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A B S T R A C T

The subject of diophantine approximation is a classical mathematic
problem, as old as it is well studied. There are many different texts de-
scribing its connection to more modern areas of study, but few which
do so with the aim of exploring the connections themselves. This pa-
per aims to serve as an introduction to diophantine approximation,
and to expose some properties common between two dynamical sys-
tems where it occurs. This is done in the style of a booklet, starting
from the basics in each of the areas of diophantine appproximation,
continued fractions, symbolic sequences, and hyperbolic geometry.
Focus on each of the chapters following the first is on how to they con-
nect back to diophantine equation. The chapters are then capped off
with additional notes which explore things related to their respective
subjects, for example the modern advancements made in the subject,
or other interesting trivia for the interested reader.

For complete comprehension of the text, the reader is assumed to
have basic knowledge of the relation between rational and real num-
bers, analysis, matrices, number theory, and function theory.

The text largely succeeds in its goals as an educatory text and is
thought to be a somewhat novel contribution to the body of literature
on the subject. Further work could expand on this by incorporating
further areas in mathematics where diophantine approximation ap-
pears. Another avenue of exploration is to explore the underlying
reasons for the similarities exposed here.
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A B S T R A K T ( S V E N S K A )

Diofantisk approximering är ett klassiskt problem inom matematiken
som är lika gammalt som det är studerat. Det finns många olika tex-
ter som kopplar samman området till mer moderna idéer, men få som
undersöker samband i hur själva kopplingen förkroppsligas. Denna
artikeln har som syfte att leda läsaren genom kunskapen som behövs
för att förstå särskilda egenskaper gemensamma till två olika dynam-
iska system, för att sedan visa upp dessa egenskaper. Detta görs i
form av en handbok som i tur och ordning går igenom grunderna
i diofantisk approximering, kedjebråk, symboliska följder, samt hy-
perbolisk geometri, där det för var och en av de tre sista förtydligas
hur de hänger ihop med det första. Varje avsnitt avslutas därefter
med mindre utflykter till ting relaterat till området i fråga, exempel-
vis moderna utvecklingar inom området eller annan information som
kan vara till intresse för läsaren.

För att fullt ut kunna tillgodogöra sig texten antas läsaren ha åt-
minstone grundläggande kunskap inom ett antal områden, bland an-
nat förhållandet mellan rationella och rella tal, endimensionell analys,
matriser, talteori, samt även funktionsteori.

Texten fullföljer i stort sett sitt mål att vara en resurs för intresserade
läsare att lära sig om området, och är till författarens vetskap även
innehållsmässigt ett nytt bidrag till mängden literatur om ämnet. Yt-
terligare arbete kan göras genom att utforska andra områden där di-
ofantisk approximering visar sig. Alternativt skulle orsaken till sam-
banden som uppvisas i detta arbetet kunna utforskas på en djupare
nivå.
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2
D I O P H A N T I N E A P P R O X I M AT I O N S

With historical roots stretching back to at least the third century, Di-
ophantine approximation is the approximation of the reals using ra-
tional numbers. It is named after Diophantus of Alexandria, and is
closely related to Diophantine equations, where one tries to find all
natural number solutions to some given equation.

Some numbers are easier to approximate by rationals than others.
Trivially, any rational number can be perfectly approximated (by it-
self), while irrational numbers cannot. There is however some vari-
ation in approximability among the irrational numbers. Take for ex-
ample Dirichlet’s approximation theorem.

Theorem 2.0.1 (Dirichlet). For any α ∈ R, andN ∈N there exist integers
p and q such that

|α−
p

q
| <

1

qN
6
1

q2
, 1 6 q 6 N.

Proof. This can be proven by the pigeonhole principle. Denote the
integer part of a real number x by [x], and the fractional part by {x}.
Now consider {nα} for n = 0, 1, 2, . . . ,N, the N+ 1 pigeons. The holes
are the N non-overlapping intervals of length 1

N , [mN , m+1
N ), where

m = 0, 1, 2, . . . ,N− 1. Since the intervals completely cover [0, 1), there
must be at least one interval where two different {nα} lie. Call them
{n1α} and {n2α}, such that n1 < n2. This means

|{n2α}− {n1α}| <
1

N
.

Recall x = [x] + {x}, so {nα} = nα− [nα], and

|(n2 −n1)α− ([n2α] − [n1α])| <
1

N
.

Identify p = [n2α] − [n1α], and q = n2 −n1, which finally gives∣∣∣∣α−
p

q

∣∣∣∣ < 1

qN
6
1

q2
.

Since |α − p
q | is to be minimised, we can also rewrite it into an-

other almost equivalent form, the exact difference being something
we will come back to later. Begin by multiplying by q, thus elim-
inating the fraction, giving |qα− p|. To minimise the expression we
always choose p to be the integer nearest to qα. It then makes sense to
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2 diophantine approximations

introduce the notation‖x‖, the distance from x to the nearest integer,
and we end up with‖qα‖. This form gives some additional insight, as
apparently the numerator p could be eliminated. In this sense, only
the choice of the denominator q is important when making approx-
imations by rationals. Dirichlet’s theorem can be restated with this
form as

Theorem 2.0.2 (Dirichlet). For any α ∈ R, and N ∈ N, there exists a
natural number 1 6 q 6 N such that

‖qα‖ < 1

N
6
1

q
.

The same proof as before still applies. Dirichlet’s theorem is essen-
tially about the approximablity of irrational numbers, here named α,
and gives us an upper bound for the worst possible approximation
of any given q. Although the bound does improve as q grows, an
increase in q does not necessarily yield a better approximation.

Definition 2.0.3. A best rational approximation of an irrational num-
ber, α, is a fraction, p

∗

q∗ , such that for all other fractions p
q , where

0 < q 6 q∗,∣∣∣∣α−
p∗

q∗

∣∣∣∣ < ∣∣∣∣α−
p

q

∣∣∣∣ .
Since it is possible to get arbitrarily close to α by increasing q, there

are infinitely many best rational approximations for any irrational α.
Take for example when α = π, for which 22

7 ≈ 3.142857 is often given
as a best approximation. By instead looking at q = 8, we find the two
closest approximations to be 258 = 3.125 and 26

8 = 3.25, both of which
are further away from π than 22

7 . In other words, q = 8 does not give
an improved approximation over q = 7 for any choice of p.

Let us continue by defining the most difficult numbers to approx-
imate.

Definition 2.0.4. A number, α, is called badly approximable if∣∣∣∣α−
p

q

∣∣∣∣ > c

q2
,

or alternatively,

‖qα‖ > c

q
,

for some constant c > 0 and all rational numbers pq .

This will be expanded slightly upon later, but badly approxmimable
can be thought of as slowly converging in the sense that large denom-
inators are needed to approximate the number accurately.

Similarly, there is a measure for the irrationality of a number.
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Definition 2.0.5. Let R be the set of positive reals µ for which‖qα‖ <
1
qµ has finitely many solutions. The irrationality measure of an irra-
tional real number α, denoted µ(α), is defined by

µ(α) := inf
µ∈R

µ.

It can be shown, for example, that rational numbers have µ = 1,
and transcendental numbers have µ > 2.

There are some numbers for which R is empty, and so for the sake
of consistency, let us define µ(α) =∞ for such numbers, which leads
us to the following definition.

Definition 2.0.6. A Liouville number is a number α for which 0 <

‖qα‖ < 1
qµ has infinitely many integer solutions q for all µ, or equi-

valently, a number for which µ(α) =∞.

Liouville numbers are irrational numbers that can be approxim-
ated very closely by rational numbers. As a corollary from the below
theorem, all irrational Liouville numbers are transcendental.

Theorem 2.0.7 (Liouville). If α is an irrational algebraic number of degree
n > 2 (i.e. irrational roots of polynomials of order 2 or higher), then there
exists a real constant c > 0 such that∣∣∣∣α−

p

q

∣∣∣∣ > c

qn
,

for all pq .

Proof. Let f ∈ Z[x] be a non-constant irreducible polynomial of de-
gree n, such that f(α) = 0. We may assume integer coefficients, since
any fractions can be eliminated without changing the roots, by mul-
tiplying the polynomial by an appropriate number.

According to the mean-value theorem, for a given p
q , there exists a

ξ such that

f′(ξ) =
f(α) − f(pq)

α− p
q

= −
f(pq)

α− p
q

.

Taking absolute values, we find that

|f′(ξ)| =
|f(pq)|

|α− p
q |

.

After some rearranging, we get∣∣∣∣α−
p

q

∣∣∣∣ =
∣∣∣∣∣f
(
p

q

)∣∣∣∣∣ · ∣∣1/f′(ξ)∣∣ >
∣∣1/f′(ξ)∣∣
qn

.

The last inequality follows if you note that f only has integer coef-
ficients and is of degree n, so inserting the fraction p

q must give a
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fraction with a denominator that is at most qn. Since f is irreducible,
there must be no rational (integral) roots, so the numerator cannot be
zero.

As ξ was chosen from the mean value theorem, it lies inbetween
p
q and α. Then for sufficiently good approximations α ≈ p

q , we have
f′(ξ) ≈ f′(α), such that for example

∣∣f′(ξ)∣∣ > 1
2 ·
∣∣f′(α)∣∣. We find∣∣∣∣α−

p

q

∣∣∣∣ > 2/|f′(α)|

qn
.

Due to irreducibility is that f′(α) 6= 0, as otherwise α would be a
double root, so 2/

∣∣f′(α)∣∣ is well defined.
Then the result follows by letting c = 2/|f′(α)|. Since the inequality∣∣f′(ξ)∣∣ > 1

2 ·
∣∣f′(α)∣∣ was chosen rather arbitrarily, c can be lowered to

allow for smaller q if necessary.

In actuality, the above theorem is not as strict as possible. A version
that is optimal with respect to the right hand side was developed
through a series of successive improvements, the final being due to K.
Roth for which he was awarded a Fields medal.

Theorem 2.0.8 (Thue-Siegel-Roth). If α is an algebraic number of degree
n > 2, then for all ε > 0,∣∣∣∣α−

p

q

∣∣∣∣ < 1

q2+ε

has infinitely many integer solutions p and q.

Another way of stating the same thing is that all irrational algeb-
raic numbers of degree 2 or higher has the irrationality measure µ = 2.
This means that irrational roots of polynomials are among the most
difficult to approximate by rational numbers, which might be some-
what unexpected since they in other contexts might be considered to
be “pleasant” numbers. Among them is the worst approximable num-
ber, the golden ratio, φ = 1+

√
5

2 . Using φ as a worst-case scenario in
Dirichlet’s theorem, it is in fact possible to achieve a sharpening.

Theorem 2.0.9. |α− p
q | 6

1√
5q2

We shall leave it to the interested reader to find a full proof in [10],
but a clue on the presence of φ can be seen in the

√
5 in the denom-

inator.

2.0.0.1 Additional notes

V. Jarnik showed that the set of all badly approximable numbers
(BANs) have Hausdorff dimension 1. The Hausdorff dimension can
be seen as one way to measure the dimension of fractals embedded in
metric spaces. The real line is not fractal in its nature, and so it retains
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its Hausdorff dimension as 1. Since the BANs have the same Haus-
dorff dimension as the real numbers, one might conclude that nearly
all numbers are badly approximable. An interesting counterpoint is
that the BANs also happen to have a Lebesgue measure (typically
used for integration) of 0, suggesting that nearly no number is badly
approximable. As such, the commonness of BANs depends on ones
perspective.

A famous, and as of the time of writing, unsolved conjecture in the
area of diophantine approximation is the Littlewood conjecture.

Conjecture 2.0.10 (Littlewood). For any α,β ∈ R,

lim inf
n→∞ n‖nα‖‖nβ‖ = 0.

Some of the meaning behind the conjecture can be gleaned by first
thinking about the approximability of α and β. Most notably the con-
jecture is trivial if either is not a badly approximable number, as the
limit then goes to zero. It is also clear that while we are only inter-
ested in the case when α and β are badly approximable, the state-
ment could not hold if neither of the two respective norms goes to
zero, due to the presence of the factor n. This means that we need
good (enough) rational approximations of α and β. For example for
some S ⊂N, we could assume that

lim inf
m→∞ m‖mα‖ = C,

where C > 0 is a constant and m ∈ S. Notably, m does not need to be
best approximations of α. From this we can see the things in terms of
diophantine approximation, the new interpretation of the conjecture
being that we can always find a set that approximates both α and β
well (enough) simultaneously. In other words, that there always is a
set

S′ ∈
{
S | lim inf

x→∞ x‖xα‖ <∞, x ∈ S
}

such that

lim inf
m→∞ ‖mβ‖ = 0,m ∈ S′.





3
C O N T I N U E D F R A C T I O N S

Deeply connected to diophantine approximation are the continued
fractions. A continued fraction is a fraction-type expression of a certain
form,

α = a0 +
1

a1 +
1

a2 +
1

. . . + 1/an

where a0 ∈ Z and ak ∈ N,k > 0. Since (typically) only the ak
change from one continued fraction to another, they can instead be
represented in a more compact form,

α = [a0;a1,a2, . . . ,an].

One may wonder why the coefficients, ak, are restricted to the nat-
urals. There are some cases where it is appropriate to allow for real
coefficients, so the term regular (alternatively simple) may then be used
to denote continued fractions with both unitary numerators and in-
teger coefficients. We will find out that regular continued fractions
are enough to represent every real number.

Above, we defined continued fractions as having a finite number
of coefficients. We call these finite continued fractions. It turns out it
also makes sense to talk about fractions that keep going indefinitely,
where we have an infinite number of coefficients. Such fractions are
called infinite continued fractions.

There is a link between continued fractions and the euclidean al-
gorithm, which we will explore by first detouring into an overview
of the Gauss map. This will also serve as a prelude to the coming sec-
tions, as it our first example of a dynamical system. Define the Gauss
map by

T(x) =


{
1
x

}
, when 0 < x 6 1

0, when x = 0.
(1)

For example T(49) = {2.25} = 0.25. In the section on diophantine ap-
proximation we defined notation for the decomposition of a num-
ber into integer and fractional part by α = [α] + {α}. For continued
fractions, this is equivalent to [a0;a1,a2, . . . ] = a0 + [0;a1,a2, . . . ] =

7



8 continued fractions

a0+ 1/[a1;a2, . . . ]. Let us try applying the Gauss map over an infinite
continued fraction, α = [0;a1,a2,a3, . . . ] and see what happens.

T(α) =

a1 +
1

a2 +
1

a3+
1

...

 = [0;a2,a3, . . . ].

Since the leftmost coefficient of α is simply its integer part, the map
seems to have shifted the coefficients to the left, removing a1 in the
process. Essentially, we have discovered that we can find the contin-
ued faction coefficients by taking the integer part of the reciprocal of
the Gauss map, ak = b1/Tk(x)c. This suggests a method for calculat-
ing the continued fraction coefficients of any real number, since the
Gauss map is not dependent on α being in the form of a continued
fraction. For numbers larger than one, we can remove the integer part
and use it as a0 after the calculations.

So where does the euclidean algorithm come in? Given two natural
numbers, say p > q, the algorithm finds the greatest common divisor
(gcd) by iteratively decomposing the p into a maximal product of q
and a positive remainder, r. Typically the following scheme is used

p = a0q+ r0,

q = a1r0 + r1,
...

rk−2 = akrk−1 + rk,
...

rn−3 = an−1rn−2 + rn−1,

rn−2 = anrn−1 + 0.

It then terminates when rn = 0, giving gcd(p,q) = rn−1. Again,
the rk are the remainders after division. By dividing both sides by
the right factor, we can see that pq =

[
p
q

]
+
{
p
q

}
= a0 +

r0
q . Taking

particular note of
{
p
q

}
= r0
q , and checking the next row of the scheme,

we find

{
q

r0

}
=

 1{
p
q

}
 = T

({
p

q

})
=
r1
r0

.

And in general,
{
rk−2
rk−1

}
= Tk

({
p
q

})
= rk
rk−1

. Each step is arrived at

from the fractional part of the reciprocal of the last, which is exactly
the Gauss map. Naturally, we can as before take the integer part of
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the map to get the continued fraction coefficients, putting the inter-
twinement of continued fractions, the Gauss map, and the euclidean
algorithm on full display.

As a side note, let us look at another interesting facet of the eu-
clidean algorithm, namely what happens if the remainders, rk, are
substituted backwards through the scheme. Starting from the second-
to-last row of the scheme, rn−3 = an−1rn−2 + rn−1, we find

gcd(p,q) = rn−1 = rn−3 − an−1rn−2
= rn−3 − an−1(rn−4 − an−2rn−3)

= (1+ an−2)rn−3 − an−1rn−4

= (1+ an−2)(rn−5 − an−3rn−4) − an−1rn−4

= (1+ an−2)rn−5 − (an−1 + an−3)rn−4

...

It is hopefully evident from the above calculations that it is possible
to always have only two terms consisting of neighbouring remainders
rk, by consistently substituting the rk with a larger index. This means
that by identifying p = r−2 and q = r−1, we will eventually have
something of the form gcd(p,q) = mp+nq, with m,n ∈ Z \ {0}. This
is known as Bézout’s identity, or Bézout’s theorem.

Theorem 3.0.1 (Bézout). Given a,b ∈ Z, there exists m,n ∈ Z such that

gcd(a,b) = am+ bn.

With this we are ready to track back, and show that finite continued
fractions can be thought of as ordinary fractions.

Theorem 3.0.2. Finite continued fractions are rational numbers. Addition-
ally, for every rational number there exists exactly two different continued
fractions, which are finite.

Proof. Consider the steps in a slightly rewritten form of the euclidean
algorithm for some fraction p/q,

p

q
= a0 +

r0
q

,

q

r0
= a1 +

r1
r0

.

r0
r1

= a2 +
r2
r1

,

...
rn−2
rn−1

= an + 0.
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Let us use this to show that the naming of ak is appropriate in the
context of continued fractions, meaning that they are exactly the con-
tinued fraction coefficients.

p

q
= a0 +

r0
q

= a0 +
1
q
r0

= a0 +
1

a1 +
r1
r0

= a0 +
1

a1 +
1
r0
r1

= a0 +
1

a1 +
1

a2+
r2
r1

= . . .

= a0 +
1

a1 +
1

. . .+ 1
an+0

= [a0;a1,a2, . . . ,an].

This echoes our conclusions when we discussed the Gauss map earlier.
Since the euclidean algorithm can be used on any p,q, we are always
able to find a continued fraction representing their quotient. As a con-
sequence, all rational numbers must have a finite continued fraction
representation.

As to the existence of at least two continued fractions for each ra-
tional, it is enough to note that

[a0;a1, · · ·an] = [a0;a1, · · ·an − 1, 1],

in other words that at the bottommost fraction we can always shift
between an and an + 1

1 since both are valid when expressing regular
continued fractions.

It remains to prove uniqueness when an 6= 1. We do this by con-
tradiction. Assume there are two continued fractions a and b, such
that [a0;a1, . . . ,an] = [b0;b1, . . . ,bm] and an 6= 1 and bm 6= 1.
If n < m, but ak = bk for all 0 6 k 6 n, then a 6= b since
[0;bn+1, . . . ,bm] 6= 0. Thus we can assume that for some 0 6 k 6 n,
[a0;a1, . . . ,ak−1] = [b0;b1, . . . ,bk−1], and ak 6= bk. Using this as-
sumption, we may rewrite the equality a = b as

ak +
1

ak+1 +
1

ak+2+...

= bk +
1

bk+1 +
1

bk+2+...

.

But ak and bk are integers, and both right-hand terms are positive
and strictly less than one (as long as bk+1 6= 1 or k+ 1 6= m, which
is implied by bm 6= 1), so we must have ak = bk for the equality
to hold. This is contrary to the initial assumption, so for all k, ak =

bk. Then both forms must be equal and have the same number of
coefficients.

A corollary to the above theorem is that all representations of a frac-
tion share the same continued fraction expansion. The question might
then be, which representation does the continued fraction simplify to?
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It turns out to be the most simple one, in which the numerator and
denominator does not share any common factors.

Theorem 3.0.3. The numerator and denominator of a finite continued frac-
tion are relatively prime.

Proof. Consider the fractional form of a finite continued fraction,

α = a0 +
1

a1 +
1

. . . an−2 + 1
an−1+

1
an

.

By rewriting the bottommost addition we get an−1an+1an
, the numer-

ator and denominator of which are easily seen to be relatively prime.
If we substitue in s = an−1an + 1 and t = an, then doing the next
addition up in the continued fraction, we get an−2 + t

s = an−2s+t
s .

This is again a coprime fraction, since s and t do not have common
factors. We can repeat the same argument until we are left with an
ordinary fraction, which demonstrably have numerator and denom-
inator relatively prime.

The continued fraction coefficients form a sequence, so we would
like to be able to make statements about the number as a whole from
only taking the first few coefficients. This will in turn allow us to
work inductively on both finite and infinite continued fractions.

Definition 3.0.4. The k-convergent of a regular continued fraction
α = [a0;a1,a2, . . . ] is the rational corresponding to [a0;a1,a2, . . . ,ak].

Finite continued fractions are rational, and it makes sense to define
pk and qk, such that their quotient gives the corresponding conver-
gent, pkqk = [a0;a1,a2, . . . ,ak]. We call pk partial numerators and qk
partial denominators.

The following two theorems are very useful when working with
k-convergents.

Theorem 3.0.5. For all k > 2,

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Proof. Using induction, for a continued fraction α = [a0;a1,a2, . . . ],
we have

p0
q0

=
a0
1

,

p1
q1

= a0 +
1

a1
=
a0a1 + 1

a1
,

p2
q2

= a0 +
1

a1 +
1
a2

=
a0a1a2 + a0 + a2

a1a2 + 1
.
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We confirm that

a2p1 + p0 = a2a0a1 + a2 + a0 = p2,

and

a2q1 + q0 = a2a1 + 1 = q2.

For the general case, introduce p̂kq̂k = [a1;a2, . . . ,ak]. Then

pk
qk

= a0 +
1
p̂k
q̂k

= a0 +
1

(akp̂k−1 + p̂k−2)/(akq̂k−1 + q̂k−2)

=
ak(a0p̂k−1 + q̂k−1) + a0p̂k−2 + q̂k−2

akp̂k−1 + p̂k−2
.

We will need to show that pk = a0p̂k + q̂k and qk = p̂k. Again,

pk
qk

= a0 +
1
p̂k
q̂k

=
a0p̂k + q̂k

p̂k
.

So pk = λ(a0p̂k + q̂k) and qk = λp̂k, and since pk and qk are relat-
ively prime, λ = 1. Finally,

pk
qk

=
ak(a0p̂k−1 + q̂k−1) + a0p̂k−2 + q̂k−2

akp̂k−1 + p̂k−2

=
λ(akpk−1 + pk−2)

λ(akqk−1 + qk−2)
=
akpk−1 + pk−2
akqk−1 + qk−2

.

Theorem 3.0.6. For k > 1,

pk−1
qk−1

−
pk
qk

=
(−1)k

qk−1qk
.

Proof. First note the equivalent form,

pk−1qk − qk−1pk = (−1)k.

We prove that it holds with induction. First show it holds for k = 1:
p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1. So

a0a1 − 1 · (a0a1 + 1) = −1.

Now assume pk−2qk−1 − qk−2pk−1 = (−1)k−1. Then

pk−1qk − qk−1pk = pk−1(akqk−1 + qk−2)

− qk−1(akpk−1 + pk−2)

= pk−1qk−2 − qk−1pk−2

+ ak(pk−1qk−1 − qk−1pk−1)

= −(−1)k−1 + 0 = (−1)k.
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Now we show that the pk
qk

are well behaved in terms of conver-
gence.

Theorem 3.0.7. The sequence of an arbitrary infinite continued fraction’s
k-convergents converges to a real number α.

For the proof we will utilise the following lemma.

Lemma 3.0.8. The partial numerators and denominators of a (non-zero)
continued fraction are bounded by the Fibonacci numbers according to

|pk| > Fk and qk > Fk+1.

Here we use the convention F0 = 0, and F1 = 1.

Proof. We can prove this by induction. First we confirm for k = 0 and
k = 1 that p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1.

|p0| = |a0| > 0 = F0, |p1| = |a0a1 + 1| > 1 = F1.

q0 = 1 > 1 = F1, q1 = a1 > 1 = F2.

Now assume it holds for k− 2 and k− 1. Because the integer part of
a continued fraction is given by a0, and the fractional part is positive,
all partial numerators pk have the same sign as a0. Thus, for k > 2,

|pk| = |akpk−1 + pk−2| = ak|pk−1|+ |pk−2|

> akFk−1 + Fk−2 > Fk−1 + Fk−2 = Fk.

Similarly, since all partial denominators qk are positive,

qk = akqk−1 + qk−2 > akFk + Fk−1 > Fk+1.

Proof of 3.0.7. Let [a0;a1, . . . ] be an infinite regular continued fraction.
Using Theorem 3.0.6 together with the above lemma, we get∣∣∣∣pk−1qk−1

−
pk
qk

∣∣∣∣ = 1

qk−1qk
6

1

FkFk+1
.

Since for k > 5, we have Fk+1 > Fk > k, then

∞∑
k=1

∣∣∣∣pk−1qk−1
−
pk
qk

∣∣∣∣ 6 ∞∑
k=1

1

FkFk+1
6 C+

∞∑
k=1

1

k2
<∞,

where C is some finite constant. This means that pkqk is a Cauchy se-
quence, and therefore converges to a real number.

The converse also holds.

Theorem 3.0.9. For every irrational number there is an unique regular
continued fraction whose k-convergents converges to it.
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Proof. Using the euclidean algorithm to generate a continued fraction
for α, we get an infinite number of coefficients. We also have a nonreg-
ular description α = [a0; . . . ,ak−1, rk], where rk is a remainder > 1,
such that brkc = ak. By Theorem 3.0.5, we find pk

qk
= pk−1ak+pk−2
akqk−1+qk−2

and
α = rkpk−1+pk−2

rkqk−1+qk−2
. Computing the difference gives us∣∣∣∣α−

pk
qk

∣∣∣∣ = ∣∣∣∣rkpk−1 + pk−2rkqk−1 + qk−2
−
akpk−1 + pk−2
akqk−1 + qk−2

∣∣∣∣
=

∣∣∣∣ (pk−1qk−2 − pk−2qk−1)(rk − ak)(rkqk−1 + qk−2)(akqk−1 + qk−2)

∣∣∣∣
=

∣∣∣∣∣ (−1)k(rk − ak)

(rkqk−1 + qk−2)(akqk−1 + qk−2)

∣∣∣∣∣
<
1

q2k
6
1

F2k
.

Note that we in the second to last step used that

ak < rk ⇒ rkqk−1 + qk−2 > akqk−1 + qk−2 = qk.

This shows that the difference goes to 0 as k goes to infinity, so pk
qk

converges to α.
We can show uniqueness in a way similar to what we did for the fi-

nite case. Assume there is another continued fraction β = [b0;b1, . . . ]
converging to α. Then there is a first k for which ak 6= bk. But con-
vergence means [a0;a1, . . . ] = [b0;b1, . . . ], implying

ak +
1

ak+1 +
1

. . .

= bk +
1

bk+1 +
1

. . .

.

This cannot be true since the fractional terms are smaller than 1. So
ak = bk, going against our assumption that α and β are different.

With the help of k-convergents, we are able to make statements
about approximability.

Theorem 3.0.10. The coefficients of an infinite continued fraction is even-
tually periodic iff it converges to a quadratic irrational.

The theorem can be naturally divided into two halves, the first be-
ing that eventually periodic continued fractions are quadratic irration-
als.

Proof of the first half of 3.0.10. Introduce α = [a0;a1,a2, . . . ,an], which
is the periodic continued fraction expansion of a real number, as well
as β = [b0;b1,b2, . . . ,bm,α], an eventually periodic continued frac-
tion containing α. Note that β is in regular form, despite having an
irrational coefficient, since α can be substituted for its coefficients.
Making use of Theorem 3.0.5 we find

α = [a0;a1, . . . ,an,α] =
αpαn + pαn−1
αqαn + qαn−1

.
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(This assumes that the theorem holds for non-integer terminal coeffi-
cients.) With some rewriting, this becomes

qαnα
2 + (qαn−1 − p

α
n)α− pαn−1 = 0,

revealing that α is the root of a quadratic equation. In a similar fash-
ion,

β =
αp
β
m + pβm−1

αq
β
m + qβm−1

.

From this we are able to express α in terms of β,

α = −
p
β
m−1 −βq

β
m−1

p
β
m −βqβm

,

which we can then substitute back into the quadratic equation for α,
yielding

qαn(p
β
m−1 −βq

β
m−1)

2

+ (qαn−1 − p
α
n)(p

β
m−1 −βq

β
m−1)(p

β
m −βqβm)

+ pαn−1(p
β
m −βqβm)2 = 0

The partial numerators and denominators are integers, and we can
see that β is at most squared, so β is the root of a quadratic equation.

The second part of the theorem, which can be attributed to Lag-
range, is that quadratic irrationals have periodic continued fraction
expansions, and to prove it we will require some intermediate res-
ults. The first thing we shall need is the notion of residue. As we are
working with real roots of quadratic equitions with integer coeffe-
cients, we can assume that α is a positive irrational number greater
than 1. We will write α = a0 +

1
α1

, where α1 = [a1;a2,a3, · · · ] is the
first residue of α. In general, we may define the k-th residue of α as
αk = ak +

1
αk+1

. This leads us to the following lemma.

Lemma 3.0.11. Let α be a positive irrational number greater than 1, solving
the equation

rx2 + sx+ t = 0,

for some r, s, t ∈ Z. Then the residues αk solve similar quadratic equations,

rkx
2 + skx+ tk = 0,

such that tk+1 = rk, and the discriminants s2k − 4rktk = s2 − 4rt are
independent of k.
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Proof. The idea is to find t1, s1, r1 solving the equation

t1(x− a0)
2 + s1(x− a0) + r1 = 0,

since then the residue α1 = 1
α−a0

satisfies

r1α
2
1 + s1α1 + t1 = 0,

which is can be seen by multiplying in (x− a0)
−4. One way to find

the coefficients is by equating the the above equation to the one in the
lemma statement, giving

t1(x− a0)
2 + s1(x− a0) + r1 = rx

2 + sx+ t.

After some shuffling around of the above, we can eventually identify
t1 = r, s1 = s+ 2ra0 and r1 = ra20 + sa0 + t. With the residue coeffi-
cients known, we are also able to confirm that s21 − 4r1t1 = s2 − 4rt.
With the equation

r1x
2 + s1x+ t1 = 0,

having the same form as the one in the lemma statement, we can
repeat the same procedure any number of times to find tk+1 = rk,
sk+1 = sk + 2rkak and rk+1 = rka2k + skak + tk.

We will also need a certain property of the rk.

Lemma 3.0.12. The sequence of rk, defined in the previous lemma, switches
signs an infinite number of times.

Proof. Assume instead that the sequence switches signs a finite num-
ber of times. Then there exists an n for which all rk,k > n have
the same sign. Since tk+1 = rk, all tk after that point must have the
same sign as well. Now recall sk+1 = sk + 2rkak. For k > n we can
substitute sk = sk−1 + 2rk−1ak−1 into the equation until we find

sk+1 = sn +

k∑
m=n

2rmam.

Since all ak are positive integers, and rk for k > n are integers with
the same sign, then for k sufficiently big, the sum

∑k
m=n 2rmam must

eventually have an absolute value greater than sn. After that point all
sk have the same sign as rk. So for k >> n, we must have that rk, sk
and tk all have the same sign. However since

rkx
2 + skx+ tk = 0,

has no positive real solutions when all coefficients have the same sign,
then contrary to construction αk ∈ R cannot be one of the roots. We
conclude that a finite number of sign changes leads to a contradiction.



continued fractions 17

We now have the tools to prove that quadratic irrationals have peri-
odic continued fraction expansions.

Proof of the second half of 3.0.10 (Lagrange). We have proved in the first
lemma that the discriminant is independent of k,

s2k − 4rktk = s2 − 4rt.

From the second lemma, and the fact tk+1 = rk, we know that there is
an infinite number of times that 4rktk is negative. This means s2− 4rt
is described as the sum of two positive integers an infinite number of
times. But there is only a finite number of ways to describe a natural
number in such a way, so at some point there must be a repetition
of the coefficients in the residue equations. Since rk, sk, tk uniquely
define rk+1, sk+1, tk+1 and αk+1, then after that repetition the coeffi-
cients must repeat periodically.

By now we have done quite a bit of work showing different aspects
of the continued fractions, where the main takeaway should be that
fractions on this form are well behaved and an efficient representation
of diophantine approximation. With that in mind, let us revisit some
of the concepts from our discussion on approximation in the first
section.

Theorem 3.0.13. All k-convergents for an irrational number α are best
approximation of α.

For the proof we shall use a property inherent to the way the con-
vergents of α converge, namely that they do so by overshooting.

Lemma 3.0.14. Even-numbered k-convergents approach α from below, that
is

p2k
q2k

<
p2k+2
q2k+2

< α.

Odd-numbered k-convergents approach α from above, that is

p2k−1
q2k−1

>
p2k+1
q2k+1

> α.

Proof. From Theorem 3.0.6 we know

pk−1
qk−1

−
pk
qk

=
(−1)k

qk−1qk
.

As qk is positive for all k, we see that p0q0 <
p1
q1

, p1q1 >
p2
q2

, . . . , p2kq2k <
p2k+1
q2k+1

.
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Using theorems 3.0.5 and 3.0.6 we can also relate pk+2qk+2
to pk
qk

,

pk+2
qk+2

=
pk+1
qk+1

−
(−1)k

qk+1qk+2

=
pk
qk

+
(−1)k

qkqk+1
−

(−1)k

qk+1qk+2

=
pk
qk

+ (−1)k
qk+2 − qk
qkqk+1qk+2

=
pk
qk

+ (−1)k
ak+2qk+1 + qk − qk

qkqk+1qk+2
=
pk
qk

+ (−1)k
ak+2
qkqk+2

.

Again, qk is always positive, as is ak, so the sequence of p2kq2k is strictly
increasing, and p2k+1

q2k+1
is strictly decreasing. With these two observa-

tions we find

p2k
q2k

<
p2k+2l
q2k+2l

<
p2k+2l+1
q2k+2l+1

<
p2l+1
q2l+1

,

for all k and l. The result follows since we know that the k-convergents
converge to α.

Proof of Theorem 3.0.13. Suppose we have some approximation of α,
such that

∣∣∣α− p
q

∣∣∣ < ∣∣∣α− pk
qk

∣∣∣ for some particular k. Then pk
qk

is only
a best approximation of α if q > qk, which is what we will show.
For the sake of convenience, let us assume that k is odd, although
a similar argument can be made if k is even. Then according to the
above lemma,

pk−1
qk−1

<
p

q
<
pk
qk

,

which we can rewrite as

0 <
p

q
−
pk−1
qk−1

<
pk
qk

−
pk−1
qk−1

,

and again

0 <
pqk−1 − pk−1q

qqk−1
<
pkqk−1 − pk−1qk

qkqk−1
.

Using Theorem 3.0.6 on the rightmost expression and that the numer-
ators are positive integers, we finally get

1

qqk−1
<

1

qkqk−1
,

or in other words, q > qk.

So the convergents of α are best approximations. However we earlier
defined best approximations as fractions p

∗

q∗ for which∣∣∣∣α−
p∗

q∗

∣∣∣∣ < ∣∣∣∣α−
p

q

∣∣∣∣



continued fractions 19

for all p < p∗ and q < q∗. These are more specifically best approx-
imations of the first kind. Approximations of this kind also include
rationals not in the convergents of α. For example, let us return to π,
for which the first few regular continued fraction coefficients are

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, . . . ],

where the approximation π ≈ 3 is given by only taking the first coef-
ficient, and π ≈ 22

7 = 3+ 1
7 is given by the first two coefficients, [3; 7].

Since
∣∣∣π− 13

4

∣∣∣ ≈ 0.11 < 0.14, clearly there is a best approximation

between 3 and 22
7 . Then what is special about the convergents? This

is where the difference between the forms
∣∣∣α− p

q

∣∣∣ and‖qα‖ comes in.

Definition 3.0.15. A best approximation of the second kind of a real
number α is a positive integer q∗ such that for all q < q∗,

‖q∗α‖ <‖qα‖ .

By this definition of best approximations, the approximation π ≈
13
4 gives‖4π‖ ≈ 0.43. This is not better than 3

1 , for which‖1π‖ ≈ 0.14.
Meanwhile π ≈ 22

7 is still considered a best approximation with
‖7π‖ ≈ 0.0089. In fact, the convergents of α are exactly the best ap-
proximations of the second kind, and in this sense the form ‖qα‖ is
slightly stronger as all approximations of the second kind are also
that of the first kind.

The next theorem seems like an appropriate ending to this chapter,
as it makes use of most things we have learned up to this point, and
will have some bearing on our understanding of our discussions later.

Theorem 3.0.16. An irrational number, α, is badly approximable iff the coef-
ficients of its continued fraction expansion are bounded. Since periodicity im-
plies boundedness, this can be considered as an extension of Theorem 3.0.10.

Proof. Let us begin by relating‖qα‖ to the convergents of α, using the
nonstandard continued fraction form,

α = [a0;a1, . . . ,an,αn+1],

where αn+1 is a real number. Then∣∣∣∣α−
pn

qn

∣∣∣∣ = ∣∣∣∣αn+1pn − pn−1
αn+1qn − qn−1

−
pn

qn

∣∣∣∣
=

∣∣∣∣αn+1pnqn + pn−1qn −αn+1pnqn − pnqn−1
qn(αn+1qn + qn−1)

∣∣∣∣
=

∣∣∣∣ pn−1qn − pnqn−1
qn(αn+1qn + qn−1)

∣∣∣∣ = 1

qn(αn+1qn + qn−1)
.

Now we multiply by qn, and get

‖qnα‖ =
1

αn+1qn + qn−1
<

1

an+1qn
.
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For the inequality, recall that αn+1 > bαn+1c = an+1. Using the
definition of badly approximable numbers, then α is badly approxim-
able if and only if there exists a c > 0, such that we for all qn ∈ Z

have

c

qn
<‖qnα‖ .

Now c
qn
< 1
an+1qn

, hence an+1 is bounded by 1/c.
That boundedness is a sufficient condition should become clear

if we consider best approximations. Combining Theorem 3.0.13 and
Lemma 3.0.14 we surmise that α lies closer to pn+1

qn+1
than pn

qn
, and in

particular that their midpoint is smaller than α, meaning

pn+1/qn+1 + pn/qn
2

< α.

As the left-hand side is positive, we are by subtracting pn
qn

and tak-
ing absolutes able to simplify the inequality to

∣∣∣∣pn+1/qn+1 − pn/qn2

∣∣∣∣ < ∣∣∣∣α−
pn

qn

∣∣∣∣ .
Next we note that

∣∣pn+1/qn+1 − pn/qn∣∣ = 1
qnqn+1

, therefore, after
multiplication by qn we can rewrite the inequality,

1

2qn+1
<‖qnα‖ .

In particular, pnqn being a best approximation means for all q < qn,

1

2(an+1 + 1)qn
<

1

2(an+1qn + qn−1)
=

1

2qn+1
<‖qnα‖ <‖qα‖ .

Since the coefficients are bounded from above, there exists an in-
teger M > supn an, and we may therefore choose c = 1

2(M+1) , and α
is badly approximable.

3.0.0.1 Additional notes

The euclidean algorithm, and therefore the calculation of continued
fractions, may be restated in matrix form. Consider again the steps in
the algorithm for some irreducible fraction p/q,

p = qa0 + r0,

q = r0a1 + r1,

r0 = r1a2 + r2,
...

rn−2 = rn−1an + 0.
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In general,

rk = rk+1ak+2 + rk+2.

We can get a system of equations by stating the tautology

rk+1 = rk+1 + 0 · rk+2.

Then, in matrix form we have rk

rk+1

 =

ak+2 1

1 0

rk+1
rk+2

 .

Starting from

p
q

, we can then find a matrix expression of the euc-

lidean algorithm, by iteratively rewriting the vectorp
q

 =

a0 1

1 0

 . . .
an 1

1 0

1
0

 .

This form is particularly interesting considering its relation to Möbius
transformations, which we will cover in Section 5.

An example of a continued fraction representation is that of the
golden ratio, φ = [1; 1, 1, 1, . . . ]. It was mentioned that φ is the worst
approximable number, which can be attributed to the fact that the
continued fraction coefficients are the smallest possible, and in gen-
eral that large continued fraction coefficients mean the corresponding
k-convergent is a large improvement over the previous convergent in
terms of approximating α.

While there does not seem to be a tractable pattern to the contin-
ued fraction coefficients of π, there are several more well behaved
continued fractions if the restriction of regularity is dropped. One
such fraction is

π =
4

1+ 12

3+ 22

5+ 3
2

...

,

where the coefficient places are filled by the odd numbers, and the
numerators are given by the squares of the natural numbers.

The Gauss map is ergodic, and it is possible to calculate the distri-
bution of ak. Recall that the coefficients of a real number α could be
calulated by repeated application of the Gauss map, i.e. an = bTn(α)c.
From this we are able to define the measure mn(x) over the set of real
numbers α ∈ [0, 1] where Tn(α) < x. Then we introduce the following
theorem
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Theorem 3.0.17 (Gauss-Kuzmin). For 0 6 x 6 1,

lim
n→∞mn(x) = ln(1+ x)

ln 2
.

We may from this calculate the probability that an = k, denoted
P(k) as

P(k) = lim
n→∞mn

(
1

k

)
−mn

(
1

k+ 1

)
=

1

ln 2
ln
(
1+

1

k(k+ 2)

)
.

With the use of ergodic theory it is then possible to prove that the coef-
ficients for almost all real numbers have the same geometric mean,

K0 = lim
n→∞ (a0a1 · · ·an)1/n.

called Khinchin’s constant.



4
S Y M B O L I C S E Q U E N C E S

In the following sections we will examine two different systems re-
lating back to continued fractions. The first has its roots in symbolic
sequences.

Definition 4.0.1. A binary symbolic sequence is a sequence that can be
represented as a sequence of zeroes and ones,

σ = σ1σ2 . . .

where σk ∈ {0, 1}.
We call contiguous subsequences of σ words. For example, given

that σ = 0010100 . . . , we say that 101 is a word of σ with length 3.
A symbolic sequence is said to be periodic if for some δ > 0, and

for all n, we have σn = σn+δ. The period of the sequence is then the
smallest such δ that satisfies the equality.

We are particularly interested in a specific subset of the binary sym-
bolic sequences which are called the Sturmian sequences. They may
be characterised by their complexity.

Definition 4.0.2. The complexity of a symbolic sequence σ is given
by the complexity function pσ(n), which is the number of different
words of length n in σ. By convention we use pσ(0) = 1, indic-
ating the empty word. As an example, take the periodic sequence
σ = 001001001 . . . Then we can enumerate all subwords of length 2:
00, 01, and 10. Therefore, pσ(2) = 3.

The complexity of σ is loosely related to encoding (or substitut-
ing) the sequence using only words of length n. Again using σ =

001001001 . . . , we can use the encoding a = 00, b = 10, and c = 01,
giving σ = abcabcabc . . . .

Interestingly, if we instead use words of length 3, we can encode
the sequence by a = 001 due to periodicity. This gives σ = aaa . . . ,
even though pσ(3) = 3.

Theorem 4.0.3. A sequence is eventually periodic if for some n,

pσ(n+ 1) = pσ(n).

By eventually periodic, we mean that for some k > 1, σ̂ = σkσk+1σk+2 . . .

is periodic. Additionally, iff σ is eventually periodic, then pσ is bounded.

Proof. Assume that n is the smallest number such that pσ(n) = pσ(n+
1) = m for some sequence σ. Then each word in σ of length n+ 1

23
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is a word of length n, with only one of either a 0 or 1 appended.
For example take some sequence starting with σ = 001 . . . , where
pσ(2) = pσ(3) = 3. Since 001 is 00 with a 1 appended, 000 can never
occur, otherwise the complexity would have increased. As a side note,
the sequence is still not uniquely defined as both 001001001 . . . and
001010101 . . . fulfill the given complexity requirements. Now con-
sider pσ(n+ 2). We know that there are exactly m words of length
n+ 1. However, we also know that any m consecutive symbols un-
ambiguously spell out the next symbol. So by taking all but the first
symbol of a word of length n + 1, we can conclude that for each
such word of length n+ 1, there is exactly one word of length n+ 2.
We can inductively repeat the same argument, and so we find that
pσ(n + k) = m for all k > 0. As we move along the sequence, we
will eventually return to a word of length n occuring earlier due to
the fact that there are only a finite number of words of any particular
length. Since n symbols uniquely implies the following symbol, the
sequence, from that point on, will periodically repeat.

Conversely, if σ is eventually periodic, then pσ(n) is bounded, as
any sequence with period n, by a similar argument to above, has a
finite number of words, and any non-periodicity at the start of the
sequence is also only able to contribute a finite number of words.

As a corollary, a sequence is periodic if for some n, pσ(n) = n, im-
plied by the fact that complexity functions are monotonously increas-
ing. Expressed in another way, for the smallest n satisfying pσ(n) = n,
we have pσ(n− 1) = n. This is since if pσ(n− 1) was smaller, n could
not be the first time for which pσ(n) = n. If it was larger, pσ(n) could
not be equal to n. Boundedness gives the converse, namely if σ is peri-
odic, then ∃n,pσ(n) = n. From this, one could imagine there might
be sequences where the complexity is always “just out of reach” of
periodicity, which is essentially the definition of Sturmian sequences.

Definition 4.0.4. A Sturmian sequence σ is a sequence where for all
n, pσ(n) = n + 1. In other words, they have the smallest possible
complexity for each n, without being periodic. Since by definition
pσ(1) = 2, all Sturmian sequences are binary.

It is not obvious that Sturmian sequences actually exist, but they
do in fact turn up in many different contexts. Let us examine one
way of generating Sturmian sequences, which is closely related to
Diophantine approximations.

Definition 4.0.5. Rotation sequences occur in the circle shift map.
Consider such a map, Sα : S1 → S1, x 7→ {x+α} (recall that {x} is used
to denote the fractional part of x). The set S1 should be considered to
be the interval [0, 1), isomorphic to the unit circle in the plane. Now
divide S1 into two intervals I0 = [0, 1 − α) and I1 = [1 − α, 1), see
Figure 1, and build a sequence by iterating Sα(x). When x ∈ I0, we
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I1

I0

1−αα

0

Figure 1: Rotation sequences can be modeled as movements on a circle.

append a 0 to our sequence, and when x ∈ I1 we append a 1. This
then forms the rotation sequence for α.

Incidentally, these sequences may also be expressed as

σn = b(n+ 1)αc− bnαc.

In general we would leave the starting point as a variable, i.e. x0 =
β, but for our purposes we will assume x0 = 0. Also, for convenience
we will from now on only work with irrational α, since rational values
repeat periodically, and are not as interesting as the irrational case.

As alluded to, these sequences are a kind of diophantine approx-
imation. Should we find a qα, q ∈ N, such that {qα} ≈ 0 (or also
{qα} ≈ 1), then p ≈ qα or p

q ≈ α for some p. The circle shift map
amounts to a multiplication modulo 1, so Sqα(0) = {qα}. With the
intent of using this common ground to fully connect diophantine ap-
proximation and rotation sequences, we might come up with the fol-
lowing scheme, in which we iteratively find moments in the rotation
sequence that get closer and closer to 0 (or equivalently, 1).

We are not interested in the first step, x0 = 0, since this in diophant-
ine approximation corresponds to q = 0, so we begin with x1 = α. Let
us find the first time that we are closer to 1 than α. We cannot com-
pletely step over I1 using only rotations of length α, so this event
coincides with the first time we enter I1. Let us write the rotation se-
quence up to that point as C1 = 0a1−11, where a1 is the number of
rotations to get to there. The position on the circle can then be written
as a1α, which in turn can be thought of as a rotation in itself.

I1
1−αa1α1
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1

a1α

1−α
1a1α2− (1+ a1)α

y

x

Figure 2: The first return map of I1 under the circle shift map, Sα(x).

Now we ask, when is the first time in the sequence that we are
closer to 1 than a1α? After some thinking we might deduce that it
will be at a point in the interval [0, 1− a1α), the left half of the inter-
val (a1α, 1−a1α) of all values closer to 1 (or 0) than a1α. Consider in
particular where we are after another a1 steps, which intuitively cor-
responds to a backwards rotation of length 1− a1α. Either we wind
up back in I1, or we fall into I0, which may be visualised by the first
return map of I1 under Sα, seen in Figure 2. The first return map
takes each point in I1 to the point of its first return to I1, subject to
iteration under Sα.

We can see two distinct cases. In the case for values in I′1 = [1−

α, 2 − (1 + a1)α), since we do not make a complete lap around the
circle in a1 steps, we need one more step to come back into I1 com-
pared to the other case. However, if we put I′1 into the shift map,
Sα(I

′
1) = [0, 1− a1α), we note that we in fact get closer than a1α in

only 1 iteration. The points in I′0 = [2−(1+a1)α, 1) on the other hand
will return to I1 in exactly a1 steps, and must therefore have landed
further away from 1 when they come back to I1. We must also not
have landed closer at any point on our walk through I0, since that is
covered by the points in I′1. So we can be content that the points in I′0
do not land closer to 0 during their path around the circle, and may
thus repeat a1 rotations as many times as necessary until they land
in I′1. In conclusion, the number of times we need to rotate to come
closer to 1 than a1α for the first time is of the form n ·a1α+ 1, where
n > 1 is an integer.

If we in I′0 and I′1 for illustrative purposes substitute 1 for 0, a1α
for α, and 1 − α for 1 we should find ourselves in a very familiar
situation. We get I1 ∼ [1, 0), I′0 ∼ [1−α, 0), and I′1 ∼ [1, 1−α). Ignoring
the reversed orientation of the intervals, this is the same setup as we
started with if we take I1 as the entire circle, I′0 as I0 and I′1 as the
new I1.
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From this point of view, it makes sense to make a renormalisation
of I1, mapping it from [1 − α, 1) back to S1, i.e. the circle [0, 1). By
doing so we can then recast the problem of finding the next closest
point to 0 in the sequence to the problem of finding a1. Define a new
rotation map for the renormalised circle. We want the new rotation
map to correspond to the rotation a1α in the old circle, and so find
α2 = 1−a1α

α , where we have reversed the rotation so it is the same
direction as in the original. Our new intervals become I ′0 = [0, 1−α2),
and I ′1 = [1−α2, 1). Again, we write the sequence up to and including
the first 1 in this new rotation as C2 = 0a2−11. We can then translate
this back to symbols in our original sequence by noting that each
zero in C2 corresponds to a C1 in σ. Then we need to make one more
α2-corresponding rotation in the original circle to move out of I1,
corresponding to 0a1 in σ, and a final α rotation giving 1. These last
two steps can be rewritten as 0a11 = 00a1−11 = 0C1. To summarize,
the first time the sequence gets closer to 1 than a1α, is after C1C2,
where we have denoted the added steps after reaching a1α as C2 =

Ca2−11 0C1.
It should not be an unreasonable proposition that we can iterat-

ively repeat the renormalisation inside each most recent renormalised
circle, getting us closer and closer to 1, giving a sequence of Cn. In
that case, σ = C1C2C3 . . . , and we will find generally that

C1 = 0
a1−11,

C2 = C
a2−1
1 0C1,

...

Cn = Can−1n−1 Cn−2Cn−1

Recall that the an were found by making the smallest number of
rotations of length α that were needed to get closer to 0. We have
also related these rotations to diophantine equations, and we may
through this connection view the rotation sequence as a visualisation
of the euclidean algorithm. Specifically, the renormalisations corres-
pond to shifting the focus to the rest, and the rotations to finding the
integer part. Because of this, the an are exactly the continued fraction
coefficients for α.

Theorem 4.0.6. All rotation sequences are Sturmian and every Sturmian
sequence can be uniquely encoded in rotation sequences by choice of an irra-
tional number α.

Proof. We need to prove that any rotation sequence, R, has the correct
complexity function. Let us first simply remark that there are two
words of length 1 in the rotation sequence, namely 0 or 1. As inductive
step, assume there are n+ 1 unique words of length n in R. Then we
need to show that there are exactly n+ 2 words of length n+ 1.
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Our strategy will depend on the fact that every word of length n
also appears in a word of length n+ 1, but with either an extra zero
or one at the end. Thus we need to demonstrate that exactly one of
the words of length n appears twice among the longer words, in one
case extended by zero and in another by one. This word cannot end
in a 1, since a point in I1 always ends up in I0 after one rotation. By
similar reasoning, we may also conclude that the word must end in
a neighbourhood of 1− 2α, as that is the only set of point for which
the next rotation straddles the boundary between I0 and I1. We have
previously shown that the rotation sequence gets arbitrarily close to
0 on both sides, and it therefore also gets arbitrarily close on either
side of 1− 2α, two rotations earlier.

The last step of the proof is to substantiate the claim that words
ending in a sufficiently small neighbourhood of 1− 2α are the same,
or equivalently, small changes of the endpoint (or starting point) on
the circle of such words does not change the sequence. This is true,
since otherwise a previous point in the rotation sequence crosses
between I0 and I1 at the exact same time as the endpoint crosses
1− 2α. Let us instead assume such a point exists, which we can write
as p = 0 = kα+ β, for some choice of β and 0 < k < n. This im-
plies (k+ (n− k))α+β = nα+β = 1− 2α is reachable from p. Then
(n + 2)α + β = 0 = p. But this means that the rotation has gone
from p back to itself, and therefore α must be rational, which is a
contradiction. So in conclusion there is a neighbourhood containing
1− 2α such that words ending there are the same. But words ending
before 1− 2α will next rotation append a 0 to the rotation sequence,
and words ending after will append a 1. Since this neighbourhood is
unique in this property, only one word of length nwill be extended by
both 0 and 1, and the sequence as a whole is therefore Sturmian.

Additional Notes

A variant of the rotation sequence is the cutting sequence in the euc-
lidean plane.

Definition 4.0.7. A cutting sequence is a sequence built by taking a
line, y = αx + β, on an integer grid with the line going from the
origin to positive infinity. For each vertical gridline the line intersects
(cuts), a 0 is appended to the sequence, and for each horizontal line,
a 1. If α+ β is rational, the line might at some point cut a horizontal
and a vertical gridline at the same time, at which point either 0 or 1
may be appended at will.

These kinds of sequences are also Sturmian, and it is therefore pos-
sible to transform the α and β between the cutting sequence and rota-
tion sequence such that both yield the same Sturmian word. Specific-
ally, let us distinguish the rotation sequence parameters by writing
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αR and βR. The corresponding cutting sequence then has parameters
αC = αR

1+αR
and βC = βR

1+αR
. Since αC and αR is not the same, it is

important to mind which representation is used when referring to a
Sturmian sequence by only α.

A concrete example of a Sturmian sequence is the Fibonacci word,
which is the word corresponding to the cutting sequence with α =

1/φ2. The Fibonacci word is formed by letting S0 = 0 and S1 = 01,
Sn = Sn−1Sn−2 and then letting n go to infinity.

As mentioned earlier, Sturmian sequences also occur in other con-
texts, and one such variant is the Beatty sequences.

Definition 4.0.8. A Beatty sequence, denoted B, is a sequence formed
by taking any positive irrational number, θ, and writing down the
integer parts of its integer multiples, plus some initial value given by
γ ∈ [0, 1). Algebraically this can be expressed by

Bθ =
(
bθ+ γc, b2θ+ γc, b3θ+ γc, . . .

)
.

Sturmian sequences are the characteristic sequences of Beatty se-
quences, in the sense that the Sturmian terms indicate the difference
between consecutive Beatty terms. Specifically,

b(n+ 1)θ+ γc− bnθ+ γc,

can only take one of two values, bθc or bθc+ 1. In other words the
differences form a binary sequence, which we claim is Sturmian. This
is easy to show for θ ∈ [0, 1], since the difference forms exactly a
rotation sequence, and by noting that the ordering of the symbols
only depends on the fractional part, the claim must be true for other
θ as well. Beatty sequences have other interesting properties, for ex-
ample if θ is combined with another irrational number ψ, such that
1
θ +

1
ψ = 1, then the Beatty sequences for both numbers contain every

integer exactly once.





5
H Y P E R B O L I C G E O M E T RY

The next system we shall explore is found in the tesselation of the
hyperbolic plane. To understand what this means we will need some
basic knowledge of what hyperbolic geometry is, starting with how
to model the hyperbolic plane. Locally we can think of it as similar to
the ordinary euclidean plane. Globally however, there is more space
inbetween any two points; one might imagine two persons moving
in different directions from the same starting point. They would ex-
perience the distance between them increasing exponentially, as op-
posed to linearly. More formally, given a surface, M, and a metric
ds2 = E(x,y)dx2 + F(x,y)dxdy +G(x,y)dy2, M is said to be hyper-
bolic if it has constant negative Gaussian curvature, K, defined by

K = −
1

2
√
EG

(
δ

δx

E′x√
EG

+
δ

δy

G′y√
EG

)
.

All two-dimensional metrics may be expressed by the above form,
with constant curvatures typically normalised to 1, 0, or −1, depend-
ing on sign. Another characterisation of E and G can be found by
letting X(x,y) be some orthogonal parametrisation of M. Then we
can calculate E = (X′x,X′x) and G = (X′y,X′y). In other words, x and
y can be thought of as a coordinate system over M, from which the
tangent plane spanning vectors X′x and X′y are then involved in calcu-
lation of the curvature. A more indepth explanation on the topic can
be found in the lecture notes by Sigmundur Gudmundsson [9].

Since the hyperbolic plane is difficult to embed in euclidean space,
we will begin with a model of it in the form of the upper half plane,
H =

{
z ∈ C : Im(z) > 0

}
, also called the Lobachevsky plane. To meas-

ure distance in H we shall use the metric ds =
|dz|

Im(z) =

√
|dx|2+dy2

y .
The length of a path γ is then defined by l(γ) =

∫
γ ds. By paramet-

rising as γ(t) = x(t) + iy(t), t ∈ [0, 1], we have

l(γ) =

∫1
0

1

y(t)

√(
dx

dt

)2
+

(
dy

dt

)2
dt.

We define the distance between two points p,q ∈H as

dH(p,q) = inf
{
l(γ) : γ(0) = p,γ(1) = q

}
.

We claim that dH(p,q) is a metric.

Proof. Firstly, l(γ) is an integral over positive values, so dH(p,q) > 0.
Because Im(z) = y > 0, if dH(p,q) = 0 the parametrised form shows

31
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that there must be no change of x or ywhen t varies, i.e. dxdt = dy
dt = 0.

Hence γ(0) = γ(1), so a distance of zero implies p = q. Since the
integral cannot be smaller than 0, p = q implies a distance of zero.

Secondly, it is possible to substitute t for u = 1− t in the paramet-
rised integral, which gives

l(γ(t)) =

∫1
0

1

y(t)

√(
dx

dt

)2
+

(
dy

dt

)2
dt

=

∫0
1

1

y(u)

√(
dx

du

)2
+

(
dy

du

)2
du

=

∫1
0

1

y(1− t)

√(
dx

dt

)2
+

(
dy

dt

)2
dt = l(γ(1− t)).

The set of all paths from p to q are the same paths, but with reversed
direction, going from q to p, meaning dH(p,q) = dH(q,p).

Thirdly, the triangle equality holds. Suppose in contradictory terms
that dH(p, r) > dH(p,q) + dH(q, r). Then there exists at least two
paths, γ1 and γ2, such that dH(p,q) = l(γ1) and dH(q, r) = l(γ2).
Thus the concatenation of γ1 and γ2, call it γ1 + γ2, connects p and
r, but we also have l(γ1 + γ2) = dH(p,q) + dH(q, r). This contradicts
the initial supposition, and so dH(p, r) 6 dH(p,q) + dH(q, r).

With that, all conditions of a metric have been shown to hold.

Now that we have a metric at hand we are prepared to check that
H is an accurate representation the hyperbolic plane, by confirming
that the curvature is −1 as expected. First we identify E = G = 1

y2
.

We will also need the partial derivatives, E′x = 0, G′y = − 2
y3

. The
gaussian curvature is then

K = −

√
y4

2

(
δ

δx
(0 ·
√
y4) −

δ

δy

2
√
y4

y3

)
= −

y2

2
· 2
y2

= −1.

So H has a constant negative curvature! With that we will introduce
a characterisation of lines that is workable in the context of curved
surfaces.

Definition 5.0.1. A path is called geodesic if it locally minimises dis-
tances. This can be interpreted as a path traced by only moving for-
wards.

In hyperbolic space, minimising distance locally is the same as min-
imising distance globally, so a geodesic is a shortest path between
points. Contrast this with the geodesics on a torus, where there are
infinitely many geodesics connecting two points, but only one min-
imizing distance.

Just as in euclidean geometry, linear transformations serve an im-
portant role in both defining and working in the hyperbolic plane.
As such, the following definition introduces one of (if not the most)
important concepts in hyperbolic maps.
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Definition 5.0.2. A Möbius map is a map of the form

f : Ĉ→ Ĉ, z 7→ az+ b

cz+ d
,

where a,b, c,d ∈ R and ad− bc 6= 0.

Here we also define Ĉ = C ∪∞, where f(∞) = lim|z|→∞ f(z), and
z
0 = ∞ when z 6∈ {0,∞}. For z zero or infinity, we leave z

0 undefined.
We note in particular that

f(∞) = lim
|z|→∞

az+ b

cz+ d
=
a

c
,

which always holds, since in the case a and c are 0, then ad− bc = 0,
and as such we are not working with a Möbius map. We also have

f

(
−
d

c

)
=

−a · dc + b

0
=∞,

which is well defined because −a · dc + b = 0 also implies that ad−

bc = 0.
Möbius maps are particularly convenient to work with as they ful-

fill certain helpful properties.

Definition 5.0.3. The conformal (angle preserving) bijections of Ĉ

are denoted Aut(Ĉ), the automorphism group of Ĉ. Automorphisms
are angle preserving, fully invertible, structure-preserving maps (iso-
morphisms) from a space to itself.

Theorem 5.0.4. Möbius maps are bijective and conformal. In other words,
Möbius maps make out a subset of Aut(Ĉ).

Proof. Möbius maps are invertible in Ĉ by f−1(z) = dz−b
−cz+a , since

f(f−1(z)) =
a dz−b−cz+a + b

c dz−b−cz+a + d
=
adz− ab− bcz+ ab

cdz− bc− cdz+ ad
=

(ad− bc)z

ad− bc
= z.

Note that f−1(ac ) is well defined because d = bc
a ⇒ ad− bc = 0. We

also confirm that

f−1(f(−
d

c
)) = f−1(∞) = −

d

c
,

and

f−1(f(∞)) = f−1(
a

c
) =

da
c − b

0
=∞.

This implies that the maps are bijective.
The derivative of a Möbius map is

f′ =
ad− bc

(cz+ d)2
,

which, since ad− bc 6= 0, shows that the map is complex differenti-
able everywhere except at 0. That it is conformal then follows from it
being holomorphic.
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From the proof we also get an important second result that the
inverse of a Möbius map is also a Möbius map.

It might have occured to observant readers that the condition ad−
bc 6= 0 is strangely reminiscent of determinants from linear algebra.
Indeed, there is more than a superficial connection between the two.

Theorem 5.0.5. The map

F : GL2(C)→ Aut(Ĉ),

a b

c d

 7→ (
f(z) =

az+ b

cz+ d

)
is a homomorphism with respect to matrix multiplication and function com-
position, where the set GL2 is the (general) group of linearly independent
2× 2-matrices. This means that the composition of two Möbius maps can be
interpreted as a matrix multiplication.

Proof. Assume we have two Möbius maps, f(z) =
az+ b

cz+ d
, and g(z) =

sz+ t

uz+ v
. Then let

A =

s t

u v

a b

c d

 =

as+ ct bs+ dt

au+ cv bu+ dv

 .

We also have

(f ◦ g)(z) =
saz+bcz+d + t

uaz+bcz+d + v

=
asz+ sb+ ctz+ td

auz+ ub+ cvz+ dv
=

(as+ ct)z+ bs+ dt

(au+ cv)z+ bu+ dv
,

which makes it clear that F(A) = (f ◦ g)

As defined, F takes matrices from GL2(C) to Möbius maps, and
had Möbius maps been a strict subset of Aut(Ĉ) it might have been
reasonable to introduce notation to denote the set of all Möbius trans-
formations, so as to make F a surjection. However, the automorphisms
of Ĉ and the Möbius transformations are one and the same.

Theorem 5.0.6. The map F is surjective.

We will leave this proof unsolved in order to not stray too far from
our intended discourse on hyperbolic geometry, as it requires theory
from analysis.

The crux of this theorem is in the given type of F, namely it is from
matrices to Aut(Ĉ) rather than to Möbius transformations. To put it in
other words, all transformations in Aut(Ĉ) can be naturally expressed
as matrices, but there is some ambiguity preventing F from being a

bijection, since

ka kb

kc kd

 and

a b

c d

 map to the same element in
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Aut(Ĉ). Instead we can restrict our use of matrices to those with a
determinant of 1, i.e.

SL2(C) =
{
A ∈ GL2(C) : det(A) = 1

}
.

This still allows both A and −A, so we form the quotient set

PSL2(C) = SL2(C)/± I,

meaning multiplication by −I gives members of the same equival-
ence class. In simpler terms, A and −A are considered to be the same
matrix in PSL2(C). By only allowing matrices from PSL2(C), F be-
comes an isomorphism from such matrices to Aut(Ĉ), and we will
from here on out use matrices to denote members of Aut(Ĉ) inter-
changably with function notation.

Theorem 5.0.7. Möbius transformations can be decomposed into three basic
maps:

translation f(z) =

1 α

0 1

 = z+α where α ∈ R,

dilation f(z) =

β 0

0 1
β

 = β2z, where β ∈ R+,

inversion f(z) =

0 −1

1 0

 = −1/z.

Proof. Suppose T =

a b

c d

. Then define the following

T1 =

c 0

0 1
c

 , T2 =

1 d
c

0 1

 ,

T3 =

0 −1

1 0

 , T4 =

1 a
c

0 1

 .

Note in particular that all of them are variants of the three basic maps
defined in the theorem statement. Then,

T4T3T2T1 = T4T3

c d

0 1
c


= T4

0 −1c
c d


=

cac ad
c − 1

c

c d

 =

a b

c d

 .
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In the last step we made use of ad− bc = 1, implying b = ad−1
c .

For the sake of completeness, it should be mentioned that Möbius
maps are typically defined in a more general manner, where α and
β are allowed to take complex values. In particular, Aut(Ĉ) is often
defined to allow the coefficients a,b, c,d to be complex. The proof
given here should still hold for that case. However, as we now move
on to demonstrating the relationship between geodesics and Möbius
transformations in H, we must require the coefficients to be real.

Theorem 5.0.8. The set consisting of vertical lines contained in H and
semicircles in centered on R contained in H is closed under T ∈ Aut(Ĉ).

Proof. We only need to show this holds for each of the three basic
maps from the previous theorem. The statement is trivially true for
translation and dilation.

Then remains inversion. As a side note, in the theorem statement
we are not entirely specific on the conditions for when a line should
go to a circle and when it should go to a line, and so it is possible to
prove the theorem in this case in a relatively simple manner. We shall
nonetheless take a longer route since it is more instructive.

A vertical line in H may be described by z = c + iy, where c is
constant, and y ∈ [0,∞]. Then

−
1

z
= −

1

c+ iy
=

−c+ iy

c2 + y2
.

Now we perform the variable substitution

y =

√(
1

sin2 t
− 1

)
c2,

such that t ∈ [0,π/2], giving

1

c2 + y2
=

1

c2 + c2

sin2 t
− c2

=
sin2 t
c2

.

Furthermore,

−
1

z
=

−c+ iy

c2 + y2

= −
sin2 t
c

+ i

√
1

sin2 t
− 1|c|

c2
sin2 t

=
cos(2t) − 1

2c
+ i

√
(1− sin2 t) sin2 t

|c|

=
cos(2t) − 1

2c
+ i

cos t sin t
|c|

=
cos(2t) − 1

2c
+ i

sin(2t)
2|c|
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Assuming c 6= 0, this describes a semicircle contained in H, as the
imaginary part is never negative, and t = 0 gives −1z = 0 (the origin),
and t = π/2 gives −1z = − 1

2c , meaning the endpoints lie on R ∪ {∞}.
When c = 0, we have the imaginary axis, for which −1z = i

y , that is,
the imaginary axis maps to itself.

It remains to show that circles are mapped to circles. The equation
for a circle centered at α in the complex plane can be described by

(z−α)(z−α) = zz−αz−αz+αα = r2.

Then if T(z) = ω = −1z , we get z = − 1
ω , and

1

ωω
−
α

ω
−
α

ω
+αα = r2.

Assuming α 6= r,

1−αω−αω+(|α|2− r2)|ω|
2 = 0⇒

|α|2 − r2

(|α|2 − r2)2
−
αω+αω

|α|2 − r2
+|ω|

2 = 0

Using αω+ αω = 2Re(ωα), we can rewrite this is in the form of a
completed the square, giving∣∣∣∣∣ω−

α

|α|2 − r2

∣∣∣∣∣
2

=
r2

|α|2 − r2
,

which is the equation for a circle. When instead |α| = r, the circle cuts
through the origin. As noted in the case for the line, any vertical line
maps to such a circle, and since T(T(z)) = z, circles cutting the origin
maps to a vertical line.

Again for the sake of completeness, the same theorem can be stated
in a more general manner when working with all of C (rather than
only H) and complex Möbius map coefficients. Then the theorem
states that any line and circle maps to either a line or circle.

Let us now turn back to H, where we will take one more step
towards finding the geodesics.

Theorem 5.0.9. The maps in Aut(Ĉ) act as isometries on H.

Proof. Let T =

a b

c d

, and w = T(z) = az+b
cz+d . Then

dw

dz
=
a(cz+ d) − (az+ b)c

(cz+ d)2
=
ad− bc

(cz+ d)2
=

1

(cz+ d)2
,
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meaning dw = dz
(cz+d)2

. Also, writing z = x+ iy gives

w =
ax+ iay+ b

cx+ icy+ d

=
(ax+ b+ iay)(cx+ d− icy)

(cx+ d+ icy)(cx+ d− icy)

=
ac(x2 + y2) + x+ iy+ bd

(cx+ d+ icy)(cx+ d− icy)

=
ac|z|2 + z+ bd

|cz+ d|2

Therefore Im(w) =
Im(z)

|cz+d|2
. By the definition of curve length in H,

l(T(γ)) =

∫
T(γ)

|dw|

Im(w)
=

∫
γ

|cz+ d|2

Im(z)
·

|dz|

|cz+ d|2
=

∫
γ

|dz|

Im(z)
= l(γ).

The last theorem before we are ready to deal with the geodesics
explains the automorphisms, Aut(H) =

{
T ∈ Aut(Ĉ) : T(H) = H

}
.

Theorem 5.0.10. The automorphisms of H are Aut(Ĉ).

Proof. Up until this point we have only used H as a model for the
hyperbolic plane. Another very common model is the Poincaré disk,

D =
{
z ∈ C : |z| < 1

}
.

It is easy to swap between H and D by using the Cayley transform,

f(z) =
z− 1

z+ 1
.

We can see that the Cayley transform moves H to D since for ex-
ample f(0) = −1, f(1) = −i and f(∞) = 1. Now, since R ∪∞ can be
considered a circle with infinite radius, and since Möbius transform-
ations map circles to circles, the Cayley transform must map R to the
unit circle. In a similar fashion f(i) = 0, so the rest of H goes inside
the unit disk, as opposed to around it. With the help of the Cayley
transform we can then apply all we know in H on D and vice versa.

According to Schwarz Lemma, a holomorphic map f : D → D

is an automorphism if it is isometric with respect to the Poincaré
metric, which in turn can be thought of as the metric in D keeping
distances in H constant under the Cayley transform. We know that
maps in Aut(H) are isometric, so if we take maps from Aut(Ĉ) we
can compose them with the Cayley transform to find isometric, and
therefore automorphic maps in D. Möbius maps are fully invertible,
so we may use the inverse Cayley transform to show that we also
have the automorphism property in H.
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Theorem 5.0.11. Geodesics in H are either vertical lines or circular arcs
centered on the real axis.

Proof. First let us consider the case of vertical lines. Consider two
points on the imaginary axis, ai and bi such that b > a. The vertical
path connecting them, γab = iy for y ∈ [a,b], has length

l(γab) =

∫b
a

1

y

√
dx2 + dy2 =

∫b
a

1

y
dy = log

b

a
.

Any deviation from the vertical path will simply add to the integral,
as 1y is positive and constant with respect to x.

Now let us consider circular arcs. We know that the positive ima-
ginary axis is a geodesic, and any Möbius mapping of the imaginary
axis will also be a semicircle (or line). Möbius maps are isometries, so
any map of = will also be a geodesic. Semicircles and lines are closed
under these transformations, and by inversion, translation and scal-
ing we can reach any circular arc centered on R using =.

Finally, all isometries in H are Möbius maps. Therefore, all geodesics
must be expressible as a transformation of the imaginary axis through
a Möbius transformation, which we have just described. Hence there
are no geodesics other than those vertical lines and semicircles.

As geodesics are essentially a generalisation of lines, we are now
able to discuss tilings of H. Analogous to the grid in the euclidean
plane for the cutting sequence, let us introduce such a tiling, called
the Farey tesselation.

Definition 5.0.12. The Farey tessellation, denoted F, is a tiling of the
hyperbolic plane, and can be constructed in H with the following
steps.

1. Start with the set F0 of geodesics connecting n ∈ Z to∞. These
are vertical lines. Label each integer n by n

1 , and call adjacent
integers neighbours.

2. Connect each pair of neighbours with the geodesic that has both
neighbours as an endpoint. Add these geodesics to Fk−1, creat-
ing Fk.

3. For each pair of neighbours (pq , rs), mutually replace the other
neighbour with the number at pq ⊕

r
s
:= p+r

q+s as a new neighbour.
Take for example 11 and 2

1 . Then 1
1 replaces 21 by 1+2

1+1 = 3
2 as its

new neighbour, and 2
1 replaces 11 by 3

2 . The fraction p+r
q+s should

be considered both a position on R and a label.

4. Repeat steps 2-3.

The tiling is then F = limk→∞ Fk, as seen in Figure 3, where it is
illustrated after four iterations.
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=z

<z

Figure 3: The Farey tesselation after four iterations, for values Re(z) ∈ [0, 2].

Before we prove that F actually tiles H, let us discuss how we
should look at it intuitively. Let us make clear what the tiles are. Each
time at step 3 in the construction, we take a pair of neighbours, (pq , rs)
and make pairs (pq , p+rq+s) and (p+rq+s , rs). After we return to step 2, all
three pairs are connected by a geodesic, and it is these that together
forms hyperbolic equivalent of a triangle since the geodesics pair-
wise share one endpoint (label), and no endpoint is shared between
all three. Note also that the first time we reach step 2, we can form
triangles from F1, namely (n1 , n+11 ,∞). As such, the tiles of F are tri-
angles. Since all corners lie on R ∪∞, which corresponds to a circle
with infinite radius in the euclidean plane, we call the triangles ideal.

For the triangles to be tiles of the Farey tessellation they collectively
need to fill up H entirely, without overlaps. Because of this, each
triangle can be taken as a fundamental domain under PSL2(Z), as
we will show in the following theorem where we will use the triangle
∆ = (0, 1,∞).

Theorem 5.0.13. The farey tiling F tiles H, and the automorphisms of F
are Aut(F) = PSL2(Z).

Proof. Consider T =

r p

s q

 ∈ PSL2(Z) such that pq <
r
s are connec-

ted by a geodesic in F. Then we calculate T(0) = p
q , T(∞) = r

s , and
T(1) = p+r

q+s , which means the triangle ∆ = (0, 1,∞) maps to that of
T(∆) = (pq , p+rq+s , rs). Since (pq , rs) were chosen arbitrarily from F, each
triangle can be reached from any other by transforming to ∆ with
coefficients p1,q1, r1, s1 using T−11 , then from ∆ using T2 with coef-
ficients p2,q2, r2, s2. Members of PSL2(Z) are conformal bijections,
and so we get Aut(F) ⊂ PSL2(Z).

It should be clear from construction that F covers H, now we show
that there are no overlaps. Let us assume the contrary, that two tri-
angles, t1, t2 ∈ F, overlap at some point. Then we are able to find
a map M1 ∈ PSL2(Z) taking for example t1 to ∆, such that M1(t2)

cuts at least one of its sides. Let us introduce S =

0 −1

1 −1

, for which

S(0) = 1, S(1) =∞, and S(∞) = 0. In other words, S takes ∆ to itself,
but rotated, and we can use S to rotate M1(t1) such that the side cut
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by M1(t2) is the imaginary axis. Since Aut(F) is a subset of PSL2(Z),

there must also be another map M2 =

a b

c d

 ∈ PSL2(Z), such that

M2(∆) =M1(t2). In particular, one of the sides that cuts the imagin-
ary axis has endpoints in a

c and b
d . Consider the case b

d < 0 < a
c ,

where we also take d > 0, factoring out a −1 if necessary. Then b is
negative, and a and c have the same sign. Additionally a,b, c,d are
non-zero integers, thus we have |ad− bc| > 2, and M2 could not be in
PSL2(Z). If ac < 0 <

b
d , we may take c > 0 to achieve the same result.

Therefore our assumption that t1 and t2 overlap must be false.
Now no member of PSL2(Z) can map ∆ to only partially overlap

with another triangle of F. It follows that PSL2(Z) ⊂ Aut(F).
Above we have assumed that if p

q and r
s are neighbours, then

T =

r p

s q

 is a element in PSL2(Z), which still remains to be

proven. Note that since we constructed F from neighbours (n1 , n+11 ),
the determinant of the corresponding map T is n+ 1−n = 1. Now as-
sume inductively that rq−ps = 1. We have for (pq , p+rq+s) the determin-
ant (p+ r)q−p(q+ s) = pq+ rq−pq−ps = rq−ps = 1. Likewise for
the neighbour pair (p+rq+s , rs), the determinant is r(q+ s) − s(p+ r) =
rq+ rs− ps− rs = rq− ps = 1. Hence any pair of points on R con-
nected by a geodesic in F gives T a determinant of 1.

A useful property of F follows from the above.

Theorem 5.0.14. Every rational number pq corresponds to one endpoint of
a geodesic in F.

Proof. By Bézout’s theorem, there exists integers r, s such that ps −

qr = 1, meaning we can define T =

p r

q s

 ∈ Aut(F). For example

= has one endpoint in∞, thus T(∞) = p
q is also an endpoint.

Similar to the case for Aut(Ĉ), the automorphisms of F can be fully
described by only a small number of matrices.

Theorem 5.0.15. Maps P =

1 1

0 1

 and J =

0 −1

1 0

 generate Aut(F).

Proof. Take an arbitrary matrix T =

a b

c d

 ∈ Aut(F), and consider

how it composes with P and J. In the case of P,1 1

0 1

a b

c d

 =

a+ c b+ d

c d

 .
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It is not difficult to see that repeated multiplication of P from the left
gives

PnT =

a+nc b+nd

c d

 .

The case of J is more simple, as J2 is the identity matrix in PSL2(Z),
and so only a single composition is of interest,

ST =

0 −1

1 0

a b

c d

 =

−c −d

a b

 .

Now we are able to make steps similar to the euclidean algorithm,
but with respect to the left-side elements of T . We write a

c = n+ r
c ,

where n is the integer part, and r
c ∈ [0, 1) the fractional part of the

left hand side division. If n 6= 0, we write a = nc+ r, and find that

P−nT =

a−nc b−nd

c d

 =

r b−nd

c d

 .

The corresponding step in the euclidean algorithm would now be to
perform the same steps for the division c

r , but to swap places between

r and c, we multiply from the left by J, thus JP−nT =

−c −d

r b−nd

.

Although the sign of c changed, the properties of the euclidean al-
gorithm should still be applicable, meaning the rest r appearing in
the upper left element of the matric should eventually go to zero. A
final swap of upper and lower elements by use of J gives something

of the form T ′ =

i j

0 k

. Now note that P−1 and J is in PSL2(Z),

meaning T ′ is too, and thus has determinant ik = 1. Moreover, i and
k are integers, and therefore we have i = k = ±1, and we can factor

a −1 from T ′ to make them positive. Then T ′ =

1 j

0 1

 = Pj. Let us

call the composition of the matrices generated by P and J used in the
euclidean-like algorithm S, and in particular note that ST = Pn for
some integer n. We have both Pn and S generated by P and J, and so
T = S−1Pn is also generated by the same matrices.

This concludes the theory necessary theory for us to look back one
last time to diophantine approximation and continued fractions.

Theorem 5.0.16. Construct a cutting sequence for a real number α > 0, by
the following:

• Start at an arbitrary point yi on the positive imaginary axis =, in H.
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• Follow the oriented geodesic arc, γ, going from yi to α. Any geodesic
arc fulfilling this condition is sufficient.

• As the arc cuts through tiles of F, note which sides are cut. Since
the tiles are ideal triangles, exactly two sides of each triangle is cut.
Should the sides meet on the right side of the oriented arc, append an
R to the cutting sequence, otherwise an L.

• There is one exception to the pattern, which is when the geodesic in-
tersect at a corner of a tile. This happens only on the real axis at α,
at which point either L or R may be chosen, and the cutting sequence
ends.

Following the above instructions will give a sequence of the form

La0Ra1La2Ra3 · · · ,

where for example L3 means LLL, such that ak > 0 for k > 0, and

[a0;a1,a2,a3, · · · ] = α.

Proof. Firstly, γ must cut a number of vertical lines equal to the in-
teger part of α, after which it cuts its first semicircular arc in the in-
terval [a0,a0 + 1). The integer part is a0, so the sequence starts with
La0R.

Now we map the geodesic we cut to produce R back to =, along
with all of F, thus resetting the oriented arc back to its starting point.
The idea is that we can then read off the next time a non-vertical line
will be cut in the same way as before. Generating matrices P and J
preserve the orientation, meaning points left (or right) of γ are also
to the left (right) of P(γ) and J(γ). In particular, P and J preserve the
cutting sequence.

Let us mark the point at which γ cuts the last vertical line by
z0. Then translation using P−a0 takes z0 to the imaginary axis, and
P−a0(γ) continues from P−a0(z0) to some point P−a0(α) = α− a0,
which lies between 0 and 1. Applying J, gives JP−a0(z0) still on the
imaginary axis, and JP−a0(α) = − 1

α−a0
. We know from the contin-

ued fraction representation of 1
α−a0

that its integer part is a1. Thus
JP−a0 takes α to the interval (−a1 − 1,−a1].

Since the sequence is preserved through the transformations, it re-
mains to note that the imaginary axis represents the end of the se-
quence of Ls, and so the our transformed γ will cut a1 vertical lines,
each giving R by the same argument as before. Then marking the last
vertical line as z1, we can take it back to = by Pa1 . Note specifically
that we need to use a positive power this time, since the new α is
negative. Then we can apply J again to find a2 and so on. It should
be clear that this will yield the cutting sequence as stated.
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Additional notes

Related to the farey tesselation is the Stern-Brocot tree, which is an
infinite binary tree with the property that each positive rational num-
ber corresponds to one of the vertices of the tree. Additionally, the
root is labeled 1

1 , and each vertex m
n with children (pq , rs) has that

p
q <

r
s , and m

n = p
q ⊕

r
s = p+r

q+s . This is similar to the farey tesselation
in that each (positive) rational number is represented in the struc-
ture, and the appearance of the operator ⊕. Particularly interesting
is the fact that Stern-Brocot trees may be defined in terms of con-
tinued fractions, that is, for any fraction p

q = [a0;a1, . . . ,an − 1], its
children are [a0;a1, . . . ,an + 1] and [a0;a1, . . . ,an − 1, 2] (recall that
[a0;a1, . . . ,an, 1] = [a0;a1, . . . ,an + 1], meaning an 6= 1). This sug-
gests once again that continued fractions are deeply related to the
farey tesselation.

Musing on the different systems where the continued fraction coef-
ficients turn up, we have covered cases in two dimension with neg-
ative curvature, with the cutting sequence in the farey tesselation,
as well as zero curvature, in the cutting sequence in the euclidean
plane. Although maybe a bit of a stretch, the rotation sequence can be
said to follow a geodesic on the surface of a sphere, which is a great
circle. The unit sphere is incidentally the typical model for spaces
with constant positive curvature (gaussian curvature K = 1), and it
could therefore be argued that we have included examples for each
distinct space of constant curvature.
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