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1 Abstract

With a growing number of sensors collecting information about systems in indus-
try and infrastructure, one wants to extract useful information from this data.
The goal of this project is to investigate the applicability of Echo State Net-
work techniques to time-varying classification of multivariate time series from
primarily mechanical and electrical systems. Two relevant technical problems
are predicting impending failure of systems (predictive maintenance), and clas-
sifying a common event related to the system (event detection). In this project,
they are formulated as a supervised machine learning problem on a multivariate
time series. For this problem, Echo State Networks (ESN) have proven effective.
However, applying these algorithms to new data sets involves a lot of guesswork
as to how the algorithm should be configured to model the data effectively. In
this work, a modification of the Echo State Network (ESN) model is presented,
that helps to remove some of this guesswork. The new algorithm uses specifically
structured components in order to facilitate the generation of relevant features
by the ESN. The algorithm is tested on two easy event detection data sets, and
one hard predictive maintenance data set. The results are compared to Support
Vector Machine and Multilayer Perceptron classifiers, as well as to a basic ESN,
which is also implemented as a reference. The component ESN successfully
generates promising features, and outperforms the minimum complexity ESN
as well as the standard classifiers.
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2 Introduction

More and more companies with equipment in industry and infrastructure choose
to collect and store sensor data from their systems. These sensors typically mea-
sure physical quantities such as temperature, pressure, resistance, rotational
speed, or more high level features such as specific errors occurring. Thanks to
cheap digital technologies, a relatively small investment can be potentially very
valuable. The crucial step of actually extracting usable knowledge from this
data, however, is rarely a straight path. This is the subject of the growing field
of data mining for industry. A lot of this sensor data comes in the form of time
series, with new measurements being taken and stored regularly. Additionally,
one often wants to take many sensors into account when studying the system,
since interesting phenomena can potentially be found in investigating the de-
pendence between different sensors. For example, normally insignificant values
from one sensor might be very important conditional on another sensor’s value.
Also the order in which events happen can be important. Therefore, it is inter-
esting to conceive good algorithms for modeling multivariate time series. There
is a number of technical problems which could be solved using such models.
Among them are optimizing process settings, detecting and possibly adjusting
for common events which may be loosely connected to the sensors, and to pre-
dict rarely occurring failures of a system. The two latter are commonly called
event detection and predictive maintenance, and in this project a new method
for solving them is presented and evaluated on real data sets.

Both event detection and predictive maintenance can be formulated as a
supervised machine learning problem on (multivariate) time series. The method
is based on Echo State Networks (ESN) as they are put forward by [Rodan2011].
An ESN consists of a large number of nodes which are sparsely but recurrently
connected. These nodes are referred to as the reservoir, and ESN belongs to
the class of reservoir computing models, the other large model type being the
Liquid State Machine [Maass2002]. The reservoir nodes are connected to output
nodes, which are supposed to approximate a given target. Only these output
connections are trained, which makes training mathematically and technically
easier than other alternatives for training time-recurrent models. However, ESN
has other difficulties. For example, in [Jaeger2005] Herbert Jaeger, one of the
pioneers of ESN research, addresses the problem that it is hard to determine
what class of processes which can effectively be modeled using a particular ESN.

The original approach in this project is to take a practical approach to this
problem: the ESN should be synthesized so as to be able to capture the patterns
which can be observed when looking at the data. This is accomplished with
the use of components, which are sub-reservoirs with a specific structure. The
design of the ESN includes deciding which components to include, and how they
should be connected to the input, the output, and to each other. In addition
to the component approach, some experimentation is done with dimensionality
reduction of the generated features, and different techniques for learning the
target from the reduced features are tried. The performance of component ESN
is compared to a ”basic” ESN, as it is formulated in [Rodan2011]. The ESN
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classifiers are also compared to static time classifiers Support Vector Machine
(SVM) and Multilayer Perceptron (MLP).

Two event detection data sets are tested. One is EEG signals from a person,
where the label is whether the person’s eyes are closed, see section 5.2. The
other is data from sensors in an office room, measuring among other things
temperature and CO2. The label is whether there is a person in the room.
For these two data sets, there are associated articles which registered perfor-
mance figures. It is shown that both ESN models can match the results in
these publications. For the predictive maintenance data set, open access data
of so called SMART values from hard drives are used. The SMART values
monitor mechanical running conditions and errors in a hard drive. The label is
whether the drive breaks. In this case, no comparable study has been found.
However, a study made at Google [Pinheiro2007] claims that ”...it is unlikely
that an accurate predictive failure model can be built using [SMART values]
alone.” (direct quote). In this report, it is shown that a component ESN can
be used to make better than random predictions, when given samples which are
not currently identified before failure by the company which supplies the data
[Backblaze2017c]. The other algorithms, including basic ESN, do not perform
significantly better than random guessing.

This report is structured as follows. In section 3, the research background
of ESN is laid out, and the reason for framing predictive maintenance as a
supervised learning problem on multivariate time series is explained. In section
4, the learning problem is formally stated, and the used test metric is defined.
Also, the strategy for a proof of concept is laid out. In section 5, the data
sets are presented. Their properties and the applied preprocessing is listed.
Additionally, relevant qualitative questions of what the data sets can be used
to show about the component ESN are posed. In section 6 and 7, the used
algorithms are presented. In section 7, the component ESN is defined, as well
as some component types, and feature reduction techniques. An overview of the
implementation is presented in section 8. The results of testing are presented in
section 9. In section 10, some theoretical properties of the modeling ability of
ESN is derived, and the results are analyzed in the light of this. In section 13,
some exciting ideas for further development of component ESN are presented.

3 Background

The reader of this master’s thesis is assumed to be familiar with introductory
mathematical statistics and stochastic processes, as well as to be acquainted
with the most important machine learning methods.

3



3.1 Research Background

3.1.1 Markov Process

A very common modeling tool for stochastic processes is to make a Markov
assumption. A stochastic process has a Markov property if:

f(Yt = yt|Yt1 = y1, Yt2 = y2, ...) = f(Yt = yt|Yt1 = y1) (1)

if t > ti for i = 1, 2, ... and t1 > ti for i = 2, 3, ...
If we call t the future and t1 the present, this means that the future of

the process is conditionally independent of the past, given the present. So, all
information that is useful for predicting the future of the process is contained in
the most recent known state. The fact that we only have to account for a finite
amount of information makes designing a prediction or classification algorithm
much easier. Therefore, this is the basis of many time series algorithms. A
naive but sometimes accurate assumption is that the process is itself a Markov
process. A more powerful approach is to assume that there is a hidden process
which has a Markov property. The process that we can observe is some function
of the states of the hidden process. The models described in the sections below
all work like this.

3.1.2 Linear State Space

Given a process Ut, which may be multivariate, with an associated label process
Yt, a linear state space model from U to Y is defined as:

Xt = f(AXt−1 +BUt) (2)

Yt = CXt (3)

where Xt is called the state process. A is typically called a system matrix, B is
called an input matrix, and C is called an output matrix.

3.1.3 Recurrent Neural Networks

With the same assumptions on the processes as in the previous section, the
basic recurrent neural network (RNN) can be expressed in a very similar way
to the linear state space models:

Xt = f(AXt−1 +BUt) (4)

Yt = CXt (5)

where A,B,C are linear transforms, and f()̇ is an element-wise nonlinear func-
tion.

RNNs are potentially very powerful at modelling stochastic processes, but
they are also difficult to train from data. When training an RNN, one attempts
to adjust the weights of A,B, and C, so as to approximate the function Ut → Yt

4



implied by the data. In 1994, it was shown that training an RNN using back-
propagation is difficult, since the error derivatives will either decay or grow
exponentially [Bengio1994]. Backpropagation is the standard method for train-
ing feed-forward neural networks, where the derivative of the error with respect
to the network weights are calculated recursively backwards in the network. For
this reason, the focus of the research has been to make certain restrictions on
the structure of RNNs so as to make training easier and safer without sacrificing
too much modeling capacity. One successful approach to this is the Long-Short
Term Memory network introduced in [Schmidhuber1997]. The Echo State Net-
work, which is the topic of this paper, is another one.

3.1.4 Echo State Networks

The Echo State Network (ESN) was described by [Jaeger2001a]. The ESN relies
on the same state description as the full RNN, with A,B,C being general-case
matrices. However, A and B are not trained, only C. Consequently, supervised
learning uses no backpropagation in time, only a direct mapping from extended
features to output. In the words of Ali Rodan and Peter Tiño [Rodan2011]:

Roughly speaking, ESN is a recurrent neural network with a non-
trainable sparse recurrent part (reservoir) and a simple linear read-
out.

The downside is that the model has less ability to adapt to the data, and
modelling a complex function requires very many nodes [Jaeger2001a]. ESNs
have been used to solve many different time series problems (see next section).
In [Rodan2011], it is found that a simple yet randomized structure of the ESN
is just as good as “trimmed” ESNs. In 2001, Jaeger proved that there is a
theoretical limit to the storage capacity of the nodes of an ESN [Jaeger2001b].

3.1.5 Projects Related to the Chosen Method

Prediction is probably the most natural inference problem for time series. Given
that we know (some of) the historical values of a process, what will the future
values be? Prediction can be done as supervised learning: the past values is the
data and the present values is the label. In [Busseti2012], deep neural networks
(both recurrent and forward-only) are used to predict electricity demand. Echo
State Networks are also frequently used for prediction. [Rodan2011] presents a
comparative study of different ESN implementations for a number of prediction
tasks. [Bianchi2015] and [Han2015] employ linear subspace-techniques to make
ESN training and predictions safer and less noisy. In the area of Natural Lan-
guage Processing, ESNs have been shown to outperform trigram models in pre-
dicting grammatically correct words to follow a given word sequence [Tong2007].
In [Lin2011], ESNs are used to predict future stock values, and are shown to
outperform buy-and-hold strategies, especially in bear markets.
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3.2 Technical Background

The data type in focus in this project is multivariate numeric time series.
Thanks to the miniaturization revolution in the last decades, this is a data
type which is becoming more and more common in industry and infrastructure.
Obtaining, transferring and storing data from different types of sensors has be-
come cheaper and easier. At the same time, the interest in extracting useful
information from these time series has also increased [Keogh2004]. This master’s
thesis and the associated software project was created in house at Sentiantech-
nologies AB (also called Sentian.AI), in Malmö, Sweden [Sentian2017]. Sentian
is an AI solutions company whose business goal is to make industries smarter,
using advanced data mining and processing methods. The goal of this project
is to investigate the applicability of Echo State Networks techniques to time-
varying classification of multivariate time series from primarily mechanical and
electrical systems. Specifically, the problems that were identified as interesting
when scoping this project, was predictive maintenance and event detection.

3.3 Problem Background

Both predictive maintenance and event detection are essentially about detecting
changes in the characteristics of a time series, and there exists many methods to
do it that does not involve machine learning. Typically, to solve these problems
without machine learning would require a model of the process being studied.
The parameters of this model could then be recursively over segments of the
data. To test whether a significant change has occurred at time T , one can
estimate the parameters of the process for some time before T , and perform
a test whether these are significantly different from the parameters estimated
for the segment just after T . The model of the process can be very simple.
For example, the model can be that the process is a constant plus noise. A
common method in traditional time series analysis is to model the process as an
ARMA process. There are known methods for efficient and effective estimation
for ARMA-coefficients, as well as uncertainty estimates [Jakobsson2015], which
makes it very suitable for this approach.

3.3.1 Predictive Maintenance

Predictive maintenance of a system means identifying and remedying risky be-
haviour, before the system is irrecoverably broken or requires expensive reactive
maintenance. A machine learning approach to this can be to produce an al-
gorithm that organizes or visualizes the sensor data so as to make it more
understandable to a human operator. This would typically be formulated as an
unsupervised problem. A more strictly automated approach is to make a sys-
tem that learns to identify risky behaviour itself. This would be formulated as
a supervised problem. This project uses the latter approach. One good reason
for this is that the supervised learning problem is more easily evaluated objec-
tively, independent of a human operator. A successful system can also reduce
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the cost of monitoring substantially more than one which requires an operator.
An argument against the supervised approach is that the resulting algorithm is
not very transparent. This may lead to missing out on valuable insight into the
process that might have been acquired with human supervision. Such insight
could even be more valuable than the predictive maintenance system itself.

Given that supervised learning should be used for the predictive maintenance
system, it is often advantageous to formulate the problem as a time series prob-
lem. That is, the chronological order of the time-samples should be respected
so that past values of the process and not just the current ones, can influence
the algorithm’s prediction. Even if the modeled system is often restarted with
the same settings so that its future should be independent of its history, an
error is by definition the system not working as intended, so the ”fresh restart”
property may very well be violated in the presence of an error. So what one
wants to do is to learn a model that differentiates ”normal” from ”abnormal”
system behaviour.

The best data for this problem, is to have long time series covering a lot of
fault-free running, as well as many error incidents with context. This type of
data is notoriously hard to come by [Saxena2008]. This is because it is typically
collected by private companies, and the data is potentially very valuable and
could also reveal dangerous shortcomings of the system. An open collection of
predictive maintenance data made by NASA can be found at [PCoE2017].

4 Problem Formulation and Methodology

Below is the data representation and terminology used in the project.

Figure 1: Data representation used in the project.
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4.1 Formal Problem Statement

Call the given data X1, X2, ..., Xn with samples Xi. We also have label arrays
Y1, Y2, ..., YN where Yi has one label for each time sample in Xi. The problem
is this. Given:

Xi(τ), 0 ≤ τ ≤ t (6)

Predict:
Yi(t) ∈ {0, 1}. (7)

4.2 Test Metric

For classification and cegression tasks, the precision and recall measures are
easily interpretable, and give a good idea of how useful the predictions are.

• Recall is the probability that the prediction is positive, given that the
label is positive.

• Precision is the probability that the label is positive, given that the
prediction is positive.

It is easy to make a predictor with perfect recall: simply predict always positive.
This will give a bad precision, however. A popular way of obtaining a combined
performance measure from precision and recall is to take their harmonic mean
F :

1

F
=

1

2
(

1

P
+

1

R
). (8)

This is also known as the F-measure. The above makes it possible to compare
the performance of the model between different data sets.

4.2.1 Accuracy Test Metric

In [Candanedo2016], the test metric used is called accuracy and is calculated
as:

acc =
A+D

A+B + C +D
(9)

where A is true positives, B is false positives, C is false negatives, and D is
true negatives. In short, the accuracy is the ratio of time instances when the
predictor is correct. This is a reasonable measure for data sets with roughly
an equal number of positive and negative examples, and when making a false
positive is as bad as a false negative. This is not the case for a predictive
maintenance system however, since it has many more negative examples, and
false negatives are worse than false positives.
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4.2.2 Lost Days Estimation

For an imperfect predictive maintenance system, one has to make a trade-off
between missing some failures, and reporting some failures too early. Where
this trade-off should be made is very contextual, and depends on economic
factors which are outside the scope of this paper. However, we can estimate the
expected number of lost days due to premature warnings. When running on
known data, simply take the average of the number of days that the algorithm
warns before the unit actually did break down.

4.3 Performance Measuring Procedure

All the tested algorithms use user-defined hyper-parameters. To make a fair
comparison, one should use find suitable hyper-parameters for each new data
set. The data set was split into three parts: Training,Validation, and Test. To
find good hyper-parameters, the model was iteratively trained on the Training
part and its performance tested on Validation. The parameters that gave the
best result on Validation (with some checking that the result was robust for
similar settings) was used to train the model on both Training and Validation
and tested on Test. The performance on Test was reported as the final score.

4.4 Proof of Concept Strategy

The strategy for evaluating whether component ESN is a valuable modification
of the ESN method, is to measure performance on different real data sets. The
standard minimum complexity ESN described in [Rodan2011] is referred to as
basic ESN. The two ESN methods are also compared to two standard classifica-
tion algorithms: the SVM and the MLP. If the component ESN can be shown
to:

• Solve the formal problem significantly better than the basic ESN, SVM,
and MLP,

• Solve a reasonable practical problem significantly better than the reference
algorithms,

• Be shown to generate apparently valuable features in the reservoir, which
are not generated by the basic ESN

Then, it will be considered that the component ESN has potential as a
relevant improving modification of the basic ESN, since it outperforms the basic
ESN as well as standard classifiers.
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5 Data sets

5.1 General Properties

The data type of interest in this thesis is multivariate time series. These can
be represented as matrices, with each time instance occupying one row. The
elements of the matrices are numeric. Furthermore, the data comes from many
different units, so in fact what is being worked on is sets of multivariate time
series. It is assumed that all units have the same internal dynamics.

5.2 Eye Data

Source: [Eye2013]. This data consists of 14 time series of Electroencephalogram
(EEG) measurements from a person sitting in a quiet room [Suendermann2013].
The time series is annotated with a 0 is the person’s eye is open, and a 1 if the
person’s eye is closed. Note that this is measurements from a single person, at
a single occasion. The time series cover 117 seconds and 14980 time-samples,
during which the person blinks 11 times. The data has some properties which
makes it interesting to try to model with a Component ESN:

• It contains a number of features which all have a similar appearance.
Compare Fig 3 with, for example, the plots in Section 15.1. Therefore, a
homogeneous reservoir should be efficient.

• Looking at Fig 3, it seems as though every start and end of a positive
section (the person having eyes closed), is marked with a spike in some
of the features. So, it is interesting to see whether the ESN will adapt to
persistent generated features.

• The signal has a high frequency variability on small scales. Will the ESNs
feature generation and feature reduction have a smoothing effect?

• There are many performance figures in the associated article [Suender-
mann2013], with which the performance of a classifier can be compared.

• The authors of the associated article [Suendermann2013] mention in the
section ”future work” whether one could obtain the same results with a
fewer number of sensors. This will also be investigated in the Results
section.
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Figure 2: The placement of EEG sensors in the Eye data set.

5.2.1 Preprocessing

See Fig 3 for results of the preprocessing.

• The data set contains a few outliers in each time series. According to the
article [Suendermann2013], these were added for robustness testing at a
late stage in the project. Since these would ruin the normalization, they
were removed and replaced by the feature mean.

• The EEG signals were normalized to mean value 0 and standard deviation
1. This means that the previously replaced outliers end up at a value of
0.
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Figure 3: The preprocessed features of the Eye data set. Note that the ”Ground
Truth” has been scaled for visibility. It is actually a binary variable.

5.2.2 Related Research

This data set was published in conjunction with an article [Suendermann2013].
The authors’ use 48 different non-time recurrent machine learning methods for
classifying the eye as being open or closed. The Weka toolkit is used. Naive
Bayes inference and the Multilayer Perceptron are found to perform badly. Ran-
dom Forest and KStar are found to perform well. Since the data is so small, the
results are evaluated on the training set. See Section 9.1 for detailed results.

5.3 Occupancy Data

Source: [Occupancy2016]. This data is from an article that presents a method
to detect whether a room is occupied by a person by measuring light, CO2,
humidity, and temperature [Candanedo2016]. The thought end goal was to
save energy by regulating heating to only times when rooms are being used.
The measurements were made every minute during 16 days. The equipment
was set up in an office, so people typically were there during the day and not on
weekends, leaving two days without positive label. See Fig 4. The data set is
labeled with a ground truth. The Occupancy data set has a couple of properties
whose effects are interesting to study on the Component ESN:

• The features have a large scale varying mean. Particularly Temperature,
Humidity, and HumidityRatio are at different levels for different days.

12



However, the change profile during the workdays seems to be the same.
Will some reduced features be activated by these patterns, independent
of the day average?

• There are performance figures in the associated article [Candanedo2016],
which can be compared to the performance of the implemented classifiers.
Will it be useful to exploit the time-aspect of the data, or will it just
introduce unnecessary complexity and over-fitting?

5.3.1 Preprocessing

The data was normalized feature-wise. This was done by taking the mean and
standard deviation over the training data, and then removing these from all
available data.

Figure 4: The training data for the Occupancy data. The data has been nor-
malized for the purpose of modelling it. Note that the label (’occupancy’) was
not normalized. This signal covers 5 days. The blocks where the label is positive
are working days.

5.3.2 Related Research

This data set comes with an article [Candanedo2016]. The authors pose the
problem as a supervised learning task, and solve it using non-time recurrent
machine learning methods, including Random Forest, Gradient Boosting Ma-
chines, Linear Discriminant Analysis, and Classification and Regression Trees.
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Different combinations of features are investigated to see which can be omitted.
It was found that using only the features Light and Humidity Ratio, almost the
same accuracy (see Section 4.2.1 for authors’ definition of accuracy) could be
achieved as with all features. See section 9.2 for details and exact figures.

5.4 Hard Disk Drive Data

This data comes from a company in the backup storage business called Backblaze
[Backblaze2017a], and is available to the public for free. As a step in their
maintenance work, they monitor a number of so called SMART stats that are
reported by the different hard drives that they use. SMART stands for Self-
Monitoring And Reporting Technology. Its purpose is to warn the owner of a
hard drive about errors which may render the drive unusable.

The data has a number of properties

• Backblaze has made the job of normalizing all values that reported so that
a value of 100 is “normal”, and higher is “better”.

• The drives come from different producers. The SMART stats are not
strictly standardized, so different stats are reported from different models.

• Different producers can have different ways of measuring the stats. There-
fore, one prediction model has to be made per product model.

• The data is run-to-failure. The failure is reported explicitly, so it is possi-
ble to determine between units that broke, and those that were for some
taken out of operation.

• The failure is reported either when a drive is not contactable or syncable,
i.e, when it cannot be used anymore. A failure is also reported when one
of five SMART values exceed a predefined threshold. These are typically
serious errors, after which the hard drive is not considered reliable. See
5.4.3 - Related Research for more details.

5.4.1 Preprocessing

In addition to the basic normalization mentioned above, some extra preprocess-
ing was done.

• Many of the features never change. The data was scanned for unchanging
features, and these were removed.

• The data starts in the middle of operation, so some units naturally break
very shortly after the logging begins. Units that broke less than 100 days
after starting logging were disregarded.

• A very small share of the units had missing values. Those units were
disregarded.
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• The data was normalized feature-wise. All features were scaled so that
their standard deviation on the training set was 1. No mean was removed.
The choice not to remove means is motivated by a property of the data:
for most features a value of 0 means ’normal’, while a larger value means
’abnormal’. By not removing the mean, algorithms do not have to com-
pensate for the normal state.

• The company has active scanning of five SMART values. According to
the website [Backblaze2017b], when two of these reach a non-normal value
then the drive is taken out of order. See Section 5.4.3 (Related Research)
below for further details. One single deviation in these features is also
indicative of a drive not functioning normally. At this point, the drive is
inspected manually. Since these errors are apparently caught already, a
model that can detect failure in the other units would be of most value.
Therefore, units that have a deviation of any of these SMART features on
their final day of functioning, were removed from the training and testing.

Below is a list of the features that were used. Note that this varies between
product models, since manufacturers have a choice in which SMART values to
report. There is also some freedom in how to report the values. For this reason,
a single product model was chosen to model. The product model is Seagate
Desktop ST4000DM000. Almost half of Backblaze’s drives are of this type
(36281 out of 86059 drives). Manual inspection was initially done on several
product types, to check that this particular model was not an exceptional case
in terms of what the SMART values seem to represent. Below a list of the
remaining SMART values that were used (15 features). As noted above, values
which never change in the data are removed, also from this list.

• 1: Raw Read Error Rate

• 3: Spin Up Time

• 5: Reallocated Sector Count

• 7: Seek Error Rate

• 9: Power On Hours

• 12: Power Cycle Count

• 183: Runtime Bad Block

• 184: End-to-End Error

• 187: Reported Uncorrect Error

• 188: Command Timeout

• 189: High Fly Writes

• 190: Airflow Temperature Celsius
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• 193: Load Cycle Count

• 197: Current Pending Sector

• 198: Uncorrectable Sector Count

See the Appendix section 15.1 for some graphs over what the features look like
for drives of the Seagate Desktop ST400DM000 type. For these plots, about
10% of the data from the drives were used (3009 out of 36281 drives).

5.4.2 Target Generation

The hard disk drive data contains a feature that says whether the unit broke
down that day, such that it had to be discarded. In this project, focus was on
predicting impending failure, so the target was set to 1 for 20 days before failure,
and 0 otherwise. An example: suppose that the data log begins on 2016-01-01
and that the unit breaks down on 2016-07-01, 182 days later (counting the leap
day). Then, the target is 0 for the first 162 days, and 1 for the remaining 20
days. For units that did not break down during the logging time, 20 days were
removed from the end. That way, one can be certain that failure is more than
20 days away for these units. This target should not be seen as a ground truth.
Many errors make the hard drive break down faster than 20 days. Other errors
can occur in the unit and make it break down hundreds of days later. A linear
target was initially used, to set it as the number of days until failure. For time
to failure larger than 20 days, the target was 20. However, this proved to be
too difficult to get the models to learn. The binary target used is a compromise
between a target that is reasonable to learn, evaluate, and also provides valuable
information if it can be learned accurately.

5.4.3 Related Research

Since the introduction of SMART, several attempts have been made to use
the system to predict imminent failure in drives. In [Hughes2002] a linear,
instantaneous method is used. A large study at Google [Pinheiro2007] reached
three key findings:

• A few SMART values have a large impact on impending failure.

• A large share of drives (36%) show no indication on these SMART values
before failing.

• Operating temperature and disk activity does not have a large impact on
drive lifetime.

According to the company’s website [Backblaze2017b] (spring 2017), Backblaze
uses five SMART values to predict when a drive is about to fail. These are:

• SMART 5: Reallocated Sectors Count

• SMART 187: Reported Uncorrectable Errors
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• SMART 188: Command Timeout

• SMART 197: Current Pending Sector Count

• SMART 198: Uncorrectable Sector Count

The procedure at the site is to do manual investigation when one of these errors
are reported. On the company website [Backblaze2017b], there is collected
statistics about how helpful these values are on their own, and in combination.

Looking at plots of the features in Section 15.1, there is a number of questions
that can be asked about what can be inferred from the data:

• Does any of the features except the five critical ones mentioned above,
have any single-handed large impact on impending failure?

• Just as with the Occupancy data set, the features exhibit a great variation
in their appearance. Will this be reflected in the extracted features of the
ESN?

• Is the imposed learning problem even sensible? If it can be solved perfectly
then it is of course good enough, but analyzing the usability of a less-than-
perfect system requires defining some rule for when to advise the user to
replace or repair the unit, given the output of the classifier. The effects of
different warning rules are shown in the Results section.

6 Reference Algorithms

To get an idea of the performance of the algorithm that was developed, it was
compared to other machine learning algorithms. Two of these - SVM and MLP -
are very well tested and proven effective to a wide range of learning tasks. Most
researchers and developers who have worked with a machine learning project are
familiar with the capabilities of SVM and MLP, so performance relative to these
algorithms should give an idea of how good the proposed algorithm is. These
algorithms are however, in their basic formulation, not time-recursive. In this
project, they have therefore been learning static classification. That is, without
hidden states as defined in 3.1.1. Since SVM and MLP as they have been used
in this project do not take into account the time aspect, the rules that they can
learn are much less complex. These two are then used as a reference against
the two ESN-algorithms. When attempting to prove that a modification of the
ESN is an improvement for some data sets, one wants to at least make sure that
ESN is better than standard static classification algorithms for those data sets.
The main reference algorithm is Basic ESN, which is based on the minimum
complexity ESN described in [Rodan2011].

6.1 Support Vector Machine

The Support Vector Machine (SVM) is widely used for binary classification
tasks. It can easily be modified to prioritize few false positives or few false
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negatives, by setting weights to samples. In this project, Scikitlearn’s imple-
mentation was used [Scikitlearn2017a]. The default settings were used, except
weighting of samples. For the Backblaze data set [Backblaze2017a], since the
events that were to be detected were typically rare, positive examples got a
higher weight. This weight was set to give the best result for the training set.

6.2 Multi Layer Perceptron

Multi Layer Perceptrons, also called Feed-forward Neural Networks, is widely
used for classification and regression tasks. In this project, Scikitlearn’s imple-
mentation was used [Scikitlearn2017b].

6.3 Basic ESN

This algorithm, as implemented in this project, is largely based on the minimum
complexity ESN described in [Rodan2011]. One important difference from the
algorithm described in the article is that it deals with univariate time series.
See section 7.3.3 for how the basic ESN is modified to take multivariate time
series as input. Furthermore, the algorithm implemented here has an additional
feature reduction step, as shown in Fig 5. In the original minimum complexity
ESN, the target is learned directly with a linear transformation of the node
activations. This was not done here for two reasons. Firstly, [Rodan2011] is
concerned with a numeric target, while this project is concerned with a class
target. It was discovered that using a special classification algorithm such as
SVM and MLP was superior to a linear method for this task. But these learners
are only effective for up to about 20 input features with the data used. So using
all 100s of node activations directly as features will not work. Secondly, since
this project deals with multivariate time series, the reservoir needs to be bigger
in proportion to how many input features there are. This further increases the
need for feature reduction. See more in section 7.4.

7 Component ESN

7.1 Overview

The Component ESN is a state space model, as described in (4). The transfer
function from input U to output Y is:

X(t) = f(AX(t− 1) +BU(t)) (10)

Xr(t) = R(X(t)) (11)

Y (t) = C(Xr(t)) (12)

Here, A and B are matrices, and A is sparse. Furthermore, f()̇ is a nonlinear,
elementwise function. The feature generation module takes in a multivariate

18



time series and outputs, for each time point, an aggregate of the time serie’s
history. The synthesis and properties of the including elements A,B, f are
described in section 7.3. The feature reduction module is a static function of the
generated features, to a vector space with a lower number of dimensions. Two
methods for feature reductions are given in section 7.4. Finally, the classification
module is also a static function that takes in reduced features and return a
classification of the current state of the input process. Three methods for the
classification are given in section 7.5.

Figure 5: Flowchart of ESN. Blocks A and B are matrices, and f is an elemen-
twise function. With some of the methods used in this project, functions R and
C are linear mappings, but not all.

7.2 Training

The training data consists of a set of row matrices, where each row is a time-
sample of the process being modelled. Each such matrix is called a sample.
For each sample, the node activations are initialized to X(0) = 0. Some initial
time-samples are fed into the system, as a burn in. In this project, 10 burn
in time-samples were used. After the burn in, the node activations are saved
in a new row matrix. This will be the input to training the feature reduction.
For each new sample, the nodes are reset. The feature reduction R() is trained
on node activations from the whole training data. The dimensionality-reduced
data, Xr(t), is used to train the classifier C().
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7.2.1 Online training

The classifiers used in this project can be updated with new labeled samples
after training. This has not been done, however. For the feature reduction
techniques used in this project, they do not lend themselves to online training.
The reservoir itself is not trained at all, as is the central idea of ESN.

7.3 Feature Generation

The original approach in this project is to construct an Echo State Network
(ESN) model using components. This is meant to make it easier to configure
the model to what is known about the data set, compared to a standard ESN.
In the description below, M denotes the number of inputs to the model in each
time step, or in other words the number of features of the data.

7.3.1 Direct

The DIRECT component simply takes the latest process values and stores them
in nodes. This is redundant if one already has a Linear Delay Line component
in the ESN. Below the update equation for Direct component. Could have been
written x(t) = u(t) for short. It is included here as a demonstration of the
format.


x1(t)
x2(t)

...
xM (t)

 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

·


x1(t− 1)
x2(t− 1)

...
xM (t− 1)

+


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

·


u1(t)
u2(t)

...
uM (t)


Figure 6: The general form of the Direct component with M inputs.

7.3.2 Linear Delay Line

The Linear Delay Line component consists of M ∗ (p + 1) nodes, where p is a
user defined parameter. M head nodes take in the inputs, which are then shifted
down p steps. With a Linear Delay Line, the Component ESN can represent a
p-th order VAR model. Below the update equation for the Linear Delay Line.
For compactness, it is here assumed that M = 2 and p = 1.
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
x1(t)
x2(t)
x3(t)
x4(t)

 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 ·

x1(t− 1)
x2(t− 1)
x3(t− 1)
x4(t− 1)

+


1 0
0 0
0 1
0 0

 · [ u1(t)
u2(t)

]

Figure 7: An example of the Linear Delay Line component with 2 inputs and 1
delay. Here, x1 and x3 are called head nodes, and take in external input. This
is then sent in successive iterations to subsequent nodes, x2 and x4 in this case.
Notably, x2 does not send any activation to x3, so the delay lines are separate.

7.3.3 Rodan

This style of nodes was proposed in [Rodan2011]. Specifically, the one that was
used corresponds to the Delay Line Reservoir (DLR) described in the article.
For this project, the structure was changed to accomodate for multivariate time
series. The structure used is in effect M separare DLR reservoirs, one for each
feature. This structure does not generate any combinations of features, but this
can be arranged by using Mixing: see section 7.3.6.

Below, 0 < r, b < 1 are two parameters that determine how much activation
is transferred between two subsequent nodes. In [Rodan2011], r = 0.5 and
b = 0 are used for the Delay Line Reservoir. The same values were used for this
project. Furthermore, 0 < v is a parameter that determines how much input
values effect the activation of nodes. Note that scale is not unimportant, since
the activation function is nonlinear. The value used in this project is v = 0.5.
In the below example, M = 2, N = 4 is used for compactness. The sign on the
input weights are randomly generated (with same probability for positive as for
negative). The activation function f below is the same as used in [Rodan2011].


x1(t)
x2(t)
x3(t)
x4(t)

 = f(


0 b 0 0
r 0 0 0
0 0 0 b
0 0 r 0

 ·

x1(t− 1)
x2(t− 1)
x3(t− 1)
x4(t− 1)

+


v 0
−v 0
0 −v
0 v

 · [ u1(t)
u2(t)

]
)

Figure 8: An example of a Rodan component with 2 inputs and 2 nodes per
time series. This is a multivariate adaption of the reservoir used in [Rodan2011].
The input values all have the same absolute value, but with a random sign. In
this project, the parameters used were r = 0.5, b = 0, v = 0.5.

fi(xi) = tanh(xi) =
exi − e−xi

exi + e−xi
, i = 1, 2, ..., N (13)
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7.3.4 Thres

The Thres component is inspired by the transistor. It consists of two nodes.
The first is activated when its input signal surpasses a given threshold. The
second lets its input signal go through only when the first node is activated.
This is supposed to model conditional importance between variables. Below
is an example of a single Thres component. Here, TL ∼ N(0, 1) denotes the
signalling threshold. The parameter H is chosen as a very large number, so
that the x2 cannot be activated without the x1 being activated. Furthermore
TH >> H, so that x2 can have a negative activation. The input weights v1, v2
are sampled from N(0, 1). The random input weighting is so that one can
generate many Thres components with different properties, with input from the
same two features.[

x1(t)
x2(t)

]
= f(

[
0 0
TH 0

]
·
[
x1(t− 1)
x2(t− 1)

]
+

[
v1 0
0 v2

]
·
[
u1(t)
u2(t)

]
)

Figure 9: Transfer function of a single Thres component. The inspiration is the
transistor. Here, x2 is only nonzero when x1 > TL.

f1(x1) =

{
0 x1 ≤ TL
1 x1 > TL

(14)

f2(x2) =

{
0 x2 ≤ H
x2 − TH x2 > H

(15)

7.3.5 Exponential Delay Line

The goal of the Exponential Delay Line is to store information about the average
value of the input feature, at time scales which can grow exponentially with the
amount of used memory. The principle is best illustrated with a figure, see Fig
10.
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Figure 10: Exponential Delay Line structure. Input is led into a ”sum” node,
which has just a linear response, and is self-preserving. When the ”counter”
node is reaches 0, the ”sum” node activates the ”threshold” node, which acti-
vates the next ”sum” node, and empties the first ”sum” node. The weight from
the ”threshold” to the next ”sum” is 1

2 . The counters have cyclic activation,
reaching 0 every T iterations. The trick is that

Ti+1 = 2 ∗ Ti

so each ”sum” node gets incremented exactly twice in each cycle. In the second
half of its cycle, the ”sum” will contain the average of the 2i last samples before
its last activation, if the ”sum” node is i sections from the input.

Below is the state space model. For compactness, it is assumed that there
is just one input feature, and that the order of the exponential delay line is 3.
In figure 12 is shown the impulse response of an Exponential Delay Line.



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)
x8(t)
x9(t)


= f(



1 0 0 −1 0 0 0 0 0
0 1 0 0.5 −1 0 0 0 0
0 0 1 0 0.5 −1 0 0 0
1 0 0 0 0 0 −2H 0 0
0 1 0 0 0 0 0 −2H 0
0 0 1 0 0 0 0 0 −2H
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


·



x1(t− 1)
x2(t− 1)
x3(t− 1)
x4(t− 1)
x5(t− 1)
x6(t− 1)
x7(t− 1)
x8(t− 1)
x9(t− 1)


+



1
0
0
0
0
0
0
0
0


·u1(t))

Figure 11: A single Exponential Delay Line. The order is 3, meaning that
there are three of the sections sketched in figure 10, and the max memory is 23

time steps. Node x1, x2, x3 will contain the average of the 21, 22, 23 latest input
values, respectively. H is a large constant, so that the sections will not leak.
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fi(xi) = xi, i = 1, 2, 3 (16)

fi(x) =

{
0 xi ≤ −H
xi xi > −H

, i = 4, 5, 6 (17)

f7(x7) = x7 − 1 mod 2 (18)

f8(x8) = x8 − 1 mod 4 (19)

f9(x9) = x9 − 1 mod 8 (20)

Figure 12: Response of a single order 5 Exponential Delay Line, when given
an impulse signal. On each column, node activations for a certain time sample.
On each row, activations over time for a certain node. The nodes with visible
activation are the ”sum” nodes. The other nodes have been muted by rescaling
parameters in Eq. (7.3.5). When using an Exponential Delay Line in an ESN,
also the sum nodes were scaled down, so that the response would be smoothed
in for example a Rodan component.

7.3.6 Mixing Components

To model dependencies between variables, values from outputs of components
are led into inputs of other components. These links are specified according to
a scheme [”Source Component”, ”Target Component”, k,replace,w], where k is
an integer determining the number of links to make, and w is a positive real
value determining the weight of the links. With this, k nodes of Source type
are selected at random and led into k nodes of Target type (1-to-1). The user
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can determine whether the selection will be with replacement or not, by editing
a configuration file. The weight of all links is the same, and can be determined
by the user. The default value is w = 0.5. The sign of the weight is randomly
generated.

It is a bit crude to treat all components of the same type as the same.
A future improvement to this specification of the mixing could be to let the
different components have ID’s, and the mixing specifies a source and target ID
instead of a source and target component type.

7.4 Feature Reduction

The networks that were created in this project consist of 200-3000 nodes. This is
purposefully many; since the weights in an ESN reservoir are not trained, most
nodes will not contribute to predicting the class. With many 100s of nodes,
there is a clear risk of over-fitting. Furthermore, many of the nodes may be
noisy, or be very similar to each other. Therefore, it is necessary to extract
some few features from these nodes. After feature reduction, the number of
features is 10 − 40. The output dimensionality of the feature reduction is a
trade-off between not losing any important information (using many features),
and avoiding over-fitting in the final classifier (using few features). The loss
of information can be estimated with average projection errors. A reasonable
amount of inputs for the final classifier can be estimated from the amount of
data that is available. More data and more varied data would mean that more
features can be used without over-fitting. However, one needs to do some tests
to see which settings actually give a good result.

7.4.1 Principal Components

This feature reduction is done by taking a Singular Value Decomposition of
the node activations. The principal components corresponding to the k largest
singular values are saved as a linear transformation. Here, k is a user defined
parameter. In this project, k values of 10−40 were used. Lower limits for k were
found by looking at the associated singular values of the principal components.

From some testing, it was found that a lower k is appropriate for SVM and
MLP final classifiers, while a linear classifier could use a larger number of inputs
without over-fitting. The principal components method for feature reduction is
used by [Rodan2011]. See figures 13 and 14 for examples of what data looks
like when projected onto principal components.
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Figure 13: This histogram was constructed by collecting the activations gen-
erated in the ESN from the Occupancy data set, and then projecting them on
their first principal component. As we can see, the positive examples and the
negative examples are already quite well separated with only this feature.
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Figure 14: This histogram was constructed by collecting the activations gen-
erated in the ESN from the Occupancy data set, and then projecting them on
their eighth principal component. Note the change in scale from Fig 13.

7.4.2 Class Principal Components

One problem with the principal component reduction is that if the positive
events are rare, then there is a risk that the principal components will only
model negative events. With class principal components, the node activations
is first split into classes by the label. Then k

2 principal components are taken
from each class. Here, k is a user defined parameter. In this project, a value of
10− 40 was used for k. This was found to be reasonable numbers for the trade-
off mentioned in section 7.4 after some testing. In most cases, it was found
that class principal components are a better feature reduction than standard
principal components.
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Figure 15: This histogram was constructed by collecting the activations gen-
erated in the ESN from the positive examples of the Occupancy data set, and
then projecting them on their first principal component. Compare this to figure
13, which was generated with the same activations. The two look similar, but
the classes are a bit more well separated in this example.
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Figure 16: This histogram was constructed by collecting the activations gener-
ated in the ESN from the negative examples of the Occupancy data set, and
then projecting them on their eighth principal component. Compare this to
figure 14, which was generated from the same activations. The two look similar,
but this projection clearly gives a better separation of the classes.

7.5 Final Learning

The final step of the model is to fit the reduced features to the label. This is a
step that was not subject to a lot of development during the project. Rather,
standard algorithms were used.

7.5.1 Linear

Linear learning refers simply to solving a least squares problem from reduced
features to label. A constant is added to the feature representation, to account
for constant terms. To prevent over-fitting of parameters, Tikhonov regulariza-
tion is used. To compensate for a majority of positive or negative examples,
sample weighting is used. The minimization in equation form:

θC = min
θ
||FXrθ − FY ||2 + ||ΓX||2 (21)

Xr is a matrix of reduced features from the node activations from the training.
Every row corresponds to one time-sample. Y is an array of labels to the training
data. Here, F is a diagonal matrix with

Fi,i =

{
1 Yi = 0

w+ Yi = 1.
(22)
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The factor Γ is called the Tikhonov Matrix. In this project, Γ = 10I was used.
This method of regularization is also called Ridge Regression. This regulariza-
tion method is encouraged by [Rodan2011], where it is used for regression. This
minimization has an obvious downside for classification: the least squares solu-
tion minimizes the distance to the label, interpreted as a number, and not the
miss-classification rate. Nevertheless, the linear classifier is competitive with
the other classifiers which is why it’s included here. The final classification is
done by:

Ŷ (t) = Xr(t)θC ≥ 0.5. (23)

7.5.2 Support Vector Machine

The second type of final classifier that was used in this project, was a Support
Vector Machine. The settings used were default settings from Scikitlearn’s im-
plementation [Scikitlean2017a]. Some tests were done with other kernels, but
did not yield good results. It should be said that not much was done to optimize
the settings, as the focus was on the feature generation and reduction mostly.

Setting Value
Kernel Radial Basis Function
σ2 1

2 number of features

Table 1: The settings used for the SVM classifier throughout the project. Both
as a standalone reference algorithm and as a final classifier for ESN. The settings
used are default settings from Scikitlearn’s implementation [Scikitlean2017a].

7.5.3 Multi Layer Perceptron

The third type of final classifier that was used, was a Multilayer Perceptron.
This was applied with little changes from the default settings in the Scikitlearn
implementation [Scikitlearn2017b], see figure 2. The only change that was made
was to have only one hidden layer, as more layers were found to cause over-
fitting. As for the number of nodes in the hidden layer, 5 was found to be a
suitable number. It should be said that not much was done with the settings
on the MLP beyond a working classifier, as the focus of the project was to
investigate the generated features in the ESN.
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Setting Value
Hidden layer size 5

Activation ReLU
L2 penalty 10−5

Optimization algorithm L-BFGS
Learning rate 10−3

Momentum 0.9
Max iterations 200

Table 2: The settings used for the MLP classifier throughout the project. Both
as a standalone reference algorithm and as a final classifier for ESN. All settings
except the hidden layer size are default settings according to [Scikitlearn2017b].
For insight into the L-BFGS optimization, see [Liu1989].

8 Implementation

The project was developed in Python 3. The sparse subpackage from Scipy
was used to represent the reservoir [ScipySparse2017]. This is a reasonable
choice, since the reservoir matrix is very sparse, with less than one percent of
elements being nonzero. For the included learning algorithms, Scikitlearn was
used. It is an open and free package with a very simple setup. Since the final
learning problems in this project were not very large (typically 20 input features
with 10 000 samples), an open source implementation like this should be fine.
The Support Vector Machine implementation used was Scikitlearn’s SVC and
SVR for classification and regression respectively [Scikitlearn2017a]. Similarly,
Scikitlearn’s MLPClassifier and MLPRegressor were used for the feed forward
neural networks [Scikitlearn2017b]. These implementations were used both for
standalone classification, and as the final step in Component ESN. For K-means,
Scikitlearn’s KMeans was used.

8.1 Using the System for New Data

In order to comply with the testing system, only one function needs to be
implemented: one that a list of takes file names as input, and outputs a list
of data and labels in matrix format. The design of the reservoir is defined
in a settings file separate from the rest of the code. The rest of the runtime
parameters are defined by flags in the terminal. Such as which model to use,
and whether to plot all graphs.
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8.2 Overall Structure

Figure 17: The structure of the software that was developed for preprocessing,
modelling, and evaluating the data sets. Each box is a Python module. An
arrow from A to B means that B imports from A.

Some small descriptions of the different modules.

• mts learning. The main script. Organizes the pipeline from fetching data
to evaluating results.

• mts learning auxilliary. Unloads code-heavy tasks from mts learning. For
example plotting.

• models. Contains objects that describe the different classifiers used in the
project: SVM, MLP, and ESN. The SVM and MLP classes are just wrap-
per classes that allows mts learning to treat them as if they were time
series models. Performs the calculations for learning, and later, predic-
tions.

• models auxilliary. A module for synthesizing Component ESN, and for
doing the heavy lifting in the feature reduction.

• preprocessing. Collects some methods that are often used for preprocess-
ing, such as filtering out missing values and normalization.

• settings. Stores the configurations for synthesizing the Component ESN.

Also, every data set has its own script, since the preprocessing is very data
specific, and the code for doing it should not be mixed with the general learner
system.

32



9 Results

9.1 Eye

The data source [Eye2013] contains a single file of (roughly) 15000 samples taken
during 2 minutes. The whole data set was used for training and testing. For
the reference SVM, default settings were used. The ratio of weights between
positive and negative examples was 1. For the reference MLP, 5 hidden nodes
were used. For the Basic ESN, 500 nodes were used for the reservoir. The feature
reduction for Basic ESN was Class PCA with 20 outputs, and the final learner
was a linear classifier with same weight for positive and negative examples. As
noted in Section 5.2, looking at the EEG signals gives us two hints about how
to design the reservoir. Firstly, the features are similar in appearance, so it
is logical to choose a reservoir which is symmetrical with respect to different
features. With the randomization, the reservoir will not be perfectly symmetric
of course, but the randomization is symmetric. Second, since the start and ends
of the sections where the person has his eyes closed are marked by a spike in some
features. Since there can be thousands of samples between spikes, a reservoir
which has a good long term memory is reasonable. The chosen architecture can
be seen in Fig 18. Class Principal Components with 20 reduced features was the
feature reduction that worked best. An SVM was used as final learner. When
training the SVM, positive and negative examples were given the same weight,
as there about as many samples of each. A comparison of the results on the
test set is shown in Table 3. Sample outputs are shown in Fig 19-23.

Figure 18: The architecture for the Component ESN used for the Eye data set.
The order of the Exponential Delay line is set quite high since it was expected
that the model needs to be persistent. The used feature reduction was Class
Principal Components with 20 reduced features (10 per class). An SVM was
used as the final learner.

Training and testing on were both done on the whole data set. Since the
Eye data set is so small, the goal was to answer the questions in Section 5.2,
rather than to compare the generalization performance of the algorithms.
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Recall Precision F-measure Classification accuracy
KStar - - - 0.974
SVM 0.867 0.919 0.892 0.906
MLP 0.819 0.777 0.797 0.813

Basic ESN 0.993 0.993 0.993 0.994
Component ESN 0.985 0.992 0.988 0.990

Component ESN, reduced features 0.994 0.991 0.993 0.993

Table 3: Results obtained for the Eye data set. Note that this is training
performance, because the data is so small. KStar is the best algorithm reported
in [Suendermann2013]. The reduced features are the four: AF3,AF4,F3,F4 (see
Fig 2).

Below are classification outputs on the training/test set for the Eye data set,
for different models. See Figures 19 - 22. For the Component ESN, learning on
fewer features was also tried, see Fig 23.

Figure 19: Training output of SVM classifier for Eye data set. This shows that
the SVM clearly has not learned to separate the classes, as there are many false
positives and negatives.
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Figure 20: Training output of MLP classifier for Eye data set. The results
is similar to what was seen with the SVM - the classifier has not learned to
separate the classes.

Figure 21: Training output of Basic ESN for Eye data set. The difference from
the baseline algorithms is noticeable as the predictions are almost precisely as
the ground truth.
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Figure 22: Training output of Component ESN for Eye data set. The prediction
is slightly worse than for the basic ESN, but still clearly better than the standard
algorithms.

Figure 23: Training output of Component ESN for Eye data set, using only 4
out of 14 features. The features were chosen as the sensors on the front of the
head. This actually improves the accuracy of the algorithm, so it seems that
there is a problem with noisy features in the data set.
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9.2 Occupancy

In the [Occupancy2016] folder, there are three files. The file datatraining.txt
(8143 samples) was used for training, and datatest.txt and datatest2.txt (2804
and 9752 samples respectively) are used for validation and testing. Since the
sample time is 60 seconds, that comes down to about 134 hours for training
and 209 hours for testing. For the reference SVM, default setting from [Scik-
itlearn2017a] were used. The ratio of weights between positive and negative
examples was 1. For the reference MLP, 5 hidden nodes were used. For the
Basic ESN, 500 nodes were used for the reservoir. The feature reduction for
Basic ESN was Class PCA with 20 outputs, and the final learner was a linear
classifier with same weight for positive and negative examples. The Component
ESN architecture is shown in Fig 24. A linear delay line component is added
to give the reservoir some safer short term memory. A threshold component is
added to accentuate strong derivatives of the time series, since it seems that
derivative can be a useful feature. The used feature reduction was Class Princi-
pal Components with 20 reduced features (10 per class). A Linear classifier was
used as the final learner. A comparison of the results on the test set is shown
in Table 4. Sample outputs are shown in Fig 25-28.

Figure 24: The architecture used for the Component ESN for the Occupancy
data set. The linear delay line component is added to give the reservoir some
safer short term memory. The threshold component is added to accentuate
strong derivatives of the time series, since it seems that derivative can be a
useful feature. The used feature reduction was Class Principal Components
with 20 reduced features (10 per class). A linear classifier was used as the final
learner.
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Recall Precision F-measure Classification accuracy
LDA - - - 0.988
SVM 0.979 0.859 0.915 0.956
MLP 0.906 0.833 0.868 0.933

Basic ESN 0.997 0.954 0.975 0.988
Component ESN 0.992 0.965 0.978 0.989

Table 4: Results obtained for the Occupancy data set. The data set was al-
ready split into training and testing with training consisting of 28% of the time-
samples. LDA (Linear Discriminant Analysis) is the best algorithm reported in
[Candanedo2016].

Below are example outputs from the classifiers. The total duration of the
sample is six days. Since the equipment was set up in an office, it is a reasonable
interpretation that each block is a working day with a ”lunch” in the middle.
The two days without occupancy is the weekend.

Figure 25: Test output of SVM classifier for Occupancy data set. The pre-
dictions are mostly correct for the weekdays (the periods of positive labels),
however the algorithm makes a lot of false positives during the weekend (the
middle of the graph).
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Figure 26: Test output of MLP classifier for Occupancy data set. the Results
are similar to SVM: mostly correct during weekdays, but makes false positives
during weekend. Additionally makes false positives between two days in the
right of the graph.

Figure 27: Test output of basic ESN for Occupancy data set. Even if the false
positives are fewer during the weekend, they are still there. What is hard to
see in this graph is the breaks of a few minutes during the workdays. Typically,
these are false positives for the classifier.
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Figure 28: Test output of component ESN for Occupancy data set. The compo-
nent ESN does not make any false positives for the Saturday (the weekend is in
the middle of the graph). For the Sunday, there is only a small number of false
positives. One could likely eliminate the false detections by some rule that the
detection must be positive for some consequetive time. What is hard to see in
this graph is the breaks of a few minutes during the workdays. Typically, these
are false positives for the classifier.

9.3 Hard Disk

For the below results, hard drives of product model ST4000DM000 and with
a serial number starting with Z300 were used for tinkering with the model
parameters. For final testing, 30 units with a serial number starting with Z301
were used for training and 71 for testing. Only units that broke during the data
capture were used. For the reference SVM, positive examples were weighted 5
times higher than negative examples. For the reference MLP, 7 hidden nodes
were used. For the Basic ESN, 1000 nodes were used for the reservoir. For both
Basic and Component ESN, the feature reduction used was Class PCA with 20
outputs. An MLP with 5 hidden nodes was used as final classifier for the ESNs.
The architecture for the Component ESN can be seen in Fig 29. A comparison
of the results on the test set is shown in Table 5. With the Hard Disk data,
the relation between the computed performance and the practical usefulness is
not so clear as with the previous two data sets. Figures 30-34 demonstrate this.
Graphs for estimating expected lost days are shown in Figures 36-35.
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Figure 29: The architecture for the Component ESN used for the Hard Drive
data set. The exponential delay line is included for persistence. With 13 in-
put features, the 1000 links sends the activation of every ”sum” node in the
exponential delay line to about 13 nodes in the remaining reservoir. The used
feature reduction was Class Principal Components with 20 reduced features (10
per class). An MLP with 5 hidden nodes was used as the final learner.

Recall Precision F-measure
SVM 0.35 0.19 0.25
MLP 0.24 0.17 0.20

Basic ESN 0.23 0.13 0.16
Component ESN 0.27 0.14 0.18

Table 5: Results obtained for testing on 70 drives from the Hard Drive data set.
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Figure 30: Example of output where the classifier has made a near perfect
classification. The prediction will get a good F-score, and is also practically
useful.

Figure 31: Example of a classifier output which will get a bad F-score but which
is still valuable.
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Figure 32: Example of a classifier output which will get a good F-score but
which will lead to the unit being taken out of service prematurely.

Figure 33: Example of a bad classifier output. The posed learning problem is
not solved, nor is the prediction valuable.
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Figure 34: Example of the majority of classifier outputs: no positive predictions
whatsoever.

The below images show how many hard drives that have received a warning
from the system, as a function of time before their failure. Different warning
rules are applied. The warning rule 2 in a row, for example, warns for impending
failure when the classifier has made a positive prediction for two consequetive
days. The units in this test are the ”lost cases”, i.e. the hard drives that did
not exhibit any critical error before failing, see section 5.4.3. A perfect warning
system here would be a flat line at 0, and would go up to 1 just before failure
(x = 0). The Data availability line marks the cumulative distribution of the
lifetimes of the hard drives in the test set. Note that the data capture does not
necessarily start when the drives are newly installed.
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Figure 35: Warning accuracy of a ”random” warning system, which warns the
user each day with a probability of 1

800 . This probability was chosen so that the
final recall would be about 0.35, which is was the other algorithms had.

Figure 36: SVM classifier warning times according to different warning rules.
Starts making a lot of warnings at about 400 days before failure, which would
cause a lot of lost day if it was used as a reason to exchange the drive. Would
cause roughly the same amount of lost days as a ”random” warning system, so
does not do anything useful.
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Figure 37: MLP classifier warning times according to different warning rules.
Just as SVM, starts returning premature warnings at 400 days before failure.
However, the number of lost days here is clearly better than with SVM. May
very well model some relevant indicators.

Figure 38: Basic ESN classifier warning times according to different warning
rules. Basic ESN starts giving premature warnings a bit later than MLP, but
the total number of lost days is about the same. Just as with SVM and MLP,
it is hard to say whether this is actually better than the random classifier.
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Figure 39: Component ESN classifier warning times according to different warn-
ing rules. Gives almost no premature warnings until 300 days before failure. The
component ESN does seem to be better than a random classifier. Note that this
test was done on the hard drives which did not display any of the critical er-
rors known to the storage industry, and mentioned in section 5.4.3. So this is
predictions on the ”lost cases”.

10 Analysis

In this section, observations made in the previous section are combined with
what can be said theoretically about the Component ESN, in order to answer
the qualitative questions made about the data sets in section 5. For this, we
need to know something about the hypothesis space which is generated by the
ESN.

10.1 Hypothesis Space of Basic ESN

Suppose that we have a univariate process which is fed into a Basic ESN, as
described in section 4. Call the input weight v, the delay weight r, and the
input signs sk. The activation of node k at time t is then:

xk,t = φ(vskut + rxk−1,t−1) =

φ(vskut + rφ(vsk−1ut−1 + rxk−2,t−2)) =

φ(vskut + rφ(vsk−1ut−1 + rφ(vsk−2ut−2 + rxk−3,t−3)) = ...

where φ = tanh()̇. A natural question about a recurrent network is: how long
is its memory? That is, how much can past values of the process influence the
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current state? Call the ”unactivated” nodes zk,t, i.e.

zk,t = φ−1(xk,t).

A derivative expansion gives:

∂xk,t
∂ut−τ

= r
∂xk−1,t−1
∂ut−τ

φ′(zk,t) =

r2
∂xk−2,t−2
∂ut−τ

φ′(zk,t)φ
′(zk−1,t−1) = ...

rτvsk−τφ
′(zk,t)...φ

′(zk−τ,t−τ ).

The absolute value of this derivative is then bounded from above by O(rτ ),
since 0 < φ′(z) ≤ 1, and v is a constant. Since this is true for any values of
the nodes, if ut−τ is perturbed by a finite value ∆ then the future value of xk,t
cannot change by more than O(∆rτ ). So, the effect of past values is necessarily
exponentially decaying in the Basic ESN!

Suppose now that v = 1, and that we consider changes less than δ to be
insignificant for the activation of a node. The effective memory of a node is

then less than log(δ)
log(r) , see Table 6.

r δ effective memory T
0.5 0.05 4
0.5 0.01 6
0.7 0.05 8
0.9 0.05 28

Table 6: The effective memory of nodes in a Basic ESN, given values of the
delay weight r, and the smallest significant change δ. The values are rounded
down to the nearest integer.

Since the only difference between node topologies in the Basic ESN is the
input sign, the total number of significantly different features which can be
generated by the Basic ESN is 2T . This is then the hypothesis space that is
available to the feature reduction and final learning.

10.2 Analyzing Generated Features

Looking at the graphs of the reduced features alongside the input features,
makes it possible to say something about which qualities do get extracted from
the reservoir.

10.2.1 Eye

See Fig 40. We are now ready to answer the questions posed in Sections 5.2.
Firstly, a homogeneous and persistent reservoir worked well. The generated fea-
tures are apparently not smoother than the input features. This could perhaps
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be done with preprocessing instead, if smoothing is important. However, we
can see that the generated features are clearly more persistent than the input
features. For this data set, this is a good quality since we have typical ”event
starting indicators” that should not be forgotten quickly. Furthermore, Fig 23
shows that using just 4 of the 14 features is sufficient to represent the data even
better than in the original article [Suendermann2013].

Figure 40: A section of the Eye data set, aligned with the corresponding reduced
features generated by the Component ESN. We can see that a short-time spike
in the input features results in a long ”echo” in the generated features. This
seems to be a good rule, if one looks at the input data.

10.2.2 Occupancy

See Fig 41. There we can see that the features which are marked by blue lines,
have basically singlehandedly solved the trickiest part of the modelling: the case
when light and temperature is high, but when the room is unoccupied. But as
can be seen, the blue lines are have pretty much the same sign as the label
(albeit reversed). So, this was a successful feature generation.

Now see Fig 42. The question was asked whether the algorithm would be
able to detect small breaks of a few samples when the occupant leaves the room
for a few minutes (and leaves the light switch on). It seems as though the answer
is no. Looking at the input features, they do not change noticeably during the
small breaks. And the generated features have not done any ”magical” thing
and picked it up, either. However for the end goal of saving energy on heating,
these small breaks are not important to classify correctly since heating is such
a slow process compared to the length of these intervals.
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Lastly, see Fig 43. It was asked whether some generated features would be
invariant to large-scale daily changes, but still sensitive to changes over minutes
and hours. A sort of high-pass quality, that is. The feature in mind particularly
is Temperature. Also here, it seems that the answer is no. Compare the left
and right blocks. The input features have a similar shape in both, but also a
different mean. The same seems to apply for the reduced features.

Figure 41: A section of the Occupancy data set, aligned with the corresponding
reduced features generated by the Component ESN.
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Figure 42: A section of the Occupancy data set, aligned with the corresponding
reduced features generated by the Component ESN.

Figure 43: A section of the Occupancy data set, aligned with the corresponding
reduced features generated by the Component ESN.
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10.2.3 Hard Drive

Reduced feature graphs can be seen in Figures 60-67 in Section 15.2 in the
Appendix. We can now answer the questions posed in Section 5.4.3. Looking
at Figs 60 and comparing it to 61, we see that the Component ESN successfully
picks out SMART 193: Load Cycle count as a potential indicator of impending
failure, while the Basic ESN does not. The same can be said about SMART 184:
End-to-End Error, with Figs 66 and 67. This pattern can be checked with the
feature plots for SMART 184 and SMART 193, see Figs 50 and 54 respectively.
In general, we can see from Figures 60 - 67 that patterns from the input reoccur
in the generated features. So, the reservoirs mainly pass through the input
unchanged in detail, but makes some linear combinations and amplifies some
patterns. Furthermore, comparing Fig 64 to Fig 65, we see that it happens that
the Basic ESN accentuates an interesting pattern, while the Component ESN
does not.

10.3 Analyzing the Classifier Outputs

Looking at the prediction graphs and test metrics, we can identify performance
differences between the tested algorithms.

10.3.1 Eye

We can see that the ESN models give a consistently better prediction that
the static time classifiers. There is no great difference between the Basic and
the Component ESN, but using only a few select input features improves the
result. Both according to the test metrics, and ostensibly in the prediction
graphs. However, since the test was done on the same data as the training, one
should be very careful to draw any conclusions from what is likely an overfit
model. Especially since complex models are more liable to overfit than simpler
ones. It is worth noting that the classification time (i.e. not learning time)
reported by [Suendermann2013] is 38 minutes, a considerable time for classifying
a sample taken from 2 minutes real time data. With the algorithms used here,
classification time is only a few seconds.

10.3.2 Occupancy

Also for Occupancy, the ESN models outperform the SVM and the MLP. The
Component ESN performs slightly better than Basic ESN, as it only gets one
false positive day, see Fig 28. However, considering the end goal of strategic
heating, the false positives made by the ESNs are probably not a problem since
they are isolated spikes. Thanks to this, it should be possible to make a ”safe”
decision rule based on filtering the classifier output. Even though testing was
not done on the training data here, the two samples share some characteristics.
When looking at the reduced features in for example Fig 43, it is clear that the
”light” input feature has a great impact. Looking at that feature, it is apparent
that it depends mostly on the electric lighting in the room. What would be
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the interesting caveat case for the classification is when someone has gone home
for the day and forgot to turn of the light switch. Without such cases in the
data, it is hard to evaluate the real-world performance of the classifiers for this
problem.

10.3.3 Hard Drive

First of all in Table 9.3, we see that the formal learning problem has not been
solved very well by any of the algorithms. Calculations on the data give that
an algorithm which always makes a positive prediction would get an F-score of
0.132. So the classifiers are not remarkably better than the trivial predictor, as
far as the formal problem goes. However, Figures 30 to 34 demonstrate that the
test metrics are problematic in this case. This is because the used test metric
doesn’t take into particular account the time for the first warning. In practice,
a guarantee on a short time (but not too short) from the first warning to failure
is necessary to avoid many prematurely discarded units. And looking at the
warning accuracy graphs, we can see that the Component ESN outperforms the
other models. The rate of units which have been warned before failure is about
the same for all classifiers, but Component ESN has a lower rate of premature
warnings. It also has fewer premature warnings than a random warning system
with similar recall, see Fig 35. Furthermore, we can see that using different
thresholds for warning, given the classifier output, does not show potential as a
cheap filtering.

11 Conclusion

An initial conclusion based on the results from Occupancy, is that when the
Basic ESN already has a good result, it is hard to improve it with a Component
ESN. Since in the Eye case, testing was done on the same data as training, it
cannot be used to say anything about learning performance. For the Eye and
Occupancy data sets, however, the Component ESN is able to generate relevant
features with the help of its components. These may help with the generalization
of the classifier, but one cannot say that for certain without testing it one
more varied data. For the Hard Drive data, the Component ESN is shown to
outperform the Basic ESN and the reference algorithms, which are not much
better than a random warning system. So, it can be said that Component ESN
has potential as a new modeling tool for classifying multivariate time series.
The best feature reduction technique was Class PCA, and regular PCA is also
valuable. As for the final classifiers, the implemented ones were good for different
data sets. So, it’s worth it to try out some different classifiers when working
with new data.
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12 Discussion

In this project, only minimal preprocessing was done with the data. A 1-day
limit was used as a goal as for how long time it was allowed to work on extracting,
preprocessing, and finding a suitable architecture. For the Hard Disk data set,
this limit was surpassed, as the data had to be ”transposed” (it was originally
one file per day, and not one file per unit) and it also had to be inspected
for a while to be understood. There were also missing values which had to be
handled. For the Eye data set however, it only took 2 hours from downloading
the data to having a Component ESN model that improved on the results in the
original article. The Occupancy data set did not take much time to preprocess
either. This is seen as a clear positive, that the system is quick and easy to try
out on a new data set (at least for the creator). Only one function needs to
be implemented to comply with the testing system: one that takes file names
as input, and outputs data and labels in matrix format. The design of the
Component ESN is defined in a text file.

It also turned out that a simple design of the Component reservoir was hard
to improve. Partly because there are a lot of design parameters, and it’s hard
to know what will actually affect the result positively. Overall, it is hard to test
whether the paradigm of Component ESNs is a good idea, since this depends on
many practical and contextual factors. For example, how much time, data, and
computational resources are available. Above, it is concluded that the system
can be deployed quickly for new data. It can also be scaled up or down, to
suit the amount of available data. With Occupancy, we have seen that a small
amount of data is sufficient. The calculations are computationally expensive,
however. Based on measurements on a Intel Core i5-4300U CPU at 1 core on
1.90GHz, training an ESN with the architecture in Fig 24 takes about 20 sec-
onds, while training the SVM takes less than 2 seconds. This is with the numpy
C backend and sparse matrices, that optimize the matrix multiplications. How-
ever, only one processor core is used at a time. A possibility of mitigating this
is that some things can be done in parallel: collecting activations for different
units can be completely parallelized. Calculating the activations for a single unit
is also just a matrix multiplication and an elementwise activation, so it can be
entirely parallelized also. One bottleneck is to compute Principal Components
of a large number of large vectors, as is done in the feature reduction. If there
was a way to (approximately) calculate the combined principal component of
different sets of vectors, this could speed up computations many times over.

13 Future Work

13.1 Scaling up

As noted in the Discussion, it would be possible to parallelize many of the
computations. With the help of this, training and test time classification could
be made much faster, and tackle larger data sets in reasonable time.
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13.2 User Interface

One development which could help users get a better overview of their reser-
voirs, is to have a graphical interface where the reservoir is shown in graph form,
as in Figures 18, 24, 29. One way of implementing this could be to ”piggyback”
on TensorFlow’s built-in graph visualization tool [TFGraphs2017]. Implement-
ing the Component ESN in TensorFlow or Theano or similar, could also be a
simple and accessible way of making parallelization possible. All parts of the
Component ESN take in a tensor (a vector) and outputs another tensor (also
vector), so it fits the computational model of TensorFlow perfectly well.

13.3 Relationship between Architecture and Features

The large research question that comes out of this project is: given a data
set with some known properties, how does one design a reservoir which will
generate good features? In order to understand the components’ effects, they
could be studied in isolation. With the analysis in Section 10.1 and the result
in [Jaeger2001b], we see that the ”memory” of ESNs is limited, although it is a
time-recurrent model. It would be enlightening to make similar analysis of how
many units of a certain component, and/or how much linking is needed between
certain components, for it to be likely to capture a given pattern in the data
with the reservoir. For testing the components in this project, ”perfect” data
was simulated. Considering the apparent difficulty of with real data in order to
learn about a model, it could be useful to simulate more complex but less noisy
data, and see if the Component ESN can capture this. And in that case, what
is the smallest possible ESN architecture that is likely to model the simulated
data?

13.4 New Components

In this paper we have seen example of a few components being used and com-
bined, but of course different components could be made. One interesting de-
velopment could be to have a semi-trained reservoir, where some components
are first trained in an unsupervised fashion. This could solve normalization
problems, which a completely untrained reservoir is vulnerable to.
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M. Candanedo, Véronique Feldheim. Energy and Buildings. Volume 112,
15 January 2016, Pages 28-39.

Softraid2017 https://www.softraid.com/pages/features/softraid monitor.html. Viewed
on 2017-05-22.

Hughes2002 Hughes, Gordon F., et al. ”Improved disk-drive failure warnings.” IEEE
Transactions on Reliability 51.3 (2002): 350-357.

Backblaze2017b https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
. Viewed on 2017-02-16.

Backblaze2017c https://www.backblaze.com/blog/hard-drive-failure-rates-q1-2017/ . Viewed
on 2017-05-23.

Pinheiro2007 Pinheiro, Eduardo, Wolf-Dietrich Weber, and Luiz André Barroso. ”Fail-
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15 Appendix

15.1 Plots of SMART Features

SMART features plotted for 3009 drives of type Seagate Desktop ST4000DM000.
The graphs have been right-aligned so that they all end at the same time.

Figure 44: Note that in this graph, the x-axis has been rescaled so as to show
some more patterns in the graphs. It is not possible to see any interesting
patterns in this feature, based on this graph.
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Figure 45: Does not seem to have any relevance for predicting impending failure
on its own.

Figure 46: Clear indication that a large value means that drive is about to
break. Is used by storage industry [Backblaze2017b].
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Figure 47: No indication that this has any relevance on its own.

Figure 48: Not really a useful value.
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Figure 49: No indication that this has relevance on its own.

Figure 50: Clear indication that a spike means impending failure. Only one false
positive with this rule (out of over 3000 drives). Is not used by storage industry
[Backblaze2017b], yet. However, may be strongly correlated to SMART values
that are already used.
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Figure 51: Clear indication that a drive will not function for long with a positive
value. Only a few false positives with this rule (out of over 3000 drives). Is used
by storage industry [Backblaze2017b].

Figure 52: No indication that nonzero value means impending failure. Is how-
ever used by storage industry [Backblaze2017b]. Perhaps there is a point in
making different rules for different models of hard drives?
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Figure 53: Does not seem to be a useful value on its own. The resolution is
likely too low: just one temperature measurement per day.

Figure 54: Looks like an interesting feature, but a rule based on this only would
give a lot of false positives.
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Figure 55: Clear indication that nonzero value is critical. Is used by storage
industry [Backblaze2017b].

Figure 56: Clear indication that nonzero value is critical. Is used by storage
industry. Is strongly correlated with SMART 197 above [Backblaze2017b].
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Figure 57: Does not seem to be a useful value on its own.

Figure 58: Interesting value, since it has some distinct reoccurring patterns.
Does not seem to be relevant to predicting impending failure on its own, how-
ever.
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Figure 59: Just as with SMART 241 above, this is an interesting value with
distinct reoccurring patterns. But does not seem to indicate impending failure.

15.2 Reduced Features for Hard Drive Data

Below are some examples of where the reduced features are noticeably
different for the Component ESN and the Basic ESN. Comments on these
are in section 10.2.3.
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Figure 60: Reduced features for Basic ESN on unit 1.

Figure 61: Reduced features for Component ESN on unit 1.
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Figure 62: Reduced features for Basic ESN on unit 2.

Figure 63: Reduced features for Component ESN on unit 2.
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Figure 64: Reduced features for Basic ESN on unit 3.

Figure 65: Reduced features for Component ESN on unit 3.
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Figure 66: Reduced features for Basic ESN on unit 4.

Figure 67: Reduced features for Component ESN on unit 4.
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