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Abstract

Shear failures in reinforced concrete beams are complex problems that depend on many
different mechanisms, such as aggregate interlock and dowel effect. This makes the predic-
tion of shear failures difficult as they are not strictly tied to the material and depend on other
factors including the size of the beam. In particular the height of the concrete cross section
plays a role in the amount of shear stress the beam can carry. This effect is appropriately
named the size effect, and is not well defined for smaller concrete beams, which is why
they are studied in this master thesis.

The main objective of this report is to determine if the size effect is present in smaller rein-
forced concrete beams as well as examining the accuracy of the Eurocode formulas when
determining shear failures for smaller concrete beams. The study consists of a theoretical
part where the Eurocode is studied along with the mechanisms of shear failure as well as
a practical part where concrete beams were cast and tested. In the laboratory beams the
conditions, aside from height, were held as constant as possible in order to limit the other
factors, thus giving a more accurate representation of the size effect. Both beams with and
without shear reinforcement were studied.

The experimental results showed that a size effect is present in the smaller reinforced con-
crete beams, both shear reinforced and unreinforced, as the stresses at failure decreased
in the beams as the height increased. Because the other known factors for shear failure
were kept mostly constant, the conclusion is that the size effect contributed to the variation
of stress at failure for the different beams. Regarding the Eurocode formulas, differences
could be seen between the calculated theoretical shear capacity and the laboratory shear
capacity. The theoretical values for shear reinforced concrete beams were closer to the
laboratory values than the unreinforced beams, though the reason for this is unknown. The
theoretical values were always on the safe side for all the tested beams.
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Sammanfattning

Tvirkraftsbrott i armerade betongbalkar &r ett komplext problem som beror pa olika ty-
per av mekanismer dér bland annat friktion mellan sprickytor och dymlingsverkan hos
lingsgaende armeringsjéirn spelar stor roll. Ett brott som uppkommer pa grund av tvirkraft
ar inte strikt sammankopplat till materialets egenskaper utan beror pa andra faktorer dir
bland annat effekter som uppkommer pa grund av balktvirsnittets storlek paverkar balkens
tvéarkraftskapacitet. Det har visat sig att hojden pa tvirsnittet hos betongbalkar spelar en
betydande roll for hur stor tvirkraft som balken kan béra. Den storlekseffekt som finns dr
inte tydligt definierad for betongbalkar av mindre dimensioner och det dr just detta som
kommer att studeras i denna rapport.

Huvudsyftet med arbetet &r att undersoka om det finns nagon tydlig effekt som beror pa
tvérsnittets storlek vid tvérkraftsdimensionering av sma armerade betongbalkar. Studien
bestar av en teorietisk del ddr de mekanismer som bidrar till att Gverfora tvérkraft i en arme-
rad betongbalk studeras tillsammans med Eurocodes berdkningsmodeller for att bestimma
betongbalkens teoretiska tvirkraftskapacitet. Dessutom ingar en praktisk del dir betongbal-
kar har gjutits och testats till brott for att sedan kunna jamfora verkliga tvarkraftskapaciteter
med teoretiskt berdknade. Vid de praktiska testerna holls alla parametrar som bidrar till
tvirkraftskapaciteten konstanta forutom balkhojden. Detta for att begrdnsa inflytandet av
andra faktorer och bara studera effekter som beror pa tvérsnittets storlek. Bade balkar utan
tvirkraftsarmering och med tvarkraftsarmering har studerats.

De experimentella resultaten visade att en storlekseffekt finns i mindre armerade betongbal-
kar, bade med och utan tvirkraftsarmering, da skjuvspanningarna vid brott i balkarna blev
ldgre da balkhdjden okade. Eftersom att de andra kinda faktorerna som paverkar tvirkraft-
kapaciteten holls konstanta &r slutsatsen att storlekseffekten bidrog till de olika brottspidnn-
ingarna for de olika balktyperna. De beriknade virdena for tvérkraftskapaciteten hos bal-
karna skilde sig mycket fran de virden som uppmiittes i laboratoriet. De teoretiska virdena
for de tvirkraftsarmerade betongbalkarna var nidrmare de testade virdena jamfort med
virdena for balkar som inte var tvirkraftsarmerade. De teoretiska virdena hamnade all-
tid pa sikra sidan och balkarna klarade i alla av fallen att bdra mer last i verkligheten &n
vad som beréknats.
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1 Introduction

1.1 Background

Shear failure in concrete members can be hard to predict and control due to their brittle nature,
which is why they’re generally avoided at all costs. The majority of shear failures in reinforced
concrete (RC) members take place due to bending cracks in the concrete, making the member
sensitive to large shear forces that can lead to flexural-shear failure (ASBL, 2008). If failure
of a concrete member occurs due to shear force, the consequences can be very unforgiving and
due to the unreliability of the calculation models the shear capacity of concrete beams should
be determined carefully (SS-EN 1992-1-1:2005, 2005).

The current design models used for predicting shear capacity have been developed during the
last century. They have been revised numerous times after a series of laboratory testings and
the occurrence of serious structural failures as a result of the shear resistance being insufficient
(Yang, 2014). The design models proposed in the Eurocodes are recommended guidelines based
on a series of empirical tests, mostly executed during the mid 1900’s. Kani (1966) stated the
importance of investigating possible size effects in the design of shear capacity of RC members
and was one of the first who identified the problem with design rules used in structural analysis.
The equations are based on lab test specimens, which are not always representative of the real
life specimens. Kani concluded that there is a significant difference in the behavior of actual
structural members compared to laboratory test specimen (Kani, 1967).

The effect that size can have on shear capacity in both reinforced and unreinforced concrete
beams is a topic that has been discussed for many years. It is commonly accepted that a large
concrete beam with the same conditions as a smaller concrete beam will fail at a lower stress
due to the so-called size effect. Kani showed that the shear capacity of concrete beams fail-
ing in shear-flexure is highly size-dependent and started to investigate the impact of parameters
affecting the shear capacity in the 1960’s (Kani, 1966). In his work, Kani concluded that the
compressive strength of concrete was not of as much importance for the shear capacity as pre-
viously thought. Instead other parameters such as the amount of longitudinal reinforcement
and the load placement was shown to have a larger impact on the shear capacity (Kani, 1966).
Kani also concluded that the shear capacity decreases when the height of the beam increases.
This conclusion was made for RC beams without shear reinforcement and Kani showed that the
shear capacity of especially slender RC members without shear reinforcement decreases when
the height of the beam is increased (Kani, 1966). Other than identifying a clear size effect, Tan
and Lu (1999) discovered that there probably exists a critical height where the size effects on
the shear resistance of RC beams is no longer obvious (Tan and Lu, 1999).

Studies were also made on RC beams with shear reinforcement by Walraven and Lehwalter
(1994), showing that considerable size effects exist for shear reinforced beams as well. Accord-
ing to Walraven and Lehwalter (1994) the size effects in shear reinforced beams depend on the
failure mechanism which can be described with strut-and-tie models.

The size effects in RC beams has since been expanded on with many more studies, but none
really discussing the size effects impact on smaller sized beams. In regards to this, beams with
an effective height of around 200 mm will be investigated.



1.2 Purpose

The main purpose of this thesis is to analyze and evaluate the shear capacity of RC beams with
smaller dimensions and the influence size effect has on them. In order to do this, RC beams of
varying sizes will be tested experimentally.

In a literature study, the method proposed by Eurocode 2 to calculate shear force capacity is
reviewed with regard to the size effect in RC beams. The different parameters affecting the
shear capacity in the calculation models proposed by Eurocode will be evaluated and the effect
of each parameter studied. The models will then be used to calculate the resistance of each of
the RC beams according to Eurocode, in order to compare them to the actual loads at failure
for the RC beams tested in the lab. The reason for this is to gain an understanding of how
representative the size effect factor used in Eurocode shear capacity calculations pertains to
reality in smaller RC beams. It is also in order to gain an understanding of how different
parameters such as concrete strength, shear span-to-depth ratio and amount of reinforcement
affects the shear resistance of concrete beams.

The laboratory tests will be executed on beams of various cross-sectional sizes and performed
on beams with and without shear reinforcement. This is to evaluate the size effects influence on
the shear capacity through a comparison of the test values, and examine the nominal stresses at
failure for the different beams.

1.3 Limitations

The primary focus of this thesis will be on how the size of the RC beams cross-section af-
fect shear resistance. Therefore, other parameters influencing the shear capacity were held as
close to constant as possible throughout the experiments. The only varying parameter was the
height of the beams while the width, span-to-depth ratio, amount of reinforcement and concrete
strength was kept constant. High performance concrete was excluded from this thesis, due to it
having different shear mechanisms from “regular” concrete.

1.4 Outline

* Chapter 2: General shear force theory is discussed together with different kinds of shear
failure modes that can occur when a RC member is subjected to shear loads. Different
shear transfer mechanisms are examined and the effect that they have on the shear capa-
city of RC members is reviewed. The shear behavior in different regions of the beam is
discussed together with how modelling of these regions usually is done with strut-and-tie
modelling and truss analogy.

* Chapter 3: Review of how shear capacity is calculated according to Eurocode 2 in RC
beams with and without shear reinforcement.

* Chapter 4: The different test specimens used in the analysis are presented and the different
sizes, materials and other characteristics are discussed. The calculated shear capacities
for the beams are presented.

* Chapter 5: The laboratory process including the test set up and measurement procedure
is discussed and the results from the practical tests presented.



* Chapter 6: The calculated and tested values are summarized and compared. In addition
to this, the nominal shear stresses at failure are examined.

» Chapter 7: Discussion of the results with possible sources of error and suggestions for
further research.






2 Basic theory concerning shear behavior in concrete beams

In order to understand the principles surrounding shear behavior in concrete beams, some back-
ground knowledge regarding shear force and stress is described in this chapter.

2.1 Shear force

William A. Nash defines shear force as “if a plane is passed through a body, a force acting
along this plane is called a shear force or shearing force” (Nash and Potter, 2010). Shear forces
occur due to changes in moment forces along a cross-section of a beam and can lead to diagonal
tension in the concrete and, in turn, cause cracking and ultimately failure in a beam (Bhatt et al.,
2014). The failure modes of a beam are classified by the cracking patterns but are similar in
nature. For example a shear crack can be initiated through a flexural crack, known as a flexural
shear crack, or through shear tension particularly in the web, both of which create diagonal
cracking patterns (Yang, 2014). The cracks are a result of stresses which can be described in a
simply supported beam with the help of principal stresses, creating a so-called stress trajectory
diagram. A stress trajectory diagram shows the compressive and tensile stresses that the beam
cross-section encounters during loading, see figure 1.

Tension

- — — Compression

Figure 1: Stress trajectories in a simply supported beam reproduced from Gere and Goodno (2009)

If a small body from the neutral axis of the beam is studied up close, the equilibrium of principal
stresses can be shown (Bhatt et al., 2014). Figure 2 shows tensile stresses ¢ pulling on a small
body in one direction with another stress, o2, compressing it.

Figure 2: Principal stresses acting on a small body reproduced from Gere and Goodno (2009)

2.2 Flexural shear failure

Flexural shear failure is caused by a combination of flexural and shear stresses (Engstrom,
2004). The moment forces lead to the concrete cracking, usually on the tensile edge, where the
cracks can be further propagated through shear stresses, see figure 3. This leads to diagonal
cracking, spanning from the flexural crack to the load placement. This particular type of failure



is one of the more common shear failures, as cracking in the tensile edge is very common in
concrete members (Yang, 2014).

2.3  Web shear failure

Web shear failure can occur for both compression and tension in RC beams. In compression, the
failure of the web can be deduced from the truss model, where the diagonal concrete struts take
the compressional stresses. Failure due to compression occurs when the concretes strength is
exceeded, causing the concrete to get crushed (Engstrom, 2004). This can happen, for example,
in RC beams that have too much shear reinforcement as the steel will not yield before the
crushing of the concrete.

When the web fails in tension, it can be due to a low moment- and high shear force. This causes
the shear crack to start near the middle of the web, where the shear stress is highest in most
common beams, and propagate diagonally. An example of a beam that can have such failures is
an [-beam with a thin web in comparison to its tensile edge (Engstrom, 2004). Examples of the
different types of cracks is shown in figure 3.

J// Flexural crack

< Z // //

Figure 3: Flexural and web cracks reproduced from Engstrom (2004)

Web shear crack /— Flexural-shear crack
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2.4 Shear transfer mechanisms

In reinforced concrete members without shear reinforcement there are different shear transfer
mechanisms that will take part in carrying the shear forces in the concrete. When flexural
cracks have developed in a reinforced concrete member there are certain processes that can
transfer shear in the concrete, see figure 4. The mechanisms that transfer shear through a RC
beam are (Yang, 2014)

Shear stresses in the uncracked compressive zone

Aggregate interlock along the cracks

Dowel action in the bars

Residual tensile stresses transmitted directly across cracks

Arch action

T V= aggregate interlock

<« C
~ 1 _
V., = shear
resistance
-CfU
E\
| -
<
L—» T
V4= dowel
T ‘ force

‘ S

| .
|

Figure 4: Mechanisms behind shear failure reproduced from Yang (2014)

2.4.1 Shear stresses in the uncracked compressive zone

A certain amount of shear force is taken by the compressive zone of the concrete after flexural
cracks have been formed. Since the concrete is uncracked, failure is due to a combination
of shear and compressive stresses. This means that the shear force can be represented by the
compressive strength of the concrete and the longitudinal steel ratio (Kim and Park, 1996).

2.4.2 Dowel effect

The effect of the longitudinal reinforcement in RC beams has an impact on transferring shear
force in the member. When there is a crack in the concrete and the two crack surfaces move in
opposite directions, the longitudinal reinforcement bars bend. This creates a resistance between
the two separate concrete parts on each side of the open crack, see figure 5 (Engstrom, 2004).



The steel reinforcement bars are able to transfer shear forces perpendicular to the beam axis
when bent. This means that there will be a contribution to the shear resistance in the vertical
direction due to the dowel effect (Walraven, 1980).

The size of the dowel effect is proportional to the amount and strength of reinforcement bars as
well as their placement in the cross section of the beam. The dowel effect is affected by the dis-
tance between the cracks in the concrete along with the thickness of the concrete cover around
the reinforcement bars. Due to this, the dowel action is also dependant on the concrete strength
in the RC member (Kim and Park, 1996). As well as this, the dowel effect is also influenced
by shear reinforcement which increases the effectiveness of the dowel effect (Martensson et al.,
2005).

Figure 5: Dowel effect reproduced from Engstrom (2004)

2.4.3 Aggregate interlock

When concrete members are cracked, the crack surfaces are not flat and even. The cracks
are rough and have irregular shapes due to the different sizes of aggregate particles in the con-
crete. When the cracks are held together by the longitudinal reinforcement, there will be contact
between the two crack surfaces. The interaction between the surfaces will create friction and
contribute to the shear resistance of the concrete (Engstrom, 2004). The importance of aggreg-
ate interlock was shown by Fenwick and Pauley (1968), who made an investigation of the shear
capacity of concrete beams with crack surfaces of varying roughness by comparing beams with
smooth and plane cracks to beams with naturally developed cracks. Fenwick and Pauley (1968)
concluded that there was a significant impact on the shear resistance of concrete beams from the
aggregate interlock mechanism. When the aggregate interlock has developed, the connection
between the crack surfaces takes a substantial part in the transmission of shear force through
the concrete member, see figure 6 (BaZant and Gambarova, 1980). The mechanism controlling
the shear transfer due to aggregate interlock is heavily influenced by the roughness of the two

crack surfaces which vary with the size of the aggregates used in the concrete mix (Walraven,
1981).

The interaction between the concrete surfaces, creating the aggregate interlock, is developed
due to the strength of the cement being considerably lower than that of the aggregate particles.
The parts of the concrete that consist of cement fail and cracks propagate around the aggreg-
ate particles. This causes varying crack surfaces due to different aggregate sizes making the
surfaces rough and uneven. The two surfaces of the crack are then able to interact and create
friction between the aggregate particles on the two surfaces. (Walraven, 1980). In high perform-
ance concrete, HPC, the cement can be stronger than the aggregate. This causes the concrete
to fail through splitting of the aggregate particles, creating flatter crack surfaces than in normal
concrete. The flatter surfaces reduce the amount of friction between rough particles, reducing



aggregate interlock (Sagaseta, 2013).

Figure 6: Aggregate Interlock reproduced from Walraven (1980)

Walraven and Lehwalter (1994) examined the impact of aggregate size in RC members. Their
studies showed that there were no significant effects on aggregate interlock connected to size of
the beam when the aggregate particles were between 8 and 32 mm in diameter.

When cracks develop in concrete members the longitudinal reinforcement will affect the width
of the cracks. A RC beam with a large longitudinal reinforcement ratio keeps the cracks in
the concrete thin and narrow as the longitudinal reinforcement helps to hold the concrete to-
gether. An increase in the reinforcement ratio will then increase the shear capacity due to
increased friction and aggregate interlock between two crack surfaces in the concrete beam
(Ismail, 2016). Ismail (2016) also showed that the effect of increasing the longitudinal rein-
forcement ratio is more significant in beams without shear reinforcement. The same principle
applies for shear reinforced concrete beams, as the concrete is held together vertically by the
reinforcement (Martensson et al., 2005).

2.4.4 Residual tensile strength

Concrete has the ability to carry a certain amount of tensile stress after cracking has occurred.
This capacity is only relevant at small crack widths, with dimensions around 0.1mm, allowing
tensile ties to be formed across the cracks (Ruiz et al., 2015).

2.4.5 Arch action

In RC beams where the shear span is small, or the length of the beam is short, shear force can
be resisted by arch action. Arch action can be a result of having concentrated loads close to a
support where the load is transferred directly to the support through an inclined strut. When
the arch action is developed, strut-and-tie models are often used for designing the member and
predicting the shear capacity. The arch action depends on the inclination of the strut which is
determined by the inclination of the cracks in the concrete and is mostly developed in beams
with short shear spans. As the shear span gets larger, the inclination of the compressive strut
flattens out, making it harder for the shear force and arching action to be transferred. When this
occurs, vertical ties can be used to connect the struts together, creating a truss system, see figure

7. This is accomplished by having vertical shear reinforcement stirrups in the beam (Engstrom,
2004).



¢ ¢ /— Compressive strut
/

_ e, e —m _— _— — — -

Figure 7: Arch action reproduced from Ramirez et al. (1999)

The arch action in RC beams without shear reinforcement is affected mostly by the length of
the shear span and the strength of the strut which is determined by the compressive strength of
the concrete and the amount of longitudinal reinforcement in the area of the cross-section of the
beam (Kim and Park, 1996).

In his thesis, Ismail (2016) showed that the compressive strength of the concrete in RC beams
is connected to the shear capacity, especially in beams with small shear spans. This means that
if the shear span-to-depth ratio is decreased due to increased beam height, the concrete strength
will have a greater effect on the shear resistance (Ismail, 2016).

10



2.5 Shear behavior in discontinuity regions
2.5.1 D- and B-regions

The behavior of RC beams subjected to shear forces differ between two region types, meaning
that the influence of the different shear transfer mechanisms also differs between the regions.
It’s therefore important to distinguish between D- and B-regions (Kuo et al., 2010). In a B-
region of a beam, the Euler-Bernoulli beam theory hypothesis is applicable where the stresses
and strains are assumed to be linearly distributed over the cross section of the beam. The Euler-
Bernoulli theory is a simplification of the linear theory of elasticity where plane sections remain
plane. D-regions are disturbed or discontinuity regions where the Euler-Bernoulli elasticity
simplification of plane sections remaining plane is no longer valid. The stresses and strains in a
D-region are nonlinear and often occur close to where a concentrated load is applied, creating
a so called static discontinuity in the beam, see figure 8. D-regions also occur if the geometry
changes abruptly i.e. a geometric discontinuity. The sectioning of a RC member depends on the
geometry of the beam and what kind of load case that is applied. When designing a concrete
member with D-regions, a strut-and-tie model can be used to represent the stress fields in the
regions (Engstrom, 2011).

Kuo et al. (2010) investigated the shear behaviour of RC beams by classifying different beam
types based on the distribution of D- and B-regions in the beam. One beam class was defined as
deep beams, consisting of a single D-region. To analyze the shear behavior in this type of beam,
a strut-and-tie model is usually adopted. The most common failure mode of deep beams is the
crushing of the compressional struts, also known as shear-compression failure. The second class
that Kuo et al. (2010) mentioned was slender beams which are beams of three sections where
a B-region is located in-between two D-regions at the ends of the beam. In slender beams
two different failure modes can occur, shear-compression failure and shear-tension failure. A
slender beam only consisting of D-regions is possible when the shear reinforcement in the beam
is insufficient and there is therefore no B-region in the beam. The last beam class is short beams
where usually two overlapping D-regions appear and the common failure mode is shear-tension
(Kuo et al., 2010).
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Figure 8: B- and D- regions (Nagarajan and Madhavan Pillai, 2008)
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2.5.2 Strut-and-tie method

The strut-and-tie model is based on the theory of plasticity and can be used when designing D-
regions in concrete structures. When the RC member is subjected to loads, cracks will develop
and the area between two inclined cracks will act as a compressive strut in the concrete. Struts
and ties will then represent the internal forces and stresses in the concrete and by connecting the
struts and ties in nodes, a truss analogy can be used to describe the concrete member (Engstrom,
2004).

As mentioned earlier, when a concentrated force is applied close to a support the arch action
will develop as the shear force is transferred directly to the support. There is a static discon-
tinuity region, D-region, in this part of the beam. For these regions the strength of the beam is
controlled mostly by shear, and strut-and-tie models are used to simplify the shear transfer in
RC beams without shear reinforcement (Ismail, 2016).

Figure 9 shows a deep beam with an evenly distributed load where the load makes its way
from the top of the beam and downwards towards the two supports. Due to the uneven stress
distribution down to the supports the region is referred to as a discontinuous or disturbed region.
The stress fields can be simplified, highlighting the compressed and tensile regions of the beam,
as shown in 9b. This simplified model is then idealized and transformed into a so called strut-
and tie model where the dotted lines represent compression, and the fully drawn lines represent
tension, see figure 10.
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(a) Stress fields (b) Simplification of stress fields

Figure 9: Stress field of a deep beam reproduced from Engstrom (2011)
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Figure 10: Strut and tie idealization reproduced from Engstrom (2011)

2.5.3 Truss analogy

When a RC beam is reinforced with shear reinforcement, the vertical stirrups together with
inclined struts in a strut-and-tie model can be represented by a truss. This truss analogy can be
used when designing shear reinforced beams with the struts and ties being designed to resist the
internal shear forces in the RC member. (Engstrém, 2004)

A truss model is often used when several inclined cracks are developed in the concrete due to
combined bending and shear forces. More than one inclined compression strut is then needed
to represent the shear transfer in the member. When several struts are used in a strut-and-tie
model, tension ties are used to connect the compressive struts to each other, establishing a truss
model, see figure 11 (Kim and Kim, 2008).

For deep beams arch action plays an active role in the transfer of forces, with the shear resistance
in the D-region often being modelled with strut-and-tie methods. When the RC beam is of a
more slender nature, more truss action will be developed compared to deep beams. This is
because flatter compressive struts are present and tension ties are needed to connect the struts
to each other to establish a model of the shear transfer in the beam. (Ismail, 2016)

< > < > < >» =

Figure 11: Truss action reproduced from Ismail (2016)
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3 Shear capacity according to Eurocode 2

In this chapter the design models used for calculating shear capacity of concrete members is
reviewed and analyzed. There are several models and codes used around the globe to design
these kinds of structural members, of which the Eurocode (EC) was used in this particular thesis.

3.1 Shear capacity of RC beams without shear reinforcement
3.1.1 Shear flexural failure

In order to derive the Eurocodes equation for calculating shear capacity in a RC beam without
shear reinforcement empirical methods were utilized. First of all the most important factors
affecting the shear capacity were evaluated and put together into an equation. The equation was
then calibrated to fit shear test results from a data collection based on a number of concrete
specimen. This was done by adding the factor C. With a regression analysis, the coefficient
could be approximated so that the shear capacity curve fit the test results (Yang, 2014). In 1995,
Konig and Fisher evaluated 176 concrete specimen of various sizes and strengths and estimated
the coefficient to C' = (.12 as the lower boundary of the curve. The approximation of the
coefficient has then been analyzed, with different codes using different empirical methods and
data collections to fit their own shear capacity curves with different regression factors. Later on
the partial safety factor, ., for concrete was introduced in the Eurocode to take different load
situations into account when approximating the coefficient C' (ASBL, 2008).

Equation (1) is the empirical expression used and is a recommendation for determining the
shear-flexural capacity in RC members. The expression takes into account the different factors
discussed previously which can contribute to shear capacity. The shear capacity of reinforced
concrete beams without shear reinforcement is according to Eurocode 2 determined by

VRd,c = (C k 3\/ 100plfck) bwd (D

where
/200 .
k =1+ v size factor
pi = longitudinal reinforcement ratio
f.x = concrete strength
0.18 ) .
C = = coefficient dependent on the loading case
Ye

d = effective beam height
b, = beam width

The ratio of longitudinal reinforcement is determined as

As
b,d

pL= 2)

where A, is the cross sectional area of the reinforcement bars in the beam.
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Equation (1) takes the longitudinal reinforcement into account. The lower limit of the shear
capacity in reinforced concrete beams is given by equation (3) where only the concrete strength
contributes to the shear resistance. The lower limit of the shear capacity is

VRd,c = Umin ° bwd (3)

where the parameter v,,;, depends on concrete strength and the effective height of the beam as
shown in equation (4)

3.1.2 Web shear failure

Web shear failure in non shear reinforced beams occurs when the concrete struts between cracks
in the web of the concrete are crushed. To eliminate the risk of web compressive failure, the
load effect Vg, should, according to EC2, fulfill

Vea < 0.5v1 feabyd 5
where 1 is a reduction factor for concrete with shear cracks calculated with
fck
=0.6(1— 6
" ( 9 50) (6)

3.2 Shear capacity of RC beams with shear reinforcement

If the shear force acting on the concrete beam, Vg, is larger than the calculated capacity, Vizq ,
the shear capacity is insufficient with respect to shear failure and shear reinforcement is re-
quired.

3.2.1 Shear flexural failure
According to SS-EN 1992-1-1:2005 (2005), shear capacity in shear-reinforced concrete beams
can be calculated using

0.9d(cot 0 + cot ) sin o
s

(7

VRd,s = Aswfywd

where s is the distance between the reinforcing stirrups limited to s < 0.75d and the parameter
« 1s the angle between the stirrups and the beam axis. It is common to use vertical stirrups,
a = 90°, as they are generally easier to handle than angled stirrups. The expression for shear
capacity of the beam can then be written

Vias = Aufyua” ®)
z = 0.9d = inner lever-arm
s = spacing between the vertical stirrups
fywa = yield strength of the shear reinforcement
A,, = area of shear reinforcement
@ = inclination of concrete strut

The shear reinforcement area, A,,,, is the cross sectional area of the two vertical steel bars in
the stirrup that span a crack in the concrete.
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3.2.2 Web compressive strut failure

For a compressive strut in a shear reinforced beam, the capacity of the concrete is

(cot 6 + cot )y

Vi c,maxr — bw c 9
Rde, Z fed 5 ot 02 )
and the capacity of a compressive strut with shear reinforcement at 90° is
t0
Videmas = bufua At (10)

1+ cot 62

b, = beam width

z = 0.9d = inner lever-arm

fea = concrete compressive strength

f# = inclination of concrete strut

« = inclination of shear reinforcement

v; = reduction factor for concrete with shear cracks

The inclination of a crack is defined by Engstrom (2004) as the angle between a compressive
strut and the beam axis perpendicular to the concentrated shear force acting on the beam. The
value of # is chosen by the designer and is usually in the range so that 1 < cotf < 2.5 which
means that the corresponding inclination, 6, is between 21.8 and 45 degrees. If a lower value
of the angle is chosen by the designer, the amount of shear reinforcement needed is reduced but
instead the risk for failure in the compressional strut is increased. A smaller value of the crack
inclination will also increase the amount of longitudinal reinforcement in the tension zone of
the beam (Engstrom, 2004).

3.3 Concentrated load close to support

When a concrete beam is subjected to a concentrated load close to the support the shear strength
is increased due to arch action. The arch action, as discussed in section 2.4.5, enables the load
to be directly transferred to the support through a compressive strut which is restrained by a
tensile tie (Engstrom, 2004). Due to this, the shear capacity can be increased by a factor of
f = 2d/a in the Eurocode, granted the load is placed within 2d from the support, under the
assumption that the longitudinal reinforcement is sufficiently anchored (SS-EN 1992-1-1:2005,
2005). The effect of arch action can differ between different load cases and conditions. This
was, according to ASBL (2008) shown by Regan, who investigated the reduction factor by
executing tests to determine appropriate factors to use for different conditions. Regan concluded
that there should be different factors for simply supported beams and continuous beams and if
the load is concentrated or distributed over the beam (ASBL, 2008).
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4 Beam design

4.1 Beams

In order to compare the size effect for smaller dimension beams, four different cross-section
sizes were chosen. These different beams were then divided up, one without shear reinforce-
ment and one with shear reinforcement for each cross-section. This brings the total to eight,
however, in order to gain more reliable results a control beam of all the original eight beams
was also made, making a total of 16 beams. The different beams are summarized in table 1 and
the form building and casting procedure can be seen in Appendix B.

Table 1: Beam classification

Beam  Width [mm] Height [mm] Length [mm]

A 160 200 1500
B 160 250 1500
C 160 300 1500
D 100 150 800

4.2 Materials
4.2.1 Concrete

The concrete used for the tests had a water-cement ratio (wcr) of 0.55. The exact concrete
specifications are shown in table 2. The wcr was chosen for practical reasons; while the cube
strength was verified by testing cubes cast in conjunction to the beams with the same concrete.
The cube strength of the concrete is shown in table 3 and 4. The cement used was a portland
“bascement” which is a standard portland fly-ash cement mix. The stone aggregates used were
of three different sizes.

Table 2: Concrete specifications

Material Weight [kg/m?]

Cement 380
Water 209
0-2 mm 860
8-12 mm 430
12-16 mm 430

The concrete for beams C'1, C2 and D1 was mixed in the laboratory and the cube strength of the
concrete is presented in table 3. The plan was to cast all the concrete beams in the laboratory,
but due to time restraints a concrete truck had to be bought in to help cast the rest of the beams.

19



Table 3: Beam C1,C2 and D1 concrete: strength from cube tests

Cube  Strength [MPa]

1
2
Mean

41.33
34.67
38.00

The concrete used for the rest of the beams was delivered to the laboratory by a concrete truck.

The cube strength of the delivered concrete is presented in table 4.

Table 4: Imported concrete: strength from cube tests

4.2.2 Reinforcement

Cube  Strength [MPa]

1
2
3
Mean

28.67
31.11
32.89
30.89

The amount of reinforcement for the different beams that were tested are presented below in
table 5, where the number of bars and their sizes are given. The reinforcement used for the tests

had a yield capacity of 500 M Pa.

Table 5: Reinforcement

Beam  Width [mm] Height [mm] Longitudinal reinforcement  Shear reinforcement
Al 160 200 2016 —

A2 160 200 2016 1148 cc 120 mm
B1 160 250 2016 —

B2 160 250 2¢16 8¢8 cc 160 mm
Cl 160 300 2¢16 —

C2 160 300 2¢16 6¢8 cc 190 mm
D1 100 150 2010 —

D2 100 150 2010 308 cc 250 mm
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The amount of longitudinal reinforcement for the different beam types was calculated as

Asl
— 11
Pl bod (11)
and the amount of shear reinfrocement was calculated as
AS'LU
w = ———- 12
P (s by sina) (12)

b, = beam width
Agq = cross-sectional area of longitudinal reinforcement
d = effective height

A, = cross-sectional area of shear reinforcement
« = inclination of shear reinforcement
S

= distance between shear reinforcement

The percentage of reinforcement was kept relatively similar for all of the beams to avoid the
influence of the amount of reinforcement on the shear capacity in the tests. The amount of
longitudinal reinforcement and shear reinforcement for the different beams is shown in table 6
below.

Table 6: Amount of reinforcement

Beam  Longitudinal reinforcement [%]  Shear reinforcement [%]

A 1.51 0.52
B 1.16 0.39
C 0.94 0.33
D 1.26 0.40

4.3 Calculated shear capcity

The theoretical shear capacity of the beams were determined according to the equations stated
in chapter 3. A calculation example is shown in Appendix A, and the calculated values are
presented in table 7.

Table 7: Shear capacity

Beam  Theoretical Shear Capacity [kN]

Al 36.17
A2 62.58
B1 40.33
B2 61.07
C1 44.09
C2 63.33
D1 17.28
D2 22.62
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S Laboratory tests

In this chapter the characteristics of the different beams used in the experiments are discussed.

5.1 Test setup

In order to avoid arch action as much as possible in the beams, concentrated loads should
according to Eurocode be placed at a distance of at least 2d from the end support, see section
3.3. The load was therefore placed so that the shear span-to-depth ratio was as close to 2.5
as possible for all of the test specimens. To fulfill a/d = 2.5 the load was placed at different
distances from the left support for the different beam sizes. The beam setup is shown in figure

12.

Figure 12: Beam Setup

The ratio a/d for all of the beams is presented in table 8. The length L is the length of the free

span between the two supports.

Table 8: Load placements

Beam a[mm] d[mm] a/d L [mm)]
A 415 166 2.50 1300
B 540 216 2.50 1300
C 650 266 2.44 1300
D 315 125 2.52 600

After four weeks of hardening, the concrete beams were tested to failure by being placed on a
simple support according to figure 13. The vertical point load was transferred to the beams
through a steel plate of 120 x 200 mm for practical reasons. To be as consistent as pos-
sible throughout the tests, the machine was set to deform the beams with a constant speed

of 0.2 mm/s for all of the beam tests.
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Figure 13: Test setup

The deformation of the beams was measured at the lower side, right under the point load ac-
cording to figure 14.

Figure 14: Measurement device
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5.2 Tested shear capacity

To demonstrate the behavior of the tested beams, load-deformation plots for cross-sections Al
and A2 are presented together with photos of the shear crack propagation. The rest of the beam
tests are presented in Appendix C - Lab tests. The first plot, figure 15, shows the results from
the two non shear reinforced beams of cross-section size A.
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Figure 15: Load-deformation plot Al

‘ !‘-F'
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(a) Test Al_I (b) Test A1_2

Figure 16: Test for Al beams

The load-deformation plots for the two shear reinforced beams of cross-section size A are shown
in figure 17.
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Figure 18: Test for A2 beams
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The shear capacity of the tested beams are presented in table 9.

Table 9: Tested shear capacity

Beam  Tested Shear Capacity [kN]

Al 63.7
Al 64.4
A2 85.4
A2 91.1
Bl 64.6
Bl 53.1
B2 95.4
B2 100.0
Cl1 56.7
Cl1 61.2
C2 113.9
C2 110.5
Dl 23.3
D1 27.0
D2 42.3
D2 40.5
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6 Results

6.1 Comparison between tested shear capacity and calculated shear capacity

The calculated capacities are compared to the laboratory results in table 10 below. The ratio is
determined as

Tested Capacity

ratio =
Theoretical Capacity

The ratio decreases for the non shear reinforced beams as the effective height increases while
the opposite is true for the shear reinforced beams, with the exception of cross section type D.

Table 10: Shear capacity

Beam  Theoretical Capacity [kN]  Tested Capacity [kKN]  Ratio [-]

D1 17.28 23.3 1.3
D1 17.28 27.0 1.6
Al 36.17 63.7 1.8
Al 36.17 64.4 1.8
B1 40.33 64.6 1.6
B1 40.33 53.1 1.3
C1 44.09 56.7 1.3
C1 44.09 61.2 1.4
D2 22.62 42.3 1.9
D2 22.62 40.5 1.8
A2 62.58 85.4 1.4
A2 62.58 91.1 1.5
B2 61.07 95.4 1.6
B2 61.07 99.8 1.6
C2 63.33 113.9 1.8
C2 63.33 110.5 1.7
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The ratios stated in table 10 are also shown in a graphical format below.
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Figure 19: Ratio between tested shear capacity and calculated shear capacity

All of the tested beams carried more load than calculated with the Eurocode models and the
ratio between tested and calculated capacity was consequently more than 1 for all of the tests
which can be seen in figure 19. The ratio for the shear reinforced beams seemed to become more
conservative as the height increased while the opposite was true for the unreinforced beams.

6.2 Nominal shear stress

The shear forces from the lab results were averaged together between the identical beams and
transformed into a nominal stress through equation 13.

,
_ v 1
T bud (13)
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The results are shown below in table 11.

Table 11: Lab tests: nominal stress at failure

Beam  Averaged nominal stress at failure

D1 2.01
Al 241
Bl 1.70
Cl 1.38
D2 3.31
A2 3.32
B2 2.82
C2 2.64

The results show a decrease in nominal stress with increased effective beam height in both the
shear reinforced and non shear reinforced beams, with the exception of cross section type D.
This is also shown in a graph format below.
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Figure 20: Average nominal stress at failure
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7 Conclusions and discussion

7.1 Conclusions

* The average nominal stress decreases with increased beam height for both non shear
reinforced and shear reinforced beams, with the exception of the cross section class D,
meaning that a size effect is present in the smaller beams.

* The ratio between tested and calculated shear capacity has a general decreasing trend in
the non shear reinforced beams when the beam height is increased from size A to C'.

* The ratio between tested and calculated shear capacity for the beams with shear rein-

forcement has a general increasing trend when the beam height is increased from size A
to C.

* All of the tested beams carried more load in the laboratory than calculated with the Euro-
code models indicating that there is a safety margin present in the shear design formulas
for reinforced concrete beams.

7.2 Discussion on Eurocode

The shear capacity formulas utilized in the Eurocode have limitations in the form of limit values.
One example is the requirement that the size factor & = 1 4+ /200/d < 2.0. This means
that the shear force formula for unreinforced concrete beams is valid when the effective height
d > 200 mm according to the Eurocode. The reasoning behind this is a little unclear but one
can imagine that the lower the effective height becomes the higher the k value becomes. This in-
turn has a rather influential impact on the shear capacity the smaller d gets. It seems reasonable
to have applied a limit condition so that the shear capacity is not increased unreasonably for
lower effective height beams. This requirement impacted cross section type D, and even A, as
the effective height was lower than 200 mm. Calculations were made disregarding this criteria,
and therefore no conclusions with regards to the Eurocode calculations can be made for cross
section type D, whilst A was considered a borderline case. The calculations were made despite
of this in order to see how well the results fit with the laboratory results. The results showed
for cross section A and D that the ratio between tested and calculated value got closer to 1.0
when the calculations were made despite the requirement. It was also not possible to fulfill the
restriction of maximum spacing between the stirrups in the shear reinforced beams for cross
section type D, so the stirrups were placed without regards to the equation from the Eurocode.

A shortcoming with the formulas for shear capacity of members not reinforced in shear presen-
ted in the Eurocode is that the capacity goes to 0 when the amount of tensile reinforcement goes
to 0. This is obviously not realistic, as the concrete beam will be able to take a certain amount
of shear force even if unreinforced. This does not affect the majority of practical cases, as most
beams are reinforced in regards to tension and therefore the capacity will not be 0. However, it
shows that the empirical equation has limitations.

Something worth noting about the formulas for shear capacity in the Eurocode is that the con-
cretes contribution is disregarded in the formulas for members that are shear reinforced, see
equation (7). The only factors considered in the equation have to do with the shear reinforce-
ments characteristics. This leads to some odd cases where the shear capacity in non shear
reinforced beams can be higher than the same beam with shear reinforcement. An example of
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this is shown in Appendix A - Calculations: Discussion example !. In the example, the non
shear reinforced beam is calculated to over double the capacity of the shear reinforced beam.
This would mean that as soon as the shear reinforcement is added, its capacity would be signi-
ficantly lower than before the reinforcement was added. In order to gain the same amount of
capacity in the shear reinforced beam, a lot of reinforcement would have to be added. In this
particular example, a spacing of around 60 mm would be required between the shear reinforce-
ment bars to get the same capacity as the unreinforced beam. This is interesting as the minimum
reinforcement of 160 mm was used in this example, but the capacity varied greatly between the
non shear reinforced and shear reinforced calculations.

The reasoning behind the total exclusion of the concretes contribution to the shear capacity of
shear reinforced concrete beams is unclear, but it could be in order to stay on the “’safe” side
when calculating. Due to shear force failures generally being brittle, it is not unreasonable
to keep to the safe side by disregarding the concretes contribution. However, this means that
caution has to be used when calculating with this method, as it may not be suitable for all RC
structures.

7.3 Discussion on laboratory tests

For the beams without shear reinforcement the failure was abrupt and a bit unexpected. When
testing these beams, the shear failures appeared with almost no bending cracks, with the shear
crack propagating from the load point all the way out to the closest support. This gave a sudden
peak in the deformation plots as can be seen in figure 15. For the shear reinforced beams,
bending cracks were distributed evenly over the beam span width and the failures were of a
more ductile character. The failure mode of the shear reinforced beams was shear flexural
failure where the shear failure started from a bending crack at the bottom of the beam (see
chapter 2.2). The shear cracks in the shear reinforced beams propagated from the loading point
to, most likely, the lower edge of the closest stirrup. The deformation plot for this failure, as
seen in figure 17, was different from the non shear reinforced beams and presented a more
ductile failure most likely due to the reinforcement yielding.

For the beams of size C, the load was placed in the middle of the beam span as the free span
was limited to 1300 mm for practical reasons in the laboratory. Due to this, the span to depth
ratio a/d, was a bit lower for these beams than for the rest of the beams. A lower a/d ratio
means that the load was applied closer to the support and that the influence of arch action might
have been greater. However since the a/d ratio deviated so little from 2.5 it should not have
influenced the results in any impacting way.

All of the tested beams carried more load than calculated with the Eurocode models. The
beams without shear reinforcement carried between 130 % and 180 % of the calculated loads
in the laboratory tests and the ratio between tested capacity and theoretical capacity decreased
when the beam height was increased. The ratio between tested values and calculated values for
the shear reinforced beams varied between 1.4 and 1.9.

'Tt is important to note that the beam discussed in the example is according to the Eurocode not classified as a
plate, as the smallest length is not greater than five times the thickness.
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The test results show a deviation between the theoretical and test shear capacities of the beams.
As it stands, relatively little is still known about shear failures, and so a model uncertainty exists.
This could justify a built-in safety factor, in order to increase the safety margins in the Eurocode
formulas, especially since shear failures can be brittle. The results for the ratio between tested
and theoretical capacity show that the shear reinforced beams become more conservative the
larger the effective height. This seems reasonable as the concretes contribution to the shear
capacity is ignored in the Eurocode formula, which should lower the theoretical capacity. The
opposite is noticed for the non shear reinforced beams, and it would be interesting to see if
the value starts to level out for higher effective height beams or if it continues to decrease to a
non-conservative value.

In table 11 the nominal stress seems to, aside from D1 to Al, decrease with increasing beam
height. This suggests that there is a size effect present in the smaller beams, as the stress at
failure differs between the different sized beams. This trend can also be seen for cross sections
A2 to C2. It is important to note that beam class D is not of the same width as the other
beams, and therefore conclusions have to be restricted regarding class D comparisons. The
shear reinforced beams seem to follow a similar trend with the nominal stress declining with
increased height.

The results from cross section D differ when compared to average nominal stress at failure for
the other non shear reinforced beams. As table 11 shows, D1 failed at a lower average nom-
inal stress than A1. This goes against the trend which can be seen from Al to C'1, where the
average nominal stress decreases with increased effective height. The reasoning for the discrep-
ancy with cross section D1 could be due to the differing beam size or the percent longitudinal
reinforcement.

7.4 Further research

In order to gain more knowledge on the size effect of smaller concrete beams, more tests with
varying cross section sizes could be made. This could add to the beam test pool made in this
master thesis and compared for further connections between the different parameters. The
height span could even be increased to 150 mm — 500 mm in order to gain a broader com-
parison of the size effect.
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Appendix A - Calculations

Shear capacity without shear reinforcement for cross-section A

0.18  0.18
Crie= — = —— =0.18
Fa, Yo 1.0
200 200
k=1 i | =210
Vg T 166
Ay 4.02 -1074
P (bud) _ (0.16 - 0.166)
k, =015
a =25d=0415m
fom =31MPa
01 =0
by =0.16m
d =0.166m

Virie = (Crack/100p; fom + k101) bypd =
= (0.18 - 2.10 - /100 - 0.015 - 31 +0) - 160 - 166 =
= 36174 N — 36.1TkN
Umin = 0.035/k3 foer = 0.035v/2.103 - 31 = 0.592
Viae - L 36.17 - 1.5
T L—a 15-0415

Py = 50.01kN

Requirements according to Eurocode

o =0.015<0.02 - OK

Virde = Vinin = (Umin + k104) bpd = 0.592 - 0.16 - 0.166 - 10° =
=18.95kN — OK

k=210 £ 2.0 — Requirement not fulfilled

The last requirement gives a borderline case, and so the values influence on the capacity is
checked both when it is set to 2.0 and 2.1. The impact this value has on the overall shear
capacity is minimal, making a difference of around 2 kN between the two cases. However, it
has to be noted that according to the Eurocode this requirement is not technically fulfilled for
cross-section A. Theoretically it can be seen that this requirement will not be fulfilled as long
as the effective height, d, is under 200 mm. This puts limitations on the height of beams used
when calculating the shear force capacity in smaller beams.
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Shear capacity with shear reinforcement for cross-section A

Agy =271 -(d/2)* =27 -(0.008/2)*> =1.0 - 10~*m?
S =0.12m
z =09d=0.9 -0.166 = 0.1494m
fywa =500 M Pa
0 = 45°
o = 90°
Veas = A;w 2 fywa(cot 0 + cot o) sin v =
_1.0-107"

57p 01494 - 500 - 10° (cot 45° + cot 90°) sin 90° =
= 62581 N — 62.58 kN

Qe =1
v = 0.6(1— fon/250) = 0.526
cot 0 + cot
Vi mazx — Yew b'w em T 5 . 00
R, “ 2l 1+ cot? 0

t 45° o
=1-0.16 -0.1575 - 0.526 - 31 - 10° co + cot 90 _
1 + cot? 45°

= 194741 N — 194.7kN

Requirements according to Eurocode

Stmaz = 0.75d (1 + cot a) = 0.75 - 0.166 (1 + cot 90°) = 0.125m
A 1.0 -107*
(sbysina)  0.12 -0.16 - sin 90°
Prin = (0.08\/ fum )/ fur. = (0.08V/31)/500 = 1.1 - 1073

Pw = Puwminis fulfilled

P = =523 .107°
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Moment capacity for cross-section A

c = 26mm
h = 200mm
fue =500 M Pa
dyeing. = 0.016m
Npar =2
Ay =mperm(d/2)? =27 -(0.016/2)* = 4.02 - 10~* m?
os  =500MPa
E  =200GPa
Ao 4.02 -10~* - 500
= = = 5.067 - 1072
¢ 08 - fom -0 08 -31-0.16 m
F, = A,0,=4.02-10"*-500 -10° = 201062 N — 201.1 kN
M  =F,(d—04z)=201.1-(0.166 — 0.4 - 5.067 - 1072) = 29.30 kNm
M- L 29.30 - 1.5
P, = = =97.61 kN
! a-(L—a) 0415 - (15— 0.415)
Check of assumptions for cross-section A
fuk 500

o = 2 = =25%

“v = "E T 200000 °

€eu — 3.5 %o

d—z 0.166 — 5.067 - 102
€s = €eu = 3.5 0.166 = 7.97 %o

€s > €5y = Os = fyd
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Discussion example

Imagine two simply supported concrete beams of the dimension, b = 600 mm, h = 250 mm,
and L = 1500 mm. One beam has only longitudinal reinforcement whilst the other has the
same longitudinal reinforcement as well as added shear reinforcement. If the longitudinal rein-
forcement is for example 8¢16 bars and a point load is placed 2.5d from the support, the non
shear reinforced shear capacity can be calculated

VRdc = (CRd,ck \3/ 100plfcm + k101> bwd =
=(0.18 - 1.96 - v/100 - 0.012 - 31 + 0) - 600 - 216 =
= 154534N — 155kN

If the same beam is studied but with added ¢8 shear reinforcement at cc 160 mm the capacity
according to Eurocode becomes

A

Vids = ——2 fywa(cot 0 + cot ) sina =
5

1.0 -107* 6 .
= W 0.1944 - 500 - 10 (COt 45° + cot 900) s1m 90° =

= 61073 N — 61.07TkN

42



Appendix B - Specimen construction

Figure 21: Building the base of the form

Figure 22: Formwork
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Figure 23: Tying the reinforcement
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Figure 24: Finished form
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Figure 26: Before casting
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Figure 27: Concrete casting
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Figure 28: Right after casting
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Figure 29: Form removal
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Appendix C - Lab tests

Beam A1l

52
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. 1500 |
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Figure 30: Beam Al
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—AL1
10,00 —a12
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0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00
Deformation [mm]

Figure 31: Load-deformation plot Al

=

(a) Test Al_I (b) Test A1_2

Figure 32: Crack patterns for the Al beams
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Beam A2
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Figure 33: Beam A2
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Figure 34: Load-deformation plot A2

(a) Test A2_1 (b) Test A2_2

Figure 35: Crack patterns for the A2 beams
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Beam B1
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Figure 36: Beam Bl
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Figure 37: Load-deformation plot Bl

(a) Test BI_1 (b) Test B1_2

Figure 38: Crack patterns for the Bl beams
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Beam B2
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Figure 39: Beam B2
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Figure 40: Load-deformation plot B2
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(a) Test B2_1 (b) Test B2_2

Figure 41: Crack patterns for the B2 beams
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Beam C1
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Figure 42: Beam C1
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Figure 43: Load-deformation plot C1

(a) Test C1_1 (b) Test C1_2

Figure 44: Crack patterns for the C1 beams
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Beam C2
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Figure 45: Beam C2
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Figure 46: Load-deformation plot C2
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(a) Test C2_1 (b) Test C2_2

Figure 47: Crack patterns for the C2 beams
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Beam D1
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Figure 48: Beam D1
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Figure 49: Load-deformation plot D1

(a) Test DI _1 (b) Test D12

Figure 50: Crack patterns for the D1 beams

55



Beam D2
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Figure 51: Beam D2
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Figure 52: Load-deformation plot D2

(a) Test D2_1

Figure 53: Crack patterns for the D2 beams
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