
MASTER’S THESIS 2019

WebRTC for peer-to-peer
streaming from an IP camera
Johan Gustavsson, Hampus Christensen

ISSN 1650-2884
LU-CS-EX 2019-07

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-07

WebRTC for peer-to-peer streaming from
an IP camera

Johan Gustavsson, Hampus Christensen

WebRTC for peer-to-peer streaming from
an IP camera

Johan Gustavsson
johan_gustavsson@tutanota.com

Hampus Christensen
hampusichristensen@gmail.com

June 19, 2019

Master’s thesis work carried out at Axis Communications.

Supervisors: Mathias Haage, mathias.haage@cs.lth.se
Jesper Forsberg, jesper.forsberg@axis.se
Svante Richter, svante.richter@axis.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:johan_gustavsson@tutanota.com
mailto:hampusichristensen@gmail.com
mailto:mathias.haage@cs.lth.se
jesper.forsberg@axis.se
svante.richter@axis.se
mailto:flavius.gruian@cs.lth.se

Abstract

Tunnelling video from surveillance IP-cameras through cloud services has
both highmonetary cost and latency. Streaming the video peer-to-peer can elim-
inate both these factors while upholding quality of service. WebRTC is an open
web standard, streaming API which enables browsers and devices to commu-
nicate peer-to-peer without any plugins. While earlier IP-camera implementa-
tions have been dependent on intermediate servers, this thesis investigates the
possibilities of moving the intermediate server to the camera. Focus is on device
performance with regards to CPU and memory usage, network throughput, la-
tency and capacity. A WebRTC server/gateway called Janus was used, installed
on two di�erent current generation Axis IP-cameras. The results showed that
our WebRTC solution performed comparably to a RTSP (Real Time Streaming
Protocol) over WebSocket based one. This does not only pave the way for more
implementations built upon WebRTC for IP-cameras, but for all embedded de-
vices.

Keywords: WebRTC, IP-Camera, peer-to-peer, streaming, Janus

2

Acknowledgments

We would like to thank Svante Richter & Jesper Forsberg as well as Julian Kroné & Ahmed
Hulo for all assistance and support during our time at Axis.

A huge thanks to Johan Fagerström for his excellent help with cross compilation and
overall rewarding discussions. Also thanks to Thomas Glad for giving us the opportunity to
perform this thesis.

Finally, we would like to thank our supervisor from Faculty of Engineering, LTH,
Mathias Haage.

3

4

Contents

1 Introduction 7
1.1 Related Work . 8
1.2 Research Objectives . 9
1.3 Method . 9
1.4 Use Cases . 10
1.5 Contributions . 11

2 Technologies 13
2.1 WebRTC . 13

2.1.1 Other Streaming Standards . 15
2.2 Transport and Supporting Protocols . 15
2.3 WebRTC Gateway & Server . 16

2.3.1 Janus . 16
2.4 Video Compression Standards . 17
2.5 Axis specific software . 19

3 Prototype 21
3.1 Goals . 21
3.2 Stages of Development . 21

3.2.1 Choosing a WebRTC Server . 22
3.2.2 Creating the Web Front-End . 22
3.2.3 Running a Local WebRTC Server Test 23
3.2.4 Running a Server Between Devices 24
3.2.5 Running the Server on the IP-Camera 25

4 Experiments 27
4.1 Criteria . 27
4.2 Test Environment . 28

4.2.1 Hardware . 28
4.2.2 Network . 29

5

CONTENTS

4.2.3 Stream Profiles . 29
4.2.4 Camera Positions . 30
4.2.5 Players . 31

4.3 Data Collection Method . 31
4.3.1 CPU Usage, Load Average and Memory Usage 31
4.3.2 Stream Stability . 32
4.3.3 Network Usage . 32
4.3.4 Latency . 32
4.3.5 Stream Startup Time . 33

4.4 Tests . 33
4.4.1 Scenarios . 33
4.4.2 Latency . 34
4.4.3 Stream Startup Times . 34
4.4.4 Stress Tests . 34

4.5 Test Results . 35
4.5.1 Scenarios . 35
4.5.2 Stress Tests . 39
4.5.3 Network Usage . 43
4.5.4 Latency . 43
4.5.5 Stream Startup Times . 44

5 Discussion 45
5.1 Latency . 45
5.2 Stream Startup Times . 45
5.3 Network Usage . 46
5.4 CPU, Load Average and Memory . 46
5.5 Video Codecs . 49

6 Conclusions 51
6.1 Future Work . 52

Bibliography 53

Appendix A Cross Compilation 59
A.1 Janus Dependencies . 59

Appendix B Configuration Files 61
B.1 janus.plugin.streaming.jcfg . 61
B.2 janus.jcfg . 61
B.3 package.conf . 62

6

Chapter 1

Introduction

Surveillance cameras have proven to be e�ective in preventing crime and there is no doubt
that the world embraces this fact [1]. Axis and Hikvision, two of the largest surveillance
IP-camera producers, are both showing steady growth over the last few years [2] [3].

A common surveillance method is to have alarm centrals monitor many cameras placed
in multiple locations, by communicating with the cameras over the internet. This video
stream is often, at least by Axis, tunnelled through a cloud service which is both expensive
and complicated to setup for the provider. Even if streaming video through a cloud service
works, there would be many advantages if the video could be streamed directly from the
camera to the viewer.

WebRTC (Web Real-Time Communications) is a free, open web standard that provides
browsers andmobile applications with RTC capabilities via simple APIs. It enables the client
to send and receive media using only a modern browser without any plugins and with self
signed certificates. Compared to other solutions where the two peers must trust each other,
requiring signed certificates to be placed on all cameras, both peers must only trust the same
server. In the case of WebRTC that trusted server is the signalling server which is covered
further in Section 2.1. After performing a key exchange, which is used to encrypt the tra�c
peer-to-peer, the peers are no longer dependent on the signalling server.

The aim for this thesis is to investigate the use of WebRTC for peer-to-peer streaming
from an embedded device, pictured in Figure 1.1. The focus will be to evaluate on-camera
performance compared to other, competing technologies.

7

1. Introduction

Videostream

Vid
eo
str
ea
m SignallingSig

na
llin
g

Figure 1.1: The solution using WebRTC, where video is not
streamed through any intermediate server, but directly to a client.

1.1 Related Work
Earlier work by Bih Fei Jong has investigated peer-to-peer video streaming using WebRTC,
he even used Axis cameras [4]. The system used by Bih Fei Jong had a physical intermediate
server transcoding the video, while relaying RTSP (Real Time Streaming Protocol) (Section
2.2) from the camera andWebRTC to the client. The physical server was running aWebRTC
server called Janus [4]. This approach di�ers from ours since the physical server between the
camera and client is what we want to eliminate. We want the WebRTC server running on
the IP-camera, not on any intermediate device. Aside from that, Bih Fei Jong’s work is very
relevant for our study, mostly since he used Janus, which is also used in this thesis.

In 2014, two students performed a thesis similar to ours [5]. They did mention WebRTC
but as it was in its very early stages, they never used it. The goal of their work however,
was very similar to ours. They wanted to implement peer-to-peer video streaming from a
camera to a web browser without any extra plugins. Since then, a lot has happened with both
WebRTC and video codec support (H.264, H.265, VP8, VP9) in browsers which paves way
for this thesis.

Since the cameramost likely will be behind various NATs (Network Address Translation)
and strict firewalls, it is relevant to examine networking. Using WebRTC in such networks
has been examined by A. Johnston et al. [6]. They describe issues with NAT-traversal as
well as strict firewall policies and propose solutions. With TURN and/or STUN (Section ??)
servers a peer-to-peer connection can be established by using the Interactive Connectivity
Establishment (ICE) algorithm (Section ??). Even if networking isn’t the focus of this thesis,
this work is still important to ensure the relevancy of WebRTC streaming in this context.

8

1.2 Research Objectives

In order to evaluate how well aWebRTC server running on an IP-camera performs under
heavy load, the solution needs to be stress tested. The team behind theWebRTC server Janus
performed stress tests on said server multiple times [7] [8]. The second time, they created
a tool called Jattack [9]. In these tests, performed on high performance servers consisting
of eight 4-core CPUs, Janus was able to distribute one video stream to 800 viewers before
losing frames. We did not use Jattack because it is licensed. Also, since the tests will be run
on a vastly slower device, the number of clients will not get close to the numbers seen in the
Jattack tests.

The same team recently released a report where a long known issue in the library libnice
was examined [10] in regards to its performance impact on Janus. libnice is an implemen-
tation of IETF’s Interactive Connectivity Establishment (ICE) stack. The issue, which was
a�ecting libnice’s global lock contention, was patched with an unreleased patch and the
performance di�erences were evaluated in a streaming scenario using above mentioned Jat-
tack. Besides the patch a third alternative was tested, a custom built implementation of the
ICE stack, named Jice. Both the patched version and Jice performed much better than the,
at that time, master branch libnice. When streaming video, Janus was able to serve about
50% more clients by having higher CPU utilization. The patch to libnice was merged and
released in late December 2018 with version 0.1.15.

1.2 Research Objectives
What has not yet been thoroughly studied is if a WebRTC server run well on embedded
devices, in our case an IP-camera. Most tests have been performed on either server grade
hardware or consumer PCs. The embedded devices have limited resources and performance
which can stop modern solutions, such as a WebRTC server, from functioning as intended.
The questions that this thesis aims to answer are:

• Is it possible to run a WebRTC server on an IP-camera?

• Does WebRTC perform well enough to be used in the defined use cases (Section 1.4)?

• How does WebRTC compare to similar streaming protocols, such as RTSP over Web-
Socket?

1.3 Method
To investigate the research objectives, a prototype WebRTC server will be constructed and
installed on an IP-camera. The prototype will then be tested and evaluated in regards to
performance, capacity and deployability. The WebRTC solution will then be compared to a
RTSP over WebSocket solution that Axis currently has implemented. As a baseline compar-
ison, the built in RTSP server will also be used.

Performance will be evaluated by comparing CPU and RAM usage on the cameras, net-
work usage between the peers, number of dropped frames, latency and stream startup times
between the WebRTC prototype and the current RTSP over WebSocket solution.

9

1. Introduction

Capacity will be evaluated by examining the performance (as described above) of the
WebRTC prototype when additional live video streams are streamed at the same time. The
prototype will be tested with di�erent number of concurrent video streams. The threshold
at which the service is viable will be sought.

Deployability will be evaluated by examining camera hardware and camera software to
see if it can support a WebRTC solution. How many generations of cameras that could po-
tentially support this solution will also be examined.

The requirements that are put on the client will also be evaluated in the sense of what
browsers and plugins that are necessary for the implementation to work.

Since the focus is on camera performance and the solution will be tested on a local net-
work, we will not implement the signalling required to establish over internet peer-to-peer
connections. The performancemeasured on the camera will be essentially the same regardless
if the video is streamed on a local network or over the internet.

1.4 Use Cases
WebRTCwas designed for many di�erent applications, for example audio/video calling, chat
rooms and even gaming. In our case of using WebRTC on IP-cameras, all the current appli-
cations do not directly fit our problem. Therefore we defined four use cases for WebRTC
that will help us interpret the results when used together with IP-cameras.

The use cases are all not relevant for how Axis uses their cameras today, but possibly for
future implementations. Some limitations are put on the use cases since the media commu-
nication with the IP-camera will mostly be unidirectional, but there are exceptions where
bidirectional communication is possible.

According to the Axis Product guide, a resolution of 720p is enough to cover most cases
[11]. For frame rate the camera defaults to 15 frames per second. Because of this, these values
were used as the baseline for all use cases and in our tests.

1. Local Network Surveillance: The local network surveillance case is where the user is
located on the same network as the IP-camera and wants to view its video stream. In
this case, the number of concurrent streams will be only one or even zero. Most of the
time the number of concurrent streams will be zero, therefore idle performance will
be very important to consider.

2. Over Internet Surveillance This use case is very similar to the local network surveil-
lance, with the exception that the users are not on the same local network. There
are also more concurrent streams, about 0-5, since multiple users can connect at the
same time. For example, a user at an alarm central can connect if an alarm goes o�,
while a user on site is streaming from the same camera. Important in this use case is
bandwidth, stream startup time and performance with multiple active streams.

10

1.5 Contributions

3. Door stationAuse casewhere bidirectional communicationwill occur, is togetherwith
door stations. Door stations, such as the Axis A8105-E, are “IP door bells” equipped
with cameras, microphones and speakers. These door stations enables the user to both
see and speak to a person at the door, like for example a delivery person. Some IP-
cameras can also support audio playback so it is not limited to only door stations. This
use case relates very much to a more commonWebRTC use case, the video call. In this
use case, latency is important since a long latency makes it hard to have a comfortable
conversation.

4. Education/Webinar: In this case an IP-camera is used to stream classes and presenta-
tions live without the need of any external servers. The attendees connect directly to
the camera and stream video peer-to-peer. The number of attendees, or concurrent
streams, are expected to be 10-100 or even more.

1.5 Contributions
The work was divided as follows:

Related work Related work was investigated by both. The individual focus was put towards
related work connected to the divided work as stated below.

Prototype development Thiswas divided so thatHampus focused on theGStreamer pipeline
investigation and the prototype before the Janus server was implemented. Johan fo-
cused on Janus configurations and the web front-end. The finished prototype was then
cross compiled to the cameras by both.

Abstract Written together.

Introduction Mostly written by Johan.

Technologies Mostly written by Hampus.

Prototype Written together.

Experiments This chapter is divided so that Hampus focused on doing the tests and writing
about Latency, Network and Stream Startup times. Johan focused on doing the tests
and writing about CPU/Memory Usage, Load Average as well as writing the “Test
Environment” section.

Evaluation This chapter is divided so Hampus focused on the parts about Latency, Network
and Stream Startup times. Johan focused on the parts about CPU/Memory Usage,Load
Average and constructed the diagrams.

Discussion Divided the same as for the Evaluation chapter.

Conclusion Written together.

11

1. Introduction

12

Chapter 2

Technologies

This chapter will give the reader a technical and historical background to the technologies used in this
thesis. For a full understanding of the results in this thesis, reading this chapter is recommended.

2.1 WebRTC
WebRTC aims to create a secure media connection between two or more web browsers with-
out needing any additional plugins or other software and was first released in 2011 by Google.
By taking inspiration and help from already existing protocols and implemented APIs, We-
bRTCmanages to deliver video and audio streaming directly to and from web browsers over
a peer-to-peer connection, with support from all modern browsers [12][8][13]. WebRTC has
since its release grown, both in its functionality and its popularity. Popular applications like
WhatsApp, Slack and Facebook Messenger use WebRTC for video and voice calls.

W3C’s (WorldWideWebConsortium) technical report regardingWebRTCwas inNovem-
ber 2017 moved to Candidate Recommendation [14]. This means that W3C thinks that the
technology and the documentation of it has reached a certain maturity and urges developers
to use it [15].

One major benefit that WebRTC (or rather DTLS-SRTP that WebRTC uses) brings, is
that a third-party certificate is not needed. As stated in RFC5763: "This specification does
not depend on the certificates being held by endpoints being independently verifiable (e.g.,
being issued by a trusted third party)" [16].

WebRTC implements three di�erent APIs that can be used by browsers and other clients
[13].

RTCPeerConnection is the first API and handles the actual connection between the
peers. This API performs many things, making real-time communication much simpler for
developers and WebRTC users. Among other things, it handles packet loss concealment,
noise reduction and bandwidth adaptivity.

13

2. Technologies

The second API is the MediaStream API. This API is dedicated for the media that is
being handled and transferred.

RTCDataChannel is the third API. This API handles all other data apart from audio and
video. This API can be used to help set up the RTCPeerConnection and provides built in
security.

Signalling
WebRTC does not implement or recommend any implementation of signalling, which is how
two peers find each other and exchange information before setting up a connection (Figure
2.1). It (signalling) is, however crucial to be able to make use of WebRTC.

The signalling server is responsible for discovery, which helps clients learn each others
IP-addresses. It is also responsible for exchanging SDPs (Session Description Protocol) [17].
A SDP is used to negotiate a session’s parameters, for example video or audio, encryption and
video encoding information.

Media

SignallingSignalling

Web
Application

Figure 2.1: WebRTC signalling overview

Privacy and Security
Concerns have been raised regarding the privacy of WebRTC. In 2015 it was discovered that
the hidden IP for users using a VPN could easily be retrieved [18].

With WebRTC it is mandatory to use DTLS-SRTP or SDES for key exchange, SRTP for
media and DTLS for data channels.

For signalling and other data sensitive communication components and mechanisms, it
is mandatory to encrypt the data. When increased security is needed it is up to the developer
to implement it.

14

2.2 Transport and Supporting Protocols

2.1.1 Other Streaming Standards
There are other alternatives capable of streaming video peer-to-peer worth mentioning apart
fromWebRTC. We use RTSP (Section 2.2) over WebSocket as a comparison with WebRTC,
since this is a standard that is currently used by Axis.

RTSP over WebSocket
Utilising the WebSocket protocol for transport of the RTSP stream is an approach when it
comes to live streaming. The WebSocket protocol helps with setting up a bidirectional TCP
communication between the client and the server. It is a straight forward approach where
the WebSocket connection handles the handshake process (the communication setup) and
the data transfer. One cumbersome necessity that RTSP overWebSocket has, is that a signed
certificate is required in order to be able to set up an encrypted connection.

The simplicity it brings is its main advantage but also a flaw. AWebSocket approach can
not be as customised or optimised, and is not as designed around e�ciency and performance
as HTTP Live Streaming and WebRTC [19].

HTTP Live Streaming (MPEG-DASH)
HTTP Live Streaming (HLS) or MPEG-DASH is a more developed and refined approach to
handle streaming media compared to RTSP over WebSocket [20]. It provides a more flexible
framework and o�ers some more features like adaptive bit rate streaming.

It utilises HTTP which in turn makes it easier to handle, since it counts as HTTP tra�c
which has less restrictions in firewalls etc. The actual media stream is handled in a Media
Playlist that consists of several Media Segments which are part of the media stream. The
clients then download the Media Segments one by one. These Media Segments have a default
length of ten seconds, but can be shortened. This Media Segment length results in HLS
generally having high latency, which we in this thesis aim to avoid since it is not suited for
live streaming.

2.2 Transport and Supporting Protocols
Real-time Transport Protocol (RTP)
RTP is an application layer protocol that handles end-to-end transport of data with real-
time properties over a network. Some of the many things that RTP includes are payload type
identification, sequence numbering, time stamping and delivery monitoring, all very good
to have when handling video. If data being sent with RTP is somehow delayed or reordered,
the sequence numbering helps with reconstructing the data in the correct sequence.

RTP also utilises the Real Time Control Protocol, RTCP. RTCP handles the monitoring
of the communication service and also takes care of relevant information about the peers
taking part in the actual communication. [21]

15

2. Technologies

Real Time Streaming Protocol (RTSP)
RTSP is also an application layer protocol which allows extensive control over data being
sent in real time. It has support for live data feeds and stored clips. RTSP usually utilises
RTP to handle the actual transport of the data.

What makes RTSP di�erent from many other protocols, is that it is not actually tied to
a transport protocol. This allows RTSP clients to be able to open and close connections in
order to issue new RTSP requests.

The RTSP stream is identified by using textual media identifier. This uses URL (Uniform
Resource Locator, which refers to a web resource) in order to refer to the actual stream [22].

2.3 WebRTC Gateway & Server
When two browsers are communicating usingWebRTC, e.g. in a video call, both browser are
acting as both server and client. When communicating using WebRTC without a browser,
some sort of WebRTC server is needed. Most WebRTC servers support relaying media over
WebRTC, that media relaying feature is called a gateway. WebRTC gateways create a bridge
between legacy infrastructures andWebRTC. Protocols like SIP (Session Initiation Protocol),
RTP and RTSP are some examples that most WebRTC gateways support.

2.3.1 Janus
Janus [23] is an open source WebRTC server written in C that is designed to be lightweight
in its original configuration, but expandable with plugins to suit many needs. It is described
by its creators as “a general purpose WebRTC gateway”, since it can be configured in so
many di�erent ways. Janus helps with managing WebRTC communications between itself
and browsers, between two browsers or managing video conference calls between multiple
browsers.

Figure 2.2 describes the modular design of Janus. The core communicates with a browser
using a JSON-based protocol over HTTP and throughWebRTC PeerConnections, while the
plugins provide the core with RTP streams. The core is then responsible of sending the RTP
stream via a PeerConnection. Alongside using HTTP, Janus support a handful of other ways
to communicate, all modular to keep the server as lightweight as possible. The other ways of
communication are WebSocket, RabbitMQ, MQTT, Nanomsg and UnixSockets.

The plugin that is interesting for video streaming is the streaming plugin. With the
streaming plugin, Janus is able to relay RTP and RTSP video/audio streams in three dif-
ferent ways. The first is on demand streaming of a server side file, where all viewers stream
in their own context. The second is live streaming of server side file, where all viewers see the
same stream. The third type is live streaming of media (RTP/RTSP), generated by an external
tool like GStreamer or FFMPEG. When live streaming from an external tool, all viewers are
watching the same stream.

16

2.4 Video Compression Standards

Figure 2.2: Figure from Lorenzo Miniero’s presentation at
FOSDEM 2016 [24]. The figure describes the extensible

architecture of the Janus server

Media streams are added as “mountpoints” and a single Janus server can have multiple
mountpoints attached at the same time which users can choose to stream from. RTP streams
are added by addressing a port and for RTSP streams, an URL is needed as well as username
and password if set. Regarding video codec support, while relaying RTP streams Janus sup-
ports anything since the video stream itself is not modified. Instead the limitations are set
by WebRTC and the browser. The streaming plugin also exposes an API which can be used
to list available streams, get info about the mountpoints and edit/add/remove mountpoints.

Janus also has an Admin API which can list active sessions, show statistics about connec-
tions and change server settings. This Admin API is very useful when debugging connection
and plugin problems while developing software interacting with Janus.

2.4 Video Compression Standards

A video codec is software that can either encode (compress) video, decode (decompress)
video, or both in di�erent formats. This is a key process when streaming video, since re-
ducing the used bandwidth by compressing the data is very important. By having a good
video codec, lower bit rates can be achieved while not impacting performance nor picture
quality too much.

All the video codecs mentioned below are lossy, which means that quality is lost in the
compression and decompression process, making restoration of the exact original source im-
possible. Lossless video codecs are used in film production and for scientific purposes, where
every detail counts and data usage is not as important.

17

2. Technologies

H.264
H.264 was developed by VCEG and released as proprietary software in its first standardised
specification in 2003 [25]. H.264 is supported by most browsers and devices (Table 2.1).

H.264 supports a number of di�erent profiles, all with various set of features included.
The three most prominent profiles are High, Main and Baseline. These three have in turn
extended, constrained and special versions for di�erent bit depth supports. Axis cameras
support the three profiles and the user can choose whichever in the cameras settings.

WebRTC does currently only support the Baseline profile, which is the most simple of
the three.

Table 2.1: Video Codec Support in browsers using the HTML5
video player1

H.264 VP8 HEVC VP9
Chrome X X X
Firefox X X X
Safari X X
Opera X X X
Edge X X X X

Android X X X X
IOS X X X

1 Source: https://en.wikipedia.org/wiki/HTML5_video#Browser_support

VP8
VP8 is a video codec owned by Google that is open source, which probably is a key contribut-
ing factor to its popularity. One of the major drawbacks of VP8 is that it is not as common as
H.264 when it comes to video systems, leading to worse hardware acceleration support [26].

WebRTC did at first only support VP8, mostly because of it being an open codec. Later,
after a long “war”, H.264 grew to become the standard [27]. This was mostly due to better
hardware acceleration support by devices and support from other streaming standards such
as HLS.

VP9 & HEVC
VP9 and HEVC (H.265) is the latest generation of the most popular video codecs. The main
di�erence between the last generations of video codecs and this, is the reduced bit rate. This
leads to several improvements such as improved latency and a reduction in bandwidth re-
quired [28]. Hardware acceleration support for theHEVC codec in Axis cameras was recently
announced with a new chip, the ARTPEC-7 [29].

18

https://en.wikipedia.org/wiki/HTML5_video#Browser_support

2.5 Axis specific software

2.5 Axis specific software
Here we briefly mention Axis specific software that we were limited to using since all tests
were run on Axis cameras.

ACAP - AXIS Camera Application Platform
In our work we are only using Axis cameras. Because of this we are restricted to using the
way of deploying supported by Axis, ACAP. Cameras using firmware version 5.50 and newer
support ACAP. AnACAP is a camera plugin that a user can install on their own at any point.
The SDK is available for download on Axis website after signing up for a developer account,
accessible for everyone [30].

AnACAP is basically a way to package compiledC-code, or other executables compatible
with the cameras, so that it can be installed from a cameras web interface and can interact
with the camera. With the ACAP comes an API that exposes various features on the camera,
for example it is possible to fetch video and read sensors.

19

2. Technologies

20

Chapter 3

Prototype

This chapter will cover the goals we had for the prototype, what problems we faced implementing it
and how it was implemented.

3.1 Goals
A client should be able to connect directly to the server on the camera with a browser using
only JavaScript, no external plugins. The server/gateway should relay a video stream (RTSP)
using WebRTC. We have restricted the prototype to only work on local networks, since oth-
erwise a signalling infrastructure has to be set up.

Other demands for the prototype that can be found in the use cases (Section 1.4), are
support for multiple clients, from 0 to 5 all the way to the educational/webinar use case that
requires up to at least 100 concurrent viewers.

3.2 Stages of Development
Before aWebRTC server was installed and could run on a surveillance camera, we performed
multiple preparatory steps to get accustomed to both the WebRTC server and the handling
of video streams. All steps were not planned, but since they all add some knowledge about
the usage of WebRTC we chose to include them. The five steps are listed below, with the
final step being having the WebRTC server running on an IP camera.

21

3. Prototype

1. Choosing a WebRTC Server

2. Creating the Web Front-End

3. Running a Local WebRTC Server Test

4. Running a Server Between Devices

5. Running the Server on the IP-Camera

3.2.1 Choosing a WebRTC Server
There are multiple di�erent WebRTC servers that we could have tried to implement as our
prototype (Table 3.1). We chose to not try several di�erent servers or developing our own
WebRTC server/gateway, since the focus was on investigatingWebRTC in general. Therefore
we had to extra careful when choosing the server in regards to compatibility and previous
work.

Table 3.1: List of WebRTC servers/gateways

Server Language Open Source
Janus C X

Kurento C++ X
Jitsi Java X
Pion Go X

So to choose one, three had to be removed. Jitsi fell first because the lack of Java VM on
theAxis cameras, the other three were not as easy to choose from. We had to skip Pion. It is an
interesting project, but currently lacks support for CPU architectures (CRIS) that many Axis
cameras still use. The choice between Janus and Kurento was harder, since both o�er mature
documentation and functionality. We decided to go with Janus because it o�ers a design
where only the necessary features are compiled. Janus also o�ers good demos, was used in
previous work [4] and by our supervisors in short tests. Janus also has good documentation,
large user base and active developers ready to answer questions.

The version of Janus used was v0.6.2.

3.2.2 Creating the Web Front-End
For the WebRTC tests we used HTML, CSS and JavaScript bundled with Janus as their
Streaming example page. The page includes a simple video streaming example where the user
can connect to a Janus server, list the streams available and choose to stream any of them. This
demo and multiple others are hosted at https://janus.conf.meetecho.com/demos.html.

Some modifications were done to the demo front end. A version that connected to the
camera instantly, without waiting for a user action, was created to speed up testing. Another
modification was the feature to be able to add and remove video mountpoints. This was
done to eliminate high idle usage by Janus when connected to a mountpoint which will be
discussed later in the idle part of Section 4.5.1.

22

https://janus.conf.meetecho.com/demos.html

3.2 Stages of Development

This was done by adding two functions (listings 3.1 and 3.2) to the JavaScript code. The
mount function is called as soon as the page is loaded and connection to Janus is established.
The unmount function is called when the user stops the stream by clicking a button.

function mountStream () {
var adminKey = " password ";
var message = { " request ": " create ", " admin_key ": adminKey ,

"type" : "rtsp", "id" : 1, " description " : "high", "audio"
: false , "video" : true , "url" : "rtsp ://127.0.0.1/ axis -

media/media.amp? streamprofile =high& videopsenabled =1", "
rtsp_user ": "user", " rtsp_pwd " : "pw"};

streaming .send ({" message ": message , success : function (result)
{

Janus.log(result);
}});

}

Listing 3.1: The function used to mount a stream to the Janus server

function unmountStream () {
var message = {" request " : " destroy ", "id" : 1, " secret " : "

password "};
streaming .send ({" message " : message });
Janus.log(" Destroyed stream ");

}

Listing 3.2: The function used to unmount a stream
from the Janus server

This solution comes with some obvious drawbacks. Firstly, if the browser tab is simply
exited by the user the mountpoint is not removed. This could be solved with the help of the
event onbeforeunload, which happens right before the user leaves the page. Secondly, if
two users are connected at the same time and one of them leaves, the stream will be shut
down for the other user. Lastly, the user needs to possess the admin password or the feature
have to be non-protected.

The best solution would be for this to be solved server side and not through API calls
from clients.

3.2.3 Running a Local WebRTC Server Test
In the first step we ran the server and video stream solely on a single PC, without any real
camera present. The video stream (H.264) was created with GStreamer [31] and the stream
was picked up by the Janus server, which we then could connect to using the browser. The
stream created by GStreamer was an RTP stream and the stream was then picked up by the
Janus streaming plugin.

23

3. Prototype

Browser Compatibility
Streaming WebRTC video to Firefox never worked in any of our initial tests. This was un-
expected since the browser is supposed to support H.264 Baseline streaming. We found that
the problem derives from the browsers di�erent implementations of H.264 decoders. Firefox
uses an open source variant developed by Cisco [32]. Chrome has, from what we could find,
an inhouse built solution.

We received a SDP (Section 2.1) error when initiating a stream and after debugging we
found that Firefox rejected the profile-level-id that described the incoming video stream.
The profile-level-id is a hexadecimal string that looks like this: 0x428014 and consists of three
parts which are described below.

profile_idc 0x42 = 66, Baseline profile

profile-iop 0x80 means constraint_set0_flag=1 (so it is Constrained Baseline profile)

level-idc 0x14 == 20 so it is Level 2.0

By simply replacing the profile-level-id in the browser side JavaScript files with a string
compliant with Firefox, like for example 42e01f. We could then play all of our H.264 Baseline
streams. With the profile-level-id switched we even managed to make Firefox play H.264 High
encoded video, which suggests that the Cisco decoder is more competent than Firefox admits.

What is worth mentioning, is that this error is not tied to Janus in any way. Since Janus
does not alter the video stream, Firefox simply does not accept the video format produced
by the camera. Janus does however have the feature to override values like the profile-level-id,
which can be used to solve the problem.

Due to these problems the feature in the front-end to add mount points using the Janus
Streaming API (Section 3.2.2) was extended to also modify the videofmtp parameter, a mount-
point parameter overwriting SDP-values such as profile-level-id, if Firefox is used.

3.2.4 Running a Server Between Devices
In this step we had access to an actual camera we could stream video from, so we used a real
video stream instead of one created by GStreamer. This setup is the same as the one Bih
Fei Jong used in his thesis but without any video transcoding on the server [4]. We could
now try to use the streaming plugin in Janus to pick up the RTSP server directly. This did
not work the first tries, instead, during this phase we first had to pick up the stream using
GStreamer. The GStreamer pipeline that we ended up using can be seen in Listing 3.3. We
used GStreamer to redirect the RTSP stream without any real treatment in the pipeline. The
only di�erence is that the stream comes in as TCP packages, which is forced with the “t” in
the URL, and leaves as UDP packages.

$ g s t − l a unch − 1 . 0 r t s p s r c l o c a t i o n =
"rtspt://x.x.x.x/axis-media/media.amp?videopsenabled=1"
u s e r − i d = xx u s e r −pw= xx ! udp s i nk c l i e n t s = 0 . 0 . 0 . 0 : 9 0 0 2

Listing 3.3: GStreamer pipeline with RTSP redirection

24

3.2 Stages of Development

We later got the streaming plugin to pick up the RTSP stream directly, as can be seen in
Figure 3.1. The problem was that the camera used at that time, was situated on a large lab
network at Axis. That network only allowed UDP packages on certain ports, which is also
the reason why the streaming only worked with TCP in the example above. Instead of using
the cameras on the large network we put the cameras on a small local network with only our
computers connected. With this setup the streaming plugin could pick up the RTSP stream
and stream it using WebRTC.

JanusAxis Camera
RTSP WebRTC

Figure 3.1: Janus placed between the camera and browser on
separate device.

That was however not the only problem. Even if the streaming plugin could pick up the
stream, it did not mean that the browser could display the video. The streaming plugin has
the options to set multiple SDP related values, such as videortpmap and videofmtp overriding
profile-level-id and similar fields. We tried changing multiple of these but without any luck.
Finally we tried with an option in the cameras plain config, which is an advanced setting
menu in the Axis web interface. The option is called PS Enabled and can be found under
PlainConfig->Image->H264.

The option PS Enabled is interesting since it places the SPS (Sequence Parameter Set)
and PPS (Picture Parameter Set) in the RTP stream. SPS and PPS contain information on a
sequence of images and a single rendered image respectively. Without the SPS and PPS the
browser does not have su�cient information to decode the video stream. It is also possible
enable this option by adding a flag to the RTSP URL, videopsenabled=1.

Sending SPS and PPS in the same RTP over UDP stream as the video can be risky, they
should be sent in a separate TCP stream since putting them in the RTP streammakes it more
vulnerable to packet loss. This should be investigated further.

3.2.5 Running the Server on the IP-Camera
The next and final step was to run a Janus server on an IP-camera (Figure 3.2). The best way
to deliver Janus to a camera and the way Axis wants to use it, is as an ACAP (Section 2.5).

Axis Camera
with Janus

RTSP
WebRTC

Figure 3.2: Janus running on the IP camera

25

3. Prototype

Since the cameras do not ship with any compiler installed, Janus needs to be cross com-
piled for the architecture of the cameras we had on hand, armv7hf. Not only does Janus need
to be cross compiled, but also its dependencies that are not present on the camera by default.
Full list of these dependencies can be seen in Appendix A.1.

Here we ran into unexpected number of issues when trying to cross compile Janus. Several
of the dependencies have dependencies themselves. That the cross compilation process also
sometimes di�ered between the di�erent libraries, did not help either. We also had issues
with some cross compiled libraries not being able to find and link to other already cross
compiled libraries that they required.

We eventually got all dependencies and Janus cross compiled. To minimise the footprint
of the Janus server we chose to cross compile Janus with all plugins but streaming disabled, the
only plugin needed for three of the use cases (Section 1.4). Besides the support for streaming,
support for HTTP transport was also included since it is needed for signalling. See Table 3.2
for full list of plugins. The list can be interesting in order to see what Janus is capable of. For
the third use case, door station, the videocall plugin should also be included. It was however
never included because the focus was on the surveillance use cases, but performance wise the
impact should be almost the same.

Table 3.2: Compiled features of Janus

plugin.streaming X
plugin.echotest
plugin.videocall
plugin.videoroom

plugin.sip
plugin.nosip

plugin.textroom
plugin.voicemail
plugin.audiobridge
plugin.duktape
transport.http X

transport.rabbitmq
transport.websockets
transport.unixsockets

To package Janus as an ACAP there are a few things that are necessary. First two files
need to be created, package.conf and param.conf. param.conf is in our case an empty
file, since it is only necessary if the ACAP is to use the built in Apache server. package.conf
contains information regarding the application, such as name of the executable and how it
should be started. The package is then compressed as a .tar, renamed to .eap and can now
be installed on our cameras.

The configuration files for both Janus and ACAP can be found in Appendix B. The final
uncompressed folder containing all necessary files used 9.3 MB of disk space.

With this we have answered the first half of our first research question about deployabil-
ity, as we were able to deploy Janus on an IP-Camera.

26

Chapter 4

Experiments

In this chapter all tests and tools used to evaluated how well Janus performs are described and moti-
vated. E�ort was put into making the tests fair, reproducible as well as realistic.

4.1 Criteria
Data was sought in a number of criteria. These are listed with a reasoning why they are
important below. How the data is collected is described in Section 4.3.

Capacity
Number of concurrent streams is relevant since two of the four defined use cases (sec-
tion 1.4), require it to be possible for more than one user (0-5 in use case 1 and 2, 10-100
in use case 4) to simultaneously be streaming video from the same camera.

Performance
Memory: Memory usage is measured to see how much the WebRTC server solution
a�ects the available memory on the cameras compared to the other solutions.

CPUUsage: The CPU usage is a relevant since it is a goodmeasurement of how stressed
the camera is. If the CPU is under heavy load, the system might fail to send frames.

LoadAverage: Load average represents the average system load during a period of time.
Load average is represented as a number N, where a N lower than the number of CPU
cores means that on average no process gets queued [33]. A load average above Nmeans
that processes are being queued, which could result in performance issues. Therefore a
load average above N is not recommended, however, it does not mean that the device
is overloaded. Instead it can be used to find issues not related to CPU performance
since CPU usage will not show if a process is waiting for IO, which load average does.
A high load average together with a low CPU usage would then suggest there being a
bottleneck in the IO.

27

4. Experiments

Network: When measuring network, we looked at the current bit rate. The bit rate is
mostly impacted by the quality of the video stream. The bit rate is interesting to look
at since Janus repacks the RTSP stream. We want to know if it adds any overhead in
comparison to a pure RTSP and RTSP over WebSocket stream.

Disk usage: The storage space on the cameras is limited, so keeping the size of the
program down is important to make it possible to have it on the cameras. The cameras
that we will be running tests on, the M1065 and the Q3518 (Section 4.2.1), had around
25 and 70 MB available respectively. Having room for other applications is something
that is preferable, so the application should not use all of the available space.

Stream startup times: Low startup times (0-2 seconds) is very important since the
client/user can otherwise miss important information.

4.2 Test Environment

4.2.1 Hardware
In this thesis we used two di�erent cameras (Table 4.1), Axis M1065-LW as well as a more
high end camera, Axis Q3518-LVE. We wanted to test cameras with di�erent performance
to find if the bottleneck is in Janus, WebRTC or in the hardware. Having a second camera
makes this much easier. The versions mentioned in the firmware column are the versions that
the prototype has been confirmed working with. The version in bold font is the one used in
the tests.

Table 4.1: Camera video specifications.

Name Max res. Max framerate Firmwares
M1065-LW 1920x1080 25/30fps (50/60hz) 9.10 & 8.40 (LTS)
Q3518-LVE 3840x2160 50/60fps (50/60hz) 9.10 & 8.40 (LTS)

Axis M1065-LW
The M1065-LW was released in the beginning of 2018 and is one of Axis cheaper cameras
with its plastic housing and moderate performance. Its brother M1065-L is basically the
same camera, the di�erence being the L loses WiFi and gains PoE (Power over Ethernet). The
M1065-L(W) has an Ambarella S2L which consists of a single core 700Hz Cortex-A9 CPU
and 512MB of RAM [34].

Axis Q3518-LVE
The Q3518-LVE was released at about the same time as the M1065-LW and is a higher-end
camera. Q3518-LVE costs multiple times more than theM1065-LW, supports up to 2160p/60
and has an ARTPEC-6 chip with a dual core 1GHz Cortex-A9 CPU and 1Gb of RAM.

28

4.2 Test Environment

4.2.2 Network
The network consists of a simplewired local network (Figure 4.1). The normal 100/100 switch
is a D-Link DES-1008D and the PoE-switch, which had to be added to support the Q3518, is
an Axis Companion Switch 4P.

M1065

M1065

Q3518
100/100 PoE

Switch

100/100
Switch

Figure 4.1: Map of network used in testing phase

4.2.3 Stream Profiles
For the testing phase, two di�erent streaming profiles were used, the only di�erence being
the resolution. Only changing the resolution was done to have as few di�erences as possible
between the streaming profiles. Streaming profiles are presets for quality settings that can be
created in the cameras web interface. In Table 4.2 the profiles we used are listed. Themedium
profile represents the most commonly used settings by Axis operators and is considered the
baseline in our tests. The high profile utilises the highest resolution the M1065-LW camera
can produce and is used as a benchmark.

Both profiles have variable bit rate without any limitations, which means that the bit rate
varies depending on what the cameras sees. There was no audio recorded in any tests.

Table 4.2: Stream profiles

Name Resolution Frame rate GOP Encoding Compression Zipstream
High 1080p 15 fps 15 H264 Baseline 30 Low

Medium 720p 15 fps 15 H264 Baseline 30 Low

29

4. Experiments

4.2.4 Camera Positions
The camera were in two di�erent positions for the tests, one to create low bit rate stream and
one for high bit rate. The latency test had a separate setup. It is important that the setups
does not change during the day or between the tests so the results are even and reproducible.
Therefore the cameras were fastened to the desks using adhesive and put visually shielded
from the surrounding environment.

Low bit rate - Still Picture
In the first position the camera was pointed at a wall with some post-it notes (Figure 4.2).
This represents the easiest case for Janus, since the camera can produce low bit rate that also
is very stable. No movement at all can be seen in this position.

Figure 4.2: Screenshot of the still picture setting used for tests

High bit rate - Moving Picture
In the second setting we pointed the camera at a computer screen , displaying a long, fast
and repetitive Youtube video (https://youtu.be/G1IbRujko-A). This test simulates a more
exhausting situation. The video is constantly moving fast, making it hard for the encoding
algorithm to compress the video, resulting in high bit rates. Worth noting is that since the
movement is fast and repetitive, the bit rate is still quite even.

30

https://youtu.be/G1IbRujko-A

4.3 Data Collection Method

4.2.5 Players
Three di�erent players were used in the testing, one for each streaming method.

WebRTC
For the WebRTC tests we used the Chrome browser, version 73. We settled with using
only Chrome in the camera performance tests for its market share and because we only
measure camera performance, one browser is enough [35].

RTSP over WebSocket
The current Axis solution uses a browser interface and a video player that streams the
RTSP video usingWebSocket. The player is reached by entering https://ip in a Chrome
browser.

RTSP
VLC (v2.2.2) was used to stream RTSP video. We streamed the video via pure RTSP
from a camera using the same URL Janus uses to pick up its stream.

4.3 Data Collection Method
This section describes how the specific data points were collected.

4.3.1 CPU Usage, Load Average and Memory Usage
To measure CPU and memory usage, an Axis tool called Xcam-Memlog was used. The tool is
run on an external computer and polls the camera’s proc filesystem using ssh every N seconds.
The standard setting is N=60, but we used N=30 in our tests to get more data samples. The
tool collects di�erent data points, which are used to create visualisations. The various data
points and where they are extracted from are described below.

This could have been done by simply reading these values using scripts but Xcam-Memlog
simplified the process.

CPU-Usage is read from /proc/stat

The three servers each have a process and their names are:
monolith The RTSP server

httpd The RTSP over WebSocket server

janus_server The WebRTC server

Load Average is read from /proc/loadavg. There are 3 di�erent values, the averages for
the last 1, 5 and 15 minutes. We used the 15 min average because it is the most stable.

Memory Usage is read from /proc/meminfo

31

4. Experiments

4.3.2 Stream Stability
We consider a stream unstable when packets are lost multiple times every minute. A singular
hiccup once or twice during a 30 minute period does not count as being unstable.

To ensure whether or not a stream is stable we used three di�erent tools, one for each
server. See the list below for information regarding the tools. The stream can be unstable
in multiple ways, packets can be lost between the server and client, frames can be lost by
the camera and the video player can drop frames. Since the tests were run on a simple local
network, packets lost are most likely not because of the network, but because of a server not
being able to send out the packages. We assume that all packets and frames lost are caused
by the server not being able to send them.

WebRTC
Chrome has a tab accessible on chrome://webrtc-internals/. Here a lot of information
about activeWebRTC streams can be found. The interesting graphs for packet loss are
googNacksSent and packetsLost.

RTSP over WebSocket
In the Axis web interface it is possible to see the number of dropped frames. We use
this value to determine the stream stability.

RTSP
In VLC, under (Tools ->Media Information -> Statistics), it is possible to see howmany
frames VLC has dropped. This includes packets lost.

Aside from the tools, we also considered viewer experience when determining the stream
stability.

4.3.3 Network Usage
We used Wireshark to measure network usage [36]. Packets that travel between the camera
and the client were captured and reviewed. All packets were captured and then filtered in two
di�erent ways. With the first way we measured all packets between the camera and client.
When measuring the second way, we only looked at the packets going from the client to the
camera. This way we could see how much bandwidth was used to send control messages to
the camera, not only how much was used to stream video.

The bit rate was calculated with a built in tool in Wireshark, that can be found under
(Statistics -> Protocol Hierarchy). The number used is the bits/s for the “Frame”, so all data
is included.

4.3.4 Latency
The method for measuring latency was to film a computer screen that was displaying a live
feed with a camera. In the video feed we put an overlay that displayed the current time in
1/100 seconds. This allowed us to take screenshots with the computer and then from those
screenshots, calculate the latency. An example of said screenshots can be seen in Figure 4.3.
Note that since the frame rate of the camera is only 15 fps, accuracy is not in 1/100 seconds.

32

chrome://webrtc-internals/

4.4 Tests

Figure 4.3: Screenshot used to measure latency

4.3.5 Stream Startup Time
Stream startup time is defined as the time until video is visible on the screen after the user has
requested a stream, by for example clicking a button. This was tested by manually measuring
the time from click to visible video.

4.4 Tests
With the data gathering methods described, the actual tests can be presented. In this section
all tests are presented and motivated.

4.4.1 Scenarios
The largest and most important tests are the ones simulating normal usage (use case 1, 2
& 3 Section 1.4). We will call them scenarios. In these tests the medium profile was used
and the camera was positioned in the two di�erent positions described above (Table 4.3 for a
summary). The tests startedwith one client connected and streaming video. After 30minutes
another stream was added and so on, until five concurrent streams were active. A test with
no connected clients was also done to measure CPU/Memory usage and Load average in idle.

These tests gave an idea of how the di�erent streaming protocols scale in performance
when more clients connect. The most useful results are the ones with zero, one and two
clients but to gather more data more clients were used as well.

In addition to the scenario tests, longer tests that ran over at least 24 hours were con-
ducted in order to ensure that the solution was robust.

Table 4.3: Summary of usage tests

Target Profile No. of Clients
Still (Low bit rate) Medium 1,2,3,4,5

Moving (High bit rate) Medium 1,2,3,4,5
Idle (No bit rate) N/A 0

33

4. Experiments

4.4.2 Latency
The latency test was performed as described above and only done once for each of the tests.
The accuracy of our latency test is not optimal, but enough to give us an idea if WebRTC has
a significant latency disparity in comparison to RTSP over WebSocket and RTSP.

4.4.3 Stream Startup Times
The method to measure the startup time is described in Section 4.3.5. In order to get more
accurate results, we performed the tests five times and took the average value as our result.
We have also included the standard deviation for the tests.

4.4.4 Stress Tests
We performed two di�erent stress tests. In the first the medium profile with a still back-
ground was used. Here the goal was to see how many concurrent streams the solution could
handle, when having a low bit rate. This test is meant to test if the Education/Webinar use
case (Section 1.4) is possible.

In the second stress test, the cameras were pushed with a higher quality stream profile
and more concurrent clients until they no longer could deliver stable video streams. In our
case this means that all streams becomes unstable at the same time, since the same stream is
sent to all viewers. Here we also brought in the more advanced camera, Q3518, to be able to
see if the camera was the bottleneck.

34

4.5 Test Results

4.5 Test Results
In this section the results from the tests are presented and explained.

4.5.1 Scenarios
The results from the scenarios are presented below, in rising order of load. The first tests use
the medium profile. The high profile is not used until the stress tests, since the high profile
is considered being a stress test and the baseline setting is 720p/15 (Section 1.4).

When presenting the cameras’ load averages, the recommended maximum (Section 4.1)
is marked with a red line, 1 for M1065 and 2 for Q3518.

Idle
It was found that Janus put the camera under relatively heavy load even in idle (Table 4.4).
This is because how the Streaming plugin handles its RTSP stream mountpoints. It keeps
Janus connected to its RTSP stream even if no clients are connected and streaming video.
Therefore we tested the idle performance while having a stream mountpoint connected and
also without a mountpoint. Having Janus disabled represents the idle performance for both
pure RTSP and RTSP over WebSocket.

Table 4.4: Idle performance

Mode CPU Usage Load Average
Janus with mountpoint 34.7% 0.58

Janus without mountpoint 20% 0.5
Janus disabled 18.5% 0.43

Still Frame Tests
In the still frame tests the camera was put under the lightest load, streaming a still picture.
In this setting the camera could easily compress the video stream and the bit rate averaged at
300 kbit/s. At this bit rate the performance di�erence between the pure RTSP, RTSP over
WebSocket and WebRTC was almost none with one active stream.

WebRTC has a small overhead in CPU usage when there is only one active stream (Fig-
ure 4.4) and the load average results (Figure 4.5), are very close to being equal. RTSP over
WebSocket scales a bit worse than the other two when there are more active streams.

35

4. Experiments

0 1 2 3 4 5
Number of Active Streams

10

15

20

25

30

35

40

45

50

CP
U

Us
ag

e
(%

)

WebRTC RTSP RTSP over Websockets

Figure 4.4: CPU usage with low bit rate video, medium profile

0 1 2 3 4 5
Number of Active Streams

0.4

0.6

0.8

1.0

1.2

Lo
ad

 A
ve

ra
ge

 (1
5

m
in

)

WebRTC RTSP RTSP over Websockets

Figure 4.5: Load average usage with low bit rate video, medium
profile. The red line represents the recommended maximum load

average.

In memory usage (Figure 4.6), we could see that Janus had a higher usage with one client
connected but did not use much per additional connected client. The RTSP server worked
in the opposite way, using more memory per connected client.

36

4.5 Test Results

1 2 3 4 5
Number of Active Streams

0

2

4

6

8

10

12

14

M
em

or
y

Us
ed

 (M
B)

WebRTC RTSP RTSP over Websockets

Figure 4.6: Memory used with low bit rate video, medium profile.

Moving Frame Tests
With moving picture, the camera struggles to keep the bit rate down. The video bit rate
averages at 3000 kbit/s using the medium settings, which is ten times higher than with the
still frame shot. In the results (Figures 4.7 and 4.8) the fifth active stream was omitted from
the results, due to errors in the data from the fifth stream and up. Since the results of more
than four streams are of low relevancy, the test was never redone. The memory usage result
diagram was omitted since the results were the same as in the still frame tests (Figure 4.6)

This is also done in the coming tests. The memory results did not di�er as the bit rate
did. Why this happens might be because the frame bu�ers kept by the servers have static
sizes in MB, not in time or number of frames.

37

4. Experiments

0 1 2 3 4
Number of Active Streams

0

10

20

30

40

50

60

70

80

CP
U

Us
ag

e
(%

)

WebRTC RTSP RTSP over Websockets

Figure 4.7: CPU usage with high bit rate video, medium profile

0 1 2 3 4
Number of Active Streams

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ad

 A
ve

ra
ge

 (1
5

m
in

)

WebRTC RTSP RTSP over Websockets

Figure 4.8: Load average with high bit rate video, medium profile.
The line at y=1 represents the theoretical max load average.

38

4.5 Test Results

4.5.2 Stress Tests
In the first stress test (Figure 4.9), the maximum number of clients possible was sought. The
test used themedium profile with a still image. 52 clients were themaximum amount possible
since when adding the 53rd, all 53 streams became unstable.

20 25 30 35 40 45 50 55
Number of Active Streams

40

50

60

70

80

90

100

CP
U

Us
ag

e
(%

)

WebRTC on M1065

Figure 4.9: CPU usage with still picture, medium profile
(≈300 kbit/s). We increased the amount of active streams until they
became unstable, which happened as the 53rd stream was added.

For the second stress test (Figures 4.10 and 4.11), the stream profile was changed to the
more challenging high profile and the target was moving. The still target was omitted since
the focus was on the toughest load possible. The idle data was also kept from the diagrams to
keep focus on the most relevant data. The video bit rates in these test were on average 8400
kbits/s.

Three active WebRTC high profile streams at the same time, seem to be the utmost limit
of the camera. The load average is as high as 2.88, which means that many processes are in
queue.

At such high load average with the WebRTC server, any small increase in load impacted
the stream and made it unstable. We found that opening an ssh connection and for example
running top, caused the stream to lose packets. Adding a fourth stream resulted in all four
streams turning unstable, which is why it was omitted.

Comparing WebRTC to RTSP over WebSocket in the stress tests, with a single stream
WebRTC has 10 percentage points more CPU usage. The CPU usage with two and three
streams are almost identical. With four streams the RTSP over WebSocket stream lost mul-
tiple frames and was therefore omitted from the results. Interestingly, the video player did
not show much package loss, instead the frame rate dropped from 15 down to around 10 on
all four active streams.

39

4. Experiments

1 2 3 4
Number of Active Streams

20

30

40

50

60

70

80

90

100

CP
U

Us
ag

e
(%

)

WebRTC RTSP RTSP over Websockets

Figure 4.10: CPU usage with moving picture, high profile. Neither
the WebRTC or RTSP over WebSocket stream was stable with 4

streams and was therefore omitted.

1 2 3 4
Number of Active Streams

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Lo
ad

 A
ve

ra
ge

 (1
5

m
in

)

WebRTC RTSP RTSP over Websockets

Figure 4.11: Load Average with moving picture, high profile. The
line at y=1 marks the theoretical max load average.

40

4.5 Test Results

Comparing to High End Camera
After finding the breaking point of the M1065, the same tests were performed on the Q3518.
An interesting fact that impacts the result, is that the Q3518 manages to compress the video
stream much better than the M1065. The bit rate of the Q3518 was on average 4700 kbits/s,
44% lower than the M1065’s 8400 kbits/s.

The results (Figures 4.12 and 4.13) show that the Q3518 have no problem handling the
load that caused the M1065 to lose frames.

Usually with dual core CPU’s, such as the one in the Q3518, CPU load can reach 200%,
counting each core individually and adding them together. Regarding the Q3518, the CPU
usage is calculated di�erently, 100% meaning both cores being fully used. This was tested
running OpenSSL speed test single and multitthreaded respectively. Using one thread, that
thread used 50% CPU. With two threads the CPU usage was 100 %.

1 2 3 4
Number of Active Streams

0

20

40

60

80

100

CP
U

Us
ag

e
(%

)

M1065 Q3518

Figure 4.12: Camera comparison showing CPU usage while
streaming WebRTC video with moving picture, high profile

41

4. Experiments

1 2 3 4
Number of Active Streams

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ad

 A
ve

ra
ge

 (1
5

m
in

)

M1065 Q3518

Figure 4.13: Camera comparison showing load average while
streaming WebRTC video with moving picture, high profile. The
dashed line at y=1 represents the theoretical max load average for
the M1065 camera, the dash-dotted line at y=2 represents the same

but for Q3518.

42

4.5 Test Results

4.5.3 Network Usage
The data was gathered in the still picture test with the medium profile. This setting was
chosen because it is themost common in the use cases. The bit rates outside of the parentheses
were calculated from all data travelling between the camera and the client (Table 4.5). In the
parentheses, only the data leaving the camera is shown.

The setup procedure that occurs when initiating the connectionwas not recorded in these
results.

The parenthesis values were measured in order to see if there was a noticeable di�erence
in control communication between the client and server. As the results in percentages show
(Table 4.6), pure RTSP barely had noticeable amount of control communication. First when
data from five active streams was recorded, 1 bit/s can be seen. WebRTC on the other hand,
had about 1.4% of all data sent directed the opposite way of the video stream. RTSP over
WebSocket had most of all, around 4% of all data was going back to the camera.

Table 4.5: Network usage in bit/s for WebRTC, RTSP and RTSP
over WebSocket. The value in parentheses is the bit rate leaving the

camera.

No. of streams RTSP WebRTC RTSP over WebSocket
1 351 (351) 361 (356) 337 (324)
3 1077 (1077) 1108 (1093) 998 (957)
5 1793 (1792) 1847 (1821) 1684 (1615)

Table 4.6: Di�erence in network usage in bit/s for WebRTC, RTSP
and RTSP over WebSocket when subtracting the data leaving the
camera from the total bit rate. The bit rate shown is the bit rate

sent from the client to the camera.

No. of streams RTSP WebRTC RTSP over WebSocket
1 0 (0%) 5 (1.4%) 13 (3.9%)
3 0 (0%) 15 (1.4%) 42 (4.2%)
5 1 (≈0%) 26 (1.4%) 69 (4.1%)

4.5.4 Latency
WebRTC throughChrome compares well to RTSP overWebSocket (Table 4.7). The large dif-
ference in latency between WebRTC and pure RTSP in VLC looks good initially, but occurs
since VLC has a larger cache bu�er of 1000ms. RTSP over WebSocket bu�ers dynamically
with about 180-200ms in our tests and WebRTC with about 15-40ms.

The cache bu�er that WebRTC uses is called the jitter bu�er and is changed dynami-
cally. There is currently no way for a user to change it, making it hard to test reliably. In
chrome://webrtc-internals, the current bu�er length can be seen in the graph labeled googJit-
terBu�erMs. The modified VLC has a smaller cache bu�er with 400 ms instead of 1000 ms,
which is the default value. By lowering this value, the latency improves.

43

4. Experiments

Table 4.7: Video latency using di�erent streaming methods

Receiver Latency (s) Bu�er size (s)
WebRTC (Chrome) 0.27 0.040

RTSP over WebSocket (Chrome) 0.34 0.2
RTSP (VLC) 1.28 1

RTSP (modified VLC) 0.73 0.4

4.5.5 Stream Startup Times
As stated in Section 4.3.5, we measured the stream startup times by calculating the average of
five startup times measurements. The di�erence in startup times for WebRTC (Figure 4.14)
when adding more users is negligible. That the di�erence is negligible makes sense, since
the CPU usage/load average (Figures 4.4 and 4.5) is so low with the tested amounts of active
streams.

WebRTC RTSP WebSocket
0.0

0.5

1.0

1.5

2.0

St
re

am
 S

ta
rtu

p
Ti

m
e

(s
)

(a) First stream

WebRTC RTSP WebSocket
0.0

0.5

1.0

1.5

2.0

St
re

am
 S

ta
rtu

p
Ti

m
e

(s
)

(b) Sixth stream

Figure 4.14: Stream startup times when starting the first and the
sixth stream

44

Chapter 5

Discussion

In this chapter the results will be discussed in regards to the use cases (Section 1.4).

5.1 Latency
When removing the bu�ering from the latency results, all receivers result in having almost
identical latency (Figure 4.7), RTSP over WebSocket having a small advantage. Given the
precision that we had in these tests, the results do not say more than that we could not
see a major di�erence in latency. One has to consider that both WebRTC and RTSP over
WebSocket have dynamic bu�ering. The goal with the tests, was partly to see if WebRTC
added much extra latency compared to RTSP over WebSocket, which we can not see that it
does.

What is interesting with the tests is the di�erent bu�ering strategies. VLC has a long
bu�er (one second), ensuring a stable stream without any artifacts. WebRTC is keeping the
bu�er dynamic and as small as possible (15-40 ms). Such a small bu�er means that latency
is prioritised over a stutter free video, which makes sense in video conferencing or similar
environment. RTSP over WebSocket bu�ers dynamically with roughly 180-200ms in our
tests, keeping a sort of middle ground.

These results show that WebRTC should be able to handle latency well in all four use
cases (Section 1.4).

5.2 Stream Startup Times
The stream startup time forWebRTCwasmuch faster (around 0.5 seconds) when starting the
first stream, compared to RTSP over WebSocket and pure RTSP. With the idle performance
results inmind thismakes sense. TheRTSP servers go into deeper sleep states when not in use,
while the Janus server does not. The reason for WebRTC being so fast when starting the first

45

5. Discussion

stream, is that there is already a RTSP stream connected in the background, since the default
WebRTC case always has an active mountpoint. RTSP over WebSocket and pure RTSP both
have to spend more time starting up in general, leading to increased stream startup times.

When there already are five active streams, RTSP over WebSocket got much faster and
was noticeably faster than the other solutions.

Even if the startup times are slightly slower with more active streams with WebRTC, it
is still not that noticeably slower than the others. One can still conclude that based on the
results, the startup times for WebRTC should be fine for all four use cases (Section 1.4).

5.3 Network Usage
RTSP over WebSocket has noticeably more communication tra�c compared to the other
two. It has around 4% of all tra�c going to the camera, compared WebRTC’s 1.4%.

RTSP over WebSocket is always using TCP for its transportation while WebRTC most
often uses UDP. This is the main reason for the large amount of communication tra�c. TCP
sends out more messages that need to be acknowledged compared to UDP. UDP is designed
for real time communication and not as focused on reliability as TCP is, since UDP has very
basic error checking mechanics compared to TCP. In a livestreaming scenario, where only
the latest frame is of interest, there is no need for retransmission of lost frames.

WebRTC uses UDP as a first resort but can fall back to TCP if, for example, restricting
firewalls force it to. Since our solution was used only on a local network, it never had to resort
to TCP and could use UDP for all tests. This did not impact WebSocket, since WebSocket
always uses TCP.

5.4 CPU, Load Average and Memory
We will in this section discuss using the names of the servers rather than the names of the
ways of streaming, in order to improve readability. The names used are:

• monolith The RTSP server

• httpd The WebSocket server

• janus_server The WebRTC server

Idle
Having the system under unnecessary high load while being idle should be avoided, since it
a�ects both power consumption and life length. It was therefore important to evaluate the
idle performance both with and without the janus_server running, also with and without an
active mountpoint.

If we first ignore the idle load with a mountpoint active, the total CPU usage and load
average for WebRTC is about 10% higher than the two other (Table 4.4). This is not too
surprising since janus_server has two web servers running, one for the Janus interactions and
one for the admin interface. The admin interface is most likely worth disabling to see if that
helps. At the same time, the RTSP server is also running in the background.

46

5.4 CPU, Load Average and Memory

The issue with the high idle load with an active mountpoint can not be ignored, even if
we found workarounds (Section 3.2.2). The reason why so much load is put on the camera
is because the monolith is actively serving one stream. This can be supported by comparing
the idle CPU usage for janus_server with an active mountpoint (Table 4.4) with the monolith
serving one client (Figure 4.4), they are almost identical.

Idle performance is mostly relevant for the first three use cases. The results are promising
and shows that WebRTC can perform well in an idle situation, making it competitive in this
criteria.

Normal Scenarios
Under normal circumstances the janus_server performs well. One viewer is never a problem,
nomatter the stream profile. Using themedium profile, there are no issues while havingmore
concurrent viewers than what the three first use cases require (Section 1.4).

The janus_server still requires more resources than the built in monolith. This is not sur-
prising at all, since in this implementation, the monolith always has to feed the janus_server
with video and the RTSP stream is not encrypted. The same goes for the httpd, which also is
fed with a RTSP stream from the monolith.

The CPU usage of httpd, with the still and moving pictures (Figures 4.4 and 4.7) are in
both cases linear. In the low bit rate case httpd uses more resources per added client, but
still has almost no overhead with one client. We found this to be because how httpd shares
its streams. Instead of fetching one RTSP stream and sharing it to many clients the server
fetches one RTSP stream per connected client. This was found by looking at not only the
total CPU, but CPU usage per process. For every client that httpd adds, the monolith uses
more CPU. But for janus_server, the monolith always has the same CPU usage, no matter the
amount of clients.

Janus_server has noticeable lower CPU usage than httpd with low bit rate, but they per-
form almost similar when the bit rate increases (Figure 4.7). Both servers apply the same
encryption, AES 128 bit, and both gateway the RTSP stream in some way. The di�erence
is in how the stream is relayed through a gateway. The RTSP over WebSocket sends the
RTSP stream over a WebSocket connection (TCP), whereas the WebRTC server takes the
RTP stream from a RTSP stream and transmits it using UDP. The RTP extraction together
with some extra control messages that ensures the quality of the stream is probably why the
results even out.

It is important to note that theCPUusage results are so even between the janus_server and
httpd, that it is hard to say that one performs better than the other. By adding some margin
of error to the results, they are almost indistinguishable. This should not be considered a
limitation to the method, but rather speak about how comparably the two servers perform.

Looking at memory usage, the usage in all tests were generally low. janus_server used
about 10 MB when a mountpoint was active and not more than additional 0.25 MB per con-
nected client. The two other servers are not as easy to analyse at zero connections since they
are always active on the cameras. The monolith, which is responsible for the RTSP stream,
must be running for either of httpd and janus_server to work. Therefore the results at zero
clients were not included. We will not put more e�ort into analysing the memory usage
since the results were of so small importance.

The load average results (Figures 4.5 & 4.8) almost follows the CPUusage results perfectly.

47

5. Discussion

httpd always had lower or equal load average with one and two active streams but as the
amount of active streams increased to three to five the load average took o�. A reasonable
explanation why the load average increases at a higher rate for httpd than for janus_server is
again because how httpd adds a new separate RTSP connection from the monolith for every
client. This adds more processes that will be put in queue and with the extra load from the
monolith the CPU usage also rises.

All the results from the normal scenario tests using the M1065 show that WebRTC per-
forms well in the use cases 1, 2 and 3 (Section 1.4).

Stress Tests
janus_server performed very similar to httpd in the high profile stress test (Figures 4.10 & 4.11)
and most of the discussion about the performance that was covered above applies here. For
one active stream, the gap grows and seems to be larger with more active streams. However,
the increase is linear to the bit rate when comparing to the lower bit rate streams.

After running the stress tests, we can conclude that the bottleneck is in the cameras
hardware and not in Janus or the WebRTC stack. We could push the M1065 to almost 100%
CPU usage and a load average well above comfortable levels without the stream breaking.
When switching over to the more powerful camera, the task that overstrained the M1065,
was e�ortless for the Q3518 camera.

janus_server performs almost as well as httpd and that is very good for software designed
for server grade hardware. This is even without any optimisation for the embedded devices
used in our tests.

During the stress tests we found that theWebRTC streams had higher chance of breaking
and not being able to recover, if many packets were lost in a short amount of time, compared
to the two RTSP based streams. The reason we can see for this is the option used when
retrieving the stream from the cameras RTSP server, videopsenabled=1.

When learning about this option it was noted that it makes the stream more vulnerable
to packet loss. The SPS and PPS should be sent in a separate TCP stream, also called “out
of band”, to better accommodate packet loss, something that should be investigated further.
However, setting up a separate TCP connection besides the UDP connection that WebRTC
uses seems like a step in wrong direction.

The stress tests show that in its current state, the surveillance use cases (1, 2 & 3 in Section
1.4) should have no issues usingWebRTC as a streamingmethod. Since 50 concurrent streams
could be active at the same time with a still image and medium profile (Figure 4.9), there is
potential that WebRTC could also do well in the educational/webinar use case.

As a last comment it is important to note that the stress test with the high quality stream
profile was done in a way that does not reflect any currently real use case. It can however be
seen as a test for future implementations where higher quality video is sought.

48

5.5 Video Codecs

5.5 Video Codecs
Having established that the load put on a camera is tied to the bit rate of the video, we can
discuss whatmore e�cient video codecs can do. Newer codecs o�ermuch better compression
and with more chips o�ering hardware accelerated encoding with these codecs, the market
will soon see a switch fromH.264 and VP8. As mentioned in Section 2.4 , some Axis cameras
released during 2019 will o�er support for H.265 together with Axis Zipstream technology
[29]. It is however just not that simple. The chips that support hardware accelerated H.265
encoding are newer, more powerful chips that have no problem streaming the H.264 streams
used in this thesis. The newer codecs are more relevant in a network bandwidth sense.

49

5. Discussion

50

Chapter 6

Conclusions

Our study has found that WebRTC, streamed using the server Janus, performs just as well as
competing technologies while providing an array of added benefits, such as simpler certifi-
cate handling and being peer-to-peer. Streaming encrypted video in 720p poses no problem
for the cameras in our tests, it is also future proof, as high bit rate 1080p streams works with-
out any issues. Latency and stream startup times are also on par with the tested competing
alternatives.

The WebRTC server Janus was deployable on the IP-cameras used in our tests without
modifying the firmware on the cameras.

Janus also proved to be a robust and e�cient server. Both Janus and WebRTC are still in
very active development. For example, Janus sees multiple commits per day. This is a good
sign for future users of both softwares.

The first two of the four studied use cases (surveillance) work very well. There is, with
minor restrictions to video quality, no problem streaming to 1-5 viewers at the same time.

Even if no solution to handle bidirectional audio communicationwas developed, our tests
indicate that the third use case, Door Station, has potential to work well.

The fourth use case, education/webinar, needs a little bit more performance from the
camera in order to work well. In the tests 50 clients were the limit, and that at a very low bit
rate.

We can conclude that we have answered all research questions with results that opens
paths for future endeavours with WebRTC.

51

6. Conclusions

6.1 Future Work
This thesis only scratches the surface of whatWebRTC can achieve together with surveillance
cameras. WebRTC streaming from embedded devices is a relatively undiscovered area and
after completing this thesis, we have multiple future work proposals.

GStreamer: Instead of using the cameras built in RTSP server and relaying the stream
to WebRTC using a WebRTC gateway, a more e�ective solution could be to change the
GStreamer pipeline on the camera. GStreamer recently added a WebRTC sink in version
1.14. By having GStreamer output WebRTC directly instead of RTSP, the conversion pro-
cess from RTSP to WebRTC would be removed. This can potentially lead to not only cam-
era performance enhancement, but also improvements in latency and other stream related
performance metrics. The main reason for us not investigating this, is the deployability is-
sue. Installing a WebRTC server on the cameras as an ACAP is much easier than updating
GStreamer and using the sink, especially on older cameras.

More Cameras: At the start of our thesis work we did not know how the solution would
perform, or if it was even possible to implement. This lead us to focus on producing and
implementing the solution for a specific camera model and then performing tests with that.
Ideally one would want to implement the solution for a much wider range of products, both
high-end and low-end cameras. By doing this, onewould get amuch clearer and better picture
on how well the solution works on di�erent cameras.

Other Servers: We decided to use Janus but there are many other WebRTC servers that
are worth trying. Even if Janus works well, it is hard to know if there could be some otherWe-
bRTC server that might be able to outperform Janus. Other WebRTC servers worth looking
at are Pion WebRTC and Kurento.

Stability: Having done more tests in general would also help with identifying issues and
making the solution more robust. More tests done with higher sample rate could potentially
help identifying the issues to exactly why streams crash, as they did in the stress tests (Section
4.5.2).

52

Bibliography

[1] M. Priks. The e�ects of surveillance cameras on crime: Evidence from the stockholm
subway. The Economic Journal, 125(588):F289–F305, 2015.

[2] Axis Communications. Axis annual report 2017. https://www.axis.com/files/annual_
reports/Axis_AB_ars_och_hallbarhetsredovisning_2017.pdf , 2018.

[3] Hikvision. Hikvision annual report 2017. https://oversea-download.hikvision.com/
/uploadfile/Investment%20Relationship/Hikvision%202017%20Annual%20Report.pdf ,
4 2018.

[4] B. F. Jong. Webrtc based broadcasting for physical surveillance. Master’s thesis, Swin-
burne University of Technology, 2018.

[5] S. Thörnqvist M. Lindfeldt. Real-time video streaming with html5. Master’s thesis,
Lunds Tekniska Högskola, Lund, Sweden, 2014. http://sam.cs.lth.se/ExjobGetFile?id=
687.

[6] A. Johnston, J. Yoakum, and K. Singh. Taking on webrtc in an enterprise. IEEE Commu-
nications Magazine, 51(4):48–54, April 2013.

[7] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano. Janus: A general purpose
webrtc gateway. In Proceedings of the Conference on Principles, Systems and Applications of
IP Telecommunications, IPTComm ’14, pages 7:1–7:8, New York, NY, USA, 2014. ACM.

[8] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano. Performance analysis of the
janus webrtc gateway. In Proceedings of the 1st Workshop on All-Web Real-Time Systems,
AWeS ’15, pages 4:1–4:7, New York, NY, USA, 2015. ACM.

[9] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano. Jattack: a webrtc load testing
tool. In Proceedings of the Conference on Principles, Systems and Applications of IP Telecom-
munications, IPTComm ’16. IEEE, 2016.

[10] A. Amirante, T. Castaldi, L. Miniero, S. P. Romano, and A. Toppi. Measuring janus
temperature in ice-land. pages 1–7, 10 2018.

53

https://www.axis.com/files/annual_reports/Axis_AB_ars_och_hallbarhetsredovisning_2017.pdf
https://www.axis.com/files/annual_reports/Axis_AB_ars_och_hallbarhetsredovisning_2017.pdf
https://oversea-download.hikvision.com//uploadfile/Investment%20Relationship/Hikvision%202017%20Annual%20Report.pdf
https://oversea-download.hikvision.com//uploadfile/Investment%20Relationship/Hikvision%202017%20Annual%20Report.pdf
http://sam.cs.lth.se/ExjobGetFile?id=687
http://sam.cs.lth.se/ExjobGetFile?id=687

BIBLIOGRAPHY

[11] Axis Communications. Product guide: Network video solutions. http://ftp.axis.com/
pub/users/goran/dvd_design_tool_40503/collateral/pg_video_40433_en_1010_lo.pdf , 6
2019. Accessed on 2019-06-13.

[12] C. Vogt, M. J. Werner, and T. C. Schmidt. Leveraging webrtc for p2p content distri-
bution in web browsers. In 2013 21st IEEE International Conference on Network Protocols
(ICNP), pages 1–2, Oct 2013.

[13] S. Dutton. Webrtc tutorial. https://www.html5rocks.com/en/tutorials/webrtc/basics/.
Accessed on 2019-02-22.

[14] W3C. W3c announcing webrtc as cr. https://www.w3.org/blog/news/archives/6619.
Accessed on 2019-02-22.

[15] W3C. W3c recommendation track process. https://www.w3.org/2004/02/
Process-20040205/tr.html. Accessed on 2019-02-22.

[16] H. Tschofenig, E. Rescorla, and J. Fischl. Framework for Establishing a Secure Real-time
Transport Protocol (SRTP) Security Context Using Datagram Transport Layer Security
(DTLS). RFC 5763, May 2010.

[17] C. PerkinsM.Handley, V. Jacobson. Sdp: Session description protocol. Technical report,
RFC Editor, July 2006. https://tools.ietf.org/html/rfc4566.

[18] E. Van der Sar. Vpn webrtc leak. https://torrentfreak.com/
huge-security-flaw-leaks-vpn-users-real-ip-addresses-150130/. Accessed on 2019-
02-27.

[19] ONVIF. Onvif streaming specification version 17.06. Technical report, 2017. https:
//www.onvif.org/specs/stream/ONVIF-Streaming-Spec-v1706.pdf .

[20] W. May R. Pantod. Http live streaming. Technical report, RFC Editor, August 2017.
https://tools.ietf.org/html/rfc8216.

[21] R. Frederick V. Jacobson H. Schulzrinne, S. Casner. Rtp: A transport protocol for real-
time applications. Technical report, RFC Editor, July 2003.

[22] R. Lanphier M. Westerlund M. Stiemerling Ed. H. Schulzrinne, A. Rao. Real-time
streaming protocol version 2.0. Technical report, RFC Editor, December 2016.

[23] L. Miniero. O�cial website of janus. https://janus.conf.meetecho.com/. Accessed on
2019-02-22.

[24] L. Miniero. Fosdem 2016: "janus: a general purpose webrtc gateway".
https://archive.fosdem.org/2016/schedule/event/janus/attachments/slides/967/export/
events/attachments/janus/slides/967/fosdem2016_janus_presentation.pdf , 1 2016.

[25] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the h.264/avc
video coding standard. Technical report, 2003. http://ip.hhi.de/imagecom_G1/assets/
pdfs/csvt_overview_0305.pdf .

54

http://ftp.axis.com/pub/users/goran/dvd_design_tool_40503/collateral/pg_video_40433_en_1010_lo.pdf
http://ftp.axis.com/pub/users/goran/dvd_design_tool_40503/collateral/pg_video_40433_en_1010_lo.pdf
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://www.w3.org/blog/news/archives/6619
https://www.w3.org/2004/02/Process-20040205/tr.html
https://www.w3.org/2004/02/Process-20040205/tr.html
https://tools.ietf.org/html/rfc4566
https://torrentfreak.com/huge-security-flaw-leaks-vpn-users-real-ip-addresses-150130/
https://torrentfreak.com/huge-security-flaw-leaks-vpn-users-real-ip-addresses-150130/
https://www.onvif.org/specs/stream/ONVIF-Streaming-Spec-v1706.pdf
https://www.onvif.org/specs/stream/ONVIF-Streaming-Spec-v1706.pdf
https://tools.ietf.org/html/rfc8216
https://janus.conf.meetecho.com/
https://archive.fosdem.org/2016/schedule/event/janus/attachments/slides/967/export/events/attachments/janus/slides/967/fosdem2016_janus_presentation.pdf
https://archive.fosdem.org/2016/schedule/event/janus/attachments/slides/967/export/events/attachments/janus/slides/967/fosdem2016_janus_presentation.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf

BIBLIOGRAPHY

[26] L. Quillio J. Salonen P. Wilkins Y. Xu J. Bankoski, J. Koleszar. Vp8 data format and
decoding guide. Technical report, RFC Editor, November 2011.

[27] T. Levent-Levi. 4 reasons to choose h.264 for your webrtc service (or why h.264 just won
over vp8). 05 2016. https://bloggeek.me/h264-webrtc/. Accessed on 2019-05-13.

[28] M. Sharabayko. Next generation video codecs: Hevc, vp9 and daala. 11 2013.

[29] Axis Communications. Övervakningskameror med utökade säkerhetsfunk-
tioner och stabil video under alla förhållanden. https://www.axis.com/sv-
se/newsroom/news/overvakningskameror-med-utokade-sakerhetsfunktioner-och-
stabil-video-under-alla -forhallanden, 4 2019. Accessed on 2019-05-03.

[30] Axis. Axis camera application platform. https://www.axis.com/support/
developer-support/axis-camera-application-platform. Accessed on 2019-03-07.

[31] Gstreamer technical documentation. https://gstreamer.freedesktop.org/
documentation/application-development/introduction/gstreamer.html. Accessed
on 2019-04-18.

[32] Mozilla implements openh264. https://blog.mozilla.org/blog/2013/10/30/
video-interoperability-on-the-web-gets-a-boost-from-ciscos-h-264-codec/. Ac-
cessed on 2019-03-29.

[33] D. Ferrari and S. Zhou. An empirical investigation of load indices for load balanc-
ing. Technical report, Berkeley, CA, USA, 1987. https://www2.eecs.berkeley.edu/Pubs/
TechRpts/1987/CSD-87-353.pdf .

[34] Ambarella s2l product sheet. https://www.ambarella.com/uploads/docs/
S2L-Product-Brief-Final.pdf . Accessed on 2019-03-29.

[35] Browser market share. http://gs.statcounter.com/browser-market-share#
monthly-201707-201707-map. Accessed on 2019-03-29.

[36] Wireshark website. https://www.wireshark.org/. Accessed on 2019-06-12.

55

https://bloggeek.me/h264-webrtc/
https://www.axis.com/support/developer-support/axis-camera-application-platform
https://www.axis.com/support/developer-support/axis-camera-application-platform
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html
https://blog.mozilla.org/blog/2013/10/30/video-interoperability-on-the-web-gets-a-boost-from-ciscos-h-264-codec/
https://blog.mozilla.org/blog/2013/10/30/video-interoperability-on-the-web-gets-a-boost-from-ciscos-h-264-codec/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-87-353.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-87-353.pdf
https://www.ambarella.com/uploads/docs/S2L-Product-Brief-Final.pdf
https://www.ambarella.com/uploads/docs/S2L-Product-Brief-Final.pdf
http://gs.statcounter.com/browser-market-share#monthly-201707-201707-map
http://gs.statcounter.com/browser-market-share#monthly-201707-201707-map
https://www.wireshark.org/

BIBLIOGRAPHY

56

Appendices

57

Appendix A

Cross compilation

A.1 Janus Dependencies
Libs we did not have to cross compile:

libsrtp v2.X

Jansson v2.9

Libs that had to be cross compiled:

libnice v0.1.13 suggested, we used v0.1.15

libgnutls v3.6 (libnice dependency)

nettle v3.4.1 (libgnutls dependency)

gmp v6.1 (nettle dependency)

libtasn1 v4.13 (libgnutls dependency)

glib v2.40 (libnice dependency) Tests always failed while configuring and the option
–disable-tests did not help. Instead a fix where environmental variables were set
beforehand was used. A file named armv7hf.configwas created and when executing
./configure, CONFIG_SITE=armv7hf.config was prepended. The file consisted
of the four lines which acts as the correct answers to the tests:

a c _ c v _ t y p e _ l o n g _ l o n g = y e s
g l i b _ c v _ s t a c k _ g r o w s =no
g l i b _ c v _ u s c o r e =no
a c _ c v _ f u n c _ p o s i x _ g e t p w u i d _ r = y e s

59

A. Cross Compilation

lib� v3.1 (glib dependency)

openssl Version found on camera did not support an elliptic curve function necessary (was
a special internally modified build). We used version 1.1.1b.

libmicrohttp v0.9.63

libconfig v1.7.2

libcurl v7.64.0

60

Appendix B

Configuration Files

B.1 janus.plugin.streaming.jcfg
axi sCameraMedium : {

t y p e = "rtsp"
i d = 1
d e s c r i p t i o n = "M1065 -LW-Medium"
a ud i o = f a l s e
v i d e o = t r u e
u r l = "rtsp://127.0.0.1/axis-media/media.amp?

streamprofile=medium\&videopsenabled=1"
r t s p _ u s e r = "user"
r t sp _pwd = "password"

}

B.2 janus.jcfg
g e n e r a l : {

c o n f i g s _ f o l d e r = "conf" # Con f i g u r a t i o n f i l e s f o l d e r
p l u g i n s _ f o l d e r = "plugins" # P l u g i n s f o l d e r
t r a n s p o r t s _ f o l d e r = "transports" # T r a n s p o r t s f o l d e r

}
c e r t i f i c a t e s : {

c e r t _ p em = "certs/mycert.pem"
c e r t _ k e y = "certs/mycert.key"

}

61

B. Configuration Files

B.3 package.conf
PACKAGENAME="Janus"
MENUNAME="Janus"
APPTYPE="armv7hf"
APPNAME="janus"
APPID=""
LICENSEPAGE="none"
VENDOR="Axis Communications"
REQEMBDEVVERSION="1.10"
APPMAJORVERSION="0"
APPMINORVERSION="1"
APPMICROVERSION="0"
APPGRP="root"
APPUSR="root"
APPOPTS=""
OTHERFILES=""
SETTINGSPAGEFILE=""
SETTINGSPAGETEXT=""
VENDORHOMEPAGELINK="http://fredagskakan.se"
POSTINSTALLSCRIPT=""
STARTMODE="respawn"
HTTPCGIPATHS=""
CERTSETNAME=""
CERTSETACTOR=""
CERTSETPROTOCOL=""

62

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2019-06-11

EXAMENSARBETE WebRTC for peer-to-peer streaming from an IP-camera
STUDENTER Johan Gustavsson, Hampus Christensen
HANDLEDARE Mathias Haage (LTH), Jesper Forsberg (Axis), Svante Richter (Axis)
EXAMINATOR Flavius Gruian (LTH)

Peer till peer videoströmning med
WebRTC från övervakningskameror

POPULÄRVETENSKAPLIG SAMMANFATTNING
Johan Gustavsson, Hampus Christensen

Video från övervakningskameror strömmas idag ofta genom en mellanliggande server
innan den når åskådaren. Att istället strömma video direkt, peer till peer, från kam-
eran till åskådaren har många fördelar. Detta arbete har fokuserat på att utvärdera
prestanda vid videoströmning med WebRTC.

Axis, en av världens ledande tillverkare av IP-
baserade övervakningskameror, strömmar idag
video genom att tunnla RTSP genom molnservrar
med hjälp av WebSocket eller HTTP. Att istället
strömma video peer till peer med WebRTC har
många fördelar, så som enklare uppsättning och
minskade serverkostnader.

Videoström

Signallering

Si
gn
all
er
ing

WebRTC är ett mediaströmnings-API som
möjliggör säker direktkommunikation mellan web-
bläsare över internet, utan extra insticksprogram.
API:t är utvecklat av Google och har från början
varit öppet, vilket gör det enklare för fler att an-

vända sig av tekniken. För autentisering tar We-
bRTC hjälp av en så kallad signalleringserver som
även hjälper parterna att finna varandra. Van-
liga användningsområden för WebRTC är röst-
och videosamtal, där några stora tjänster som im-
plementerar detta är Facebook Messenger, Slack
och Discord.

Med WebRTC kan webbläsare agera både klient
och server. När det inte finns en webbläsare, som
det inte gör på övervakningskameror, så behövs
det en WebRTC-server. Vi installerade Janus,
en WebRTC server med öppen källkod som bland
andra Slack använder, på två olika kameror som
tester sedan utfördes på. Testerna utformades för
att utvärdera hur en WebRTC server presterar på
övervakningskameror i flera olika användningsfall,
så som övervakning men även för webbkonferenser
och porttelefoner.

Resultaten visar att WebRTC presterar lik-
bördigt, jämfört med konkurrerande tekniken
RTSP över WebSocket. Eftersom WebRTC med-
för tidigare nämnda fördelar, kan utifrån detta
slutsatsen dras att WebRTC är ett bra alterna-
tiv för videoströmning inom övervakning, porttele-
foner och även webbkonferenser.

	Introduction
	Related Work
	Research Objectives
	Method
	Use Cases
	Contributions

	Technologies
	WebRTC
	Other Streaming Standards

	Transport and Supporting Protocols
	WebRTC Gateway & Server
	Janus

	Video Compression Standards
	Axis specific software

	Prototype
	Goals
	Stages of Development
	Choosing a WebRTC Server
	Creating the Web Front-End
	Running a Local WebRTC Server Test
	Running a Server Between Devices
	Running the Server on the IP-Camera

	Experiments
	Criteria
	Test Environment
	Hardware
	Network
	Stream Profiles
	Camera Positions
	Players

	Data Collection Method
	CPU Usage, Load Average and Memory Usage
	Stream Stability
	Network Usage
	Latency
	Stream Startup Time

	Tests
	Scenarios
	Latency
	Stream Startup Times
	Stress Tests

	Test Results
	Scenarios
	Stress Tests
	Network Usage
	Latency
	Stream Startup Times

	Discussion
	Latency
	Stream Startup Times
	Network Usage
	CPU, Load Average and Memory
	Video Codecs

	Conclusions
	Future Work

	Bibliography
	Appendix Cross Compilation
	Janus Dependencies

	Appendix Configuration Files
	janus.plugin.streaming.jcfg
	janus.jcfg
	package.conf

