
TrustNet: Trust-based Moderation
Using Distributed Chat Systems for Transitive Trust Propagation

Alexander Cobleigh

Department of Automatic Control

MSc Thesis
TFRT-6102
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2020 by Alexander Cobleigh. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2020

Abstract

This thesis introduces TrustNet, a flexible and distributed system for deriving, and
interacting with, computational trust. The focus of the thesis is applying TrustNet as
a tool within distributed chat systems for implementing a subjective moderation sys-
tem. Two distributed chat systems, Secure Scuttlebutt and Cabal, are discussed, the
latter having been extended with a proof of concept implementation of the proposed
system. The concept of ranking strategies is also introduced as a general purpose
technique for converting a produced set of rankings into strategy-defined subsets.

This work proposes a complete trust system that can be incorporated as a ready-
made software component for distributed ledger technologies, and which provides
real value for impacted users by way of automating decision-making and actions as
a result of assigned trust scores.

3

Acknowledgements

I want to start by thanking Johan Eker, my thesis supervisor from the department of
Automatic Control at Lund University, for his support, patience, advice and feed-
back in this unusually long Master’s thesis. I am very glad you took the time to
listen to the random student dropping by your office to pitch his thesis idea. I also
greatly appreciate the frequent discussions we have had throughout the thesis pro-
cess. In a similar vein, I want to thank my thesis examiner Karl-Erik Årzén, also
from the department of Automatic Control at Lund University, for agreeing to take
on the responsibility of this thesis—thank you for your patience with the extended
process the thesis ended up being, and for your feedback.

Next, I would like to thank my friend Linus for his help and emotional support
throughout the thesis process. Your advice around the academic process concerning
getting started on the thesis was essential, in addition to all the advice you have
provided throughout my time at Lund’s University. Thank you.

I want to thank Aljoscha for reading a very early draft, back in July of 2019, and
for your keen feedback. Thanks to Christian F. Tschudin, professor of Computer
Science at the University of Basel, for inviting me to present an early version of
TrustNet at the P2P Basel workshop in February 2020, just before the Covid-19
pandemic took over the world.

I also want to thank Erick, Daniel, and Linus for reading drafts and for providing
such excellent feedback. I would also like to thank Sara for her illustration advice,
without which Fig. 6.1 would have looked much worse. Thanks to my friends who
were working on their theses at the same time for their excellent company and
motivation; thanks Ingrid, Magnus, and Anton.

And a heartfelt thanks to my parents—for letting me pursue my interests freely,
despite not always understanding what I was going on about.

5

Contents

1. Introduction 9
1.1 Overview . 10
1.2 Contributions . 11

2. Public-key Cryptography 13
2.1 Digital signatures . 14
2.2 Public-key-based Identity . 15
2.3 Uses in distributed peer-to-peer systems 16

3. Distributed systems 18
3.1 The CAP Theorem . 19
3.2 Eventual Consistency . 21
3.3 Message Passing . 21
3.4 Append-only logs . 22
3.5 Kappa Architecture . 24
3.6 Interleaving logs . 26
3.7 Looking to distributed chat systems 31

4. Chat systems 32
4.1 Moderation . 33
4.2 Distributed chat systems . 37
4.3 Subjective moderation . 45

5. Trust 48
5.1 Definitions . 49
5.2 Related Work . 50
5.3 Computational Trust . 52

6. Appleseed 58
6.1 Overview . 59
6.2 Algorithm . 62
6.3 Drawbacks . 71

7. TrustNet 73
7.1 Overview . 74

7

Contents

7.2 Architecture . 78
7.3 Experiment design . 80
7.4 TrustNet Example . 83

8. Evaluation & Results 86
8.1 Evaluation . 87
8.2 Results . 89
8.3 Moderation Comparison . 90
8.4 Varying the parameters . 91

9. Discussion 94
9.1 On Privacy . 94
9.2 On The Difficulty of Simulating Trust 94
9.3 On Increased Attack Incentives 95
9.4 On the Importance of Naming 95
9.5 Other Use Cases of TrustNet 96
9.6 Conclusion: Subjective Moderation & The Future of TrustNet . . 96

A. Simulator parameters 98
Bibliography 99

8

1
Introduction

How do you remove malicious participants from a chat? For a set of participants,
what are the steps needed such that the malicious participant is no longer visible by
anyone in the set?

In a centralised chat context, there is always someone with the power to remove
a participant. Usually, this is the person that started the context itself (i.e. a group
chat). There is a special privilege granted to the initiative taker such that they can
add and remove participants, as well as grant others the ability to do so. This role
is usually known as an administrator, or admin, and the ones they grant powers are
known as moderators, or mods.

Even if no administrator exists, maybe they decided to leave the platform host-
ing the group chat, there is always someone who has credentials to the hardware
running the chat software. Thus, if the situation gets bad enough, it is technically
possible for the platform administrator to individually intervene and, for example,
remove the malicious participant from the database, or decree a new administrator.
It is cumbersome and rare that it would come to that, but it is possible.

This is a harder problem to solve in a distributed chat context. How do we know
who is the leader in an eventually consistent system, where people may continue
to perform actions offline? There is a much higher degree of subjectivity possible
in these systems, as compared to a purely centralized context. Causality ceases to
be straightforward when participants are allowed to continue participating in tem-
porarily disconnected portions of the system.

In the centralized context, removing a malicious participant is the action of a
moderator. Usually it is one or two clicks, and the malicious participant has been
removed for all other participants.

In a distributed context, there are many possible answers to this problem. The
first and naive solution is to delegate the responsibility of removing the malicious
participant to each individual participant. Thus everyone participating has to indi-
vidually hide offenders. Viewed as an isolated case it works, but repeated instances
will risk causing an outsize burden on the participants.

Another solution is to designate someone as a moderator for the entire group,
like in the centralized context. Leader elections in a distributed context are however

9

Chapter 1. Introduction

rather complex (see Paxos [Lamport, 1998]) and sensitive to Sybil attacks [Douceur,
2002], where one actor controls many individual actors inside the system, gaming
it and electing themselves as leader.

This thesis explores an alternate approach. What if participants could automat-
ically block the malicious peer, if they discover that the peer has been blocked by
someone the participant trusts? This is similar to the administrator from the cen-
tralized context, but more flexible. In the centralized context, if the administrator is
misbehaving and a participant loses trust in them, their only options are to live with
it, or to leave the group. In the system where you effectively choose who can mod-
erate for you, you can also choose to revert that decision if your trust later proves to
have been misplaced. This is the central topic of the thesis, and one potential answer
is presented in the form of a new system for managing and interacting with trust,
TrustNet.

The core problem statement of the thesis is the following:

How can we efficiently hide malicious participants in a distributed
chat context?

and TrustNet is the proposed answer.

1.1 Overview

The thesis starts by explaining the technical foundations, Chapters 2−4, which
mainly constitute the work’s backdrop across the areas of cryptography, distributed
systems, and (distributed) chat systems—though the second half of Chapter 4
presents the novel concept of subjective moderation systems. Then we venture into
the chapter on trust, Chapter 5, followed by Appleseed in Chapter 6, the core algo-
rithm. The subsequent chapter on TrustNet, Chapter 7, is the heart of the work and
presents the main contributions. Chapters 8−9 contain the evaluation, results, and
discussion portions of the thesis.

In Chapter 2, Public-key cryptography, we introduce the cryptography knowl-
edge needed to understand that distributed chat systems are possible in the first
place, as well as fundamentally secure. We follow this up with Chapter 3, Dis-
tributed systems, which goes deep on the topic of distributed systems—what they
are, what range of distributed systems this thesis is concerned with, and how a dis-
tributed system may be put together to enable a cohesive chat experience. Topics
such as the CAP theorem, append-only logs (and how they may be secured), and
vector clocks are detailed, among others.

Chapter 4, Chat systems, presents the topic of chat systems, and more impor-
tantly the topic, and causes, of moderation in chat systems. The last half of the
chapter details the distributed chat systems we are primarily concerned with in this
work. Two distributed chat systems, Secure Scuttlebutt and Cabal, are briefly pre-
sented, and the novel concept of a subjective moderation system is introduced. The

10

1.2 Contributions

following chapter, Chapter 5, Trust, details the topic of trust. We begin broadly and
then narrow down to the topic of computational trust, detailing such topics as trust
transitivity, human-meaningful labels for trust scores, and the difficulty of inter-
preting distrust. A survey of related work in the domain of computational trust is
presented in Section 5.2.

Chapter 6, Appleseed, presents the Appleseed trust metric, which is the founda-
tion of this work. Appleseed allows us to subjectively manage trust across individu-
als in a single network of trust. The most trusted nodes, as seen from the perspective
of a single node, are found by graph traversal. The chapter presents the Appleseed
algorithm from an intuitive viewpoint before the details of the algorithm are pre-
sented and discussed, and drawbacks with the approach outlined. The following
Chapter 7, TrustNet, describes TrustNet, the culmination of this work. TrustNet’s
purpose is described, the system’s attempted mitigations of Appleseed’s drawbacks
outlined, and more.

Chapter 8, Results, presents the results and evaluation of TrustNet’s efficacy,
followed by Chapter 9, Discussion, where future work is presented, caveats and
potential concerns are discussed, and potential use cases of the proposed system
outlined.

1.2 Contributions

The main contributions of this work may be found in Chapter 5 (Trust), Chapter 6
(Appleseed), and Chapter 7 (TrustNet).

The Appleseed algorithm has been implemented in two programming lan-
guages. It was initially implemented in Python for the sake of prototyping, and
afterwards in Nodejs, as a reusable javascript module.

In order to allow easier interaction for end-users with Appleseed’s results, as
well as extend the algorithm by adding support for trust areas and a distrust mech-
anism which preserves the properties of the algorithm, the TrustNet system is pro-
posed and implemented.

The notion of a subjective moderation system is introduced, which to, our
knowledge, makes this thesis the first academic result to present the concept. Two
distributed chat systems are also presented, Secure Scuttlebutt and Cabal, the latter
having been used to implement a proof-of-concept subjective moderation system.

The concept of a ranking strategy is proposed as a way to interact with Ap-
pleseed’s produced rankings. A cluster-based ranking strategy is described and im-
plemented. The cluster-based strategy splits the produced ranking into 3 groups,
discards the cluster containing the lowest values, merges the remaining two clusters
and promotes the merged result as the trusted peers of the system.

In order to evaluate the TrustNet system, an evaluation framework was built in
Nodejs. The framework consists of a scenario generator and a demonstration tool.
The scenario generator generates pseudo-random trust graphs, with a configurable

11

Chapter 1. Introduction

node count, in order to test the results of TrustNet. It also allows setting an average
amount of trust assignments for the generated graph, as well as configuring the
skew, or spread, of the trust weights for the trust assignments.

The demonstration tool integrates TrustNet with the distributed chat system, Ca-
bal, as a proof-of-concept of a subjective moderation system. The tool has been built
to serve the demonstration in the browser, and consists of an HTTP server serving
the demonstration webpage. The tool can furthmore interact over WebSocket con-
nections. Finally, it also spawns Cabal nodes in order to simulate a fully featured
Cabal swarm, which are coordinated via the HTTP server’s WebSockets.

Both the Appleseed algorithm and the TrustNet trust system are intended to
be published as javascript modules under open source licensing shortly after the
publication of this thesis.

12

2
Public-key Cryptography

In the context of chat systems, strong cryptographic primitives are important to en-
sure privacy from eavesdroppers when communicating. In distributed chat systems,
the public-key cryptography described in this chapter is essential for the system to
function at all. As we will see, the described primitives enable private communica-
tion, but also the creation of verifiable identity systems, as well as enable entirely
new forms of message distribution architectures.

Public-key cryptography, also known as asymmetric cryptography, is a branch
of modern cryptosystems. It was first proposed in 1976 by Whitfield Diffie and
Martin Hellman in a seminal article titled New Directions in Cryptography [Diffie
and Hellman, 1976].

Prior to the proposal, all known cryptography in use were variants of symmetric-
key cryptography, wherein a single key is used to transform a plaintext into a ci-
phertext and back again. Since symmetric cryptography uses a single key for both
encrypting and deciphering, the confidential transmission of the key is paramount.
Public-key cryptography turns the problem on its head by introducing two keys,
one for encrypting, the public key, the other for deciphering, the private key. Only
the private key can decipher messages encrypted with the public key, and the entire
paradigm is based on the difficulty of taking the public key and deriving the pri-
vate key [Diffie and Hellman, 1976]. This enables a message recipient to publicly
announce and spread their public key while keeping the private key to themselves,
neatly solving the key-transmission problem that troubles symmetric cryptography.

An analogy for understanding public-key cryptography would be the following.
Alice sends physical locks to all of her friends. The locks are unlocked until firmly
clasped onto something. Whenever Alice’s friends want to make sure that some-
thing, a bike they want to lend to Alice maybe, is only accessed by Alice, they use
one of Alice’s locks. Once the lock has been clasped on a thing, the only person that
can unlock it is Alice, because she is the only one with the key.

We have established that public-key cryptography enables sending computation-
ally secure private messages. Another interesting property of the Diffie-Hellman
article is the introduction of digital signatures.

13

Chapter 2. Public-key Cryptography

2.1 Digital signatures

Digital signatures can be used to solve the problems of authenticity, non-repudation,
and message integrity. Authenticity is the problem of determining if the party you
are dealing with are who they claim to be. Non-repudation concerns itself with
preventing a party from making a claim at one point in time and later pretending it
never happened. Message integrity deals with maintaining the contents of a message
from its generation, through its transmission, and until its final receipt—with the
assurance of it being tamper-free.

Digital signatures are created with the same type of keypair—but typically not
the same keypair, as keypair reuse is discouraged by cryptographers—that enable
secure encryption and decryption of messages. A message author uses their private
key to sign the message, proving that they were its author. Recipients verify the re-
ceived message by using the author’s signature, attached in the same transmission as
the message, in combination with the author’s public key, which has been retrieved
elsewhere—a secure keyserver, which is a place where people upload their public
keys to make them easily discoverable by others, for instance. In the section below,
we detail the signature generation protocol in detail.

Signature generation Creating the signature occurs in the following manner. The
private-key holder wants to sign a message, m. They hash the message with a cryp-
tographic hash function H, generating the hash h. The signing operation, sign, is
then applied to the hash of the message, generating the signature sig. The signature
can only be generated by someone in possession of the private key, kprivate. The
message and the signature are then transmitted together to the recipient.

h ← H(m)
sig ← sign(h,kprivate)

For the recipient to verify the signature they apply the verification operation
veri f y using the public key kpublic and the received signature sig. The result is the
message hash h, initially generated by the private-key holder. The recipient then
hashes the received message, generating h′. The recipient compares their message
hash, h′, with the signature-derived hash, h. If the two hashes are equal, the signature
has been verified: the message is authentic and has not been tampered with.

h ← veri f y(sig,kpublic)
h′ ← H(m)

The above protocol ensures that any message sent or retransmitted in a system
based on public-key cryptography can be verified and attributed, without a doubt,
to its original author. As with physical signatures, digital signatures enable the rep-
resentation of digital identity, which we will now discuss.

14

2.2 Public-key-based Identity

2.2 Public-key-based Identity

The digital signatures from above can be used to implement a decentralized identity
system. However, when we say identity system, what do we actually mean? Going
forward in this work with mentions of identity and identity systems, we mean the
following: a system for verifiable and unforgeable entity representation. For Alice’s
ability to conduct transactions without Mallory being able to forge transactions in
Alice’s name, for Carole to be able to uniquely and unambiguously refer to Alice,
and for Bob to be able to verify that a person that claims to be Alice is, in fact,
Alice. Clearly, this maps well onto the previously described digital signatures.

When we say in Alice’s name, in the context of an identity system, we don’t
necessarily mean operating under Alice’s given name—the identifier needs to be
unique and unambiguous. Examples of such identifiers include assigned national
identity numbers, generated public keys, and domain names.

In a decentralized identity system, each identity is represented by a generated
public keypair. Thus, any entity can create multiple identities on their own—without
needing to interacting with hierarchical third parties, such as nation-states or certifi-
cate authorities.

Identity collision As regards two entities accidentally creating the same identity,
using the popular Ed25519 signature scheme from the Edwards-curve Digital Sig-
nature Algorithm (EdDSA) family [Bernstein et al., 2011] as an example, the prob-
ability basically amounts to the entities both randomly choosing the same 256-bit
string, or picking the same random number among a space of 2256 numbers. It is
very, very unlikely.

On naming In any identity system the addressability of entities—naming another
individual, for instance—is important for practical use. An entity’s outward facing
identifier in a public-key-based system is the public key. In order to make the iden-
tity more readily usable by people in e.g. text communication, the public key can be
encoded from a byte representation into a string representation.

There are a few string representations in popular use. base16 and base64 are
two popular and accepted engineering standards, defined in RFC 4648 [Josefsson,
2006]—RFC, or Requests for Comments, is a widely accepted set of documents and
a process for documenting and establishing Internet standards. base58 is another
encoding scheme, come into prominence thanks to its initial use in Bitcoin, a dis-
tributed ledger focused on exploring notions of scarce (as in a finite supply and in
opposition to abundant) digital currency. [Nakamoto, 2009]

base16, more commonly known as hexadecimal, encodes the public key as a
text string using an alphabet of 16 characters, represented by the character ranges
[0−9,a− f]. Hexadecimal allows both upper- and lowercase characters to be used
interchangeably. More compact encodings include base64 as well as the base58
variants. As there is no canonical standard for base58 there exists more than one
base58 encoding scheme; we will refer to the set of base58 encoding schemes as

15

Chapter 2. Public-key Cryptography

the base58 variants.
The base58 variants encode the public key using a set of 58 characters, mainly

lower- and uppercase latin letters [a− z,A−Z] and arabic numerals [0− 9], while
also excluding visually similar characters (e.g. the numeral 1 and the letter l) from
the permissible range.

The benefit of using larger character ranges, e.g. base64, is that more informa-
tion can be encoded per character. This results in shorter text-encoded identifiers
than when using less dense representations, like base16. Hexadecimal representa-
tions are simpler to implement and less ambiguous—base58 has a few different
implementations with slightly varying character sets. While base64 is canonically
defined its character range overlaps with special characters commonly used in URIs,
whereas the base58 variants exclude those characters from its character set. Using
base64 can therefore cause issues when e.g. identities are addressed as part of hy-
pertext links. There is, however, a somewhat less known variant of base64 known
as base64url, which was proposed—in the same RFC 4648 as base64, in fact—to
remedy the URI-addressing issue mentioned above. In base64url, the character +
(plus) is replaced by - (dash), and = (equals) is replaced by _ (underscore)—the
remaining character set is unchanged across the two base 64 encodings. [Josefsson,
2006]

In order to visualize what has been described above, the following two strings
encode the same information. The first string is encoded in base64 and the second
in base16.

C6fAmdXgqTDbmZGAohUaYuyKdz3m6GBoLLtml3fUn+o=
0ba7c099d5e0a930db999180a2151a62ec8a773de6e860682cbb669777d49fea
As a final note on the topic of naming, so called pet names can be employed to

make referencing identities easier. A pet name is a human parseable name associated
with e.g. a public-key identity. [Stiegler, 2005] Pet names are, for instance, used in
Secure Scuttlebutt, a distributed protocol and social network that will be discussed
in Section 4.2.

Public-key-based identities will be further detailed in 4.3, in particular their po-
tential drawbacks. As regards the cryptographic primitives needed to achieve these
identites, we have now described all we will need.

2.3 Uses in distributed peer-to-peer systems

Public-key cryptography is an essential component of the distributed chat systems
that are the topic of Section 4.2. The asymmetric cryptographic primitives of this
chapter essentially enable a completely decentralized identity system. Any one node
can generate an identity, represented by its public-key keypair, entirely on their own.

Messages can be attributed to authors and even passed along between peers
until they reach their destination, with the added assurance of its contents remaining
untouched. Secure private communications can be established between individuals

16

2.3 Uses in distributed peer-to-peer systems

without any third parties or intermediary services.
Fundamentally, the briefly described decentralized identity system allows for

the emergence of trust within this new class of systems. It allows individuals to
attribute actions and consequences to others, for friendships to blossom, and new
initiatives and projects to be born.

Commonly used implementations of the cryptographic primitives described in
this chapter are Curve25519 [Bernstein et al., 2011] for the public-key cryptogra-
phy, and Blake2b-256 [Aumasson et al., 2013] or SHA256 [NIST, 2001] for the
cryptographic hashing functions, in addition to the previously mentioned encoding
schemes base16, base64 and base58.

17

3
Distributed systems

Chat systems are a type of highly distributed system. In a given chat system, many
nodes communicate with each other and the preserveration and ordering of mes-
sages is of the outmost importance, lest context be misconstrued. This is espe-
cially important for distributed chat systems, where participating nodes make up
the infrastructure in which messages are both created and stored, as well as passed
through.

We begin this chapter on distributed systems with a definition of them from the
extremely prolific distributed systems researcher, Leslie Lamport:

A distributed system consists of a collection of distinct processes
which are spatially separated, and which communicate with one an-
other by exchanging messages. A network of interconnected comput-
ers, such as the ARPA net, is a distributed system. [Lamport, 1978]

One of the aims of using a distributed systems architecture is to increase re-
siliency against catastrophic failure, i.e. the system becoming totally unavailable,
or losing great amounts of information.

Distributed systems come under many guises. They may be centralized, as dis-
tributed architectures are chosen in order to preserve the huge amounts of inflowing
information, and to handle the immense computational requirements. [Kreps, 2013]
They may also be peer-to-peer, as the massively successful BitTorrent protocol has
proven.

The client-server model, e.g. a web browser requesting a webpage from an IP-
addressed web server, is a centralized model. Underlying the simple request, a dis-
tributed architecture may be activated, and a fleet of servers queried, to produce
a timely response among a potential million others. The model often seen in file-
sharing applications, where individual computers seek each other out to directly
exchange pieces of files e.g. using the BitTorrent protocol, is a peer-to-peer model.

18

3.1 The CAP Theorem

3.1 The CAP Theorem

Modern distributed systems are often reasoned about using something called the
CAP theorem, initially proposed by Eric Brewer in a distributed systems confer-
ence keynote [Brewer, 2000] and later formalized by Gilbert and Lynch [Gilbert
and Lynch, 2002]. The CAP theorem is, fundamentally, a tool for analyzing trade-
offs in distributed systems. CAP is an initialism created by taking three desirable
properties for distributed systems, namely:

• Consistency, ensuring all nodes have the same data

• Availability, ensuring the responsiveness of the system

• Parition-tolerance, ensuring continued functionality despite separate parti-
tions, or, in other words, when communication lines between groups of nodes
have been temporarily severed

The three properties describe desirable characteristics of a distributed system in
the event of node failure. Furthermore, the CAP theorem states that you can only
pick any two factors; i.e. you may have a consistent and available system, but not
also at the same time a partition-tolerant system.

Kleppman’s critique The CAP theorem has later been critiqued by Martin Klepp-
man [Kleppmann, 2015] for being vaguely defined and easily misunderstood.
Kleppman also asserts that the actual impossibility results are not useful—one part
of Gilbert and Lynch’s formalism is found to only be valid for network partitions
of infinite duration, which violates eventual consistency (discussed in Section 3.2).
Kleppman finishes his critique by asserting that the CAP theorem is "no longer an
appropriate tool for reasoning about systems" [Kleppmann, 2015], and presents a
draft of an alternative framework he calls delay-sensitivity. The proposed delay-
sensitivity framework has more rigorously defined terminology than the CAP the-
orem. The framework also presents a classification of algorithms into two camps:
one in which algorithms are delay sensitive in that they are dependent on network
latency. The other camp of algorithms are classified as delay independent, and as
such are unaffected by network latency variability.

Despite Kleppman’s critique, we will occasionally refer back to the CAP the-
orem, as it is an easy shorthand which allows for briefly illustrating principles of
distributed systems in a relatively accessible manner. Before we continue, how-
ever, we will elaborate further on the topic of consistency and present a few of the
variations of consistency and what they mean, as an introduction to talking about
eventual consistency in Section 3.2.

Consistency
In 2007 Werner Vogels, CTO of Amazon.com, a multinational corporation and
provider of vast storage and computing services, published an article titled Eventu-
ally Consistent, which was revisited and republished in early 2009 [Vogels, 2009].

19

Chapter 3. Distributed systems

The article was part of a broader movement of alternative database systems going
under the banner of NoSQL, depicting a departure from using databases centered
around the SQL querying language [Kempe, 2012]. As Vogels’ article title implies,
the movement was centered around exploring notions of consistency in databases.
After a short introduction Vogels says the following:

In an ideal world there would be only one consistency model: when
an update is made all observers would see that update. [Vogels, 2009]

Vogels then proceeds to unpack the passage and elaborates upon it, which we
will now attempt to do as well.

The many ways of consistency Read-your-writes consistency, sequential con-
sistency, causal consistency, processor consistency, monotonic read consistency,
monotonic write consistency, eventual consistency. At a first glance of the CAP the-
orem, it is easy to be fooled that either a system is consistent or it is not. However,
as per Kleppman’s critique [Kleppmann, 2015], what is often called consistency is
in fact a spectrum of consistency models [Mosberger, 1993].

One way to view consisistency is that a consistency model is fundamentally a
promise on what application developers may expect from the underlying model, e.g.
regarding memory access across processors in a single computer, or which values
can possibly be returned in a distributed network of computers. Consistency models
on the stronger side of the spectrum provide more robust promises, with less condi-
tions that need to be filled in order to uphold the promise. The farther you go from
the stronger side of the spectrum, the more conditions need to be considered by
the application developers in order for the consistency model’s promises to remain
intact.

Models on the stronger side of the spectrum trade performance gains and la-
tency sensitivity for reduced application complexity [Kleppmann, 2015]. The se-
quential consistency model fits this category, where all processes observe the same
sequence of operations, as derived from the order of statements in their executing
programs [Mosberger, 1993]. The expectation in a sequential consistency model is
the following: when one process writes a value, any other process issuing a read
after the write will read the written value. This expectation does not always hold for
the weaker side of the spectrum.

Weaker consistency models place more constraints on application developers
in terms of which expectations are valid, as compared to stronger models. What
weaker consistency models receive in exchange is a greater tolerance of network
latency, or increased performance, as, for instance, reordering of operations now
becomes allowed [Mosberger, 1993].

Eventual consistency is the weakest consistency model which is still useful for
application development [Kleppmann, 2015], which we will now proceed to elabo-
rate further upon.

20

3.2 Eventual Consistency

3.2 Eventual Consistency

Eventual consistency is the weak guarantee that data will be delivered to all nodes
of a distributed system if enough time has been allowed to pass [Vogels, 2009].

Let us illustrate the principle with an example. Assume we have a node which
is using a distributed chat system while offline, i.e. disconnected from all other
nodes. The node decides to author new messages, perhaps they are reponses to ear-
lier questions from fellow peers. The authoring node, and their unsynced messages,
may be viewed as a temporary partition; they are temporarily disconnected from
all other nodes. When that node heals its partition, whether by synchronizing with
another node over the local network, or re-establishing internet connectivity and
reaching other nodes in that fashion, the authoring node will exchange messages
with the nodes they come across, including the offline-authored messages. Given
enough time, these messages will spread across the distributed network of nodes as
temporarily partitioned nodes communicate with others.

If we view the example’s system through the lens of the CAP theorem we see
that it is available, as new messages can be posted without network access. The sys-
tem is partition-tolerant; old messages can be read and new ones authored irrespec-
tive of any temporary partitions. The system is not consistent, but it is eventually
consistent in the sense that, given enough time, all nodes will have the same set of
messages—enough time needs to pass for temporarily partitioned systems to briefly
come online and sync with other nodes. This property is a core design characteristic
of the distributed chat systems detailed in Section 4.2.

What makes eventual consistency feasible is the representation of operations
in the distributed system as distinct messages, passed among computational nodes
over time. Representing operations as distinct messages in distributed systems is
called message passing—somewhat evoking a parallel to students passing scribbled
messages to each other in a classroom.

3.3 Message Passing

As mentioned above, message passing is a key component in a lot of distributed
systems. In a message passing system, the base unit is, as might be expected, the
message. As an actor in a message passing system executes actions, messages rep-
resenting those actions are created. Just like actors may issue any kind of operation,
the created messages may represent any kind of action, like an arithmetic operation
or a request to store information.

Remote procedure call comparison
Message passing can be contrasted with the Remote Procedure Call (RPC)
paradigm. RPCs are synchronous, and thus require the receiver to be online for a
sender to perform operations on it. This makes RPCs a a potentially unwise choice

21

Chapter 3. Distributed systems

for a distributed systems architecture in which nodes may be offline in unpredictable
patterns—thus disrupting any RPC operations. Message passing, however, is asyn-
chronous and therefore better suited to represent delay-independent operations.
Receivers process a sent message whenever it arrives, just like a vacation postcard
is read whenever it ends up at its destination.

Decoupling
Message passing decouples requests coming in to a system, i.e. from actors gener-
ating messages as a result of their actions, from the execution of them. Which, for
a distributed system consisting of potentially many nodes in various states of con-
nectivity, is a desirable architectural feature. One of the desirable features of this
decoupling is that it allows for a heterogenous collection of computers to function
as nodes in a distributed network. This disparateness is manifest in a few ways. First,
messaging passing functions more on the protocol level of only requiring nodes to
know how to read and write messages, resulting in less strict requirements as to
which software needs to be running than other paradigms, such as RPC. Secondly,
it is possible to trivially bring any kind of computer, irrespective of its hardware or
operating system, as a new node into a distributed system, as long as it knows how to
read and write the system’s messages—resulting in a net increase in computational
resources.

3.4 Append-only logs

Logs are a commonly used data structure in a lot of distributed systems [Kreps,
2013]. A log structure is an ordered sequence of items, often called records, which
are typically ordered according to insertion time into the log. An append-only log
is a log where the only allowed operation is the append operation, that is, adding
information to the end. The append-only log’s records may not be moved nor re-
moved.

From the strictness of append-only logs, interesting properties emerge. Records
are by definition ordered by time, with earlier appearing records having been cre-
ated before records which appear later on in the log. Each record also has a valid
identifier by definition—its position in the log. Append-only logs greatly simplify
state management—keeping track of the current state of a computational node—
with respect to distributed systems; synchronizing the log’s information becomes a
trivial operation thanks to its strict criteria.

Log synchronization example Let us paint an example. Alice and Bob want
to sync Carole’s append-only log, which contains personal project updates con-
cerning her new and exciting distributed chat system. Carole has published a to-
tal of 13 updates, so her append-only log’s last record is identified by the id 12
(the first record is indexed at 0). Alice has a server that is always online, as

22

3.4 Append-only logs

such she has received all of Carole’s 13 updates—Alice’s last known record of
Carole’s log also has the id 12. Bob, however, is an avid traveler and only oc-
casionally uses his laptop. He only synced the 3 first updates of Carole’s dis-
tributed system adventures before leaving for his latest intrenet-free trip, mak-
ing 2 the last known id Bob knows about concerning Carole’s log. To synchro-
nize Carole’s log, Alice and Bob exchange their last known ids of Carole’s log:

Alice Hi Bob! My last record for Carole has id 12.
Bob Hi Alice! My last record for Carole has id 2.

Using the exchanged information, Bob now knows that he is lacking 10 updates and
proceeds to request those 10 updates from Alice.

Append-only logs make it efficient to figure out the delta, or the difference in
two datasets, that needs to be transmitted for two peers to synchronize state. Only
two responses are needed to calculate the difference in synced state, regardless of
the log size. As in the example, no duplicate information is transmitted either—Bob
only requests the updates that he personally does not have on his computer.

Securing append-only logs In the example above we discussed the simplicity of
append-only log synchronization. The example, however, is incomplete, as there
was no mention of integrity guarantees—how can Bob be certain that what Alice
sends him is actually Carole’s data, and in the correct sequence. There are two easily
realized attacks: either Alice counterfeits all of the data she sends to Bob, or Alice
reorders data that Carole has authored e.g. representing id 11 as id 10. Both of these
attacks can be solved by the same conceptual solution: hash signatures.

Hash signatures can be used in multiple ways to secure data integrity, we will
concern ourselves with briefly explaining two common variants. Irrespective of the
particular flavor of the hash signature scheme that is used, a public-key keypair is
needed for the signature portion. Like we discussed in Chapter 2, the private key is
used to sign the data in the append-only log while the public key is used to verify
the signature. This prevents any counterfeiting from taking place. Continuing on
the example from above, Carole would generate a public-key keypair and use the
private key to sign her 13 updates in some fashion. Bob would use Carole’s public
key, which has somehow been transmitted to him at an earlier time, to verify the
information Alice transmits to him—confirming that the data actually originates
from Carole. Merely relying on signed data is still vulnerable to the reordering
attack, so we will need to go one step deeper and come up with a signing scheme.

The first scheme is something which we will call hash chaining. In hash chain-
ing, each record in the append-only log is run through a cryptographic hash func-
tion, sha256 [NIST, 2001] for instance. A finite length identifier for the data is
generated, the hash, and if the data is altered in any way its new hash will also be
drastically different. The trick to overcome the reordering attack is the following:
for each record in the append-only log, hash its contents. If the current record has a
predecessor, add a field pointing to the hash of the previous record before hashing

23

Chapter 3. Distributed systems

the current record. Thus, when we hash the record with id 2, the data that is hashed
is the main content of id 2 but also the hash of the preceeding record with id 1.

Root hash signatures [Keall, 2019], make use of a tree structure known more
formally as Merkle trees [Merkle, 1987], and is the second scheme we will describe
for securing the append-only log. In this scheme, each record of the append-only
log is hashed. In addition to the record hashes, there are also parent hashes that hash
two record hashes together.

h1 = hash(record1,record2) record hash
h2 = hash(record3,record4) record hash
hp1 = hash(h1,h2) parent hash

This hashing structure, which forms a tree of hashes, is repeated until we end up
with a single hash—the root hash. The described tree of hashes, with the top-level
root hash, is the Merkle tree mentioned above. The root hash is effectively derived
from each preceeding hash in the hash tree. If any record were to change place in
the log, or have its data changed, the root hash would end up being different. The
root hash is then signed by the private key from the generated public-key keypair,
as described above. It is trivial to verify the integrity of the append-only log of this
structure—any recipient can repeat the process and compare their computed root
hash with the log author’s signed root hash.

3.5 Kappa Architecture

One can combine message passing with append-only logs, yielding a full history of
a node’s actions and operations. In practical use, however, it is usually only the latest
state that is sought. Thus, it is desirable to reduce the log’s history into representa-
tions of the current state. One solution to this problem is an architecture called the
kappa architecture [Pathirage, 2014]. Kappa architecture builds on earlier concepts
such as event sourcing, and is related to the concept of materialized views from
traditional databases like SQL. Examples of kappa architecture style databases are,
for instance, Apache Samza combined with Apache Kafka [Kleppmann and Kreps,
2015].

As materialized views and event sourcing might be more familiar concepts or
more intuitively explained, we will briefly detail them before moving onto the dis-
cussion of kappa architecture-style databases.

Materialized views In an SQL database, data exists as rows and columns in one or
more tables. To get data from the database, a query is formed and executed against
the tables. An example query might look like:

SELECT * FROM posts WHERE author=’cblgh’;

SQL queries can get notoriously hairy, so there exists mechanisms in the query-
ing language, and in SQL databases like PostgreSQL, to save queries and their re-

24

3.5 Kappa Architecture

sults. An SQL view is one of the ways that a query can be stored, in order to rerun
it at a later time. They are called views because they are a particular view of a set
of tables’s data. Views do not cache any data, and instead perform the query each
time the view is queried [Brumm, 2018]. This can take a lot of time if the query is
complex and repeated often. Another mechanism for saving queries are the afore-
mentioned materialized views. A materialized view is basically a combination of a
table and a view. It is created as a result of an SQL query, and represents the data that
the query would return. The query used to generate the materialized view is stored
to disk, allowing for materialized views to be regenerated at a later time. How ma-
terialized views differ from ordinary views is that they also store the query’s data,
meaning a materialized view is essentially a generated table which can be queried
with minimal time costs. The tradeoff is that, since the data of materialized view is
stored, it requires extra storage space, whereas an ordinary view does not.

Thus, a materialized view is a storage-persisted view of a set of data, generated
by a potentially complex and resource intensive query, which can itself be queried
with minimal time cost after its initialization. One issue with the materialized view
approach is that the view can grow stale, meaning that the underlying table data
has been updated after the creation of the materialized view, causing the view to
become out-of-date. However, since the query that generated the view is stored, the
materialized view can be regenerated once and any subsequent queries against it will
be both fast and up-to-date. Usually regeneration of a materialized view is handled
automatically, through periodic regeneration or by monitoring the underlying tables
for changes.

Event sourcing Event sourcing is a pattern where application state at a specific
time can be derived by replaying the historical events leading up to the specified
time [Fowler, 2005]. When using event sourcing, application state goes from being
history-less to being history-derived. The place where events are stored is called the
event log.

Let us illustrate event sourcing with an example. We have two chat participants,
Alice and Bob. The state of the chat amounts to the history of messages Alice and
Bob have posted, alongside any other changes they may have caused, such as chang-
ing their nicknames. Table 3.1 shows the sequence of chat events that occur.

The event history from Table 3.1 would produce the following state, at t = 5, for the
chat application (newest messages at the bottom):

Alice joined
Bob joined
Alice: Hi
Bob: Yo!
Bob is now known as Bob-afk
Bob-afk: ttyl

25

Chapter 3. Distributed systems

t Event
0 User ’Alice’ joins the chat
1 User ’Bob’ joins the chat
2 Alice posts message: ’Hi’
3 Bob posts message: ’Yo!’
4 Bob changes nickname to ’Bob-afk’
5 Bob posts message ’ttyl’

Table 3.1: Events of a chat application as seen from an event sourcing perspective,
where t is the relative time as counted in event occurrences.

We can see that we have a few different events. Users joining the chat, users
changing their own state, as well as messages being posted. These different events
can be regarded as having different types. Thus, an event log may contain many
streams of events—a sequence of nickname changes, a series of messages being
posted. We now have enough context to be able to dive into kappa architecture
proper.

Kappa architecture In a kappa architecture, events are stored in an append-only
log. Each event is a message, as discussed in 3.3, and each message has a message
type, identifying what kind of event it is.

As in event sourcing, the current state is derived through processing the log’s
historic messages. Going through the log each time to derive state takes linear time,
however. To solve this, views are instantiated using the log’s events, trading time
costs for storage—just like SQL’s materialized views. The derived views may use
a combination of different event types, e.g. there may be a user-centric view which
combines three event types to represent the latest known state of each user: the num-
ber of messages the user has written, their newest nickname, and the time of their
latest published message. The purpose of a kappa architecture is to combine events
spread across multiple append-only logs such that views can be created which can
then be queried. Events are combined through interleaving the logs of the kappa
architecture.

3.6 Interleaving logs

In the type of distributed system this thesis concerns itself with, i.e. those systems
which can ultimately be used to model chat systems, each producer typically has
its own log. The combined logs from multiple producers are used to reconstruct
the system’s state. This is accomplished by essentially creating a single virtual log
through interleaving, or combining, the records from each producer’s log, Fig. 3.1,
according to some kind of measure. The purpose of the measure is to synchronize
events across the different logs, in order to establish an ordering. Events may be
ordered in two ways: a total ordering or a partial ordering.

26

3.6 Interleaving logs

A B C

Figure 3.1: An example of interleaving logs. The three logs A, B, C have their indi-
vidual records interleaved to create a single virtual log.

Total ordering A total ordering is an ordering where all of the events of a system
are causally defined and, as such, any two events may be compared with each other
to determine which occured before the other. A total ordering may be arbitrary, in
that two concurrent events are arbitrarily but consistently resolved in terms of which
came before the other. An example of such a strategy is given in the explanation of
Lamport timestamps below.

Partial ordering Partial ordering preserves the order in which related events oc-
cured, but does not resolve the order of unrelated events. If we have two events,
event A and event B, and we determine the partial ordering such that we know that
A occured before B, then we say that we have established a happened-before relation
between A and B. This is sometimes written as A−→ B. Partial ordering is typically
used in distributed systems to determine the order of events and messages, due to
the difficulty of globally synchronizing clocks.

A partial ordering can be thought of in terms of a tree-like structure, where indi-
vidual branches of the tree contain partially ordered events, and where two branches
may not be compared as they contain unrelated chains of partially ordered events.
A total ordering of the tree would definitively and consistently manage to merge all
branches of the tree into a single sequence.

Interleaving measures
There are different measures that may be used to interleave the records. Real-
clock—as opposed to the logical clocks discussed in the next sections—timestamps,
e.g. the time reported by the computer at the time of log insertion, may be used.
Receive time, e.g. the time at which a consumer receives a record from a remote
producer, is another. More complex measures include Lamport timestamps, vector
clocks, and tangles, which will be further discussed in subsequent sections. Which
measure is used depends on the needs and context of the particular system. Times-

27

Chapter 3. Distributed systems

tamps are theoretically unsecure as they may be trivially forged, but are in practice a
simple mechanism for interleaving messages—again, the particular application and
its context determines the appropriateness of its use. Furthermore, systems using
real clock timestamps may also exhibit unexpected behaviour due to unsynchro-
nized clocks. A high-trust messaging app, for example, where everyone in a group
is considered trusted, and unknown third-parties have no ability to join, may use
regular timestamps without cause for fear, while a publically writable timeline of
posts may want to use vector clocks. Distributed systems with streams of subsec-
ond events may likely be better served by the latter approach, due to the increased
significance of unsynced real clocks.

We will now briefly detail the more complex measures mentioned. In the next
sections we will use the term process to mean an independent node in the distributed
system. In a chat app, the process would be a person’s computer, while in an oper-
ating system it would be an actual executing process. Importantly, processes do not
have a common realtime clock in which to rely on for synchronization. The reason
we use the term is to stay consistent with the literature, which, seemingly, primarily
considered distributed systems from the perspective of the day’s operating systems
research.

Lamport timestamps Lamport timestamps, or Lamport clocks, were proposed by
Leslie Lamport in 1978 as a mechanism to establish a partial ordering of events cre-
ated by processes in a distributed system, as well as a way to determine an arbitrary
total ordering the system’s events. [Lamport, 1978]

Basically, each process has an internal logical clock; a counter which is incre-
mented. When sending a message, the clock value at the time of sending is attached
to the message. When receiving a message, the receiver’s clock is set to be greater
than the timestamp contained in the message. Thus, if the receiver clock already
has a greater value than the message timestamp, nothing needs to be done. If the re-
ceiver clock is less than or equal to the message timestamp, the receiver clock is set
to a value greater than the received timestamp. Finally, events in the same process
occur in such a fashion that the clock is always incremented between two sequential
events—or more simply, after an event has occured, the clock has incremented at
least once. If the clock time of an event a is less than the clock time of another event
b, a is regarded to have happened before b.

As regards the mentioned arbitrary total ordering, it can be established by in-
troducing an arbitrary, but consistent, tie-breaking mechanism to handle the case of
concurrent events—that is, events in which there is no way to determine causality
due to them having the same clock timestamp, making them causally unrelated.
One simple tie-breaking mechanism: if two events have occurred concurrently, the
event stemming from the process with the lowest process ID is regarded as having
happened before. Lamport timestamps paved the conceptual way for vector clocks,
which will now be detailed.

28

3.6 Interleaving logs

Vector clocks In a vector clock-based system, each process in the distributed sys-
tem has a counter, usually called a logical clock. The process increments its logical
clock any time an event happens. Events that may occur are:

1. The process processes an internal event.

2. The process sends a message to another process.

3. The process receives a message from another process

Each of the above events would increment the process’s logical clock by one.
The vector in vector clock comes from the following: in a distributed system

with N participating processes, each of the N processes has a counter, or a logical
clock. Each logical clock will occupy a position in a vector clock, a vector of length
N, consisting of the individual logical clocks [Fidge, 1987].

The messages that processes send, or receive, each contain a vector clock cap-
turing the known state of the system, as seen from the sender at the time of sending.
Thus, when a new event arrives at a process, the receiving process can correctly or-
der the event according to the causal information carried in the event’s vector clock,
establishing a partial ordering of the system’s events.

Simply put, a vector clock keeps track of the time. Each position in the vector
clock represents the state of time for a particular process, at a particular point in
time. Let us represent the vector clock with T , and the vector clock for an event a
with T a. Furthermore, let T a

pA
represent the clock value for process pA at the time of

the event a.
To find out if a happened before b, we compare the vector clocks for both events.

Specifically, for a to have happened before b, the clock value for each process T a
pX

,
has to be less than or equal to the the clock value for each process T b

pX
, for all

processes X . Additionally, there has to be at least one process Y where the clock
value T a

pY
is strictly less than the clock value T b

pY
. This is what Equation 3.1 captures.

a−→ b iff ∀X(T a
pX
≤ T b

pX
)∧∃Y (T a

pY
< T b

pY
) (3.1)

Let us make the above more concrete. Let the vector clock T encode processes
pA and pB as [pA, pB]. Let the vector clock for event a be encoded by [2,1]a, and the
vector clock for event b by [2,2]b. Using Equation 3.1, we can see that [2,1]a is less
than or equal to [2,2]b. We also see that, at event a, the clock value for process pB
is strictly less than its clock value at event b. Therefore, a happened before b.

Fig. 3.2 contains a visualization of a sequence of vector clocks for three pro-
cesses over a span of time and events. In the figure, time proceeds from the bottom
up. The numbers in brackets show a process’s vector clock at the time of the event.
For instance, [2,2,0]p2 can be read as the event of process 2 knew that process 1’s
state at the time was 2, its own state was 2 while no information was known about
process 3. We can also see that there are two unrelated, i.e. concurrent, events in
[1,0,0]p1 and [0,0,1]p3—it is impossible to say which happens before the other.

29

Chapter 3. Distributed systems

process 1 process 2 process 3

[2,0,0] 1p

[1,0,0] 1p

[3,0,0] 1p

[2,2,0] 2p

[2,1,0] 2p

[2,2,2] 3p

[0,0,1] 3p

[2,2,3] 3p

tim
e

Figure 3.2: Vector clock example with 3 distributed processes. Time progresses
from the bottom up. The events [1,0,0]p1 and [0,0,1]p3 are concurrent.

One issue when using vector clocks in a distributed system is that they grow
in size with the number of participating processes—there needs to be one entry in
the vector clock per participating process. The vector clock is part of every mes-
sage, increasing the required message overhead. For a long lived system with a lot
of participating processes, the overhead quickly adds up and may become a signif-
icant problem. The problem is particularly severe in systems with many short-lived
processes.

Tangles The tangles data structure, briefly detailed in [Tschudin, 2018], is a new
data structure that can be used to establish partial ordering, and which is starting to
sprout from distributed ledger technologies such as Secure Scuttlebutt, discussed in
4.2. Essentially, a tangle is a type of append-only, directed, and acyclic graph (DAG).
Directed, meaning each edge has a direction from one node to another, acyclic that
there are no cycles, or loops, in the graph structure i.e. the graph A −→ B −→ A is
disallowed.

How a tangle differs from a typical DAG is that there is a ruleset that determines
the naming and referencing of other nodes in the tangle. For instance, a tangle has a
root, a set of tips, and a set of ancestors. The root is the start of the tangle and which
all nodes of the tangle must reference, the tips are the outermost nodes which point
to the tangle (but have yet to become part of it), and the ancestor set is how a node
points back to previous records in a tangle. A tangle creates an ordering of events
by having events causally and explicitly linking to each other, thereby establishing
a partial ordering. The simplest tangle is a chain of events, where each node refers
to the preceeding node, e.g. A←− B←−C←− D, where A is the root.

In a tangle-based system, there are normally many tangles. For instance, in a dis-

30

3.7 Looking to distributed chat systems

tributed chat system, each message thread—with many participating authors, each
creating posts in the thread—would be represented by a tangle. Note that the nodes
in a tangle are location-independent, such that two nodes may have been authored
in two different append-only logs.

One advantage tangles have over using vector clocks, for establishing partial
ordering, is that they do not necessarily grow in size with the number of participants
in the distributed system, as a vector clock does. Each message in the tangle does
not need to keep track of the state of every other node it knows about, which a vector
clock does. Tangles merely require referencing the latest known tips at the time of
authoring (in addition to the set of ancestors).

As tangles are relatively untreated in the literature, we will leave off their
discussion at this point, and refer interested readers to the article draft by
Tschudin [Tschudin, 2018].

3.7 Looking to distributed chat systems

We have described the underpinnings of a class of distributed system, shown how
messages passed among nodes in a distributed network can be secured and verified,
how those messages may be ordered causally to preserve their original context, and
described how normal patterns like managing application state can be accomplished
in this domain.

If we combine the outlined distributed systems architecture, with the
cryptographically-secured identity systems of Chapter 2, we can start to envi-
sion how a distributed chat platform might be formed. Before describing such an
entity, however, we first need to specifiy what we mean by a chat system. In the
next chapter, Chapter 4, we define what this work means by a chat system, outline
its components, as well as its issues, before proceeding to present the topic of a
distributed chat system, which builds on what we have presented in the present
chapter.

31

4
Chat systems

Chat systems are widely used across the world. Friends use them to stay in touch,
activists to plan and organise, strangers to discuss common interests. They let us
bridge space and time, connecting us over vast oceans and timezones in pursuit of
exchanging ideas, feelings and banalities.

This chapter will introduce chat systems from the perspective of how interac-
tions between participants can be managed. Common concepts like groups, admins,
and moderators as well as the moderation operations of hiding, blocking and ban-
ning are discussed. The intent is to set the scene for how moderation can be accom-
plished in a peer-to-peer, eventually consistent, distributed chat system, presented
and discussed in Section 4.2. Distributed chat systems, we argue, are a type of chat
system with a different set of capabilities and considerations than its centralised
counterparts.

A chat system is, for our purposes, defined as a multi-person networked and
primarily text-based communication system with clear boundaries, usually with
an emphasis on shorter rather than longer responses and near-synchronous com-
munication though not strictly so. Examples of boundaries, or chat contexts, are
the Internet Relay Chat (IRC) channel [Oikarinen and Reed, 1993], the Face-
book group [Facebook, 2020] , the Mastodon instance [Mastodon, 2020], the Slack
workspace [Slack, 2020].

That is, a chat system (IRC) can have many chat contexts (channels), and each
of the chat contexts may have many participants.

32

4.1 Moderation

4.1 Moderation

By moderation we mean the act of controlling the content of a chat context by ac-
tively managing its participants. This type of moderation is also known as content
moderation. The end goal of moderation is to handle disruptive participants by re-
ducing their capabilities (i.e. actions they can take) whether by removing them from
the chat, temporarily removing their ability to write, or by hiding their responses.
In some systems, individual responses and messages may also be deleted.

Moderation can be implemented on an individual level: Alice might hide Bob’s
responses, giving her a respite from having to read Bob’s comments, but without
affecting anyone else in the chat context. It can also be implemented on a group
level, where the disruptive participant has their ability to post new messages re-
voked across the entire chat context. Participants with the ability to manage other
participants on behalf of the group are usually referred to as moderators, while the
creators of the chat context itself, e.g. a particular IRC channel, are often referred
to as administrators, or admins. Administrators can grant and revoke the modera-
tor status of other participants, otherwise their capabilities usually tend to be the
same as that of a moderator. Henceforth, we will concern ourselves mostly with
moderators.

The design and values of a chat system influence the actions moderators and
individual participants can take. Some chat systems like Slack disallow participants
from hiding or blocking others, while others like IRC allows individuals to hide
(known as ignore in IRC) others. Moderators may hide participants on behalf of the
entire group (ban) and remove (kick) them from the chat context.

Terminology We will now delve briefly into the terminology that will be used with
regard to chat systems in this work.

The semantics and names for the different moderation actions differ across chat
systems, but the fundamentals of hiding and removing unruly participants, and del-
egating moderation capabilities may be found in a wider variety of systems.

The most common moderation actions include removing, hiding, and blocking a
participant. To remove a participant is to take away all of their capabilities. To hide
them is to render them speechless usually—but not necessarily exclusively—from
the hider’s point of view. Blocking can have a few interpretations, but it most often
includes both the removal of the ability to post new messages as well as preventing
the blocked participant from receiving new ones. For example: if Bob blocks Alice,
Alice can no longer send any messages to Bob. Alice can also no longer see what
Bob posts. In distributed chat systems, blocking can also impact Alice’s distribu-
tion of messages to participants other than Bob—Bob may be a unique connection
through which Bob’s friends receive Alice’s messages. This is discussed further in
Section 4.2.

Administrators and moderators have already been defined above as participants
that can grant and revoke the capabilities of other participants.

33

Chapter 4. Chat systems

The capabilities of a participant are the set of actions they can take, and stems
from the verb to be capable of. The capability to read the messages of the chat
context, and to post new ones. To grant and revoke the capabilities of others, or to
invite new participants.

By participant we mean a single entity, usually a person, represented by a
unique identifier within a chat context. In Facebook, this is more or less your le-
gal identity (coupled with either your profile url or a unique database identifier), in
IRC it is your nickname within a chat network, either registered with the network or
combined with your IP address to produce a unique identifier. The identifier allows
capabilities to be managed definitively, without any ambiguity as to whose capa-
bilities are being granted or revoked. For a more in-depth description of identity
systems see Section 2.2.

The chat context is the domain in which communication between participants
occurs. A chat system may have many chat contexts. We will use IRC as an il-
lustrative example. In IRC, the chat system is composed of the protocol, which
determines how messages are exchanged and which actions are possible, the chat
network, a collection of servers that distribute the network’s messages between each
other, and the chat channels—of which a chat network has many. The chat network
may be viewed as one chat context, as a participant’s identifier is the same across
it; the chat channel as another. Moderation actions can be taken at both the channel
level, kicking a participant from the channel, as well as at the network level, banning
them from the entire network.

A chat context may also be referred to as a community, as the participants of
a chat context have a complex set of relations to each other. In the section Par-
ticipant classification below, the terms community and chat context will be used
interchangably—mostly to prevent a dull sense of monotony from repeated use of
the term chat context.

Different kinds of unwanted participants
There are many conceivable reasons for why a chat participant would be the recip-
ient of a moderation action. The action may be initiated to mitigate the harassment
of others in the chat context, to remove an automated peer posting a flood of bogus
messages—or one participant might have simply tired of seeing the messages of
another.

Participant classification Below is a classification of participants which are rele-
vant to the problem of moderation. More importantly, they are the causes of mod-
eration. The intent of the classification is to map out the different causes of moder-
ation, in order to be able to discern the types of moderation actions required for the
different levels at which moderation may take place.

34

4.1 Moderation

• Spammers
Participants, usually automated programs, generating large amounts of un-
wanted messages.

• Trolls
Participants with malicious intents. These can be subdivided into:

– Vulgar trolls
Vulgar trolls display acts of overt, offensive behaviour. This may include
calling people vulgar names, setting display pictures to offensive images
and similar behaviour. They will tend to be blocked as soon as they are
detected.

– Argumentative trolls
Argumentative trolls waste time and create strife in communities by de-
bating other participants on inflaming topics, usually without the intent
of bridging a gap in understanding.

• Harvesters
Passive listeners which log and exfiltrate as much as technically possible from
the chat context. May also map out participants and their social graphs.

• Bad apples
Bad apples [Felps et al., 2006] are not intentionally malicious, but their way
of communicating causes strife in the community and they generally cause
more damage than good.

• Controversial participants
Participants involved in dramatically more conflicts, and at a higher rate, than
others. Usually not malicious in intent.

• Help vampires
High maintenance participants requiring more energy and engagement from
other participants than they are the source of.

• Unwelcome participants
Participants with extremist or other kinds of incompatible views which are
orthogonal to a particular community.

• Half-overlap participants
Participants whose interest may overlap with another, but which may be con-
sidered odious outside the intersection of interests.

• Breakups
Participants which have had a long-term relationship (not necessarily roman-
tic) but where one or both of the participants have now blocked each other.

• Orthogonal participants
Participants with completely orthogonal interests, viewpoints and communi-
cation patterns.

35

Chapter 4. Chat systems

Unwantedness spectrum The classified participants may be tolerated according
to the following spectrum along the two axes desirability and scope.

Desirability reflects the potential desire, or interest, one participant has in in-
teracting with another participant. The desirability axis may either be welcome or
unwelcome.

Scope captures the breadth of conflict a particular type of unwanted participant
represents. The scope axis may be either global or local. A global scope is taken
to mean the entire chat context, i.e. the entire chat context is unanimous in their
blocking of spammers and trolls. On the contrary, a local scope is in the context of
a single participant; an action taken for the sake of that participant, but which may
be different for every participant in a particular chat context. One example would
be filtering out half-overlap participants from chat channels outside of the common
interest; another would be blocking a previous partner due to a break up. It also
possible that the scope lies in between global and local; in this case we use the
term partially global—this can may be the case when there are neighbourhoods of
differing opinion, which we will expand upon soon.

The axes become more clear when viewed in context of the spectrum in Ta-
ble 4.1.

Desirability
Scope Global Local

Welcome Breakups Controversial participants
Unwelcome Trolls, spammers Half-overlap participants, breakups

Table 4.1: Table over unwantedness spectrum demonstrating where participant clas-
sifications may fit in along the two axes desirability and scope.

Let us further expand on Table 4.1 by placing additional examples of participant
classifications along the spectrum:

• Globally welcome
e.g. breakups

• Locally unwelcome
e.g. half-overlap participants, orthogonal participants, controversial partici-
pants, breakups

• Partially globally unwelcome
e.g. bad apples, controversial participants

• Globally unwelcome
e.g. spammers, unwelcome participants, trolls, harvesters.

We can see that a participant may be globally welcome at the same time as they
are locally unwelcome, as is the case for breakups—where Alice may have broken

36

4.2 Distributed chat systems

up with Carole, making Carole’s posts locally unwelcome for Alice. Alice and Ca-
role are both still globally welcome, as none of the two are malicious participants
(merely heartbroken).

Partially globally unwelcome signifies that there may be neighbourhoods of
opinion considering a certain type of participant, where one neighbourhood may be
more tolerant than other neighbourhoods as regards the type of disruptive partici-
pant.

Finally, in an ideal chat context, participants which are globally unwelcome will
be filtered out from the chat context e.g. spammers, harvesters, and trolls will have
no long-term effect on the chat context.

4.2 Distributed chat systems

We have so far described chat systems implicitly in terms of a server-centric model,
where there is no ambiguity as to who may or may not moderate for the group—
or even who may or may not be part of the group. But there is a new class of
systems being developed today which, in academic and business circles, go under
the moniker of distributed ledger technologies [Walport et al., 2016].

The idea of a distributed ledger fundamentally comes down to variations of the
append-only log structure that was the subject of Chapter 3, and in particular: how
to structure writing into the log, how many valid logs there are, and how to transmit,
or replicate, logs between participants of the distributed ledger.

Blockchains like Bitcoin [Nakamoto, 2019] are the most prominently featured
examples of DLTs today, but there are other projects which do not fit cleanly under
the blockchain classification, yet center on the use and replication of append-only
logs. Secure Scuttlebutt (SSB) [Tarr et al., 2019] is one increasingly popular tech-
nology and community that fits under the DLT classification.

Properties Distributed chat systems have a set of properties that make them dif-
ferent than their centralized counterparts. In a distributed chat system, each node
in the chat system typically stores all of the content they can see and interact with.
That is, in addition to the content the node itself has produced, it also stores mes-
sages on the local machine that have been created by others (often even messages
it has not seen yet). This kind of selfless storage sharing increases the availability
of the system, increasing the spread of messages, which will be further discussed in
the Replication section below.

This class of system is also often delay-independent—a notion which was in-
troduced in Chapter 3—meaning that it continues to function without any internet
connectivity. Systems with this property have been termed local-first [Kleppmann
et al., 2019], because the system design prioritizes the software working on the local
machine, while allowing its functionality to be extended by the presence of internet
connectivity.

37

Chapter 4. Chat systems

Indirect communication The combination of the previously described properties,
of delay-independent operations and storage sharing, enable a peer-to-peer dis-
tributed architecture. This peer-to-peer distributed network has a greatly increased
resiliency, as compared to that of a centralized network.

For nodes to communicate with each other in a centralized chat context, all
communications normally have to be coordinated by the central actor—typically a
Domain Name System-based (DNS) domain name. In the distributed chat context,
nodes instead communicate directly with each other. It goes deeper than that, even.
The described properties allow nodes to communicate indirectly with each other,
through other, yet non-privileged, nodes with greater network connectivity. Let us
illuminate what we are positing with a scenario.

Two nodes, Alice and Bob, want to communicate with each other but are unable
to because of their network configuration (e.g. inability to accept direct connections
due to requiring network router configuration). Luckily, their common friend Car-
ole is good with routers and has configured hers properly. This results in that Alice
can reach Carole, and that Bob can reach Carole. Since Carole can be reached by
both Bob and Alice, and Carole also stores all of the messages of people she inter-
acts with, this means that Alice and Bob can communicate using Carole as a relay.
This property is emergent from the previously described properties of creating a
storage sharing and delay-independent system. For an alternate introduction to the
underlying communication model, see the article by Tschudin [Tschudin, 2019].

It is important to point out that Carole is a non-privileged node, i.e. the dis-
tributed chat system is not configured to route all messages through Carole. It just
happens to be the case that Carole, a node, is easier to reach, and so that is one of
the pathways messages between hard-to-connect peers end up taking.

Going forward we will describe two real-life distributed chat systems: the pre-
viously mentioned Secure Scuttlebutt, and the group-centric Cabal.

Secure Scuttlebutt
Secure Scuttlebutt (SSB) [Tarr et al., 2019] was initially proposed by Dominic Tarr
in 2014. SSB is a peer-to-peer protocol and architecture for creating applications
with a strong basis in a community’s social fabric—or the real-life connections and
relationships between people and how these are facilitated by their computers. Since
2014, SSB has attracted a large community consisting of academics conducting
research on the protocol, companies building applications ontop of it, open source
developers improving the protocol and its array of open source applications, and
everyday interactions by everyday people. It is currently host to more than 10000
identities [Tarr et al., 2019].

This section will present an overview for some of Secure Scuttlebutt’s details
and properties. Interested readers are encouraged to read the scholarly article de-
tailing the protocol [Tarr et al., 2019], or the beautifully illustrated technical docu-
mentation, Scuttlebutt Protocol Guide [SSBC, 2017].

38

4.2 Distributed chat systems

Identities In SSB, identities are represented by the Ed25519 signature scheme,
discussed in Chapter 2. This has the consequence that any identity can be easily
created by generating a signature keypair. In the preceding chapters, we discussed
the upsides of being able to generate verifiable and cryptographically secure iden-
tities, such as allowing for the transport of messages across many nodes without
tampering. One of the downsides, however, is that it becomes possible to generate
any amount of identities. This can become a problematic attack vector.

Social fabric SSB mitigates the described attack vector with its emphasis on the
architecture’s social fabric.

SSB’s follow graph, see Fig. 4.1, is essentially a directed network graph, where
nodes pull information from the direction of the following relation. Following is
done by posting so called follow messages, which has as payload the public key of
the person that is to be followed. That is, users only have their log messages shared
across the network if others follow them. Thus, in SSB, the social graph and the
network graph are one and the same—this facet is what we refer to when we use
the term social fabric. Fig. 4.1 visualizes the follow graph and how information is
propagated in the system.

Spammer example Let us say we have a spammer, Eve. Eve spams by posting
bogus messages to her log. For Eve’s spam to have an effect on anyone else in the
network, other people have to follow Eve. If someone, let us say we have a naive
person named Bob, follows Eve, Eve’s spam will typically have a reach of 3 hops.
A hop is essentially a traversal in the follow graph, from one node to another. That
is, Eve’s 3 hops boils down to: Bob (who is following Eve), anyone following Bob,
and anyone following one of Bob’s followers. If, however, Bob realizes that Eve is a
spammer, he can revert his follow, terminating the spam for all subsequent hops that
are connected to Eve through him. Thus, if a spammer is blocked, and they create
a new identity, they still have to become followed by others in the network for their
spam to have reach. This can be thought of as similar to the bottleneck property of
attack resistance, which will be discussed in Section 6.2.

Connectivity One detail which causes issues for the concept of the social fabric
and the follow graph is the presence of pubs. Due to the difficulties in the current
architecture of the internet, establishing so called pure peer-to-peer connections is
error-prone, with issues stemming from network address translation and the ex-
hausted IPv4 address space. As a mitigation, SSB has introduced a differentiated
type of peer called a pub. Pubs are, essentially, automated peers that are easy to es-
tablish connections with. Typically, a pub can be made to follow another peer. This
causes the pub to effectively bridge the peer being followed into the wider SSB
network by storing and propagating the messages of the followed peer.

The problem that a pub poses is that, since it is a semi-automatic mechanism
for connecting disparate peers together, it may continue to spread Eve’s content un-
less the pub operator individually intervenes. Thus, everyone in the network has to

39

Chapter 4. Chat systems

4+ hops

3 hops

2 hops

1 hop

Figure 4.1: Visualisation of a follow graph in Secure Scuttlebutt. The purple center
node is the user whose perspective we are viewing from. The nodes within the circle
titled 1 hop have been followed directly by the user. Nodes in the 2 hops-circle are
followed by the nodes that the user follows, i.e. they are 2 edge hops away from
the user, or indirectly followed. The orange nodes in the 3 hops-circle are nodes
which are not normally visible to the user in client interfaces, but whose logs are
stored locally. The 4+ hops-area contains unknown nodes, representing the frontier
of undiscovered parts of the Scuttlebutt network. Image adapted from the public
domain-released Scuttlebutt Protocol Guide [SSBC, 2017].

individually block Eve to remove her bogus messages, despite not following her,
disrupting the elegance of the follow graph and using unfollows as a type of mod-
eration mechanism.

Finally, we find it important to note that all communication between two peers
in SSB is encrypted by using the keypairs of both communicating peers to de-
rive a shared secret, as part of a key exchange protocol. The key exchange pro-
tocol, known as the Secret Handshake protocol, has been described elsewhere [Tarr,
2015] [SSBC, 2017].

Peer discovery Finding other nodes to synchronize with is an important aspect for
any peer-to-peer system. SSB has two main methods of peer discovery.

40

4.2 Distributed chat systems

The first is a Local Area Network-based (LAN) approach. The approach consists
of SSB clients broadcasting a User Datagram Protocol (UDP) packet regularly on
the LAN connection. The UDP packet contains information about the peer’s IP ad-
dress on the LAN, as well as the peer’s base64 encoded public-key [SSBC, 2017].
This information, then, allows any recipient to connect to, and exchange messages
with the broadcasting peer.

Peer discovery over the internet is also present in SSB, and makes use of the
aforementioned pubs. We mentioned that pubs could be made to follow users, thus
bridging them into the wider Scuttlebutt network. The mechanism for doing so is
by an invite-based system. The pub operator can generate an invite code, which can
be redeemed by another user. Redeeming the invite code causes the pub to follow
the user. The invite code contains the IP address—whether as a domain name or
as a numerical address—its base64-encoded public key, the port the pub uses to
communicate, as well as a secret key generated and stored by the pub in the act
of creating the invite code. Redemption, then, consists of contacting the pub in the
invite code and presenting the secret code. On successful communication, the pub
follows the user and proceeds to request the contents of their log.

Replication Sharing data between two peers in SSB is known as replication. The
term comes from the world of database systems, where it is derived from the act of
creating a replica, or a copy. Thus, replication is the act of sharing copies across
nodes in the network—getting each other up to speed on the latest happenings, if
you will. Replication in a distributed chat system, then, is the act of sharing mes-
sages originating from different peers. The idea behind the message exchange proto-
col that SSB uses is the same as that explained in the log synchronization example
of Section 3.4. For convenience, we will briefly rephrase the contents of the syn-
chronization example with respect to what happens in SSB.

Two peers, Alice and Bob, discover each other and want to know the latest
news concerning their groups of friends. Bob sends Alice a list of the peers he is
interested in, as well as the id of the latest record for each peer’s log; Alice does
the same with the list of peers she is interested in. Each peer can then figure out
the intersection of the set of feeds the other peer has on their disk, and the set of
feeds they themselves are interested in. Importantly, they can efficiently figure out
which of the newer records to send to the other party, by considering only those that
happened after their local copy.

Applications As SSB’s protocol and architecture models a social graph, it is nat-
ural that there exists a variety of social network-style applications. In Fig. 4.2, we
can see an example of a typical social application in SSB. Application views are
populated using the messages contained in each peer’s log by stitching them to-
gether in the manner described in Section 3.5 on Kappa architecture. Furthermore,
SSB uses the tangles concept to establish partial ordering of messages across dif-
ferent logs, which we previously outlined in Section 3.6. For easily referencing and
mentioning other peers, a fundamental action in social interactions, the petname

41

Chapter 4. Chat systems

system described in Section 2.2 is employed, an example of which can be seen in
the bottom-most SSB post of Fig 4.2.

Figure 4.2: A typical SSB application. The image shows the Patchwork client, fo-
cused on presenting posts in a forum-style. In the image, we can see posts from two
Scuttlebutt users, as well as an example of using petnames to refer to other users.
One of the posts features an embedded image, which is also synchronized over SSB
but with a mechanism that resides outside of the peer’s logs. Binary data, called
blobs, is synchronized by issuing a blob request [SSBC, 2017].

We have now briefly outlined the workings of the Secure Scuttlebutt protocol
and architecture. Its design was an inspiration for the Cabal project, which will now
be discussed.

Cabal
Cabal [Cabal-Club, 2020], initially proposed by the author in April 2018 [Cobleigh,
2018], is a peer-to-peer application and architecture focused on facilitating group
communication that can continue to function in limited connectivity settings. Any-
one can start using Cabal by running one of the clients on their computer, shar-
ing the generated cabal key with people they want to chat with. The cabal key is
a base16-encoded Ed25519 public key. The public key is generated for the pur-
pose of using it as an identifier for a cabal, the group-specific chat context in the
Cabal architecture—the private component of the generated keypair is discarded.
Like SSB, there are no accounts or centralized identity servers. Cabal has grown

42

4.2 Distributed chat systems

to encompass a community of 30+ past contributors, in addition to 5 active core
developers as of writing. Fig. 4.3 shows an image of Cabal’s desktop client.

Figure 4.3: Cabal’s desktop application.

Similarities to Scuttlebutt Like Secure Scuttlebutt, Cabal also builds on the kappa
architecture pattern by combining append-only logs with message-based operations
and deriving views for different usecases—whether that be the main chat view
for a chat channel in a given cabal, or retrieving the latest nickname of a partici-
pant in the cabal. Cabal’s architecture is in great part inspired by SSB, as well as
IRC [Oikarinen and Reed, 1993] and other chat systems.

Cabal also works on LANs by broadcasting and listening for other cabal clients.
Finally, Cabal’s identities also build on the Ed25519 signature scheme.

Differences from Scuttlebutt While Cabal has a lot of similarities to SSB, there
are also differences. Cabal’s clients have a greater real-time focus, favouring inline
back-and-forth chat messages, than the existing cohort of SSB social applications,
which mainly favour the forum-style seen in Fig. 4.2.

The largest difference, however, is that Cabal has a much greater group-focus
than SSB. SSB’s social fabric puts a large emphasis on interweaving the network
graph of Scuttlebutt with the social graph of its participants. It is, however, open for
anyone to connect with anyone—as long as they can bridge the social gap. What
we mean is that SSB has more of a world wide web-focus, while Cabal is more
focused on clearly delineated communities. To explain by metaphor, where SSB is
a teeming city, Cabal is the underground punk club only open on odd weekends. It
should however be noted that SSB has the option of using a different network key,

43

Chapter 4. Chat systems

which effectively creates a new and unbridgeable Scuttlebutt network; the norm,
however, is to use the single, established network key. This is however the exception
for SSB, while for Cabal it is the main usecase. That is, it is much simpler and
straightforward to create multiple, separate cabals—every one of Cabal’s clients
implements it—than it is to accomplish the equivalent in SSB.

Cabal also lacks any concept of SSB’s pubs at the moment, opting instead for
using Distributed Hash Tables (DHTs) to find other participants over the inter-
net [Maymounkov and Mazieres, 2002]. A DHT is essentially a large network of
nodes that can be queried. A new node entering the network has to enter from a
set of preconfigured nodes, known as bootstrap nodes. Having once entered via a
bootstrap node, however, they now have access to the entire DHT. Different nodes
in a DHT know about different types of information, and the mechanism for finding
information is to query nodes, asking them if they know where to find the sought
information. For Cabal, this amounts to deriving a discovery key, a cryptographi-
cally secure hash of the cabal key, and using that to query nodes in the DHT. Nodes
that respond affirmatively are identified as nodes part of the cabal identified by the
cabal key, and a direct connection is attempted in order to synchronize the logs of
the cabal.

Proof-of-concept moderation Cabal features in this thesis both as an example of
a distributed chat system, but also because it will later, in Section 7.3, be extended
with a proof of concept implementation of a subjective moderation system—a topic
we will expand on in Section 4.3.

The reasoning behind why Cabal was chosen as the basis for implementing a
proof-of-concept, instead of SSB, is as follows. The author has a greater familiarity
with the Cabal application stack as opposed to the more mature, and thus complex,
SSB ecosystem of code modules. Cabal was simply easier for the author to modify
and extend than the extensive SSB stack, simplifying the evaluation process of the
proposed trust system. Finally, the need for a moderation system in Cabal was the
initial inspiration for the topic of the thesis, so it seemed fitting to conclude the
journey where it started, so to say.

Wrapping up
This has been a brief presentation of the Secure Scuttlebutt protocol, as well as the
Cabal project. The scholarly article on SSB [Tarr et al., 2019] contains a lot more
detail and nuance than what has been communicated here, as our aim has primarily
been to introduce the topic of distributed chat systems, as well as outline a few of
their important properties with regard to the topic of moderation.

We will now proceed to outline the concept of a subjective moderation system,
as a conclusion to the entire chapter. We will synthesize aspects of chat systems,
traditional chat system moderation, and properties of distributed chat systems to end
up with the concept of subjective moderation systems. We will finish the section by
arguing that subjective moderation systems are necessarily based in notions of trust.

44

4.3 Subjective moderation

4.3 Subjective moderation

The traditional moderation systems touched on in Section 4.1 are incompatible
with distributed chat systems. The main reason behind the incompatibility is that
Section 4.2 distributed chat systems have their basis in attempting to remove any
centralizing aspect of chat systems; once a chat system is allowed to be delay-
independent, the notion of an objective set of moderators quickly becomes difficult
to wrangle. Being allowed to delegate the responsibility for mitigating the impact
of malicious participants remains useful, however.

The naive approach The simplest moderation system to implement in a dis-
tributed chat system is that of everyone independently issuing moderation actions.
If Alice wants to remove Eve’s spam posts, she has to individually hide Eve. If Bob
also wants to stop seeing Eve’s posts, he too has to hide Eve. We will call this the
naive moderation approach. The naive approach can still be effective, however, as
illustrated by the Secure Scuttlebutt example, in the Identities section above.

The drawback of the naive approach is that it is ineffective, and as such, ex-
hausting to the participants in a given chat context. If participants continually need
to individually intervene with every bad actor that discovers the chat context, the
chat context risks being short-lived.

Delegation What if we could instead have a system of delegation, where Bob
could trust Alice such that, if Alice issues a moderation action, then Bob will auto-
matically issue an action as a result of his trust in Alice. This kind of system spreads
out the burden of moderation along paths of trust, receiving a similar benefit as that
of the traditional moderation systems described so far. This combines the positive
property of the naive approach, where every participant has been granted the abil-
ity to issue moderation actions—a capability not always granted in traditional chat
systems—with the positive property of the traditional moderation system’s delega-
tion.

The result of such a system would be that a single chat context could have po-
tentially many neighbourhoods of moderation, where each neighbourhood would
be based in the relationship of trust that exists within that neighbourhood. The de-
scribed trust-based system is what we mean when we refer to a subjective modera-
tion system.

Traditional vs subjective One hidden aspect of traditional moderation systems is
that they grant a special privilege to the initiator of the chat context. This can be-
come problematic for many reasons. The initiator may disappear, leaving the group
moderation-less. Similarly, the initiator may be adept at starting new chat contexts,
but lacking in skill concerning matters of moderation (e.g. assigning new modera-
tors). Finally, issues may arise where previously good moderators have a falling out
and start banning people.

A subjective system, where participants can themselves decide who moderates
on their behalf, sidesteps the mentioned problems. As previously stated, the mech-

45

Chapter 4. Chat systems

anism of freely allowing multiple people to moderate also spreads out the invisible
care-giving labour required to keep a community free from abuse.

Subjective moderation actions
One question that arises when considering a subjective moderation system is what
types of moderation actions make sense within it. Clearly, there should be some way
to signal a delegation of moderation responsibility, in addition to the ability to hide
malicious participants.

One approach that SSB uses is that of blocking participants. Blocking in this
context works on multiple levels. At its most basic level, it hides any content from
the blocked participant. It also signals to other SSB peers not to forward content
about the issuer to the blocked participant. Futhermore, it also removes the content
of the blocked participant from the issuer’s local database. This lowers the avail-
ability of the blocked participant. If enough people block a participant, they could
effectively become hidden in the wider network.

Another approach would be to hide the participant. By hide, we mean that the
participant issues an action that hides all of the content of the hidden participant,
without affecting the availability of the content. It could furthermore act as a signal
to others to issue a corresponding hide; we discuss the nuance of this operation in
the section Disambiguating intentions below.

Disambiguating intentions
A moderation action has a set of semantics that need to be regarded in order for a
subjective moderation system to function according to the expectations of its par-
ticipants. We will illustrate the semantics by looking closely at the hide action.

We propose that there are three modes of the hide action for a subjective mod-
eration system: the personal, network, and propagated modes. The three modes can
be implemented in various ways, but they need to exist in some form in order to
disambiguate the intention of the hide. We will now detail the three modes and the
intentions they are intended to represent.

Personal A personal hide, is issued for the local participant and does not nec-
essarily signal anything other than the participant not wanting to see the hidden
participant anymore. A personal hide may be private, i.e. not transmitted in a for-
mat readable by any other participant (that is, it is encrypted to the local participant
only).

The personal hide exists to reflect that, while the hide action is issued for a valid
reason, it is purely personal and does not by necessity mean that other peers should
issue hides of their own.

Network A network hide, is issued by a participant to signal to others who trust
them that they, too, should hide the hidden participant. Thus, the network hide is
the mechanism by which one participant can signal and warn others of a malicious
participant.

46

4.3 Subjective moderation

Propagated A propagated hide, is issued as a result of a network hide by another,
trusted participant; i.e. it has been propagated from a network hide. Propagated
actions should not result in further actions—it is propagated, not propagating.

The propagated hide needs to exist so that hides that were issued as a result of
trust in another participant can be tracked to their origin and also revoked, if the
trust has been lost.

Conclusion
We have argued above that a subjective moderation system acts along pathways of
trust between the participants of a chat context. That, in order to delegate responsi-
bility, there needs to be a baseline trust in the delegated entity. But what is trust? And
how can we capture notions of trust in a computational environment? We explore
these questions and more in the next chapter, Chapter 5, Trust.

47

5
Trust

Our lives and societies are built on the foundations of trust. Trust in institutions
not to swindle us, in governments and politicians not to waste our money, and,
most importantly, in our personal relationships. We trust the people closest to us,
and extend that trust to people whom they deem trustworthy. Importantly, we also
disregard the advice from those whom have accrued our distrust, regardless of what
our friends may say about them.

Trust is foundational for the proper functioning of chat systems. Trust in the fact
that the person you are chatting with is who they claim to be, and that they are not
swapped out mid-conversation and replaced by some other intervening third-party.
Trust in the permanence of actual people behind online monikers is what allows
relationships, amorous and platonic, to blossom in the digital landscape.

The digital infrastructure we use daily is also built on trust. Trust of the root and
authoritative name servers to honestly answer domain name queries, on the signing
authorities of digital certificates, in the companies that are hosting our personal cor-
respondence and private information, and in the tamper-free distribution of software
packages and binaries. In the digital sphere, however, there is a pervasive lack of the
personal kind of trust we employ in our relationships.

It is, of course, possible to place trust in people and their accounts. To verify fin-
gerprints of secure messaging services, hashes of binaries and so on. This amounts
to verifying the authenticity of things—this device belongs to that person, that bi-
nary has not been exchanged in transit—but speaks little as to any actual degree of
trust. There are few translations into the digital realm of the trust and mechanisms
which we rely on day to day; that of delegating responsibilities to people that are
close to us and whose abilities and confidence we treasure.

48

5.1 Definitions

5.1 Definitions

The definition of trust this work relies on is one which has been put forward by
Bhuiyan, Jøsang & Xu:

Trust is the extent to which one party is willing to depend on some-
thing or somebody in a given situation with a feeling of relative secu-
rity, even though negative consequences are possible. [Bhuiyan et al.,
2010]

Bhuiyan et al. label the above definition as decision trust. The definition beau-
tifully captures the notion of dependence and delegation which is inherent to trust,
as well as the fact that trust can be both misplaced and have unanticipated conse-
quences.

The measurement of the extent to which one party trusts another is known as a
trust metric.

Trust and reputation Trust is also connected to, but separate from, reputation.
Abdul-Rahman and Hailes provide the following, somewhat dry, definition of rep-
utation,

[...] reputation is an expectation about an agents behavior based on
information about or observations of its past behavior [Abdul-Rahman
and Hailes, 2000]

Reputation is an aggregate. It is an opinion on something derived from a quantity
of prior opinions and judgement calls by, chiefly, other entities. Reputation can be
used to inform one’s trust. If, however, you trust someone, that entails the possibility
of maintaining that trust irrespective of any bad reputation the person may have
accrued. Trust captures something personal, while reputation is a utilitarian value,
condensed from repeated observations by the crowd regarding a particular entity.

Bhuiyan et al. define the essential difference of trust and reputation in two com-
monplace statements,

I trust you because of your good reputation.
I trust you despite your bad reputation.

The first shows trust being informed by someone’s accrued reputation. An un-
known becoming welcomed into the fold. The second, that the person remains
trusted because of prior personal knowledge; a relationship being maintained in
stormy weather.

Reputation and trust have their own inherent characteristics which make them
suitable for different purposes. Reputation has, for instance, chiefly been used in
marketplace scenarios such as ecommerce sites or ensuring the authenticity of files
in fleeting peer-to-peer networks [Kamvar et al., 2003]. Whereas personal trust has
so far been relatively underused in respect to computer systems.

49

Chapter 5. Trust

Trust facets There are a few dimensions, or facets, which make up that which we
call trust. Trust is subjective. That is, our own trust for a particular entity may differ
from that of another person’s trust in the same entity.

Trust is, to some degree, measurable. Alice may trust both Bob and Carole,
while at the same time she may trust Bob more than she trusts Carole.

Trust is scoped. Alice may trust Bob to take care of her plants while she is away,
but she does not trust Bob for financial advice.

Using the above definition of trust in combination with the just described facets
of trust, that trust is subjective, scoped, and (to some degree) measurable, we can
begin to envision a system of trust able to be mediated by computers.

Trust metrics A trust metric is defined as the way in which trust across entities is
measured. The term also extends into the territory of trust propagation, or how new
trust relations can be discovered given an initial set—trust propagation is discussed
further in Section 5.3.

Ziegler and Lausen, authors of the Appleseed trust metric which is the topic of
Chapter 6, describe trust metrics in the following manner:

Trust metrics compute quantitative estimates of how much trust an
agent a should accord to its peer b, taking into account trust ratings
from other persons on the network. [Ziegler and Lausen, 2005]

5.2 Related Work

This work rests on a body of knowledge from social science as well as computer
science. The field of computational trust had a boom around the end of the 1990s to
the middle of the 2000s, which was strongly correlated with the advent of popular-
ized and widespread internet usage. Of particular note for the academic community
was research focused on the promise of the Semantic Web.

The Semantic Web promised an interconnected network of documents and re-
sources with clear classifications and taxonomies. For various reasons this vision of
the Web was never realized—although its promise lives on as the linked data move-
ment [Bizer et al., 2011]. The Semantic Web research is becoming increasingly rele-
vant in today’s world of social media, and the burgeoning wave of distributed ledger
technologies and the alternative propagation schemes they bring.

The now renowned PageRank [Page et al., 1999] introduced the notion of ob-
jectively ranking web resources by analyzing directed graph edges, where resources
regarded as more interesting receive higher rankings. The authors also identify what
they call rank sinks, self-reinforcing loops which inflate rankings, and propose a
solution for the problem. Their solution essentially amounts to randomly jumping
from one resource to another, preventing any prolonged stay in a rank sink. Page-
Rank produces a global ranking for all of its resources, and requires a centralized
view of the entire graph.

50

5.2 Related Work

EigenTrust [Kamvar et al., 2003] uses insights from PageRank to perform a dis-
tributed computation of a global trust value for each peer in a peer-to-peer network.
The algorithm makes use of peers’ own trust assignments of each other to derive
each peer’s global trust value. According to the definitions in Section 5.1, it would
be more correct to call EigenTrust’s global value a reputation score, as the global
value is a derived aggregate that disregards any one peer’s subjective trust assign-
ment. EigenTrust also relies on a pre-shared trust base, consisting of known trusted
peers, in order to function properly. Mario Schlosser, one of the EigenTrust co-
authors, has written an article [Schlosser, 2019] on the conditions and insights that
led to the algorithm’s inception. It also describes, in plain language, the algorithm
itself. It is worth reading.

Abdul-Rahman and Hailes introduce many useful concepts in [Abdul-Rahman
and Hailes, 1998]. Conditional transitivity is introduced, the idea that trust is only
transitive if certain conditions hold. The authors separate direct trust, i.e. trust stat-
ments issued from one user regarding another, and recommender trust. Recom-
mender trust captures the concept that a party can be trusted to relay and provide
recommendations on whom to trust directly. Trust categories are brought up, which
are identical to the trust scope defined above in Section 5.1. Trust value seman-
tics, mapping trust values to human-meaningful terms, are also introduced. The
paper’s proposed propagation scheme and trust calculation are admitted by the au-
thors to be too ad-hoc. Furthermore, that users have to assign two different kinds of
statements regarding others, direct trust statments and recommender trust, appears
well-intentioned but naively optimistic—people are notoriously reluctant to expend
energy outside any application’s critical path / core value proposition.

In [Jøsang et al., 2003] trust scope, called trust purpose in the paper, is men-
tioned as a core facet of trust. Direct and indirect trust are also touched upon, and
used in a similar manner as in [Abdul-Rahman and Hailes, 1998]. Different scenar-
ios are brought up which illustrate the need to properly handle direct and indirect
trust, with an important caveat not to issue direct trust assignments using indirect
trust as a basis. The conclusion is that parties should only recommend direct trust,
as established from their own experiences, to avoid problematic scenarios. Trust
calculation is not detailed and neither is trust propagation.

Propagation of Trust and Distrust [Guha et al., 2004] is a treasure trove of trust
findings. They empirically test a variety of subjective trust propagation schemes
against a dataset of 800k trust scores issued by 130k people. The article makes the
claim to be the first to empirically evaluate computational trust. They also intro-
duce interesting variations on trust such as co-citation; two people who don’t know
of, or trust, each other but both trust another third person are more likely to have
others in common that they trust. Guha et al. claim to be the first to describe an
implementation of computational distrust, and present promising results:

[..] one of our findings is that even a small amount of distrust in-
formation can provide tangibly better judgements about trust informa-

51

Chapter 5. Trust

tion. [Guha et al., 2004]

Appleseed [Ziegler and Lausen, 2005], which this thesis builds heavily upon,
will be described in detail in Chapter 6.

None of the previous works have as a goal to make the resulting trust scores
actionable for end users—whether as peers in a network or as system designers
incorporating the work as a software component. The body of existing work has
focused chiefly on recommender systems, while this work focuses on enabling au-
tomated decision-making in the chat domain. This work is also the first, to our
knowledge, in which a trust system makes use of the replication layer of distributed
ledger technologies as a propagation mechanism of trust statements. To summarise:
this work is, to the best of the author’s knowledge, the first to propose a complete
trust system that can be incorporated as a software component for distributed ledger
technologies, and which provides real value for impacted users by way of enabling
automated decision-making and actions as a result of assigned trust scores.

5.3 Computational Trust

Computational trust has many potential applications, which is evident from the liter-
ature. Levien’s Advogato [Levien, 2003] was used in a real-life internet community
which used trust rankings to limit article posting to trusted users.

Ziegler and Lausen [Ziegler and Lausen, 2004b] use trust to improve recom-
mender systems, reasoning that trust and user similarity are tightly coupled. They
validate their reasoning by empirically proving the coupling of trust and user sim-
ilarity for a scraped dataset of book recommendations. Their aim of using trust is
to avoid the problems, e.g. the cold start problem, associated with the collaborative
filtering techniques used in the majority of recommender systems today.

Collaborative filtering is the idea that you can group users by similarity based
on the users’ previous scores regarding the same products, i.e. similar users will
rate similar products in a similar fashion. Given two users, user A and user B, and
a set of products P that user A has not seen but which B has rated favourably. The
products P can then be recommended to A if users A and B are similar.

Ziegler and Lausen propose that instead of using only collaborative filtering
techniques, one can supplement those techniques by considering neighbourhoods
of trust. A trust neighbourhood is fundamentally a set of nodes, say book reviewers,
that have assigned trust to others nodes in the neighbourhood. A book reviewing
community will thus have many neighbourhoods. Producing recommendations then
boils down to querying the trust neighbourhood of a node to find e.g. books which
the node has not yet read, but which its neighbours have rated favorably.

Computational trust facets
The trust facets brought up in Section 5.1 are the pillars that enable computational
trust. We will expand on the subjectivity, scopedness and measurability of the trust

52

5.3 Computational Trust

facets for the sake of clarifying what a system of computational trust would require
more concretely.

Implementing a subjective trust metric means forgoing any attempts to capture
an absolute score describing the trustworthiness for any particular peer. What we
instead want to determine is a trust score as seen from the perspective of one partic-
ular peer upon another. So for any trust judgement issued by a peer, let us call it the
trust source, there will be a recipient of the issued trust, the trust target.

The judgement each source decrees regarding a trust target is called the trust
weight. The concept of a trust weight will be present in fundamentally any imple-
mentation of computational trust. Either Alice trusts Bob, or she does not, or she
trusts him to a certain degree—or she does not know of him at all. This trust weight
may be inferred automatically from measured behaviour, or it may be explicitly
issued by Alice. This work subscribes to the notion of issuing explicit trust assign-
ments. The reason boils down to the fact that any causal inference is very difficult
in the chat domain. The problems of automatic trust inference are explored with a
couple of examples in the section Trust inference below.

If we are to introduce a notion of computational trust, there should be a com-
ponent of it that regards the context in which the trust is placed. Many applications
may, however, be well suited by a single generalizable domain. Outside of digital
systems, we trust each other to varying degree depending on what area of life is
being considered. Bob may trust Alice for tips on repairing machines, but not at
all for help and advice regarding his garden. This facet is mentioned across the lit-
erature as trust scope [Jøsang, 2007], trust purpose [Jøsang et al., 2003], and trust
categories [Abdul-Rahman and Hailes, 1998]. As there is no definitive classification
for this facet, this work has decided to add another one to the fray: trust area. The
trust area acts as a grouping for related trust assignments. As will be discussed in
Trust propagation below, trust is only transitive within a trust area.

The expanded trust facets for computational trust have been summarized in Ta-
ble 5.1.

Trust facet Description
Trust Source The issuer of the trust assignment.
Trust Target The target of the trust assignment; the entity being trusted.
Trust Weight The amount of trust assigned to trust target.
Trust Area For example: book recommendations, moderation capabilities

Table 5.1: Computational trust facets

Trust inference Let us consider Alice and Bob again. Let us say they are both
participants of a chat system and have not interacted previously. Furthermore, let us
assume that we want Alice to automatically assign Bob a trust score, resulting in
that Bob is either minimally trusted or not trusted at all.

53

Chapter 5. Trust

If Bob mentions Alice and Alice mentions Bob back, that could be taken as a
signal that they know each other and are communicating amicably. It can however
also be the case that Bob is exhibiting unwanted behaviour and Alice is asking Bob
to stop. The situation is ambiguous and no inference can successfully be made. It
could be argued that sentiment analysis could be utilized to infer minimal trust,
but language use is ever-evolving and ambiguous—especially in informal chat set-
tings, rife with community-specific terminology, jokes and irony (not to mention
the abundance of human languages in modern use).

In another example, specific to distributed chat systems, we could look at auto-
matically classifying flooding behaviour to mark flooders as untrusted. Flooding in
chat systems is usually defined as a user repeatedly posting, often bogus, informa-
tion at a high rate. If Alice detects that Bob is posting a lot of messages within a
short amount of time, she could automatically mark him as untrusted. In distributed
chat systems, however, it is a common-enough use case that peers continue to cre-
ate good natured posts without synchronizing with any other peers (distributed chat
systems are delay independent and continue to work perfectly without connectiv-
ity). The flood, then, might just be a peer who has been offline for a period of time
and is synchronizing their history after having regained connectivity. This example,
too, illustrates the difficulty of automatic trust inference in the chat domain.

Finally, there is nothing to stop domain-specific automated trust assignments
from being implemented ontop of a system of explicit assignments—it is simply
not the focus of this work.

Trust weights
Trust quantization When considering notions of trust that are understandable for
computers, eventually that notion must be translated to a number. In reality, the
inverse is more the problem—when constructing computational models of trust the
system designers will conceive of trust in various arrangements of numbers, for they
are at that stage concerned with how to solve the problem for computers.

The practical issue, then, becomes how to present that quantization to people,
such that people’s decisions conform to a similarity in range as regards the quantiza-
tion levels. For example, trusting someone to the degree of 0.85, for the range 0..1,
does not meaningfully translate to any real life situation. We must instead conceive
of human-meaningful labels for ranges of quantized trust levels such that they feel
natural for people to use, enabling them to interface with the system in a way that
causes for less individual distortions. For Alice’s semantics regarding a trust assign-
ment of 0.85 might differ from Bob’s view of what a trust level of 0.85 means, but
they both have notions of friend which is more likely to converge than pure floating
point representations of trust.

See Table 5.2 for an example on trust quantization using labeled ranges. For each
quantization range, the higher value is the value that the range will be quantized to.

Note: the labels that are to be used should ideally be specific to the trust area. It

54

5.3 Computational Trust

might make less sense to use the label friend in a trust area of music recommenda-
tions as compared to using the label great taste, for instance.

What we lose in granularity and representation in using quantized ranges, we
make up for in consistency across the nodes. Ultimately, consistency across the
trust graph is what is important when it comes to trust transitivity, the topic of the
section Trust propagation below.

Human-meaningful label Trust range
New person 0.00

Acquaintance 0.00−0.25
Friend 0.25−0.50

Peer 0.50−0.75
Partner 1.00

Table 5.2: Human-meaningful labels for quantized trust ranges. The label for a range
represents the highest value in that range.

Similarity in judgement Trust weights may also have a specific interpretation re-
garding chosen values, which is that of similarity in judgement. What we mean by
this, is that a trust source may issue a high trust weight for an entity whom they are
similar to in a given trust area. That is, there is a strong overlap in how they think
and act in the trust area.

Jøsang et al formalize this concept as indirect trust, which is one their two pro-
posed trust variants (the other being direct trust) [Jøsang et al., 2003]. The indirect
trust variant is essentially a recommendation edge, by which we mean a source of
trust that is outside an entity’s direct reach. The recommendation edge’s only pur-
pose is to provide recommendations regarding whom to issue direct trust for in a
given trust area, or trust purpose, as Jøsang calls it. What this work advocates for
is that high trust weights, i.e. high similarities in judgement, naturally and implic-
itly correspond to highly weighted recommendation edges, or indirect trust. This
understanding is greatly influenced by how trust weight is used in Appleseed, the
topic of Chapter 6. Finally, our interpretation of trust weight as similarity in judge-
ment echoes the user similarity of [Ziegler and Lausen, 2004b], where trust and user
similarity are similarily bound, as well as analyzed in earnest.

Trust propagation
Trust propagation is the term for how trust flows from one entity to another in a trust
metric.

Trust propagation is the principle by which new trust relationships
can be derived from pre-existing trust relationship[s]. Trust transitivity
is the most explicit form of trust propagation [..] [Jøsang et al., 2006]

55

Chapter 5. Trust

Trust transitivity Transitivity is the property that describes the following relation:
if A is related to B, and B is related to C, then A is related to C.

Trust transitivity, then, describes relations of trust across entities. An example
of a transitive trust relation would be that if Alice trusts Bob, and Bob trusts Carole,
then Alice trusts Carole. Trust is not inherently transitive but may be regarded as
conditionally transitive [Abdul-Rahman and Hailes, 2000], i.e. Alice may trust Ca-
role if certain conditions are met (Alice may also trust Bob, her direct trust relation,
more than she trusts Carole). One of the conditions for trust transitivity may be, for
example, that trust is only transitive within the same trust area. Another condition
may be that trust is only transitive if the trust target is a maximum of three hops
away from the trust source—Alice trusts Bob would constitute one hop, with Alice
as the trust source and Bob the trust target.

Small worlds theory Small worlds theory, initially explored by Stanley Mil-
gram [Milgram, 1967], states that social networks can be boiled down to random
graphs where one node may be reached by another node given a small amount of
edges traversals. Small worlds theory is usually referred to as six degrees of separa-
tion. This has importance for trust systems as it states that, for a given trust system,
and given a small average amount of issued trust statements per node, then a use-
ful trust graph may still be derived, despite any sparseness as viewed from a single
node.

The term useful in this context is taken to mean that trust statements issued by
nodes do not form isolated and unrelated islands, but chains of related neighbour-
hoods. Essentially, small worlds theory is what makes trust propagation and trust
transitivity work in practice.

Distrust
Distrust is a contentious topic with differing interpretations—especially when it
comes to trust metrics. In some ways, distrust is defined by what it is not. Distrust
is not negated trust [Guha et al., 2004]. It is also not a lack of trust, which would
be represented by New person in table 5.2. This work instead views distrust as a
complete discounting of anything to do with a distrusted entity. Statements issued
from a distrusted entity are discarded, and trust placed in them by others is equally
ignored.

This work adheres to the notion that any information coming from a distrusted
entity is unreliable, i.e. the old adage the enemy of my enemy is my friend is not
applicable. This understanding of distrust is mirrored by the Appleseed authors,
Ziegler and Lausen:

[..] distrust does not allow to make direct inferences of any
kind. [Ziegler and Lausen, 2005]

Distrust is not, however, entirely negative, in fact Guha et al. propose that a
small measure of distrust is beneficial for any trust system. We reiterate the finding

56

5.3 Computational Trust

that was initially presented in Section 5.2:

[..] one of our findings is that even a small amount of distrust in-
formation can provide tangibly better judgements about trust informa-
tion. [Guha et al., 2004]

Explicitly including distrust in a trust metric helps maintain the semantics of
trust actions; trust weights do not have to be overburdened by trying to reflect dis-
trust (such as letting a trust weight of -1 or 0 reflect distrust). Modeling distrust also
helps negate potential side-effects of using transitive trust. One example of a nega-
tive side-effect would be the following: if Alice trusts Bob, and Bob trusts Carole,
then Alice would transitively trust Carole. Alice, however, has had prior bad expe-
riences with Carole and knows not to trust her. If distrust is not explicitly modeled,
Alice cannot avoid trusting Carole without impacting her trust for Bob.

It therefore seems wise to include distrust as a component of any trust system.
As to how distrust may be included, there are a variety of ways, of which two will
now be discussed: transitive distrust and one-step distrust.

Transitive distrust Transitive distrust essentially builds on the idea of trust transi-
tivity, propagating distrust statements made by one entity regarding another across
the trust graph. If Alice distrusts Mallory, and Bob trusts Alice, then, in a system
with transitive distrust, Bob would also distrust Mallory as a result of his trust in
Alice.

One-step distrust One-step distrusts limits the distrust to the issuer. In the ex-
ample above, Alice would discount anything to do with Mallory but Bob would
remain unaffected by Alice’s distrust for Mallory. Unlike transitive distrust, one-
step distrust does not necessarily need to be known by any other node than the
issuer—alleviating any potential social penalities in its use, which could otherwise
conceivably impact the effective use of distrust as a system component.

TrustNet, the result of this thesis and presented in Chapter 7, implements one-
step distrust. Its simplicity is appealing for many reasons. The primary reason is the
fact that the context behind the distrust statement is inherently subjective, both to the
trust area and the issuer of distrust. Therefore propagating any distrust is essentially
problematic—the criteria for distrust may differ greatly across both entities and trust
areas, limiting the usefulness of the transitivity of such a statement.

57

6
Appleseed

Appleseed [Ziegler and Lausen, 2005] is a trust propagation algorithm and trust
metric for local group trust computation. Basically, Appleseed makes it possible to
take a group of nodes—which have various trust relations to each other—look at
the group from the perspective of a single node, and rank each of the other nodes
according to how trusted they are from the perspective of the single node.

The Appleseed algorithm was proposed by Cai-Nicolas Ziegler and Georg
Lausen of Institut für Informatik, Universität Freiburg, initially in 2004 [Ziegler
and Lausen, 2004a].

Although this chapter tries hard to illuminate as many details and create an
intuition-based understanding of Appleseed, it may fall short of what some read-
ers require. Therefore, if you need more information than what is presented here,
consider reading the original 22 page paper [Ziegler and Lausen, 2005], from which
this chapter derives greatly.

58

6.1 Overview

6.1 Overview

This section gives a brief overview of the contents of the Appleseed paper [Ziegler
and Lausen, 2005]. This is done by first outlining Ziegler and Lausen’s proposed
classification scheme for trust metrics, then follows a presentation of the most im-
portant concepts and properties of Appleseed. The section concludes with a physical
metaphor of Appleseed, with the intent to present a mental image of the algorithm,
before delving into Appleseed proper in Section 6.2.

Trust Metric Classification
In conjunction with presenting Appleseed, Ziegler and Lausen also propose a clas-
sification scheme for trust metrics, which will illuminate labeling Appleseed as a
local group trust metric, as it was presented in the chapter introduction. The rea-
son the author duo’s classification scheme is being brought up in this work is that
it provides context and insight into what Appleseed is, as well as how it relates to
other trust metrics. The proposed classification is composed of three non-orthogonal
axes: the network perspective axis, the computation locus axis, and the link evalua-
tion axis.

Network perspective This axis determines the scope of the described trust met-
ric, classifying metrics as either global or local. Examples of global trust metrics
include EigenTrust and PageRank, which were briefly described in Section 5.2’s
Related Work.

Local trust metrics work instead with subsets of the total trust graph, also known
as partial trust graphs—with trust paths from one particular entity to another. The
global-local split may also be viewed along the lines of objective-subjective.

Computation locus The computation locus axis describes, as may be guessed
from the name, where the trust is evaluated. This metric has a somewhat unfor-
tunate naming for the two values the axis can take on. A centralized, also known
as local, computation locus describes metrics where all of the computation is done
individually by every node.

A distributed computation locus describes metrics where the trust computation
is portioned out over the entire network—EigenTrust is a good example of a trust
metric that would be classified as distributed along this axis. Since the computa-
tional load is distributed across the entire network, distributed metrics are also by
definition global—full trust graph information is required.

Link evaluation Link evaluation can take on two values: scalar and group.
In a scalar trust metric, each trust assignment is evaluated independently of any

other. That is, the value of one assignment does not depend on the value of another.
For group trust metrics, however, trust assignments have inherent dependencies.

Each trust assignment has a score dependent on the trust of the issuer, which in turn
depends on the issuer’s incoming trust assignments. Groups of nodes, or neighbour-

59

Chapter 6. Appleseed

hoods, are evaluated simultaneously. Group trust metrics calculate trust ranks for
each node in the neighbourhood.

Having described the proposed classification scheme we can now take another
look at the Appleseed algorithm itself. It is a local, centralized (or local), group trust
metric. This means that Appleseed works on partial trust graphs, it is a subjective
metric, it operates on neighbourhoods of nodes, and all of the trust computation is
done without relying on any external nodes i.e. participating nodes compute their
own trust graphs, and it outputs a ranking of the nodes from the partial trust graph.

Appleseed at a glance
It might be difficult, initially, to understand all of Appleseed’s details. Thus, it seems
useful to give a quick overview of important properties, parameters and ways of
understanding Appleseed before delving into the algorithm itself.

Spreading activation Appleseed is inspired by a concept called spreading activa-
tion. Spreading activation appears prominently in language research, specifically in
research which deals with word recall [Anderson et al., 1983]. It has been used as
a theory to explain the priming effect, where initial exposure to a starting, or prim-
ing, phrase causes related words to be more quickly recalled, as a result of the prior
exposure. Spreading activation was initially a theory that tried to computerize con-
cepts of human language such as semantics, the meaning of words, and how words
are related to each other through their semantics. The original theory treated the
underlying meaning of a word, the concept, as a node in a directed graph, and the
directed edges between concepts represent the relevance one concept has in respect
to another [Collins and Loftus, 1975].

Spreading activation has later been repurposed for searching large, unsorted
data collections by way of transforming the data into graphs of interconnected
terms [Ceglowski et al., 2003].

Spreading activation is based on the idea of iteratively redistributing a finite
amount of energy along a weighted graph structure, starting from a source and prop-
agating along its outward edges. The energy propagates such that edges with larger
weights end up funneling more energy than edges with smaller weights. The energy
keeps propagating from node to node along the weighted and directed edges as long
as the energy to propagate along the edge exceeds the activation threshold. If the
activation threshold is not exceeded, the propagation for that edge stops.

The image, presumably scientificially inaccurate, the author of this work has
had in mind when learning about spreading activation has been of neurons being
activated—bursts of potential causing surging electrical stimulation through axons
connecting different neurons, with surges of potential being further propagated if
the activation threshold is exceeded in a neuron’s dendrites.

Appleseed Properties Ziegler and Lausen outline a few properties of Appleseed
in their article which feel relevant to briefly highlight. Appleseed fully distributes all
of its initial energy, in0, among its nodes—excluding the trust source, which does

60

6.1 Overview

not accrue any trust, and nodes which do not have a path to the trust source. The al-
gorithm is also proven by the authors to converge after a finite (but variable) amount
of iterations. Experimentally, the amount of iterations before convergence, using the
suggested values for parameters, seems to be around 60 to 100. The produced trust
ranking is ordered such that the most trusted node, i.e. highest trust rank, is at the
top of the list and the least trusted nodes are at the bottom.

Appleseed takes the following parameters as input: the trust source s, the spread-
ing coefficient d, the convergence threshold Tc, and the amount of initial energy in0.
The algorithm implicitly also takes a set of trust assignments, or a trust graph com-
posed of nodes, V , and weighted, directed edges, E. The range of permissible values
for the edge weights is 0.0−1.0.

The input parameters have been summarized in Table 6.1. Where possible,
Ziegler and Lausen’s suggested parameter values have also been included.

Param. Description Default value
s Trust source —
d Spreading coefficient 0.85
Tc Convergence threshold 0.01
in0 Initial energy 200
V Nodes —
E Weighted and directed edges —

Table 6.1: Legend of Appleseed’s input parameters and their recommended values.

Pooling Water Analogy
In order to make the idea of Appleseed more graspable, a metaphor of water stream-
ing amongst a group of water holes can be fruitfully employed, see Fig. 6.1.

Imagine you have a tub of water containing 200L. In front of you is a group of
interconnected holes in the ground. Holes are connected to other holes by tunnels
of varying sizes. All the holes are initially without water. You proceed to pour the
tub of water into the hole closest to you. The water poured into the initial hole goes
along the tunnels connecting to its closest neighbours, and the water that comes into
the neighbours is distibuted along their tunnels to their neighbours, and so on.

The water sloshes from neighbour to neighbour, with more water ending up at
the holes whose incoming tunnels are wider. Eventually the rushing water calms
down, and the water level in each hole stabilizes.

The tub of water in the metaphor is the amount of finite energy that Appleseed
redistributes from the trust source along its outgoing direct trust assignments. The
width of the tunnels is akin to the trust weights, where wider tunnels are likened
to outgoing edges with larger weights. The variable amount of water left in each
hole after the slushing has ceased can be likened to the computed trust rank for each

61

Chapter 6. Appleseed

Figure 6.1: A series of interconnected water holes as visual analogy for Appleseed.
Each hole is a node in the trust graph, and the water in each hole is the trust a node
has after Appleseed converges. Nodes farther away from the trust source ultimately
receive lower rankings (less water).

node in Appleseed’s trust graph. The more water a hole has, the higher its rank is,
and the higher its trust.

The metaphor has flaws in its physicality but serves as a tool to aid in under-
standing the Appleseed algorithm.

6.2 Algorithm

We now have enough background and context to dive into the algorithm itself, ex-
plaining its parameters in greater detail, and how the algorithm itself works.

Algorithm 6.1 contains the full pseudocode for the heuristicless Appleseed trust
computation algorithm presented in [Ziegler and Lausen, 2005]. Table 6.2 is a com-
prehensive legend of the different variables, as well as more complex expressions,
that appear in Algorithm 6.1.

Finally, it is important to note that a lot of context and essential details from the
paper is not visible when reading the pseudocode listing—one of the aims of the
longform descriptions in the Parameters section below is to remedy that issue.

Walkthrough
We will now give a guided tour of the code in Algorithm 6.1. Readers are recom-
mended to complement this explanation with the legend in Table 6.2. Line numbers
will be referred to according to the convention L :x, where x denotes the line being
referred to, as seen in Algorithm 6.1’s listing.

62

6.2 Algorithm

Algorithm 6.1: Appleseed pseudocode

1 function TrustA (s ∈V, in0 ∈ R+
0 ,d ∈ [0,1],Tc ∈ R+) {

2 set in0(s)← in0, trust0(s)← 0, i← 0;
3 set V0←{s};
4 repeat
5 set i← i+1;
6 set Vi←Vi−1;
7 ∀x ∈Vi−1 : set ini(x)← 0;
8 for all x ∈Vi−1 do
9 set trusti(x)← trusti−1(x)+(1−d) · ini−1(x);

10 for all (x,u) ∈ E do
11 if u /∈Vi then
12 set Vi←Vi∪{u};
13 set trusti(u)← 0, ini(u)← 0;
14 add edge(u,s), set W (u,s)← 1;
15 end if
16 set w←W (x,u)/Σ(x,u′)∈EW (x,u′);
17 set ini(u)← ini(u)+d · ini−1(x) ·w;
18 end do
19 end do
20 set m = maxy∈Vi{trusti(y)− trusti−1(y)};
21 until (m≤ Tc)
22 return (trust : {(x, trusti(x)) | x ∈Vi});
23 }

L :1 The function declaration, TrustA, shows the input parameters being declared,
and the conditions that are imposed upon them. The trust source s has to be a node
from the trust graph V , the energy to distribute in0 has to be a positive integer, the
spreading factor d in the range 0..1, and the convergence threshold Tc also has to be
a positive real number. See the section Parameters below for more detail.

L :2− 3 The initial state is setup. We begin at iteration 0, represented by the
variable i, and which explains the subsequent subscripts. The only node we know
of at the moment is the trust source s, thus the discovered nodes, V0, is initialised to
the trust source.

The trust source’s incoming energy, in0(s), is set to be the energy to distribute
over the trust graph, in0. The incoming energy is what determines the trust rank of
a node, which we will explain when we arrive at L :9.

The current trust ranking for the trust source, trust0(s) is set to 0. It will also
stay at 0, as the trust source does not accrue any trust (the trust source is regarded
as absolutely trusted, already).

L :4− 7 We are now looping inside the main body of the algorithm. At the be-
ginning of each loop, the bookkeeping is updated. The current iteration count, i is

63

Chapter 6. Appleseed

incremented, the set of discovered nodes from the previous iteration, Vi−1, is carried
over to the current iteration, Vi. Finally, the new iteration’s incoming energy, ini(x),
for all nodes that have been discovered, ∀x ∈Vi−1, is initialised to 0. It is important
to note that the incoming energy of the previous iteration, ini−1, remains intact; the
values that were set during the previous iteration are unchanged.

L :8 We start to loop over all of the previous iteration’s discovered nodes, Vi−1; x
denotes the node currently under consideration.

L :9 This is where the nodes’s outgoing trust from the previous iteration is added
to the trust rankings of this iteration, for each node that was issued trust. For all of
the discovered nodes, x ∈Vi−1, set their current trust ranking to be the sum of their
previously accrued trust, trusti−1(x), and the percentage they may keep, (1− d),
of the incoming trust, ini−1(x). The spreading factor d, passed in at L :1 during
the function invocation, determines how much of a node’s incoming energy will be
spread to its trusted nodes. Conversely, it also determines how much energy a node
will be allowed to keep. If d is set to 1, nodes pass on all energy, keeping none (the
percentage, 1−d, evaluates to 0).

L :10 We start to loop over each edge in the known trust graph. The node x is an
already discovered node and present in Vi, while u may be a newly discovered node
(it may also, however, be an already discovered node—L :11 handles the undiscov-
ered case).

L :11− 15 The outgoing node was previously undiscovered! It is added to the
set of discovered nodes, Vi. The new node’s trust ranking, trusti(u), is initialised
to 0, and so is its incoming energy, ini(u). L :14 is special, because it adds the
backpropagating edge. The backpropagating edge is basically an edge from a node
to the trust source s, with its edge weight set to the maximum value. See the section
Backpropagating edges below for more details.

L :16 The proportion of outgoing energy to redistribute to the outgoing node, u,
from the currently considered node, x, is determined. x’s assigned trust for u is cap-
tured by W (x,u), i.e. the edge weight from x to u. The denominator in the fraction,
Σ(x,u′)∈EW (x,u′), basically sums up the total outgoing weight from x, where u′ exists
to keep track of the node under consideration in the summation.

L :17 The outgoing node u’s incoming energy is set. The incoming energy for u,
ini(u), denotes the sum of its current incoming energy and u’s allocated proportion
of x’s outgoing energy, d · ini−1(x) ·w, where w is what was determined on L :16.

L :18 We exit the loop processing all of x’s outgoing nodes, initiated on L :10.

L :19 We exit the loop processing all of the previous iteration’s discovered nodes,
initiated on L :8.

64

6.2 Algorithm

L :21 The largest change in the trust rankings is calculated. For each node in
the discovered set, y∈Vi , determine the largest change in trust rankings between this
iteration and the previous iteration, trusti(y)− trusti−1(y), and save that in m for
evaluation on L :21.

L :21 The termination condition for the main loop, initiated on L :4. The loop
terminates if the largest change in the last iteration, m, falls below the convergence
threshold, Tc. If the condition, m ≤ Tc, evaluates to false the algorithm is regarded
as to have converged on the trust rankings for all of the discovered nodes Vi.

L :22 We return the calculated trust rankings for each discovered node x in Vi.

L :23 The function ends.

Param. Description
s Trust source

in0 Energy pool to distribute from s
d Spreading coefficient. Permissible range 0.0−1.0
m Largest change in energy in past iteration
Tc Convergence threshold. Iteration stops if Tc > m
V The set of nodes in the trust graph
E The set of (weighted and directed) edges in the trust graph
i Current iteration count

Vi Current set of discovered nodes
ini(p) Incoming energy for node p at iteration i

trusti(x) The current amount of accrued trust for node x at iteration i
W (p,x) The value/weight of the edge from node p to node x

Σ(x,u′)∈EW (x,u′) The total value of the outgoing weights for node x

Table 6.2: Legend of variables and expressions appearing in Algorithm 6.1.

Parameters
Spreading coefficient The spreading activation coefficient d determines how
much of the incoming energy a node will redistribute. In other words, it controls
what portion of the incoming energy the node will keep. d is on the interval [0,1],
where 1 redistributes all of the incoming energy for a particular node, and 0 redis-
tributes none of it—in which case the node keeps all of its incoming energy. The
scenario of d = 0 is somewhat nonsensical, but a temporary assignment of d = 1 is
an integral part of the design of Appleseed.

The temporary d = 1 value is used for the trust source, which redistributes all
of its incoming energy to its direct neighbours—the rationale being that the trust
source is regarded as completely trusted, so we don’t need to compute any ranking
for it.

65

Chapter 6. Appleseed

The expression describing the amount of kept energy can be seen in the psue-
docode on line 9 in Algorithm 6.1,

(1−d) · ini−1(x)

Likewise, the redistributed energy can be read out on line 17,

d · ini−1(x) ·w

where w denotes the weight of the outgoing edge being processed.
As seen in Table 6.1, Ziegler and Lausen’s suggested value for spreading activa-

tion is d = 0.85, meaning that 85% of the incoming energy is propagated and 15%
is kept by the node redistributing energy.

A final note from the paper on spreading activation:

Spreading factor d may also be seen as the ratio between direct trust
in x and trust in the ability of x to recommend others [...]

Observe that low values for d favor trust proximity to the source of
trust injection, while high values allow trust to also reach nodes which
are more distant. [Ziegler and Lausen, 2005]

Convergence threshold Appleseed is an iterative algorithm, meaning it will need
several passes to home in on the final result. Iterative algorithms continue looping
until a certain criteria has been fulfilled, whereupon the final result is regarded as
having been computed. In Appleseed’s case, the parameter that determines when to
stop iterating is the convergence threshold Tc.

What the convergence threshold says is basically that once the amount of energy
that is being redistributed falls below a certain threshold, then the computation has
finished—we have our final ranking. More accurately: once the largest amount of
energy that has been redistributed in the current iteration, i.e. the assignment of m
on line 20, falls below the convergence threshold, line 21, then we have converged
on the final trust ranking for the trust source s, given the nodes V and edges E.

Initial energy The initial energy in0 defines the energy reservoar which Apple-
seed distributes from the trust source s via its weighted edges. A nice property of
Appleseed is that, after convergence, all of the initial energy in0 is fully distributed
among the nodes in the produced ranking. Another way to view this property is that
the total amount of energy in the network, at any point in time, sums up to in0. That
there is no global energy loss simplifies implementation of Appleseed, as it allows
implementors to trivially check if the sum of the produced rankings add up to the
initial energy in0—and if that is not the case, then there is an obvious bug that needs
to be remedied.

The proposed value of in0 is 200 and seems to have been derived experimen-
tally with regards to the convergence rate, or, the amount of iterations for the final
result—higher values of in0 cause slightly more iterations.

66

6.2 Algorithm

Trust source The trust source s is something we have come across a few times
already. To frame the trust source and ground our understanding of it, let us zoom
out a little.

Consider a hypothetical distributed chat system that makes use of trust state-
ments for moderation. In this chat system, there are many different actors, and each
actor trusts different people. There may be overlap in whom Alice, one actor, and
Bob, another actor, trust—i.e. they may trust the same actor. The chat system taken
as a whole, with respect to the actors and their trust statements, makes up a graph
with potentially unconnected components (or in the parlance of graph theory, a po-
tentially disconnected graph). Appleseed does not operate on this potentially dis-
connected graph, but instead needs to pick one of the nodes as the root and "lifts"
up the graph from that point. This node is the trust source, and its connected graph
is a subjective view of the potentially disconnected graph we have just been talking
about. Viewed in another light, each node that issues trust assignments is, from their
point of view, the trust source—and so there exists as many subjective viewpoints
of the potentially disconnected graph as there exists nodes.

Appleseed spiders out from the trust source s, along its neighbours and their
neighbours and so on, to discover nodes eligible for trust rank assignment, and
adds them to the set Vi. Ziegler and Lausen’s recommmendation for the maximum
distance to spider out from the trust source is 3-6 hops, or edge traversals—a rec-
ommendation based on Milgram’s small world’s theory, which was discussed in
Section 5.3.

Backpropagating edges
Backpropagating edges, called backward propagating links by the Appleseed au-
thors, are virtual edges that are added to every discovered node, with its weight set
to 1.0, and the trust source s as its destination. The virtual edges are introduced as
a solution to the problem seen in Fig. 6.2, which appears originally in [Ziegler and
Lausen, 2005].

In the example, a is the trust source. Let us consider the energy distribution after
a has propagated energy along its outgoing weights. Nodes b and d have identical
incoming weights, so they will receive the same amount of energy. What happens in
the next step is the problem that Ziegler and Lausen identified—which was also pre-
viously identified in the EigenTrust paper [Kamvar et al., 2003], but was ultimately
left untreated. The problem is that c will end up with more energy than any of the
children of d—despite c logically being less trusted than e, f , or g (its incoming
edge weight at 0.25 is lower than any of d’s children). The cause is that energy is
distributed according to the relative weight of a node’s outgoing edges; the portion
of energy that one node receives is equivalent to its incoming edge weight, divided
by the total edge weight of all the outgoing nodes. This is captured in equation 6.1:

in(u) = energy(x) · W (x,u)
Σ(x,u′)∈EW (x,u′)

(6.1)

67

Chapter 6. Appleseed

a

b

 0.7

d

 0.7

c

 0.25

e

 1

f

 1

g

 1

Figure 6.2: A trust graph with a as the trust source.

u is the node we are calculating the incoming energy for, x is the node distribut-
ing its energy i.e. energy(x), and u′ merely signifies the edge that is being considered
in the summation operation of equation 6.1.

Since b only has one edge, the one leading to c with a weight of 0.25, the pro-
portion of energy accorded to c will be:

in(c) = energy(x) · W (x,u)
Σ(x,u′)∈EW (x,u′) ⇐⇒

in(c) = energy(x) · W (b,c)
W (b,c) ⇐⇒

in(c) = energy(x)

Hence, c will be accorded all of the outgoing energy of b, despite having a low
incoming weight. The nodes e− g all have high weights but will end up with less
energy than c, as they have to split d’s energy. The described problem is solved by
including backpropagating edges.

The inclusion of a virtual edge E(x,s) with weight W (x,s) = 1 for every node
results in c no longer receiving all of b’s energy. Instead 0.25/(0.25+1) = 0.20, or
one fifth, of the previous energy is accorded. When one of d’s children is considered,
the accorded energy is now 1/(1+1+1+1) = 1/4, which is higher than the energy
accorded to c. As Appleseed is iterative, and the backpropagating edge distributes
energy back to the trust source s (which keeps no energy), the reality is that the
edges e−g will end up with a lot more energy than c.

The creation of backpropagating edges in Appleseed’s trust algorithm can be
seen on line 14 in Algorithm 6.1,

add edge(u,s),set W (u,s)← 1;

68

6.2 Algorithm

Ziegler and Lausen note a few properties that arise as a result of the backprop-
agating edges. Appleseed does not need to consider any dead ends, dangling nodes
which don’t pass on any energy—all nodes have at least the outgoing edge leading
back to the trust source. Furthermore, they note that another property is an enhanced
importance of trust proximity. Nodes that are closer to the trust source will receive
a higher trust rank—the longer the path from the trust source, the more backprop-
agating edges have been included and siphoned energy, and the less the amount of
energy reaching distant nodes.

Attack Resistance
In order for a trust metric to be considered robust it needs to be attack resistant.
What is meant by this is that the metric should not be trivially subverted by a mali-
cious attacker. An example of a trust metric that would be trivially subverted is the
following. Let us consider the hypothetical trust metric FriendPath.

In FriendPath, an entity is regarded as fully trusted if there exists any path from
one entity to the target entity. This is trivially attacked by analyzing the trust graph,
finding the most trusting participant and causing them to issue a trust statement
regarding the attacker.

Ziegler and Lausen mention that Levin’s Advogato [Levien, 2003] introduced
something called the bottleneck property of attack resistance. It is like the bottleneck
of a wine bottle—the flow of wine is ultimately limited by the width of the neck.
It is the same with the case of the attacker of a metric fulfilling the bottleneck
property—the damage is limited by the trust of the attacker. An attacker cannot
subvert the trust metric by simply getting the trust of anyone in the trust graph; they
must instead accrue enough trust that they themselves become highly trusted before
they have an impact. In a trust metric that fulfills the bottleneck property, it does not
matter that many low trusted entities trust the attacker. Essentially, the bottleneck
property says that it is not about the quantity, but the quality of trust.

According to Ziegler and Lausen Appleseed, just like Advogato, fulfills the bot-
tleneck property.

Final notes
We have now described, we hope, everything one needs to know to fruitfully imple-
ment Appleseed. The details above were of course derived from the original paper,
but a lot of details required the actual implementation effort to unveil.

A few final notes on Appleseed follow, after which we then finish the chapter
by enumerating the drawbacks of Appleseed, motivating the existence of TrustNet.

Node judgement Appleseed penalizes nodes that issue significantly larger
amounts of trust statements than those that are more reserved. This can be real-
ized from the fact that the energy to distribute is finite, as well as it is distributed
in proportion to the amount of outgoing edges. This is a departure from how trust

69

Chapter 6. Appleseed

works in relationships; trust accorded does not detract from previously accorded
trust. However, this property does not need to be as negative as it may seem at first
glance.

The fact that Appleseed penalizes nodes which issue greater amounts of trust
assignments may be viewed as Appleseed slightly promoting nodes with better
judgement. That is, the idea that nodes who are more selective with whom they
trust should be regarded as more credible, and thus promoted over nodes with more
lax trust criteria. Using a parallel to everyday life, people who trust a great amount
of others may have their recommendations be discounted as compared to recom-
mendations from individuals who are more selective.

Computed trust ranks Appleseed takes the trust assignments that nodes issue each
other as input, iterates over them in the manner described in this chapter, and pro-
duces a set of trust rankings. For completeness sake, we will now briefly elaborate
on these computed rankings.

The trust rankings Appleseed produces can be thought of as an ordered list of
2-tuples. Each tuple contains the node identifier, as well as the accorded trust rank.
See Table 6.3 for an example.

The computed trust rank is nothing other than the trust energy of the node at the
final Appleseed iteration, when the computation has converged. At the top of the list
we have the node awarded the most energy—the most trusted entity as seen from
s. The second most trusted node comes after it, and so on. Nodes which have been
awarded no energy at all do not make an appearance, and nodes which have been
awarded the least amount of energy are found at the bottom of the list.

Let us consider the trust graph in Fig. 6.3. Node a is the trust source and the other
Appleseed parameters are set to in0 = 200, d = 0.85, Tc = 0.01. The produced trust
rankings can be seen in Table 6.3. Looking at the table, we see that the trust rankings
exclude a, x, and y. a is excluded because it is the trust source; it is the source of
truth for the rankings—it does not need to be ranked. Looking at the figure, we
see that a has not evaluated any trust for x or y—x and y make up an unconnected
component in relation to a’s trust graph—this is mirrored in the produced rankings.
Finally, we can also see that the computed trust ranks sum up to in0 = 200, with a
loss accounted for by the convergence threshold Tc.

Node Trust rank
b 84.01307849395832
c 84.01307849395832
d 31.73478305618708

Table 6.3: Table of computed trust ranks for Fig. 6.3 with s= a, in0 = 200, d = 0.85,
Tc = 0.01.

70

6.3 Drawbacks

a

b

 0.8

c

 0.8

d

 0.8

x

y

 0.8

Figure 6.3: A trust graph with trust source a and an unconnected component x−→ y.

6.3 Drawbacks

Appleseed accomplishes a lot with its design, and is a comprehensive trust met-
ric. The process of implementing it has, however, revealed a few areas where it is
lacking.

Alignment Appleseed does not align the computed trust ranks with the assigned
trust weights. As discussed in Section 5.2, trust assignments can be split up into
trust ranges with semantics that translate to e.g. a high trust assignment. These se-
mantics are lost in the produced trust ranking—all we have left is a list of numbers
with decreasing magnitude. Ziegler and Lausen acknowledge this fault in their pa-
per, and propose a heuristic which is a modification of Algorithm 6.1. The authors
state that their proposed heuristic is imperfect but worked well in a range of un-
presented cases. The heuristic-aware trust algorithm has not been used in this work
due to its unwanted complexity, especially since it does not remedy any of the other
drawbacks mentioned in this section.

Distrust Distrust is included in [Ziegler and Lausen, 2005] but only receives a
mention in the initial article from 2004 [Ziegler and Lausen, 2004a] as a possible
extension. The proposed distrust extension negates some of the merit of the original
algorithm, as its inclusion now causes the computed trust ranks to no longer equal
the initial energy in0—i.e. the proposed distrust scheme causes a loss of energy. Fur-

71

Chapter 6. Appleseed

thermore, Ziegler and Lausen’s distrust propagates across nodes which goes counter
to the subjective notion of distrust which this work adheres to, see the previous dis-
cussion on Distrust in Section 5.3.

Practical use The biggest drawback of Appleseed, however, and as far as the au-
thor knows this applies to the literature as well, is the lack of consideration for how
the trust ranks will be used practically. By what is meant, how will a list of identi-
fiers and floating point numbers be translated into something of value for end users
or application developers? Ziegler and Lausen’s treaty of this issue is the following:

Hereby, the definition of thresholds for trustworthiness is left to the
user who can thus tailor relevant parameters to fit different applica-
tion scenarios. For instance, raising the application-dependent thresh-
old for the selection of trustworthy peers, which may be either an abso-
lute or relative value, allows for enlarging the neighborhood of trusted
peers. [Ziegler and Lausen, 2005]

This major drawback is the main reason of the existence for TrustNet.

Lack of trust area Appleseed lacks any notion of trust area, previously discussed
in Section 5.3, and the topic is largely left untouched in [Ziegler and Lausen, 2005].
As discussed previously, it is vital for the coherence and consistency of the resulting
trust graph that a notion of trust area is captured. This oversight will be discussed
and treated in Chapter 7.

TrustNet
Appleseed’s drawbacks are mitigated to various extents in the proposed TrustNet
trust system, the topic of Chapter 7, and the main contribution of this work.

TrustNet maintains the semantics of issued trust assignments and solves the is-
sue of making Appleseed’s final result more practically useful with the same mech-
anism: ranking strategies. Ranking strategies will be further detailed in Chapter 7.
The specific ranking strategy TrustNet implements is one of using k-means clus-
tering on Appleseed’s produced rankings to segment the irrelevant bottom rankings
from the top ranked nodes.

TrustNet also introduces the notion of trust areas by maintaining one Appleseed
trust graph per trust area. A trust area is a semantic cordoning off of trust assign-
ments. Trust assignments issued by nodes in one trust area will not affect the trust
graph of another trust area.

Finally, distrust is handled in TrustNet in the manner described in Section 5.3’s
one-step distrust, where a node will ignore trust asssignments pertaining those
whom it regards as distrusted.

72

7
TrustNet

TrustNet is a system for representing, and interacting with, computational trust. The
system is comprised of a trust metric, a system for trust propagation, and it takes
distrust into account. Most importantly, it provides a simple interface for using and
interacting with the results of the trust propagation.

TrustNet is agnostic as to which system it is used with, i.e. the underlying trust
assignments provider, and is intended for use with the distributed chat systems of
Section 4.2. It may, however, be fruitfully employed in other distributed ledger tech-
nologies, or even traditional server-centric models.

The purpose of this work in its entirety, and this chapter in particular, is to
motivate and demonstrate the use of TrustNet in terms of facilitating a subjective
moderation system, which was the initial impetus for this undertaking. TrustNet
has, however, turned out to be more flexible than anticipated and should allow for
use cases outside the realm of chat system moderation.

73

Chapter 7. TrustNet

7.1 Overview

The following will be a brief overview of what TrustNet is, as well as how it makes
use of and improves upon the Appleseed algorithm from Chapter 6. There is some
overlap of the contents of this section and that of the architectural overview in Sec-
tion 7.2. We will start by outlining what problem TrustNet is explicitly trying to
solve, and then detail how it approaches its solution.

Problem statement
The problem that initiated the research into TrustNet was the following:
How to efficiently hide malicious participants in a distributed chat context.

We have previously, in Section 4.1, defined what we mean by hiding and mali-
cious participants. We have also outlined, Section 4.2, our definition of a distributed
chat context. Thus it remains to define how to accomplish the above in an effective
manner, and also to distinguish that from hiding malicious participants in an inef-
fective manner.

Approaches Let us start by detailing the ineffective manner. Assume we have a
distributed chat context in which an N active participants are amicably chatting
away in an entirely distributed fashion, and without any hierarchical structures—
structures which otherwise make up the foundation for the traditional moderation
approach detailed in Section 4.1. Let us now say that a malicious participant has
entered the chat context and started maliciously flooding links—-the N initial par-
ticipants have had their chat disrupted. In order to effectively remove the distur-
bance caused by the malicious participant, they each must individually issue a hide
for the flooding participant—i.e. N hides must be issued. This is clearly ineffective,
especially given the situation where another malicious participant enters the chat
context, requiring an additional N moderation actions, and so on.

Thus the ineffective, or naive, approach may defined as: each participant in the
chat context must individually hide the malicious participant in order to mitigate the
disturbance.

An effective strategy would attempt to minimize the amount of actions required
to remove the malicious participant. Let us define the effective approach as: a sub-
set of the chat context must hide the malicious participant in order to mitigate the
disturbance for the entire set.

How TrustNet solves the problem
Our proposal for the effective approach is the following. Participants in a chat con-
text issue which other participants they trust, and to which degree. Appleseed is
then used to convert the resulting trust graph—from the perspective of a single
participant—into a ranked list. TrustNet converts the ranked list into an actionable
subset of the original list i.e. the most trusted participants, or peers.

74

7.1 Overview

The most trusted peers are then used in a moderation capacity by looking at
the network hides—see Section 4.3 for the types of hides—issued by the trusted
peers. As a result of the network hides, the moderation system automatically issues
propagating hides on behalf of the active participant.

In summary: an initial subset of nodes is trusted directly. The nodes are then
used to find a network of trusted peers. The most trusted peers are used to collect
hide actions, which will be automatically issued by the active participant. There is
a high likelihood of the collected hides having been issued in good faith, as their
issuers are highly trusted. If a hide action is later discovered to have been unjust
in the eyes of the active participant, then the hide issuer may in return be issued a
distrust assignment—removing their capacity to issue further actions on behalf of
the active participant.

Let us continue with detailing TrustNet more explicitly, describing what low
and high trust assignments may look like, how trust areas are incorporated into the
design, as well as the simple approach to distrust that is employed.

Trust assignments
TrustNet is built on the assumption that the participants of a chat context will issue
trust assignments. An issued trust assignment is essentially a participant saying that
they agree with the target participant’s view within the particular trust area—the
trust area considered in the case of this work, is that of moderation capabilities.
This assumption feels reasonable as participants are the ones that need to put in the
work of assigning trust, and it is also they who will benefit from the assigned trust.
Aligning adaptation requirements with benefits has proven to be important for the
successful adoption of any new system [Thaler and Aboba, 2008].

The issued trust assignments reflect the facets detailed in Computational trust
facets, Section 5.3. That is, trust assignment’s contain a trust source, a trust target,
a trust weight, and a trust area. TrustNet further imposes a requirement that trust
weights must be in the range of 0..1. This requirement exists as TrustNet makes use
of Appleseed to propagate trust and produce trust rankings. We will now detail each
of the computational trust facets and how they are put to use in TrustNet.

Trust source The trust source is the entity issuing the trust assignment. The trust
source may be confused with the active participant, which we have previously re-
ferred to in this chapter. When we refer to the active participant, we mean the actual
user whose subjective trust graph we are considering. The entity being issued trust
by a trust source is known as the trust target.

Trust weights Trust weights are restricted to the range 0..1, but what do differ-
ent values in that range signify? As brought up in the Trust chapter, we can assign
different semantics, or meaning, to different ranges of values through the use of
human-friendly labels. The labels aid in aligning the numerical value of a trust
weight across different participants. But what does a higher trust weight actually

75

Chapter 7. TrustNet

affect? In Appleseed, higher trust weights essentially translate to a greater recom-
mendation power for the trusted entity—the higher the trust weight for a trust target,
the greater the influence of the target’s trust assignments.

In other words, the magnitude of a trust weight can be viewed in terms of "how
well do I view the trust target’s ability to recommend others?". That is, the magni-
tude of the trust weight as a recommendation metric or, as previously discussed, as
similarity in judgement to oneself. Thus, a trust weight of 1.0 signals an unlimited
trust and an absolute belief in the trust target to recommend others, while a trust
weight of 0.1 signals a highly limited trust and a very weak belief in the trust target
to recommend others.

Trust assignments may be reissued over time. The causes for re-evaluating a
trust assignment are many. Perhaps an entity has proven themselves over time, re-
sulting in a previously limited trust being upgraded to a higher level. The reverse
may also happen—a lapse in a peer’s judgement may result in trust being completely
revoked.

Trust areas TrustNet implements support for trust areas, one of Chapter 5’s com-
putational trust facets. The purpose of a trust area is to contextualize and contain
trust—trust in someone’s ability to recommend good music does not necessarily
correlate to the same person exhibiting good judgment in cases of moderation. By
contain trust, we mean that one trust area has a distinct set of trust assignments as
compared to that of any other trust area.

TrustNet has a simple, but not simplistic, implementation of trust areas: each
trust area has its own distinct trust graph, and as such its own set of trusted peers.
Thus, trust assignment providers—the underlying chat system—must keep track of
which trust assignments pertain to which trust area and pass them on to TrustNet.
TrustNet attempts to simplify this process by keeping track of registered trust areas
and providing convenience methods for interacting with them.

The number of trust areas a given chat system chooses to implement is advised
to be considered well. Too few, and the semantics and behaviour of TrustNet does
not map onto user expectations. Too many, and people will become fatigued by the
labyrinthine trust taxonomy the well-meaning developers have constructed. Further-
more, it is suggested that trust areas are not left to be populated by users, but instead
tailored to the particular system and its context. The trust areas may be co-developed
with users by starting with a small set of trust areas, such as beginning with a single
trust area, and then expanding the number as users discover the need. Too many
trust areas will needlessly segment the trust graph and transitivity will falter. That
is, trust areas are prone to the same issues as those that plague metadata tag sys-
tems. Too many disparate tags, e.g. rock, rock music, roc k (sic.) for the same
music genre causes noise and hinders discoverability for tag systems and prevents
its effective use. The same is true for trust areas.

Example The example below shows what a trust assignment would look like com-
ing from Cabal, discussed in 4.2:

76

7.1 Overview

{
"src": "fcdd825dc7f3085d52d14fc253f0a539640ffc3a5b4cef36664dfbaa539ce43d",
"dst": "412b4e1c27c8d03f6a59a2a4af4199b149d1d8578a93cf6a4fedceed2f30b279",
"area": "moderation",
"weight": 0.8

}
The trust source and trust target, or destination, are identified by src and dst,

respectively. The actual values of the trust source and destination are base 16 repre-
sentations of the ed25519 public keys of two participants of a cabal. The trust area
is that of moderation, and the trust weight is a rather high one.

The example itself is valid JSON, an open standard for human-readable data,
and also the message encoding currently used by Cabal.

Distrust
Distrust is handled by TrustNet in the one-step distrust manner described in Sec-
tion 5.3. Each peer has a list of participants they distrust, which is passed to Trust-
Net by the chat system. Incoming trust assignments are then checked against the
distrust list. If either the assignment’s trust source or trust target are found in the
distrust list, then the entire trust assignment is discarded. This prevents distrusted
peers from influencing the trust graph. It is also important to reiterate that a peer
which is distrusted within a particular trust area is not necessarily a malicious, it is
just that they have an orthogonal view to the active participant within the given trust
area.

The distrust list may be openly broadcast to everyone in the chat context, or
it may be kept private. There are a few considerations to take into account when
determining which approach to choose.

Openly broadcasting the entire list boils down to a social problem, in that people
would likely be reluctant to interact with a trust system which publicly broadcasts
whom they distrust. This social issue compromises the entirety of TrustNet. Keeping
the list private, then, may be done by either encrypting the list such that only the
active participant can access it, or if the list is kept entirely local. The disadvantage
of keeping a local list is that it may be lost in the event that the local machine is
somehow lost.

The problem with the open broadcast-approach, as well as the local-only ap-
proach, can be solved by encrypting the contents of the distrust list before publish-
ing it to the distributed context. The key for accessing the encrypted list could be
shared across all of the active participant’s devices, allowing access to the list even
in the face of data loss—anything broadcast to the entire distributed chat context is
persistent thanks to the presence of the other peers in the system, mitigating the risk
of the local-only approach.

Thus we advocate for the use of a locally persisted distrust list for simplicity’s
sake—or, if practically feasible, a broadcasted and encrypted distrust list.

77

Chapter 7. TrustNet

Chat system Moderation

TrustNet

Appleseed

Trust  
assignments

Trusted 
peers

Trusted 
peers

Trust  
rankings

Trust  
graph

Figure 7.1: Schematic of the components that make up the proposed TrustNet sys-
tem.

7.2 Architecture

TrustNet is a system composed of many parts. See Fig. 7.1 in order to follow along
in the system description below.

TrustNet starts with considering the end users: the chat system, and the par-
ticipants in one of the chat system’s chat contexts. Participants in the chat context
interact with each other, and over time trust develops. In a scenario where TrustNet
is implemented, the participants ultimately issue trust assignments for each other
within different trust areas, such as moderation. TrustNet receives these trust as-
signments from the chat system, processes them and creates a trust graph. The trust
graph is then passed to Appleseed. Appleseed processes the trust graph’s nodes and
edges and produces a list of trust rankings. The trust rankings are passed back to
TrustNet, which separates the highly trusted nodes in the rankings from the low-
ranked nodes. The trusted nodes, or peers, are then passed back to the chat sys-
tem, which passes them on to its moderation subsystem. The moderation subsystem
looks at the moderation actions issued by the trusted participants and mirrors them
on behalf of the active participant.

Ranking strategies
The computed trust ranking returned from Appleseed essentially contains the same
nodes as the initial weighted trust graph—the difference is that unconnected com-
ponents are not present, and that nodes are sorted in order of trust. The computed
ranking is a list where the most trusted peers are at the top of the list and the peers

78

7.2 Architecture

with the least amount of trust, but still trusted, are at the bottom. The problem that
arises with such a list is where to make a cut, such that you get one part only con-
taining irrelevant peers—whose rankings are too low to be useful in the given trust
area—while the part that remains contains the trusted peers. If we do not exclude
any peers from the ranking, then that amounts to operating on the entire connected
trust graph we started out with, where anyone, regardless of how little trust they
accrue or whom trusts them, may make decisions which can impact you, failing the
bottleneck property of attack resistance discussed in Section 6.2. To solve this prob-
lem, and make the list of peers actionable and more useful, we will implement what
we will call ranking strategies. A ranking strategy basically operates on a ranked
list and produces a subset of it, according to the chosen strategy.

One ranking strategy: from the list of peers, pick the most trusted peer. Or,
more generally, pick the N most trusted peers. Another form of strategy would be to
use a clustering algorithm to identify clusters of nodes with similar ranks, creating
groupings of high trusted peers, while sorting out low trusted and irrelevant peers.
This will be further elaborated in the section Clustering-based strategy below.

Low trust graphs One caveat with all strategies is that, while the rankings produce
the most trusted peers for the given trust graph, we might be operating on a graph
based in low amounts of trust. That is, a graph where the trust source has only
issued trust assignments with low trust weights (0.1 instead of 0.75, for example).
In this case, we would still get a ranking where one peer has the highest amount of
trust, but it would be a relatively low trusted peer in terms of the trust source. The
reason we end up with a low trust graph has to do with how Appleseed’s rankings
are computed. The rankings returned from Appleseed are effectively calculated in
proportion to the initial set of trust assignments issued by the trust source. Thus,
Appleseed’s trust ranking will contain more reliable results if the trust source has
issued at least one higher trust assignment, as the rest of the trust graph’s edges will
be placed in relation to the trust source’s higher trust assignment. A meta strategy
could take this into consideration by looking at the trust assignments issued by the
trust source, in addition to the main ranking strategy in place. The meta strategy
could return an empty list if it discovers that the trust source does not have any
outgoing trust assignments of medium or high weights, and otherwise return the
result of the previously chosen ranking strategy. TrustNet makes use of this kind of
meta strategy.

Since a ranking strategy operates on the computed list of ranked peers, the com-
puted list can be cached. This enables many strategies to be in use at the same time,
e.g. a more narrow set of peers might be useful for moderation, while a strategy that
gives you a wider range of peers with lesser amounts of trust could be used to allow
for a kind of consensus—where you will commit to an action only if the pool of
trust from the trusted peers with smaller amounts of trust have also committed to
the action. The last strategy could be useful to avoid a kind of cool kids problem,
where a select few are vastly more popular than any others in the chat context.

79

Chapter 7. TrustNet

Clustering-based strategy The clustering strategy is the main ranking strategy that
TrustNet makes use of. Clustering is accomplished with the k-means clustering
algorithm, described below.

k-means operates on ordered data sets and attempts to split the set into k groups,
or clusters, with the goal that members of a cluster are more closely related to each
other than members of another cluster. In each iteration of k-means, the members of
a cluster are used to compute an average, or mean. The k means are then used to de-
fine a new centerpoint to use for splitting the dataset into k new clusters. k-means
terminates when the change in cluster membership between two iterations is re-
garded as small enough, whereupon the data set has been clustered into its k final
clusters. (In actuality, the TrustNet implementation uses Ckmeans, which is a dy-
namic programming-based approach for k-means that is optimal for 1 dimensional
datasets [Wang and Song, 2011]—a perfect match for Appleseed’s one dimensional
rankings.)

In TrustNet’s clustering strategy we set k = 3. This partitions Appleseed’s pro-
duced rankings into three related groups, according to their calculated trust ranks.
In order to get a reliable set of trusted peers, we discard the cluster containing the
lowest trust values. If we instead decide to pick only the highest cluster, and discard
the other two clusters, the result would on average be equivalent to taking the trust
source’s direct trust assignments as trusted peers, and discarding the rest of the trust
graph—a result which invalidates any kind of trust propagation, as well as the use
of Appleseed, in particular. That the highest cluster tends to contain the direct trust
assignments has been found experimentally.

7.3 Experiment design

In order to evaluate the effectiveness of using TrustNet to implement a subjective
moderation system, we will have to test it against a few scenarios. A scenario sim-
ulator, as well as a demonstration framework, have been created in the process of
this work to facilitate evaluation.

The scenario simulator pseudo-randomly generates different trust networks ac-
cording to a set of parameters, while the demonstration framework is a proof-of-
concept implementation of TrustNet as a subjective moderation system in Cabal,
the peer-to-peer group chat introduced in Section 4.2. The demonstration frame-
work, however, is not implemented directly in any of Cabal’s chat applications, but
is instead viewable as a webpage that communicates with spawned Cabal instances
over WebSocket events, a protocol for opening a two-way communication channel
over a TCP connection.

Scenario simulator
The scenario simulator attempts to model the aspects relevant to issuing trust as-
signments in a social network setting. As such, the simulator has implemented a set

80

7.3 Experiment design

of parameters which can be varied in order to test different types of scenarios.
It has a configurable node count, controlling the total size of the nework. There

is a seed parameter, allowing for reproducible experiments in conjunction with the
pseudo-random number generator. The trust weights that comprise a trust assign-
ment may be individually configured across the following trust ranges: none, low,
medium, high, and absolute. For example, the trust level low can be set to represent
a trust weight of 0.25 or 0.30, which allows simulating the difference in the final
trust graph.

The skew, or the probability that a trust assignment will be issued for a particular
trust level, is also configurable across the five trust levels. The sum of the five skew
parameters has to equal a probability mass of 1.0. Thus, if the skew for the trust
level absolute is 0.01, there is a 1% chance that any given trust assignment will be
issued as an absolute trust assignment, i.e. corresponding to the trust weight set for
the absolute trust level.

Finally, the range on the number of trust assignments nodes will issue is also
configurable. This has been represented by two values, the lower and upper ends of
the range; how many trust assignments a node will issue is randomly chosen using
the two range endpoints.

An example listing of a scenario configuration may be viewed in Listing A.1 in
the appendix.

Demonstration framework
With the scenario simulator, we can model a wide array of scenarios and generate
their resulting trust graphs. Models are however only as good as their chosen input
parameters. Furthermore, as our intent is for TrustNet to be able to be used as the ba-
sis for a subjective moderation system, implementing TrustNet into an existing chat
system would reveal flaws in the system’s implementation as well as any awkward-
ness in the interface between TrustNet and the host chat system. Thus, the need for
a demonstration framework arose. Fig. 7.2 shows a visualisation of the framework.

The demonstration framework uses an adapted version of Cabal’s underlying
core libraries. Its architecture is as follows. A nodejs-based HTTP server was built
to serve the demonstration framework as a website, loadable in modern browsers.
The HTTP server was extended with a WebSocket server for relaying requests from
the participant—interacting with the framework in the browser—to the underlying
Cabal nodes. The same process that serves HTTP requests and relays WebSocket
events is also responsible for spawning new processes containing a special kind of
Cabal node. The spawned Cabal nodes communicate directly with each other, as
per Cabal’s normal mode of operation, but they also have the ability to interact with
WebSocket events from a defined WebSocket server. See Fig. 7.3 for a schematic of
the demonstration framework’s architecture.

In this way, we simulate a real Cabal network, while also simplifying setting up
trust assignments between nodes, as well as enabling interactive exploration of the

81

Chapter 7. TrustNet

Figure 7.2: A screenshot of the demonstration framework developed to interact with
the proof-of-concept implementation of TrustNet into Cabal, a peer-to-peer appli-
cation for group communication. The trust graph’s edges are visualized, as are the
rankings returned from Appleseed, and the most trusted participants according to
TrustNet. The pink text in the chat window, top right, visualizes content posted by
hidden peers. In the image, the peer has been transitively hidden.

User

Browser

Server process

Cabal swarm: 
Each node is  
its own process

HTTP Server WS Server TrustNet

Cabal NodeCabal Node Cabal Node

Figure 7.3: Schematic of the architecture and communication paths used in the
demonstration framework.

82

7.4 TrustNet Example

emergent trust network. The demonstration framework in Fig 7.2 also visualizes the
trust network as a node graph—see the top left—as viewed from the currently in-
spected peer. The computed Appleseed ranking is also visible, as well as the trusted
peers returned from TrustNet; the section labeled Most trusted contains TrustNet’s
trusted peers.

A component for visualizing how the chat history is affected by hiding nodes in
the network is also present. The chat history component also doubles as a debug-
ging view, which can show the underlying events issuing forth over the WebSocket
connection.

7.4 TrustNet Example

Let us illustrate what could happen in a scenario of a chat system that makes use of
TrustNet to implement a subjective and trust-based moderation system. The trusted
peers in the example below were derived by creating trust graphs according to the
trust assignments mentoned in the text, and running TrustNet on those trust graphs.

We have the chat participants Alice, Bob, Carole, David, Eve, and Mallory. The
participants have issued trust assignments for each other in various ways in the trust
area moderation. The trust area is used to propagate moderation actions inside the
chat system, spreading out the burden of mitigating abuse.

The chat system uses human-meaningful labels for each assignable trust weight:

• None (0.0)

• Some overlap (0.25)

• Similar (0.8)

• Identical (1.0)

The default for an unassigned trust weight is the same as assigning None. Alice
has a similar attitude to moderation as Carole, and assigns her as Similar. Alice
also assigns Bob as Some overlap, as she thinks Bob usually has a good sense of
moderation, but she is a bit uncertain as to who Bob may trust in the future.

Carole and David are best friends and similar when it comes to most things in
life. Thus, Carole trusts David’s judgement, assigning him as Similar, and David
trusts Carole, assigning her as Similar. Carole also trusts Alice, assigning her as
Similar. The trust graph for the chat system at this point in time can be seen in
Fig. 7.4.

At this point in time, the trusted peers for each chat participant are:

• Alice: Bob, Carole, David

• Bob: None

• Carole: Alice, Bob, David

83

Chapter 7. TrustNet

Alice

Bob

 0.25

Carole

 0.8 0.8

David

 0.8 0.8

Eve Mallory

Figure 7.4: Trust graph for the hypothetical chat system after Alice, Carole and
David have issued their trust assignments.

• David: Alice, Carole

• Eve: None

• Mallory: None

Eve and Mallory are malicious participants, intent on having fun at the expense
of the rest of participants in the chat. Consequently, they try to game the trust system
by assigning each other as Identical. Let us also assume that Bob, being a bit naive,
trusts Eve, assigning her as Similar. The updated trust graph for all the participants
can be seen in Fig. 7.5.

The most trusted participants in the system, for each participant, are now:

• Alice: Bob, Carole, David

• Bob: Eve, Mallory

• Carole: Alice, Bob, David

• David: Alice, Carole

• Eve: Mallory

• Mallory: Eve

Thus, we can see that Bob’s mistaken trust in Eve does not affect those who
trust Bob, given that Bob had a relatively low trust to begin with.

Eve and Mallory start posting crude comments about the other participants in
the chat. In addition to the tasteless comments, Mallory issues a network hide for
Alice—hiding Alice for Eve and Bob, but no one else. As a result of Eve and Mal-
lory’s unwelcome comments, Carole issues a network hide for Eve, and Alice issues

84

7.4 TrustNet Example

Alice

Bob

 0.25

Carole

 0.8

Eve

 0.8

 0.8

David

 0.8 0.8

Mallory

 1.0 1.0

Figure 7.5: Trust graph for the hypothetical chat system after Bob, Eve and Mallory
have issued their trust assignments.

a network hide for Mallory. The result is that Eve and Mallory are hidden for Alice,
Carole, and David—despite only two moderation actions having been issued by two
different people.

Once Eve and Mallory start disrupting the chat, and noticing that Alice has
been hidden despite not having done anything, Bob quickly realizes his mistake of
trusting Eve. He revokes his trust for Eve and hides both Eve and Mallory. Bob has
to hide Eve and Mallory himself as Alice and Carole’s moderation actions have no
effect for him, since Bob has not assigned trust for either Alice, Carole or David.

The above example is somewhat of a toy example to show the fundamentals of
how TrustNet works. In particular, what was demonstrated was how TrustNet could
function as part of a chat system. In the next chapter, we will consider larger chat
systems in order to analyze the efficacy of TrustNet.

85

8
Evaluation & Results

In this chapter, we evaluate and present the results from the proof-of-concept imple-
mentation of TrustNet. We also outline a baseline naive moderation system, which
we measure TrustNet’s performance against.

86

8.1 Evaluation

8.1 Evaluation

In order to properly evaluate and measure TrustNet’s results, we need to have a
baseline to measure against, which we will now define. In the baseline moderation
system, to successfully hide a malicious participant for the entire network, each
node needs to individually hide the malicious participant. We call this approach the
naive approach.

Evaluating the efficacy of the proposed TrustNet system versus the naive ap-
proach was formulated accordingly. We will measure the amount of blocks—a
moderation action which one peer issues to hide the content authored by another
peer—as well as the total amount of actions. An action is defined as any manual
moderation intervention. In our case, an action is regarded as either issuing a trust
assignment, or issuing a block. Thus, what we will measure is:

1. How many blocks are required to hide a malicious participant for the entire
network?

2. How many actions are required to hide a malicious participant for the entire
network?

Our hypothesis is that the subjective moderation system implemented with
TrustNet will significantly reduce the number of blocks and the total actions re-
quired as compared to the naive moderation system.

In order to carry out the evaluation, we had to devise some way of optimally
deriving the number of blocks required for the subjective moderation system. This
was not completely trivial, as the subjective moderation system essentially creates
neighbourhood of nodes in which moderation actions are carried forth. This makes
it difficult to find which nodes should issue a moderation action for optimal effect.
To perform an optimal count of the number of blocks required, we devised the
following method.

Influencer accounting First, a trust network is generated using the scenario sim-
ulator, described in Section 7.3. This creates a trust network where each node ran-
domly selects other nodes to issue trust assignments. We want to briefly pause the
explanation here to point out that this is a kind of worst-case network, as real trust
networks will likely have more developed and cohesive structures as regards the
trust assignments issued between nodes—i.e some participants will inherently be
regarded as more trusted in a real-life chat contexts.

With the generated trust network, we want to issue as few blocks as possible
to end up with an optimal number of blocks. This is done by taking each of the
network’s node and looking at their subjective trust graph, making note of which
nodes they end up with as their trusted peers according to TrustNet. We then sort
the nodes by the number of other nodes trusting them. We call the nodes with the
highest number of other nodes trusting them influencers, because their actions in-
fluence greater portions of the network. We then iteratively take the top influencer

87

Chapter 8. Evaluation & Results

and issue a block, making note of which other nodes have now blocked the mali-
cious participant as a result of the top influencer’s action. This influencer has now
exhausted their influence, so they are discarded. The list is re-sorted to find the next
top-most influencer, as the number of nodes to influence has changed.

We continue this iterative method until the top-most influencer no longer has
any nodes they can influence. The remaining un-influenced nodes are regarded as
nodes who do not trust any others, and so they must each individually issue a block.
All nodes in the network have now hidden the malicious participant, and we have
ended up with an optimal number of blocking actions as regards the generated trust
network.

Total number of actions The section above describes how to count the total
amount of blocks for the subjective TrustNet-based moderation system. However,
it would be misleading to only count the number of blocks required as the trust
assignments need to be issued as well for the blocks of influencers to have any ef-
fect on the network. In order to account for the total number of actions required,
we need to count the number of trust assignments issued alongside the number of
blocks issued.

The mean number of trust assignments is calculated as in Equation 8.1, where
low and high are the two endpoints describing the range of the number of trust
assignments each node will issue, and N is the total number of nodes in the network.

low+high
2

·N (8.1)

88

8.2 Results

8.2 Results

The parameters in Listing A.1 were used to generate trust networks using the sce-
nario simulator from Section 7.3.

Using the results from 1000 executions, where each execution had a unique
seed parameter, a variance of 47 and a mean of 273 was calculated for the number
of blocks TrustNet requires to completely hide 1 malicious participant. That is, on
average, 273 blocks were required to completely hide a malicious participant for all
1000 nodes. In Fig. 8.3 and Fig. 8.4, a mean of 273 was used.

The number of trust assignments issued per node, also over 1000 executions,
had a mean of 4 and a variance of 1. For the following graphs, the amount of trust
assignments issued for the 1000 node network was set using the mean of 4.

1000 273

250

500

750

Naive Blocks TrustNet Blocks

Figure 8.1: Blocks required to hide a
single malicious participant for a net-
work of 1000 nodes. Lower staple is
better.

1000 4273

1000

2000

3000

4000

Naive Actions TrustNet Actions

Figure 8.2: Actions (blocks + trust as-
signments) required to hide a single
malicious participant for a network of
1000 nodes. Lower staple is better.

89

Chapter 8. Evaluation & Results

Trolls

B
lo

ck
s

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trolls Naive Blocks TrustNet Blocks

Figure 8.3: Total amount of blocks required to completely hide 1-20 malicious par-
ticipants (titled trolls in the chart) for a chat context of 1000 nodes. Lower is better.

Trolls

A
ct

io
ns

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trolls Naive Actions TrustNet Actions

Figure 8.4: Total amount of actions (trust assignments + blocks) required to com-
pletely hide 1-20 malicious participants (titled trolls in the chart) for a chat context
of 1000 nodes. Lower is better.

8.3 Moderation Comparison

The number of blocks required for the TrustNet-based moderation system, as com-
pared to the naive moderation system, for a network of 1000 nodes, was 273 vs
1000 blocks. That is, the number of required blocks was decreased by 73%.

As regards the total number of actions to hide 1 malicious participant, we can
see in Fig. 8.2 that the TrustNet approach greatly exceeds the number of actions
required as compared to the naive approach. This makes sense, as the trust network

90

8.4 Varying the parameters

between nodes needs to be established. Viewing Fig. 8.4, we can however see that
there is a point at which the TrustNet-based system starts to become more effective
even when considering the total amount of actions. After 5 malicious participants
have been hidden in the chat context, the amount of actions required are less for
TrustNet than for the naive approach. After 20 malicious participants, the number
of actions required for TrustNet is just under half, at 9460 actions, of the actions the
naive approach requires, 20000.

As regards blocks, we can see that TrustNet always outperforms the naive ap-
proach, irrespective of the number of malicious participants. At 20 blocked mali-
cious participants, the the number of blocks for TrustNet is 5460 for the entire net-
work of 1000 nodes, while the naive approach remains at 20000 blocks to achieve
the same result i.e. hiding all 20 malicious participants.

Thus, TrustNet has an initial cost in the form of the required trust assignments.
For a shorter-lived chat context, i.e. one in which the likelihood of any malicious
participant entering remains low, it may be less useful to make use of TrustNet—at
least as regards a moderation context. If, however, the chat context will experience
more than 5 malicious participants in its lifetime, then the initial cost will pay off in
terms of the amount of actions. As noted above, TrustNet always pays off in terms
of the required blocks, however.

Finally, we would like to finish with the notion that even if TrustNet, in terms
of actions and in the shorter term, is less effective as regards the entire network, the
neighbourhoods which utilize the trust assignments will have a greatly improved
moderation experience than those which do not. If even 10% of a chat context uses
the system to share the moderation burden amongst themselves, that, too, is viewed
as a positive outcome as the participants of the neighbourhood will have to expend
less effort to hide malicious participants. Thus, the system can be incrementally
adapted without needing to force its use onto everyone in a chat context.

8.4 Varying the parameters

As it can be useful to see how TrusTnet performs with different types of models,
we present below two meaningful variations of the parameters in Listing A.1.

Using a network size of 100
Varying the number of nodes saw similar results as those presented above. Using
a network of 100 nodes, the result from 1000 executions yielded a variance of 2
and a mean of 29 for the number of blocks TrustNet requires to completely hide 1
malicious participant for a network of 100 nodes.

The effectiveness using a smaller network size of 100 nodes, instead of 1000,
with regard to the number of blocks required as compared to the naive system, was
also calculated to be 73%.

The results are presented in Fig. 8.5 and Fig. 8.6.

91

Chapter 8. Evaluation & Results

Trolls

B
lo

ck
s

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trolls Naive Blocks TrustNet Blocks

Figure 8.5: Total amount of blocks required to completely hide 1-20 malicious par-
ticipants (titled trolls in the chart) for a chat context of 100 nodes. Lower is better.

Trolls

A
ct

io
ns

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trolls Naive Actions TrustNet Actions

Figure 8.6: Total amount of actions (trust assignments + blocks) required to com-
pletely hide 1-20 malicious participants (titled trolls in the chart) for a chat context
of 100 nodes. Lower is better.

Larger amount of trust assignments
Varying the number of trust assignments, extending the upper range, that is the
parameter high of Listing A.1, from 5 to 15, while keeping all other parameters the
same, yielded the following results.

The average number of trust assignments increased from 4 to 8 with a variance
of 0. Using a network of 1000 nodes, the result from 1000 executions yielded a
variance of 21 and a mean of 185 for the number of blocks TrustNet requires to

92

8.4 Varying the parameters

completely hide 1 malicious participant for a network of 1000 nodes. Thus, the
effectiveness for the larger range, with regard to the number of blocks required as
compared to the naive system, is 81%.

The total number of actions required to hide 20 malicious participants increased
from 9460 to 11700, an increase of 24%.

93

9
Discussion

9.1 On Privacy

TrustNet builds on the transitivity of trust assignments. That if Alice trusts Bob, and
Bob trusts Carole, then Alice trust Carole (to a certain degree).

The underlying foundation of transitivity may become problematic, as it exposes
delicate relational bounds between the participants of a chat context. The underlying
trust graph makes it possible for any participant to easily map out who trusts whom,
how much, and in which areas. In one sense, this fact could be potentially beneficial
as it allows a new person to orient themselves in the new context—making the
perceived issue an unexpected benefit, if the chat is fairly private or secluded.

For a public chat context, it is possible that a system such as TrustNet could fur-
ther entrench the surveillance capitalist [Zuboff, 2019] status quo—where user data
such as predicted personality[Chen et al., 2016], emotional state [Zuboff, 2019], or
current physical location, is sold across massive automated ad networks to the high-
est bidder [Zuboff, 2019]—underlying many of the highly populated services and
platforms on today’s internet.

The privacy issue is difficult to mitigate technically, and out of the scope of this
already extensive work. Perhaps privacy-preserving techniques from other research
areas can mitigate this problem—such as techniques inspired by homomorphic en-
cryption [Hayes, 2012], which allows participants to operate on data they cannot
read.

9.2 On The Difficulty of Simulating Trust

The results of Chapter 8 are based on simulations of randomly-generated trust net-
works. There are many potential ways in which the model is lacking in its represen-
tation of the dynamics of real life people in a chat context.

As such, we believe that TrustNet will perform even better on a real system,
as there will exist natural high trust clusters. The clusters, we posit, will be based
on factors such as existing friendship cliques, as well as globally highly trusted

94

9.3 On Increased Attack Incentives

participants of the chat system; its earliest members, or participants with repeated
instances of keen judgement. We see this pattern with existing social media plat-
forms [Facebook, 2020] [Mastodon, 2020], where it is not uncommon for a small
number of accounts to have a lot of so called followers. Thus, it is not an unreason-
able assumption to believe that a similar factor may be at play in subjective systems
such as the proposed TrustNet system.

9.3 On Increased Attack Incentives

The advent of Bitcoin [Nakamoto, 2008], a peer-to-peer electronic currency, and
other digital currencies, saw the unexpected rise of malicious attacks on previously
unattractive targets. Popular code repositories have seen sophisticated infiltration
attempts with the intent to surreptitiously install malicious software for stealing
digital currencies from unsuspecting targets [Tarr, 2018].

It is not inconceivable, then, that should TrustNet, or another system like it, be-
come popular that it too could risk increasing the incentive for malicious attackers.
Attackers may, for instance, try to find ways to attack trust networks in order to
manipulate a subset of it for their gain.

9.4 On the Importance of Naming

It would be beneficial for the integration of TrustNet with user interfaces if an alter-
nate phrasing for trust assignments could be found. A phrasing which emphasizes
that a trust source is not handing out trust, but instead identifying people as similar
to how they themselves would act in a given trust area. To frame trust in the manner
of a similarity in judgement, instead of a decree on a person’s worth.

Following that strand of thought, it makes sense to assign identities that you
control—your desktop identity and your phone identity—with a weight of 1.0 i.e.
absolute trust. Because of course you have a perfect similarity in judgement to your-
self.

The proposed alternate phrasing, by swapping out notions of trust, also prevents
social problems from taking root which could otherwise negatively impact social
relations but also the use of TrustNet at large. That is, people might be offended
when they are assigned a low weight if it is interpreted as trust:

What?! You don’t trust me? I thought we were friends. . .

On the contrary, it is obvious that two friends differ in judgement. This becomes
exceptionally clear when the trust area is taken into account:

You gave me a lower weight. . . Oh, it’s in music recommendations,
yeah that makes sense.

95

Chapter 9. Discussion

9.5 Other Use Cases of TrustNet

Let us assume you have a network of trusted peers (with varying levels of trust) and
running TrustNet on the network gives you an actionable list of trusted peers.

We can use this curated list of trusted peers in multiple ways. This thesis has
focused on using it for implementing a moderation system, essentially granting the
trusted peers moderator powers to act on your behalf. This effectively creates a dy-
namic blocklist, with many sources. The peer moderators and their changes can also
be revoked if abused (you stop trusting them and unassign the previously assigned
trust).

Another use case could regard the trusted peer list as a set of trusted sources
from which to request pre-computed indexes in a distributed network; speeding up
onboarding into the network through bypassing the requirement to index each and
every post before the network can become usable.

Yet another use case could be to use the rankings in social media applications,
as a suggestion on whom to follow, become friends with, or simply engage more in
conversation.

Instead of using the trust network to figure out which moderation actions are re-
liable, the trust network itself could be used to filter the chat; limiting chat messages
to only people from within the trusted network. This kind of mechanism could be
implemented as a user-controllable toggle, such that if a participant is feeling over-
whelmed they can switch on the toggle to default to a smaller, trusted subset of the
chat.

The computed rankings could also be used to inform recommendations within
a particular kind of domain, for example the domain of music taste. Issued trust
weights could then be interpreted as an indication of music taste, higher weights
corresponding to a greater alignment in music taste, or a subjectively better taste in
music.

These are just a few examples of how the underlying idea proposed in this work
could be used outside of the domain of subjective moderation.

9.6 Conclusion: Subjective Moderation & The Future of
TrustNet

We have tried to provide an insight into the causes of moderation, as well as the
benefits of a subjective, trust-based moderation system. We have proposed TrustNet
as one solution that could be used to implement a subjective moderation system.

During the course of working on TrustNet and writing this work, Cabal, the
peer-to-peer chat project featured in this thesis, received a grant from Mozilla—one
of the current major internet browser developers. The grant was received as part of
a successful grant application, written by the author, proposing the implementation
of a subjective moderation system for Cabal [Cobleigh, 2020a].

96

9.6 Conclusion: Subjective Moderation & The Future of TrustNet

Going forward, the author’s current plan is to include TrustNet into Cabal to
allow for a variety of trust-based functionality. Among these are automatic down-
loading of shared documents, enabling custom profile images and only displaying
them for the trusted subset of the chat context, as well as making it possible to toggle
hiding of private messages sent from untrusted people, and more.

The TrustNet implementation, and the javascript implementation of Appleseed,
are planned to be released as open source modules on the author’s Github ac-
count [Cobleigh, 2020b], after the publication of this thesis.

97

A
Simulator parameters

Below are the parameters used for running the sceanario simulator, described in Sec-

tion 7.3.

Listing A.1: Example of parameters for TrustNet’s scenario generator.
{
"seed": 1,
"nodes": 1000,
"trust": {

"levels ": {
"none": 0,
"low": 0.25,
"medium ": 0.50,
"high": 0.75,
"absolute ": 1.00

},
"skew": {

"none": 0.05,
"low": 0.35,
"medium ": 0.10,
"high": 0.49,
"absolute ": 0.01

},
"range": {

"low": 3,
"high": 5

}
}

98

Bibliography

Abdul-Rahman, A. and S. Hailes (1998). “A distributed trust model”. In: Proceed-
ings of the 1997 workshop on New security paradigms, pp. 48–60.

Abdul-Rahman, A. and S. Hailes (2000). “Supporting trust in virtual communities”.
In: Proceedings of the 33rd annual Hawaii international conference on system
sciences. IEEE, 9–pp.

Anderson, J. R. et al. (1983). “A spreading activation theory of memory”. Journal
of verbal learning and verbal behavior 22:3, pp. 261–295.

Aumasson, J.-P., S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein (2013). “Blake2:
simpler, smaller, fast as md5”. In: International Conference on Applied Cryp-
tography and Network Security. Springer, pp. 119–135.

Bernstein, D. J., N. Duif, T. Lange, P. Schwabe, and B.-Y. e. a. Yang (2011). High-
speed high-security signatures. Electronic Paper. Accessed 2019-04-29. URL:
https://ed25519.cr.yp.to/ed25519-20110926.pdf.

Bhuiyan, T., A. Josang, and Y. Xu (2010). “Trust and reputation management in
web-based social network”. Web Intelligence and Intelligent Agents, pp. 207–
232.

Bizer, C., T. Heath, and T. Berners-Lee (2011). “Linked data: the story so far”. In:
Semantic services, interoperability and web applications: emerging concepts.
IGI Global, pp. 205–227.

Brewer, E. A. (2000). “Towards robust distributed systems”. In: PODC. Vol. 7.
Portland, OR.

Brumm, B. (2018). Sql views and materialized views: the complete guide. Blog
Article. Accessed 2020-04-09. URL: https://www.databasestar.com/
sql-views/.

Cabal-Club (2020). Cabal. Website. Accessed 2020-05-08. URL: https://web.
archive.org/web/20200501104038/https://cabal.chat/.

Ceglowski, M., A. Coburn, and J. Cuadrado (2003). “Semantic search of unstruc-
tured data using contextual network graphs”. National Institute for Technology
and Liberal Education 10.

99

https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://www.databasestar.com/sql-views/
https://www.databasestar.com/sql-views/
https://web.archive.org/web/20200501104038/https://cabal.chat/
https://web.archive.org/web/20200501104038/https://cabal.chat/

Bibliography

Chen, T.-Y., M.-C. Tsai, and Y.-M. Chen (2016). “A user’s personality prediction
approach by mining network interaction behaviors on facebook”. Online Infor-
mation Review.

Cobleigh, A. (2018). Cabal. Accessed 2020-05-06. URL: https://web.archive.
org/web/20200506130433/https://github.com/new- computers/
cabal/issues/1.

Cobleigh, A. (2020a). Cabal x subjective moderation, mozilla grant. Website. Ac-
cessed 2020-05-20. URL: https://opencollective.com/cabal-club/
updates/cabal-x-subjective-moderation-mozilla-grant.

Cobleigh, A. (2020b). Github. Website. Accessed 2020-05-20. URL: https://
github.com/cblgh.

Collins, A. M. and E. F. Loftus (1975). “A spreading-activation theory of semantic
processing.” Psychological review 82:6, p. 407.

Diffie, W. and M. Hellman (1976). New Directions in Cryptography. IEEE.
Douceur, J. R. (2002). “The sybil attack”. In: International workshop on peer-to-

peer systems. Springer, pp. 251–260.
Facebook (2020). Groups. Accessed 2020-04-29. Facebook, Inc. URL: https://

web.archive.org/web/20200422191447/https://www.facebook.com/
help/1629740080681586?helpref=hc_global_nav.

Felps, W., T. R. Mitchell, and E. Byington (2006). “How, when, and why bad apples
spoil the barrel: negative group members and dysfunctional groups”. Research
in organizational behavior 27, pp. 175–222.

Fidge, C. J. (1987). “Timestamps in message-passing systems that preserve the par-
tial ordering”.

Fowler, M. (2005). Event sourcing. Blog Article. Accessed 2020-04-08. URL:
https://martinfowler.com/eaaDev/EventSourcing.html.

Gilbert, S. and N. Lynch (2002). “Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services”. SIGACT News 33:2, pp. 51–59.
ISSN: 0163-5700. DOI: 10.1145/564585.564601. URL: http://doi.acm.
org/10.1145/564585.564601.

Guha, R., R. Kumar, P. Raghavan, and A. Tomkins (2004). “Propagation of trust and
distrust”. In: Proceedings of the 13th international conference on World Wide
Web, pp. 403–412.

Hayes, B. (2012). “Alice and bob in cipherspace”. American Scientist 100:5,
pp. 362–367.

Jøsang, A. (2007). “Trust and reputation systems”. In: Foundations of security anal-
ysis and design IV. Springer, pp. 209–245.

Jøsang, A., E. Gray, and M. Kinateder (2003). “Analysing topologies of transitive
trust”. In: Proceedings of the First International Workshop on Formal Aspects
in Security & Trust (FAST2003). Pisa, Italy, pp. 9–22.

100

https://web.archive.org/web/20200506130433/https://github.com/new-computers/cabal/issues/1
https://web.archive.org/web/20200506130433/https://github.com/new-computers/cabal/issues/1
https://web.archive.org/web/20200506130433/https://github.com/new-computers/cabal/issues/1
https://opencollective.com/cabal-club/updates/cabal-x-subjective-moderation-mozilla-grant
https://opencollective.com/cabal-club/updates/cabal-x-subjective-moderation-mozilla-grant
https://github.com/cblgh
https://github.com/cblgh
https://web.archive.org/web/20200422191447/https://www.facebook.com/help/1629740080681586?helpref=hc_global_nav
https://web.archive.org/web/20200422191447/https://www.facebook.com/help/1629740080681586?helpref=hc_global_nav
https://web.archive.org/web/20200422191447/https://www.facebook.com/help/1629740080681586?helpref=hc_global_nav
https://martinfowler.com/eaaDev/EventSourcing.html
https://doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

Bibliography

Jøsang, A., S. Marsh, and S. Pope (2006). “Exploring different types of trust propa-
gation”. In: International Conference on Trust Management. Springer, pp. 179–
192.

Josefsson, S. (2006). The Base16, Base32, and Base64 Data Encodings. RFC 4648.
DOI: 10.17487/RFC4648. URL: https://rfc-editor.org/rfc/rfc4648.
txt.

Kamvar, S. D., M. T. Schlosser, and H. Garcia-Molina (2003). “The eigentrust algo-
rithm for reputation management in p2p networks”. In: Proceedings of the 12th
international conference on World Wide Web, pp. 640–651.

Keall, D. (2019). How dat works. Digital. Accessed 2020-01-15. URL: https://
datprotocol.github.io/how-dat-works/.

Kempe, S. (2012). The nosql movement — what is it? Blog. Accessed 2020-04-20.
URL: https://www.dataversity.net/the-nosql-movement-what-is-
it/.

Kleppmann, M. (2015). “A critique of the cap theorem”. arXiv preprint
arXiv:1509.05393.

Kleppmann, M. and J. Kreps (2015). “Kafka, samza and the unix philosophy of
distributed data”.

Kleppmann, M., A. Wiggins, P. van Hardenberg, and M. McGranaghan (2019).
“Local-first software: you own your data, in spite of the cloud”. In: Proceed-
ings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, pp. 154–178.

Kreps, J. (2013). The log: what every software engineer should know about real-
time data’s unifying abstraction. Blog Article. Accessed 2019-11-17. URL:
https://engineering.linkedin.com/distributed- systems/log-
what-every-software-engineer-should-know-about-real-time-
datas-unifying.

Lamport, L. (1978). “Time, clocks, and the ordering of events in a distributed sys-
tem”. Commun. ACM 21:7, pp. 558–565. ISSN: 0001-0782. DOI: 10.1145/
359545.359563. URL: https://doi.org/10.1145/359545.359563.

Lamport, L. (1998). The part-time parliament. URL: https : / / lamport .
azurewebsites.net/pubs/lamport-paxos.pdf.

Levien, R. (2003). “Advogato trust metric [ph. d. dissertation]”. UC Berkeley, USA.
Mastodon (2020). Join mastodon. Accessed 2020-04-29. The Mastodon Project.

URL: https://web.archive.org/web/20200425022507/https://
joinmastodon.org/.

Maymounkov, P. and D. Mazieres (2002). “Kademlia: a peer-to-peer information
system based on the xor metric”. In: International Workshop on Peer-to-Peer
Systems. Springer, pp. 53–65.

101

https://doi.org/10.17487/RFC4648
https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://datprotocol.github.io/how-dat-works/
https://datprotocol.github.io/how-dat-works/
https://www.dataversity.net/the-nosql-movement-what-is-it/
https://www.dataversity.net/the-nosql-movement-what-is-it/
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://web.archive.org/web/20200425022507/https://joinmastodon.org/
https://web.archive.org/web/20200425022507/https://joinmastodon.org/

Bibliography

Merkle, R. C. (1987). “A digital signature based on a conventional encryption
function”. In: Pomerance C. (eds) Advances in Cryptology — CRYPTO ’87.
Springer.

Milgram, S. (1967). “The small world problem”. Psychology today 2:1, pp. 60–67.
Mosberger, D. (1993). “Memory consistency models”. ACM SIGOPS Operating

Systems Review 27:1, pp. 18–26.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Tech. rep.
Nakamoto, S. (2009). Base58.h. Digital. Accessed 2020-02-20. URL:

https : / / github . com / bitcoin / bitcoin / blob /
aaaaad6ac95b402fe18d019d67897ced6b316ee0/src/base58.h.

Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Tech. rep.
Manubot.

NIST (2001). Descriptions of sha-256, sha-384, and sha-512. Digital. Accessed
2020-01-15. URL: https://web.archive.org/web/20130526224224/
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-
384-512.pdf.

Oikarinen, J. and D. Reed (1993). Internet relay chat protocol. Accessed 2020-04-
29. URL: https://tools.ietf.org/html/rfc1459.

Page, L., S. Brin, R. Motwani, and T. Winograd (1999). The pagerank citation rank-
ing: Bringing order to the web. Tech. rep. Stanford InfoLab.

Pathirage, M. (2014). Kappa-architecture.com. Website. Accessed 2020-04-27.
URL: https://milinda.pathirage.org/kappa-architecture.com/.

Schlosser, M. (2019). Developing the eigentrust algorithm and determining au-
thenticity online. Digital. Accessed 2020-02-10. URL: https : / / medium .
com / oscar - tech / developing - the - eigentrust - algorithm - and -
determining-trustworthiness-online-6c51b2c2938f.

Slack (2020). What is slack? Accessed 2020-04-29. Slack Technologies Inc. URL:
https://web.archive.org/web/20200429092816/https://slack.
com/intl/en-se/resources/slack-101/lesson-1-what-is-slack.

SSBC (2017). Scuttlebutt protocol guide. Accessed 2020-05-04. URL: https://
ssbc.github.io/scuttlebutt-protocol-guide/.

Stiegler, M. (2005). “An introduction to petname systems”. In: In Advances in Fi-
nancial Cryptography Volume 2. Ian Grigg. Citeseer.

Tarr, D. (2015). Designing a secret handshake: authenticated key exchange as
a capability system. Accessed 2020-05-05. URL: https://dominictarr.
github.io/secret-handshake-paper/shs.pdf.

Tarr, D. (2018). Statement on event-stream compromise. Website. Ac-
cessed 2020-05-18. URL: https : / / web . archive . org / web /
20200418033803 / https : / / gist . github . com / dominictarr /
9fd9c1024c94592bc7268d36b8d83b3a.

102

https://github.com/bitcoin/bitcoin/blob/aaaaad6ac95b402fe18d019d67897ced6b316ee0/src/base58.h
https://github.com/bitcoin/bitcoin/blob/aaaaad6ac95b402fe18d019d67897ced6b316ee0/src/base58.h
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://tools.ietf.org/html/rfc1459
https://milinda.pathirage.org/kappa-architecture.com/
https://medium.com/oscar-tech/developing-the-eigentrust-algorithm-and-determining-trustworthiness-online-6c51b2c2938f
https://medium.com/oscar-tech/developing-the-eigentrust-algorithm-and-determining-trustworthiness-online-6c51b2c2938f
https://medium.com/oscar-tech/developing-the-eigentrust-algorithm-and-determining-trustworthiness-online-6c51b2c2938f
https://web.archive.org/web/20200429092816/https://slack.com/intl/en-se/resources/slack-101/lesson-1-what-is-slack
https://web.archive.org/web/20200429092816/https://slack.com/intl/en-se/resources/slack-101/lesson-1-what-is-slack
https://ssbc.github.io/scuttlebutt-protocol-guide/
https://ssbc.github.io/scuttlebutt-protocol-guide/
https://dominictarr.github.io/secret-handshake-paper/shs.pdf
https://dominictarr.github.io/secret-handshake-paper/shs.pdf
https://web.archive.org/web/20200418033803/https://gist.github.com/dominictarr/9fd9c1024c94592bc7268d36b8d83b3a
https://web.archive.org/web/20200418033803/https://gist.github.com/dominictarr/9fd9c1024c94592bc7268d36b8d83b3a
https://web.archive.org/web/20200418033803/https://gist.github.com/dominictarr/9fd9c1024c94592bc7268d36b8d83b3a

Bibliography

Tarr, D., E. Lavoie, A. Meyer, and C. Tschudin (2019). “Secure scuttlebutt: an
identity-centric protocol for subjective and decentralized applications”. In: Pro-
ceedings of the 6th ACM Conference on Information-Centric Networking. ACM,
pp. 1–11.

Thaler, D. and B. Aboba (2008). “What makes for a successful protocol”. Internet
Eng. Task Force, Fremont, CA, USA, RFC 5218.

Tschudin, C. (2019). “A broadcast-only communication model based on replicated
append-only logs”. ACM SIGCOMM Computer Communication Review 49:2,
pp. 37–43.

Tschudin, C. F. (2018). The tangle data structure and its use in ssb drive. Blog
Article. Accessed 2020-04-13. URL: https://github.com/cn-uofbasel/
ssbdrv/blob/master/doc/tangle.md.

Vogels, W. (2009). “Eventually consistent”. Communications of the ACM 52:1,
pp. 40–44.

Walport, M. et al. (2016). “Distributed ledger technology: beyond blockchain”. UK
Government Office for Science 1.

Wang, H. and M. Song (2011). “Ckmeans. 1d. dp: optimal k-means clustering in
one dimension by dynamic programming”. The R journal 3:2, p. 29.

Ziegler, C.-N. and G. Lausen (2004a). “Spreading activation models for trust prop-
agation”. In: IEEE International Conference on e-Technology, e-Commerce and
e-Service, 2004. EEE’04. 2004. IEEE, pp. 83–97.

Ziegler, C.-N. and G. Lausen (2004b). “Analyzing correlation between trust and
user similarity in online communities”. In: International Conference on Trust
Management. Springer, pp. 251–265.

Ziegler, C.-N. and G. Lausen (2005). “Propagation models for trust and distrust in
social networks”. Information Systems Frontiers 7:4-5, pp. 337–358.

Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future
at the new frontier of power. Profile Books.

103

https://github.com/cn-uofbasel/ssbdrv/blob/master/doc/tangle.md
https://github.com/cn-uofbasel/ssbdrv/blob/master/doc/tangle.md

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Introduction
	Overview
	Contributions

	Public-key Cryptography
	Digital signatures
	Public-key-based Identity
	Uses in distributed peer-to-peer systems

	Distributed systems
	The CAP Theorem
	Eventual Consistency
	Message Passing
	Append-only logs
	Kappa Architecture
	Interleaving logs
	Looking to distributed chat systems

	Chat systems
	Moderation
	Distributed chat systems
	Subjective moderation

	Trust
	Definitions
	Related Work
	Computational Trust

	Appleseed
	Overview
	Algorithm
	Drawbacks

	TrustNet
	Overview
	Architecture
	Experiment design
	TrustNet Example

	Evaluation & Results
	Evaluation
	Results
	Moderation Comparison
	Varying the parameters

	Discussion
	On Privacy
	On The Difficulty of Simulating Trust
	On Increased Attack Incentives
	On the Importance of Naming
	Other Use Cases of TrustNet
	Conclusion: Subjective Moderation & The Future of TrustNet

	Simulator parameters
	Bibliography
	Blank Page

