sonable training time.

Size of filter kernels

The network using larger filter kernels yields better
results than the network using smaller kernels as the
network can draw conclusions from larger spatial re-
gions in each step and get a larger receptive field in
the whole network. Due to the low number of convo-
lutional layers in the network the receptive field does
not enclose more than the spatial dimensions of the
input patch even though the kernel size is larger. This
allows us to be certain that any edge effects is not due
to that the receptive field is exceeding the size of the
input patches.

Receptive field

The network seems to benefit from an increased re-
ceptive field whether the increase in the result is due
to a deeper network, larger kernel size or both. The
largest increase in the result seems to be due to a
deeper network. As the best result is given from the
largest receptive field it is reasonable to assume that
the effective receptive field is not exceeding the size
of the input patches.

Loss function

The loss function that yields the best result during
validation is the PSNR. The small improvement from
the L2 loss function can probably be derived from
the logarithmic scale in the PSNR which gives the
loss function ability to punish small errors as well

37

as larger ones. Worth noting is that neither of these
functions manage to suppress the aliasing artifact in
the fence as both of them only examine pixel val-
ues and neglect the correlation between pixels. The
SSIM loss, on the other hand, does examine the cor-
relation between pixels. It does however not exam-
ine frequencies in the image and can therefore not
suppress the aliasing. Another property of the SSIM
metric is that it only works on gray scale images.
This makes it hard for the loss function to get a good
estimate of the color rendering, something that can
be said to be of great importance for demosaicing.
These effects were very visible when using a step
length of one in the sampling due to the dissimilar-
ity in the patch structure. SSIM is however a good
metric for validation as a complement to the PSNR
metric due to the usage of correlation between pixels.

Residual layer

The result indicates that the convolutional network
shows tendencies to benefit from the residual layer.
This is due to the additional forward-pass of the input
data which allows the net to learn from the residuals
of the network.

Reference method

The performance of our method can be considered
to be in the same region as the performance of the
Hamilton Adams method. The features of the per-
formance however differs. The Hamilton Adams
method can more efficiently remove the artifact in
the fence due to the contribution from the edge detec-
tion algorithm. It does however amplify the artifacts
in the images whereas our method successfully re-
duce them. The Hamilton Adams also have the ben-
efit of a low computational cost in comparison to our
neural network method.

5.2 Demosaicing raw images

It was possible to demosaic raw images with the
baseline neural network trained on artificially mo-
saiced mined images. The baseline network was
however not able to remove any noise from the noisy
raw images since the network was not trained to re-
move noise by getting noisy input that has a noiseless
ground truth.

When demosaicing using a network trained on raw
Adobe fiveK images, the validated images ended up
with a lot of edge artifacts. This is probably due
to the network not being trained on a data set with
difficult patches. I.e. the concept of patch mining
seems like an important strategy for obtaining good
results. This network did not remove any noise from
the noisy raw images.

When training and validating on raw images with-
out color and gamma correction the network did not
produce any usable results. This is due to the net-
work only being optimized for 8-bit images. There-
for using 12-bit images as input, which the non color
and gamma corrected raw images were, would not
produce good results.

The network that trained on noisy raw images per-
formed better than the network trained on raw im-
ages without noise. The validated images contained
less edge artifacts although the images appeared to
be smoothed. When validating using the noisy raw
images, a lot of noise was reduced. The images did
not contain as much edge artifacts which can be a
consequence of the network being prone to smooth-
ing the images to remove the noise. The network
that trained on noisy raw images was the network
that removed the most noise. The Hamilton Adams
demosaicing algorithm only amplified the noise.

38

5.3 Fully convolutional neural networks

The fully convolutional version of our baseline net-
work appears to have worse performance than its or-
dinary convolutional counterpart. This could imply
that the fully connected layer plays an important role
in the demosaicing process and that full connectivity
for the processed patches at some point in the net-
work is important. Another possible interpretation is
that the large number of filter weights in a fully con-
nected layer contribute to enhance the performance.
The network shows the same tendencies as the ordi-
nary convolutional network when it comes to number
of channels, depth of the network and the kernel size.
When examining the differences due to the different
upsampling layers it is obvious that the deconvolu-
tion layer works much better than the residual layer
in the fully convolutional neural network. There is
also a huge improvement in the speed of the train-
ing. This implies that it might be the upsampling
itself rather than the actual operation that enhances
the performance of the network. The upsampling al-
lows the final convolution to be done in full reso-
lution which appears to be beneficial. It appears that
the placement of the upsampling layer does not affect
the performance significantly even though a place-
ment which allows more convolutions to be done in
full resolution seems beneficial. Neither is the size
of the receptive field altered. The training time is
thus increased as more convolutions have to be done
in full resolution. The performance is furthermore
improved when the final convolutional layer is re-
placed with a channel-wise parametric pooling layer,
implemented as a 1× 1 convolutional layer. As can
be seen in table 20 the fully connected layer gives
an extended training time. The reason for this is
the full resolution in the final layer. In comparison
to the ordinary neural network the number of filter
weights, and there by the number of computations,
is increased by a factor 4.

5.4 Demosaicing demosaiced images

A large part of this thesis has been based on training
and validating on artificially created mosaiced data
from images that have already been demosaiced. It
is an easy way to get both training data and ground
truth data. The downside is that the neural network
can learn to mimic the demosaicing algorithm used
in the first place to create the ground truth image. It is
also unknown which pixels in the image are from the
original sensor data. To lessen the effect of this the
ground truth image can be downsampled or blurred.

The Kodak data set is in itself problematic for the
demosaicing process since it contains scanned high
resolution photos. The Kodak image data set is pop-
ular to use when benchmarking demosaicing algo-
rithms, which enables comparisons between research
papers. The problem with this is that the algorithms
often perform badly when demosaicing real raw im-
age sensor data, making the point of developing de-
mosaicing algorithms void when they do not work on
the real world problem.

39

6 Further work

To further improve the methods stated in this report
other associated areas have to be investigated. This
section describes possible further work concerning
such areas that might be interesting to investigate.

Shape of filter kernels

During the thesis quadratic filter kernels have been
used during convolution. Sun et al. [31] suggests that
using filter kernels with a hexagonal shape can be
beneficial for the image classification task. It can be
argued that using filter kernels with different shapes
could help remove image artifacts in demosaiced im-
ages. It would be interesting to investigate this fur-
ther.

Lower complexity

Deep neural networks can be computationally heavy,
which can be limiting to some areas of usage. Some
processors do not have the capacity to handle large
numbers of data in a reasonable time frame, like a
camera demosaicing an image in real time. To get
demosaicing of images with the help of neural net-
works relevant to low capacity processors the neu-
ral network needs to be less complex. Deep neural
networks do unfortunately not reach up to this goal.
A solution to this could be to train shallow neural
networks to be able to achieve similar results as the
deeper neural networks. Lei et al. [32] has shown
that a shallow network cannot achieve as good re-
sults as a deep network when training on the same
data. However a shallow network can be trained to
mimic the deeper network and therefore achieve the
same accuracy as the deeper network.

Color precision on raw images

Training the baseline neural network with raw im-
ages without gamma correction was not possible
since our implementation of the network is limited
to 8-bit color image input. The raw images had a
color precision of 12 bits. Since the demosaicing
process can occur before the gamma and color cor-
rection in the image processing pipeline the neural
network could further be improved to handle images
with a 12-bit precision to be able to take raw images
without gamma and color correction as input.

Customized loss function

As can be seen throughout the results our method
causes Moiré artifacts due to aliasing. A reason
for this behavior might be that it is not suppressed
enough by the loss function in the optimization. To
improve the result a loss method that operates in the
the frequency domain and suppresses high frequent
artifacts would be more adequate. This needs to be
combined with a method that ensures a good color
rendering in other parts of the image as well. De-
signing such a method did not fit within the scope of
this thesis but would surely be a good development
and addition to our method.

Image mining

To increase the accuracy of the network on raw im-
ages a future implementation could be to mine chal-
lenging raw images. This could make the network
able to train and learn from images that are suited
for eliminating artifacts and noise that is undesirable
in the output image.

Ground truth

To get a network that performs well and does not
mimic any previous demosaicing methods present in
ground truth images it would be ideal to use ground

40

truth data that has not been produced by demosaic-
ing. This could be done by using for example three
charge-coupled devices or some other method that
captures three colors per pixel.

Edge effects

When inspecting the edges of the resulting images
closely, salient effects of the convolutional opera-
tions are visible in the shape of fading edges. This
is a result of the lack of information of the pixel val-
ues outside the image. To avoid these effects some
kind of filtering could be applied to the edges. An-
other solution would be to train the network using
more edge data allowing the network to learn to pro-
cess the edges with good results. A simpler solution
would of course be to crop the images to remove all
edge effects, but this is not recommended.

41

7 Conclusions

Using convolutional neural networks is a valid
method for demosaicing images with good results
and it could replace a method using linear interpo-
lation. Our CNN method outperforms the multilayer
perceptron by a difference of 7.14 dB in the peak sig-
nal to noise ratio. The convolutional neural network
performs well when using L2 and PSNR as loss func-
tions when training the network, however SSIM does
not perform as well. Despite the relatively good re-
sult the network would benefit from using an error
metric that is better at indicating the presence of im-
age artifacts and color errors. The network did not
significantly benefit from the residual layer nor a de-
convolution layer. The benefit these layers added is
believed to have come from their ability to upsample
the data. The FCNN did not perform as well as the
CNN which implies that fully connected layers are
beneficial for the demosaicing process. Even though
the demosaicing problem is a local problem it ap-
pears as the network benefits from a larger connec-
tivity at some level. The convolutional neural net-
work was able to demosaic raw images but only re-
moved noise from images when trained on images
containing noise. It would be especially interesting
to continue to improve the networks ability to de-
mosaic raw images with and without noise that has
not been color or gamma corrected to be able to in-
corporate neural networks in the image processing
pipeline. As the convolutional neural network meth-
ods are much more computationally heavy than a
linear interpolation method a combination of demo-
saicing and e.g. denoising should be included in the
neural network method to make it worth replacing a
classical method.

The convolutional neural network performed on
average a peak signal to noise ratio of 34 dB. The
consensus of changing different parameters of the
network was that small networks with less complex

operations, e.g. convolutions, kernel channels etc.,
did not differ in the results much compared to deeper
networks with more complex operations more than
that the training time drastically increased.

42

References

[1] J. E. Adams Jr and J. F. Hamilton Jr, “Adaptive
color plane interpolation in single sensor color
electronic camera,” July 29 1997. US Patent
5,652,621.

[2] B. E. Bayer, “Color imaging array,” July 20
1976. US Patent 3,971,065.

[3] X. Li, B. Gunturk, and L. Zhang, “Image de-
mosaicing: A systematic survey,” in Electronic
Imaging 2008, pp. 68221J–68221J, Interna-
tional Society for Optics and Photonics, 2008.

[4] H. S. Malvar, L.-w. He, and R. Cutler, “High-
quality linear interpolation for demosaicing of
bayer-patterned color images,” in Acoustics,
Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Confer-
ence on, vol. 3, pp. iii–485, IEEE, 2004.

[5] M. Gharbi, G. Chaurasia, S. Paris, and F. Du-
rand, “Deep joint demosaicking and denois-
ing,” ACM Trans. Graph., vol. 35, pp. 191:1–
191:12, Nov. 2016.

[6] C. Ledig, L. Theis, F. Huszár, J. Caballero,
A. Cunningham, A. Acosta, A. Aitken, A. Te-
jani, J. Totz, Z. Wang, et al., “Photo-realistic
single image super-resolution using a gen-
erative adversarial network,” arXiv preprint
arXiv:1609.04802, 2016.

[7] J. R. Janesick, Photon Transfer DN→ λ . SPIE
Press Book, SPIE, 2007.

[8] W. S. McCulloch and W. Pitts, “A logical calcu-
lus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[9] I. Basheer and M. Hajmeer, “Artificial neural
networks: fundamentals, computing, design,
and application,” Journal of microbiological
methods, vol. 43, no. 1, pp. 3–31, 2000.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Delv-
ing deep into rectifiers: Surpassing human-
level performance on imagenet classification,”
in Proceedings of the IEEE international con-
ference on computer vision, pp. 1026–1034,
2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hin-
ton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neu-
ral information processing systems, pp. 1097–
1105, 2012.

[12] O. Kapah and H. Z. Hel-Or, “Demosaicing us-
ing artificial neural networks,” in PROC SPIE
INT SOC OPT ENG, vol. 3962, pp. 112–120,
2000.

[13] N. Srivastava, G. E. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from
overfitting.,” Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929–1958, 2014.

[14] H. Zhao, O. Gallo, I. Frosio, and J. Kautz,
“Loss functions for image restoration with neu-
ral networks,” IEEE Transactions on Computa-
tional Imaging, 2016.

[15] L. Zhang, L. Zhang, X. Mou, and D. Zhang,
“A comprehensive evaluation of full reference
image quality assessment algorithms,” in Im-
age Processing (ICIP), 2012 19th IEEE Inter-
national Conference on, pp. 1477–1480, IEEE,
2012.

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli, “Image quality assessment: from

43

error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13,
no. 4, pp. 600–612, 2004.

[17] R. Mantiuk, K. Myszkowski, and H.-P. Seidel,
“Visible difference predicator for high dynamic
range images,” in Systems, Man and Cybernet-
ics, 2004 IEEE International Conference on,
vol. 3, pp. 2763–2769, IEEE, 2004.

[18] R. Mantiuk, K. J. Kim, A. G. Rempel, and
W. Heidrich, “Hdr-vdp-2: a calibrated visual
metric for visibility and quality predictions in
all luminance conditions,” in ACM Transac-
tions on Graphics (TOG), vol. 30, p. 40, ACM,
2011.

[19] S. Ruder, “An overview of gradient de-
scent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[20] B. T. Polyak, “Some methods of speeding up
the convergence of iteration methods,” USSR
Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[21] I. Sutskever, J. Martens, G. E. Dahl, and G. E.
Hinton, “On the importance of initialization
and momentum in deep learning.,” ICML (3),
vol. 28, pp. 1139–1147, 2013.

[22] D. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[23] I. Goodfellow, Y. Bengio, and A. Courville,
Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[24] W. Luo, Y. Li, R. Urtasun, and R. Zemel,
“Understanding the effective receptive field in

deep convolutional neural networks,” in Ad-
vances in Neural Information Processing Sys-
tems, pp. 4898–4906, 2016.

[25] J. Long, E. Shelhamer, and T. Darrell, “Fully
convolutional networks for semantic segmenta-
tion,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition,
pp. 3431–3440, 2015.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet,
S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with con-
volutions,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, pp. 1–9, 2015.

[27] M. Lin, Q. Chen, and S. Yan, “Network in net-
work,” arXiv preprint arXiv:1312.4400, 2013.

[28] Y.-Q. Wang, “A multilayer neural network
for image demosaicking,” in Image Process-
ing (ICIP), 2014 IEEE International Confer-
ence on, pp. 1852–1856, IEEE, 2014.

[29] H. Zhao, O. Gallo, I. Frosio, and J. Kautz,
“Loss functions for image restoration with neu-
ral networks,” IEEE Transactions on Computa-
tional Imaging, vol. 3, pp. 47–57, March 2017.

[30] V. Bychkovsky, S. Paris, E. Chan, and F. Du-
rand, “Learning photographic global tonal ad-
justment with a database of input / output im-
age pairs,” in The Twenty-Fourth IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion, 2011.

[31] Z. Sun, M. Ozay, and T. Okatani, Design
of Kernels in Convolutional Neural Networks
for Image Classification, pp. 51–66. Cham:
Springer International Publishing, 2016.

44

[32] J. Ba and R. Caruana, “Do deep nets really
need to be deep?,” in Advances in Neural In-
formation Processing Systems 27 (Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, eds.), pp. 2654–2662,
Curran Associates, Inc., 2014.

45

A Images

(a) Patch output, SSIM: 0.929 (b) Pixel output, SSIM: 0.871

Figure 29: Demosaiced images with different output structures

46

(a) Convolutional neural network, SSIM: 0.929 (b) Fully connected network, SSIM: 0.763

Figure 30: Demosaiced images with different network structures

47

(a) Sampling step length 1, SSIM: 0.929 (b) Sampling step length 2, SSIM: 0.990

Figure 31: Demosaiced images using different sampling step lengths.

48

(a) 16×16 patches, SSIM: 0.990 (b) 32×32 patches, SSIM: 0.988

Figure 32: Demosaiced images using different patch sizes.

49

(a) 2 convolutional layers, SSIM:
0.988

(b) 4 convolutional layers, SSIM:
0.988

(c) 8 convolutional layers, SSIM:
0.990

Figure 33: Demosaiced images using different numbers of layers

(a) 8 kernel filters, SSIM: 0.987 (b) 16 kernel filters, SSIM: 0.988 (c) 32 kernel filters, SSIM: 0.989

Figure 34: Demosaiced images using different kernel filter amounts

50

(a) 3×3 kernel, SSIM: 0.988 (b) 5×5 kernel, SSIM: 0.990

Figure 35: Demosaiced images from a CNN using different kernel sizes

51

(a) Convolutional neural network, SSIM: 0.988 (b) Hamilton Adams, SSIM: 0.979

Figure 36: Demosaiced images using different networks structures.

52

(a) L2 loss, SSIM: 0.988 (b) SSIM loss, SSIM: 0.950 (c) PSNR loss, SSIM: 0.990

Figure 37: Demosaiced images using different loss functions for the optimization

(a) Mined data set, SSIM: 0.988 (b) Raw data set, SSIM: 0.685 (c) Noisy raw data, set SSIM: 0.763

Figure 38: Demosaiced Kodak image using networks trained with different image datasets

53

(a) Mined data set, SSIM: 0.987 (b) Raw data set, SSIM: 0.693 (c) Noisy raw data set, SSIM: 0.778

Figure 39: Demosaiced raw Adobe fiveK image using networks trained with different image datasets

(a) Mined data set, SSIM: 0.848 (b) Raw data set, SSIM: 0.595 (c) Noisy raw data set, SSIM: 0.757

Figure 40: Demosaiced noisy raw Adobe fiveK image using networks trained with different image datasets

54

(a) Kodak lighthouse, SSIM: 0.990 (b) Adobe fiveK raw, SSIM: 0.987 (c) Adobe fiveK noisy raw, SSIM:
0.834

Figure 41: Demosaiced images using Hamilton Adams method.

55

(a) Baseline network, SSIM: 0.988 (b) Network with residual layer, SSIM: 0.989

Figure 42: Demosaiced images using a CNN with and without a residual layer

56

(a) CNN, SSIM: 0.988 (b) CNN using residual layer, SSIM:
0.989

(c) Baseline FCNN, SSIM: 0.990

Figure 43: Demosaiced images using a CNN, a CNN with a residual layer and an FCNN

57

(a) 3×3 kernel, SSIM: 0.990 (b) 5×5 kernel, SSIM: 0.987

Figure 44: Demosaiced images using an FCNN with different kernel sizes

58

(a) 8 channels, SSIM: 0.989 (b) 16 channels, SSIM: 0.990 (c) 32 channels, SSIM: 0.986

Figure 45: Demosaiced images using an FCNN with different number of kernel channels

(a) 2 layers, SSIM: 0.984 (b) 4 layers, SSIM: 0.990 (c) 8 layers, SSIM: 0.987

Figure 46: Demosaiced images using an FCNN with different number of convolutional layers

59

(a) Residual layer, SSIM: 0.987 (b) Deconvolutional layer, SSIM: 0.990

Figure 47: Demosaiced images using different upsampling methods

60

(a) 3×3 convolution, SSIM: 0.988 (b) Fully connected layer, SSIM: 0.990 (c) 1×1 convolution, SSIM: 0.990

Figure 48: Demosaiced images using different output layers

61

