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Abstract

Deep reinforcement learning has been shown to be able to solve tasks without prior knowledge of the
dynamics of the problems. In this thesis the applicability of reinforcement learning on the problem of
production planing is evaluated. Experiments are performed in order to reveal strengths and weak-
nesses of the theory currently available. Reinforcement learning shows great potential but currently
only for a small class of problems. In order to use reinforcement learning to solve arbitrary or a larger
class of problems further work needs be done. This thesis was written at Syntronic Software Innova-
tions.
Keywords: Reinforcement learning, Machine learning, artificial neural networks, production plan-
ning.
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Chapter 1

Introduction

A child learns to crawl, walk and talk by interacting with its environment. The child learns how to
control and manipulate its surroundings and learns the relationship between its actions and the impact
of the actions. This process of trial and error with feedback is the core of how humans learn and the
subfield of machine learning known as reinforcement learning. The basic concepts of reinforcement
learning are covered in the first part of Chapter 3.

In recent years, reinforcement learning has been used to achieve some astonishing accomplishments,
such as learning to play Go [4], chess and shogi1 at a superhuman level [22] and playing Atari with only
raw sensory data [2]. These results were achieved by combining reinforcement learning with artificial
neural network function approximation.

The concept of artificial neural networks, ANN, is inspired by how the human brain works. The
idea and theory of ANN dates back to the 1940s [26], but due to the computational cost it has been of
limited use until recent years. With the development of more powerful hardware ANN has become a
viable and useful tool. ANN are divided up into deep and shallow networks, see Section 3.6. When deep
ANNs are used as function approximators in reinforcement learning techniques the learning system is
called deep reinforcement learning. The theory of deep reinforcement learning relevant to the work in
this thesis is covered in the end of Chapter 3.

There is currently an interest in automation of production and manufacturing. Whereas automation
has become commonplace for manual tasks, assembly robots for example, more cognitive task such as
planning and scheduling have remained mostly an area where humans have to do most of the work.
The use of automation in these cognitive tasks have the potential to, with good margin, be superior
to humans.

This process of automating more cognitive tasks falls under what is sometimes referred to as
industry 4.0 [5]. Research and development in this area has attracted a lot of interest from both
industry and governments [16, 23].

1.1 Problem

The problem that is investigated in this thesis is that of controlling stations in a production line. The
production line has two types of stations, presses and ovens. The press takes a material and moulds it
into a shape. The moulded units are then stored in a storage. The oven takes the shaped units from the
storage and hardens them into the final products. The final products are referred to as stock keeping

1Japanese version of chess
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CHAPTER 1. INTRODUCTION

units, SKUs. The SKUs are stored in stock until they are purchased. An example of a production line
is shown in Figure 1.1.

The presses and ovens need to change setting if different SKUs are to be processed. Both processing
and changing setting takes time. Thus the problem is choosing which SKU to process in the different
stations in order to avoid the stock going empty. The production line and the simulation environment
is described in detail in Chapter 5.

Resources

Press 1 Press 2 Press 3

Storage

Oven 1 Oven 2

Stock

Customer

Figure 1.1: Example of a production line to be controlled.

1.2 Goals

The aim of this thesis is to use reinforcement learning to write a program that is able to learn an
approximately optimal strategy for controlling the stations of a production line in order to meet the
demand. In order to meet the demand the stock must contain enough units to satisfy all the customers
trying make a purchase. The program should be able to learn the optimal strategy for different
production lines. Formally our goal is to create a program that learns to minimise the number of times
the SKUs sell out, leaving the stock empty, for any given production line. Our goals can be stated as:

• Formalise production planning in a reinforcement learning framework.

• Implement reinforcement learning algorithms that find an approximately optimal plan for the
described production line with arbitrary number of press stations and ovens.

• Evaluate algorithms and their applicability to production planning.

2



CHAPTER 1. INTRODUCTION

1.3 Related work

As an introduction to reinforcement learning in general, we used the book by Sutton and Barto [24].
In the book Sutton and Barto methodically and thoroughly cover the basics of reinforcement learning
and provide insight and intuition into the field of reinforcement learning. We also complemented our
overview study of reinforcement learning with the lecture series by Silver [21], and the blog course by
WildML [8]. Both the lecture series and the blog follows the book.

1.3.1 Deep reinforcement learning

Articles from the Google subsidiary Deepmind on deep reinforcement learning, such as [2, 4, 12], have
been used as reading material to get knowledge and intuition of how deep reinforcement learning work.

1.3.2 Production planning using reinforcement learning

We have not found any projects that uses reinforcement learning to deal with the type of production
planning problem examined in this thesis. There has however been some work done using reinforcement
learning to solve other types of problems occurring in production planning.

Dranidis and Kehris treats a production system with multiple workstations in [9]. Their objective
is to meet demand while keeping a good balance between the items manufactured. The production
system is a simplification of a real production system. In the simplified system only two products
are produced. When a decision needs to be made three actions are possible; produce product A,
produce product B or wait. Their solution uses a neural network as a function approximation. For an
explanation of neural networks see Section 3.6 and for an explanation of function approximation see
Section 3.5. Dranidis and Kehris use one network for each action. Their result where good in the sense
that their solution learned the objective, i.e. the solution found a nearly optimal solution according to
their metric. However, they stated that more work was needed to be able to handle larger problems.

A basic job-shop scheduling problem (see [15]) was considered by Gabel and Riedmiller with re-
inforcement learning in [11]. They used a decentralised approach, similar to the work in this thesis,
however their objective was to minimise the total production time for producing a given number of
items. In production planing literature this is known as minimising the make span. They achieved
good results, outperforming alternative benchmark solutions. There is no costumer demand present in
their problem formulation, which make their problem differ from the problem dealt with in this thesis.

Das et al. [1] developed a reinforcement learning technique to optimise maintenance scheduling.
They use a version of Markov decision processes called semi-Markov decision process (see Section 4.1)
which does not fully adhere to the Markov property (see Section 3.2). Their objective was to plan
when production should stop for maintenance. When production is stopped for maintenance, the
risk of not meeting the costumers demand increases. If, however, maintenance is postponed too long
the risk of a machine failure increases. A machine failure would create an even greater risk of not
satisfying the demand then stopping production for maintenance. The production line is capable of
producing several different items and the possible actions are to produce one of the items or to stop
the production for maintenance. This approach takes under consideration the time a decision takes to
carry out. This differs from the other production planning problems mentioned above. Considering
the time to carry out a decision adds complexity to the problem. Since comparing the effectiveness of
different choices also must take into account the time it took to complete that choice. For clarification
of the difficulties arising when considering the time to carry out a decision see Section 4.1.

3



Chapter 2

Production Planning

In this chapter a short introduction to production planning is presented. Production planning is an
ambiguous term. In this thesis it means how to most efficiently make use of a production line. This
definition of production planning entails that ’soft’ values, such as workers condition, is not taken into
consideration.

2.1 Operations research

The area of science that is concerned with production planning is operations research. Operations
research is, loosely speaking, the science of how to use quantitative methods to make things better.
Because of the quantitative approach, operations research uses advanced mathematical tools, in par-
ticular optimisation, and can be considered to be a branch of applied mathematics. One could thus
say that operations research is a mathematical way of looking at decision making. This approach is
of course limited in many ways. The biggest limitation being that everything considered needs to be
quantifiable, which is sometimes difficult. Personal satisfaction for example can be difficult to quantify.

Industrial processes, such as manufacturing and logistics, are often possible to model accurately.
Thus there have been many cases of industrial processes being optimised successfully using operations
research. Industrial processes can often be modelled to fit certain problem formulations.

Operations research is both concerned with modelling problems and solving or optimising them. As
mentioned above many situations occurring in industrial process are similar and can thus be modelled
by the same, or similar, models. For further reading on production planing and operations research
see [10, 13].

4



Chapter 3

Reinforcement learning

Reinforcement learning (RL) is a subclass of machine learning which differs from classical supervised
and unsupervised learning. It has a strong connection to behavioural psychology, more precisely to
the law of effect which states the following, ”Responses that produce a satisfying effect in a particular
situation become more likely to occur again in that situation, and responses that produce a discom-
forting effect become less likely to occur again in that situation.”1. The process of taking an action
and receiving a response is what we know as experience. Through experience we learn to make better
choices. This is the fundamental idea of RL; to train a computer to take good actions in a given
situation by allowing it to experience the environment.

Supervised and unsupervised machine learning are mainly used for problems concerning classifica-
tion, regression and pattern recognition in large data sets. RL algorithms on the other hand attempt
to find an optimal behaviour in a given environment. However, parts of supervised learning is often
integrated in order to improve and to scale the basic algorithms of RL.

When humans learn, the response is in the form of feelings, we eat something we like and get a
satisfying feeling and when we eat something we do not like we get a dissatisfying feeling. The response
system in RL algorithms is a numerical value, where a higher numerical value corresponds to a more
satisfying feeling. Thus from experience the algorithms try to learn which actions to take in certain
situations in order to receive the highest possible numerical value.

Reinforcement learning draws from several different areas to achieve the aforementioned goal. Due
to the fact that RL has not received much attention before the last few years and the many different
fields interacting in RL the terminology varies and changes depending on the background of the author.
In this thesis we use the terminology used in [24].

3.1 Foundation

As mentioned above, RL focuses on algorithms which learn the optimal decision given a situation. In
this thesis we refer to the learning and decision making entity as the agent. The agent observes the
environment which is defined to be everything that the agent does not have direct control over but still
influences the process. The agent interacts with the environment through actions and by observing
the state of the environment. The consequences of an action is that the state of the environment
might change. The feedback of an action is called reward. An agent interaction with an environment
is visualised in Figure 3.1.

1 Gray, Peter. Psychology, Worth, NY. 6th ed. pp 108–109
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CHAPTER 3. REINFORCEMENT LEARNING

Enviornment Agent

Action

State

Reward

Figure 3.1: Visualization of an agents interaction with an environment.

By allowing the agent to try different actions it gains experience and can make a plan how to act
in different situations. The agent’s plan is referred to as the agent’s policy. The goal for the agent is
to find a policy which maximises the accumulated reward.

The process in which the agent interacts with the environment is formalised by the Markov decision
process.

3.2 Markov decision process

In order to implement RL the process of the agent interacting with the environment needs to be
formalised. For this purpose Markov decision process, henceforth abbreviated to MDP are central.

An MDP is an extension of a Markov process. An MDP is a Markov process with the addition
of actions. The actions affect the transition probabilities such that the actions can, to some extent,
control the process. This creates a framework where the process is partly random and partly controlled.
The actions of the MDP are the actions described in the previous section and illustrated in Figure 3.1.

The entity deciding which actions to take is the agent. When an agent takes an action the state
may change, entering a different state or returning to a state yields a reward which corresponds to
how good the transition to that new state is.

An MDP is completely described by its state-space, action-space, transition probabilities, rewards
and discount factor, this makes up the tuple (S,A,P,R, γ). The state-space, S, consists of all the
possible states the process can be in. The number of possible states might be infinite. The action-
space, A contains all the possible actions that are possible to take in the different states. Note that
the possible actions, may vary between different states. The transition probabilities, P, contains the
probabilities that, given a specific action in a certain state, the process moves to a particular state.
The rewards, R describes the value of transitioning from one state to another. The discount factor,
γ, is a scalar between [0, 1] which is used to weigh the importance of immediate reward against the
accumulated reward. If γ < 1, then the reward is called discounted. Setting γ = 0 implies that only
the next reward is taken into account and the closer γ is to one the more important are future rewards.
Setting γ = 1 implies that the sum of all future rewards is the important.

Figure 3.2 illustrates one step in an MDP. The node on top is the current state denoted s. In state
s there are two possible actions a1 and a2. For each action there is an uncertainty which will be the
following state, denoted s′i. For both actions there are two possible states, the probabilities for ending
up in one or the other state is denoted by pi. In the case that action a1 is chosen the agent will end
up in s′1 or s′2 with probability p1 and p2 = 1− p1, respectively.

6
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s

a1

s′1 s′2

a2

s′3 s′4

p1 p2 p3 p4

r1 r2 r3 r4

Figure 3.2: Visualisation of a step in an MDP

The sequence of actions and transition is repeated forever or until the process reaches a state which
it can not leave. Such a state is said to be a terminal state. The evolution of an MDP from start to a
terminal state is called an episode. MDPs which with certainty ends in a terminal state after a finite
number of steps are said to be episodic.

An MDP assumes the Markov property, which states that the future is completely independent of
the past, given the present. This is formally written

P(sn+1, rn+1|sn . . . s1, an . . . a1) = P(sn+1, rn+1|sn, an), n ≥ 0.

Each transition yields a reward, illustrated in Figure 3.1. Let rt be the reward received from the
transition at time t and let T be the time when the episode terminates. The discounted accumulated
future reward from time t is then given by

Rt = rt + γrt+1 + γ2rt+2 + ...+ γT−trT =

T−t∑
k=0

γkrt+k, t ∈ N.

This sum is governed by which actions are taken. The decisions of which actions to take is determined
by the agent’s policy, denoted as π. A policy can be written as a conditional probability of what action
to take given the current state,

π(a|s) = P[at = a|st = s], a ∈ A, s ∈ S.

If the probability of all actions are either zero or one the policy is deterministic.
The state-value function, v(s), is the expected discounted accumulated future reward from the

current state, s. The state-value is dependent on the policy. Since the policy determines which actions
to take, the accumulated future reward may differ depending on the policy. Due to the dependence of
the policy, the policy is denoted as a subscript of the value function. The state-value function when
following policy π is thus

vπ(s) = Eπ[Rt|st = s], s ∈ S. (3.1)

Let p(s′|s, a) be the probability of transitioning to s′ given that the action a is chosen in state s. This
allows the conditional probability of the next state s′ given the current state s to be written as

p(s′|s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a). (3.2)

7
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Let rs,s′ be the reward received for transitioning from s to s′. Then the expected reward for transi-
tioning from state s, denoted rπ(s), can be written as

rπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)rs,s′ , s ∈ S.

Now (3.1) can be written

vπ(s) = rπ(s) + γ
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)Eπ[Rt+1|st+1 = s′], s ∈ S.

By identifying that
Eπ[Rt+1|st+1 = s′] = vπ(s′)

we can rewrite (3.1) as

vπ(s) = rπ(s) + γ
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)vπ(s′), s ∈ S. (3.3)

Since the value of a state can heavily depends on the action chosen, there is another measure of a
state value that also includes the action chosen in that state. Given both the current state and action,
the action-value function qπ(s, a) is the value of taking action a in state s while following policy π.

The value of an action in a state is, as for v(s), the accumulated expected future reward, also q(s, a)
is dependent on the policy for the same reasons as v. The action-value function, following policy π,
can be expressed as

qπ(s, a) = Eπ[Rt|st = s, at = a].

To understand why the action-value function is of importance, consider one step of an MDP as
visualised in Figure 3.2. The rewards r1 and r2 might be high, while r3 and r4 are low. By following a
random policy, where the choice of action is 50/50, the state s might look average. But the state s is
actually either good or bad depending on the action chosen. The action-value function captures this
information since it is a function of both the state and the action. Analogous to the value function,
the action-value function can be rewritten as

qπ(s, a) = rπ(s) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)qπ(s′, a′). (3.4)

The algorithms presented in this thesis approximate the q-function.
Equations (3.3) and (3.4) constitutes Bellman’s equations, which are solved with dynamic program-

ming. Dynamic programming is the topic of the next section.

3.3 Dynamic programming

Dynamic programming, DP, is a computational method. In order to apply DP to a problem, the
problem must fulfil the so called ’Principle of optimality’. The principle states that:

An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision [7].

This means that the value of leaving a state can not be dependent on how the process ended up in
that state, or to phrase it in another way, the past can not affect the future. Since MDPs fulfils the
Markov condition, which states that the process is independent of the history, it is possible to apply
DP to RL.

8
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3.3.1 Dynamic programming for RL

Within reinforcement learning dynamic programming is used to find v and q. For finite processes, i.e.,
episodic MDPs where A and S are finite and a model of the process, i.e. the transition probabilities,
is available, dynamic programming can be used. The bellman equations, (3.3) and (3.4) are linear
systems which can be solved explicitly. However, solving the systems explicitly requires inverting a
matrix which is computationally demanding. An alternative to computing the explicit solution is to
use iterative dynamic programming algorithms. Two such methods that are use in RL and have been
proven to converge to the optimal policy are policy iteration and value iteration (for details of these
algorithms see [24]). In many interesting problems the processes are not finite and the transition
probabilities are not available which renders DP not applicable. An alternative method when DP
is not applicable is model-free algorithms which approximate vπ and qπ based on experience. The
experience replaces the need of a model. One such algorithm is the Q-learning algorithm.

3.4 Q-Learning

Due to the fact that dynamic programming is not applicable in many cases alternative techniques
have been developed. Q-learning is a technique used in RL to update the action value function q(s, a)
without the need of a model of the environment [25]. Q-learning is thus model-free and does not
require knowledge of the system as dynamic programming does.

3.4.1 The Q-learning Algorithm

The Q-learning algorithm is an algorithm that systematically updates qπ. The basic idea of the
algorithm is to first run an episode and store all states, actions and rewards. Once the episode has
terminated the values of q are updated. A simplified algorithm is stated in the pseudocode below.

Simplified Q-Learning Algorithm

Set the learning rate α
Initialise q arbitrarily
Run episode:

Take an action at in the current state st such that
at = argmaxa∈A qπ(st, a)

Observe reward, rt
Save st, at, rt

For every observed pair (st, at), update:

qπ(st, at)← qπ(st, at) + α

[
T−t∑
k=0

γkrt+k − qπ(st, at)

]

Every update only uses one sample action, therefore Q-learning avoids the curse of dimensionality.
However, the simplified Q-learning algorithm shown above still has a few drawbacks. Firstly, every
state, action and reward observed in an episode has to be stored in order to update qπ at the end of the
episode. Secondly, updating q at the end of an episode makes learning quite slow. It would be beneficial
for the learning speed to update q every time an action is taken and a reward is received. In order to
handle the drawbacks mentioned above bootstrapping is introduced. To understand bootstrapping we
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need to write qπ(st, at) as

qπ(st, at) = rt +

T−t∑
k=1

γkrt+k.

The idea of bootstrapping is to to approximate the sum,
∑T−t
k=1 γ

krt+k with maxa qπ(st+1, at+1) so
that the updating rule in the Q-learning algorithm becomes

qπ(st, at)← qπ(st, at) + α

[
rt + γmax

a
qπ(st+1, at+1)− qπ(st, at)

]
.

With this new updating rule it is possible to update qπ after every action instead of at the end of an
episode. The more frequent updating allows for faster learning as updates can occur during an episode.
There is however a small downside to bootstrapping, it slightly reduces the accuracy of the updates.
The accuracy is reduced due to the approximation of the sum.

Another problem with the simplified Q-learning algorithm is that it becomes biased towards posi-
tive decisions. If it takes an action in a state and gets a positive reward it tends to prefer those actions
over unexplored actions. This is simply due to the fact that the policy π is greedy, it chooses the action
believed to yield the highest reward. An action which is known to yield a positive reward appears
better than an action with an unknown outcome. To overcome the problem of bias, the agent is forced
to explore random actions with certain probability during the learning phase. Every time the agent
is to choose an action during the learning phase, with probability ε it chooses an action at random.
By introducing this randomness the agent is forced to explore the environment. This new exploratory
policy is called ε-greedy. The Q-learning algorithm with bootstrapping and an exploratory policy can
be seen below.

Q-Learning Algorithm - with ε-greedy policy

Set the exploration probability ε
Set the learning rate α
Initialise q arbitrarily
Initialise new episode and state s0
Run forever:

Take an action at in the current state st according to ε-greedy-qπ
Observe reward rt and next state st+1

Update qπ:

qπ(st, at)← qπ(st, at) + α
[
rt + γmaxaqπ(st+1, a)− qπ(st, at)

]
If st+1 is terminal

Break

The q-function can be represented in a lookup table fashion. In the case of q-learning one would
look up a state-action pair and find the corresponding q-value. A lookup table representation requires
the state and the action representation to be discrete and finite in order to work. This is due to the
fact that every state and action needs to be visited multiple times in order to be able to update and
get a good approximation of the q-value. To visit all states in a very large but bounded state space
is very time consuming and impossible with a unbounded or continues state-space. If the state space
or action space is continuous the probability of even revisiting a unique state is zero. The look up
table approach works great for small discrete state-action spaces but falls short otherwise. For most
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interesting problems the state space is very large or even continuous and thus requires the q-function
to be represented with a function approximation.

3.5 Function approximation

A large state space creates a problem when representing the q-function using the lookup table method.
In the continuous case, an injective mapping such as the lookup table is impossible and for a large
state space it quickly becomes infeasible. In order to extend the practice of reinforcement learning
to large state spaces, the mapping from state and action to q-value needs to be condensed in some
manner. Function approximation is used for this purpose. A function approximation attempts to find a
parameterized function f(x;θ) satisfying f(x) ≈ f(x;θ). In this thesis function approximation is used
to approximate the action-value function, qπ(s, a). By using a function approximation, predictions of
q-values for unseen states is possible. In Figure 3.3 the idea of a function approximation, as it is used
in this thesis, is visualised. The left figure represents a lookup table where the pairs xi and yi are
stored. The right figure represents function approximation, where only the parameters θ are stored.
An input is passed through the function q(s, a;θ) and the approximate value corresponding to the
given input is obtained. A group of very versatile and powerful function approximators is artificial
neural networks. They can be used to approximate nonlinear functions. Artificial neural networks is
explained in the next section.

Rn

R

Lookup table Function Approximation

q(s, a; θ)

q(s, a)

States, Action q-value
States, Action q-value

s1, a1

s1, a2

si, aj

q(s1, a1)

q(s1, a2)

q(si, aj)

.

.

.

Figure 3.3: Illustration of a lookup table to the left and a function approximation to the right.

3.6 Artificial neural networks

Artificial neural networks, abbreviated ANN, are parameterized functions that process information in
a similar way biological neural networks do. The building blocks of an ANN are nodes which would
represent the neurons in a biological neural network. Every node, except the input nodes receives
information from other nodes and processes the combined inputs into an output from the node. The
network is composed of layers, where information is passed from layer to layer until the final layer, the
output layer. Choosing the nodes and layers appropriately ANNs can be used to approximate very
complex functions.
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3.6.1 Multilayer Perceptron

One particular class of ANN is called multilayer perceptron, MLP. This type of network is used in this
thesis. A MLP netwok is constructed of layers of nodes where every node in every layer is connected
to every node in the following layer. An illustration of an MLP can be seen in Figure 3.4.

x0

x1

x2

x3

Input layer

h0,1

h1,1

h2,1

h3,1

h4,1

h5,1

Hidden
Layer 1

h0,2

h1,2

h2,2

h3,2

h4,2

h5,2

Hidden
Layer 2

y1

y2

y3

Output layer

Figure 3.4: Illustration of a feed forward artificial neural network. The green nodes are input, blue
are the hidden layer nodes, red nodes are the output and the yellow nodes are bias nodes.

A MPL with more than one hidden layer is called a deep artificial neural network. For every
connection in the MLP there is a corresponding weight wi and for every node there is a bias. The
weights and the biases make up the parameters θ that parameterize the q-function as described in
Section 3.5.

The mathematical formulation of the computations performed by the MLP are described next. Let
li be a layer with n nodes followed by layer li+1 with m nodes. The connections of these two layers
are represented by a weight matrix W ∈ Rm×n and the biases for the layer is represented by the bias
vector bi ∈ Rm. Let H denote the activation function, it acts as a filter turning the node ’on’ or
’off’ depending on the input. Denoting the output of node k in layer li by aik the node performs the
operation

ai+1
j = H

(
m∑
k=1

wk,ja
i
k + bij

)
.

In more convenient matrix vector notation this reads

ai+1 = H
(
Wai + bi

)
. (3.5)

A common activation function H is the Rectified Linear Unit (ReLU) defined as

ReLU(x) = max(0, x).

ReLU allows for the ’on-off’ effect but with a more gradual transition and no upper bound which
enables the output to contain more information compared to a step function which would only output
0 or 1.
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The information which enters an MLP in the input layer propagates forward as in (3.5) until the
output layer is reached. Different activation functions can be used in the different layers. In the
networks implemented in this thesis ReLU is used for the hidden layers and the output layers output
the weighted sum without an activation function also known as a linear activation function.

3.6.2 Training

Training an ANN is the process of updating the weights and biases in order to increase the accuracy
of the function approximation. During training the ANN is provided a data set,
{(x1, y1), (x2, y2), ..., (xn, yn)}, with input and output pairs (xi, yi). With input xi, the output of the
neural network is denoted by ŷi. After training, ŷi should approximate yi. In particular, for good
performance, the network should approximate y by ŷ well for unseen data not in the training data set.
A loss function, L(yi, ŷi), maps the error between the output ŷi and yi to a real number. A simple
example of a loss function is

L(yi, ŷi) = (yi − ŷi)2.

The loss function is used for the comparison between yi and the approximation ŷi but to determine
the overall accuracy of the ANN we introduce the cost function C(θ). The cost function can be defined
as

C(θ) =
1

n

n∑
i=1

L(yi, ŷi). (3.6)

The goal of training is to update the weights in order to minimise the cost function.

Stochastic gradient descent

Once C(θ) is calculated the training and the updating of the weights and biases can take place. Due
to the many parameters and the fact that minimising C(θ) is a non-convex problem, finding the
global minimum among the many local minimum is impossible. A common approach is to apply some
iterative optimisation method such as gradient decent in order to find a good local minima. Such a
method computes the gradient with respect θ and the weights are updated in the direction of the
gradient. The cost function above takes the entire data set into account which leads to calculating the
gradient for the entire data set. Calculating the gradient for large data sets can be slow. To increase
the speed stochastic gradient descent, SGD, is customly used. It also reduces the risk to get stuck
in a sub-optimal local minima. SGD computes the gradient for one sample or a small subset of the
entire data set at a time. This subset is referred to as a batch. The gradient calculated on the batch
is an approximation of the gradient for the entire data set. For every batch the parameter vector θ is
updated in the direction of the negative gradient corresponding to that batch. The size of the step in
the direction of the gradient is determined by the learning rate, α. The updating for θ is

θ ← θ − α∇θC(θ).

Adaptive moment estimation

In this thesis the optimisation algorithm used is Adaptive moment estimation, commonly called Adam.
It is also a stochastic gradient method but it makes use of previous gradients which can allow for
quicker convergence [14]. In every iteration the algorithm keeps a decaying average m of the previous
gradients and also a decaying average v of the past gradients squared. We let gt = ∇θC(θ) be the
gradient in time step t, the algorithm then calculates

mt = β1mt−1 + (1− β1)gt
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vt = β2vt−1 + (1− β2)g2t .

Here β1 and β2 are hyperparameters controlling the decay of the average sums. The averages mt and
vt are biased to the initialisation value of 0. The Adam algorithm corrects for the biases by replacing
m and v with

m̂t =
mt

1− βt1

v̂t =
vt

1− βt2
.

These new corrected averages are then used to update the parameters θ as follows

θt+1 = θt −
α√
v̂t − ε

m̂t.

Backward propagation

In an ANN there are potentially a very large number of weights and therefore potentially also a large
number of partial derivatives to be computed every update. The common algorithm used to calculate
the partial derivatives with respect to the weights and biases is the backpropogation algorithm, short
for backward error propagation. The algorithm calculates the derivatives starting with the final layer
of weights and propagates backwards, hence the name. Calculations from previous layers are used in
the current layer instead of computing every derivative individually. This allows for quick and efficient
computations. For details on the algorithm see [19]. For further reading about ANNs see [3].

3.7 Deep reinforcement learning

For problems with large state action spaces the lookup table representation of the action value function
q is not applicable due to the reasons discussed at the end of Section 3.4. Instead of the lookup
table a function approximation can be used to approximate q(s, a) with the parametrised function
q(s, a;θ). Artificial neural networks are powerful function approximators, as discussed in Section 3.6,
and are therefore useful in RL. When deep artificial neural networks are used in RL it is called deep
reinforcement learning. An RL algorithm which uses deep ANN is Deep Q-network. The details of the
algorithm are presented below.

3.7.1 Deep Q-Network

Deep Q-Networks, abbreviated DQN, use deep neural networks as function approximation of the
action-value function q(s, a). They were first introduced in [2] for the application of playing Atari 2600
games. The input of the artificial neural network used is the state and the output is the estimated
q-values of the state-action pairs.

When a DQN agent is trained the ANN is trained by minimising the cost function,

C(θ) =
1

N

N∑
i=1

L(yi, ŷi).

Here N is the batch size and θ is the vector with the weights and the biases of the neural network. The
specific choice of L is discussed below. The value which the ANN tries to approximate, yi, is referred
to as the target. The data collected from experience does not contain a target explicitly so in order
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to train an ANN the targets needs to be approximated. When the targets are approximated the data
collected during experience is used. The target yi = yt, where t denotes the time step, is defined as

yt ≡ rt+1 + γmax
a

q(st+1, a;θ). (3.7)

While DQN allow for large and also continuous state-spaces there are however drawbacks to the basic
algorithm which uses (3.7) as target. Firstly if the updates are performed on the events that occurred
most recently, the data would be highly correlated and old training samples would lose their impact
with every new sample. This would degrade the networks ability to generalise [19]. Secondly, the
target uses the same network that is being updated to predict the value of the next state, s′. This
leads to instability when s and s′ are equal or even similar which is often the case [2].

The first problem mentioned above is solved by storing old transitions to a replay memory. The
replay memory simply stores the transitions such that they can be used at later times. By sampling
transitions from the replay memory the network can be trained on uncorrelated experiences and thereby
increases its ability to generalise. This also allows the network to predict the correct values in states
which might be visited less frequently when the agent’s strategy gets better. In short, it increases the
data utilisation, allowing the network to train more on fewer experiences.

The second problem is solved by introducing a second network, a target network, which is a copy of
the first network, which we call the training network. The target network is only used to predict the
value of taking the optimal action from s′ when updating the training network. The target network
is updated with a certain frequency by copying the weights from the training network. Hence freezing
the target network while updating the training network. This method makes the the training network
more stable [2] With the frozen parameters denoted as θ−, the expression for yt becomes

yt ≡ rt + γmax
a

q(St+1, a;θ−).

A third problem still remains; DQN overestimates states[12]. The overestimation is a result of
evaluating the optimal action from s′ with the target network. When the action corresponding to
the largest q-value in s′ is chosen it is likely to be an overestimation of that action which causes the
overestimation. A way to work around this is by choosing the best action from s′ using the training
network and then using the target network to evaluate the value of taking that action from s′. The
action is thus picked based on the most recent updates, but the value of the action is estimated using
the target network. This method is known as Double DQN [12]. Using Double DQN, DDQN, yt
becomes:

yt ≡ rt + γq
(
st+1, argmax

a
q(st+1, a;θ);θ−

)
.

Since the value of q The hyperparameters of the algorithm can be seen in Table 3.1 and the complete
learning algorithm described above can be seen in the pseudocode below.
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Table 3.1: DDQN Hyperparameters

ε Exploration probability

tterminal Total time of a simulation episode

ntraining Number of episodes run for training

ftraining Number of actions to be taken until the training network is trained next

fupdate Number of actions for which the target network is frozen before being updated

astart training Number of transitions before training starts

batch size Number of transitions sampled every time a networked is trained

α Learning rate

γ Discount factor

Double DQN Algorithm - with ε-greedy policy

Initialise new episode and state s
While s 6= sterminal:

Take an action, a in the current state s according to ε-greedy-qπ
Observe reward, r and next state s′

Save < s, a, r, s′ > to the replay memory
numberOfActionsTaken ← numberOfActionsTaken + 1

If numberOfActionsTaken ≥ astart training

Update neural network weights θ on a batch of
transitions sampled from the replay memory:
y ← r + γq

(
s′, argmaxa q(s

′, a;θ);θ−
)

θ ← θ + Adam
(
y, q(s, a;θ)

)
If numberOfActionsTaken (mod fupdate) == 0

θ− ← θ
s← s′

There is high risk that the error yt − ŷ may be large for a few samples. This is partly due to q
being arbitrarily initialised but also due to the variance of r. With a squared error as the loss function
the gradients of the cost function can become very big. This could yield large updates in the network,
which would degrade the networks ability to generalise. One can simply reduce the learning rate in
order to reduce the risk of having too large updates but this results in too small updates when the
errors are small. To overcome this problem the loss function used is the Huber loss, it allows for a
larger learning rate without risking the large updates. The Huber loss function maps large errors
linearly and small errors quadratically which allows for large updates while minimising the risk of
updates becoming too large. The Huber loss function is defined as

Lδ(y, f(x)) =

{
1
2 (y − f(x))2 for |y − f(x)| ≤ δ,
δ|y − f(x)| − 1

2δ
2 otherwise.

Here δ determines the transition between quadratic and linear. A comparison between the Huber loss
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function and the squared error, (y − ŷ)2 is visualised in Figure 3.5. The gradient of the squared error
increases as the error grows while the gradient for the Huber loss remains constant beyond δ.

Figure 3.5: Comparison of the squared error and Huber loss with δ = 1

17



Chapter 4

Markovian processes

In Chapter 3 the foundations of RL was laid out. The underlying process in RL was said to be MDPs.
However, all problems can not be accurately modelled as MDPs. Therefore, the MDP framework needs
to be extended in order to formalise and apply RL to a bigger class of problems.

In this thesis the name Markov decision process is reserved to mean the process described in
Section 3.2. The term Markovian decision process is used to mean all processes the can be formulated
as decision problem that fulfils the Markov property to some extent. The Markovian processes relevant
to the work in this thesis are presented in this chapter.

4.1 Semi-Markov decision process

In a semi-Markov decision process, as the name suggests, the Markov property is not fully satisfied. In
a SMDP the Markov property only holds at decision points, the points in time at which a decision is
taken. The transitions in in MDP are discrete, thus there is no real concept of time of a transitions in
an MDP. In an SMDP the time of a transition is taken into to account. The time between actions in
an SMDP is variable, potentially stochastic and dependent of the state and action. Figure 4.1 shows
the difference between an MDP and SMDP.

MDP t

s1, a1 s2, a2 s3, a2 s4, a3

SMDP t

s1, a1 s2, a2 s3, a3 s4, a4

Figure 4.1: Time line of two environments, the one on top showing the uniform time between actions
of an an MDP and the lower showing the variable time between actions of an SMDP

The transition time, also called sojourn time, can be express as

τn+1 = tsn+1
− tsn .

The extension from MDP to SMDP is formally expressed as the transition probabilities P for the
SMDP being a joint distribution over both the transition probability and the transition time,

P (sn+1, τn+1|sn, an).

18



CHAPTER 4. MARKOVIAN PROCESSES

Because the transition to the next state is dependent on when the action was taken the Markov
property is violated, when the process is interpreted as a continuous time stochastic process, hence the
name semi-Markov decision process. The main difficulty when dealing with SMDPs is how to account
for the variable transition time when designing the reward function. As the time of an action increases,
the variance of the next state increases. The shorter time an action takes the smaller the potential
difference of the states before and after an action. The combination of long and short actions makes
it difficult to learn an optimal policy. The actions which take a short time and are taken in a good
state are likely to end up in a very similar state, thus a good state. On the other hand if an action
which takes more time is chosen there is a higher risk of ending up in a bad state. For the first action
little time passes and little changes in the environment, thus as soon as positive reward is received, by
taking the shortest action from that state it is likely that the agent ends up in a similar good state
and receives another positive reward. Therefore comparing actions of significantly different lengths is
difficult. For a thorough explanation of the complexities of SMDPs we refer to [1, 6, 18].

4.2 Generalised semi-Markov decision process

A generalised semi-Markov decision process, as introduced in [27], can be viewed as several SMDPs all
effecting the same environment. The asynchronous SMDPs affect the state of the environment but do
not directly affect each other. This can be illustrated with an example.

Consider a help desk in a store. Customers arrive at random and if there is no line they get service
immediately, otherwise they wait for their turn. Depending on the customer’s problem, the time it
takes to help customers varies. If a customer walks into the shop when another customer is getting
help the state of the environment changes but it does not affect how long it takes to help the current
customer. In this environment, events of the different process happen intermittently but do not affect
the other process. If there is one help desk, there are two processes that govern the size of the queue,
the arrival of new customers and the servicing of customers. These processes are asynchronous. If
there were two help desks they would both affect the queue, but they would not affect each other, thus
in that case there would be three asynchronous processes governing the size of the queue.

In the case with one help desk, both processes affect the state of the queue, but the next state
of the queue is dependent on when the latest customer was starting to get served, thus the Markov
property is lost.

Since the Markov property is lost, it is difficult to solve GSMDPs. The process has to be transformed
to processes which are solvable, for example MDPs or SMDPs. One possible way to reattain the Markov
process is to include the necessary history in the state representation [20].

The use of a GSMDP framework allows for an elegant model of problems which can be formulated
as asynchronous SMDPs. The GSMDP formalisation provides a common description for a class of
problems, for which general solutions can be made. For a more thorough description of GSMDP we
refer to [18, 27].
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Chapter 5

Production line

In this thesis we apply RL algorithms to a production planning problem in order to analyse the
applicability and the scalability of the algorithms. In the previous chapters the algorithms and theory
is presented. In this chapter the environment which the algorithms try to optimise is presented.

The implementation of the production line was provided by Syntronic. The source code for the
simulation environment was available to the authors.

5.1 Environment description

The environment is a simulation of a production line which can produce a number of different products.
The finished products are referred to as stock keeping units, SKU. During the production line the
unfinished products are referred to as units. The production line considered in this thesis consists of
five stages. Before becoming an SKU the units pass through every stage. The stages and their order
in the production line can be seen in Figure 5.1.

Stage 1 Resources
↓

Stage 2 Presses
↓

Stage 3 Storage
↓

Stage 4 Oven
↓

Stage 5 Stock.

Figure 5.1: The five stages of the simulated production line in the order of occurrence.

An SKU begins as a piece of raw material stored in the first stage, resources. In the second stage raw
material is processed by a press. When the press has processed the raw material the units are stored
in the third stage of the production line, the storage. The units in the storage can then be processed
by an oven, the fourth stage of the production line. Once the oven has processed the units they are
finished and referred to as SKUs. The SKUs are stored in the fifth and final stage of the production
line, the stock, where they remain until they are purchased. For an easy conceptual overview of a
production line with multiple presses and ovens see Figure 1.1.
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5.1.1 Stock keeping units

The production line produces products which when completed are refereed to as stock keeping units.
The SKUs are defined by shape and material.

5.1.2 Resources

The resources refer to the raw material used to produce the SKUs. The resources are unlimited.

5.1.3 Press stations

A press moulds raw material into the shape of a desired SKU. A production line can have multiple
presses, in that case the presses are identical and are controlled individually. A press can process all of
the possible combinations of the shapes and materials and has a unique setting for each combination.
For the press to be able to process a specific shape and material the press needs to change to the
corresponding setting first. The time it takes to change setting and process a unit is determined
by uniform distributions. There is one distribution determining the time to change between shape
settings, another for the material settings and a third for the actual processing time.

5.1.4 Storage

Once a press has processed raw material the units are stored in storage until they are processed by
the oven. There is no limit on the number of units which can be stored in the storage.

5.1.5 Ovens

The oven harden the units moulded by the press. A production line can have multiple ovens, in
that case the ovens are identical and are controlled individually. The ovens can process all possible
combinations of shape and material. An oven can only produce one combination of shape and material
at a time. However, the setting of the oven depends only on the material of the unit which is to be
processed. If the material of two units is the same but the shape is different they can be processed
subsequently without the need to change setting of the oven. Different settings of the oven corresponds
to different temperatures. The time it takes to change setting depends on the temperature difference of
the settings the oven is changing between. The time it takes to increase and decrease the temperature
1 degree is uniformly distributed. The time it take to process units is also determined by a uniform
distribution.

5.1.6 Stock and purchases

When the units have been processed by an oven they are stored as SKUs in stock. The stock has no
limit on the number of SKUs which can be stored in it. The SKUs which are in stock can be purchased
by a customer. The frequency at which purchases of each SKU occur is determined by the amount of
time between the purchases. The time between the purchases of each SKU is given by an exponential
distribution with the probability density function

f(x;λ) =

{
λe−λx x ≥ 0,
0 x < 0.

In the event that a specific SKU is purchased the time until the next purchase of that type of SKU is
determined by the exponential distribution above with with λ corresponding to that SKU. Only one
type of SKU is bought per purchase. The amount purchased at the event of a purchase is given by a
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Poisson distribution with intensity λ > 0. The parameter λ may vary between the SKUs. The Poisson
distribution is defined as

P (x = k) = e−λ
λk

k!
, k ≥ 0.

5.2 Summary of parameters and environment features

The complete set of parameters of the production line environment are listed in Table 5.1. The features
that define the state of the production line are listed in Table 6.2.

Table 5.1: List of environment parameters

M Number of materials, m ∈ {1, 2...,M}
N Number of shapes, n ∈ {1, 2..., N}
P Number of presses

O Number of ovens

G Capacity of oven

K Capacity of press

U(t1low, t
1
high) Uniform distribution of the time it takes change shape

setting in press

U(t2low, t
2
high) Uniform distribution of the time it takes to change

material setting in press

U(t3low, t
3
high) Uniform distribution of the time it takes to process

a unit in a press

U(t4low, t
4
high) Uniform distribution of the time it takes change

temperature of oven 1 degree

U(t5low, t
5
high) Uniform distribution of the time it takes to

process a unit in an oven

λm,npurchase rate Poisson rate parameter for the rate at which purchases

occur

λm,npurchase amount Poisson rate parameter for the number of SKUs

purchased at

the event of a purchase
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Table 5.2: Features defining a state

Press station (For station i):

Material Setting pim ∈ {1, 2, ...,M}
Shape setting pis ∈ {1, 2, ..., N }
SKUs in press pin ∈ {0, 1}
Expected time remaining pit ∈ R
Occupied pio ∈ {0, 1}

Oven (For each oven i)

Temperature setting oiT ∈ {0, 1, 2, ...,M}
SKUs in oven oin ∈ {0, 1}
Expected time remaining oit ∈ R
Occupied oio ∈ {0, 1}

Stock Keeping Units

Number of SKU m,n in storage Sm,nstorage ∈ N
Number of SKU m,n in stock Sm,nstock ∈ N
Number of SKU m,n in all presses Sm,npress ∈ {0,K, 2K..., PK}
Number of SKU m,n in all ovens Sm,noven ∈ {0, G, 2G, ..., OG}

5.3 Markovian Formulation

Applying reinforcement learning algorithms to a problem requires the problem to be of a certain type.
It must be possible to retrieve the tuple defining the MDP. As an example the algorithms mentioned in
Chapter 3 requires the problem to be able to provide tuples: (s, a, r, s′), where s′ is the state following
the action a taken in state s and r is the reward received during that transition.

Figure 5.2 shows the process of a production line with two presses and two ovens. The vertical
lines correspond to a state when a station is done with it’s previous action, a reward is received and a
new action is chosen.
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Production Line processes

Press 1

Press 2

Oven 1

Oven 2

Purchases

Figure 5.2: Visualisation of the parallel processes in the production line. The vertical lines correspond
to the station being done and a new action being chosen.

Since the times between action and state transition for different stations overlap two subsequent
states may not concern the same station. The overlapping causes problems when interpreting the
reward received in the actual subsequent state due to the fact that the reward that is received may
not reflect how good the latest action was. The different stations can be seen as individual processes.
Thus the stations working in parallel can be modelled as asynchronous SMDPs.

By defining s and s′ so that every such pair only concerns one station, s is when an action concerning
a station is taken and s′ is when that action is complete. The process is thus modelled as concurrent
and asynchronous SMDPs. This is visualised in Figure 5.3. Using this formalism means that every
tuple (s, a, s′, r), s and s′ are states with events concerning a unique station. This formulation allows
for a stronger correlation between the actions and the rewards, which increases the agents ability to
learn.

s, P1 s′, P1

s, P2 s′, P2

s,O1 s′, O1

s,O2 s′, O2

Figure 5.3: Separating the stations processes, each is modelled as an SMPD such that for every tuple
(s, a, s′, r)), s and s′ concern the same station.

With each station modelled as a separate SMDP, the production line consists of asynchronous
SMDPs and thus the production line is modelled as a GSMDP as describe in Section 4.2. By including
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an estimate of the time remaining for the other processes in the state representation, the agent have
full information of the state and a optimal action is possible to deduce.

5.4 Agent interaction

An agent can interact with the production line and thus control the production of SKUs. The pro-
duction line can be broken down into two parts that need to be controlled, the presses and the ovens.
When either a press or an oven is done with the previous action the next action needs to be chosen. In
a state when a press is done, the possible actions are always the same due to the unlimited amount of
resources. In a state where an oven is done, the possible actions depend on which units are available
in storage. Since the ovens only produce with maximum capacity, G, the storage needs to contain at
least G units for an oven to be able to processes that type of unit. Thus if there are fewer than G
units the action of producing that unit is not possible. In the case that there are too few of every type
of unit, the oven only has one possible action; wait until a press is done and has produced more units.
For both the presses and the ovens, the settings are changed if the chosen action requires a different
setting than the current setting of the station. Thus the agents do not have the possibility to only
change setting, but need to produce immediately after the change is done.
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Experiments

In order to reveal strengths and weakness of the algorithms presented in this thesis, they are imple-
mented and used to solve the problems at hand. Their performance is then analysed and evaluated.
The algorithms are used to find an optimal policy in three different simulation environment configu-
rations.

The agents have been written in Python by the authors. The configuration and computations
concerning the neural networks are implemented with the deep learning library TensorFlow1. The
experiments have been run on machines with Intel Core i7-6500U processors with 16 GB RAM.

6.1 Experiment configurations

The details of the experiments carried out are described below.

6.1.1 Production line configurations

The algorithms developed in this thesis are tested on suite of different production lines. This is to
investigate their strengths and weaknesses. In total the different configurations are used to test the
different algorithms.

The first configuration has 3 ovens, 2 presses and can produce 4 different SKUs, the SKUs consist
of the combinations of two shapes and two materials.

The second configuration has 12 presses, 8 ovens, 4 materials and 4 shapes, which yields 16 different
SKUs. In configuration two the ovens have a larger temperature difference between the highest and
the lowest temperature setting. Since the time needed to change an oven’s setting depends on the
temperature difference of the settings, the larger temperature span increases the time needed to change
between the highest and lowest setting.

In both the first and the second configurations the demand of the different SKUs are equal. In the
third configuration, however, the demand is not equal for all SKUs. In configuration three one of the
SKUs have an demand ten times higher then the other SKUs. Apart from the demand, configuration
three is identical to configuration one.

The distributions determining the time it takes to produce and change setting are the same for all
configurations. The details of the different simulation environment configurations can be seen in table
Table 6.1.

1www.tensorflow.org
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6.1.2 Stockouts

A stockout is defined as an SKU not being available in stock. Every SKU not available in stock counts
to the total number of stockouts. The stock is checked and the stockouts counted every time an oven
has completed an action. If there are two out of four possible SKUs available in stock when an oven
is in between actions it counts as two stockouts. These two stockouts are counted to the total number
of stockouts during the episode.

The way the stockouts are counted there is a risk of missing stockouts. This is because the stock
is checked for stockouts when an oven is available to produce again. What the oven produced just
before is now already in the stock. This means that it is possible for an SKU to sell out without it
being registered. Consider the following scenario: An oven starts to produce a batch of units, which
when finished are SKUs of type A. During the time it takes for the oven to finish the process, SKU A
sells out. When the oven is finished, the newly produced batch of SKU A is added to the stock. The
stock is now checked for stockouts, since the newly produced batch of SKU A is there, no stockout is
registered.

6.1.3 Episode initialisation

The initial states of every episode during the training and testing phase are defined as follows. The
settings of the stations is randomly chosen. Every station is empty and ready to pick an action. The
storage is initialised such that there is 20 of each SKU. The stock is initialised such that there are 20
of each SKU.

6.1.4 Training and testing

The simulation environment does not have a natural terminal state but in order to train and compare
the algorithms an episode is set to be five hours in the simulation environment time. The agents are
first trained and then tested. The difference between the training and testing phase is that the agent
is not forced to explore and the policy is not updated during testing. During training the agents are
forced to explore the environment, done by setting ε > 0. During training epsilon is linearly reduced
every episode of the first half of the training episodes. Starting at ε = 1 it is reduced linearly until
ε = 0.005 which occurs after half of the training episodes. During testing the exploration is removed
by setting ε = 0 and thus only exploiting the learned policy.

The testing phase consists of running an agent and simulation environment 100 episodes. The
metric used to compare the agents performance is the mean number of stockouts that occur during
the 100 episodes.
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Table 6.1: Production line settings

Configuration 1 Configuration 2 Configuration 3

Shapes 2 4 2

Materials 2 4 2

Ovens 2 8 2

Presses 3 12 3

Oven

Capacity (units) 15 15 14

Production time (min) U(17, 19) U(17, 19) U(17, 19)

Change temp in oven (s/°C) U(3, 4) U(3, 4) U(3, 4)

Temp settings (°C) 800, 900 800, 900, 1000, 1100 800, 900

Press

Capacity (units) 10 10 10

Production time U(4, 5) U(4, 5) U(4, 5)

Change material setting (min) U(2, 4) U(2, 4) U(2, 4)

Change shape setting (min) U(5, 6) U(5, 6) U(5, 6)

Purchases

λpurchase rate

[
3 3

3 3

] 
3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3


[

15 15

15 15

]

λpurchase amount

[
1 1

1 1

] 
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


[

1 1

1 10

]

6.2 Agents

In Chapter 3 the concept of the agent was introduced as the controlling entity. The agents are powered
by their algorithms. In this section the agents used for the experiments are presented. Due to the
nature of the problem it can be divided into to parts, controlling the presses and controlling the ovens.
For this reason two agents are used to control the production line, one for the presses and one for the
ovens. The first two algorithms, ’Random Agent’ and ’Hard Coded Agent’ do not use reinforcement
learning but are implemented to establish benchmarks.
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6.2.1 Random Agent

The Random Agent acts randomly. It does not take the state into account when making choices. It
is implemented to set a benchmark which can be used when evaluating the performance of the more
advanced algorithms.

Random Agent

Initialise new episode and state s0
while time of model < length of one episode:

if a press is available:
Choose randomly an SKU to produce

else if an oven is available:
if storage is not empty

Choose randomly one of the possible SKUs to produce
else

Wait until a press has produced something

6.2.2 Hard Coded Agent

The Random Agent is likely to set a lower bound in terms of performance. The Hard Coded agent is
therefore a slightly more advanced agent which chooses action with consideration to the state of the
environment. The decision process of the agent is explicitly coded, therefore the agent lacks the ability
to learn. Every time the agent makes a decision it evaluates the state and scores the possible actions.
The action with the highest score is then chosen. The pseudocode below shows the decision process of
the Hard Coded Agent. The following notation is used

Table 6.2: Notation of features
Number of SKU m,n in storage Sm,nstorage ∈ N
Number of SKU m,n in stock Sm,nstock ∈ N
Number of SKU m,n in all presses Sm,npress ∈ {0,K, 2K..., PK}
Number of SKU m,n in all ovens Sm,noven ∈ {0, G, 2G, ..., OG}
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Hard Coded Agent

Initialise new episode and state s0
while time of model < length of one episode:

if a press is available:
Evaluate how good every possible action is:
For every action am,n:

score(am,n)= 100 · 1Sm,n
Stock<5

−0.2Sm,nstock

−10Sm,npresses

−10Sm,nstorage

−10Sm,noven

−30(number of presses with settings to produce SKU m,n))
Take the action with the highest score.

else if an oven is available:
Evaluate how good every possible action is:
For every action am,n:

score(am,n)= 100 · 1number of SKU m,n in stock and oven <5

−Sm,nStock

−Sm,nOvens

−50·(number of presses with setting to produce SKU m,n)
Take the action with the highest score.

6.2.3 Multi-agent tabular design

The tabular design uses a reduced state representation. This is because of the limitations of tabular
design mentioned above. The reduced state representation uses only a few of the features defining the
state of the production line. When an agent is acting on limited information, that is the information
is insufficient to deduce what the optimal action is, the system is said to be partially observed.

State representation

The decision processes for the presses are only presented the reduced state of presses settings and
storage. The decision processes for the ovens are presented the oven the oven’s setting, storage and
stock. In order to reduce the number of states further, the values of the number of SKUs in stock
and storage are segmented. The state representation of the tabular agent for the press can be seen in
Table 6.3 and the state representation for the oven can be seen i Table 6.4.

30



CHAPTER 6. EXPERIMENTS

Table 6.3: Segmentation for press-agent

Number of SKU m,n in stock: Segment

[0, 15) 1

[15, 30) 2

[30, 45) 3

[45,∞) 4

Table 6.4: Segmentation for oven-agent
Number of SKU m,n in stock: Segment
0 1
[1, 15) 2
[15, 30) 3
[30,∞) 4

To capture the work performed by the other stations, the amount the other stations are currently
producing is added to storage or stock depending on station. This means that if the storage is com-
pletely empty and and two out of three presses are currently producing a total of 20 SKU (n,m), the
third press will perceive this as there being 20 units of SKU (n,m) in storage. The same method is
used for the ovens. What the other ovens are producing is perceived as units in stock.

Reward functions

The reward function for the agent controlling the presses punishes the agent with −1 for every SKU
which has fewer than 15 units in storage. Using the notation in Table 6.2 the reward function is defined
as:

rpress(s) = −
M∑
k=1

N∑
k=1

1Sm,n
storage<15 s ∈ S.

For the agent controlling the ovens the reward function is similar to the function above but concerns
the stock. The threshold for being punished is set to zero corresponding to the empty stock. The
reward function for the agent controlling the oven is defined as:

roven(s) = −
M∑
k=1

N∑
k=1

1Sm,n
stock=0, s ∈ S.

Training

The learning was performed with tabular Q-learning. The details of Q-learning algorithm can be seen
in Subsection 3.4.1. The exploration probability, ε, is set to zero. To ensure exploring, all new state-
action pairs are assigned the maximum value when first encountered, zero in this case. This ensure
exploring, since unexplored states have a high q-value, they are chosen. Their value then decreases
toward the true value when the q-function is updated. This is often an effective method to ensure
exploration since the exploration occurs systematically instead of randomly which is the case when
a ε-greedy policy is used for exploration. The training was done during 6000 episodes where every
episode lasted for 5 hours of simulation time.
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6.2.4 Deep Q-Learning Agents

The tabular agent presented above has a major drawback, it requires a reduction of the state space
in order to be computationally tractable. The reduction implies loss of information, which could
potentially be used to make better decisions. To make use of all relevant data of the state space an
agent using DDQN, presented in Subsection 3.7.1 is implemented.

Reward functions

The different reward functions which are used and tested with the DDQN agent controlling the oven
are:

1. r1(s) = −
∑M
i=1

∑N
j=1 1Si,j

Stock=0

2. r2(s) = −
∑M
i=1

∑N
j=1 max

(
− 0.1Si,jStock + 1, 0

)
3. r3(s) = −

∑M
i=1

∑N
j=1

(
e−0.8S

i,j
Stock + 1Si,j

Stock=0

)
4. r4(s) = −

∑M
i=1

∑N
j=1 max

(
e−0.8S

i,j
Stock−λpurchase amount , 1

)
+ 1Si,j

Stock=0

The first reward function, r1(s), gives a negative reward when stockouts occur which reflects that
stockouts are bad. Reward function two and three give a large negative reward for stockouts but also
attempts to capture the fact that the more SKUs in stock the less likely a stockout is to occur. Thus
the reward increases as the number of SKUs in stock increases. Reward function four is similar to
reward function two and three but also takes into account the demand of the SKUs, such that the
reward is adjusted accordingly. The reward used for the agent controlling the press punishes the agent
for having fewer than 15 of an SKU in storage and also if there is a big difference in the number of
SKUs in storage. The reward function for the press agent is

r(s) = −
M∑
i=1

N∑
j=1

1Si,j
storage<15+0.25·1Si,j

stock=0−1max(Sstock)−min(Sstock)>20·

(
max(Sstock)−min(Sstock)
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Neural network architecture

Neural networks are very flexible in terms of design. The design needs to be carefully chosen to achieve
the desired performance. In total the function approximation consists of four neural networks. One
agent is trained for the presses and one for the ovens. Both have a Q-network and a training network.

All the neural networks consist of an input layer, two hidden layers and an output layer. The
networks for the two agents differ in the number of nodes in each layer. These are different for for our
three production line configurations. The hidden layers use the rectified linear function as activation
function and the output layers uses a linear function as activation function. The number of nodes in
each layer of the networks can be seen in Table 6.5 below. The number of nodes and number of layers
were chosen by trial and error.
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Table 6.5: Nodes in the ANNs used

Parameter Configuration 1 & 3 Configuration 2
Press Oven Press Oven

Input 27 15 252 155
Hidden layer 1 108 60 1008 620
Hidden layer 2 108 60 1008 620
Output 4 5 16 17

The weights in the networks are initialised with a normal distribution with zero mean and 0.1
standard deviation. The biases are initialised as 0.01.

The output of the neural network is the Q values for each of the possible actions. The neural
networks for the oven have one more output node compared to the neural networks for the press. The
extra node corresponds to the action of waiting until a press is done. This action is set to only be
available when the storage is empty.

State representation oven

The features of the environment used as input to train the network for the agent controlling the oven
are Sstock, Sstorage, current actions of all the ovens and the expected time remaining until they are
finished.

The features are passed to the network as a vector. Before the vector is passed to the network
the features are preprocessed. The number of each SKU, Sistock is divided by a factor 10. Each value
Sistorage is converted to 1 if storage contains the oven’s capacity of SKU i, otherwise the value is set
to -1.

The current actions of each oven is represented as a vector with a length equal to the number
of SKUs in the simulation environment where each position, i, of the vector represents the action of
producing SKU i. If an oven’s current action is to produce SKU i the ith element in the vector is set
to one and all other values are set to -1.

The time remaining, tr, until each oven is done with its current action is calculated by dividing the
expected finishing time, tf , of the action minus the elapsed time, te, with the average time it takes to
produce an SKU, ta. The remaining time, tr, is thus calculated in the following way

tr =
tf − te
ta

.

The setting of the oven which needs a new action is represented with vector the same length as the
number of possible settings. The position corresponding to the current setting is set to one. The other
elements in the vector are set to -1. An example of a vector which is passed to the neural network for
the oven when configuration one is used:

[1.2, 0.1, 2.0, 1.8︸ ︷︷ ︸
Stock

, 1, 1,−1, 1︸ ︷︷ ︸
Storage

, −1,−1, 1,−1︸ ︷︷ ︸
Action of other oven

, 0.82︸︷︷︸
Time remaining

, −1, 1︸ ︷︷ ︸
Setting

]

By including the action and time remaining for the other oven the Markov property is regained, and
the agent have full information when deciding the next action.

State representation press

The state representation for the press is much the same as the oven’s state representation. For the
DDQN agent handling the press the state representation consists of what is in storage and stock, the
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setting of the other presses and their time remaining until they are finished with their current job.
Also the press’s own setting is represented. The preprocessing for the press differs somewhat from the
ovens preprocess. The number of SKU in stock, Sistock, is divided by 10 as for the oven. However for
the press what are currently being produced by the ovens are added to the stock inventory, Sistock. The
press thus sees what being processed in the ovens as already done and in stock. The storage content
is divided by 10. The setting for the other presses and the time remaining is represented in the same
way as for the ovens. The press’s own setting is also described in the same fashion used for the ovens.

An example of a vector which is passed to the neural network for the press when configuration one
is used:

[1.2, 0.1, 2.0, 1.8︸ ︷︷ ︸
Stock

, 1.5, 1, 2,−1︸ ︷︷ ︸
Storage

, −1,−1, 1,−1︸ ︷︷ ︸
Action of other press

, 0.64︸︷︷︸
Time remaing

,

−1, 1,−1,−1︸ ︷︷ ︸
Action of other press

, 0.82︸︷︷︸
Time remaing

−1, 1,−1,−1︸ ︷︷ ︸
Setting

]

Hyperparameters

The replay memory is set to have a capacity of 500000. If the replay memory gets filled the oldest
entry is removed. The hyperparameter determining the exploration rate, ε, is variable during training
and decreases linearly for the first half of the training episodes. For the second half ε remains constant.

Table 6.6: Hyperparameters

DDQN

ε max(1− 2·episodecurrent
episodetotal

, 0.005)

tterminal 5

ntraining 1000

ftraining 1

fupdate 10000

batch size 32

α 1e-7

γ 0.99

ADAM optimiser

β1 0.9

β2 0.999

εADAM 1e-08
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Chapter 7

Results

In this chapter the results from running the agents in the environment configurations described in
Chapter 6 are presented. The testing phase consists of running 100 episodes of each configuration with
the different agents. Every episode in the testing phase is five hours of the environments time. The
objective is to minimise the number of stockouts. The results show the mean number of stockouts
during the testing phase.

7.1 Configuration One

Recall that configuration one from Subsection 6.1.1 consists of a production line with three presses,
two ovens, two materials and two shapes. The number of stockouts for the different agents is shown
in Figure 7.1. The results are numerically presented in Table 7.1.
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Figure 7.1: The bar graph shows the mean number of stockouts that occur during an episode when the
agents control the production line with configuration one. The results are averaged from 100 episodes
for each agent. The DDQN agent uses reward function 3.

Table 7.1: Results from production line one

Stockout

Mean Std

Random 19.12 5.95

Hard Coded 7.17 4.60

Tabular 9.98 7.28

DDQN 5.72 2.48

Table 7.2: The table shows the same results as in Figure 7.1 but also includes the energy consumption.

The results show that both agents utilising RL are able to learn strategies which are superior to
acting randomly. The tabular agent trains for 6000 episodes and the DDQN agent is trained during
500 episodes, which illustrates one of the benefits gained with function approximation.

7.2 Configuration Two

The second production line configuration described in Subsection 6.1.1 is larger than configuration one,
it consists of twelve presses, eight ovens, four shapes and four material. For this larger configuration,
the tabular agent had to be omitted due to the large state space. Training the tabular agent in this
environment is infeasible due to the immense amount of time needed to visit all the states and try
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all actions multiple times. Further more, storing and accessing the look up table efficiently becomes
a problem of its own, due to the large amount of data. Therefore the Figure 7.2 and Table 7.3 only
show the results from the random, hard coded and DDQN agents.

Figure 7.2: The bar graph shows the average number of stockouts that occur during an episode when
the agents control the production line with configuration two. The results are averaged from 100
episodes for each agent. The DDQN agent uses reward function 3.

Table 7.3: Results from production line two

Stockout

Mean Std

Random 510.71 41.14

Hard Coded 468.09 54.95

DDQN 195.49 22.09

The hard coded agent does not adapt to the changed production line, and preforms only slightly
better then the random agent. The DDQN agent on the other hand is able to learn a policy which
is superior to the benchmark set by the random and harcoded agents. Moreover, the benefits of
the function approximation is further noticeable as it is infeasible to use the tabular agent in this
configuration while DDQN performs well.

7.3 Configuration Three

The third configuration described in Subsection 6.1.1 is similar to configuration one but the demand of
the SKUs is not equal. Configuration three also has four SKUs but the demand of one SKU is higher
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than the demand of the other three. The DDQN is tested with reward function 3 and reward function
4. Reward function 4 uses information about the demands of the SKUs, see Subsection 6.2.4.

Figure 7.3: The bar graph shows the average number of stockouts from 100 episodes when there is an
unequal demand; the expected number of SKUs purchased is one for three of the SKUs and 10 for one
of the four SKUs.

The results show that the a reward function which incorporates information about the demands
improves the DDQN agent’s ability to avoid stockouts. Including information about the demand means
that the agents does not have to learn both the demand and a suitable policy at the same time.

7.4 Comparison of reward functions

Figure 7.4 shows the results when the DDQN agent uses the different reward functions presented in
Subsection 6.2.4 in configuration one. As a comparison the results of the random agent is included.
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Figure 7.4: The bar graph show the number of stockouts obtained per episode averaged over 100
episodes. It illustrates the importance of reward shaping. The configuration 1 is used, the same as is
used in Figure 7.1.

The reward function four is omitted in the comparison as it was specifically designed for the unequal
demand found in configuration three. The results show that with a coarse reward function the agent
performs on par with an agent acting randomly. With a reward function which gradually differs
between good and bad states the agents ability to learn and its performance is improved. It is clear
form Figure 7.4 that the choice of reward function is of importance.
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Discussion

The goal of this thesis is to evaluate the application of reinforcement learning as a tool for production
planing. In the previous chapter the results of the experiments show that the algorithms have a
potential for this application. In this chapter the results are further discussed and insights gained
during the process of working on this thesis presented.

8.1 Results

8.1.1 Configuration One

Section 7.1 shows that the agents which use RL learn how to act in the environment in order to avoid
stockouts without any prior knowledge. Stockouts do occur but significantly fewer times compared
to the agent acting randomly. Even thought the tabular agent uses a reduced state representation, it
is able to perform significantly better than the agent acting randomly. The tabular agent is however
not able to meet the result of the hard coded agent. The extra information available to the agent
using DDQN creates a significant improvement over the tabular agent. Not only does the DDQN
agent perform much better than the tabular agent, it is also able to learn its policy much faster. The
DDQN agent is for 500 episodes compared to the tabular agent which is trained for 6000 episodes. The
updates of function approximation affects all states but especially similar states which makes training
much faster.

Designing a policy for the hard coded agent is an easy task for the small production line config-
uration. The small number of SKUs and an equal demand make it quite simple. This explains why
the hard coded agent performs almost as well as DDQN and with a little more work it could possibly
perform as good or even better.

8.1.2 Configuration Two

The results clearly show that the hard coded agent from configuration one simply can not be used to
control configuration 2. It only performs slightly better than the agent which acts at random. The
DDQN agent on the other hand performs fairly well. In comparison with the hard coded agent it
gets less than half the number of stockouts. The difference is significantly larger for configuration two
than for configuration one. Due to the many more choices which could also have a larger effect. In
configuration one the maximum temperature difference was 300 degrees whereas in configuration two
it is 1100 degrees. The larger the difference between an oven’s current temperature and the desired
temperature, the longer it takes to make the change. This is something the agent using DDQN is
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able to learn while the hard coded does not take it into account. It is possible to include in the hard
coded agent but one would need to weigh the importance of the temperature difference compared to
the other features used to make the decisions.

There are no results for the tabular agent for configuration two. The tabular agent simply can not
handle the large state space even with a binary representation. Visiting all the unique states numerous
times is a time consuming task making training very slow. For the tabular agent every visited state-
action pair needs to be stored thus a large amount of data is quickly generated, data which needs to
be readily accessible. This is possible to do but put more focus on data handling which is a separate
topic not covered in this thesis would be needed.

8.1.3 Configuration Three - Unequal demand

The results of the unequal demand further shows that the agent using DDQN can learn different
configurations. Even though it learns and performs fairly well there is still room for improvement. By
giving the agent better feedback by slightly altering the reward function, the agent is able to learn
an even better policy. As seen in Section 7.3, the agent using reward function 4 performs better than
the one using reward function 3. This gives support to the idea of either providing more information
through the reward function or having a reward function which changes as the agent experiences the
environment. A variant of this idea is suggested in [17], where states which end up in a bad state
within a number of actions are identified. That identified states can then be used to punish the agent
for being close to a bad state.

8.1.4 Different reward functions

The results of testing the different reward functions show the importance of the reward function’s
design. By only giving the agent a negative reward when stockouts occur the agent receives little
information about the actions that do not result in a stockout. The better the feedback of an action
is the easier the agent will learn the task. Better feedback means more information about how good
the action was. This on the other hand has to be done with care. If not, the reward may include
information which may interfere with finding an optimal policy.

8.2 Production planning

Since the problems arising in production planning often can be formulated as Markovian decision
processes, the use of RL may appear natural. With the recent development of deep reinforcement
learning there appears to be great potential for RL as a tool for solving problems with large state spaces.
Therefore, deep reinforcement learning appears useful for solving problems appearing in industry, such
as production planing which often has a large state space. However, as seen in this thesis the production
planing problem does not fit perfectly into the MDP framework, which many of the latest developments
have been focused on. The operations research community is however, used to dealing with problems
lying outside the MDP framework. Therefore the development of RL could benefit greatly, in the
authors opinion, from the production planning- and operations research communities. This is because
of the experience these communities have working with Markovian decision processes. Their results
and knowledge have not yet been incorporated into the latest developments in RL.
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8.3 Reinforcement learning

The problem investigated in this thesis comes from a practical problem, it is thus not an toy problem
to illustrate or exemplify a reinforcement learning method. This introduces challenges, among which
is the problem that the process investigated might not naturally fit in to the developed and tested RL
theory. This problem is accentuated by the fact that state of the art in RL currently is mostly backed
up by empirical results. Assessing the results is thus troublesome, since the potential sources of error
are numerous.

Another difficulty introduced by the practical origin of the problem is that several areas on the
frontier of current research has to be handled all at once. Again this introduces challenges, partly
because the theory is underdeveloped, but also because the interplay between different special cases is
unknown.

The DDQN algorithm is limited in its action space. The problem DDQN tries to solve is essentially
a regression problem over the possible actions. As the number of actions grows the number of nodes in
the output layer grows as well. To retain accuracy the network needs to be increased in size. At some
point the training time will become infeasible when the action space becomes too large but this point
is unknown to the authors. Existing RL methods capable of large, even continuous, action spaces all
relies on spatial correlations in the state space. This is not the case for the problem investigated in
this thesis.

Deep reinforcement learning is, at the present time, moved forward by empirical results achieved by
simulations [1, 2, 4]. If a new algorithm preforms better on a benchmark, then it is considered the new
state of the art. Little effort goes into formally proving stability, convergence or speed of convergence.
The lack of a rigorous theoretical foundation ensuring the behaviour and outcome of an algorithm,
makes the application of RL to real physical systems questionable, at least for the time being.

The step from solving toy problems to handling practical problems, also accentuates the need for
correct modelling. Since RL algorithm learns from experience it is preferable to train the algorithm
within a simulation. This means that a model of the problem must be constructed. As always when
using models, it is the model that is solved. Any discrepancies between the model and the real problem
may lead to an insufficient solution.

As mentioned in Chapter 4 the MDP framework is limited and there is a large class of problems
which can not accurately be modelled as MDPs. The research into how to model and solve problems,
which do not fit the MDP framework, is limited [18]. Expanding the theory of MDP extension have
the potential to vastly expand the applicability of RL.

8.4 Simulation Environment

The simulation environment was provided by Syntronic. The aim of the simulation program was to
be used to investigate and identify difficulties occurring when applying RL to production planning.
It was designed using intuition and common sense, the compliance of the simulation environment to
production planning theory and practice is thus unknown. In this sense the results produced may
be of limited use for production planing since there might be assumptions that are not compliant
to standard practices within the production planing community. For the simulation environment to
be a viable tool for development of production planing software, it should be investigated from an
operations research point of view and, if necessary, modified accordingly.

The simulation environment used for the experiments in this thesis has a limited action space. It
lacks the possibility to wait instead of producing. The action of waiting could be the optimal action
in a state when an oven would otherwise need to change setting due to a lack of units requiring the
current setting of the oven. The press may almost be finished producing such units so instead of
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changing the setting of the oven the optimal action could be to wait until the press is done. However it
requires further development of the algorithms discussed in this thesis. The action to wait introduces
a potential of having very large time differences between actions, see Section 4.1 for details of this
problem.

8.5 Agents

The use of multiple agents makes the program flexible to some changes in the production line. This
is, as argued in [11], an advantage as this makes the program scalable in the number of layers in the
production line. Since an extra layer in the production line could with very little extra work can be
added and then controlled by adding an extra agent. However the interplay between DDQN agents
have not, to the authors best knowledge, been investigated and is therefore a suitable subject for
further research.

8.6 Future work

There exist many potential directions to progress from the results of this thesis. Some of the more
interesting difficulties to further investigate are the following:

• Hyperparameter tuning

• Design of reward function

• Large differences in time duration of actions

• Theory of GSMDPs.

• Scalability

All of theses difficulties are important and interesting enough to be studied on their own.
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Conclusion

The goal of this thesis was to evaluate the potential of reinforcement learning as a tool for solving
production planning problems. From the experiments and results, we conclude that reinforcement
learning has great potential. However getting reinforcement learning to work in any environment can
be difficult. The production line setup had to be conformed into a MDP in order to achieve positive
results. To be able to handle a larger class and more general problems, e.g. SMDP and GSMDP, the
theory of Markovian decision processes and the corresponding reinforcement learning theory needs to
be developed further. Especially the application of deep reinforcement learning to problems which
does not fit naturally into the MDP framework, are in need of further investigation. To the best of
the authors knowledge deep reinforcement learning has not been applied to generalised semi-Markov
decision processes prior to this thesis.

In order to make RL a viable tool in production planing on the scale common in industry, the
difficulties mentioned in Section 8.6 need to be researched. Increased knowledge into these areas would
allow RL to more easily be applied to production planning.

In conclusion the authors find the application of RL to production planning promising, but further
research is required before real world, large scale problems can be handle efficiently.
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