
Generation of Artificial Training
Data for Deep Learning

Pontus Andersson, David Wessman

MASTER’S THESIS | LUND UNIVERSITY 2018

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884 
LU-CS-EX 2018-39





Generation of Artificial Training Data for
Deep Learning

Pontus Andersson
pontus94a@gmail.com

David Wessman
david@wessman.co

August 10, 2018

Master’s thesis work carried out at Axis Communications AB.

Supervisors:
Mikael Andreen, mikael.andreen@axis.com

Niclas Danielsson, niclas.danielsson@axis.com
Michael Doggett, michael.doggett@cs.lth.se

Kalle Åström, kalle@maths.lth.se

Examiner:

Niels Christian Overgaard, nco@maths.lth.se

mailto:pontus94a@gmail.com
mailto:david@wessman.co
mailto:mikael.andreen@axis.com
mailto:niclas.danielsson@axis.com
mailto:michael.doggett@cs.lth.se
mailto:kalle@maths.lth.se
mailto:nco@maths.lth.se




Abstract

This thesis was written at Axis Communcations AB, Lund, together with the
Department of Computer Science and the Centre of Mathematical Sciences at
Lund University, Faculty of Engineering LTH.

Can artificial training data be used for deep learning applications in computer
vision? We investigated this by building a framework that uses computer
graphics to generate large quantities of images portraying humans. Genera-
tive Adversarial Networks (GANs) were used to bridge the gap in appearance
between the generated and real images. A dataset’s potential was estimated by
first using it to train a person re-identification model, and then evaluating the
model on real images. Results showed that datasets that had been put through
a GAN had higher potential than those which had not. We were not able to
replace real images with artificial ones, but our results showed promise for
further work in substituting and complementing real images.

Keywords: Artificial training data, deep learning, generative adversarial networks,
large scale image generation, person re-identification.



2



Acknowledgements

We would like to thank our university supervisors: Michael Doggett and Kalle Åström,
for giving us many ideas for interesting thesis topics, helping us set up this work as a
collaboration between the Department of Computer Science and the Centre of Mathemat-
ical Sciences at Lund University, Faculty of Engineering LTH, and for providing much
valuable feedback throughout the duration of this master’s thesis.

We would also like thank our Axis supervisors: Mikael Andreen and Niclas Danielsson,
for guiding us through this project, discussing issues with us and sharing exciting ideas for
improvements to our work.

Our gratitude is also extended to Axis Core Technologies Analytics (CTA) lead engineer,
Markus Skans, for showing great interest in our work, discussing possible explanations of
our many results, and helping us sort out many technical details. Moreover, we wish to
thank the numerous CTA employees who always helped us when we needed assistance,
and who lent us their computers at night time so that they could render images for us.

Lastly, we would like to thank the Axis management for providing us with an office space,
computers, and an overall excellent environment for carrying out this thesis.

3



4



Contents

1 Introduction 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Artificial Training Data . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Image-to-Image Translation . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Person Re-identification . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Approach 13
2.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Creating the Scene and its Inhabitants . . . . . . . . . . . . . . . 15
2.1.2 Positioning the Camera . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Cropping the Images . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Scaling the Generation . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . 21
2.2.2 Conditional Generative Adversarial Networks . . . . . . . . . . . 23

2.3 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Code Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5



CONTENTS

3 Evaluation 35
3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Training on Generated Images . . . . . . . . . . . . . . . . . . . 37
3.1.2 Training on Refined Images . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Training on Artificial and Real Images . . . . . . . . . . . . . . . 42

3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Ethical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Conclusions 49

Bibliography 51

Appendix A Complementary Results 59

Appendix B Images from Our Datasets 63

Appendix C Training Scores 73

6



Chapter 1

Introduction

1.1 Background
The number of deep learning based computer vision applications used in today’s society is
growing rapidly. We are able to teach the computer to recognise faces [46], propose fitting
captions to images [56], and even how to drive a car [5]. This teaching is based on a lot
of examples: we give the computer sample problems of a specific task, and it adjusts its
artificial neural networks (networks, for short) so that its performance on a given problem
would have been improved if it was given the same problem again. With enough practice,
the computer can then do well on new problems within the same task, as it has learnt to
handle similar problems.

This approach to learning can be done well under one condition: there has to be enough
training data. In general, the more training data we give to our network, given that the
data is diverse enough in comparison to its size, the better the network’s performance
will become [19]. However, with only a small amount of data available for training, the
networkwill probably fail at its task. Thus, goodways of collecting data in large amounts is
essential for a deep learning based model to succeed. Along with a large diversity and size
of the dataset, the networks also often require labeled data, meaning that we, for example,
have to find ways of marking which faces in our dataset belong to the same person before
using the images to train our models, as they must knowwhat the right answer is in order to
learn. Together, these properties make it cumbersome to obtain datasets that are sufficient
for training functioning networks.

Our thesis aims at generating training data that can complement, or even replace, existing
datasets. In particular, we will be investigating the possibility of generating full body
images of humans with a graphics engine, and then refining them to be more reminiscent

7



1. Introduction

of real images using image-to-image translation [47]. The artificial images will then be
used to train a network to perform person re-identification (re-id, for short): a computer
vision task aiming at recognising a person as they move through multiple, non-overlapping
camera views [18].

Training a network for re-id requires labeled data in the sense that all images of the same
person are bundled together. While our ability to collect large quantities of high quality
images increases with more and better cameras, the process of labeling all the collected
data is a very time-consuming and tedious task. Meanwhile, more people are becoming
concerned with their privacy, and, with the introduction of the General Data Protection
Regulation [55], a strict process for collecting and handling images of people is required.
However, neither the gathering, the labeling nor the privacy is an issue with artificial
data.

Section 1.2 sheds light on related work done in the areas of artificial data generation,
image-to-image translation and person re-identification. In Chapter 2, we explain and
propose our solution to the problem, which is then evaluated in Chapter 3.

1.2 Related Work

1.2.1 Artificial Training Data

The use of artificial data for trainingmachine learningmodels has a long history, with early
works dating back over 40 years [37]. Using artificial data for deep learning saw some of
its first uses in 2015, when it was proposed as a way of augmenting scarce training data
for object recognition [38, 66]. After these initial works, however, this way of augmenting
training data for artificial neural networks has seen an increase in attention.

With the accessibility of high-quality rendering engines, including open-source ones such
as Blender [4], as well as game engines, it has become possible to generate images with
realistic lighting conditions and material properties in large scale [15, 41]. This has caught
the interest of machine learning researchers, and multiple works have taken advantage of
these possibilities for creating images that can replace photographs in computer vision
applications [29, 44, 51]. Promising results have been shownwith images from very simple
scene setups such as scenes enclosed by a cuboid with single textures on its respective faces
[53]. Amore advanced approach, which has also been successful, is capturing images from
a procedurally generated world with larger scene variety [54].

So far, the works mentioned have focused on object recognition, with Virtual KITTI [15]
being one of the larger artificial datasets created for training these models. To our knowl-
edge, there are no artifical datasets of similar size and variety with full body images of
humans. Closest to it is the SOMAset [1], a dataset including 50 characters and 11 cloth
variations. To build the SOMAset, the creators used MakeHuman [9], an open-source 3D
human modelling software in which one can model characters by hand and export them
to rendering engines that, in turn, can generate images of them. This is a manual pro-
cess, which could have hindered the creators of the SOMAset from increasing its number

8



1.2 Related Work

of characters. In our work, we aim at automating this process by scripting the character
and image generation, similar to how it has been done for the generation of face images
[30].

1.2.2 Image-to-Image Translation

Image-to-image translation is a field with the goal of translating images from one domain
to another, with applications ranging from adding colour to a greyscale image [65] and
from making a photograph look like The Starry Night by Van Gogh [16], all the way
to increasing an image’s resolution [13]. With all its applications, this field has gained
a lot of attention, and several methods, including convolutional neural networks [28] and
regression [7], have been employed tomake image-to-image translation a reality. However,
while the aforementioned solutions achieve impressive results, they do not offer what we
are looking for. We wish to find a network which can be taught to translate images from
one style collection to another. For example, it should be able to learn how to translate
photographs to the style of Van Gogh’s collection of paintings, rather than just to the style
of The Starry Night. In addition to this, the network must also be taught in an unsupervised
manner, i.e. it should be able to learn the translation without seeing any input-output pairs.
Following the previous example, it should be able to learn without seeing photographs and
their analog Van Gogh paintings, since such pairs do not exist.

In 2014, Ian Goodfellow was asked for a new way of making the computer generate pho-
tographs by itself [17]. The solution he presented was the Generative Adversarial Network
(GAN, for short) [20]: a structure in which two networks, the generator and the discrim-
inator, act as adversaries of one another, leading to a competition in which both actors
improve over time. In this setup, the generator is a forger, attempting to create fake images
which the critic (the discriminator) cannot tell from real ones. Thus, as the forger’s work
becomes more realistic, the critic’s eye must be sharpened, and vice versa. As the level of
both parties’ results increases, the images generated can deceive even the eyes of humans.
In the classic GAN, the entire image synthesis is initiated solely by noise variables. How-
ever, it is also possible to input images to the GANs, based on the idea of the conditional
GANs [36], which opens up the avenue of image-to-image translation based on the GAN
framework [27].

One large constraint with the original GAN models for image-to-image translation is that
they require supervision, meaning that the training images must come in pairs of e.g. one
greyscale, and its analog, colourised, image. This problem has been addressed in multiple
papers, where the common denominator is the inclusion of additional loss functions, i.e.
new ways of directing the generator, in the GANs. Such a loss function could, for example,
enforce that the translated images have similar pixel values to the original ones [47], so
that the translation would not change the images’ overall structure, but still be able to affect
details. In our work, where we are not necessarily interested in preserving pixel values,
but rather the identity of our humans while still making large changes to the style of the
images, we will make use of the CycleGAN framework [68]. The CycleGAN includes two
generators: one takes images from the first to the second domain (e.g. greyscale to colour),
and the other takes images from the second to the first (e.g. colour to greyscale). It also

9



1. Introduction

introduces a cycle consistency loss, enforcing that if we translate an image from the first
domain to the second, and then back again, we should obtain the original image. This is
the key idea that allows us to teach a model to take generated images of humans and make
them look more real.

The CycleGAN is a very general framework, with the ability to do well on multiple do-
mains, depending on its training. It can learn how to translate sketches to photographs,
maps to satellite images and summer to winter images [68]. Our application is not as
general, but focuses on translating humans between different image domains while pre-
serving their identities. For exactly this end, the Person Transfer GAN (PTGAN) [57]
was proposed. This framework adds one more component to the CycleGAN structure:
a loss that focuses on the human in the image before and after the entire image is trans-
lated. Compared to the general CycleGAN, the single-purpose PTGAN was shown by its
inventors to improve the human translation results considerably [57].

1.2.3 Person Re-identification

Video surveillance has many applications. The first time a camera was used to remotely
monitor an event was in 1942, when the Germans needed it to oversee the launch of V2
rockets. In 1970, cameras were placed in banks as an additional security measure against
theft, and in 1992 parents began monitoring their families using so-called "Nanny cams".
However, during all this time, the camera feed had to be supervised by humans. It was not
until after the attack on the World Trade Center in 2001 that machine learning algorithms
found their first use in surveillance, as facial recognition software became a high priority
[11].

In this work, the surveillance applicationwe are looking at is called person re-identification
(re-id). Re-id is when we try to identify which images show the same person, for example
as the person moves through the views of a set of cameras. This is a challenging task, as
the images’ features, such as illumination, environment and character pose, could change
drastically between different camera views [34]. A working re-id algorithm must achieve
two things: first, one needs to detect the person in the image. There is a multitude of
methods used for detecting objects such as people in images [35, 42, 43], but we will
assume that this part of re-id is done for us. Instead, we will focus on the second part,
which is to, given images of people, say which images show the same person. The main
idea behind the solutions to this problem is representing images of the same person in a
way that they are similar, and images of different people in a way that they are dissimilar,
even if that is not the case for the original images [67].

One of the first approaches to recognising an object present in images taken from different
camera views was based on a hand-crafted appearance model [24]. This model, used to re-
identify cars, explicitly considered attributes such as colour, length and width of the object.
Relying on such hand-crafted features is a common approach in machine learning, and
person re-identification models based on these have seen some success over the years [3,
32, 64]. However, finding features that are invariant to differences in pose or illumination
is difficult. For example, a person’s garments might look different from the front and

10



1.3 Contributions

from the back, making it difficult to recognise that the person is the same based on colour
alone. Due to the success of deep learning based approaches in image classification [31],
re-id moved away from the more classic machine learning techniques. Instead of using
hand-crafted feature extractors, re-id began leveraging artificial neural networks, where
the model learns what features to look for itself [34, 63].

1.3 Contributions
Finding a way of generating full body images of humans, with random skin tones, camera
angles, etc., was the first part of this work. We solved this together. During the second
part, David explored the possibilities of scaling the generation, while Pontus looked into
how we could improve the realism of our images. When we had made progress in those
areas, we started working with the re-id part of the project together, while simultaneously
making further improvements to the previous parts.

The introduction of this report was written by Pontus, while we cooperated in writing the
remaining sections. The different trainings and evaluations we wanted to investigate and
include in the report were carried out by David, after we had discussed what we wanted to
try out.

11



1. Introduction

12



Chapter 2

Approach

This chapter describes our approach to generating and using artificial images for person
re-identification. Section 2.1 describes how we create our characters, how they are put
in a scene, how images are captured and how we scale the process from generating one
image to a million images. In Section 2.2, we explain the process we use to make our
generated images look more like real ones using Generative Adversarial Networks [20].
The chapter is then closed by Section 2.3, in which we describe how we use our images to
train models that can perform re-id, and how those models are tested to, in the end, give
us a measurement of our artificial datasets’ potential. Table 2.1 shows our system, with its
different phases and the different input and output of each phase.

13



2. Approach

Table 2.1: Schematic table of our system, with the input and out-
put of each phase. We begin by generating full body images of
humans with randomised attributes (Sec. 2.1). After that, we use
those images and real images to train a refiner model, which takes
our generated images and make them look more like real ones
(Sec. 2.2). The refined (or generated) images are then used to teach
a model how to re-identify humans (Sec. 2.3.1). Optionally, this
model can be finetuned to perform better when tested on images
of real humans (Sec. 2.3.1). The final re-identification model is
then tested on real images, yielding a measurement of our artifi-
cial dataset’s potential (Sec. 2.3.2).

Phase Input Output

Generation
(sec. 2.1)

Random
character
attributes

Generated
images

Refiner training
(sec. 2.2) +

Refiner
model

Refinement
(sec. 2.2) +

Refiner
model

Refined
images

Re-id training
(sec. 2.3.1) or Re-id

model

Finetuning
(sec. 2.3.1)

Re-id
model

+

Finetuned
re-id
model

Evaluation
(sec. 2.3.2) +

(Finetuned)
Re-id
model

Performance
measurement

14



2.1 Generation

2.1 Generation
In this section, we describe how we create our characters and the environment they are in
(Sec. 2.1.1). We also describe how we set up our camera for each image (Sec. 2.1.2), how
we crop the images to have sizes similar to the sizes of images used in our re-id application
(Sec. 2.1.3), as well as how we are able to go from generating one image to a million of
them (Sec. 2.1.4).

2.1.1 Creating the Scene and its Inhabitants
From an empty space in Blender, the scene is initialised by the insertion of a cuboidal
shape, which is used as our background environment. The inside of the cuboid can be seen
in Figure 2.1a. In order to increase the background’s realism, we include the possibility to
add different textures, so-called cubemaps, downloaded from Humus’ collection [39], to
the cuboid. This results in scenes such as the one in Figure 2.1c.

(a) Simple background. (b) Background with simple
colours.

(c) Background with cubemap
texture.

Figure 2.1: Initialisation of our scenes in Blender. From an empty
space, we add a cuboidal shape (a). We can then either add some
simple colours to the cuboid’s different faces (b), or a cubemap
(c); the latter yielding a more realistic looking scene.

The characters we use are created with a Blender plugin called ManuelBastioniLAB [2]
which adds functionality to create and modify human characters as seen in Figure 2.2.
There are a lot of parameters which can be tuned in order to create a diverse dataset,
but we have limited ourselves to changing the character age, mass, tone and skin. The
plugin is also able to apply clothes and accessories to the characters (see Figure 2.2b).
The clothes and accessories are made or adjusted by hand inside Blender and fitted to a
template character supplied by the plugin. These items can then be applied to characters
with different body types and sizes, as seen in Figure 2.2c, without any additional, manual
adjustments. To get the characters into more natural poses, motion captures of walking
people are loaded and applied to each character, allowing us to capture images of when our
characters are walking around (see Figure 2.2d). The motion captures were downloaded
from the CMU Graphics Lab Motion Capture Database [21].

15



2. Approach

(a) Basic character. (b) Simple clothes.

(c) Different body types. (d) Different pose, colours, accessories and
character.

Figure 2.2: The procedure for creating and setting up our human
characters. We initialise characters in our scene, put clothes and
accessories on them, and let them move around.

16



2.1 Generation

2.1.2 Positioning the Camera

The generator is able to render images from different viewpoints, which makes it useful for
different use cases. For example, the generator can create images taken from above, as in
a surveillance view, or images from the front, as from a web camera or a door camera. In
order to achieve this, the user of the generator can define the distance from the character to
the camera (the radius R) and the allowed polar angle interval (between the angles θ1 and
θ2). This is represented as a hemisphere segment, on which the camera can be positioned
(cf. Figure 2.3).

R

θ1

θ2

Figure 2.3: The camera position is sampled within the blue area
prior to each image being captured. The blue area is a hemisphere
segment defined by the user as they choose the polar angles θ1 and
θ2, along with the radius R.

We position the camera randomly on the defined hemisphere segment. To make sure that
the probability of each allowed camera position is the same, we need to sample uniformly
on the segment. Choosing a polar angle θ ∈ [θ1, θ2] and an azimuth angle φ ∈ [0, 2π)
uniformly and mapping them to a sphere does not suffice, and will result in samples that
are not correctly distributed [48]. Our strategy is shown in Figure 2.4, and goes as fol-
lows: we first sample two uniform variables (ξ1, ξ2) ∈ [0, 1)2, and then map that sample to
an intermediate point (xc, yc, zc) on the unit-height cylinder. The cylinder sample is then
squeezed into a sample (xc, yc, z′c) inside a height range [h2, h1] defined by θ1 and θ2. Lastly,
we project the cylinder sample onto the unit hemisphere, resulting in the sample (xs, ys, zs).
The fact that this projection is area preserving, and thus results in uniform samples on the
hemisphere segment, follows from Archimede’s Hat-Box Theorem [58].

The hemisphere is originally placed in the origin, and needs to be translated to the char-
acter’s position. After doing so, we translate the sample outwards until the distance to
the hemisphere’s centre is R, resulting in a uniformly sampled camera position within the
user-defined segment, as in Figure 2.3.

2.1.3 Cropping the Images

Since we are working with the second part of person re-identification, i.e. being able to
tell if two images of people portray the same person, we want to generate images and crop
them. For real images, we would use object detection algorithms [42] to detect which part

17



2. Approach


φ = 2πξ1

xc = cos φ
yc = sin φ
zc = ξ2
h1 = cos θ1

h2 = cos θ2

z′c = (h1 − h2)zc + h2

h1 h2


zs = z′c
d =

√
1 − z2

s

xs = dxc

ys = dyc

θ1

θ2

h2h1

Figure 2.4: The strategy used for drawing uniform samples on
a hemisphere segment defined by the two polar angles θ1 and θ2.
First, we draw a uniform sample [ξ1, ξ2] ∈ [0, 1)2 and map it to the
unit cylinder (first row). The cylinder sample is then squeezed so
that its height is in the range [h2, h1] (second row), which is com-
puted using the user defined angles θ1 and θ2. Lastly, the squeezed
cylinder sample is projected onto the unit hemisphere (third row),
resulting in a uniformly distributed sample on the hemisphere seg-
ment.

of the image contains the person, and crop the image based on that. For generated images,
we instead leverage our graphics engine.

Graphics engines such as Blender describe their scenes as collections of 3D points and
how they are connected to form objects [12]. To reduce the computational complexity
of rendering an image, the engines often implement bounding volumes, which enclose
the 3D objects [40]. Conveniently, the bounding volumes in Blender can be accessed by
the user. Along with those, Blender also provides all the information about the cameras
that is used. What that means, is that we can use the camera information to project the
bounding volume enclosing our character onto our 2D image [10]. When projected onto
2D, this bounding volume, which is a cuboid in our case, forms a 2D polygon with eight
corners. We find the largest and smallest x and y values of this polygon, respectively, and
use those four values to form a rectangle. This rectangle then covers the entire character,
and can be used for cropping. In addition to this, Blender allows us to define a rendering
border, which determines what part of the camera’s view that should be rendered. Setting
the rendering border along our rectangle then results in an image that is cropped as it is
rendered, and we do not need to crop them as a post-processing step. Figure 2.5 shows a
comparison of when we render an image without explicitly setting the rendering border,
compared to when we set it based on the character’s projected bounding volume.

18



2.1 Generation

(a) (b)

(c) (d)

Figure 2.5: Comparison of when we render an image without ex-
plicitly setting the rendering border (red, dashed line) in Blender,
and when we set it based on the character’s projected bounding
volume (yellow line). Image (a) shows the default rendering bor-
der set by Blender, which results in image (b) when we finish ren-
dering. In image (c) we show the projected bounding volume of
our character, and howwe have fit the rendering border to that pro-
jection in such a way that we ensure that no part of the character
is outside of it. This operation results in the cropped image, (d).

2.1.4 Scaling the Generation

In order to generate images on a large scale, and be able to reproduce the results, we need
a system that is stable, scalable and distributable. Blender and its plugins are written in
Python, and are therefore easy to integrate and automate. Using the ManuelBastioniLAB
[2] plugin, we were able to automate each of the steps we took in sections 2.1.1-2.1.3.
MakeHuman [9], an application with similar features as ManuelBastioniLAB, would be
an alternative for creating characters. However, it is a standalone application, and would
therefore require first exporting from MakeHuman and then importing into Blender. Such
operations could make it hard to automate the character creation process, and would have
limited the possibility to vary the character attributes. In order to setup Blender with
Python in a repeatable way, we used Docker [26]. This proved to be a crucial step in
creating an easily distributed, stable and scalable environment.

When we generate images of a character, we use a lot of information to describe the scene,
the character, the clothes and accessories, as well as the camera positions and character
poses. Varying this information allows us to generate unique images, but we need to store
the information to be able to reproduce them. The information is stored in a database,
which is running inside a Docker container. The database also helps in keeping track of
which images and characters are completed.

The image generation is done by workers. The workers connect to the database, where

19



2. Approach

they access the required information for each image (character mass, hair type, camera
position sample, etc.) and then execute the Python scripts in order to set up the scene,
create the character, position the camera, render each image and upload them to a central
location. The workers can be stopped at any time and will only mark images as completed
if they were rendered and stored successfully. Each worker fetches a job from a job queue,
where the job instructs the worker which character to render. No two jobs hold informa-
tion of the same character, meaning that no two workers will work on the same character
simultaneously. The infrastructure can be seen in Figure 2.6, where the top box is the
centralised part and the bottom box are the workers which can be distributed to multiple
computers.

Job queue
• Character 3

• Character 4...

Database
Information
• Character 1

• Character 2

• Character 3...

Storage
Images

. . . Worker
Waiting for work

Worker
Character 2

Worker
Character 1

Centralised

Distributed

Figure 2.6: Infrastructure for the distribution of our image gen-
eration. The centralised part is handled by one computer which
prepares the characters we wish to render, creates the job queue
and stores the finished images. Other computers make up the dis-
tributed part. Each computer can maintain a number of workers,
who fetch jobs from the job queue. During each job, the worker
retrieves the required character attributes from the database, ren-
ders all images of a character, and uploads them to the storage.
The worker then collects a new job from the queue. This process
is repeated until the job queue is empty and all images are gener-
ated.

20



2.2 Refinement

2.2 Refinement
This section describes how we attempt to close the gap in appearance between our gen-
erated images and images taken with real cameras, using image-to-image translation. We
call this process refinement, and the idea is that the refined images will work better than
the generated images for training re-id models that are to be used on real images.

2.2.1 Generative Adversarial Networks
The aim of a Generative Adversarial Network (GAN) [20] is to have a generator, G, learn
to take samples z from a distribution pz and turn them into samples G(z) that are indistin-
guishable from samples coming from a data distribution pdata. (Henceforth, we will use
the notation x ∼ px to denote that the sample x is drawn from the distribution px. For
example, x ∼ pdata is a sample drawn from the distribution pdata.) In the common case,
the distribution pz is a noise distribution, with samples z ∼ pz being noise vectors, while
pdata is a distribution over photographs. The generation of real images from noise relies
on the inclusion of a second component to the setup: a discriminator, D, which acts as
an adversary to the generator. The discriminator’s task is to take a sample (either a real
sample, x, from pdata, or a fake sample, G(z), created by the generator), and compute the
probability that the sample came from the distribution pdata. It aims at setting a low prob-
ability, D(G(z)), for samples coming from the generator, and a high probability, D(x), for
samples coming from the data distribution, pdata. At the same time, the generator tries to
maximise the probability of the discriminator making a mistake, i.e. it tries to maximise
D(G(z)). The GAN framework is depicted in Figure 2.7.

While the idea of a GAN is general, and could be implemented in multiple ways, our GAN
has both the generator and the discriminator implemented as feed-forward neural networks
[19]. What this allows for is teaching the generator and the discriminator to perform well
using backpropagation algorithms [45], meaning that we can define loss functions that
tell the adversaries how well they performed on a given example, and have them both
learn by minimising their respective losses. The discriminator, which should be able to
distinguish well between fake samples G(z), where z ∼ pz, and real samples x ∼ pdata, has
the loss

LD(D) = Ex∼pdata
[
− log(D(x))

]
+ Ez∼pz

[
− log(1 − D(G(z)))

]
, (2.1)

whereEx∼px

[
f (x)

]
denotes the expected value of the function f over the distribution px. In

practice, we generally cannot find the exact value of Ex∼px

[
f (x)

]
, and we instead compute

an approximation by averaging the function values, f (x), over all available samples, x ∼
px. The discriminator’s loss (2.1) has a larger value when the probability D(x) is low,
and a smaller value when the probability D(G(z)) is high. Thus, to minimise this loss, the
discriminator must minimise the probability that generated images, G(z), are real, while
simultaneously maximising the probability that samples x ∼ pdata are real. The generator,
on the other hand, whose goal is to fool the discriminator, wants the samplesG(z) to result
in a large probability D(G(z)). The loss it tries to minimise is therefore

LG(G) = Ez∼pz

[
− log(D(G(z)))

]
, (2.2)

21



2. Approach


N
o
i
s
e


z

G
G(z)

D

0.15
D(G(z))

x

D

0.95
D(x)

Figure 2.7: Description of the GAN framework. Given is a noise
vector, z, and a photograph, x. The noise vector is put through the
generator, G, resulting in a new image G(z). The discriminator,
D, takes this image and computes the probability, D(G(z)), that
it came from the data distribution, pdata. It tries to minimise this
probability, while it also tries to maximise the probability, D(x),
that the photograph, x, is drawn from pdata. (Note that the proba-
bilities in the figure are for illustrative purposes only, and that there
is no direct connection between the values of D(G(z)) and D(x).)
Meanwhile, the generator attempts to maximise D(G(z)), leading
to it and the discriminator becoming adversaries.

whose value decreases as the probability D(G(z)) increases. We can combine the adver-
saries’ losses and obtain the final objective function of the GAN:

LGAN(G,D) = Ex∼pdata
[
log(D(x))

]
+ Ez∼pz

[
log(1 − D(G(z)))

]
, (2.3)

where we find the optimal generator, G∗, by solving

G∗ = arg min
G

max
D
LGAN(G,D). (2.4)

Theoretically, the game between the generator and the discriminator has a global optimum
where the generative distribution, i.e. the distribution that our fake images G(z) belong to,
is equal to the data distribution pdata [20], at which point the generated samples are indis-
tinguishable from real ones. As they propose the GAN, the authors also propose a training
algorithm, based on the aforementioned losses (2.1) and (2.2), which they prove to con-
verge at this optimum. While the feed-forward neural networks have a hard time reaching
this theoretical optimum in practice, they are still able to provide us with a generator that
can generate images which, in many cases, are hard to distinguish from photographs.

22



2.2 Refinement

2.2.2 Conditional Generative Adversarial Networks
Shortly after the introduction of GANs, researchers started looking at conditioning the
setup on some data y [36], posing the question whether or not we could steer the gen-
eration to a conditioned data distribution pdata(x|y). For instance, we could let the data
distribution pdata be over the MNIST handwritten digits database [33], and condition on
that set’s different labels (i.e. the digits 0−9). This would allow the generator to learn how
to generate digits of our choice, steered in that direction by the label y that we condition
on.

It turns out that, in practice, what this conditioning comes down to is that the generator
takes the data y as input alongside the original noise sample, z ∼ pz, while the discrimi-
nator takes either the pair (G(z), y), or the pair (x, y), where the sample x was drawn from
pdata(x|y). For example, to generate digits similar to those of the MNIST dataset, the data
y was a vector with a 1 at the index corresponding to the digit we wanted to generate, and
0s filling the other vector slots. The vector y’s pair was then an image, x, that showed the
digit corresponding to the index of the 1 in y [36]. Now, the idea of conditional GANs
(cGANs) can be extended to use entire images as conditional data, allowing for genera-
tion of e.g. satellite images based on maps, photos based on sketches and coloured images
based on greyscale ones. To achieve this extension, the creators of the pix2pix model
[27] (see Figure 2.8) changed the original cGAN structure in two important ways. Firstly,
they discarded the noise input z, and only input an image y to the generator. This was a
change made due to the authors discovering that the noise vector they gave the system was
largely ignored. However, maintaining a model’s stochasicity during training is crucial
as it reduces overfitting [49], i.e. when the model performs well during its training, but
makes large errors when presented with new data. Therefore, instead of the noise input,
the inventors of pix2pix added dropout [50], which is a way of injecting stochasicity into
the network by randomly omitting some of its neurons for each training case. The second
change was the addition of another loss function to the generator, namely

Lsim(G) = E(x,y)∼pdata
[
||x −G(y)||1

]
, (2.5)

where pdata now is a distribution from which we draw the image pairs, (x, y). This loss
imposes that the generated image, G(y), should be similar to a ground truth image, x.
There are two things to note here. The first one is that, with this loss, we have added the
requirement of a ground truth image. Thus, the pix2pix model is supervised, and we need
input-output pairs in order to train our model. We also note that the addition of another
loss, which helps train our model towards a certain goal, e.g. similarity to the ground truth
in the case of the similarity loss (2.5), is easily done to the GAN framework due to its feed-
forward neural network and backpropagation foundation. Making the model take a new
loss into consideration while training simply requires us to add it to the GAN’s objective
function.

23



2. Approach

y

G

G(y)

y

D

0.15
D(G(y), y)

x

y

D

0.95
D(x, y)

Figure 2.8: Description of the pix2pix framework [27]. Given is
a pair of images, x and y. The generator, G, translates y to a new
image, G(y). The discriminator, D, takes both the input image, y,
and the generator’s output,G(y), and tries to tell whether or not the
two images make a pair. Its prediction is presented as the probabil-
ity D(G(y), y), which it aims at minimising, since the two images
do not make a correct pair. At the same time, it tries to maximise
the probability D(x, y), since x and y do make a correct pair. In
addition to attempting to maximise the probability D(G(y), y), the
generator also aims at minimising the pixel-wise difference be-
tween its output, G(y), and y’s correct pair, x. Notice how this
framework requires the pair x and y (in this case a greyscale im-
age, y, and the corresponding colour image, x). Such pairs cannot
be provided in all applications; one example being when we wish
to translate images of fake humans to images of real ones. The
probabilities in the figure are for illustrative purposes only.

24



2.2 Refinement

Our goal is to translate images of computer generated humans to images of humans taken
with real cameras. One obvious obstacle here is that we do not know how our generated
humans would look if they were real and we had taken photographs of them. In other
words, we have no input-output pairs. This fact rules out the possibility to use losses such
as the similarity loss (2.5) for guiding the generation. Instead, we must find a model that,
in an unsupervised manner, allows us to translate images from one domain (generated
humans) to another (real humans) and preserve the identities of the characters so that the
images portraying them can still be used to train re-id models.

Unsupervised learning for collection style transfer (e.g. VanGogh paintings↔ photographs)
can be achieved with the CycleGAN framework [68]. The CycleGAN has two generators,
GA and GB: the first takes images from domain A and translates them to domain B, and
vice versa in the second generator’s case. The idea is then to include a loss function that
incentivises that the input image, a, from domain A is well reconstructed after passing it
through GA and then through GB, i.e. a → GA(a) → GB(GA(a)) ≈ a. Having such a loss
should enforce that the generator GA preserves the overall structure of the input image, as
there must be enough information remaining in the output,GA(a), for the second generator
to have the possibility of generating an output, GB(GA(a)), satisfying that GB(GA(a)) ≈ a.
Similarly, we want an image, b, that comes from domain B, and is passed through gener-
ators GB and GA, to be well reconstructed, i.e. b → GB(b) → GA(GB(b)) ≈ b. The cycle
consistency loss becomes

Lcyc(GA,GB) = Ea∼pdata(A) [||a −GB(GA(a))||1] + Eb∼pdata(B) [||b −GA(GB(b))||1] , (2.6)

where pdata(A) denotes the data distribution of images from domain A, while pdata(B) de-
notes the data distribution of images from domain B. Furthermore, with the addition of
GB, we also add a second discriminator, DB, that tries to distinguish between images com-
ing from GB and images, a, that originally are from domain A. The full objective function
becomes

L(GA,GB,DA,DB) = LGAN(GA,DA) +LGAN(GB,DB) + λLcyc(GA,GB), (2.7)

where λ is a hyperparameter allowing the user to set the relative impact of the adversarial
and cycle consistency losses, and we now find the optimal generators by solving

G∗A,G
∗
B = arg min

GA,GB
max
DA,DB

L(GA,GB,DA,DB). (2.8)

In summary, our setup now includes two cGANs in opposite directions, which work in
parallel towards, in the end, producing a generatorGA that can take an image from domain
A and make it indistinguishable from images from domain B while preserving the image’s
overall structure. The feed-forward neural networks that represent the generators and dis-
criminators are, as mentioned in Section 2.2.1, trained with backpropagation algorithms
to solve (2.8). As opposed to the pix2pix framework, the CycleGAN does not require
input-output pairs. A schematic view of the CycleGAN can be seen in Figure 2.9.

25



2. Approach

a

Input

DA

0.95
DA(a)

Domain A→ B→ A

GA

GA(a)

DB

0.20
DB(GA(a))

GB(GA(a))
GB

b

Input

DB

0.90
DB(b)

GB

GB(b)

DA

0.05
DA(GB(b))

Domain B→ A→ B

GA(GB(b))

GA

Figure 2.9: Schematic view of the CycleGAN [68], which
achieves collection style transfer after unsupervised training. We
input two images: a from domain A (generated human images)
and b from domain B (real human images). The model con-
tains two generators, GA and GB, which translate images from do-
main A to domain B, and from domain B to domain A, respec-
tively. There are also two discriminators, DA and DB: the first
one tries to distinguish between genuine domain A images (a) and
fake domain A images (GB(b)), while the second one aims at dis-
tinguishing between genuine domain B images (b) and fake do-
main B images (GA(a)). The generators are trained to keep im-
age similarities when they are cycled through both generators, i.e.
a → GA(a) → GB(GA(a)) ≈ a and vice versa for domain B image
b. As opposed to the pix2pix framework, the given images a and
b do not need to form pairs. The probabilities in the figure are for
illustrative purposes only.

26



2.2 Refinement

The CycleGAN allows us to translate images between two domains in an unsupervised
manner and still preserve the overall image structure. However, it does not necessarily
preserve the identity of humans in the images, which is an attribute essential for our appli-
cation. A framework that teaches its generator exactly this trait is the Person Transfer GAN
(PTGAN) [57]. The authors achieve this by extending the CycleGAN objective (2.7) with
another loss, which enforces that the human in the image should be similar before and after
the entire image is translated. One way to do this is by removing the background in the
original and translated images, and then compare them. Removing the background can be
done by multiplying the images element-wise with a mask, M(·) (cf. Figure 2.10).

a M(a) a � M(a)

Figure 2.10: Figure showing the masking operation. The original
image a is multiplied, element-wise, with its mask, M(a), to yield
an image a�M(a) where the character in the image is singled out.

Attaining masks is not a trivial task for the computer, and we do not want to do it by
hand. One solution to the problem is deep learning based models that can take an image
as input, and generate a corresponding mask. We use the Mask R-CNN [22] model to
generate masks for our real human images. In the case of our artificial images, however,
we do not need a neural network to extract masks, since we can do it ourselves during
the image generation. With the masks, we now have a way of comparing the character
in an image before and after it has been translated, and can encourage our generators to
keep the character from being heavily altered through the translation, incentivising identity
preservation. The loss leading to this, called the identity loss, LID, is defined as

LID = Ea∼pdata(A) [||(GA(a) − a) � M(a)||2] + Eb∼pdata(B) [||(GB(b) − b) � M(b)||2] , (2.9)

with � denoting element-wise multiplication. The l2 norm (|| · ||2) is shown to produce
blurrier results than the l1 norm (|| · ||1) [27] and after some preliminary tests we therefore
change the norms in the identity loss (2.9) from l2 to l1.

27



2. Approach

2.3 Benchmark
To evaluate the potential of our datasets, we use them to train re-identification models. In
this section, we describe how our models are trained, how we evaluate their accuracy, and
the tools that we use in the process. All datasets are divided into three parts: a training
set, a validation set and a test set. The test set and validation set consists of 100 separate
characters each, and the rest are placed in the training set. There is no overlap between the
three sets. The training set makes up the examples our model sees during its training, while
the validation set is used to validate our model as it is training, allowing us to keep track
of potential overfitting [49], and stop training before overfitting occurs. When a model has
been trained using the training set, and selected using the validation set, it is evaluated on
the previously unseen images in the test set, yielding a performance measurement.

2.3.1 Training
The idea of the training is that our model should learn how to embed images in a feature
space, in which images of the same person are close to each other, and images of different
people are far apart [67]. Here, embedding an image x in a feature space means applying
a function f : RH×W×C → RN to it, which takes it from RH×W×C , where H, W and C is
the height, width and number of channels in our images, respectively, to a single vector
f (x) ∈ RN , with N being the length of the vector. This function is represented by an
artificial neural network, meaning that applying the function to an image is done by passing
the image through the network. Our code framework (see Section 2.3.4) allows us to
choose the architecture of this network. How close the characters in two images are is
then measured by computing the Euclidean distance between the feature embeddings of
the two images. This setup is outlined in Figure 2.11.

28



2.3 Benchmark

x
f



F
e
a
t
u
r
e
s


f (x)

y
f



F
e
a
t
u
r
e
s


f (y)



F
e
a
t
u
r
e
s


f (x)

−



F
e
a
t
u
r
e
s


f (y) 2

Figure 2.11: The evaluation setup. Images x and y are run through
the feature embedding network, f , resulting in feature vectors f (x)
and f (y). The architecture of the feature embedding network is de-
termined by an option passed to our code framework (see Section
2.3.4). In this case, where the characters in the two images do
not share identity, the two feature vectors should have a large (Eu-
clidean) distance, || f (x) − f (y)||2, between each other. When the
characters do share identity, the distance should instead be small.
The aim of the training is to have the network, f , adjust itself so
that the features it produces have those properties.

29



2. Approach

Now the question is how the network is taught to embed our images in a good way. Similar
to the networks used in our refiner (cf. Section 2.2), the feature embedding network, f , is
a feed-forward neural network, and we teach it using backpropagation algorithms. This
means that we have to add a loss function to the network, so that we can tell it how well it
did for a given example. As was the case with the architecture of our feature embedding
network, f , our code framework allows us to choose the loss function that we want to use.
Our choice of loss function was the softmax loss [61], which is intended to enforce our
model to classify each image as one of M classes, where M is the number of identities we
allow the network to train on. In other words, it should teach the network to say which
person is in an image, when it has M people to choose between. If the network classifies
an image as portraying the correct individual, the loss is small, and vice versa. In our
setup, the classification part is made up of a smaller network, which applies a function
g : RN → RM to the feature vector f (x) ∈ RN , resulting in a new vector, g( f (x)) ∈ RM .
The values in g( f (x)) are in the range (0, 1) and can be seen as probabilities: a high value
g( f (x))i, i ∈ {1, 2, . . . ,M}, implies that the network predicts that character i is portrayed
in image x, while a low value implies the opposite. Moreover, as the values in g( f (x))
are probabilities, they satisfy

∑M
i=1 g( f (x))i = 1. Now, for each example, we obtain a loss

based on the vector g( f (x)), which is used to train the entire model, i.e. it is used for
training both the feature embedding network, f , and the classifier, g, and both of these are
therefore trained as one large model. Figure 2.12 shows this setup.

30



2.3 Benchmark

x
f



F
e
a
t
u
r
e
s


f (x)

g



0
0
...
0
1
0


g( f (x))

Figure 2.12: The training setup is based on the softmax loss. An
image is run through the feature embedding network, f , result-
ing in a feature vector f (x). The feature vector is then passed
through another, smaller network, g, which outputs a vector of
probabilities, g( f (x)). This vector contains one element per char-
acter identity in our training set (with M identities), and each el-
ement represents the probability that the input image shows the
corresponding character. Ideally, and this is what we teach the
model to aim for, this vector should contain only 0s except for the
element corresponding to the character in the input image, which
should be a 1. The architecture of the feature embedding network,
f , is selected by passing it as an option to our code framework (see
Section 2.3.4). The addition of the classifier, g, is done when one
passes the softmax loss as the choice of loss to the aforementioned
framework. With other choices of the loss, the training setup is
different.

31



2. Approach

When the model is trained to correctly classify the images we give it, the idea is that the
features we obtain after passing images through the feature embedding network, f , should
contain enough information to separate characters from each other. Put differently, given
two images x and y, the trained network should yield features f (x) and f (y) which are
far apart, i.e. || f (x) − f (y)||2 is large, if the images contain different individuals, and close
together, i.e. || f (x) − f (y)||2 is small, if the images contain the same character.

Due to the appearance gap between artificial and real human images, a model trained on
artificial images might have difficulties performing re-identification on real human images.
However, themodel is still trained to embed human images of some sort, which couldmake
it a good starting point for training a new model that works better on real human images.
Using amodel trained on artificial images as the starting point for training amodel with real
human images is a type of finetuning [1, 30]. Finetuning is done by first training a model
with an initial dataset, and then re-adjusting parts of the model and continue training with
another dataset. In our case, we initially train a model with a dataset of artificial images,
and then we continue training the model with real human images. Before we start using
the real human images, we lower the rate at which the feature embedding network, f , is
learning, and we reset the whole classification network, g. If there is a difference in the
number of identities (M) between the datasets, we change the classification network, g, to
output a vector of the correct length.

2.3.2 Evaluation Method

A trained model’s accuracy is measured using the different feature vectors we obtain after
passing images through its feature embedding network, f (cf. Figure 2.11). The evaluation
is set up as follows:

1. Randomly choose 100 identities from an evaluation set (the validation set
during training, and the test set during testing).

2. For each of the 100 identities, randomly pick two images. Put the first
image into the query, and the second one into the gallery.

3. Compute and store the feature vector f (x) for each image x in the query
and the gallery

4. For each image xi, i = 1, 2, . . . , 100, in the query:
(a) Compute the distance between its corresponding feature vector, f (xi),

and all the feature vectors of the gallery.
(b) Sort the distances in ascending order
(c) See if the shortest distance is to the image in the gallerywhich portrays

the same identity as the query image, xi. If so, we have a rank 1 hit. If
not, do the same thing for the second shortest distance. If the identities
match, we have a rank 2 hit. Continue in the same fashion until the
match is found.

(d) For a rank k hit, store a vector vi = [0, 0, . . . , 0, 1
k
, 1, . . . , 1].

5. Sum all the vectors vi, i = 1, 2, . . . , 100, and divide each element in the
resulting vector by 100.

32



2.3 Benchmark

The result of step 5 is a vector called the cumulative matching characteristic (CMC). The
CMC shows us the percentage of our identities that resulted in rank k, k = 1, 2, . . . , 100,
hits, and it is usually presented as a curve (see e.g. Figure 3.1e). Ideally, we would only
have rank 1 hits, as that would imply that all our images were matched correctly. This
would then result in a horizontal curve at the value 1.

2.3.3 Validation

During training, the model is continuously validated to see how well the training is pro-
gressing. This is done by evaluating the model on the images in the validation set, fol-
lowing the procedure in Section 2.3.2. We compute a validation score at the end of each
epoch, i.e. after a fixed number of training iterations, by summing the elements of the
CMC (i.e. computing the area under the curve). This score should be a good measure-
ment of how good our model is, as it is less prone to noise than the rank 1 accuracy, but is
still larger the better our model’s ranking accuracy is. By validating our model after each
epoch, we can analyse how the score is developing, and see when the model is not getting
any better, or starts overfitting to the training data [49]. Our final model is then chosen
as the version of our model that achieved the highest validation score during training. We
allow the training to run for many iterations, which should imply that we reach a peak, or
a plateau, in validation score before the training finishes. Once there, we deem the model
to have extracted as much information as it could from its training examples, and it should
make a good representation of the dataset’s potential. Therefore, the model should also be
comparable to other models trained using the same procedure.

2.3.4 Code Framework

Open-ReID [60] is an open-source framework containing implementations of different
re-id algorithms [23, 61, 62], and multiple commonly used metrics for evaluation. The
framework also includes a data handler, allowing a new type of dataset (one containing
artificial images, in our case) to be handled by the framework without us having to make
major adjustments to neither the framework nor the dataset. The different algorithms and
evaluation metrics can easily be set via the framework’s execution options. The options
include possibilities to use different network architectures for the feature embedding net-
work, f , and the loss on which the training is based. Open-ReID includes the features
we need to efficiently and repeatably compare the potential of our generated datasets, and
was therefore our choice of evaluation framework. Note that, while we aim for optimal
accuracy in each training, we focus on comparing our results to each other and not to
state-of-the-art results.

We used the Inception [52] architecture for the feature embedding network and the softmax
loss function for training. These options are implemented and included in the Open-ReID
framework. The choice of the softmax loss function is what introduces the classifier, g,
to our model (cf. Figure 2.12). The framework’s data handler expects a set number of
cameras for each dataset, but our artificial images did not have any fixed number of cameras

33



2. Approach

or camera positions. Therefore, we randomly assigned one of two cameras to each image.
All tests were done according to the CUHK-CMC calculations implemented in the Open-
ReID framework.

2.3.5 Test Data
Our main tests have been done on the CUHK03 [34] dataset, which includes 1467 char-
acters and 28193 images. It is not thoroughly documented, but the dataset includes both
manually cropped and automatically cropped images of the same frames. The manual
cropping means that the interesting part of the image (the character) has been cut out by
hand, while the automatically cropped images have instead been cut out by a detector [34].
We used 100 test characters, defined and included in the dataset, for all our tests. During
training we used the remainder of the images. The handling of the dataset is implemented
in the Open-ReID framework [60].

34



Chapter 3

Evaluation

With the following evaluation, we aim at answering the following questions:

• How does changing the attributes of our generated images, i.e. backgrounds, number
of accessories, types of garments, etc., affect the re-id model’s accuracy?

• Does training on generated images passed through our refiners improve our model’s
accuracy?

• How does a model trained on artificial data compare to a model trained on only real
data?

• Can we use real and artificial data jointly to create a model that outperforms the one
trained on only real data?

To this end, we use four datasets with different attributes, created using the methods de-
scribed in Section 2.1. Each of the datasets is given a number I - IV, and we will refer
to their images as generated images. The images in dataset I are simple, with characters
wearing plain coloured clothes and that do not have hair, shoes or accessories. Further-
more, the room’s colours are the same for each character: the walls are red and the floor is
grey. Dataset II adds some simple textures to the clothes, and this dataset has varied wall
and floor colours for each character. Datasets III and IV both include more accessories
and clothes, while dataset IV is the only dataset where we use a cubemap. Each dataset
includes 1500 unique characters and 10 images of each character. Table 3.1 contains a
summary of information about each of the four datasets. Samples from the datasets can
be found in Appendix B, on pages 64-67.

The datasets are used, along with real images from the CUHK03 dataset, to train one
CycleGAN refiner model each. When dataset D has been translated to the domain of
CUHK03 images, using its corresponding refiner, we denote it R-D, and the images in

35



3. Evaluation

R-D are then referred to as refined. For D = IV, we also trained a PTGAN refiner. We
distinguish between images from that and images from the CycleGAN refiner by denoting
the corresponding datasets R-IV (CycleGAN) and R-IV (PTGAN). Samples of the refined
images can be seen in Appendix B, on pages 68-72. After that, all our artificial datasets,
i.e. datasets I - IV and datasets R-I – R-IV, are used to train one re-id model each, accord-
ing to the training schemes presented in Section 2.3.1. We will refer to a model trained
on dataset D, D ∈ [I, II, III, IV,R-I,R-II,R-III,R-IV (CycleGAN),R-IV (PTGAN)], as
model D. These models are then all tested on a set of 100, previously unseen, images
from the CUHK03 dataset, following the evaluation protocol outlined in Section 2.3.2.
In Section 3.1.1 we compare models I - IV, while Section 3.1.2 contains a comparison
between models R-I – R-IV.

During all trainings we let the validation score converge to assure that each model’s po-
tential was reached (cf. Section 2.3.3). The validation scores of the models that produced
the results included in Section 3.1 can be found in Appendix C, pages 73-79.

Table 3.1: Datasets used for evaluation and analysis, where the
size of a dataset is the number of characters times the number of
images per character.

Dataset Size Description
I 1500 × 10 Plain background, only shirts and pants,

bright colours on clothes.
II 1500 × 10 Plain, varied backgrounds, only shirts and pants,

textures on clothes.
III 1500 × 10 Plain, varied backgrounds, shirts, pants, hair,

more textures on clothes.
IV 1500 × 10 Cubemap background, all available clothes

and accessories, mixed textures on clothes.

36



3.1 Results

3.1 Results

3.1.1 Training on Generated Images
With this section, we investigate the impact of different attributes in our dataset using
datasets I - IV. Sample images from these datasets can be seen in Figure 3.1. The results
of testing models I - IV on the CUHK03 dataset can be seen in Figure 3.1e, where the
chance curve represents randomly guessing a match for each character in the query.

Figure 3.1e and table 3.2 show that all models perform better than chance, but have low
accuracy for higher ranks (e.g. rank 1). The improvement from model I to II is significant,
but it is hard to tell which change between the datasets had the most effect on the accuracy.
Datasets III and IV both include more accessories and clothes, but the model based on
dataset II still performs better than model III. Dataset IV is the first to add cubemaps
as backgrounds, making the images look more real to the human eye. While it is the
model that performs best, the difference is not as significant as one might believe when
considering the difference in realism of dataset IV compared to the other three sets. The
results for model IV are comparable to the results of the pre-deep learning approaches
trained and tested on CUHK03 [59].

Table 3.2: Cumulative matching characteristics from our evalua-
tions of models I - IV on the CUHK03 test set. Each row shows
the correspondingmodel’s accuracy on different ranks (in percent-
age). Chance is included for reference.

M Rank 1 Rank 5 Rank 10 Rank 20
Chance 1.0 5.0 10.0 20.0
I 2.5 10.2 18.5 31.7
II 6.5 19.2 29.4 45.6
III 7.0 18.8 28.7 42.7
IV 7.0 21.2 31.7 47.0

37



3. Evaluation

(a) I. (b) II. (c) III. (d) IV.

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

I

II

III

IV

(e) CMC.

Figure 3.1: Figures (a)-(d) hold samples from datasets I - IV. Fig-
ure (e) shows the results of our evaluations of models I – IV on the
CUHK03 test set, where the colours of the frames in figures (a)-
(d) correspond to the colours in plot (e). For instance, model I’s
result is shown in orange. Figure (e) shows that models II - IV
perform similarly, while model I performs slightly worse.

38



3.1 Results

3.1.2 Training on Refined Images
In this section, we will look at the refined images in datasets R-I – R-IV, from which sam-
ple images can be found in Figure 3.2. Comparing the images in Figure 3.1a-3.1d and
Figure 3.2a-3.2d, the effects of the refiner is noticeable. Most of the colours are more
dull, the backgrounds are heavily modified, and there are some artefacts around the char-
acters, making some shapes hard to tell apart. Figure 3.2e shows a large overall accuracy
improvement for all models, compared to those trained on datasets I - IV, answering the
question if training on refined data improved the resulting model’s accuracy. The results
of model R-IV (see table 3.3) is comparable to the results of the first deep learning ap-
proach used on CUHK03 [34, 59]. Comparing the results of models I - IV to those of
models R-I – R-IV, we see that there are larger differences between the models’ accuracy
when they are trained on refined data compared to when generated data is used. Further-
more, dataset R-II does not result in a model that performs similar to the ones yielded with
datasets R-III and R-IV, which was the case for dataset II compared to datasets III and IV.
Model R-III and R-IV still achieve similar accuracy, however. We also see that, in each
case, a model trained on refined data achieves a higher accuracy than a model trained on
generated data (cf. tables 3.2 and 3.3).

Figure 3.3 shows samples and aCMCplot yielded bymodels that were trained on datasets IV,
R-IV (CycleGAN), R-IV (PTGAN), and also the CUHK03 dataset itself (but on a set of
images separate from the test set). In Figure 3.3e we see the accuracy improvements that
our refiner lead to, but we also see how the model that is trained on the CUHK03 dataset
outperforms even model R-IV by a large margin.

Table 3.3: Cumulative matching characteristics from our evalu-
ations of models R-I – R-IV on the CUHK03 test set. Each row
shows the corresponding model’s accuracy on different ranks (in
percentage). The table also includes the evaluation result of the
model that we trained on images from the CUHK03 set.

M Rank 1 Rank 5 Rank 10 Rank 20
R-I 8.1 23.9 35.8 51.7
R-II 13.1 32.9 46.0 62.5
R-III 19.2 43.9 57.6 73.6
R-IV 22.2 48.2 62.0 76.8
CUHK03 74.1 94.7 97.7 99.0

39



3. Evaluation

(a) R-I. (b) R-II. (c) R-III. (d) R-IV.

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

R-I

R-II

R-III

R-IV

(e) CMC.

Figure 3.2: Figures (a)-(d) hold samples from datasets R-I – R-IV.
Figure (e) shows the results of our evaluations of models R-I –
R-IV on the CUHK03 test set, where the colours of the frames in
figures (a)-(d) correspond to the colours in plot (e). We see that
models R-III and R-IV shows the best accuracy, while model R-II
is slightly worse, and model R-I yields the worst accuracy.

40



3.1 Results

(a) Generated (IV). (b) CycleGAN (R-IV). (c) PTGAN (R-IV). (d) CUHK03.

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

Generated

CycleGAN

PTGAN

CUHK03

(e) CMC.

Figure 3.3: Figures (a)-(d) hold samples from datasets IV, R-IV
(CycleGAN), R-IV (PTGAN) and CUHK03. Figure (e) shows
the results of our evaluations of models IV, R-IV (CycleGAN),
R-IV (PTGAN) and a model that we trained on CUHK03 images,
where the colours of the frames in figures (a)-(d) correspond to the
colours in plot (e). The evaluation was done on the CUHK03 test
set. We can see that the model trained on CUHK03 images outper-
forms the other three, and that model R-IV (CycleGAN) performs
better than models IV and R-IV (PTGAN).

41



3. Evaluation

3.1.3 Training on Artificial and Real Images
To answer the question if artificial and real data can be combined to train a model, we used
initial trainings as in the previous section and finetuned them with real data (cf. Section
2.3.1). Figure 3.4 and table 3.4 show the accuracy of models that were initially trained on
datasets IV, R-IV (CycleGAN) and R-IV (PTGAN), respectively, before being finetuned
on the CUHK03 set. Using generated data for the initial training reduces the accuracy on
CUHK03, and so does using the data that was refined with the PTGAN. The model that
was initially trained on dataset R-IV (CycleGAN) produced a CMC that was similar to the
one produced by the model trained on images from the CUHK03 set.

42



3.1 Results

Table 3.4: Cumulative matching characteristics from evaluation
of finetuned models, along with the model we trained on only
CUHK03 images. The models were tested on the CUHK03 test
set. Each row shows the corresponding model’s accuracy on dif-
ferent ranks (in percentage).

M Rank 1 Rank 5 Rank 10 Rank 20
IV + CUHK03 67.6 90.5 95.7 98.3
R-IV (CycleGAN) + CUHK03 72.9 93.0 96.4 98.3
R-IV (PTGAN) + CUHK03 66.5 88.6 94.4 97.5
CUHK03 74.1 94.7 97.7 99.0

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

IV + CUHK03

R-IV (CycleGAN) + CUHK03

R-IV (PTGAN) + CUHK03

CUHK03

Figure 3.4: CMC yielded by models initially trained on artifi-
cial images and finetuned on CUHK03 images. The models were
tested on the CUHK03 test set. Including artificial images in the
training reduces the models’ final results in each of the cases, com-
pared to only using CUHK03 images.

43



3. Evaluation

3.2 Discussion

3.2.1 Analysis

Looking at Figure 3.1, we see that all four models have rather low accuracy. Models II -
IV show similar accuracy, while model I performs worse. In order to see if the models did
not train properly or if they could not handle the appearance difference between training
images and real human images, we tested models I - IV on their corresponding test sets.
The results can be seen in Figure A.1 in AppendixA, page 60. They show high accuracy for
all models, implying that the problem lies in the appearance differences compared to real
human images. We believe that, with the vibrant colours of our generated datasets, the re-id
models trained on them become closer to colour re-identifiers than person re-identifiers,
as the colour variations in the datasets make the characters identifiable based on their cloth
colours alone. The real human images pose a larger difficulty, as the people within them
cannot be re-identified based only on their cloth colours, which might be why our models
do not achieve high accuracy when tested on such. The reason, then, that models II - IV
perform better than model I could be that the cloth colours in the corresponding datasets
are less saturated, making them look more like the colours in the CUHK03 set. Moreover,
the fact that the backgrounds are more varied in the latter three sets could suggest that
the re-id models have to learn how to reduce the background’s impact on its predictions,
helping them to perform well despite being faced with new backgrounds. In the case of the
first dataset, the model might instead learn to look for, and neglect, a certain background.
When that background is then changed in the test case, the model cannot recognise it,
and could begin using the background to identify the character in the image, making the
identification more difficult.

The results in Figure 3.1 and 3.2 give us some information about how the attributes of
a dataset impact the model’s accuracy. We see that with a dataset containing more cloth
types, cloth textures, hair styles, and accessories, the resulting model’s accuracy increases.
The improvement is negligibly small between datasets II - IV, but, when the datasets are
put through the refiners, we see that the added attributes between dataset II and datasets III
– IV, seem to have had a greater impact, as model R-II performs significantly worse than
models R-III and R-IV. We believe that this is caused by the refiners: when a refiner is
trained on a dataset that covers a larger space, i.e. has more attributes, it will have more
information to work with when it tries to translate images to fool the discriminator. This
could then mean that it is able keep more of the information in the original image, thus
preserving the character’s identity better, while still achieving a high probability of being
real. In turn, this could imply that the re-id model we train with these refined images
becomes better, as the appearance of a character is more consistent between images.

Our model’s accuracy is improved greatly when we train on refined images, compared to
when we train on generated ones (cf. Figure 3.3e). This could follow from the discussion
in the first paragraph of this section, where we saw that the similarity in colours between
the training images and test images seemed to have a large impact on the trained model’s
accuracy. Thus, as the refiner translates our images to be more similar to the ones in the
dataset from which the test set is taken, it seems reasonable to believe that the refined im-

44



3.2 Discussion

ages would lead to a better model than the generated ones. Note that we writemore similar
to the test set, rather than more realistic. The refined images of dataset R-IV (CycleGAN)
do not necessarily look more realistic than the generated images of dataset IV, but they are
more similar to images from the CUHK03 set, which is probably why they lead to a better
model. Therefore, creating artificial images similar to the images that the model will be
faced with during its test phase should be prioritised over achieving realistic looking ones.
Comparing the results of model R-IV (CycleGAN) with those yielded by the model trained
on CUHK03 images, however, we see that there seems to still be a large difference between
the artificial and real images, as model R-IV (CycleGAN) has significantly worse accu-
racy. In order to examine the importance of our dataset’s similarity to the test set versus
its realism, we tested model IV, R-IV (CycleGAN), R-IV (PTGAN) and the model trained
on images from the CUHK03 set on a new, real test set, not originating from CUHK03
(see results in Figure A.2, Appendix A, page 61). This test showed us that the realism of
the CUHK03 images did lead to a better model than the others, but the improvement was
not as significant as when we tested the models on CUHK03 images.

Images from the R-IV (PTGAN) dataset portray characters that seem to have been pre-
served better during translation than the characters in the R-IV (CycleGAN) images, im-
plying that the PTGAN did fulfil its purpose. The reason its refined images did not lead to
a better model than the ones refined by the CycleGAN could be that the improved identity
preservationmade the refined images keep the colour of the humans from the original ones.
This could have lead to the re-id model becoming a colour re-identifier again, resulting in
a worse model.

Combining artificial and real data is an interesting idea, as it could be a way of producing
better results than what could be achieved using only real data. However, the accuracy of
our finetuned models, seen in Figure 3.4 and table 3.4, do not imply this. Prior works have
used similar finetuning procedures from which they obtain models that were improved
over the model trained with only real data [1, 30]. We believe that our artificial data,
re-id infrastructure, and training procedure could be adapted to optimise for this use case,
and, with that, result in models that do perform better than the one trained on real data
alone.

45



3. Evaluation

3.2.2 Future Work

There are multiple interesting continuations to our work. For the generation, it would be
interesting to add more cloth types, accessories, face and body variations, as well as using
more realistic colour choices for the character’s garments and accessories. We have not
examined different sampling schemes for these different character attributes, but doing so
could be beneficial when one wants to use a large set of artificial images to train a re-id
model, since a good data distribution can have significant impact when training and using
computer vision models [30]. We also see exciting possibilities with more advanced cam-
era models that make the generated images look more like they were taken by real cameras
[6]. Furthermore, it would be interesting to examine the effect of multiple characters in the
same scene, along with other distractors such as objects occluding parts of our characters
[53].

Our refinermodels are trainedwith a loss function that is based on the pixel-wise difference
between different images (see equations (2.6) and (2.9) on page 25). However, there have
been improvements in the quality of image-to-image translation results when the models
instead consider differences between images after they have been passed through parts of
another network, specialised in object classification [14, 28]. It might also be worthwhile
to investigate the refinement results when other datasets than CUHK03 are used during the
refiner training, as this could lead to a refiner which produces images that later result in a
more general re-id model. On that same topic, another intriguing continuation would be to
have a single refiner that can be told to translate our generated images to look like images
that could have come from one of multiple different, real datasets, and not just from one,
which was the case for our refiner models [25].

Another possibility would be to do site-specific generation and refinement. That is, if one
aspires to set up a re-id system at a specific location, e.g. a store, they could capture a
cubemap at the location and use that as background during image generation. This would
lead to images that look like they were captured at the site where the re-id system was to be
set up. Additionally, one could capture a small set of real images at the site and use those
to train a refiner that in turn can make the generated images be even more similar to the
images that the re-id model will face when it is in use. If this process was streamlined, a
site-specific model could be deployed at a site without having to do anymanual annotation,
and it could possibly perform well as it was trained for exactly that site.

The training setup we used for our re-id models was not adapted to artificial data, but was
the same as the training setup used for training re-id models with real data. Adapting the
setup for artificial data would presumably improve our models’ accuracy. For example,
different architectures of the feature embedding network, f (see Figure 2.12), could be
explored to make it more apt to artificial images and finetuning [1]. The feature embedding
network could also be a network that was already thoroughly trained to perform another,
related task (e.g. object detection), before we used it as our feature embedder. Such a
network could, with its prior training in image processing, make a good starting point as
a feature embedding network for re-id. Furthermore, the loss function could be replaced
with a function which directly separates the feature vectors from the feature embedding
network [23], instead of separating them indirectly via the classifier, g (see Figure 2.12).

46



3.2 Discussion

In addition to this, it would be interesting to see if the training setup could be adapted to
use both real and artificial images simultaneously. One way to do this would be to alternate
which data is used between training iterations and change the hyperparameters based on
which data is in use and how the training is progressing. The difference compared to the
finetuning we performed (see Section 2.3.1) is that we would alternate datasets during
training, as opposed to first using only artificial images and then only real images.

Our framework for generating images could be extended for other tasks. It could, for ex-
ample, be interesting to replace our characters with other objects and use the images to
train models for object detection [53] and tracking [15]. A more direct use of our frame-
work would be to use our full body human images to train models that can perform e.g.
pose estimation [8], as it is easy to extract the character’s pose during image creation, and
the user can decide what poses should be possible for a character.

3.2.3 Ethical Aspects
Using artificial data allows for training deep learning models without a lot of real images,
and therefore rely less on personal data. However, using artificial data adds another crafted
step where bias from the developers can be introduced, possibly resulting in worse model
accuracy. Person re-identification does not require recognising a person as a specific in-
dividual, but rather just comparing if two images hold the same person, which does not
necessitate knowing the person’s identity. This might not be intrusive on a person’s pri-
vacy in itself, but if it is combined with a step where the person’s identity is known, this
privacy is lost. Even if the use of artificial training data helps with personal integrity in
some ways, the trained computer vision model could be used for a lot of purposes that
work in the opposite direction.

47



3. Evaluation

48



Chapter 4

Conclusions

In this project we have generated images of humans with different backgrounds, clothes,
hair styles and accessories. Our main contribution is a framework that allows for gener-
ating varied characters and images in large scale. We show that the image datasets can
be used as training data for deep learning applications by training re-identification models
with them. In order to bridge the gap in appearance between generated and real images,
we have used refiners based on Generative Adversarial Networks, which were shown to
improve our datasets’ potential.

Our models trained on artificial data did not achieve accuracy as high as models trained on
only real data. The generation, as well as the training setup for our re-identificationmodels,
could be further investigated and improved upon to increase this accuracy. Combining
artificial and real data should help in reaching higher accuracy than when real data is used
alone. We did not achieve this in our tests, but we believe it could be done with further
investigations of our procedures.

49



4. Conclusions

50



Bibliography

[1] Igor Barros Barbosa, Marco Cristani, Barbara Caputo, Aleksander Rognhaugen, and
Theoharis Theoharis. Looking beyond appearances: Synthetic training data for deep
cnns in re-identification. Computer Vision and Image Understanding, 2017.

[2] Manuel Bastioni. Manuelbastionilab. http://www.manuelbastioni.com/,
accessed 13-06-2018, 2018. Version 1.6.1a.

[3] Loris Bazzani, Marco Cristani, andVittorioMurino. Symmetry-driven accumulation
of local features for human characterization and re-identification. Computer Vision
and Image Understanding, 117:130–144, 2013.

[4] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam, 2018.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[6] Alexandra Carlson, KatherineASkinner, andMatthew Johnson-Roberson. Modeling
camera effects to improve deep vision for real and synthetic data. arXiv preprint
arXiv:1803.07721, 2018.

[7] Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded
refinement networks. In The IEEE International Conference on Computer Vision
(ICCV), volume 1, 2017.

[8] Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhenhua Wang, Changhe Tu,
Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen. Synthesizing training images
for boosting human 3d pose estimation. In 3D Vision (3DV), 2016 Fourth Interna-
tional Conference on, pages 479–488. IEEE, 2016.

51

http://www.manuelbastioni.com/


BIBLIOGRAPHY

[9] The MakeHuman Community. Makehuman. http://www.
makehumancommunity.org/, accessed 18-06-2018.

[10] Joey de Vries. Learn opengl, 2017. Third printing.

[11] Rick Delgado. From edison to internet: A history of video surveil-
lance. https://www.business2community.com/tech-gadgets/
from-edison-to-internet-a-history-of-video-surveillance-0578308,
accessed 12-06-2018.

[12] Michael Doggett and Jacob Munkberg. Computer graphics introduction to 3d
- edaf80. http://fileadmin.cs.lth.se/cs/Education/EDA221/
lectures/Lecture1_web.pdf, accessed 24-06-2018.

[13] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-
resolution using deep convolutional networks. IEEE transactions on pattern analysis
and machine intelligence, 38:295–307, 2016.

[14] Deniz Engin, Anıl Genç, and Hazım Kemal Ekenel. Cycle-dehaze: Enhanced
cyclegan for single image dehazing. arXiv preprint arXiv:1805.05308, 2018.

[15] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as
proxy for multi-object tracking analysis. arXiv preprint arXiv:1605.06457, 2016.

[16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015.

[17] Martin Giles. The ganfather: The man who’s given machines the gift of imagination.
MIT Technology Review, 2018.

[18] Shaogang Gong, Marco Cristani, Shuicheng Yan, and Chen Change Loy. Person
re-identification. Springer, 2014.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[21] Cmu graphics lab. Cmu graphics lab motion capture database. http://mocap.
cs.cmu.edu/, accessed 13-06-2018.

[22] KaimingHe, Georgia Gkioxari, Piotr Dollár, andRossGirshick. Mask r-cnn. InCom-
puter Vision (ICCV), 2017 IEEE International Conference on, pages 2980–2988.
IEEE, 2017.

[23] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss
for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[24] Timothy Huang and Stuart Russell. Object identification in a bayesian context. In
IJCAI, volume 97, pages 1276–1282, 1997.

52

http://www.makehumancommunity.org/
http://www.makehumancommunity.org/
https://www.business2community.com/tech-gadgets/from-edison-to-internet-a-history-of-video-surveillance-0578308
https://www.business2community.com/tech-gadgets/from-edison-to-internet-a-history-of-video-surveillance-0578308
http://fileadmin.cs.lth.se/cs/Education/EDA221/lectures/Lecture1_web.pdf
http://fileadmin.cs.lth.se/cs/Education/EDA221/lectures/Lecture1_web.pdf
http://www.deeplearningbook.org
http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/


BIBLIOGRAPHY

[25] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised
image-to-image translation. arXiv preprint arXiv:1804.04732, 2018.

[26] Solomon Hykes. Docker. Docker, Inc., Docker, Inc., San Francisco, 2018.

[27] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. InComputer Vision and Pattern Recog-
nition (CVPR), 2017 IEEE Conference on, 2017.

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In European Conference on Computer Vision, pages
694–711. Springer, 2016.

[29] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar,
Karl Rosaen, and Ram Vasudevan. Driving in the matrix: Can virtual worlds replace
human-generated annotations for real world tasks? In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 746–753. IEEE, 2017.

[30] Adam Kortylewski, Andreas Schneider, Thomas Gerig, Bernhard Egger, Andreas
Morel-Forster, and Thomas Vetter. Training deep face recognition systems with syn-
thetic data. arXiv preprint arXiv:1802.05891, 2018.

[31] AlexKrizhevsky, Ilya Sutskever, and Geoffrey EHinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[32] Igor Kviatkovsky, Amit Adam, and Ehud Rivlin. Color invariants for person reidenti-
fication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1622–
1634, 2013.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86:2278–2324,
1998.

[34] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deepreid: Deep filter pairing
neural network for person re-identification. In CVPR, 2014.

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[36] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[37] Ramakant Nevatia and Thomas O Binford. Description and recognition of curved
objects. Artificial intelligence, 8:77–98, 1977.

[38] Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning deep object
detectors from 3d models. In Computer Vision (ICCV), 2015 IEEE International
Conference on, pages 1278–1286. IEEE, 2015.

[39] Emil Persson. Humus. http://www.humus.name/, accessed 13-06-2018.

53

http://www.humus.name/


BIBLIOGRAPHY

[40] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From
theory to implementation. Morgan Kaufmann, 2016.

[41] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim,
and Yizhou Wang. Unrealcv: Virtual worlds for computer vision. In Proceedings of
the 2017 ACM on Multimedia Conference, pages 1221–1224. ACM, 2017.

[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[44] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for
data: Ground truth from computer games. In European Conference on Computer
Vision, pages 102–118. Springer, 2016.

[45] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533, 1986.

[46] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-
bedding for face recognition and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 815–823, 2015.

[47] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and
Russ Webb. Learning from simulated and unsupervised images through adversar-
ial training. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 3, page 6, 2017.

[48] Cory Simon. Generating uniformly distributed numbers on a sphere. http://
corysimon.github.io/articles/uniformdistn-on-sphere/, ac-
cessed 12-06-2018.

[49] Leslie N Smith. A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018.

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15:1929–1958, 2014.

[51] Baochen Sun and Kate Saenko. From virtual to reality: Fast adaptation of virtual
object detectors to real domains. In BMVC, volume 1, page 3, 2014.

[52] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2015.

[53] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani,
Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Train-

54

http://corysimon.github.io/articles/uniformdistn-on-sphere/
http://corysimon.github.io/articles/uniformdistn-on-sphere/


BIBLIOGRAPHY

ing deep networks with synthetic data: Bridging the reality gap by domain random-
ization. arXiv preprint arXiv:1804.06516, 2018.

[54] Apostolia Tsirikoglolu, Joel Kronander, Magnus Wrenninge, and Jonas Unger. Pro-
cedural modeling and physically based rendering for synthetic data generation in
automotive applications. arXiv preprint arXiv:1710.06270, 2017.

[55] The European Union. The general data privacy regulation. https://www.
eugdpr.org/, accessed 06-04-2018.

[56] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Computer Vision and Pattern Recogni-
tion (CVPR), 2015 IEEE Conference on, pages 3156–3164. IEEE, 2015.

[57] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge
domain gap for person re-identification. arXiv preprint arXiv:1711.08565, 2017.

[58] Erik W. Weisstein. Archimede’s hat-box theorem. http://mathworld.
wolfram.com/ArchimedesHat-BoxTheorem.html.

[59] Lin Wu, Chunhua Shen, and Anton van den Hengel. Personnet: Person re-
identification with deep convolutional neural networks. CoRR, abs/1601.07255,
2016.

[60] Tong Xiao. Open-reid. https://github.com/Cysu/open-reid/tree/
3293ca79a07ebee7f995ce647aafa7df755207b8, accessed 14-06-2018,
2017.

[61] Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learning deep
feature representations with domain guided dropout for person re-identification. In
Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, pages
1249–1258. IEEE, 2016.

[62] Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xiaogang Wang. Joint de-
tection and identification feature learning for person search. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 3376–3385. IEEE,
2017.

[63] DongYi, Zhen Lei, Shengcai Liao, and Stan Z Li. Deepmetric learning for person re-
identification. In Pattern Recognition (ICPR), 2014 22nd International Conference
on, pages 34–39. IEEE, 2014.

[64] Wojciech Zajdel, Zoran Zivkovic, and BJA Krose. Keeping track of humans: Have i
seen this person before? InRobotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pages 2081–2086. IEEE, 2005.

[65] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
European Conference on Computer Vision, pages 649–666. Springer, 2016.

[66] Xi Zhang, Yanwei Fu, Andi Zang, Leonid Sigal, and Gady Agam. Learning
classifiers from synthetic data using a multichannel autoencoder. arXiv preprint
arXiv:1503.03163, 2015.

55

https://www.eugdpr.org/
https://www.eugdpr.org/
http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html
http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html
https://github.com/Cysu/open-reid/tree/3293ca79a07ebee7f995ce647aafa7df755207b8
https://github.com/Cysu/open-reid/tree/3293ca79a07ebee7f995ce647aafa7df755207b8


BIBLIOGRAPHY

[67] Liang Zheng, Yi Yang, and Alexander G Hauptmann. Person re-identification: Past,
present and future. arXiv preprint arXiv:1610.02984, 2016.

[68] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Computer Vision
(ICCV), 2017 IEEE International Conference on, 2017.

56



Appendices

57





Appendix A

Complementary Results

In this appendix we include results that were not presented in Section 3.1.

Figure A.1 shows how models I - IV perform when they are evaluated on the test sets of
their corresponding datasets.

Figure A.2 shows how model IV, model R-IV (CycleGAN), model R-IV (PTGAN) and
the model trained on CUHK03 perform on another, real dataset. We call this dataset
CHICA103. CHICA103 is a dataset collected at a Swedish supermarket.

59



A. Complementary Results

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

I

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

II

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

III

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

IV

Figure A.1: Models I - IV each tested on the test set of the dataset
it was trained on.

60



(a) Generated (IV). (b) CycleGAN (R-IV). (c) PTGAN (R-IV). (d) CUHK03.

(e) CHICA103.

0 20 40 60 80 100

Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

ac
cu

ra
cy

Cumulative Matching Characteristics (CMC)

Chance

Generated

CycleGAN

PTGAN

CUHK03

(f) CMC

Figure A.2: Figures (a)-(d) hold samples from datasets IV,
R-IV (CycleGAN), R-IV (PTGAN) and CUHK03. Figure (e)
shows samples from CHICA103. Figure (f) shows evaluation re-
sults yielded by models trained on the aforementioned datasets,
where the colours of the frames in figures (a)-(d) correspond to
the colours in plot (f). We can see that the model trained on
CUHK03 images outperforms the other three, and thatmodel R-IV
(CycleGAN) performs better than models IV and R-IV(PTGAN).

61



A. Complementary Results

62



Appendix B

Images from Our Datasets

Figures B.1-B.4 show samples of images from datasets I - IV.

Figures B.5-B.9 show samples of images from datasets R-I – R-IV (CycleGAN and
PTGAN).

63



B. Images from Our Datasets

Figure B.1: Dataset I. Description: Plain background, only shirts
and pants, bright colours on clothes.

64



Figure B.2: Dataset II. Description: Plain, varied backgrounds,
only shirts and pants, textures on clothes.

65



B. Images from Our Datasets

Figure B.3: Dataset III. Description: Plain, varied backgrounds,
shirts, pants, hair, more textures on clothes.

66



Figure B.4: Dataset IV. Description: Cubemap background, all
available clothes and accessories, mixed textures on clothes.

67



B. Images from Our Datasets

Figure B.5: Dataset R-I. Refined version of dataset I with the
CycleGAN refiner.

68



Figure B.6: Dataset R-II. Refined version of dataset II with the
CycleGAN refiner.

69



B. Images from Our Datasets

Figure B.7: Dataset R-III. Refined version of dataset III with the
CycleGAN refiner.

70



Figure B.8: Dataset R-IV (CycleGAN). Refined version of
dataset IV with the CycleGAN refiner.

71



B. Images from Our Datasets

Figure B.9: Dataset R-IV (PTGAN). Refiner version of dataset IV
with the PTGAN refiner.

72



Appendix C

Training Scores

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model I

I

Figure C.1: Validation scores for model I.

73



C. Training Scores

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100
S

co
re

Validation - model II

II

Figure C.2: Validation scores for model II.

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model III

III

Figure C.3: Validation scores for model III.

74



0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model IV

IV

Figure C.4: Validation scores for model IV.

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model R-I

R-I

Figure C.5: Validation scores for model R-I.

75



C. Training Scores

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100
S

co
re

Validation - model R-II

R-II

Figure C.6: Validation scores for model R-II.

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model R-III

R-III

Figure C.7: Validation scores for model R-III.

76



0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model R-IV (CycleGAN)

R-IV (CycleGAN)

Figure C.8: Validation scores for model R-IV (CycleGAN).

0 20 40 60 80 100

Epoch

50

60

70

80

90

100

S
co

re

Validation - model R-IV (PTGAN)

R-IV (PTGAN)

Figure C.9: Validation scores for model R-IV (PTGAN).

77



C. Training Scores

0 50 100 150 200 250 300

Epoch

50

60

70

80

90

100
S

co
re

Validation - model CUHK03

CUHK03

Figure C.10: Validation scores for model trained on CUHK03.

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model IV + CUHK03

IV + CUHK03

Figure C.11: Validation scores for finetuning on CUHK03, with
initial training on dataset IV.

78



0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model R-IV (CycleGAN) + CUHK03

R-IV (CycleGAN) + CUHK03

Figure C.12: Validation scores for finetuning on CUHK03, with
initial training on dataset R-IV (CycleGAN).

0 25 50 75 100 125 150 175 200

Epoch

50

60

70

80

90

100

S
co

re

Validation - model R-IV (PTGAN) + CUHK03

R-IV (PTGAN) + CUHK03

Figure C.13: Validation scores for finetuning on CUHK03, with
initial training on dataset R-IV (PTGAN).

79





INSTITUTIONEN FÖR DATAVETENSKAP & MATEMATIKCENTRUM | LUNDS TEKNISKA HÖGSKOLA |
PRESENTATIONSDAG 2018-08-23

EXAMENSARBETE Generation of Artificial Training Data for Deep Learning
STUDENTER Pontus Andersson, David Wessman
HANDLEDARE Michael Doggett (LTH), Kalle Åström (LTH)
EXAMINATOR Niels Christian Overgaard (LTH)

Konstgjorda träningsexempel för
artificiell intelligens

POPULÄRVETENSKAPLIG SAMMANFATTNING Pontus Andersson, David Wessman

Kan bilder av konstgjorda människor ersätta bilder av riktiga människor som tränings-
exempel för artificiell intelligens? Vi undersöker denna fråga och skapar ett ramverk
för att generera stora mängder konstgjorda träningsexempel.

Säg att vi vill träna upp en artificiell intelligens
(AI) för att hitta katter i bilder. Det viktigaste
som behövs är träningsexempel. Först behövs en
bild på en katt och sen måste en manuellt markera
var i bilden katten är. Helst behövs det hundra-
tusentals bilder, några med och några utan katter.
Hur löser vi detta?

Vårt förslag är att skapa konstgjorda trä-
ningsexempel! Istället för katter har vi tittat på
träningsexempel för att kunna avgöra om det är
samma människa som syns i två olika bilder. Bil-
derna genereras med datorgrafik, på samma sätt
som i dator- och TV-spel.
När vi testar vår AI, efter att den tränats en-

dast med genererade bilder, är resultatet inte lika
bra som när vi tränar på riktiga bilder. Detta kan
förklaras av skillnaderna som syns om man jäm-
för bilder vi genererar (A) med bilder från riktiga
övervakningskameror (C). Kan skillnaderna göras
mindre? Vi försöker åstadkomma detta genom att
sända alla våra egna bilder genom en processor
vars uppdrag är att förfina våra bilder, dvs. att
få dem att se ut som att de också var tagna med
riktiga övervakningskameror och innehöll verkliga
människor (B).
I våra resultat ser vi att konstgjorda bilder inte

kan ersätta riktiga bilder som träningsexempel
helt och hållet. Däremot upptäcker vi att förfinade

bilder utgör bättre träningsexempel än de som inte
förfinats.
Om konstgjorda bilder kunde ersätta riktiga,

skulle det bli mycket enklare att skapa färdiga
och uppmärkta träningsexempel, även för tillämp-
ningar där det idag inte finns bilder eller tränings-
exempel att använda. Till skillnad från bilder av
riktiga personer, är genererade bilder dessutom
inte integritetskränkande.
För att kunna generera stora mängder tränings-

exempel lånar vi våra kollegors datorer på natten.
Vi har byggt ett system där alla datorer genererar
bilder som automatisk skickas till vår dator. Detta
gör att vi kan generera hundratusen bilder varje
natt.

A B C

Bild (C) från bildsamlingen CUHK03.

http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html

	Introduction
	Background
	Related Work
	Artificial Training Data
	Image-to-Image Translation
	Person Re-identification

	Contributions

	Approach
	Generation
	Creating the Scene and its Inhabitants
	Positioning the Camera
	Cropping the Images
	Scaling the Generation

	Refinement
	Generative Adversarial Networks
	Conditional Generative Adversarial Networks

	Benchmark
	Training
	Evaluation Method
	Validation
	Code Framework
	Test Data


	Evaluation
	Results
	Training on Generated Images
	Training on Refined Images
	Training on Artificial and Real Images

	Discussion
	Analysis
	Future Work
	Ethical Aspects


	Conclusions
	Bibliography
	Appendix Complementary Results
	Appendix Images from Our Datasets
	Appendix Training Scores
	Tom sida
	Tom sida

