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On the use of integer and fractional flexible Fourier form Dickey-Fuller unit 

root tests 

 

Abstract 

In this paper we propose the use of a new set of conservative critical values for the flexible 

Fourier form Dickey-Fuller unit root test when the Fourier frequency is estimated. We 

consider both the integer frequency and the fractional frequency version of the test and 

investigate their size and power properties. We find that the integer frequency test 

sometimes has zero power when the deterministic component of the data generating 

process is characterized by a fractional frequency. Furthermore, when the originally 

proposed critical values are applied both versions of the test are oversized when the 

frequency is estimated. However, whereas the integer frequency test is only moderately 

oversized the fractional frequency test is significantly oversized in many cases. To remedy 

the size problems we simulate new critical values for the case where the frequency is 

estimated. The critical values are conservative, and hence yields an undersized test in some 

cases. Nevertheless, the resulting fractional frequency test with the new conservative critical 

values applied to it has good power properties.     

 

Keywords: Fractional frequency flexible Fourier form, Unit root test, Structural break, 

Smooth break, Nonlinear trend 
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1. Introduction 

Since Perron (1989) showed that unit root tests can suffer from zero power when structural 

breaks are unaccounted for much of the unit root literature has been concerned with the 

modelling of breaks. Perron (1989) presents the idea that many economic time series 

occasionally are subject to changes in level and/or trend as a result of structural change. This 

can cause unit root tests to be unable to reject the null hypothesis, sometimes even 

asymptotically. To solve the problem he suggests modelling structural change by introducing 

a dummy variable and/or a change in trend at the time of the change. Whereas the model 

proposed in Perron (1989) assumes the change to have occurred at a known point in time 

the research that followed has mainly focused on the unknown case. Some examples of unit 

root tests with sharp changes in level or trend at an unknown time are Carrion-i-Silvestre et 

al. (2009), Harvey et al. (2013), Lee and Strazicich (2003), Perron and Rodríguez (2003), 

Vogelsang and Perron (1998) and Zivot and Andrews (1992). 

Although instant changes in the deterministic component of macroeconomic aggregates are 

quite reasonable in some cases, in general they are not. This is a result of the very nature of 

the aggregate. For an aggregate to change instantaneously it requires that all aggregated 

agents act simultaneously. At least when the time series is an aggregate of a very large 

number of agents, as in the case of many macroeconomic time series, it seems too 

restrictive to assume that all agents react to new conditions simultaneously. In this case we 

would rather expect the changes to occur gradually. For example, Leybourne et al. (1998) 

emphasize the plausible smooth transitions of economic aggregates and develop a unit root 

test that accounts for a smooth gradual change. The test models the break as a logistic 

smooth transition between two regimes. Consequently, it is restricted to one functional 

form. 

Typically the researcher has a wide option of econometric tools to model nonlinearity. 

However, in general the true functional form is unknown and has to be determined. 

Unfortunately, determining the functional form of deterministic trends in time series is 

difficult. Furthermore, misspecification of the functional form may cause as much problems 

to the test as ignoring the trend altogether (Enders and Jones, 2014). Therefore, because the 
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functional form is crucial to the test it is desirable to find a modelling strategy that is flexible 

enough to capture a large set of unknown functional forms. 

As a way of modelling unknown functional forms in time series a class of flexible Fourier 

form models was developed (see, for example, Bierens, 1997; Davies, 1987; Gallant, 1981; 

Gallant and Souza, 1991)). The bottom line of this modelling strategy is that Fourier 

expansions can approximate a very broad set of nonlinear functional forms. In particular this 

type of modelling is suitable for smooth changes. More recently, a large body of time series 

literature that uses Fourier approximation of unknown functional forms has emerged. For 

example, Becker et al. (2004), Harvey et al. (2010) and Perron et al. (2017) develop tests for 

the presence of nonlinearity in deterministic components. Moreover, Becker et al. (2006) 

develop a test for stationary and show that Fourier approximation is sufficient to 

approximate a wide range of functional forms in this context. 

The flexible Fourier form approximation of nonlinear deterministic components has also 

proved useful in unit root testing. Enders and Lee (2012a) adopt the Lagrange multiplier 

methodology by Schmidt and Phillips (1992) and develop a unit root test using Fourier form 

approximation. Similarly, Enders and Lee (2012b) develop a Dickey-Fuller type version of the 

flexible Fourier form unit root test and Rodrigues and Robert Taylor (2012) further develop 

the generalized least squares unit root test by Elliott et al. (1996) to allow for nonlinear 

deterministic components. The authors derive the corresponding unit root statistics and 

show that the tests depend on the nuisance parameter characterizing the Fourier form, 

namely, the number of frequencies and their values.  

All three of the unit root tests are based on the use of a single or multiple number of integer 

Fourier frequencies. By contrast, Omay (2015) proposes the use of a single fractional 

frequency. The author shows that when only integer frequencies are allowed for in the 

regression the Dickey-Fuller type test is sometimes unable to reject the null when the data 

generating process (DGP) contains a fractional frequency component. Hence, the integer 

frequency test is more restrictive in terms of which functional forms they can approximate.  

In empirical work the Fourier frequencies have to be estimated. So far, in the case where 

only one frequency is assumed in the model, the main strategy has been to estimate it by 
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minimizing the sum of squared residuals (SSR) over a prespecified grid. Following this 

methodology a grid of different frequencies is considered where the estimated frequency is 

the one that minimizes the SSR of the test regression. Note that this is equivalent of 

choosing the frequency that maximizes the F-statistic that tests the significance of the 

Fourier component. The performance of this estimation strategy in the prevailing context 

has, up until now, been overlooked in the literature. However, Enders and Lee (2012a,b) 

derive the distribution of the F-statistic and show that it depends on the frequency that is 

used in the test regression. This implies that also the distribution of the SSR depends on the 

frequency. Because of the dependence using the SSR to estimate the frequency could be 

problematic in the sense that minimizing the SSR (or maximizing the F-statistics) does not 

necessarily result in the most significant parameter estimates of the Fourier component. 

Because the SSR is not equally distributed for different frequencies it is reasonable to 

suspect that some frequencies will minimize the SSR more often than others. Hence, the 

procedure may not yield an unbiased estimate of the of the deterministic component1. 

Consequently, it is important to investigate how the method performs in estimating the 

frequency and how the final unit root test is affected.  

So far Monte Carlo studies that investigate how these tests perform when the frequency is 

estimated are scarce. Enders and Lee (2012a,b) estimate the size and power of their tests for 

the cases where the underlying DGP is linear and when it contains an integer frequency. 

There are no studies that investigate the size and power of the test that allows the Fourier 

frequency to take fractional values when the frequency is estimated. There are also no 

studies that investigate the properties of the frequency estimation method in Fourier form 

unit root tests. 

In this paper we consider the Enders and Lee (2012b) Dickey-Fuller type test and investigate 

its size and power when the frequency is estimated. Both the case where only integer 

frequencies are allowed for, as originally suggested, and the case where fractional 

frequencies are allowed for, as suggested by Omay (2015), are considered. We show that 

                                                           
1
 There is most likely dependence between the SSR at different grid points since they are estimated on the 

same data. Therefore, even if the SSR were equally distributed over the frequency grid this would not be a 
sufficient condition to ensure that that the procedure would be unbiased. 
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when the frequency is estimated the test is significantly oversized if the underlying DGP is 

linear or if it contains a Fourier component with a frequency that is small. Furthermore, we 

show that when only an integer frequency is allowed for the test sometimes has zero power 

when a fractional frequency component is present in the DGP. To avoid the power problems 

we advocate the use of the fractional frequency Fourier form unit root test. To remedy the 

problem that test is oversized we simulate new conservative critical values.  We show that 

although this approach renders an undersized test for large frequencies its power is 

maintained at a reasonable level.  

The paper is organized as follows. In Section 2 the unit root test and the frequency 

estimation method is presented. Section 3 provides a detailed description of the critical 

values. The Monte Carlo study and the critical values simulations are setup in Section 4. In 

Section 5 the results are presented and discussed. Finally, concluding remarks and 

suggestions for further research are found in Section 6. 

2. The flexible Fourier form unit root test 

2.1. The Enders and Lee (2012b) Dickey-Fuller type test 

This procedure is a version of the augmented Dickey-Fuller test by Said and Dickey (1984) 

with Fourier terms in the deterministic component. Because the innovation lies in the 

treatment of the deterministic component we start the discussion by considering the 

following Fourier function 

                                          
 
         

where        , where     takes the integer part of the element, is the number of 

frequencies,        ,   is the number of observations and                with 

                 represents the Fourier frequencies. The term    is the intercept and     

is a linear trend. Figure 1 shows some single frequency functions that take different shapes 

depending on the values of   ,   , and    with     ,      and      . Because we 

only consider a single frequency we skip the subscripts, and thus we have     ,     , 

and     . The magnitudes of   and   determine the amplitude of the function and the 

relative magnitudes of   and   in proportion to each other alters where the function takes 
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its maximum and minimum. The frequency determines the number of cycles of the function. 

Note that integer values of   implies full cycles whereas fractional values of   implies 

fractional cycles. For example,     implies one full cycle and       implies one and a 

half cycle. Further note that, the function starts and ends at the same value whenever the 

frequency is equal to an integer. A way to allow the integer frequency function to take 

different values at the beginning and end of the time span is to include a linear trend. 

Figure 1: Single frequency Fourier functions 

 
Notes: Figure 1 pictures plots of various single frequency Fourier functions of equal amplitude. 

The test is identical to the augmented Dickey-Fuller test apart from the deterministic 

component, which contains trigonometric terms. The test regression is defined as follows 

                       
 
              

where      is the deterministic component defined in equation    ,    is a stationary error 

term with finite variance   
 . The unit root hypothesis is setup by estimating equation     

with OLS and testing the null         against the alternative         using the usual t-

statistic,  . The authors show that   is free of all nuisance parameters but   and   and 

provide critical values for integer frequencies. Typically the frequencies have to be 

estimated. 
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Omay (2015) studies the single frequency case in the context of Enders and Lee (2012b) and 

emphasise the importance of the frequencies. In order to allow for a wider range of 

functional forms Omay (2015) suggests letting the frequency take fractional values. For 

example, in this case the Fourier component itself can attain different values at the 

beginning and end of the time period. Hence, it is often possible to mimic permanent 

structural change without the linear trend component, and thus this method sometimes 

enables the use of a more parsimonious model.  

2.2. Frequency estimation 

Enders and Lee (2012a,b) propose two strategies for estimating the frequencies. One 

assumes a single frequency, that is,    . In this case,   is estimated by minimizing the SSR 

of the test regression. The other strategy allows for multiple frequencies. In this case   is 

allowed to be greater than one and integer frequencies from 1 to   are cumulated. The 

model is pared down using some information criterion such as the Akaike information 

criterion or the Bayesian information criterion to estimate the number of cumulated 

frequencies. After the frequency is estimated an F-test is performed to test for the presence 

of Fourier components. If the F-test is rejected the data is assumed to contain a nonlinear 

deterministic component. In this case the unit root test is performed using the estimated 

frequency. If the F-test is not rejected the nonlinear component is assumed to be absent and 

the standard linear unit root test is performed. 

We follow Omay (2015) and consider only the single frequency case and note that Enders 

and Lee (2012a) and Becker et al. (2006) suggest that a single frequency often provides a 

good approximation for a wide range of functional forms2. Furthermore, note that adding 

frequencies quickly results in a model with a large number of parameters. In this case an 

overfitting problem occurs and the power diminishes quite rapidly. For this reason, Enders 

and Lee (2012b) suggest using a rather small number of frequencies. Restricting the model 

to one single frequency is a way to circumvent this problem. However, it comes at the cost 

of a poorer fit. Because, the purpose of this paper is to investigate the frequency estimation 

                                                           
2
 We also considered two frequencies in which case the implication were the same as for the for the single 

frequency case.  
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and the importance of the grid we do not perform the F-test in the Monte Carlo simulations 

in that are presented in Section 5.3 

In the single frequency case the frequency is estimated by a grid search method. Using this 

method the test regression is run and the SSR is estimated for each frequency in a 

prespecified grid. Let             be an element in the grid, then the estimated frequency 

is defined as             , that is, the argument that minimizes the SSR. As pointed out 

in the introduction this is equivalent of choosing the frequency that yields the largest F-

statistic that tests the joint significance of the parameter estimates of   and  . Furthermore, 

note that if the fractional grid also contains integer values, of course this is recommended, it 

will always find a fit that is at least as good as the integer grid in terms of the SSR.  

Figure 2: Single frequency Fourier functions fitted to sharp breaks 

 
Notes: Figure 2 shows a linear function with sharp breaks in level and various single frequency Fourier 
functions fitted to it. Sharp break:   , integer frequency:   , fractional frequency:    , integer frequency 
with trend:  , fractional frequency with trend:  . 

Figure 2 shows some Fourier functions that are defined as in equation     and fitted to a line 

with a sharp break in level by minimizing the SSR. In general, Fourier functions will work 

better in approximating smooth function. However, we use the sharp breaks in this figure to 

create examples that are visually more illustrative. We compare the integer grid to a 

fractional grid with     increments both with and without a linear trend. The first plot in 

Figure 2 pictures a sharp reverted break in level. In this case the functions with and without 

a trend are identical, therefore we excluded the functions with a trend form the figure. The 

dash dot line represents the fractional frequency function and contains a Fourier component 

with a little more than one cycle, and hence the estimated frequency is large than  . The 

                                                           
3
 In a preliminary analysis we performed the tests and applied the F-test for nonlinearity. The results had the 

same implications as presented in this paper. That is with exempt of the case where   is equal to zero or near 
zero in which case the properties of the test test was improved.  
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integer frequency is represented by the dashed line and the frequency is estimated equal to 

 . The second plot presents one centred break in level with the fitted Fourier functions, now 

both with and without trends. Consider the two functions that do not contain a linear trend. 

Although they contain the same number of parameters they differ quite a lot. The integer 

frequency function is restricted to full cycles, and thus it starts and ends at the same value. 

In this case, where we have one permanent break in level, this function does not provide a 

very good approximate for the break. The fractional frequency, on the other hand, is more 

flexible and in this case the approximation is substantially better compared to its integer 

equivalent. The solid thin line represents the integer frequency with a linear trend. We see 

that the fit is improved considerably when a linear trend is included in the regression. Also 

the fit of the fractional frequency function is improved when we add a linear trend. 

However, because the fit of the function that does not include a linear trend is already quite 

good there is not as much room for improvement. The third plot in Figure 2 pictures one 

break of the same magnitude as before that is shifted towards the end of the sample. The 

overall conclusion from this picture is the same as for the previous one but it differs in the 

sense that the integer frequency function performs better than before.  

3. Critical values 

As we already established, in empirical research the frequency in the unit root test has to be 

estimated. The standard way to estimate the frequency is to follow the procedure described 

in the previous section. A further complicating factor in the analysis is that the critical value 

depends on the frequency. Therefore, when we apply the test we have to choose the critical 

value according to the frequency in the test regression. Hence, the estimated frequency 

determines this choice. Consequently, the estimated frequency plays a different role in the 

test compared to the other estimated parameters. 

Both Enders and Lee (2012b) and Omay (2015) provide critical values for the Dickey-Fuller 

type test. Following standard conventions the critical values are generated under a linear 

DGP according to 
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where the   ’s are standard normal identically independently distributed (IID ) random 

variables. Note that the DGP does not contain any deterministic component, which would be 

redundant because the test is invariant in this regard. In order to generate critical values for 

different frequencies the authors exogenously appoint values to the frequency in the test 

regression and run the test on the DGP for each desired frequency. For this procedure, we 

call the frequency that is used in the model the exogenous frequency denoted      and 

denote the corresponding t-statistic           . In this way the resulting critical values 

become a function of the exogenous frequency            , and thus we call them 

exogenous frequency critical values. Enders and Lee (2012b) provide critical values for the 

set of integers               . To obtain the fractional frequency critical values of Omay 

(2015) the same procedure is followed but here also fractional values of      are considered. 

More specifically, Omay (2015) provides critical values for fractional frequencies with     

increments. Note that, the exogenous integer frequency critical values of Enders and Lee 

(2012b) are a subset of the fractional frequency critical values.  

Enders and Lee (2012b) and Omay (2015) report that the test holds its nominal size and is 

indifferent of all estimated parameters when a Fourier deterministic component with 

frequency   is present in the DGP and       . However, even if the true deterministic 

component were a Fourier function, and thus a true frequency existed, whenever we 

estimate the frequency it will sometimes differ from the true. Because the critical value is 

adjusted according to the frequency any inaccuracy in the estimated frequency will also 

affect the choice of critical value. Enders and Lee (2012b) report the size and power of their 

test when it is applied to different DGPs. They consider the case where the deterministic 

component is linear and the case where it contains a Fourier function. In both cases the 

presence of the Fourier component and its frequency is treated as unknown. They apply an 

F-test to determine whether any nonlinear trend is present and estimate the frequency by 

minimizing the SSR. The results shows that the test is somewhat oversized when the 

function is linear or has a frequency equal to  . However, they only consider the linear case 

and the case where the Fourier functions are characterized by integer frequencies. Hence, it 

is unclear how their test performs under fractional frequencies in the DGP when the 

frequency is estimated. Omay (2015) only considers the case where the frequency is known. 
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Now consider the case where the frequency is estimated. To account for the fact that we use 

             in the test regression we consider two alternative ways to generate new 

conservative critical values. In both cases the frequency is endogenously estimated within 

the procedure as in Section 2.2. Therefore, we inherit terminology from the sharp break 

endogenous unit root literature and call the critical values endogenous frequency critical 

values. In both cases the critical values are generated under the same DGP as in Enders and 

Lee (2012b) and Omay (2015), that is, the process defined in equation    .  

The first method provides one single unadjusted critical value for all values of   . In this case 

we run the test on the data and estimate the frequency by minimizing the SSR over the 

prespecified search grid to generate the t-statistic                . The t-statistics is 

used to calculate the critical value in the usual way, we denote this critical value       

     . Note that, although we do not distinguish between the various frequency estimates 

the critical values depend on the grid. Therefore, for example, the unadjusted endogenous 

integer frequency critical value differs from its fractional equivalent. Furthermore, note that 

in the extreme case where the grid is defined as a single point this method is equivalent to 

the exogenous frequency case in Enders and Lee (2012b) and Omay (2015).  

Finally, note that this method is analogue to what is commonly practiced to generate critical 

values in the sharp break endogenous unit root literature. For this class of tests the test 

statistics generally depend on the presence and location of the break. Because the timing 

and presence of the break is usually unknown the break has to be estimated. Therefore, this 

class of tests are subject to the same problem as considered here. A common procedure is to 

assume a fixed number of breaks and to use the same critical value for the entire set of 

break locations. In this case the critical values are generated without any breaks in the DGP 

but the possible breaks are still estimated endogenously in the test (see, for example, Perron 

(2006) for an overview of the literature). Because the critical values are generated under a 

linear DGP they are constructed such that they hold the nominal size when no change is 

present in the data. Since it is often unclear whether a changing trend is prevalent in 

empirical research it is reasonable to construct a test that has this property. Furthermore, a 

nonstationary process does not revert to a any type of trend. Therefore, it appears 
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particularly difficult to determine the presence and the functional form of a deterministic 

component in this case. Hence, it is desirable to construct unit root tests that treats any 

possible change in the deterministic component as unknown.    

In the second alternative method we adjust the critical values according to the estimated 

frequency as recommended in Enders and Lee (2012b) and Omay (2015). However, unlike 

the previous authors, instead of exogenously appoint a value to the frequency in the test 

regression we estimate the frequency. So far this procedure is exactly equivalent of the 

previous alternative method where the frequency is estimated endogenously. The methods 

differ only in the treatment of the estimated t-statistics. Hence, we generate      

           under the DGP defined by     just like before. However, to adjust the critical 

values according to the frequency we sort the resulting statistics according to   . In this 

manner we create a sample of t-statistics for each point in the grid based on the   . That is, 

the sample of t-statistics for each grid point is selected conditioned on the fact that the 

frequency was estimated to belong to this point under the linear DGP defined by    . This 

yields our endogenous frequency critical values that are adjusted according to the estimated 

frequency. Hence, the critical value becomes a function of the estimated frequency and is 

denoted                 . Note that the critical values again are equal to the 

exogenous frequency critical values in the extreme case where the grid only contains one 

single point. Further note that, the critical values depend on both the estimated frequency 

and the grid. Therefore, the integer critical values are no longer a subset of the fractional 

frequency critical values as they were when the frequency was exogenously given.  

4. Monte Carlo setup 

In this section the Monte Carlo experiments that are presented in Section 5 are setup. All 

critical values are simulated following the procedures described in the previous section and 

we follow Enders and Lee (2012b) and consider frequencies up to 5. Furthermore, we 

consider the sample sizes                . The critical values corresponding to Enders 

and Lee (2012b) and Omay (2015) are generated using 50,000 repetitions for each 
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                  4. Because the critical values of Enders and Lee (2012b) are a subset of 

the critical values of Omay (2015) they are generated simultaneously. The endogenous 

critical values that correspond to the integer grid are generated using a total sample of 

1,000,000 repetitions for                . This sample is used to generate both types of 

endogenous integer frequency critical values. For the unadjusted endogenous critical values 

the entire sample is used. For the adjusted endogenous critical values the sample is divided 

according to the estimated frequencies as described above. This yields a little over 94,000 

observations for the smallest samples in which case      for all  . The endogenous 

fractional frequency critical values are generate using a total sample of 5,000,000 repetitions 

for                    . This yields a little over 26,000 observations for the smallest 

samples in which case        for all  . The critical values are tabulated in the Table 1 to 3 in 

the Appendix. 

In all simulations we use the following DGP 

                                     

                    

                   

where    is the deterministic component and    is standard normal IID and   is the 

autoregressive coefficient. The deterministic component consists of a single Fourier function 

with frequency equal to   and we set     and    56. Finally, we have that        . 

The size and power of the test are calculated using 5% critical values. For all series 50 

observations are simulated for the time before the final time series starts. These 

observations were removed to construct the final time series. In all simulations we generate 

samples of 5,000 Monte Carlo repetitions. That is, of course, except for the simulations of 

                                                           
4
 Omay (2015) only considers frequencies up to  . Because it requires little extra work we generate new critical 

values for the entire grid. 
5
 In a preliminary analysis we also considered the cases where     and     as well as     and     as 

in Enders and Lee (2012a,b). However, we also considered normalizing the functions to have the same 
amplitude. In this case the results were almost equivalent for all of the combinations of   and  .    
6
 We also applied the exogenous frequency critical values to the test under some multiple frequency DGPs. In 

general the implications were the same as those presented in this paper, however, in this case the size 
problems were more pronounced. 
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the critical values. All codes are written in MATLAB by the author of this paper and are 

available on request.  

Because the purpose of this paper is to point out the importance of the critical values and 

the frequency search grid we assume the presence of a single Fourier frequency. 

Consequently, we neither pretest for nonlinearity using the F-test nor do we pare down the 

model to estimate number of frequencies7.  Furthermore,  we only consider the test that has 

an intercept and Fourier function in the deterministic component. In a preliminary analysis 

we also considered the test with a linear trend as well as the Lagrange multiplier test, which 

also contains a linear trend. However, the implications of these simulations were similar to 

those presented in this paper. Therefore, we chose to restrict the analysis to the Dickey-

Fuller type test with an intercept and a single frequency Fourier component. 

In Figure 3 to 5 we consider the size and power of the test with respect to the frequency in 

the Fourier function. For these simulations the frequency is defined as 

                   under the null and the alternative hypothesis defined by   

            with sample sizes equal to                . Note that, because     in 

equation     the peak-to-peak amplitude of the deterministic component is       . 

Further note that, for this set of   and   when       the deterministic component has 

both a global minimum and a maximum. Hence, magnitude of the change of the function has 

reached its maximum, which is equal to   . Conversely, when       the trigonometric 

function has not yet reached its minimum. Hence, the magnitude of the change in the 

deterministic component is smaller than   . Moreover, when     the deterministic 

component is constant, and thus no change is present. Therefore, when       the results 

do not only depend on the frequency but are also driven by the implied magnitude, which is 

smaller the closer   is to  . Finally, note that if   and   would approach zero the Fourier 

function converge to a constant for any  . Hence, the     case is equivalent of the case 

where       for any  .  

                                                           
7
 We did similar simulations and considered both assuming a single frequency at most and applying the F-

pretest as well as multiple cumulated frequencies and pared down the model using AIC and BIC all with similar 
implications as reported in this paper. 
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In Figure 6 to 9 we investigate the distribution of the estimated frequency and the average 

SSR for each grid point           . In this case we analyse the data from the simulations 

above and consider both the null and the alternative defined by     and       

respectively. In the present case the deterministic component is characterized by the 

frequency           and the sample size is      .  

5. Results 

5.1. Size and power when the frequency is estimated 

In this section we investigate the size and power of the test when it is applied to different 

DGPs with various deterministic Fourier components. We consider both the originally 

proposed exogenous frequency critical values and the two kinds of endogenous frequency 

critical values that are proposed in this paper. 

We consider the case where the peak-to-peak amplitude is fixed and we let the frequency 

vary. The first three plots of Figure 3 pictures the size of the integer frequency type test in 

various sample sizes. The dashed line pictures the size of the test when the exogenous 

frequency critical values are applied as recommended in Enders and Lee (2012b). In the first 

plot, where      , we can see that using exogenous frequency critical values the test is 

moderately oversized at 12% when    , that is, when the trend is constant. When the 

frequency is equal to   the test is still somewhat oversized and when larger integer 

frequencies are present the size is close to the nominal 5%. However, the size does not 

converge monotonically in  . When the frequency takes fractional values the size is 

substantially lower compared to the when it is equal to an integer. Although, when we 

consider the larger sample sizes in the second and third plot of the figure we see that the 

difference in size between the fractional and integer cases is smaller when the sample size is 

increased.  

The solid line in the figure represents the test with the adjusted endogenous frequency 

critical values and the dotted line corresponds to the unadjusted endogenous frequency 

critical value. First notice that, for both types of critical values the test holds the nominal size 

of 5% when    . This result is of course by construction but is still worth noting as it 
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justifies the use of these critical values. As the frequency increases the size diminishes also in 

the case where the endogenous frequency critical values are applied. However, because the 

size diminishes from the nominal level of 5% the test is undersized when large Fourier 

frequencies are in the DGP. Hence, both types of the endogenous frequency critical values 

are conservative. Interestingly, when the unadjusted critical values are applied the size is 

closer to the nominal level for frequencies up to about    . Thereafter the size diminishes 

very quickly and approaches zero when the frequency increases. When the adjusted critical 

values are applied the size diminishes more gradually and settles at about 2% for large 

integer frequencies. The size is smaller when the Fourier component is characterized by 

fractional frequencies similar to when the exogenous frequency critical values are applied. 

This result is expected since the tests only differ in the critical values and not in the 

regression model. Hence, any problem inherent to the model, such as the grid, remains and 

thereby the problem persists. 

Figure 3: Size with respect to   

 
Notes: Figure 3 shows the size of the integer and fractional frequency unit root tests calculated using 5% critical 
values. The data is based on Monte Carlo simulations with 5,000 repetition where the stochastic component of 
the DGP has standard normal IID errors. Exogenous frequency critical values:   , adjusted endogenous 
frequency critical values:  , unadjusted endogenous frequency critical values:  . 



19 
 

The bottom three plots in Figure 3 shows the size of the test that uses the fractional 

frequency grid. The most striking observation here is that the test is considerably oversized 

when the exogenous frequency critical values are applied. When the     the size is well 

above 20% in all sample sizes. As the frequency increases the rejection rate is quite constant 

until the frequency is a little larger than  . Thereafter it diminishes quite rapidly. For 

frequencies equal to   the size lies at around 10% and it finally approaches the nominal 5% 

for large frequencies.  

Figure 4: Power of the integer frequency test with respect to  . 

 
Notes: Figure 4 shows the power of the integer frequency unit root tests calculated using 5% critical values. The 
data is based on Monte Carlo simulations with 5,000 repetition where the stochastic component of the DGP 
has standard normal IID errors. Exogenous frequency critical values:   , adjusted endogenous frequency 
critical values:  , unadjusted endogenous frequency critical values:  . 

Also when we use the fractional grid the test holds the nominal size when we apply the 

endogenous frequency critical values. The main difference from the integer frequency test is 

that the size does not differ depending on whether the DGP contains a fractional or integer 

frequency. Apart from that the tendency is similar to the integer case where the size is equal 

to the nominal 5% by construction at     and diminishes as the frequency increases. 

However, for the adjusted endogenous frequency critical values the size settles at about 1% 

for large frequencies instead of the 2% level in the integer grid case.   
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The test was reported to hold its nominal size when the frequency was exogenously 

appointed in Enders and Lee (2012b). Consequently, we conclude that the size problems 

must be a consequence of the frequency estimation. An interesting but undesirable detail is 

that the size problems are almost unchanged when the sample is increased. Most often we 

would expect the properties of the test to improve when the sample size is increased. 

Therefore, other things equal, the size should approach the nominal as the sample is 

increased. However, the problems associated with the error in the frequency estimate may 

also increase with the sample size. In this case the final performance of the test does not 

necessarily need to improve unless the frequency estimate would be correct each time. 

From Figure 3 we see that the size is almost unchanged when the sample is increased. 

Hence, the problem that the test is oversized for small frequencies is not only restricted to 

small samples. Note, however, that the dips in size when the integer grid is used and the 

DGP contains a fractional frequency are substantially smaller in the largest sample.    

Figure 4 pictures the power of the integer frequency test with respect to the frequency in 

the Fourier component. In the three upper plots the case with the autoregression coefficient 

      is presented. In this setting the autoregression coefficient is relatively close to   and 

in the smallest sample the power is very low. However, it is a well known fact that unit root 

tests have low power under near unit roots in small samples. Hence, this result is in line with 

the unit root literature. First consider the integer values of  , in this case power of the test is 

the largest when the deterministic component is constant. For all three types of critical 

values the relatively high power at     falls substantially when   increases. Both when we 

apply the exogenous frequency critical values as well as the adjusted endogenous frequency 

critical values the power at the integer frequencies reaches their lowest levels at    . 

Thereafter the power increases slowly with the frequency. The power of the test when we 

apply the unadjusted endogenous frequency critical values, on the other hand, diminishes 

monotonically with respect to the integer frequencies. This result is quite expected since t-

statistic still varies with the frequency. When the corresponding critical value is not adjusted 

the power of the test deteriorates as the frequency increases.  
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When the deterministic component in the DGP contains a fractional frequency the power is 

very low. For the samples       and       the power is almost zero in the area 

between the integer frequencies. In the larges sample, although the power has converged to 

  at integer frequencies, the test is substantially less powerful at fractional frequencies.  

The bottom three plots in Figure 4 pictures the case where the stochastic process is 

characterized by the autoregression coefficient      . In this case the power is improved 

at the integer frequencies for all sample sizes. When   equals an integer plus    , on the 

other hand, the power is still more or less equal to   in sample sizes       and      . 

Only when       the power has reached high levels for all critical values. 

Figure 5: Power of the fractional frequency test with respect to  . 

 
Notes: Figure 5 shows the power of the fractional frequency unit root tests calculated using 5% critical values. 
The data is based on Monte Carlo simulations with 5,000 repetition where the stochastic component of the 
DGP has standard normal IID errors. Exogenous frequency critical values:   , adjusted endogenous frequency 
critical values:  , unadjusted endogenous frequency critical values:  . 

The power of the fractional frequency test is investigated in Figure 5. The difference 

between power of the integer frequency test and the fractional frequency test is similar to 

that of the size. For example, the fractional frequency test does not suffer from the power 

problems that the integer frequency test has when a fractional frequency is in the 

deterministic component. In the smallest sample with       and       the power is 
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very low when the endogenous frequency critical values are applied. The unadjusted 

endogenous critical value renders a test with power between 16% and 10% for frequencies 

up to    . Thereafter we see a monotonic decline of the power as the frequency grows 

larger and it finally reaches its minimum at just over 1% at    . The use of the adjusted 

endogenous frequency critical values results in 22% power when    . The power falls 

instantly as the frequency increases and takes its minimum at 6% when       . After the 

power has reached its minimum it slowly increases to about 10% for large frequencies. The 

power of the test when the exogenous frequency critical values are applied is much larger 

compared to the when the endogenous critical values are used. However, this should be 

seen in the light of the fact that the test is significantly oversized when these critical values 

are applied. Therefore, although the nominal power is higher when the exogenous 

frequency critical values are applied it is not comparable to the other cases,  and hence we 

cannot say that the test is more powerful in general. 

When the sample is increased to       the power curves are shifted upwards. The 

adjusted endogenous and the exogenous frequency critical values tests are improved quite a 

lot for the cases where the frequency is large or equal to zero. Unfortunately, the power 

improves more slowly over the span where the frequency is small to moderate. This creates 

a valley in the power curve where the frequencies are between about      and    . When 

      the power has reached almost 100% in all cases. When the autoregression 

coefficient is changed to       and       the power curves are shifted in a similar way 

as they were when the sample size was extended to       and   was fixed. When 

      and the sample is increased to       the power is high for all sets of critical 

values. The power of the exogenous frequency critical values test is 100% and both of the 

endogenous frequency critical values tests have a power of almost 90% or more. When 

      and       the power has reached 100% in all cases. 

In Figure 3 and 4 we saw that both the size and power of the integer frequency test crucially 

depend on the functional form of the deterministic component in the DGP. This result 

indicates that integer frequencies often are insufficient in approximating the shape of 

fractional frequencies.  Consequently, the properties of the test deteriorates the more the 



23 
 

frequency in the deterministic component differs from integer values. The issue appears 

particularly problematic when the power is considered. For example, the power varies 

between 0% and 100% in the cases where       and       when the endogenous 

frequency critical values are applied. Hence, we can easily find a functional form for which 

the test is unable to reject the null. Moreover, note that in this case the power is even 

smaller than the size. In empirical research it is not unlikely that the functional form of a 

trend would be close to some Fourier function with a fractional frequency. For example, this 

may be the case if the data contains a cyclical component and the data spans half cycles. 

Another plausible example where the trend could be approximated by a fractional frequency 

Fourier function is where there is a smooth permanent break in level. Therefore, the 

flexibility of the fractional frequencies provides an advantage over integer frequencies. 

The use of fractional frequencies solves some of the size and power problems of the test 

that uses integer frequencies. However, when the exogenous frequency critical values are 

applied to the fractional frequency test it becomes much more oversized, and hence a new 

problem arises. A researcher could perhaps accept a test that is oversized at between 11% 

and 12% at most, which is the case of the integer frequency test. However, the fractional 

frequency test is oversized at a level of more than 20% for frequencies ranging from   to    . 

At this level the size problems are severe and the validity of the test can be seriously 

questioned. Therefore, when applying the fractional frequency test there is much to gain 

from using the conservative endogenous frequency critical values.     

Both types of endogenous frequency critical values are constructed to hold the nominal size 

for the case where    . As the frequency increases the size of the test diminishes for both 

sets of critical values, however, at different speed. Figure 3 indicates that the test with the 

unadjusted critical values weakly dominates the test with the adjusted critical values in 

terms of the size for frequencies up to about    . With exception for the case where the 

frequency is equal to or close to zero this also holds for the power. For frequencies that are 

larger than    , on the other hand, the test that uses the adjusted endogenous critical values 

dominates its unadjusted equivalent. Hence, neither set of critical values dominates the 

other for the entire set of frequencies. Therefore, which set of critical values that are to 
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prefer depends on the deterministic component in the DGP. However, in empirical research 

any deterministic component is in general unknown. Consequently, to say which critical 

values that are to prefer for given dataset would require assumptions about the functional 

form of the deterministic component. However, the reason for using a Fourier function to 

approximate the deterministic trend is to avoid having to define its functional form. Hence, 

it is inherent to the choice of using this type of modeling strategy that we do not want to 

make such assumptions.  

Because neither method dominates the other in all cases one may consider the extent to 

which the methods dominates the other in the different cases. When the unadjusted critical 

values are applied the power of the test never exceeds its adjusted equivalent by more than 

10% in the considered cases. The adjusted critical values, on the other hand, dominates the 

unadjusted by more than 10% quite soon after it has exceeded it. Furthermore, for large 

frequencies the difference in power is almost 40% in many cases. This result is somewhat in 

favor of the adjusted critical values. However, because the use of the adjusted critical values 

is not superior in all cases the argument for these critical values is not unambiguous.  

In this section we considered the cases where the change in the deterministic component of 

the DGP is either absent or of magnitude   . It is important to point out that if we had 

considered a smaller magnitudes then the size and power curves would have been closer to 

the case where the change is absent. Consequently, even for large   the implications would 

have been similar to those of the case where     if the magnitude of the change would 

have been small enough. 

5.2 Distribution of the estimated frequency 

In this section we investigate the distribution of the estimated frequency and the SSR.  As 

established in Enders and Lee (2012a,b) the SSR depends on the frequency in the test 

regression. Therefore, it is interesting to have a closer look at the SSR as well as the 

distribution of the frequency estimate to get a better understanding of the properties of the 

test. We consider the cases where       for           under both the null and the 

alternative with      . Figure 6 to 9 show normalized histograms of the distribution of    
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and plots of the expected value of the SSR for each frequency in the search grid. Note that, 

only integer values of the frequency in the deterministic component are considered. Hence, 

it is always possible for the estimated frequency to equal the true, that is, with exception of 

when    . Note that we only consider the average SSR for each grid point. It would of 

course have been interesting to look at the entire distribution of the SSR at each point as 

well as their joint distributions. However, this would create a multi dimensional problem 

that quickly becomes very complicated with the number of grid points. Hence, for simplicity 

we restrict the analysis to only cover the average SSR. 

Figure 6: Integer frequency estimation under the null  

 
Notes: Figure 6 considers the frequency estimation of the integer Fourier frequency unit root test under the 
null with      . The three upper plots in the figure show normalized histograms of the distribution of the 
estimated frequency. The three plots at the bottom show the average SSR for each grid point in the frequency 
estimation grid. The data is based on Monte Carlo simulations with 5,000 repetition where the stochastic 
component of the DGP has standard normal IID errors. 

Figure 6 pictures the integer frequency case under the null. The first histogram shows the 

distribution of the estimated frequency when    . In this case, because the deterministic 

component is in fact linear neither value of    is correct. However, although all frequencies in 

the grid differ from the true the distribution is concentrated at     , where we find almost 

50% of its mass. Hence, the frequency estimate is skewed towards the smallest point in the 

grid if we apply the test on a process with a constant deterministic trend. Note that also the 
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expected value of the SSR is minimized at        . When     the distribution is shifted 

even more to the left and a greater part of the mass is situated at     . In a similar way the 

expected value of the SSR at this point differs a bit more from the others grid points 

compared to what it did in the previous case. When     almost all of the mass is situated 

at     . In this case the average SSR at this point differs more distinctively from the other 

grid points.  

The overall ability to estimate the frequency in this case seems quite good and the estimate 

equals the true frequency in 80% of the cases when     and in nearly 100% of the cases 

when    . However, it is important to point out that when we only consider integer 

frequencies we restrict the analysis to functions that completes full cycles. In this case, 

where the frequency in the DGP also appears in the search grid, there is in a sense a lot of 

information in the grid. In this case, we are effectively are choosing between the number of 

cycle we wish to model the data with. Conversely, if   would have been a fractional number 

the true frequency would not have appeared in the grid. In this case the estimated 

frequency would never be correct. Whether this is would be a problem or not depend on 

how the test performs in terms of size and power. As we saw in the previous section in the 

prevailing situation the power is equal to zero when   is equal to an integer plus    .    

Figure 7 illustrates the case where the fractional frequency test is considered under the null. 

Similar to the integer frequency case, when     there is a high concentration of the mass 

of the distribution at the smallest point of the grid, that is, when       . Interestingly, 

whereas        is estimated rarely with probability close to      the following frequencies 

are estimated much more frequently. This creates a bump in the distribution that is centered 

around    . In the corresponding plot for the average SSR wee see that this is also where the 

SSR has its minimum. When     the distribution is shifted to the right as expected. 

However, the most frequently estimated value is still    . Furthermore, exempt from the 

first grid point        is the most frequently estimated followed by       , which in turn is 

followed by     . Moreover, about 35% of the estimated frequencies are off the true 

frequency by     or more, that is, by half a cycle or more. Hence, estimating the frequency 

by minimizing the SSR does not seem to perform very well for frequencies of this magnitude. 



27 
 

In the corresponding plot of the average SSR we can see that the SSR takes its minimum at 

   . Consequently, the SSR attain its minimum at the same point as it did when    . This 

illustrates the problem of minimizing the SSR to estimate the frequency when SSR depends 

on      . Because the average SSR is minimized at a different value than   it is perhaps not 

surprising that the most frequently estimated    also differs from  . Of course the entire 

distribution of SSR and the dependence between the grid points also determines   . 

However, everything else held constant, a smaller average SSR for some grid point       

would imply that it minimizes the SSR more often than the others. When     the 

distribution of    takes its maximum value at the correct frequency and at about 85% of the 

times the estimate is within     frequencies from the true. The plot of the corresponding 

average SSR now shows that it is distinctively lower at the true frequency.  

Figure 7: Fractional frequency estimation under the null 

 
Notes: Figure 7 considers the frequency estimation of the fractional Fourier frequency unit root test under the 
null with      . The three upper plots in the figure show normalized histograms of the distribution of the 
estimated frequency. The three plots at the bottom show the average SSR for each grid point in the frequency 
estimation grid. The data is based on Monte Carlo simulations with 5,000 repetition where the stochastic 
component of the DGP has standard normal IID errors. 

Overall, the difference in both the distribution of    and the average SSR is relatively small 

between the cases where     and    . When the Fourier frequency is changed to   
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 , on the other hand, the distribution of    and the average SSR clearly indicates where the 

true frequency lies. 

Figure 8: Integer frequency estimation under the alternative       

 
Notes: Figure 8 considers the frequency estimation of the integer Fourier frequency unit root test under the 
alternative with autoregression coefficient       and      . The three upper plots in the figure show 
normalized histograms of the distribution of the estimated frequency . The three plots at the bottom shows the 
average SSR for each grid point in the frequency estimation grid. The data is based on Monte Carlo simulations 
with 5,000 repetition where the stochastic component of the DGP has standard normal IID errors. 

In Figure 8 we consider the integer frequency test under the alternative with      . The 

first plot pictures the distribution of    for the case where    , now the distribution is 

quite close to uniform. Hence, a lot of the bias towards the left endpoint has disappeared. 

Turning our attention to the first plot at the bottom we can see that the average SSR takes a 

quite different shape from how it looked like under the null. It still takes its minimum at the 

first grid point, however, the difference between the smallest and the largest value is much 

smaller compared to Figure 6. The difference is now only     in contrast to around   under 

the null. For the cases when     and     the estimate equals the true 100% of the 

times. This is also reflected in the average SSR plots where there is large difference between 

the cases where the       is equal to   and where       differs from  . 
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The distribution of the estimated fractional frequency under the alternative is illustrated in 

Figure 9. Again the first plot shows the distribution of the estimated frequency when    . 

The mass at the left endpoint is greatly reduced and the bump that characterized the 

distribution under the null has almost disappeared. We conclude that the distribution is 

closer to uniform in this case as well. However, the smallest values of the estimate just next 

to the leftmost endpoint of the grid are still much less frequent than the others. Note that 

the mass at the rightmost endpoint has increased substantially. The corresponding average 

SSR looks similar to how it looked like for the integer grid where the difference between the 

smallest and largest value is quite small. When     the precision of the estimate is 

improved and the distribution of the    now has its peak at  . In the case where     the 

estimate is correct in about 50% of the time. Moreover, the estimate is only off by     or 

more in approximately 4% of the cases. The improvements in the precision of the estimated 

frequency are also reflected in the average SSR plots, in which case the minimums are found 

at the true frequencies. However, note that, although the frequency estimate when     is 

improved quite a lot when we go from the null to the alternative it is still much less accurate 

compared to the     case.  

The consequence of the varying precision of    at different values of   is also reflected in the 

size and power plots in the previous section. As reported in Enders and Lee (2012b) the test 

holds its size when the frequency is exogenously given. Consequently, that the test is 

oversized when we estimate the frequency must be a result of the estimation. The results in 

this section show that with the method at hand the frequency is much more difficult to 

estimate when     compared to when    8. If we reconsider Figure 3 we can see that 

there is a considerable difference of the extent to which the test is oversized for     and 

   . Similarly, in Figure 4 and 5 the region that ranges from values of   close to zero to 

about     is characterized by lower power compared to the other values of  . This is 

approximately the region that covers the bump in the first plot in Figure 7. Note that    , 

which is difficult to estimate, lies in this region whereas    , which is much easier to 

estimate, does not. 

                                                           
8
 In a preliminary analysis we considered other values of   with the result that showed that the same argument 

can be made small and large values of   in general rather than just for     and    . 
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Figure 9: Fractional frequency estimation under the alternative       

 
Notes: Figure 9 considers the frequency estimation of the fractional Fourier frequency unit root test under the 
alternative with autoregression coefficient       and      . The three upper plots in the figure show 
normalized histograms of the distribution of the estimated frequency . The three plots at the bottom shows the 
average SSR for each grid point in the frequency estimation grid. The data is based on Monte Carlo simulations 
with 5,000 repetition where the stochastic component of the DGP has standard normal IID errors. 

6. Conclusions 

In this paper we have investigated the size and power properties of the flexible Fourier form 

Dickey-Fuller unit root test proposed by Enders and Lee (2012b). We considered the cases 

where the Fourier frequency is estimated using an integer search grid as originally suggested 

as well as where a fractional search grid is used as proposed by Omay (2015). By Monte 

Carlo simulations we show that when the integer grid is used the test sometimes has zero 

power in small samples when the DGP is characterized by a fractional frequency. When we 

allow the estimated frequency to take fractional values the power problem at the fractional 

frequencies is solved. However, in this case the test is considerably oversized when the 

deterministic component in the DGP is either linear or contains a Fourier function with a 

frequency that is small.  

To get a better understanding of the properties of the test we investigated the distribution 

of the estimated frequency. We found that the frequency estimate is biased towards the 
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smallest grid point under the null when the deterministic component is linear or contains a 

frequency that is small. When we consider larger frequencies and when we go from the null 

to the alternative hypothesis the frequency estimate is improved. However, also under the 

alternative it still difficult to estimate the frequency of the Fourier deterministic component 

when it is small. 

To solve the size problems of the fractional frequency test we simulate two types of new 

critical values. The critical values are conservative and are constructed to take into account 

that the frequency is endogenously estimated in the test procedure. The first type provides a 

single unadjusted critical value for the entire grid of frequencies. The second type provides a 

set of critical values in which each critical value is adjusted to the estimated frequency. 

Neither of the new critical values dominates the other in all cases. However, the adjusted 

critical values yields a test such that when it is dominated by the other it is only a little less 

powerful. Conversely, the unadjusted critical value renders a test that is substantially less 

powerful than the other in many cases. Therefore, the results are somewhat in favor of the 

adjusted endogenous frequency critical values. We find that although the test is sometimes 

undersized when using these critical values its power is still at a reasonable level.  

Finally, in this paper we only considered Fourier frequency deterministic components in the 

DGP of the Monte Carlo study. However, the reason for using Fourier frequencies to model 

time series is that they are suppose to be able to approximate a large variety of other 

functional forms. Therefore, an area of further research is to investigate how the test 

performs when the deterministic component takes other functional forms. Furthermore, it 

would also be interesting to compare it to other unit root tests that models the deterministic 

component differently. 
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Appendix 

 

 

  

Table 1: Endogenous integer frequency critical values 

Adjusted critical values for    ,                   

                   

                                 

  -4.66 -4.08 -3.79 -4.59 -4.04 -3.76 -4.55 -4.01 -3.74 

  -4.48 -3.84 -3.50 -4.41 -3.81 -3.48 -4.38 -3.79 -3.48 

  -4.30 -3.62 -3.26 -4.26 -3.60 -3.24 -4.22 -3.59 -3.25 
  -4.13 -3.44 -3.06 -4.08 -3.41 -3.06 -4.09 -3.42 -3.06 
  -4.01 -3.28 -2.91 -3.97 -3.29 -2.93 -3.96 -3.29 -2.93 

 Unadjusted critical values for    ,              

                   
                               
 -4.53 -3.92 -3.60 -4.46 -3.88 -3.57 -4.43 -3.86 -3.56 

 Critical values for the F-statistic 

                   
                               
 10.44 7.61 6.35 10.05 7.42 6.23 9.89 7.33 6.17 
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Table 2: Endogenous fractional frequency critical values 

Adjusted critical values for  ,                  

                                      

                                                                  

    -4.84 -4.28 -4.00 -4.75 -4.22 -3.96 -4.70 -4.20 -3.94     -4.79 -4.12 -3.79 -4.70 -4.08 -3.75 -4.65 -4.06 -3.73 

    -5.09 -4.52 -4.24 -5.00 -4.45 -4.19 -4.93 -4.42 -4.16     -4.74 -4.09 -3.72 -4.64 -4.04 -3.71 -4.62 -4.01 -3.68 

    -5.11 -4.54 -4.25 -5.02 -4.46 -4.19 -4.94 -4.42 -4.16     -4.72 -4.05 -3.70 -4.64 -4.00 -3.65 -4.58 -3.98 -3.66 
    -5.11 -4.53 -4.24 -4.99 -4.45 -4.19 -4.94 -4.43 -4.16     -4.73 -4.01 -3.65 -4.61 -3.97 -3.62 -4.58 -3.97 -3.64 
    -5.11 -4.53 -4.24 -5.00 -4.46 -4.19 -4.94 -4.43 -4.17     -4.68 -3.99 -3.63 -4.61 -3.96 -3.61 -4.53 -3.94 -3.61 

    -5.11 -4.53 -4.25 -5.00 -4.46 -4.19 -4.94 -4.43 -4.17     -4.67 -4.00 -3.63 -4.58 -3.95 -3.60 -4.52 -3.94 -3.60 
    -5.10 -4.54 -4.25 -5.00 -4.47 -4.20 -4.94 -4.43 -4.17     -4.63 -3.96 -3.60 -4.57 -3.91 -3.59 -4.56 -3.93 -3.59 
    -5.11 -4.54 -4.25 -5.01 -4.47 -4.21 -4.95 -4.44 -4.18     -4.61 -3.95 -3.59 -4.59 -3.90 -3.56 -4.54 -3.90 -3.58 
    -5.12 -4.56 -4.27 -5.02 -4.49 -4.22 -4.96 -4.45 -4.19     -4.66 -3.94 -3.57 -4.57 -3.94 -3.57 -4.54 -3.91 -3.57 
    -5.13 -4.57 -4.29 -5.04 -4.51 -4.24 -4.98 -4.46 -4.21     -4.59 -3.92 -3.55 -4.53 -3.90 -3.53 -4.51 -3.89 -3.55 
    -5.15 -4.60 -4.32 -5.05 -4.53 -4.26 -4.99 -4.49 -4.23     -4.55 -3.89 -3.52 -4.49 -3.85 -3.51 -4.52 -3.85 -3.51 

    -5.17 -4.61 -4.33 -5.05 -4.53 -4.27 -5.02 -4.50 -4.24     -4.54 -3.84 -3.49 -4.49 -3.83 -3.48 -4.47 -3.82 -3.48 

    -5.18 -4.61 -4.32 -5.06 -4.54 -4.27 -5.00 -4.49 -4.23     -4.53 -3.82 -3.44 -4.46 -3.81 -3.45 -4.39 -3.81 -3.45 

    -5.14 -4.57 -4.28 -5.03 -4.50 -4.22 -4.97 -4.45 -4.19     -4.51 -3.80 -3.44 -4.44 -3.78 -3.43 -4.41 -3.78 -3.44 
    -5.09 -4.50 -4.21 -4.96 -4.44 -4.15 -4.92 -4.40 -4.13     -4.49 -3.80 -3.43 -4.45 -3.76 -3.41 -4.40 -3.77 -3.43 

    -5.03 -4.42 -4.11 -4.90 -4.37 -4.07 -4.86 -4.32 -4.04     -4.46 -3.78 -3.41 -4.44 -3.77 -3.42 -4.38 -3.75 -3.41 
    -4.95 -4.35 -4.04 -4.87 -4.30 -4.00 -4.82 -4.27 -3.98     -4.49 -3.75 -3.38 -4.40 -3.74 -3.39 -4.38 -3.74 -3.40 
    -4.92 -4.31 -3.99 -4.85 -4.26 -3.95 -4.79 -4.21 -3.91     -4.51 -3.78 -3.40 -4.45 -3.76 -3.41 -4.39 -3.76 -3.41 
    -4.90 -4.28 -3.95 -4.81 -4.22 -3.91 -4.77 -4.20 -3.90     -4.43 -3.73 -3.36 -4.41 -3.73 -3.37 -4.38 -3.74 -3.40 
    -4.86 -4.26 -3.92 -4.79 -4.21 -3.90 -4.75 -4.19 -3.89     -4.43 -3.73 -3.36 -4.37 -3.70 -3.36 -4.35 -3.73 -3.38 
    -4.88 -4.24 -3.91 -4.79 -4.19 -3.88 -4.74 -4.17 -3.86     -4.41 -3.70 -3.33 -4.36 -3.71 -3.35 -4.34 -3.68 -3.36 

    -4.84 -4.23 -3.90 -4.77 -4.18 -3.87 -4.74 -4.17 -3.85     -4.35 -3.64 -3.30 -4.36 -3.66 -3.31 -4.30 -3.65 -3.33 
    -4.86 -4.22 -3.89 -4.77 -4.17 -3.85 -4.73 -4.15 -3.84     -4.35 -3.68 -3.30 -4.34 -3.67 -3.31 -4.27 -3.63 -3.31 
    -4.88 -4.20 -3.87 -4.76 -4.15 -3.83 -4.73 -4.14 -3.83     -4.38 -3.64 -3.28 -4.32 -3.65 -3.29 -4.34 -3.65 -3.29 

    -4.81 -4.17 -3.84 -4.74 -4.14 -3.81 -4.66 -4.10 -3.79     -4.33 -3.62 -3.26 -4.29 -3.62 -3.28 -4.25 -3.62 -3.27 

Unadjusted critical values for  ,             Critical values for the F-statistic 

                                      
                                                              
 -4.99 -4.41 -4.11 -4.90 -4.35 -4.06 -4.84 -4.31 -4.04  13.35 10.26 8.84 12.74 9.91 8.60 12.41 9.73 8.47 
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Table 3: Exogenous frequency critical values 

Critical values for  ,             

                                      

                                                                  

    -4.49 -3.89 -3.59 -4.45 -3.87 -3.57 -4.40 -3.84 -3.56     -3.84 -3.13 -2.78 -3.79 -3.13 -2.77 -3.80 -3.13 -2.78 

    -4.50 -3.90 -3.59 -4.46 -3.88 -3.58 -4.41 -3.85 -3.56     -3.80 -3.10 -2.76 -3.77 -3.10 -2.76 -3.77 -3.11 -2.76 

    -4.51 -3.91 -3.60 -4.46 -3.88 -3.59 -4.41 -3.86 -3.57     -3.78 -3.08 -2.74 -3.75 -3.09 -2.74 -3.75 -3.09 -2.74 
    -4.51 -3.92 -3.61 -4.46 -3.89 -3.60 -4.42 -3.87 -3.59     -3.76 -3.06 -2.72 -3.74 -3.07 -2.73 -3.73 -3.07 -2.72 
    -4.52 -3.93 -3.62 -4.48 -3.91 -3.61 -4.43 -3.88 -3.60     -3.75 -3.05 -2.71 -3.73 -3.05 -2.71 -3.71 -3.06 -2.71 

    -4.53 -3.94 -3.63 -4.49 -3.92 -3.62 -4.41 -3.88 -3.60     -3.74 -3.04 -2.70 -3.71 -3.04 -2.70 -3.69 -3.05 -2.71 
    -4.53 -3.93 -3.62 -4.48 -3.91 -3.61 -4.42 -3.87 -3.59     -3.74 -3.04 -2.70 -3.71 -3.04 -2.70 -3.68 -3.04 -2.70 
    -4.51 -3.91 -3.61 -4.48 -3.89 -3.58 -4.41 -3.85 -3.57     -3.72 -3.03 -2.69 -3.69 -3.03 -2.69 -3.67 -3.03 -2.69 
    -4.48 -3.87 -3.56 -4.45 -3.84 -3.53 -4.39 -3.81 -3.52     -3.71 -3.02 -2.68 -3.68 -3.02 -2.68 -3.66 -3.03 -2.69 
    -4.44 -3.81 -3.49 -4.38 -3.78 -3.48 -4.33 -3.76 -3.46     -3.71 -3.01 -2.68 -3.65 -3.02 -2.67 -3.65 -3.01 -2.69 
    -4.39 -3.75 -3.41 -4.33 -3.71 -3.40 -4.28 -3.70 -3.38     -3.68 -3.00 -2.67 -3.64 -3.00 -2.67 -3.63 -3.00 -2.68 

    -4.33 -3.67 -3.34 -4.26 -3.65 -3.33 -4.24 -3.64 -3.31     -3.67 -2.99 -2.66 -3.63 -2.99 -2.66 -3.64 -3.00 -2.67 

    -4.27 -3.61 -3.27 -4.22 -3.59 -3.26 -4.18 -3.57 -3.24     -3.65 -2.98 -2.65 -3.61 -2.98 -2.66 -3.64 -2.99 -2.66 

    -4.21 -3.55 -3.20 -4.17 -3.53 -3.19 -4.12 -3.51 -3.18     -3.63 -2.98 -2.64 -3.60 -2.98 -2.65 -3.64 -2.98 -2.65 
    -4.15 -3.49 -3.14 -4.10 -3.47 -3.12 -4.08 -3.45 -3.11     -3.63 -2.97 -2.63 -3.58 -2.97 -2.64 -3.64 -2.98 -2.65 

    -4.11 -3.44 -3.08 -4.06 -3.41 -3.06 -4.03 -3.39 -3.05     -3.62 -2.96 -2.63 -3.58 -2.97 -2.64 -3.63 -2.97 -2.64 
    -4.08 -3.39 -3.02 -4.01 -3.36 -3.00 -4.00 -3.35 -3.00     -3.61 -2.95 -2.63 -3.58 -2.97 -2.63 -3.62 -2.97 -2.64 
    -4.03 -3.34 -2.98 -3.95 -3.32 -2.96 -3.97 -3.31 -2.96     -3.61 -2.95 -2.62 -3.58 -2.96 -2.63 -3.61 -2.96 -2.64 
    -4.01 -3.31 -2.94 -3.91 -3.29 -2.93 -3.95 -3.29 -2.93     -3.60 -2.94 -2.62 -3.58 -2.96 -2.63 -3.60 -2.96 -2.64 
    -3.98 -3.28 -2.91 -3.91 -3.26 -2.89 -3.91 -3.26 -2.90     -3.58 -2.94 -2.62 -3.57 -2.96 -2.63 -3.58 -2.95 -2.63 
    -3.95 -3.26 -2.89 -3.92 -3.23 -2.87 -3.90 -3.23 -2.88     -3.58 -2.93 -2.62 -3.56 -2.95 -2.62 -3.58 -2.95 -2.63 

    -3.93 -3.23 -2.86 -3.90 -3.20 -2.84 -3.88 -3.21 -2.85     -3.58 -2.93 -2.61 -3.56 -2.94 -2.61 -3.57 -2.94 -2.63 
    -3.92 -3.21 -2.84 -3.88 -3.18 -2.82 -3.85 -3.20 -2.83     -3.57 -2.93 -2.61 -3.54 -2.94 -2.61 -3.56 -2.94 -2.62 
    -3.89 -3.19 -2.82 -3.85 -3.17 -2.81 -3.84 -3.17 -2.81     -3.57 -2.92 -2.61 -3.54 -2.93 -2.61 -3.56 -2.94 -2.62 

    -3.87 -3.16 -2.80 -3.82 -3.15 -2.79 -3.83 -3.15 -2.80     -3.58 -2.92 -2.60 -3.53 -2.93 -2.60 -3.55 -2.94 -2.62 

 

 


