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Outline

This thesis has the form of a monograph meaning that no papers are in-
cluded in the end. Never the less material from previous publications are
covered by it, the covered publications are the ones listed under the title
‘publications’ above. The first section encountered by the reader would be
the introduction, covering the motivation of this work, putting the work
into its context and setting the focus of the thesis. Following the motivation
are two sections which, very briefly, touch internal combustion engines as
such and, a bit more in detail, how to carry out combustion engine feedback
control.

The second chapter describes, in detail, the Field Programmable Gate Ar-
ray (FPGA), the first section generally, the second it’s history. The third sec-
tion of the chapter describes architectural and design considerations, both
the architecture of the actual device as well as different architectural con-
siderations on the design level are discussed. Tools and design methods are
described in the fourth section, covering topics as the basic steps carried out
by a design tool, low level design, different high level design tools and their
corresponding pros and cons. Second to last, to illustrate the power and ap-
plicability of the FPGA technology, a flavor of FPGA applications are offered
the reader. The chapter is ended with a summary.

Implementing feedback-controllers in an FPGA environment takes spe-
cial considerations devoted one chapter, Chapter three. Giving an introduc-
tion to the topic of FPGA implemented controllers, compared with micro-
controller implemented ones. Continuing on to the second section present-
ing considerations to be made generally implementing digital control, in-
cluding special considerations for the FPGA environment. Section three dis-
cusses the practical issue of internal word-length optimization, Section four
handles the issues arising when implementing highly over-sampled control
systems and Section five describes considerations which have to be made
regarding parallelization and re-formulation of control algorithms in order
to make them efficient in a FPGA implementation. A flavor of control appli-
cations implemented in FPGAs follows with the intention to give the topic
legitimacy and engage the reader, lastly this chapter is ended with a chapter
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Preface

summary.
Chapter four deals with the work presented in the first and second pa-

per covered by this thesis, namely an FPGA implementation of a heat re-
lease analysis algorithm. The chapter describes the experimental setup, the
design tools used, the test environment as well as the algorithm used and its
actual implementation on the FPGA. Finally, of course, the outcome mean-
ing performance of the final system. This work was intended as a ‘proof of
concept’.

Approaching the end of this thesis, second to last, a chapter describing
an intended ‘rapid prototype’ system, featuring FPGA hardware and with
the capabilities of implementing controllers dealing with very fast feedback
control loops. This system is mainly intended for combustion engine feed-
back control experiments, but the ideas can be reused for similar problems.

Some concluding remarks ends the thesis.
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1

Introduction

1.1 Motivation

As the reader may know internal combustion engines have been the main
energy source in mobile applications for something like a century. The reader
is probably also familiar with the great threat to the environment of our
planet which are posed by mankind’s wasteful use of energy. Internal com-
bustion engines are a part of this energy waste and their contribution to
the environmental harm is worsened by the fact that most normal types
of combustion engines emit both carbon-dioxide (CO2) and other harmful
compounds like oxides of nitrogen(NOx), hydrocarbon (HC), and carbon-
monoxide (CO). Due to environmental issues, the green house effect and
increasing fuel prices, there is of course a strong urge to improve the inter-
nal combustion engine. One part which is regarded as an important factor
for improving the environmental and economical performance of engines is
feedback control of various engine parameters.

The author makes no claims of writing an exhaustive description of com-
bustion engines as such. Even so they have to be briefly discussed in order
to give the reader an idea of the frame within which this work has been un-
dertaken. It is also important to introduce the reader to the topic, enabling
understanding of the relevance of this work.

Instead of an exhaustive description of combustion engines the Field
Programmable Gate Array (FPGA) is described. FPGA internals, design,
benefits and drawbacks are described, with a feedback-control perspective
in mind. The topic targeted with this thesis is how to use the FPGA as a
potentially powerful tool for feedback control, both generally speaking and
regarding its application in the combustion engine feedback control field.

For most feedback control solutions the capabilities of ‘normal’ processor
systems are more than enough and the price performance ratio of processors
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Chapter 1. Introduction

is good. Even so there are potential benefits in using Field Programmable
Gate Arrays for feedback control and especially feedback control of internal
combustion engines. The benefits could be implementation of feedback con-
trol loops in timescales not yet possible, and not expected to be possible in
a very long time. Potential benefits could also be the possibility to use mod-
els more complex than possible with conventional techniques in feedback
control loops. Economically speaking FPGAs have the potential to outper-
form conventional techniques. FPGA systems can hence potentially serve as
powerful tools for feedback control of, among other the internal combustion
engine.

1.2 The Application, the Internal Combustion Engine

Traditionally there have been two different kinds of engines, the Otto en-
gine (the normal gasoline engine) and the Diesel engine. Obviously there
are enormous amounts of results and written publications regarding these
two engine types and the best place in literature to start for the interested
reader would be [Heywood, 1988]. Instead of the Otto or Diesel engine a
third type of internal combustion engine principle will be discussed below.
This third engine type is called Homogeneous Charge Compression Ignition
(HCCI) and was first suggested by [Onishi et al., 1979]. The HCCI engine
can best be understood as a hybrid between the traditional Otto and Diesel
engines. Pure HCCI engines are operated with a homogeneous mixture of
fuel and air, as an Otto engine. However as opposed to Otto engines, there
is no throttling of the intake air, and there are no spark plugs. The fuel mix-
ture is instead ignited by the increased temperature originating from com-
pression of the intake charge, as in a Diesel engine. In theory this operation
principle combines the high efficiency originating from Diesel engines with
the low emissions originating from Otto engines. In practice HCCI combus-
tion can be obtained in a large number of ways, each with different bene-
fits/drawbacks compared to traditional Otto and Diesel engines.

The HCCI Engine

Despite intense research efforts in recent years the HCCI engine is still less
known than its relatives the Otto and the Diesel engine. Nevertheless it
seems to be one of the more promising engine concepts of the future, com-
bining high efficiency with ultra-low emissions of nitrogen oxides. When
the concept of HCCI was first reported by [Onishi et al., 1979] is was pri-
marily an attempt to reduce emissions of unburned hydrocarbons (HC) and
improve part load efficiency of two stroke engines. After Onishi et al. pub-
lished their results it took a while before further HCCI publications emerged,
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1.3 Combustion Engine Feedback Control

when they did the publication rate increased. Important early publications
are for example [Najt and Foster, 1983], [Thring, 1989] and [Stockinger et al.,
1992].

The operation principle of the HCCI engine makes it possible to increase
the efficiency compared to the Otto engine due to the avoidance of throttling
losses. At the same time the high soot and nitrogen oxide emissions of the
diesel engine are avoided. Soot emission is avoided because of the homo-
geneity of the mixture and the absence of locally rich combustion zones. Ni-
trogen oxide emission is avoided because of the decreased peak in-cylinder
temperature due to the diluted operation of the engine and the absence of
stoichiometric undiluted zones.

HCCI combustion can be achieved in numerous ways, both in two and
four stroke engines. High compression ratio can be applied [Haraldsson
et al., 2002], the inlet air can be pre heated [Martinez-Frias et al., 2000]. HCCI
combustion can be induced by unconventional valve strategies that retain
hot residuals [Milovanovic et al., 2004] and the octane number of the fuel
can be altered [Olsson et al., 2001] to modulate the ignition temperature.
Since the HCCI combustion process in many operating points is unstable,
feedback combustion control is needed to operate an HCCI engine in parts
of its operating range. Such combustion control can be performed in numer-
ous ways using different actuators and sensors.

Even though it has many good features, the HCCI engine also has some
limitations besides the, just described, need for feedback combustion con-
trol. The operational principle unfortunately suffers from very high com-
bustion rates, causing noise as well as wear of engine hardware. Another
issue with the HCCI principle is low combustion efficiency at low load. This
causes high emissions of unburned hydrocarbons and carbon monoxide.

1.3 Combustion Engine Feedback Control

Internal combustion engines have, every since they were first developed
been under control/feedback-control. In fact control/feedback-control of com-
bustion engines is an ‘enabler’ for the success of the entire engine technique.
An engine which can not deliver a controlled amount of energy at a con-
trolled engine speed is of no use. The control tasks to be carried out by the
engine controller depends greatly on the engine type and the performance
requirements of the engine. This very brief section will mainly be devoted
to what is considered state-of-the art control technology in the HCCI field,
being a more challenging control task than state-of-the art gasoline or Diesel
engine control. An early view of state-of-the art gasoline engine control was
provided by [Powell, 1993]. For the Diesel engine however similar publi-
cations are sparse or completely lacking, such work has just recently been
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Chapter 1. Introduction

undertaken. [Kiencke and Nielsen, 2000] provides a very interesting view
for readers mainly interested in more production near combustion engine
feedback control, as well as feedback control within other parts of the auto-
motive domain (suspension, steering, breaking and driveline).

HCCI Engine Control

Besides development of the actual HCCI principle much work has been car-
ried out addressing the great task of developing feedback combustion con-
trol systems for the HCCI engine. The highly non-linear nature of HCCI
combustion together with the fact that actuators with high control authority
are lacking poses a great challenge to researchers in the field. Furthermore,
as indicated by Figure 1.1, the HCCI engine represents an unstable system
which needs feedback control for successful operation. The two most im-
portant variables to control in an HCCI engine are combustion phasing and
engine load. Combustion phasing is simply a number describing when dur-
ing the engine cycle combustion takes place and engine load is a number
describing how much work the engine develops.

Many interesting results, starting with [Olsson et al., 2001], have been
published attempting HCCI control using various feedback control tech-
niques. Some of these attempts to utilize model assisted controllers, mean-
ing that mathematical models of the combustion process and/or other sub
phenomena in the engine system are contained in the control system being
continuously updated to reflect the current state the engine system. Interest-
ing results has been published, for example by [Shaver et al., 2004] who uti-
lizes a physically based model for HCCI control (meaning combustion phas-
ing and output work). Results using identified instead of physically based
models for HCCI control have for example been published by [Bengtsson
et al., 2006] using Model Predictive Control (MPC) with an identified model
for HCCI control (Bengtsson et al. also covers other interesting topics in the
area of HCCI control). The point being that mathematical models contained
in the control system are playing an increasingly important role in the at-
tempts of tackling the difficult HCCI control problem. A fact which also is
true in the attempts of improving control and performance of the Otto and
Diesel engines.

Cylinder Pressure Measurements

Cylinder pressure is a very powerful measurement signal when conduct-
ing engine feedback control, [Tunestål, 2000] quotes Professor A. K. Oppen-
heim who said that the cylinder pressure is like “the heartbeat of the engine”
and measuring it is like carrying out ‘engine cardiology’. The author recog-
nizes this to be an excellent explanation of the importance of the cylinder
pressure signal. From the cylinder pressure both combustion phasing and
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Figure 1.1 HCCI combustion instability, combustion phasing is shown as func-
tion of cycle-number for different cases. Combustion-phasing feedback-controllers are
switched off at cycle zero, note that some cases are stable (combustion phasing is main-
tained) while others change combustion phasing spontaneously. Figure found in [Ols-
son et al., 2002]

engine load can be calculated, as well as other important parameters. Cylin-
der pressure is typically measured using a piezoelectric pressure transducer.
The piezoelectric effect causes a quartz crystal to give away a small charge
when exposed to an external force. Such a pressure transducer is typically
connected to a charge amplifier which converts the small charge generated
by the piezo-effect to a measurable voltage. A charge amplifier however can
not be constructed without some leakage current, the leakage current will
cause a drift in the DC level of the pressure signal. Due to this drift the
output signal from the charge amplifier has to be treated in order to obtain
the correct absolute level of the pressure. Several methods can be used to
calculate the correct absolute pressure, [Randolph, 1990] accounts for three
different ways;
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Chapter 1. Introduction

• The cylinder pressure at bottom dead center of the intake stroke of the
engine equals the pressure of the intake manifold.

• The average cylinder pressure during the exhaust stroke is equal to the
back pressure in the exhaust system.

• The compression is poly-tropic and the poly tropic exponent is known
and fixed.

Tunestål offers a far more detailed explanation of how to treat the signal
from a cylinder pressure transducer, both in general and specifically using
the third method above. In [Tunestål, 2007] the same author shows a heuris-
tic approach which, using non linear least-squares estimation, finds both the
poly tropic exponent and the DC level of the pressure signal simultaneously.

Heat Release Analysis

If the pressure within a cylinder is known it is possible to calculate the re-
leased heat within that cylinder after each engine cycle using thermody-
namic equations as shown by [Gatowski et al., 1984], performing a Heat
Release (HR) analysis. The HR model of Gatowski et al. accounts for losses
as well, losses included are losses through heat transfer to the combustion
chamber walls and losses originating from mass loss caused by leakage past
the piston rings. Heat transfer losses are calculated based on the results pre-
sented by [Woschni, 1967] while the model for crevice losses is developed
by Gatowski et al. For feedback control purposes the different losses are
often neglected as discussed by [Bengtsson et al., 2004], the reason being
that combustion phasing (see Figure 1.2) which is the most important feed-
back control candidate calculated using HR analysis can be calculated with
enough accuracy even neglecting these losses. Controller complexity and
hence execution time can in this way be reduced. This ‘simplified’ calcula-
tion is visible in Equation 1.1 which is a version of Equation 9 in Gatowski
et al., neglecting losses.

dQ

dθ
=

γ

γ − 1
p

dV

dθ
+

1

γ − 1
V

dp

dθ
(1.1)

Furthermore [Tunestål, 2007] has recently expanded his work, as previ-
ously noted.The benefit from Tunestål is that the explicit heat transfer model
and model for losses over the piston rings used by Gatowski et al. no longer
are needed since the method of Tunestål includes these effects implicitly.
The main drawback with the approach taken by Gatowski et al., which is
parameter tuning, is in this way avoided. The models included in Gatowski
et al. and Woschni need to be parametrically tuned to fit every specific appli-
cation. Using the method of Tunestål it is possible to avoid the non-heuristic
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Figure 1.2 A typical heat-release curve (the integration of Equation 1.1) with the im-
portant combustion phasing, defined as the instance when half of the total heat has
been released (half of the combustion has taken place), indicated (CA50%). Bottom
axis in the figure has the unit Crank Angle Degree meaning that CA50% has the same
unit. Figure found in [Tunestål, 2000].

and completely ‘ad-hoc’ tuning procedure associated with traditional HR
analysis according to Gatowski et al.
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2

The Field Programmable

Gate Array (FPGA)

2.1 FPGA Fundamental Description and its Processor
Comparison

The ‘normal’ processor technology is well known to many people, if not
through its internal operation it is know for being the ‘heart’ of a normal
personal computer. The essence of ‘normal’ processor technology is not ex-
plained in detail here, but some generalizing statements are made in order
to help the reader understand the difference between an FPGA and a pro-
cessor.

A processor is a sequential device which executes a program consisting
of a number of single instructions, the same unit must in this case be able
to handle many different instructions. The ‘power’ of each instruction and
the number of clock cycles it takes the processor to compute one instruc-
tion differ depending on the architecture. The ‘best case’ is one instruction
per clock cycle but this is not the average rate of instruction completion. It
should also be noted that a processor normally is programmed using a ‘high
level’ programming language, each high level language instruction consists
of several ‘low level language’ instructions hence of course a high level in-
struction would normally need many clock cycles to complete its operation
on the processor. The benefits with this operational principle are that the
processing device is very general and a large number of different programs,
used to solve different problems can be run on the same device without
modifications to the actual device.

An FPGA on the other hand does not execute instructions at all, an FPGA
is an net of logic components which can be connected in a way so that the

9



Chapter 2. The Field Programmable Gate Array (FPGA)

device performs a specific operation of varying complexity. Inside the FPGA
information is transferred to the different sub-nets by electric signals. If we
compare the FPGA with the processor we find that no instructions are ex-
ecuted on the FPGA, instead the input is presented to the FPGA device
through input signals. The input signals propagates through the FPGA us-
ing the internal connections of the device and finally the result is present on
the outputs of the device. Normally, one result per clock cycle can be guar-
anteed on the output with an FPGA design. Another ‘strength’ of the FPGA
technique compared to the processor is the inherited suitability for problems
which are of parallel nature. To illustrate this with an example; if a specific
computational problem consist of two different parts which first have to be
calculated independently the two intermediate results are then summed be-
fore the final result is obtained. For simplicity it is also assumed that these
two different parts are equally complex to calculate. The FPGA can in this
case calculate the two different intermediate results simultaneously due to
the fact that two independent signal paths will be implemented in the FPGA
and the final result is obtained after a simple addition of the two results. The
processor would in this case need to compute the intermediate results one
at a time before it calculates the final sum, since the intermediate results are
similarly complex the processor would in this case need at least twice the
time of the FPGA to complete the calculation but probably more depending
on which instructions are involved. This generalized simple example illus-
trates the benefits with the parallelism featured in the FPGAs and how it can
be used.

The parallel nature of the FPGA in combination with the fact that the
internals are customized completely for the application makes it a precious
tool for systems where very high computational power is needed. Even if
processors continue to evolve with the current rate they will fall short of
performance. In many cases a, even state of the art, processor would not
be enough and to make matters worse a state of the art processor is very
expensive, power thirsty and is hence not an option.

2.2 FPGA history

The FPGA was first invented in the mid 1980s by Ross Freeman, who also
was one of the founders of the large FPGA company ‘Xilinx’. Early FPGAs
can be regarded as a, often larger, version of a similar device called Complex
Programmable Logic Device (CPLD). The CPLD on the other hand is a larger
and more modern version of the Programmable Array Logic (PAL) and the
size ‘ranking’ from smallest to largest would be: PAL, CPLD, FPGA. Leav-
ing the rudimentary PAL out of the picture it can be said that it is not only
the size that differs between the FPGAs and the CPLDs, the architectures
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Figure 2.1 An FPGA circuit.

differ as well. FPGAs have a more flexible architecture than CPLDs. FPGAs
often feature a more complex interconnect between the internal units than
CPLDs. Another difference might be that FPGAs often contain other com-
ponents than pure logic functions e.g. distributed memory, adders, multi-
pliers or other similar components, in many cases increasing the perfor-
mance of the FPGA compared to the CPLD. FPGAs have evolved rapidly
since the first ones. Modern FPGAs can host designs with an ‘equivalent
gate count’ of many million gates. They now a days contain more and more
complex peripheral devices, e.g. processor cores, Digital Signal Processing
(DSP) blocks, even ‘mixed-mode’ FPGAs exist containing analog and partly
analog parts for example Analog-to-Digital Converters (ADC) or analog fil-
ters. The FPGA have evolved to become a flexible, cost effective and high
power device suitable for a wide variety of applications.

2.3 FPGA Architecture and Design Considerations

[Todman et al., 2005] and [Compton and Hauck, 2002] have both published
excellent surveys of FPGA design considerations, dealing with FPGA hard-
ware, FPGA design, design tools, design flow and design architectures. There
are a large number off different considerations to make when designing for
FPGAs both regarding hardware selection, design tool selection as well as
selecting an appropriate design architecture, an overview follows. Figures
2.2 and 2.3 were adapted from Todman et al. while Figure 2.4 was found in
Compton and Hauck.
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Hardware Level Architecture

The internals of an FPGA typically consist of a large number of different
(more or less) configurable ‘functional units’ linked together by a net of
configurable interconnect, together sometimes called a ‘reconfigurable fab-
ric’. The functional units is ‘were it happens’ meaning that the actual logics
is implemented in the functional units, the reconfigurable interconnect is
used to transport intermediate results between the different reconfigurable
units. Different FPGAs have different architectures for their reconfigurable
fabric, one can speak of either fine grained or coarse grained architectures,
both in the case of the reconfigurable interconnect and in the case of the
functional units. Selecting between fine grained and coarse grained inter-
connect/functional units essentially is a trade-off between flexibility (which
gains from a fine grained architecture) and speed/overhead (gaining from a
more coarse grained architecture). A fine grained fabric can better be adapted
to different tasks as the configuration possibilities are more detailed. A more
coarse grained fabric on the other hand is not as adaptable but will be much
faster for the problems where they are well suited.

For an architecture with fine grained functional units a functional unit
typically is a multiple input lookup table which can be configured to im-
plement any logic function. These functional units are put together in clus-
ters which in turn are interconnected via parallel connections between the
closest neighbours of each cluster, and via the reconfigurable interconnect
for signaling to clusters positioned in other parts of the FPGA circuit. For
the coarse grained architecture the lookup table would be replaced by for
example a multiplier block, and Arithmetic Logic Unit (ALU) or a mem-
ory blocks. These coarse grained blocks would perform considerably bet-
ter on their specific task than the fine grained lookup tables would, but the
coarse grained blocks might not be of any use for some applications. Mod-
ern FPGAs normally contain both fine grained and coarse grained blocks
in the same circuit, the fine grained reconfigurable fabric is often comple-
mented by for example an ALU or other more coarse grained components
with the intention to increase the speed for some common operations. Fig-
ure 2.2 shows the structure of fine grained versus coarse grained functional
units.

The reconfigurable interconnect connecting the different units within an
FPGA can, as the functional units, either be fine or coarse grained. In a fine
grained interconnect structure it is possible to control the routing ‘wire by
wire’ but with a coarse grained structure it would only be possible to route a
‘bundle’ of wires per control bit see Figure 2.3 for visualisation. As before a
coarse grained structure is less flexible but demands less overhead than the
more flexible fine grained interconnect structure.

The interconnect together with the functional units forms the reconfig-
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Figure 2.2 Coarse-grained versus fine-grained functional units, found in [Todman
et al., 2005]. A fine grained three-input look-up table is shown above left, a cluster with
fine grained look-up tables above right. A Altera DSP block is, being a coarse-grained
unit, shown below.

urable fabric as shown in Figure 2.4. A reconfigurable fabric can be either
homogeneous, meaning that the complete fabric consists of the same kind
of functional units, or heterogeneous. A heterogeneous fabric typically con-
tains different kinds of functional units instead of one type, a heterogenous
architecture can contain ALUs, multipliers, processor cores and of course
distributed memory, all this to complement the basic functional units and to
increase performance.
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Figure 2.3 Coarse-grained versus fine-grained routing structures, also found in [Tod-
man et al., 2005]. In coarse-grained structures, shown right, a number of signal-lines
are controlled as a unit. In a fine-grained structure on the other hand a smaller number
or even a single signal is configured individually as shown left.

Figure 2.4 A typical generic reconfigurable fabric with switching units and
functional-units or logic blocks. Figure found in [Compton and Hauck, 2002].
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Design Level Architectures

Besides the architecture of the actual FPGA which is not so much a concern
of the FPGA application designer, the architecture of the actual design is
of great interest. It is of course possible to design a complete full hardware
system residing only using the reconfigurable fabric of the FPGA (no type
of processor core is present in the system). In many systems however some
sort of processor core might well be present. Several different motivations
exist for mixing processor(s) and FPGA(s) in a single system. The FPGA is
not well suited for all types of tasks, iterative tasks with variable length,
e.g. loops or control of dataflow, are difficult to implement efficiently in an
FPGA. Such tasks are preferably implemented on a processor while compu-
tationally expensive, time critical and/or parallel tasks benefit greatly from
an FPGA implementation.

There are five different ways of integrating a processor core with the
reconfigurable fabric of an FPGA, Figure 2.5 shows the five methods, four
of them identified by [Compton and Hauck, 2002] and the last one (num-
ber five in the figure) added by [Todman et al., 2005]. Architecture one fea-
tures communications between the processor and the reconfigurable fab-
ric through the standard Input/Output (I/O) units of the processor. Archi-
tecture two and three show intermediate structures, meaning that the pro-
cessor can access the reconfigurable fabric without having to use the stan-
dard I/O units. Architecture two is, communication-wise, a bit slower than
Architecture three as architecture three features direct communication be-
tween the processor core and the reconfigurable fabric using a ‘coprocessor’
structure. The fourth architecture features a reconfigurable fabric which is
present on the same chip as the processor, such an architecture does en-
able very high communication speed between the processor core and the
reconfigurable fabric. Architecture number five resembles number four, but
instead of adding ‘a piece’ of reconfigurable logic to a processor, a processor
is added (implemented) on-to the reconfigurable fabric of an FPGA.

Using the last two architectures the processor can be either a ‘hard core’
meaning that a fixed part of the device contains a processor which is con-
structed on the same chip as the reconfigurable fabric, or a ‘soft core’. Soft
core processor meaning that the processor structure is made on the recon-
figurable fabric, the complete chip hence consists of reconfigurable fabric,
but on a piece of that reconfigurable fabric a processor is constructed using
the reconfigurable fabric for its implementation. One of the benefits with
the latest two design structures is that it is possible to customize the actual
processor internals, it is possible to add custom instructions to the proces-
sor instruction set which is able to make custom calculations with only one
call. This feature can in some applications give significant speedup as easily
understood if the reader imagine a certain computational problem where a
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number of arithmetic operations are required on the operands, and where
the same calculation is carried out over and over again by the processor. If a
normal processor is used the number of instructions needed is (in best case)
equal to the number of arithmetic operations to be carried out, a customized
processor on the other hand may be able to carry out all of the operations
with a singe call and the speedup will hence be equal to the number of op-
erations in this simplified example. This principle is called ‘soft instruction
processors’ or ‘flexible instruction processor’

The nature of the applications does of course decide which of the five
different architectures above that is to prefer, Compton and Hauck provides
a very good description of the benefits and drawbacks with the different
structures. Using Architecture one for example the communication between
the processor and the reconfigurable fabric is slow, hence this architecture is
suitable for systems where large ‘chunks’ of work can be treated by the re-
configurable fabric independently. The reconfigurable unit of Architecture
two has the same properties as a normal processor would have had in a
multi processor system. Architecture three, the coprocessor architecture, is
typically also capable of performing calculations independently from the
processor core but it has access to the same memory and other facilities
as the processor core has. Architectures four and five would be best suited
when communication between the processor and the fabric needs to be vig-
orous, for example when the reconfigurable fabric is used to customize the
processor in some way and communication hence needs to be very efficient.
A drawback with the soft instruction processor approach is however that it
is more difficult to utilize the possibility and parallelism with such a tight
coupling to the processor. According to Todman systems according to Ar-
chitecture one are the most common in commercial FPGA platforms.

It should also be noted that it is not every FPGA system which features
a processor core even though it would be possible to include one. It is for
example possible to design larger applications where the complete function-
ality is implemented entirely on the reconfigurable fabric. Such designs can
be used to verify the functionality of actual Application-Specific Integrated
Circuits (ASICs) or in cases when ASIC like performance is needed but it is
too expensive to make a real ASIC.

2.4 FPGA Design Tools and Methods

[Compton and Hauck, 2002] has written an excellent section about config-
uration of FPGA devices, Compton and Hauck explains the three design
flows visible in Figure 2.6. Added to this [Todman et al., 2005] covers more
in detail a number of tools implementing the fully automated approach and
describes some tools based on data flow graphs (e.g. Simulink). Selecting
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Figure 2.5 Five different architectures commonly used in mixed processor/hardware
systems. The different architectures have different properties regarding for example
communication-speed and flexibility and are hence suitable in different situations. Fig-
ure found in [Todman et al., 2005].
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a manageable and efficient FPGA design software is an important point
which can ease the effort of implementation significantly. Which tool that
is best suited depends largely on the type of implementation to be carried
out, the skill of the hardware designer and the performance requirements
of the final outcome. A fully manual approach (right in Figure 2.6) will,
according to Compton and Hauck, give circuit-designs of very high qual-
ity, it however puts high demands on the developer regarding background
knowledge about circuit design in general and also knowledge of the spe-
cific device in use. A fully automated approach on the other hand simplifies
implementation greatly, the outcome however is often less efficient in terms
of power consumption, speed and occupied chip area. It might however be
worth its price to use a fully automated approach since it makes the FPGA
technology available to a larger number of developers and since even a less
optimal design still often has large gains compared to, for example a pro-
cessor implementation. All these three design methods can be divided into
separate steps as shown in Figure 2.6. These different steps will be described
in the following sections. Before continuing it is crucial that the reader un-
derstands that even though traditional programming languages such as C,
C++ or Java are used for high level hardware design, no program is run on
the FPGA. Code written in these languages is synthesized into a connection
scheme used for the reconfigurable fabric within for example an FPGA.

Basic Implementation Steps

Technology Mapping During technology mapping what basically is done
is that the large design is broken down to small sub functions. Each sub
function in turn is translated to actual logic on the FPGA device, meaning
that each sub function is translated into the ‘basic units’ of the specific FPGA
in use (e.g. look-up tables). The large design which is input for the technol-
ogy mapping is described either at gate-level or at element-level, originat-
ing either directly from the designer if it is a fully manual design or from the
design tool if it is some sort of automated design. This step is of course heav-
ily device dependent since different devices contains different logic and are
built according to different architectures.

Place & Route Subsequent to the technology mapping in the tool-chain is
the place & route step. The place & route tool basically places the logic (as-
signs a location on the actual chip) corresponding to the different sub func-
tions obtained from the technology mapping. A place & route tool needs
to make difficult trade-offs carrying out the placement of the different sub
functions, to do this successfully a technique called floor-planning is of-
ten applied before the actual detailed placement. The idea behind floor-
planning is to analyse the sub functions and find which sub functions need
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the same board. For multi-FPGA systems,
because of the need for efficient commu-
nication between the FPGAs, determin-

very important step in the design process.
More details on multi-FPGA system archi-

The design of reconfigurable hardware

Figure 2.6 Three different FPGA design-flows, implementing an algorithm using dif-
ferent levels of automation. Different tools and implementation approaches demand
different amounts of manual intervention by the designer/user, grey denotes manual
efforts of some sort in the corresponding step. Figure found in [Compton and Hauck,
2002].

to communicate frequently with each other. Such sub functions are grouped
together in clusters enabling a higher intercommunication rate within these
clusters. When floor-planning is finished (deciding the global placement) a
more detailed placement is carried out by the placement tool. In the last
step the different components positioned in different parts of the FPGA are
interconnected by the routing tool. As is the case with placement and floor-
planning, routing is a very difficult trade-off. Maximum FPGA clock-speed
is decided by the longest signal path within the design (since all signals
need to arrive within one clock cycle). It is not only important to the keep
the longest route within the FPGA as short as possible. Routing resources
(signal lines within the FPGA) are limited and care must be taken to opti-
mize the usage of this resource. On top of it all, to be able to route a design in
a good manner, it is essential that the placement tool has made a reasonably
good placement.
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Low Level Design

The ‘lowest’ level of circuit design would be the fully manual approach,
meaning that the designer has to decide which of the FPGA internal com-
ponents to use and how to connect them with each other, producing a de-
sign at element-level. Another option is that the designer makes a net-list
containing components at gate-level which describes the circuit functional-
ity. As earlier mentioned the fully manual method gives high performance
designs, it should however only be used for smaller designs and only by de-
signers with high skill and good knowledge about the actual FPGA device
in use.

Next ‘level’ of low level design would be the usage of a structural design
language such as VHSIC Hardware Design Language (VHDL), (VHSIC =
Very-High-Speed Integrated Circuit) or the Verilog hardware descriptional
language. VHDL is exhaustively described in [IEEE, VASG: VHDL Analysis
and Standardization Group, 2007] and Verilog is described in the same man-
ner in [IEEE, P1800, System Verilog Work Group, 2001]. These languages
are used to describe a hardware design from building-blocks such as gates,
flip-flops or other similar components. When the VHDL or Verilog code is
compiled by e.g. an VHDL compiler the structural description in VHDL is
translated to a gate or element-level design, technology mapping and placed
& route is then carried out based on the compiled VHDL code. VHDL or
Verilog can be programmed in a normal text editor much the same way as
any other programming language. In most cases a more complete design
tool would however probably be used. For most FPGA devices vendor spe-
cific design toolboxes exist, normally allowing the designer to design cir-
cuits either purely from VHDL (or Verilog) or using a ‘mix’ of VHDL code
and some sort of graphical interface allowing the designer to draw the de-
sign using ‘wires’ and different building blocks, either defined by personal
VHDL code or defined in advance by libraries, such blocks could be gates
or flip-flops.

Both the fully manual design method and design using a structural de-
sign language puts demands of significant knowledge on the designer, re-
garding hardware design and regarding the actual FPGA device. A pro-
gramming environment consisting of an editor and compiler for structural
design languages in combination with some graphical interface, probably
bundled into a large toolbox together with the technology mapping and
place & route tools and normally supplied by the FPGA vendor, would as
understood by the author by far be the most common FPGA design option.

High Level Design Tools

High level design tools are here used as a term for the two leftmost design
flows in Figure 2.6, the fully automatic approach and the semi automatic
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approach. A fully automated approach is, compared to the fully manual de-
sign method, much more convenient to use and even not so experienced
engineers can complete an FPGA design using one of the tools implement-
ing a fully automatic approach. The drawback is as noted previously that the
designs may be less efficient than a design which is made completely man-
ually. Semi automated approaches are, simply put, any mix between fully
automated and fully manual designs, an example could be where smaller
interface or control parts are made manually while a larger or more com-
plex algorithmic part is designed using an automated tool.

Hardware Compilers high level design tools typically generate an FPGA
design based on a high level programming language. [Todman et al., 2005]
shows examples using C, C++ or Java as ‘host’ languages. These tools work,
as identified by Todman et al., according to three different principles. They
are either annotation and constraint-driven, annotation-free or work accord-
ing to the source directed compilation principle. The main idea with the
annotation and constraint-driven approach is to use annotations and con-
strains in combination with the source code in the original language to gen-
erate the design. The annotation and constraint driven approach has the
benefit that the source code originally intended for a normal microproces-
sor would only need minor modifications to be used as description code for
hardware. Compilers which are annotation-free also exist. General C, C++ or
Java code can be used, meaning that no code review is needed regardless of
if the code is intended for the hardware or for a micro processor. Annotation-
free compilers have the great benefit that code can be ‘moved’ from an pro-
cessor core to a FPGA without modifying it at all, a property which is ideal
when designing mixed processor hardware systems. The source directed ap-
proach on the other hand adapts the ‘host’ language to better suit the FPGA
environment for example by extending the language with suitable operators
and types.

Hardware/Software Partitioning systems where both reconfigurable hard-
ware and a microprocessor are present and both components are to be used
together the intended application must in some way be partitioned between
hardware and software. For this purpose there are different possibilities, the
system can either be manually partitioned. Each part is then developed us-
ing corresponding tools, if a hardware compiler is used for the hardware
part either of the three types of hardware compilers could be used. Selecting
an annotation and constraint driven or an annotation-free compiler would
however give the largest flexibility to move code between the hardware and
microprocessor. A manual approach will in any case not be very flexible
regarding moving source code between the different parts. To solve this,
compilers which co-target mixed micro processor/hardware systems have
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been developed and examples are given both in Todman et al. and [Comp-
ton and Hauck, 2002]. These compilers often use the possibility of co-design
and automatic partitioning, making partitioning and hardware design more
‘transparent’ for the developer (who probably is more familiar with the mi-
cro processor environment). Using for example annotation-free compilers
the developer can either choose to let the compiler decide the partitioning,
or the developer can decide how to partition the code between the micro-
processor and the hardware.

It should also be said that hardware/software partitioning is tightly cou-
pled both to parallelization and to the hardware compiler in use. Hardware
compilers in some cases co-optimize or co-decide both the parallelization
and the hardware software partitioning. Many parallelization tools by na-
ture also implicitly decide the hardware/software partitioning during the
process of deciding which parts of the code is suitable to pipeline and make
parallel for putting in hardware, in order to off-load the microprocessor.

Parallelization To fully utilize the potential performance gains from us-
ing reconfigurable hardware, parallel and pipelined structures should be
used as much as possible in the design. It is important to note that par-
allelization in this context is an issue connected with hardware/software
partitioning and hardware compilers, not a completely independent step.
Parallelization of ‘high-level’ code is of course not an issue for the manual
design method since it is included explicitly in the design since structure and
timing of the circuit is totally up to the hardware designer (who of course
should try to use parallel and pipelined structures as much as possible even
in the manual design). Using some sort of hardware compiler it is however
more difficult to extract parallel and pipelined parts from the (by nature) se-
quential source code in C, C++ or Java. And again there is basically the two
possibilities of handling this manually or automatic. Several approaches ex-
ists for automatic extraction of parallel and pipelined structures and again
Todman et al. and Compton and Hauck describes the most common ones.
Automatic parallelization and pipelineing of inner loops, parallelization of
common instruction paths (rarer paths are run on a processor) or paralleliza-
tion of all loops through control flow diagrams of the complete source code
are a few worth mentioning. As for fully manual parallelization the pro-
grammer typically would have to define parallel areas within some part of
the source code, either by annotations or by using parallel threads similar to
‘normal’ parallel programming.

Data Flow Graph Tools Another type of high level design tools are those
based on Data Flow Graphs. Data Flow Graphs (DFG) are typically used
within the automatic control (technical computing) and DSP communities.
There exist a number of DFG based FPGA tools which are specialized to
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suit development of DSP like systems, they are of course suitable for other
design purpose tools as well. One tool which has to be mentioned here
is Simulink (Simulink is an extensive plug-in tool for Matlab), Simulink is
based on the idea of DFGs and is hence very well suited for development of
DSP and automatic control systems. Since Simulink is a tool which already
is very well established within the technical computing and DSP commu-
nity and extensively used for other purposes than FPGA development many
of the large FPGA manufactures have made plug-in versions of their tool-
chain adapted for use in Simulink, enabling hardware design within the well
known and easy to use Simulink environment. Besides Simulink there are
other tools which are based on the DFG principle which are specialized in
or adapted to DSP design for FPGAs.

Using FPGAs for DSPs or other similar technical computing applications
has a lot of nice features regarding for example speed, jitter and accuracy.
One distinct feature with DSP like implementations in FPGAs is the non-
fixed word-length of the internal number representation, something that can
be a strength if handled correctly and a barrier of implementation if not.
A DSP is normally a processor based device and has hence fixed internal
word-length as processors do. When implementing DSP-like applications in
an FPGA however this limitation of the internal number representation no
longer exist It is possible for the designer to decide how many bits to use for
internal number representation in each step of the algorithm. There is an op-
timal internal number representation for each step of a given algorithm, this
optimal representation will give the system best accuracy and noise reduc-
tion, even more accuracy than possible with a fixed word-length DSP. Those
word-lengths can be found through-out the design, it is however difficult
to find them, this is in fact an NP-hard optimisation problem. [Cantin et al.,
2002] has written a survey of ways to automate the search for the optimal in-
ternal number representation and Todman et al. also discuss this subject, not
all DFG based FPGA development tools support automated approaches on
the word-length optimization problem. For example the Simulink based tool
for Xilinx devices does not, as stated by Todman et al. and as experienced
by the author and described in Chapter 4. Algorithmic settings must in the
Xilinx case be selected by the designer in every calculation step, making
work in this environment much more difficult for the designer. It is strongly
recommended that a tool with automated word-length optimization is used
since it makes implementation significantly easier and more efficient, espe-
cially if the designer is less experienced with working in the FPGA domain.
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2.5 A Flavor of Application

Since FPGAs have been around for quite some time there exists a variety
of scientific results on FPGA applications and design. This brief section is
intended as a flavor (not a complete description) of applications and areas
where reconfigurable computing technology has been applied successfully,
in order to highlight the potential power of reconfigurable hardware. En-
hancing feedback control system performance is, being the topic of this the-
sis, devoted a complete chapter (Chapter 3) and is hence not accounted for
in this section.

A large application area for these systems is applications treating images
or image streams (video). A good reason for using reconfigurable hardware
in this kind of applications is that they are extremely computationally ex-
pensive. Heavy computations combined with the fact that many tasks have
to be performed on-line puts very high demands on computational power
of such systems. Examples of results in this area are [Djemal et al., 2005],
[Jörg et al., 2004] and [Tao et al., 2005] who all have implemented different
FPGA or mixed FPGA processor systems in the domain.

Another very interesting application area is FPGA based super comput-
ers, meaning computers consisting of one or many FPGAs connected to-
gether in a matrix. The design within the FPGAs is totally customized to
one specific calculation or simulation task and the FPGAs are able to, in
a very rapid manner, solve the special problem which they are designed
for. The ‘secret’ is of course heavy parallelization and pipelineing achiev-
ing outstanding performance and even price/performance. Very interest-
ing results are published by among others [Jones et al., 2006] and [Belletti
et al., 2006]. Such computers clusters are emerging as a serious competition
to traditional processor based super computing clusters. The possibility also
exists to make systems with one or more FPGAs to accelerate frequent or in-
tensive tasks in a normal PC.

Different types of DSP applications are also common. Implementing DSPs
and DSP-like systems in FPGAs are a very promising idea which is covered
in an survey by [Tessier and W., 2000].

2.6 Chapter Summary

This chapter has covered the FPGA and reconfigurable hardware technol-
ogy. Strengths, issues, design considerations and design tools have been dis-
cussed. The chapter started with a brief history about the FPGA which was
invented by Ross Freeman in the mid 1980s and originating from similar
devices such as the CPLD and PAL. An FPGA is a reconfigurable hardware
device and works in the same manner as any digital/electric circuit. Com-
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paring it to a processor it is found that a processor is a more general device
since it can carry out a set of general instructions, an FPGA can only cope
with the task it is specially designed for, it does on the other hand outper-
form the processor technology on that specific task.

There are two different ‘levels’ which are significant during FPGA de-
sign. One is the hardware-level meaning the architecture of the actual hard-
ware of the device. Two significantly different architectures are distinguish-
able, a fine-grained architecture and a coarse-grained architecture. A fine-
grained architecture typically consist of a large number of look-up tables
which can be configured to carry out an arbitrary task, the routing within a
fine grained architecture can typically be controlled with a large precision.
A coarse-grained architecture on the other hand typically consist of more
high level blocks which are hence not as general as the fine-grained look-up
tables, the control of the routing is also less precise. The benefit with a coarse
grained architecture is that it will perform better in speed, power consump-
tion and chip area when it fits the intended application. Architecture on the
design level have been covered as well and systems consisting of both a pro-
cessor core and reconfigurable fabric has been shown. It has been described
in which situations different interconnections between the processor core
and reconfigurable fabric are suitable.

FPGA design tools and methods have been thoroughly described. Low
level design tool steps consisting of the technology mapping and the place
& route step and low level design is carried out with the help of structural
design languages. It was found that a design at this low level gave the fastest
and most efficient circuits but is extremely demanding and only suitable for
highly skilled designers and smaller designs with very high performance re-
quirements. High level design tools were described as well, high level tools
often consist of hardware compilers which generate FPGA designs from
programs in the well known C, C++ or Java languages. These languages
are suitable to use for normally skilled designers and in systems which are
mixed FPGA/processor systems since code easily can be migrated between
the different subsystems, or the different subsystems can be co-targeted.
Hardware compilers should be used for larger designs when speed, area and
power consumption requirements are less strict. Using hardware compilers
and mixed systems, trade-offs regarding hardware software/partitioning
and parallelization arises (parallelization is an important factor for low level
designs as well). Systems can either be manually partitioned between the
hardware and the software or partitioned by the hardware compiler, if the
compiler is able to co target both the processor and the hardware. Paral-
lelization can also be carried out either manually or automatically, different
approaches exist for automatic partitioning, for example hardware acceler-
ation (parallelization and pipelineing) of inner loops within the program.
Data Flow Graph based tools (e.g. Simulink) and FPGA design using these

25



Chapter 2. The Field Programmable Gate Array (FPGA)

tools were presented. The special issue of internal word-length optimization
associated with algorithms within FPGAs was also mentioned, having the
potential benefit of a solution with better performance than a fixed word-
length algorithm. The optimal solution to the word-length problem can be
found automatically but it is computationally intensive. The author strongly
recommended an automatic approach since the word-length optimization
problem is difficult to solve manually. Last but not least some success sto-
ries were presented.
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3

FPGAs in Feedback Control

Applications

3.1 Introduction

Very promising results are shown applying FPGAs in the field of automatic
control, as a platform for implementing automatic-control systems. Results
are emerging dealing specifically with implementation of different controllers
using FPGAs as well as general ideas regarding implementation of control
systems using FPGAs, [Monmasson and Cirstea, 2007] deals with design
of industrial control systems using FPGA techniques and also very briefly
compares it with control implementation using micro-controllers. Further-
more extensive work has been carried out by many different authors ad-
dressing the task of implementing well-known control algorithms in the
new FPGA environment, evaluating methods, gains and drawbacks in do-
ing so. An FPGA has properties which in many ways makes it the ideal com-
ponent for control system implementation, some of them are mentioned in
Monmasson and Cirstea. Three main reasons can be identified as particular
strengths of FPGAs for feedback-control implementation;

• Increased controller performance, speed and robustness

• Reduced controller price due to improved price-performance ratio

• Reduced system power consumption and space requirement (crucial
in embedded system applications)

The main benefit using FPGAs is the enormous increase in speed com-
pared to conventional techniques, Figure 3.1, from Monmasson and Cirstea,
illustrates a typical situation using FPGA for control compared to either DSP
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or normal micro-controllers. The figure illustrates a situation where a micro-
controller is fully utilized, meaning that there is no ‘spare’ computation time
available, with the periodic task of executing and updating a feedback con-
trol algorithm. The drawbacks with the ‘full utilization’ are reduced margins
for instability caused either by insufficient controller bandwidth, influence
of jitter or both. Added to this there is no possibility to increase the com-
plexity of the control algorithm. Such a scenario is likely even using a state-
of-the-art micro-controller due to the generic structure of micro-controllers
(processors), performing good in average but bad on the specific problem.
The case for a DSP performing the same task would be slightly better, of
course, since the DSP architecture is better suited, adapted, to this kind of
task. While using an FPGA the computation time of the feedback control al-
gorithm typically would be less than or equal to the time needed to perform
the actual sampling. The time ‘margin’ gained from using FPGA-technology
could be used in different ways, increasing controller bandwidth, gaining
stability margin could be one. It would be possible to ‘over sample’ the sys-
tem, in some cases increasing controller performance. Many control prob-
lems suffer from lacking ability of the implementation platform. Controllers
and control-oriented models have to be simplified, suffering in performance.
FPGAs, to a large extent, increase the abilities of the implementation plat-
form, at least from a calculation speed point of view. More complex and
computationally intense control strategies can be used, with better accu-
racy. The spare time can also be utilized for other calculations, for example
other control loops residing in the same system. FPGAs would, compared
to micro-controllers and DSPs and depending on the properties of the algo-
rithm to implement, offer performance only possible to match using fully
analog control systems. At the same time the problems associated with ana-
log control systems such as component ageing, related parameter drift and
the subsequent risk of controller instability are avoided due to the digital
nature of an FPGA. An interesting note to make is that, as an alternative to
‘traditional’ analog control systems, a control system could be implemented
using a device called Field Programmable Analogue Array (FPAA). FPAAs
are related to FPGAs and are best described as the analogue counterpart of
FPGAs. These devices are not covered by this dissertation but for example
[Hall et al., 2005] gives an insight in the world of FPAAs.

When it comes to system price there are a few sub-reasons which pro-
motes an FPGA implemented approach over an micro-controller one. The
price over performance ratio of an FPGA is superior to that of an micro-
controller. This is easily understood from the fact that there, in a micro-
controller, are a lot of ‘go along’ hardware not needed to solve the task but
included in the device, thus increasing the price of it. Using an FPGA it is
possible to only include the logic actually needed, hence a smaller device
can be used. Adding to the price difference is the general and sequential
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nature of a micro-controller which can not compete in performance com-
pared to the parallel and customizable nature of an FPGA, drastically in-
creasing performance as earlier thoroughly discussed. Hence a less power-
ful and cheaper device is needed. Related to the flexible internal nature of an
FPGA it is, in larger systems, possible to include the exact mix of hardware
needed on a single FPGA, even such components which typically would
reside externally. Such an approach is called a System-on-a-Chip (SoC) solu-
tion and removes the need for much differing hardware greatly simplifying
hardware-integration efforts, decreasing component cost and decreasing im-
plementation time, ‘time-to-market’, all improving the economical perfor-
mance. Monmasson and Cirstea also argues another reason giving shorter
‘time-to-market’ using FPGA devices compared to micro-controller and DSP
devices; Significant effort is needed to hand-tune and optimize algorithms
residing in DSPs in order to obtain the calculation speeds needed. Normal
micro-controllers on the other hand need a lot of real-time considerations
and probably a real-time operating system in order to implement feedback
controllers. Although these remarks are true, they are weak as pro-FPGA
arguments. Implementation, especially of control-algorithms, in an FPGA
environment is far from straight-forward. Difficult considerations regard-
ing, among other things, parallelization and number-format issues have to
be made, probably increasing implementation effort to the same range as
micro-controller implementations. Some of these considerations are noted
previously and some are highlighted in this chapter. Concluding the discus-
sion; economical performance of FPGAs exceed microcontrollers for match-
ing performance, ‘time-to-market’ may gain somewhat from using FPGAs
but is not the main strength of FPGAs.

Last but not least it should be said that FPGA technology potentially
saves both space and power. The reduced power-consumption and space
requirement are both in some sense related with the SoC approach, making
it possible to include much of the external components on the FPGA. And
again, the customized nature of the device, decreasing the device perfor-
mance requirement adds to the benefit in power consumption.

3.2 Implementation of Digital Controllers

Implementing control and signal-processing algorithms either using micro-
controllers or using FPGAs takes a lot of practical considerations, different
considerations for different implementation platforms. In the well known
micro-controller-case algorithmical considerations would for example have
to be made depending on the performance of the device, depending on if
the device holds floating-point support or if a real-time operating system
is present on the device. The literature with in the topic of implementation
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Figure 3.1 Probable time consumption of a control algorithm running on a micro-
controller, top, a DSP, middle, and an FPGA, bottom. Blue denotes time needed to
perform one sample and green denotes time needed to perform computations. It is
noticeable how the microcontroller typically needs all the time available between two
samples to compute the controller (this would of course depend on design considera-
tions). The DSP would probably use less time to compute the controller compared to
the micro-controller, leaving more margin for stability. The FPGA on the other hand
would in most cases not need more time to compute the controller than it takes to
sample the system. Gained time can for example be used to increase system stability
in some way. The figure was originally found in [Monmasson and Cirstea, 2007].

of control/feedback-control algorithms using conventional computers (e.g.
micro-processors and DSPs) is quite extensive, [Åström and Wittenmark,
1997] is an excellent reference piece on the topic. Besides the task of per-
forming the discretization of the controller algorithms in a manner which
assures maintained properties of the algorithm many other implementation
specific considerations has to be made. There are, in order to successfully
implement a digital controller, essentially a union of four different parame-
ters which needs to be balanced/full-filled.

• System frequency and controller frequency (bandwidth)

• Control-system sampling-speed

• Accuracy of controller parameters (word-length and number repre-
sentation)

• Parameter conditioning
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Starting from the top it is important that the bandwidth of the controller
is high enough to guarantee stability in the closed-loop system. The sam-
pling speed must be selected so that the desired controller bandwidth can
be maintained (in the range of 10-30 times the bandwidth of the closed-loop
system). The limit of controller sampling speed is in many cases the cal-
culation capacity of the device used for implementation. If the sampling-
speed is much higher than the bandwidth of the controller, special consid-
erations have to be made to avoid for example noise issues. Maintaining
controller stability when using limited-word-length arithmetics (which al-
ways is done in the real-world case) is another issue which needs to be han-
dled to guarantee performance of the closed-loop system. Another thing to
keep in mind implementing digital controllers is that it is important to use
well-conditioned parameters, avoiding excessively large or small parame-
ters especially in combination with ‘normal’ sized ones. There are mainly
two reasons for avoiding ill-conditioned parameters, over/under-flow in
the algorithms and noise sensitivity.

Algorithmic Considerations for FPGA Implementation

Some of the considerations needed when implementing digital control using
micro-processors and DSPs are shared by the corresponding FPGA-controller
implementation and some considerations and trade-offs are different. Han-
dling of dynamic fixed-point number format, removing ‘troublesome’ op-
erators and extracting parallelism in the algorithms are suggestions given
by Monmasson and Cirstea aiming for a more efficient implementation of
control systems using FPGAs. These points sum up in two main categories,
‘Word-length Optimization and Internal Number representation’ and ‘Par-
allelization and Algorithm Reformulation’. The (in some sense) limited word
length and above all the very high sampling-speeds reachable using FPGAs
raises one additional issue when implementing for example control systems.
The issue is how to handle a system sampling speed which is significantly
higher than the bandwidth of the sampled signals/systems, a topic which is
often forgotten describing this type of applications. To remedy this situation
the, within digital-control and digital signal processing, commonly used z-
transform can be replaced with a transform called the δ-transform. Using
the δ-transform and the associated δ-operator gives numerical advantages
reducing controller sensitivity to round-off effects and quantization issues
of controller parameters. The δ-transform also limits the issues connected
with the z-transform at high sample-speeds and especially at very high over-
sampling speeds. This is the last (but not least important) consideration im-
plementing high-bandwidth control systems using FPGAs, accounted for in
this section.
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3.3 Word-length Optimization, Internal Number

Representation and Parameter Conditioning

The internal-number representation and optimization issue are important
whether using a fixed-point implementation or using algorithms implement-
ed with floating-point number representation. Floating-point numbers are
convenient to use within algorithms, however a floating-point number rep-
resentation is in many ways less efficient than the corresponding fixed-point
number representation, using floating-point numbers some algorithmical
operations for example needs more calculation steps. This can be said both
from a calculation speed point of view and from a chip-area point of view
and, both using microcontrollers and especially using FPGAs, implementa-
tion would preferably be made using fixed-point arithmetics to save chip-
area, power and to gain speed.

Quantization effects implementing controllers in micro-controller and
DSP environments are well known, [Åström and Wittenmark, 1997] deal
with implementation of control algorithms accounting for quantization ef-
fects and the impact of limited precision in number representation on con-
troller performance. Åström and Wittenmark also show a way to model the
effects of quantisation using ‘linear analysis’ adding noise sources either of
known or stochastic nature depending on which effect to model. These dis-
turbances are then handled as any other disturbance in the system and the
controller can be designed to cope with the quantization effects.

As mentioned in 2.4 the designer has, when implementing algorithms in
FPGAs, the possibility to select the internal number representation within
each step of the calculation (almost) arbitrarily. Before designing the con-
troller so that it can handle the ever present round-off and quantization is-
sues according to above it is important to make an effort in finding the best
internal data-path in order to minimize these effects, maximizing possible
controller performance. Selecting the optimal word-length within each step
of the calculation is, as briefly discussed in 2.4 a hard optimization prob-
lem which is subject to research efforts. Excessive word-length consumes
chip-area and power when using FPGAs, using DSPs excessive word-length
decrease the performance of the algorithm and consumes power. [Cantin
et al., 2002] state that in complex DSP designs, as much as 50% of the design
time is spent on deciding the internal number format in different steps of
the algorithm, probably similar values hold for complex FPGA algorithm
designs since the problem essentially is the same. It is obvious that it is de-
sirable to select the minimum word-length possible, still guaranteeing con-
troller/algorithm performance and it is also obvious that it is desirable to
automate the time-consuming and error-prone task to decide the internal
number representation of an algorithm. Methods to perform such an opti-
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mization automatically are for example shown in Cantin et al. and Cantin
et al., although mainly intended for the DSP environment these results can
be translated to FPGA based applications. Normally the integer part word-
length of the fixed-point representation is decided based on the dynamic
range needed, to decide the fractional word-length however takes more con-
sideration. Three different approaches can be used to select the fractional
word-length, the fractional word-length can be decided based on analysis
of DFGs, it can be decided based partly on analytical methods and partly
based on simulations and it can be selected based on methods relying only
on simulations. Cantin et al. used word-length determination based on sim-
ulations. An algorithm was first simulated using floating-point number-
representation. Fractional word-length was then decided based on a min-
imization procedure, a fixed-point simulation was run and the outcome
evaluated using a error function. The result from the evaluation function
was used by the minimization procedure, updating the decision on which
fractional-length to use, nine different minimization procedures were tested.
The process of deciding the fractional word-length, performing the fixed-
point simulation and evaluation of the outcome was iterated until system
specifications were met. The criterion for stopping the iteration could either
be expressed in an error function value or as a limit on the difference be-
tween the fixed-point and floating-point simulation. Cantin et al. evaluates
these heuristics on twelve different algorithms commonly used for digital
signal processing. For the purpose nine different minimization procedures
were used. Being a simulation and evaluation-function based method the
suggested heuristics shares one drawback with other cost-function based
methods, the sensitivity for a well formulated cost/minimization-function.
Cost-function based heuristics (for example neural-networks or genetic al-
gorithms) are generally not able to perform better optimizations than the
evaluation function enables them to do. Other drawbacks with the simu-
lation based methodology as described later by Cantin et al. is that this
method does not guarantee that no overflow will occur or that the speci-
fication will be full filled for any other case than the one reflected by the
‘test-bench’ used. The reason is that the test-bench in many cases can not
reflect all possible inputs to the system encountered during the complete
lifetime. Performing simulations using a test-bench covering the complete
possible set of inputs would be too time consuming. There are a few ways
to improve the performance of the test-bench in order to make it more likely
that most of the input dynamics are taken into account during the simula-
tions. Pseudo-random inputs can be used in the test-bench. In some cases
it might be possible to calculate the mean and standard deviation of each
operand and based on the results add bits to the data-path to avoid possi-
ble overflow. It is possible to increase the constraint more than necessary to
gain some ‘margin’ for overflow. And one way could be to perform ‘cascade
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simulation’, when a possible data-path is found using a less extensive test-
bench an as complete test-bench as possible is used to verify this data-path
for a large part of its input range. The gain with ‘cascade simulation’ is that
it is not necessary to perform every data-path iteration using an extensive
test-bench thus saving simulation time. Using these extensions Cantin et al.
claims that the proposed method produces rapid and accurate solutions to
the internal word-length optimization problem.

The last issue to be discussed here is parameter conditioning, i.e. how
to avoid ill-conditioned parameters. The conditioning and scaling of algo-
rithm internal parameters can affect noise and overflow sensitivity. Lets il-
lustrate this phenomenon with an example. If we have an algorithm like
Equation 3.1 below, u is the input and y is the output. Equation 3.2 shows the
typical discretization of Equation 3.1. The mathematical notation is some-

what sloppy. Studying Equation 3.2 one realizes that B
∆

increases as the sam-

pling rate increases ( B
∆
→ ∞ as ∆ → 0+), which raises two related and severe

issues. One problem is that B
∆

sooner or later will grow to such numbers so
that it can not be represented with the word length available. At which sam-
pling rate this happens does of course depend on which word length is used.

The second issue is caused by the fact that B
∆

is now far larger than A. Conse-
quently noise present in the right term of Equation 3.2 will have significant
impact, risking computational overflow in the complete equation and open-
ing a ‘noise leak’ into the overall result of the equation. Signal-to-noise-ratio
of a discrete-time derivative decreases with increasing sample rate. An intu-
itive explanation for the phenomenon is that the signal of interest does not
change enough between two samples of u, hence the discrete-time difference

is small. At high sampling rates B
∆

consequently has to be large to maintain
the original relations of the equation However due to the large amplification
of the second term the noise of the difference ((1 − q−1)u) will be amplified
far more than the noise present at u, making the equation useless at high
sample rate due to excessive noise. Ill-conditioned parameters can occur,
and cause noise in many situations and parameters can be ill-conditioned
even though they are analytically correct.

y = Au + Bu′, A = B (3.1)

u = Au +
B

∆
(1 − q−1)u (3.2)
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3.4 Over-Sampling and Limited Precision, Digital Control

using the δ-transform

Implementing digital controllers does, as the reader for sure understands
by now, take a lot of consideration and [Åström and Wittenmark, 1997]
does, as previously noted, thoroughly describe the process of implementing
digital controllers. There is however one aspect not mentioned in Åström
and Wittenmark which is getting more and more relevant with the devel-
opment of computers, FPGAs and other high performance devices used
for automatic control. Implementing digital controllers on high definition
micro-controllers and FPGAs, as previously noted, enables bandwidths not
dreamed of just ten years ago and consequently the conventional way of dis-
cretizing controllers is not developed with very high controller bandwidths
in mind. Since implementation of high-bandwidth controllers is the scope of
this publication it is important to investigate which effects this higher band-
width has on the discretization process of controllers. Can the conventional
implementation methodologies using z-transform or shift operators always
be used? Experiences made by the author during the development of the
FPGA-implemented heat-release analysis shown in Chapter 4, and the liter-
ature in the field, for example [Middleton and Goodwin, 1986], [Goodwin
et al., 1992] and [Goodall and Donoghue, 1993] indicates that so is not the
case. Goodwin et al., for example, state that; “Most traditional digital sig-
nal processing and control algorithms are inherently ill-conditioned when
applied in situations in which data are taken at sampling rates that are
high relative to the dynamics of the underlying continuous-time-process be-
ing sampled.” the previous section touches this subject when discussing ill-
conditioned parameters and related issues, making an example with Equa-
tion 3.1 and Equation 3.2. Traditionally the option of ‘over-sampling’ a sys-
tem did often not exist due to limitations of the hardware used for controller
implementation. New hardware removes this boundary and it is possible to
over-sample even systems which have very high-frequency dynamics. Since
over-sampling gives rise to a host of additional problems a logical question
is; “why over-sample?”. Goodwin et al. give an answer to that question;
“Low speed methods are usually associated with a performance penalty, but
have been necessitated by technological limitations. Recent advances have
made these limitations less important”. It is important to remember that
closed-loop control systems are, by necessity, open-loop between samples.
Effects as inter-sample ripple (see Åström and Wittenmark p111) sometimes
causing mechanical oscillations and a reduced stability-margin are typical
consequences if sampling-frequency is selected in the low-end of what is
possible from a control perspective. If such a system is ‘over-sampled’ pre-
cision and robustness are improved. High-bandwidth communication sys-
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tems is another example of an application where over-sampling occur. The
format of these systems (the underlying information-carrying frequency) in
some cases enforces high over-sampling rates of control-loops. In the case
of the high-speed heat-release analysis described in Chapter 4 issues with
synchronisation, differing and non-constant time bases made over-sampling
necessary.

What is then a high sampling speed, what is the definition of ‘over-
sampling’ in these contexts? The commonly used definition of over-sampling
is when sampling at a speed significantly higher than the sampling speed
decided by the Nyquist criterion. If a system is sampled at a rate, fs =
β× fN where fs is the sample frequency and fN is the Nyquist frequency, the
common notation would be that the system is over-sampled by the factor
β. A computer-controlled-systems perspective however demands a higher
sample-frequency than the Nyquist-criterion indicates in order to guarantee
performance. A rule of thumb given in Åström and Wittenmark p110 states
that a feedback-control-system shall use a sample-speed between 10 and
30 times the bandwidth of the open-loop system. This combined with the
fact that Goodall and Donoghue introduces the rule-of-thumb that, when
the sampling frequency is ten times the bandwidth of the system (or in
this case the cut-off frequency of a filter) or higher, special considerations
should be made, makes it reasonable to state that a system which is sam-
pled at a rate more than ten times the bandwidth of the open-loop system
is over-sampled. Hence, if fs > 10 × f−3dB, the system is here said to be
over-sampled from the perspective of digital-control.

What are then these considerations which have to be made using over-
sampling in a digital control system? Middleton and Goodwin, Goodwin
et al. and Goodall and Donoghue all suggess the usage of the so-called δ-
operator and the corresponding δ-transform instead of using the normal
shift-operator, q, and the z-transform. Getting back to the previous example,
a implementation of Equation 3.1 using the δ-operator rather than the shift-
operator (as in Equation 3.2) is shown in Equation 3.3. Comparing Equa-
tion 3.2 and Equation 3.3 one realizes that the explicit dependence between
parameter scaling and sampling rate is now accounted for implicitly by the
δ-operator. Both A and B now maintain their original values solving the pre-
viously highlighted parameter conditioning issues.

y = Au + Bδu (3.3)

Goodwin et al. shows and motivates a ‘unified calculus’ applicable in
automatic-control based on the δ-transform/operator with the intention to
develop the corresponding system theory. The authors deals with the topic
of finding δ-transform representations for commonly used automatic-control
techniques, showing that using the δ-transform gives advantages from a
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number of different perspectives. Important theoretic and system-theoretic
concepts such as integration, generalized matrix exponent, stability bound-
ary, frequency response and state-space models are redefined using the δ-
transform. For the interested reader these definitions, motivations and proofs
can be found in Goodwin et al. and some of them as well in Middleton and
Goodwin however these are not further discussed here. The definition of
the δ-operator is however shown in Equation 3.4, the operator is as under-
stood from the equation defined in the same way as an Euler-estimation of
a time derivative. Goodwin et al. gives a number of reasons motivating this
way of defining the δ-operator; flexibility, continuity and implementability.
Flexibility meaning that it is desirable to have an operator equally flexible
as the shift operator q. It is also desirable to be able to transform between
a z-transform representation and a δ-transform representation and conse-
quently it should be possible to change between q and δ which it according
to Equation 3.5 is. Continuity in the sense that Equation 3.6 shall be full-
filled and implementability meaning that the operator shall be directly im-
plementable in software (or for that matter, hardware).

δX(t) =

{
d
dt (·) : ∆ = 0
X(t+∆)−X(t)

∆
: ∆ 6= 0

}

(3.4)

q = 1 + ∆δ (3.5)

lim
∆→0+

δ(∆) = δ(0) (3.6)

Which are then the benefits from using the δ-transform/operator? One
obvious benefit is that δ converges towards a continuous time derivative,
d
dt , as sampling-time, ∆, is decreased, as ∆ → 0, enabling a ‘smooth tran-
sition’ between continuous and discrete time as δ is a discrete-time Euler-
estimate of a derivative. The discrete-time sampled system hence, using the
δ-transform, converges to the underlying continuous-time system as ∆ →
0. Many issues related to highly over-sampled control-systems are solved
through this fact. The higher the sample rate, the more ‘like continuous-
time’ the corresponding discrete-time system representation will be. One
easy way to explain the reason for this is that δ is a version of q which is
‘weighted’ against sampling-time and hence is equally large and precise re-
gardless of sampling time.

Related to the fact that δ converges towards d
dt is the fact that controller

stability increases with sampling speed. Closed-loop pole assignment for
example will, according to Goodwin et al., be better conditioned using δ.
Using the shift-operator and z-transform the poles and zeros will converge
to the (unstable) point 1− 0j as ∆ → 0. However using δ the poles and zeros
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will converge towards their continuous-time counterparts as ∆ → 0, main-
taining (and probably increasing) controller stability margin as the sample
rate increases. Using the z-transform the closed-loop poles would have to be
within the unit-circle (with the exception of the negative real-axis to avoid
ringing) to guarantee a stable closed-loop system. However, using the δ-
operator, the closed-loop poles would have to be within a circle centered at
−∆

−1 having a radius of ∆
−1. Slow sampling hence has the effect that it lim-

its the stability region and as sampling-speed increases the stability region
grows. The discrete-time stability domain approaches the continuous-time
one, in which the poles would need to be in the left half plane to guarantee
stability.

The original motivation for using δ was however not its superior char-
acteristics at high sampling and over-sampling rates even though this has
turned out to be maybe the most important and attractive feature for the
future. δ was largely introduced because of the numerical benefits when us-
ing finite word length number representation. Using δ, in many cases, gives
better numerical properties than using the common z-transform and shift-
operator and the benefits of using δ increases with sample rate when the
shift-operator degrades. The numerical benefits are thoroughly accounted
for in the literature, for example Middleton and Goodwin and [Wu et al.,
2000] focuses on the numerical benefits of δ and they are also mentioned in
Goodwin et al. As previously discussed word-length and numerics needs a
lot of consideration implementing controllers using finite word length num-
ber representation. It is for example necessary to select the correct internal
number-representation (integer and fractional bit lengths). Middleton and
Goodwin show that using the δ-transform for the discretization improves
both the problem with round-off noise and imperfections in the coefficient
representation, whether using a fixed-point or floating-point representation
of the controller internals. Consequently it is possible to decrease the word
lengths used in the calculations compared to those needed for z-transform
implementations, saving power and chip area while maintaining perfor-
mance and reducing the discussed issues at high sample frequencies. The
determination of optimal word length as previously discussed will hence be
somewhat different using the δ-transform. Wu et al. shows that an optimal
word length δ based controller performs better than the corresponding shift-
operator based one while using less bits for number representation. In Wu
et al. a measure for the performance of controllers, implemented using finite
word length, is developed. This measure is used to find the optimal internal
word lengths for the controller design. It can be used both for a δ represen-
tation and for a shift-based implementation. Wu et al. states that it is always
possible to, given a word length, find a δ representation which outperforms
the corresponding shift-based implementation.

Some results can be found in the literature indicating that the δ-operator
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performs well in practise. For example Goodall and Donoghue have imple-
mented a digital filter (low-pass) using the δ-transform/operator. Goodall
and Donoghue state that when using the common z-transform and shift op-
erator the numerical problems start as noted when sampling at ten times
the filter cut-off frequency and they become severe when sampling at about
100 times the filter frequency. Using the δ-operator Goodall and Donoghue
were however able to successfully implement a filter which samples at a rate
32000 times the cut-off frequency of the filter. [Chen et al., 2000b] use the
heuristics developed in Wu et al. and deploys it on a PID controller com-
paring a δ approach with a shift-operator approach for a span of different
sampling rates. Chen et al. find that the δ implementation in most cases,
as expected, needs less bits for the number representation maintaining the
same performance and it is at the same time superior to the shift-based im-
plementation at high sampling frequencies.

Which are then the drawbacks with the δ-transform/operator compared
to the shift-operator. One obvious drawback is that a δ implementation is a
bit more difficult to implement, the shift-operator is very simple to imple-
ment (just a delay of one sample and a subtraction). Consequently there is,
as noted by Goodwin et al., a computational overhead coming from using
the δ-operator instead of the shift operator. This overhead is by Goodwin et
al. regarded as small compared to the total number of computations needed
in these contexts. The major drawback of the δ approach would probably
be the fact that the shift-operator is well established, commonly used in dis-
crete time implementations. The δ-operator is not. Maybe the need for high
frequency performance will renew the interest in the δ-transform in the fu-
ture.

3.5 Parallelization and Algorithm Reformulation

It is, as the reader for sure has understood by now, the parallelization which
makes the FPGA truly more powerful than a micro-controller. If parallel
structures are not utilised the great gain in performance is not obtained ei-
ther. This is important to keep in mind when developing algorithms con-
sidered for FPGA implementation, for control as well as for other purposes.
As an example Equation 3.2 can, according to Figure 3.2, be implemented in
two ways, sequentially as described by I or parallel as described by II. It is
obvious even in this small example that the parallel implementation in II is
much faster than the sequential one in I and even more so since multiplica-
tion in many cases is more demanding than addition. This effect gets more
pronounced if the problem is larger and contains more parallel branches.
Not all problems can be parallelized. If for example B would depend on
Au(t), B = f (Au(t)), then B(u(t) − u(t − 1)) can not be calculated before

39



Chapter 3. FPGAs in Feedback Control Applications

the calculation of Au(t) is finished and the complete equation would have
to be calculated sequentially reducing the maximum possible performance
(∆ is here assumed to be one). It is important to exploit such parallelism
when found in algorithms. Studying for example Figure 4.2, which describes
the DFG implementation of the algorithm performing the high-bandwidth
heat-release analysis described in Chapter 4, it is found that it contains two
different calculation paths which are summed together before obtaining the
final result (this is the case even though it is not completely obvious from
the figure). The high-speed heat-release analysis hence uses a parallel struc-
ture, similar to the one described by the example, in order to obtain its high
performance.

Parallelization is touched earlier in 2.4, more from an programming and
FPGA design point of view. Using high-level FPGA design languages paral-
lel structures will be extracted implicitly with the risk of missing structures
existing on the algorithm level. The designer has to make sure that algo-
rithm paths which are truly parallel are implemented in a way so that they
end up as parallel paths on the FPGA. How to do this is difficult to state
generally since it would depend greatly on which tool is used. It would for
example come ‘almost automatically’ when implementing algorithms using
Simulink since the DFG structure of Simulink promotes parallel calculation
paths. Using a programming-language based tool, for example Handel-C
or VHDL, it would probably require some more attention since the imple-
mentation format is more sequential in its nature as opposed to DFG based
tools. In either case the designer should be aware of which parallel paths
that exist in the algorithm and if it is desirable to implement them parallel
or sequentially.

It is not in every case desirable to use the ‘full-parallelism’ available in an
algorithm for a number of different reasons. Parallelization is in some cases
a trade-off between speed, chip-area and power-consumption as indicated
by for example [Zhao et al., 2005], attempting PID control (which also is de-
scribed subsequently in this chapter) using different degrees of paralleliza-
tion of the algorithm. For a single-channel loop both a fully parallel design
and a design which only uses one adder and one multiplier, performing all
the calculations needed in a time-multiplexed manner is attempted. Using
multiple-channels Zhao et al. attempts both channel-level serial design (all
loops share one controller), multi-channel serial (all loops share one con-
troller which in turn share only one adder and one multiplier) and a fully
parallel design. The objective is of course to save area and power. Zhao et
al. finds that due to the large over-head introduced by the control logics
performing ‘context-switching’ parallel designs are to prefer when imple-
menting a more moderate number of loops. Having a large number of loops
however some sort of serial design would save both power and chip-area at
the expense of speed, the results of Zhao et al. indicate the trade-off between
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chip-area, power consumption and speed.
When performing parallelization of algorithms it is both important and

reasonable to have a well balanced approach, heavy computations should be
parallel with branches of a number of less demanding computations. Logi-
cally the over-all computation will not finish faster than the slowest branch
does and it makes no sense to waste resources in order to finish a part of
the computation quickly having to wait for the rest to finish. This leads to
another angle of parallelization, ‘racing’, implementing parallelized algo-
rithms in FPGAs (or ASICs for that matter) it is important to make the design
‘race free’. The ‘race’ phenomenon arises when parallel branches compute
two different sub-parts which both are needed in sub-sequent parts of the al-
gorithm. If one of these branches is faster than the other the two sub-results
will be available at different time instances, ‘older’ values will be combined
with ‘newer’ ones in the sub-sequent computations. Implementing control-
algorithms issues with racing tend to be less severe due to relatively high
sample rates and a continuous behaviour of the sampled system, the values
in the different paths of the calculation probably will be fairly similar. Rac-
ing should never the less be strictly avoided due to the risk of errors which
are difficult to trace. Under the described circumstances some method of
synchronization should be deployed, guaranteeing that output originating
from the parallel branches are ‘belonging’. Optimally these branches should
also take equally long time to compute, not to waste resources implement-
ing too many and un-balanced branches, remember that routing resources
also occupy area! The lesson is hence that, to avoid issues with racing and
not to waste resources, parallel branches within an algorithm should be syn-
chronized and well-balanced.

Algorithm reformulation is another topic which is important in order to
get an efficient controller implementation. [Monmasson and Cirstea, 2007]
does, besides showing a calculation example, discuss this topic and men-
tions the COordinate Rotation Digital Computer (CORDIC) algorithm as an
example. In order to implement a design as efficiently as possibly it is wise
to try to simplify the algorithm, to remove operations which are chip-area
and/or time consuming and to try to minimize the number of calculations
made on-line. Not very different from implementations in an DSP/micro-
controller environment in other words. Simplifications, assumptions and re-
modeling of the algorithms are a good idea whether they are considered for
a micro-controller or an FPGA implementation. CORDIC is one approach
for simplifying among others trigonometric functions commonly used and
ways to implement the CORDIC algorithm in FPGAs are suggested by [An-
draka, 1998]. Which operations that are to be considered as difficult to imple-
ment, and hence candidates for removal/simplification depends greatly on
the architecture of the actual FPGA devise used. Commonly, large adders or
multipliers or similar logic are present in FPGAs (for example Alteras DSP
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Figure 3.2 Flow diagrams describing two different possible ways to implement and
parallelize Equation 3.2. Method I is the fully serial one, the one that would be run
upon a processor. It is clearly the case that method II would compute faster given that
the different operations takes equal time since II is implemented parallel.

block), hence for example a large multiplication does not have to be time
and chip consuming by default.

3.6 A Flavor of Application

With the intention to illustrate the potential power of FPGAs in control ap-
plications and to highlight some interesting implementation attempts, this
section briefly describes a few different examples of feedback-control algo-
rithms implemented on FPGAs. Three different control algorithms, using
different design considerations and methodology, implementation of PID
(Proportional-Integral-Derivative) control, implementation of MPC and im-
plementation of Neural Networks (NN) are presented. Typically controllers
which needs a lot of on-line computational power and/or which are in-
tended to be run at extra ordinary bandwidths are considered for FPGA
implementation.

PID controllers

PID controllers and variants of them (P, PI, and PD controllers) are the most
important controllers and it is the most commonly used control strategy. In
control problems where the open-loop system is at least reasonably linear
and where no feed-forward is needed PID controllers may often be good
enough. The possibility of implementing PID controllers using FPGAs has
been investigated for example by [Chen et al., 2000a] and as earlier men-
tioned by [Zhao et al., 2005]. The motivations for and gains with imple-
menting PID controllers using FPGAs vary. Generally speaking since PID
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controllers are not extremely computationally intensive the gain of using
FPGAs for PID control would be largest when deploying multiple control-
loops or loops with extreme bandwidth requirements, for example control
within digital communication systems or controlling switched power sup-
plies [Yousefzadeh et al., 2006]. Depending on the architecture of the FPGA
implementation the benefits from using FPGAs in the control loop vary as
discussed earlier from the horizon of the work of Zhao et al. using different
degrees of parallelization when implementing PID controllers and evaluat-
ing their corresponding properties. It is also worth to note that the motiva-
tion for using FPGAs in the by Zhao et al. undertaken work was constraints
put on the system by the environment in terms of speed, space and power-
consumption, implementing a multi-loop control system for a small-scale
robot. There are cases where PID control using FPGAs could be useful even
when bandwidth requirements are limited, for flexibility or to guarantee the
real-time requirements could be examples of such cases. Chen et al. used an
FPGA for implementation of PID control partly for its flexibility, using it as
a ‘rapid-prototype system’, and partly because of the alternatives available
probably would not be able to cope with the control task at hand.

Model Predictive Controllers

MPC is a method of feedback control increasingly used. MPC has previ-
ously been used mainly in the petrochemical industry and in similar ap-
plications (large systems with slow dynamics) for process control. MPC is
well suited for this type of applications since it can handle constraints, it
is at the same time computationally expensive. Lately however there is,
as reported by [Maciejowski, 2002], an increasing interest to deploy MPC
on processes with a higher bandwidth, the reason being that performance
of processing devices increase rapidly and MPC can hence be applied in
situations previously not possible. As indicated by its name an MPC con-
troller contains a model of the plant. The model can be obtained either from
physical/mathematical modeling efforts or through some sort of identifica-
tion experiment. This model is used to iteratively predict the plant output
over a limited time-horizon, predicting the state of the process and how the
trajectory of the state depends on the controller output. Using this predic-
tion the optimal controller output is determined with the help of a ‘cost-
function’. One reason for the popularity of the MPC control strategy is its
ability to minimize the ‘cost’ taking constraints into account. Not surpris-
ingly MPC controllers are typically implemented using processors, fairly
high-power devices are needed which in the case of a petrochemical plant is
no issue. In such a case it is possible to devote a high-performance com-
puter for one control-loop. In other cases it is not practically feasible to
use a high-performance processor, in const sensitive applications alternative
implementation platforms would have to be used. Processor implemented
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MPC-controllers have previously been shown effective for control of the
HCCI engine [Bengtsson et al., 2004] and MPC is hence of special interest in
this thesis considering the intended application for FPGA-based feedback-
control, the field of automotive control. It is reasonable to believe that Model
Predictive Controllers (MPC) implemented on an FPGA platform is a ‘win-
ning concept’. MPC has properties making it ideal in many difficult con-
trol situations, at the same time the on-line computations needed are time-
consuming, an issue possibly solved by the customized high-speed nature
of FPGAs.

Results have been published showing MPC implementation in an FPGA
environment, for example [Ling et al., 2006] and [Bleris et al., 2006]. MPCs
can hence be applied in applications previously not possible due to band-
width requirements, cost issues or system size limitations. Ling et al. presents
an approach using Matlab/Simulink together with Handel-C (Celoxica DK
design suite) for implementation and verification of an MPC controller. Trans-
lation between Matlab and Handel-C were performed manually and a Simu-
link ‘test-bench’ was used to test the MPC both using software simulations
and using the FPGA implemented logics and hardware-in-the-loop. The au-
thors used single-precision floating-point numbers for implementation. The
result of the work in Ling et al. is mainly the successful implementation of an
“reasonable sized” MPC controller on an FPGA, Ling et al. shows promising
performance. The system implemented by Ling et al. is a full-hardware sys-
tem (compare Chapter 2 and Figure 2.5), there is also the possibility to use
a coprocessor or mixed-system approach, implementing custom hardware
parts in the FPGA letting it perform time consuming computations while a
processor core takes care of data-flow control and similar tasks. Bleris et al.
uses this approach, implementing the bulk of the repetitive and demanding
computations such as matrix calculations in the FPGA. In the case of Bleris
et al. the hardware and software parts are co-designed using ‘CodeWarrior’,
Matlab/Simulink and real-time workshop. Using a co-design methodology
the complete spectrum between a full hardware and a full software imple-
mentation can be made easily depending on the needs. It should be noted
that MPC, being an iterative method, probably is better suited for a mixed
processor/hardware system than a full hardware one. If a mixed system is
used flexibility may be gained without decreased efficiency. The main re-
sult of Bleris et al., as well as of Ling et al., is the successful implementation
of MPCs in FPGA and mixed environments, showing that the possibility to
employ MPC control at bandwidths not before possible now exists. These
results open the field for MPC control of a large number of interesting and
difficult high bandwidth applications and control problems.
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Neural Controllers & Neural Networks

Another application considered interesting for implementation in FPGAs is
NN or Artificial Neural Networks (ANN). NNs are a mathematical mod-
eling methodology inspired by the central nervous system of humans. A
NN consists of a number of simple processing elements interconnected in
a network. The internal structure of NN is explained by Figure 3.3. Further
detail regarding the algorithm can be found in [Russell and Norvig, 1995].
NNs have previously proved efficient on a number of different classifica-
tion, modeling, data-processing and last but not least (and partly covering
the mentioned topics) automatic control problems. [Hunt et al., 1992] deals
with automatic control using NNs. Using NNs has proven especially effi-
cient when handling large and complex datasets or datasets based on obser-
vations, ‘black-box models’ and in cases where it is difficult or impractical
to use ‘normal’ modeling techniques. One large drawback with neural net-
works is that they are quite demanding, computationally speaking. How-
ever, the properties of NNs make them in many ways suitable for FPGA or
ASIC implementation. Not surprisingly there have been attempts at imple-
menting Neural Networks on FPGAs, [Li et al., 2006] and [Gironés et al.,
2005] are two of them. The contribution of Gironés et al. shows a way to
pipeline one commonly used NN algorithm. Implementing NNs using a
pipelined version of the algorithm and using hardware Gironés et al. claim
to take much better advantage of the inherent parallelism of NNs than a
corresponding software implementation would do, which is probably the
case. The structure of NNs are inherently parallel, as indicated by Figure 3.3,
and the computations in the NN are carried out by fairly simple process-
ing elements at least from a mathematics point of view. The ‘fairly simple’
processing elements are unfortunately non-linear functions, typically a sig-
moid function or similar which are inconvenient to implement in hardware.
Gironés et al. discusses different methods to implement this non-linear func-
tion digitally (in hardware) which is by Gironés et al. considered as the main
problem for digital implementation of NNs. Exploring the parallelism, im-
plementing pipelined calculations and finding a suitable digitalization of
the NNs the opinion of Gironés et al. is that an FPGA implementation of
NNs is preferred over a software one, and from a calculation speed point
of view that is probably the case. Li et al. also attempts implementation of
NNs in FPGAs, also aiming for a significant speed-up by exploiting the in-
herent parallelism. Li et al. identifies a multiply and accumulate operation
in the NN algorithm as being the main computation and hence being the
one to put extra consideration on for FPGA implementation. Li et al. also
identifies the routing resources to be a bottle-neck when implementing al-
gorithms with such a high grade of parallelity as a NN. To utilize the routing
resources more efficiently temporary data (which is used by a large number
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Figure 3.3 A typical outline of a Neural Network. The circles denotes the process-
ing elements and the arrows the interconnects. The number of layers, units and the
connection pattern can be varied giving the network different properties.

of computational units) are stored globally rather than in local RAM mem-
ory. The numeric precision needed for NNs are further discussed. Li et al.
cites [Holt and Hwang, 1991] who finds that NNs should be implemented
using at least 16-bit fixed point numbers to avoid decreased performance of
the NN. The results of Gironés et al. and Li et al. indicate that there are large
gains implementing NNs on FPGAs and it is safe to say that very interesting
results will continue to emerge in this field.

3.7 Chapter Summary

This chapter discusses the topic of implementation of feed-back controllers
and related algorithms within an FPGA environment. Starting with an in-
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troduction discussing the benefits and drawbacks with FPGA implemented
controllers. Three main strengths are identified, increased controller speed
and robustness, increased price-performance ratio and reduced power-con-
sumption. In many cases the time it takes to compute a controller algorithm
using micro-controllers or DSPs is long enough to fill up the complete time-
span between two corresponding samples, leaving no ‘extra-time’ for other
computations or for having stability margin. The same logics implemented
on an FPGA on the other hand would possibly not take more time to com-
pute than the time it takes to sample the system. The time margin gained can
be used in many ways, the most interesting would be to increase controller
complexity, over-sample the system, thus increasing controller bandwidth
and leaving more ‘margin’ in time, increasing the robustness. Total System
cost in many cases gains from FPGA implementation, having an improved
price performance ratio and enabling the designer to consider many sub-
systems implemented on one device, a SoC solution.

Implementing control logics in a digital environment takes a lot of con-
siderations about among other things sample rate and numerical precision.
Regardless of whether implementation is carried out in a micro-controller,
DSP or FPGA, some of these considerations were discussed. Control algo-
rithms have to be discretized in a manner such that their continuous-time
performance is maintained in discrete time. Criteria regarding the discrete
controller sample rate compared to the system bandwidth would have to be
full filled, the digital number-representation word length both for the data
path and controller parameters has to be selected in a way so that controller
performance is not degraded significantly when discretized.

On top of the ‘normal’ consideration which has to be made for any con-
troller implemented in discrete-time special considerations have to be made
implementing controllers using FPGAs. How to select the internal number
format in an optimal way is more difficult in an FPGA case having the op-
tion of freely choosing the actual word length within each algorithmical step
of the calculation. The issue of selecting an optimal internal number repre-
sentation was presented and a number of solutions were suggested.

The internal numbers can either be represented using fixed-point or float-
ing-point number representation. A fixed-point representation is in many
ways more efficient than a floating-point representation saving chip area
and increasing speed. A floating-point number representation is however
much more flexible and convenient during algorithm implementation. One
important issue is how to handle round-off and quantization effects within
a control algorithm in an ‘optimal’ manner not wasting chip area or pre-
cision. In fact a large part of the design time is spent on this problem and
some sort of automation is desirable. Some methods based on simulation
were described, and they can possibly be used to automate the process.

Another consideration which becomes especially important implement-
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ing controllers on FPGAs, as the bandwidth normally should be higher with
FPGA based systems, is the issues connected with over-sampling and es-
pecially over-sampling in combination with limited number-representation
precision. As explained traditional discretization methodologies of auto-
matic control and filtering, using the shift operator, is ill-conditioned when
applied in situations with high over-sampling rates and limited word length.

The solution presented is to use a divided-difference operator (which
essentially an Euler-estimation of a derivative), the δ-operator, instead of
the common shift-operator. Promising results obtained using the δ-operator
in situations with very high over-sampling rates as well as the details of
the δ-operator were accounted for. A rule-of-thumb indicating when the
δ-operator should be used says that when sampling ten times the system
bandwidth or more it is suitable to use the δ-operator instead of the shift-
operator.

It is interesting to over-sample even though it infers problems since it
is possible to increase controller performance by over-sampling, in some
cases the format of the system may even enforce over-sampling. The ben-
efits with the δ-operator are that as sampling rate increases the discrete time
representation approaches the continuous time behaviour. Consequently the
controller stability margin increases as the sampling rate increases which is
not the case with the normal shift-operator. The original motivation behind
δ and another benefit with this discretization method is its, compared to
the shift-operator, superior numerical properties. It is actually possible to
decrease the word length still maintaining numerical precision using the δ-
operator.

Second to last the very important question of algorithm parallelization
and reformulation was discussed. It is noted that it is the possibility to per-
form operations in true-parallel which makes the FPGA the powerful device
it is. In order to obtain the gains in calculation speed it is hence essential to
develop algorithms which can benefit from this parallel structure. The user
has to make sure that branches in an algorithm which can be implemented
in parallel actually are implemented as parallel computation paths. How to
parallelize would depend on which development tool is being used. It is im-
portant to try to minimize sequential dependences on the algorithm level,
and the user has to manually make sure that an algorithm is parallelized cor-
rectly on the ‘algorithm-level’. The automated approaches that exist mainly
work on the ‘code-level’ making it difficult for the tool to find global paral-
lel paths in the sequential code. This is an important point in implementing
controllers on an FPGA.

An algorithm shall not only be parallelized, it should be parallelized in
a well balanced manner meaning that parallel sub-results shall finish at the
same time-instance. This is important for two reasons, not to waste chip-
area implementing an algorithm ‘un necessarily parallel’ and to avoid racing
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within the data-path. Racing occurs when a sub-result belonging to one time
instance is used in calculations together with a sub-result belonging to a
completely different time instance, the corresponding result will then ‘not
belong in time’. Racing is less severe in control applications than in many
other applications due to continuity of the underlying system but should
never the less be strictly avoided.

Besides to consider algorithm parallelization it is important to avoid dif-
ficult operators such as trigonometry and exponentials implementing con-
trollers in an FPGA environment, as well as in a micro-controller environ-
ment. Having to implement difficult operators it is advisable to use some
method to approximate these functions in a way that saves chip area and
time, the CORDIC is one approach discussed.

Lastly three different application examples were presented and discussed
from the views of a number of different researchers. PID control, MPC con-
trol and Neural Networks all implemented in FPGAs were shown indicating
possibilities, powers and special considerations using FPGAs in practical
control applications.
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4

An FPGA Implemented Heat

Release Model

For successful control of HCCI (and most other low-temperature combus-
tion concepts) throughout the useful operational area it is the common opin-
ion that a closed-loop combustion control system with fairly large complex-
ity is needed as described in Chapter 1. One or more models will need to be
maintained on-line by the closed-loop combustion control system. This and
the ever increasing complexity of ‘normal’ engine control systems constitute
the background to the proof of concept study to be presented in this chapter.
From the previous chapters it is understood that an FPGA could well serve
as a very useful tool for implementing closed-loop combustion control sys-
tems and their strengths are extra valuable in situations when speed is im-
portant. The intention with this chapter is to show this possibility and at the
same time implement a part of a future closed-loop combustion control sys-
tem, namely the HR analysis. The reasons for implementing a HR computa-
tion or model rather than any other model are twofold. The HR, or rather the
combustion timing, CA50%, being calculated from the HR is considered the
most important feedback variable in engine control in general and in HCCI
control in particular. HR calculation is, from an automotive perspective, re-
garded as a computationally expensive operation which in many cases can
not fit within the highly loaded ‘normal’ engine-control units and it is by
many not considered to be possible to calculate the HR fast and accurate us-
ing the engine control unit for an foreseeable future. It is hence desirable to
show a method to calculate HR in a fast and accurate way, not loading the
engine control unit and with a precision and speed un-matchable by normal
engine control units. The potential of FPGA-implemented models and the
concept of using FPGAs for control, especially automotive control is simul-
taneously proven by this proof of concept study.
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4.1 Experimental Setup

The experimental setup necessary for these experiments consists both of
software and hardware. The hardware parts are made up of an FPGA pro-
totype board, a board simulating the engine pulses and cylinder pressure,
an expansion module for the FPGA board featuring ADC and Digital-to-
Analog Converter (DAC) and some surrounding circuitry adjusting signal
levels etc. The FPGA system is connected to a Personal Computer through
a JTAG cable, enabling display of debugging data, FPGA/PC co-simulation
and reconfiguration of the FPGA. The design of the FPGA configuration and
the hardware co-simulation are carried out in MATLAB/Simulink with the
aid of a Simulink toolbox supplied by Xilinx, ‘Xilinx System Generator DSP’
(SGDSP). In order to generate an FPGA design from the Simulink diagrams
the Xilinx development suite ‘Xilinx ISE’ is necessary.

FPGA System

The main part of the setup is the experimental card fitted with the FPGA.
The card is a Commercial Off-The-Shelf (COTS) product supplied by ‘Avnet’,
the (rather long) name of the card is ‘Memec Xilinx Virtex-4 LX XC4VLX25-
SF363 LC Kit’. As understood the card holds a ‘Xilinx Virtex-4 LX XC4VLX25-
SF363 LC’ FPGA, which holds 24,192 logic cells, 168 Kb distributed RAM
memory and 448 user I/O ports. The board holds support circuitry to de-
velop a complete system. Maximum clock speed of the FPGA is 100 MHz
and the clock signal is supplied by an oscillator present on the board, al-
though there is also a possibility to provide a custom oscillator. Besides the
above mentioned equipment the card holds a number of peripheral devices;
16 Mb Serial Flash for FPGA configuration, 64 Mb DDR SRAM, on-board os-
cillators, ‘P160’ expansion header, JTAG programming/configuration port,
10/100 Ethernet, Alpha numeric LCD panel, RS232 port, LEDs, pushbut-
tons, DIL switches and General Purpose I/O pinout.

Desired FPGA configuration is either loaded directly onto the FPGA or
stored in a serial flash memory produced by Atmel. If the configuration is
loaded on to the serial flash it is automatically reloaded onto the FPGA on
power-up with the help of a CPLD. There exist of course other solutions for
the FPGA re configuration that might be more suitable in automotive ap-
plications, this approach is however flexible in a development environment.
Configuration both of the serial flash and directly of the FPGA are carried
out through the JTAG interface with the help of a Xilinx ‘Parallel Cable 4’.

Not included on the basic FPGA board is the ADC and DAC converters.
To gain access to the analogue world, a ‘bolt-on’ circuit board that fits in the
‘P160’ expansion header was used. This board is, as the FPGA board sup-
plied by ‘Memec/Avnet’ and is named ‘160-Analogue-Kit’. The board fea-
tures dual AD and DA channels. Both AD and DA converters are made by
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‘Burr-Brown’. Maximum clock speed of the AD, ADCclk = 53MHz, the DA
handles DACclk = 165MHz maximum. Clock signal is supplied from the
FPGA via the ‘P160’ header, the FPGA runs at 100 MHz limiting maximum
ADCclk to 50 MHz and DACclk to 100 MHz. The surrounding circuitry, on
the AD channels, consist of an input buffer, a low-pass filter, a single ended
to differential amplifier and latches. The DA has the same latches, an output
buffer and a low-pass output filter. The expansion card was, considering the
application, less ‘bolt on’ than expected at the time of purchase and mod-
ifications were made to the input circuitry of the AD channels in order to
adapt the channels to suit the relatively low frequency that is of interest in
this application, the DA channels are however left untouched.

The total FPGA system price was at the time of purchase ≈ e700 and
must hence be considered as a low cost system, it is never the less a high
performance system!

Design Tools

As briefly mentioned earlier the design of the FPGA HR algorithm is car-
ried out in MATLAB/Simulink with the help of SGDSP. SGDSP contains a
number of Simulink blocks that are already implemented in VHDL, and us-
ing these blocks it is possible to generate VHDL from a Simulink diagram.
FPGA layout with the help of Simulink in DSP applications is discussed
by [Todman et al., 2005]. Please note that it is not possible to implement
‘standard’ Simulink blocks in the FPGA, it is necessary to possess a VHDL
implementation of the blocks to implement (a number of such blocks comes
with SGDSP). This is somewhat limiting. When running the ‘hardware co-
simulation’ (compare Hardware-In-the-Loop simulation ‘HIL’) during the
debug process, it is however possible to implement ‘standard’ Simulink sys-
tems on the PC communicating data with the FPGA through the JTAG in-
terface, this is a handy feature during the debugging process. Note that it
is necessary to possess a copy of the Xilinx ISE design suite in order to use
SGDSP since SGDSP uses the underlying ISE tools to generate the design
files. After co-simulation of the system, generic VHDL files are created from
Simulink, processed by the relevant FPGA design tools and downloaded to
the serial flash. When the design finally resides on the serial flash the FPGA
system is ‘stand alone’ from the computer.

Test Environment

Desktop tests were carried out during the development. The ‘interface’ to
the simulated/real engine consists of three signals, Crank Angle Degree
Pulses (CADP), Top Dead Center Pulses (TDCP) and analogue cylinder pres-
sure Pcyl . Current engine position is assumed to be measured with 0.2 Crank
Angle Degree (CAD) accuracy, the engine hence produces 5 CADP every
physical CAD. Besides CADP the angle sensor is assumed to give one TDCP
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Figure 4.1 FPGA experimental system overview, from [Wilhelmsson et al., 2006].

every time the engine has revolved two complete revolutions. Figure 4.1
provides an overview of the experimental setup, this engine ‘interface’ con-
curs with the setups in [Olsson et al., 2001], [Bengtsson et al., 2004] and
[Bengtsson et al., 2006].

During the development and testing Pcyl was simulated by recorded
cylinder pressure traces, both a motored and a fired trace were recorded. The
basis for Pcyl are pressure traces recorded from the 12 l Scania engine used
by Olsson et al., geometric data of this engine is noted in Table 4.1. A ‘in
house’ developed device simulating CADP, TDCP and Pcyl synchronously
at an engine speed of 1200 rpm was used for system tests during the de-
velopment. Pcyl was simulated with a vertical resolution of 8 bit, horizontal
resolution was 720 samples, that is one sample each CAD. DA conversion
was carried out with the help of a R/2R ladder and the output of the device
was buffered. The original pressure curve was somewhat distorted due to
the limitations of the engine simulator.

4.2 FPGA Layout

The design that was implemented in the FPGA can be viewed as a DSP
design, no processor core was present in the system. It would however of
course be possible to implement the HR algorithm on the reconfigurable
fabric of a mixed processor/hardware system, see Chapter 2 for properties
of a mixed system. The DSP design approach was selected due to the relative
simplicity of the calculations and the system. If the system is expanded to a
complete engine control system a processor core might be added.
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Algorithm

A net HR (Qnet
HR) calculation was implemented in the FPGA, that is the HR

calculation disregards heat transfer losses and crevice losses. Heat trans-
fer losses are caused by convective energy loss to the combustion chamber
walls. Crevice losses are caused by trapping fuel-air mixture in the crevices
between the piston and the cylinder wall, thus avoiding combustion. The
reason for neglecting crevice and heat transfer losses in this work was to
somewhat simplify the implementation. Since [Bengtsson et al., 2004] finds
that Qnet

HR is sufficient for feedback purposes this simplification is regarded
as legitimate.

The calculation of Qnet
HR is carried out in a non-conventional manner. The

conventional way to calculate Qnet
HR is through the integration of Equation 1.1

as described by [Gatowski et al., 1984]. For signal processing applications
it is however inconvenient to include the pressure derivative in the calcu-
lation since the process of differentiating a measured signal infers severe
noise issues, especially in combination with a very high ‘over-sampling’
rate. Instead of using Equation 1.1 it is possible to calculate Qnet

HR through
Equation 4.5. Equation 4.5 origins from the conservation of energy and is
motivated through Equation 4.1-4.4. This is a promising optional method to
calculate the HR are showed in [Tunestål, 2000].

dU = dQ − dW

dU = nCvdT

dW = pdV







=⇒ nCvdT = dQ − dW =⇒ dQ = nCvdT + pdV (4.1)

pV = nRT =⇒
1

nR
d(pV) = dT (4.2)

Cv =
R

γ − 1
=⇒ nCvdT =

nR

γ − 1
dT

(4.2)
=⇒ nCvdT =

1

γ − 1
d(pV) (4.3)

dQ =
1

γ − 1
d(pV) + pdV (4.4)

Q =
1

γ − 1

∫ θ

θstart

d(pV) +
∫ θ

θstart

pdV =

=
1

γ − 1
(p(θ)V(θ) − p(θstart)V(θstart)) +

∫ θ

θstart

p(θ)
dV

dθ
dθ =

=
1

γ − 1
p(θ)V(θ) +

∫ θ

θstart

p(θ)
dV

dθ
dθ

︸ ︷︷ ︸

Calculated on-line

−
1

γ − 1
(p(θstart)V(θstart))

︸ ︷︷ ︸

Estimated constant, added off-line

(4.5)
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Implementation

Fixed point arithmetics was used throughout the implementation of the HR
calculation although no automatic word-length determination was used (or
available in Simulink). To avoid racing-phenomena the different internal
computational branches were synchronized by the addition of unit-delays
and Simulink-specific synchronization blocks in the data-path. Keeping Eq-

uation 4.5 in mind, two multiply operations, p(θ)V(θ) and p(θ) dV
dθ , were

computed in parallel within the FPGA. The integration (summation) acting

on p(θ) dV
dθ was by necessity computed subsequently and p(θ)V(θ) had to be

delayed one sample to make up for the time it takes to update the summa-
tion, all to avoid racing. Finally, the two parts of Equation 4.5 are added to
obtain the part of the result which is calculated on-line.

When Equation 4.5 was implemented the parts of the equation that were
known in advance were not calculated on-line in order to simplify the equa-
tion as much as possible, thus gaining speed. Instead they were mapped as
a function of current engine CAD in the distributed RAM of the FPGA, this
goes for V and dV. As basis for the volume maps the geometry listed in Ta-
ble 4.1 was used (since this engine is the basis for the pressure traces used in
the test environment).

The time resolution is also of high algorithmic interest and it has to be
noted. The described setup had the properties of an asynchronous system
since the engine delivers CADP:s at one ‘clock speed’ (which varies with the
engine speed) and the FPGA board ran at a totally different one, meaning
that the FPGA clock was non-synchronous with the CADP. This is an uncon-
ventional approach in an engine control system. The described calculation
of Qnet

HR demands, as understood from Equation 4.5, some synchronization
between the calculation of Qnet

HR and the engine position (in order to retrieve
the correct V and dV). This synchronization was provided through a CADP
counter, a simple incremental counter which was reset on the rising edge of
TDCP. Overrun detection was also provided on this CADP counter in order
to detect issues with the CADP and TDCP. The output of the CADP counter
indicated the current position of the engine and it was used as index for the
tabulated values of V and dV which were kept in the RAM memory. In this
manner the FPGA system had all the information needed for the calculation
of Qnet

HR without synchronizing FPGA clock pulses with the CADP.
The clock-speed of the AD converter was, as previously noted 50 MHz,

this was hence the sampling rate of Pcyl . This is by far a higher sampling

rate than the update speed of V and dV, meaning that a number of Qnet
HR

samples were calculated ‘in vain’. The outcome was a system that calcu-
lates Qnet

HR based on the same P, V and dV values several times, a system
with very high rate of over-sampling. The parallel nature of the FPGA how-
ever still made this the preferred way to perform the design. The FPGA
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Figure 4.2 The DFG implementing the HR, from [Wilhelmsson et al., 2006]. The figure
describes the ‘top-level’ of the implemented algorithm/system, it is important to note
that each block at this level contains a lot of logics. The two different parallel branches
making up the computation are not obvious from the top-view.

Number of Cylinders 6

Swept Volume 11705 cm3

Compression Ratio 18 : 1

Bore 127 mm

Stroke 154 mm

Connection Rod 255 mm

Table 4.1 Geometric properties of the Scania engine.

simply outputs Qnet
HR samples at 50 MHz no matter what, meaning that the

inferred latency, counted in number of FPGA cycles was constant regard-
less of the engine speed. The commonly used method to synchronize the
engine and the control electronics by clocking the control electronics from
engine driven pulses (i.e., CADP) was not used here since it would totally
destroy the largest benefit of using the FPGA, i.e. low computational latency.
It was not at all necessary to synchronize the clock of the FPGA with the
CADP since it was possible to maintain sync with the engine with help of the
CADP counter. Disregarding the synchronous thinking between the engine
and FPGA board enables very low latencies without any major drawback.
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Plsb = 1464.84 Pa Vlsb = 5.05 ∗ 10−7 m3

dVlsb = 1.74 ∗ 10−9 m3

CADP Qlsb = 3.85 J

Table 4.2 the resolution of the input and output variables.

4.3 Experimental Results

The major result of this investigation was of course the successful implemen-
tation of the described HR algorithm in the FPGA environment. The perfor-
mance of the implementation is a point that can not be stressed enough, a
Pcyl sample that arrives to the FPGA from the AD converter is, considering
the timescale of an engine, calculated immediately. Immediately in this case
means 12 FPGA clock cycles, FPGAclk = 100 MHz → 120 ns! This, in other
words, means that when the AD converter has delivered a sample on the
FPGA pins it takes 120 ns before the FPGA has delivered the corresponding
Qnet

HR sample on the pins of the DA converter! In 120 ns an engine revolving
at 1200 rpm moves 0.000864 CAD, if the engine were revolving at 24000 rpm
it would move 0.01728 CAD! The latency between an arriving Pcyl sample

and the output of the corresponding Qnet
HR sample is in other words negligi-

ble. Since it is possible to measure the Qnet
HR with as high frequency as Pcyl

and concurrently with Pcyl , it is motivated to call the system a ‘virtual Q

sensor’ meaning that Qnet
HR is calculated the moment Pcyl is measurable. It is

difficult to measure the latency through the FPGA with standard measuring
equipment, the calculation of the latency is based on the fact that it is possi-
ble to extract precise latency information from the Simulink layout. To give
an indication to the numbers mentioned Figure 4.3 is included. Figure 4.3
shows Pcyl output from the engine simulator together with the output of
the FPGA (or ‘virtual Q sensor’), the fist cycle is a motored cycle and the
following cycle is a fired one. Pcyl and Qnet

HR are synchronously sampled, the
sampling is not halted and no data is cut away between the two correspond-
ing cycles. It is easily understood from Figure 4.3 that Qnet

HR is calculated with
very low latency with respect to Pcyl .

Besides very low latency the system features a very high throughput. If
the engine would be able to produce pressure at a rate high enough it would
be possible to perform 12 ‘complete’ (meaning 120*5 point) HR analyses
each CAD at 1200 rpm! The limit of the throughput is the AD conversion
speed.

The last point of the results is the correctness of the output. To verify
the correctness 100 cycles are sampled to the PC. Due to poor quality of the
pulses originating from the simulated engine some cycles however had to
be removed due to sudden steps in the middle of the calculation. The num-
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Figure 4.3 Output from the FPGA system when the ‘combustion’ is suddenly
switched on, showing true ‘in-cycle’ performance. From [Wilhelmsson et al., 2006].

ber of disregarded cycles are in the range of 20-30 cycles depending on the
‘mood’ of the simulated engine. Figure 4.4 shows all the sampled cycles that
are non damaged, as understood from the figure most of the calculated cy-
cles holds a high enough signal quality to use in a feedback control loop.
Figure 4.5 shows the average of the cycles shown in Figure 4.4. It also shows
the ‘corrected’ values calculated off-line by the PC and Matlab. As under-
stood from the figure the FPGA implemented algorithm is able to calculate
Qnet

HR accurately enough. If the FPGA output and off-line Matlab calculated
Qnet

HR are compared to a Qnet
HR calculated from Equation 1.1 consistency is

again found. Qnet
HR according to Equation 1.1, is however not shown in order

not to blur the figure.
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Figure 4.4 Non average results corresponding to figure 4.5, from [Wilhelmsson et al.,
2006].

4.4 Discussion

The results in Figure 4.3 - Figure 4.5 show that implementation of Equa-
tion 4.5 was successful. As previously noted some cycles are removed from
the results before presentation. The intention of the final system is of course
that every cycle will be calculated perfectly, this is also achievable, better
edge detection logics in combination with better quality of the position-
ing pulses will do the trick. The reason for the erroneous cycles are mainly
thought to be issues with the simulated engine. As it was difficult to find
a suitable signal simulator, the simulated engine had to be developed in
house, and even though it performs well on average some cycles are not
true to the real engine and it is these cycles that were removed. The cycles
were removed based on a derivative threshold of the measured Qnet

HR. As
visible in Figure 4.4 some ‘bad’ cycles do however still persist (bad cycles
meaning cycles that have a sudden ‘jump’ in the middle of the signal).

Besides the issue with ‘bad cycles’ there appears to be an offset prob-
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Figure 4.5 Average output from the FPGA system compared to the corresponding
values corrected in the PC, from [Wilhelmsson et al., 2006].

lem, in Figure 4.4 there appears to be different bias in the different cycles of
Qnet

HR. This offset problem is explained by the nature of the AD converter con-
nected to the FPGA. The AD converter was purchased as an expansion card
suitable for the expansion header on the FPGA board, the case was however
that the input circuitry on the AD converter card was intended for usage
in very high frequency systems and the signal paths to the AD converter
hence blocked the very low frequency cylinder pressure signal. The input
circuitry hence had to be replaced by an ‘in house’ alternative which unfor-
tunately suffered from a slight problem with the input bias which explains
the ‘cycle-to-cycle’ variation of Qnet

HR in Figure 4.4.
The two noted issues are unfortunate and an effort will be made to cor-

rect them for future versions of the system. When the erroneous data was
removed as described and the remaining cycles were averaged Figure 4.5
emerged. Figure 4.5 shows that the FPGA system despite the noted issues
on average performs well. The difference between Qnet

HR calculated by the
PC off-line and Qnet

HR calculated by the FPGA is not large, at least not in the
case with ‘combustion’. Qnet

HR in the ‘motored’ case is less consistent between
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the PC calculations and the FPGA, the explanation for this is thought to be
the bias issues on the input of the AD converter. This bias issue will strike
differently depending on the signal level. Since the signal level is lower in
the ‘motored’ case the error will also be larger.

The difference between the corrected Qnet
HR and the FPGA Qnet

HR is mainly
thought to be explained by the above noted problem. The fact that fixed
point numbers had to be used in the implementation is not thought to ac-
count for any large error in the signal as motivated by Table 4.2. In the table
it is clearly visible that despite the limited input word-length of only 12 bit
the resolution (known by the value of the Least Significant Bit (LSB)) is, by
far, enough (Plsb is calculated on a 60 bar Pmax assumption, if Pmax = 200 bar
are used Plsb ≈ 0.05 bar).

Even though the resolution is regarded as accurate enough the FPGA
environment still caused some problems during the implementation phase.
System generator DSP is a tool that should be used with care; both the FPGA
internal number representation and the internal timing of the FPGA are very
difficult to manage. The transparency of the tool is simply not good enough
to enable the designer to design the FPGA layout in a controlled manner.
Many issues had to be solved ‘ad-hoc’ causing delays in the design work,
FPGA design is very sensitive to the available tools regardless of its appli-
cation.

4.5 Chapter Summary

An FPGA implementation of a HR model was performed and discussed.
The HR was selected before other models since combustion phasing calcu-
lated from the HR is considered to be the most important feed-back can-
didate for combustion control. A re-formulated HR was implemented, re-
moving the pressure derivative from the equation due to noise issues. The
computation was implemented on a Xilinx FPGA residing on an experi-
mental card holding the necessary peripheral hardware. Matlab/Simulink
with the Xilinx plug-in tool ‘System Generator DSP’ was used for the de-
velopment. Simulink and System Generator are promising tools for FPGA
design but they appeared to be not completely mature at the time, making
the implementation task more difficult. The outcome was never the less an
FPGA implemented HR model having an extra-ordinary performance. One
pressure-sample is computed and the corresponding HR sample is output
from the FPGA within 120ns, the throughput of the system is 50MHz, lim-
ited by the AD converter. Considering the time-scale of an engine the HR is
computed almost instantaneously and the term ‘virtual HR sensor’ is well
motivated.
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5

FPGA Based Rapid

Prototype System –

a Suggestion

For developers of automotive control, prototyping and initial tests are a
hassle. Commercial solutions are available but the price and especially the
price/performance ratio opens the field for more cost effective solutions.
Automotive rapid prototype systems seen so far are mainly processor based
systems with standard interrupt driven measurement and actuation. Con-
trol systems based on high time resolution measurements of for example
cylinder pressure are difficult to implement using these systems, neither
is it possible to implement controller loops with an extremely high band-
width in combination with expensive algorithms. According to, among oth-
ers, [M. Oki et al., 2006] the bandwidth of actuators, meaning fuel injectors
(such as piezoelectric fuel injectors) is currently increasing. In order to utilize
the performance gains of the fuel injectors, new non-conventional engine
control and rapid-prototype systems have to be developed. Conventional
engine control systems typically have a performance-grade which enables
them to control the engine from one cycle to the next, at best. Until now
this has not been an issue since normal actuators so far have lacked capabil-
ity beyond cycle-to-cycle control. The new high bandwidth fuel injectors in
combination with a high bandwidth control system would however give in-
teresting combustion feedback control possibilities. Using FPGAs as a base
for such a system is an interesting and maybe enabling option to consider.
This chapter sketches one possible architecture of such a system and which
devices that could be included.

63



Chapter 5. FPGA Based Rapid Prototype System – a Suggestion

5.1 Automotive Control Rapid Prototyping

Simulink based development environments for rapid prototyping of au-
tomotive control have been previously attempted and commercial prod-
ucts exist on the marked from among others the company dSpace. Besides
dSpace, IFP in France have a solution enabling rapid prototyping and re-
gression tests both on the software and system level. Other rapid prototype
systems are for example presented by [Viele et al., 2005] showing a solu-
tion based upon National Instruments products, the CompactRIO system, in
combination with an FPGA module. In this case LabView is chosen as pro-
gramming/FPGA configuration environment. The approach taken by Viele
et al. is a more conventional one and even though the theoretical possibil-
ity to implement algorithms, not only pure logic, in the FPGA exists it is
not utilized. The system is used for implementation of a ‘standard’ control
unit on a motorcycle. It is also reasonable to believe that LabView would not
be the first choice for complex and high performance FPGA controller and
algorithm implementations. [Beaumont et al., 2006] shows one approach
where an ‘off the shelf’ processor based rapid prototype system from the
company Ricardo is fitted with an FPGA based I/O system. The intention
of Beaumont et al. seems to be to use the FPGA as a coprocessor to assist
the processor-based rapid prototype system with data acquisition, analog to
digital conversion and data pre-processing. The architecture is less suited
for feedback control loops implemented purely in the FPGA and very-high
bandwidth control since actuators are connected to slow subsystems and
thus not directly accessible from the FPGA.

5.2 The Setup

The over-all idea with the system proposed in this chapter is to combine very
flexible parts, featuring high flexibility in implementation but limited capac-
ity, with less flexible but very high performance parts. The parts regarded as
flexible would be an x86 PC running the Matlab/Simulink xPC-Target en-
vironment which is flexible in the sense that it is very easy to re-implement
and change controllers and supporting software/algorithms residing in the
xPC-Target environment. The part of the system regarded as less flexible
would be reconfigurable hardware (FPGA) which has to be configured us-
ing special tools featuring limited or no rapid prototyping capabilities. The
resulting system will be referred to as Engine Dyno Controller (EDC), the
reason being that it is a control system suitable for controlling the complete
dyno setup, not only the engine.

Figure 5.3 gives an overview of the engine dynamometer setup. The fig-
ure describes a ‘typical’ engine control design setup and the devices present
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in the figure would be present in most setups in one form or another. The
center of the setup is of course the actual engine, which also is the actual
plant for the control engineer. The engine generates energy during opera-
tion, this energy needs to be taken care of, a device capable of maintaining
the rotational speed is hence necessary, i.e. an engine dynamometer. In this
case the dynamometer consists of an electric motor in combination with con-
trol electronics. The EDC system would need the capability to demand an
engine speed setpoint from the dynamometer in order to carry out tran-
sient identification and validation experiments. Preferably control data for
the dynamometer would be transferred through MODBUS to the control
electronics of the electric motor, RS-485 will be used as the physical layer for
the MODBUS communication.

In each cylinder of the engine a piezoelectric cylinder pressure trans-
ducer will be present. The pressure transducers would be connected to charge
amplifiers which convert the electronic charges originating from the trans-
ducers to voltages. Besides analog outputs for pressure, the charge ampli-
fiers have the possibility of control related communication. In reality how-
ever the control parameters of the charge amplifier is very seldom changed,
and this communication path will hence not be implemented. Each analog
output of the charge amplifier is connected to two different analogue I/O
inputs of the EDC.

A vast variety of other devices might also be connected to the engine
setup to perform different measurements, for example thermocouples, air/-
fuel ratio sensor(s), emission measurement devices, non-cylinder pressure
transducers and the crank angle counter (angular positions sensor). These
devices are typically sampled by the EDC (apart from the crank angle counter)
either by an analogue I/O device (preferable) or in some cases by digital
communication (GPIB, RS-XXX, or ethernet). The crank angle counter com-
municates through parallel digital channels physically carried on fiber op-
tics. Based on the inputs from the sensors the control engineer wants to per-
form two tasks:

• Implement and/or validate automatic control logics

• Collect sensing data for post processing

In order to implement control logics actuators are, of course, needed. In
this case there are mainly two types of actuators with significantly differ-
ent bandwidths. The high bandwidth kind are typically piezoelectric fuel
injectors, spark coils and inductive fuel injectors. Low bandwidth actuators
would typically be stepper motors, controlling for example throttle posi-
tions and turbo settings (for a non fixed turbo).

In the end it is of course the engine control logics which is of main inter-
est however, in order to have an efficient experimental setup, the peripheral
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devices needs to be controlled by the same system as the engine control
logics resides in. If they are, it enables the control engineer to perform iden-
tification and transient experiments on for example the engine speed (if the
controller can communicate with the dynamometer). It also enables the con-
trol engineer to perform experiments on associated control problems, for
example boost-pressure control or other air-path control. Besides capability
to communicate with ‘need to use’ devices always present in the system it
is of utmost importance that it is quick and easy to plug in new devices,
sensors or actuators which may be needed in future control experiments.

5.3 Loop Overview

The main idea with the described system is to have the possibility of two
control loops with significantly different bandwidths as indicated in Fig-
ure 5.1. Color marking distinguishes the two different loops in the figure,
the loop marked in black would be the high bandwidth loop carrying out
control tasks with high bandwidth requirements e.g. injection control. It can
also assist the low bandwidth loop (marked in grey) with the cycle-to-cycle
control of, for example, engine load. The high bandwidth loop, indicated
in Figure 5.2, is found to consist of; the engine, cylinder pressure sensor
(CPS), charge amplifier (CAMP), high frequency AD converter (HFADC),
the FPGA board and last but not least the injection system (communication
protocol between the components vary). The low bandwidth loop, noted in
grey in Figure 5.1 and still with Figure 5.2 in mind, would consist of; the en-
gine, the cylinder CPS, the CAMP, the framed ADC (FADC), the x86-PC and
the FPGA. A FADC is a ADC which stores a defined number of samples,
one frame, in local memory before handling the complete frame at the same
time to the PC. Also note that the FPGA board is the master controller of the
injection system and the output of the low bandwidth combustion control
loop hence has to pass through it. Pressure sampling in the high bandwidth
loop is asynchronous to the engine revolution which means that some syn-
chronisation algorithm is needed in order to implement the injection control
and other algorithms based on the engine crank angle. The low bandwidth
loop on the other hand is clocked synchronously with the engine revolutions
and synchronisation is hence built-in.

The high bandwidth loop is complemented by the x86-PC running xPC-
Target environment. Implementation of controllers in the high bandwidth
loop is time consuming but controller implementation in xPC target is not.
The existence of the PC hence enables the designer to, in a very rapid man-
ner, implement controllers with the support of a large amount of plug in
modules for I/O. The xPC-Target environment will be used for implemen-
tation of user interface, implementation of the low-bandwidth control of the
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Figure 5.1 Overview of the two different loops intended to have two significantly
different bandwidths, from [Wilhelmsson et al., 2007]. The loop consisting of black
arrows will have a high bandwidth but be less flexible consisting of an FPGA. The
loop consisting of grey arrows is intended to be more flexible consisting of a PC being
configured in Simulink. Speed performance will however be decreased using a PC and
Simulink.

combustion (cycle-to-cycle controllers) and the low bandwidth control of
peripheral devices, such as air path control. For clarity, the control loops
handling the peripheral control are not indicated in Figure 5.1. Both the
HFADC and the FADC could act as inputs for these loops, normally how-
ever the FADC would act as an input since peripheral control tasks have
lower bandwidth requirement. It would typically be implemented in the
Simulink environment. Protocols like RS-XXX, GPIB and ethernet would be
used for communication with actuators.

5.4 Loop Bandwidth

The bandwidth of the two loops in absolute terms would of course be de-
termined by the slowest component included in each loop. To determine
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Figure 5.2 Overview of the components within the suggested control system, from
[Wilhelmsson et al., 2007].

the bandwidth of the two different loops the bandwidth of each component
hence must be found, starting with the high bandwidth loop.

The clock frequency of the FPGA would be at least 100MHz depending
on device selection, FPGA clock would hence not be an issue. Clock fre-
quency of the HFADC would, again depending on device, range between a
few kHz up to 100MHz. As input the HFADC takes the output signal from
the CAMP which in turn takes the output from the CPS. CAMP cut-off fre-
quency would be in the range of 200kHz and CPS natural frequency in the
range of 40 − 200kHz all according to manufacturer specifications. The last
link in the HF loop is represented by the fuel injectors. Work published by
[M. Oki et al., 2006] indicates the available bandwidth of diesel fuel injec-
tors. It is found that the time it takes the injector to lift the nozzle needle to
half, from the instance the command signal is given, is 200µs and f−3dB is
hence ≈ 5kHz.

Appropriate loop bandwidth can be decided in many different ways, if
the Nyquist criterion is used the sampling frequency of the HFADC would
be decided to 2 ∗ 200kHz = 400kHz with the cut-off frequency of the CPS
in mind, or 2 ∗ 5kHz = 10kHz based on injector bandwidth. However, since
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this system is intended for control purposes another sample rate criterion
should be used ensuring control system performance. [Åström and Witten-
mark, 1997] suggests a sampling frequency between 10 to 30 times the loop
bandwidth. Loop bandwidth is limited to the injector bandwidth of 5kHz
and an appropriate minimum sampling/control frequency would hence be
50 − 150kHz, if all six cylinders together are sampled by the same ADC it
has to be able to sample at 6 ∗ 150kHz = 900kHz. For the high speed loop
the Nyquist frequency will consequently be 150/2 = 75kHz. A fairly high
loop bandwidth in combination with the fact that the FPGA clock frequency
is, compared to the sampling frequency, significantly higher enables large
amounts of calculations to be carried out between each CPS sample. For ex-
ample in order to implement complex controllers (MPC etc), with such high
bandwidth requirement, in multiple cylinders simultaneously the very high
throughput, parallelism and high clock speed of the FPGA is regarded as
essential and the use of the FPGA system is hence motivated. Preferably the
HFADC is operated synchronously with the FPGA clock. The FPGA should
drive the HFADCs and in this way traditional real-time and synchronisa-
tion issues are avoided. The performance of the FPGA board is the enabling
factor, letting the systems perform very complex calculations between each
sample, without violating the bandwidth of the loop.

The low bandwidth xPC target based loop shares some components with
the high bandwidth one, the CPS, CAMP, the FPGA and the injection sys-
tem. In the case of the low bandwidth loop the FADC would be clocked
by the crank shaft pulses, a method which can be regarded as the ‘stan-
dard’ method. The sampling frequency will hence depend on current engine
speed, making anti-aliasing filtering more difficult. For simplicity an anti-
aliasing filter with cut-off frequency decided by maximum engine speed
would be used. Maximum clock speed of the FADC is decided by the crank
angle sensor resolution and the maximum physical engine speed. Results
are published using different angular resolution. One pulse each CAD is
frequently used, in this case a resolution of five pulses each CAD as used by
among others [Olsson et al., 2001] and [Wilhelmsson et al., 2006] is preferred.
Maximum engine speed is selected to be 6000rpm and with five crank pulses
each physical CAD the crank pulses will arrive at a frequency of 180kHz ac-
cording to Equation 5.2, at maximum engine speed and frequencies up to
180/2 = 90kHz are resolvable according to the Nyquist criterion. Conse-
quently the crank pulses will arrive at a frequency of 24kHz at the mini-
mum engine speed of 800rpm (according to Equation 5.1) still using five
crank pulses each CAD, Nyquist frequency for minimum engine speed is
hence 12kHz. The desire is to be able to handle at least a 6 cylinder engine
at maximum engine speed of 6000rpm preferably with a time resolution of
five samples each CAD.
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f CAD
min =

800 [n/min]

60 [s/min]
∗ 360 [CAD/n] ∗ 5 [cad−1] = 24 000 [Hz] (5.1)

f CAD
max =

6000 [n/min]

60 [s/min]
∗ 360 [CAD/n] ∗ 5 [cad−1] = 180 000 [Hz] (5.2)

5.5 Suitable EDC Hardware

The suggested electronic hardware setup is indicated in Figure 5.2, the sys-
tem is intended to be built around a PC (lower right in the figure). There are a
number of different communication interfaces which could be used between
the x86 computer and peripheral components, for example PCI, PC/104 or
ethernet. Which interface that is best suited for the application is mainly
a question which I/O devices that hold support for Simulink/xPC-target.
The support for framed sampling in xPC-Target is somewhat limited and
one has to choose the I/O device with this in mind. As for the FADC there
are mainly two suitable devices supported, either an analog I/O module
from ‘Diamond Systems’ named ‘Diamond-MM-32-AT’ or one from ‘United
Electronic Industries (UEI)’ named ‘PD2-MFS-2M/14’. The Diamond Sys-
tems device is a 16-bit one, using the PC/104 bus, the device holds framed
sampling support in xPC-target and is capable of a sample frequency of
200 000 sps. However with this sampling frequency it is possible to handle
an engine speed of 5556rpm in a 6 cylinder engine (as desired) only if a res-
olution of 1 CAD is used (see Equation 5.3). The Nyquist frequency would
then be ≈ 16700Hz at maximum engine speed (Equation 5.4).

nDiamond
max =

200 000[s−1]
6[]

360[n−1]
∗ 60[s/min] ≈ 5556 [n/min = rpm] (5.3)

f Diamond
N =

200 000[s−1]
6[]

2
≈ 16 667 [Hz] (5.4)

The other option, the UEI device, is a 14-bit device using the PCI bus and
capable of 2 Msps. Using the UEI device it is possible to sample five times
each CAD for a six cylinder engine up to ≈ 11 000rpm according to Equa-
tion 5.5 or handling the engine speed criterion (6000rpm) for up to a ten
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cylinder engine according to Equation 5.6 which, in combination with the
fact that the UEI device uses the more modern and faster PCI bus, would
make the UEI device the preferred one even though its resolution is 2 bit
less than the Diamond Systems device. Framed sampling is an essential fea-
ture in order to implement the system with cylinder pressure based cycle-
to-cycle combustion control with the cycle-to-cycle controllers implemented
in xPC target. Due to the desired time resolution of cylinder pressure mea-
surements the processor would not be able to maintain the controllers if the
sampling were taken care of in an interrupt driven sample to sample man-
ner.

nUEI
max =

2M[s−1]
6[]

1800[n−1]
∗ 60[s/min] ≈ 11 111 [n/min = rpm] (5.5)

nUEI
max =

2M[s−1]
10[]

1800[n−1]
∗ 60[s/min] ≈ 6667 [n/min = rpm] (5.6)

Besides the I/O module connected to the PCI or PC/104 bus to work
with xPC-Target one more ADC will be present in the system, the HFADC
sampling values to the FPGA. That ADC will share the input of the FADC
in an analogue manner and will have a high specification, a data resolution
of 16bit and a maximum sample frequency of up to 25MHz is possible. Min-
imum sample frequency for this ADC is 150 ∗ 6kHz = 900kHz. A high spec
ADC furthermore provides capability for system expansion by addition of
high speed signals. The high speed ADC will not run on a higher clock
frequency than necessary. The selected ADC could preferably be LTC2203
from Linear Technology (other options from Linear in the sampling range
of 10 − 105Msps are LTC2207, LTC2206, LTC2205, LTC2204, LTC2203, or
LTC2202). A MUX and sample-and-hold circuit might be needed as well.
The outputs of the HFADC will be communicated in a parallel manner to
the digital I/O of an FPGA development board.

The FPGA development board present in the lower left of Figure 5.2 will
be the center of the system. Communications between the FPGA card and
the x86 PC will be carried out using Direct Memory Access (DMA), which
enables very high speed communication in a manner which is fairly simple
to implement. Thus the FPGA board will have to be connected to one of the
data buses of the PC. Devices suitable for this are for example the ‘Virtex-
5 LX110 PCI Development Board’ from Vmetro which can be connected to
the PCI bus or the ‘TS-104-3001’ from GE Fanuk Embedded Systems, which
handles the PC/104 bus.
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Figure 5.3 Overview of a typical engine dynamometer setup, from [Wilhelmsson
et al., 2007]. Grey arrows denote physical relationships, white arrows represent sensor-
information flow and black is control-signal flow.

5.6 Software/Hardware Configuration

The configuration of the rapid prototype system is of course a key issue, if
the configuration process is too difficult and time consuming the prototyp-
ing may prove to be too slow. The configuration of the cycle-to-cycle con-
trollers which are run on xPC-Target are of course carried out in Simulink
with the relevant block sets. It should hence be possible for the control engi-
neer to implement the cycle-to-cycle controllers in a rapid manner. Configu-
ration of the target computer (downloading of firmware) as well as operator
interface data will be carried out over ethernet.

Design of FPGA configurations however tend to be less rapid than the
graphical programming of the cycle-to-cycle controllers in Simulink. There
exists rapid prototype tools for FPGA environments as well, for example the
Xilinx toolbox System generator DSP used in [Wilhelmsson et al., 2006]. Sys-
tem generator, being a plug-in tool to Simulink, features the same graphical
programming environment as Simulink. Altera and other manufacturers of
EDA tools also have options similar to System generator DSP either to use
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in combination with Simulink or stand alone. Previous experiences made
by the authors [Wilhelmsson et al., 2006] however point in the direction of
using tools more specialised on FPGA configuration. The reason is that tools
like System generator DSP are not regarded to supply a high enough grade
of automation and they appear not to be completely mature. In combination
with a lack of transparency it is in some cases, according to previous ex-
periences, very difficult to successfully carry out larger FPGA designs. The
approach selected is instead to implement the main part of the intended de-
sign in a better suited and more complete design tool like the Xilinx ISE.
Xilinx ISE is a toolbox containing the complete tool-chain for implementa-
tion in Xilinx FPGAs. Other FPGA manufacturers provides similar tools for
their FPGAs. With this it is not said that every part of the design has to be
carried out in pure VHDL, the possibility of carrying out graphically based
designs/design parts still exists in ISE and the other similar tools. It is also
possible to design modules in Simulink with the help of system generator
DSP and ‘plug them in’ to a skeleton system designed in Xilinx ISE or sim-
ilar. Design of logics designated for the FPGA is never the less more time
consuming than implementing logics designated for an xPC-target system
in Simulink.

5.7 Chapter Summary

A novel suggestion on the structure of an Engine Dyno Controller has been
presented. The aim for the EDC is to have the normal capabilities regard-
ing control of axial equipment in combination with the possibility of imple-
menting advanced pressure based combustion-control logics. The complete
system will have the capability of performing rapid prototyping of cycle-to-
cycle controllers with the help of Simulink and xPC-Target. The system will
also have the capability of implementing control logics with a high enough
bandwidth to perform experiments with higher requirements than cycle-
to-cycle control, using for example piezoelectric fuel injectors at their full
bandwidth.
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Concluding Remarks

6.1 Summary

New combustion engine principles increase the demand of feed-back com-
bustion control, at the same time economical considerations currently en-
forces the usage of low-end control hardware limiting the implementation
possibilities. Significant development is simultaneously and continuously
carried out within the field of Field Programmable Gate Arrays (FPGAs). In
recent years FPGAs has developed, from being a device mainly used in to
implement grids of ‘glue-logic’ to something of a flexible ‘dream device’ in
cost and performance sensitive applications. It is not solely the development
of FPGA devices which has made the FPGA the promising implementation
platform it is. Development of software tool-sets and design methodologies
is as important as the development of the device as such.

FPGAs and FPGA design has been thoroughly discussed based on liter-
ature found on the topic covering a wide span of considerations. Architec-
tural consideration and corresponding pros and cons have been discussed,
both on the FPGA design level and FPGA hardware level, as well as differ-
ent design tools and design considerations.

Using FPGAs as implementation platform for controllers and feed-back
control is a rewarding topic. The literature in the field has been scouted and
a number of points especially important for FPGA implementation of con-
trol logic, such as word-length, parallelization and high-speed sampling is-
sues have been highlighted. A short survey of application examples from
the literature was presented.

Implementation of a heat-release algorithm within an FPGA has been
described. Combustion phasing, calculated from the heat-release, is consid-
ered as a key feed back variable for closed-loop combustion control. A suc-
cessful FPGA implementation of a reformulated but completely equivalent
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heat-release calculation has been shown. Matlab/Simulink in combination
with an FPGA-specific plug-in tool was used to carry out the implementa-
tion. The resulting system was capable of computing a heat-release sample
within 120ns which is to consider as immediate within the context of com-
bustion engines. System through-put was 50MHz.

Finally a suggestion of a ‘rapid-prototype’ automotive control system
was presented. Rapid-prototyping within automotive control is usually a
difficult practical problem. Many of the existing solutions lack the ability
to implement control-loops at high bandwidths, especially in combination
with complex control logics. The intention with the suggested system is to be
able to implement loops at two different bandwidths with different imple-
mentation flexibility. Putting an FPGA in the loop it is possible to implement
for example extensive model based controllers.

The author hopes that this thesis has illuminated FPGAs as an suitable
implementation platform for control applications. Its possibilities, drawbacks
and potential application hopefully have been made clear to the reader.

6.2 Future Works

A lot of interesting work remains to be done in this area. One rewarding
thing to do would be to make a more complete examination of suitable ways
to implement well-known controllers in FPGAs and mixed FPGA/processor
systems. How to partition the controllers between hardware and software,
finding δ-transform representations of the controllers and the parallelization
level are examples of matters which should be examined. Are there opti-
mal implementation structures for controllers and, if so, which are they and
which controllers have highest benefits from being implemented on FPGAs.
Preferably this kind of study should be illustrated on a number of real con-
trol problems.

Another very interesting area waiting to be explored is the topic of han-
dling real-time issues using mixed processor/FPGA systems. Will the tra-
ditional real-time handling methodologies still be valid when parts of the
logics are FPGA accelerated? Is it possible to utilize the parallelism of FP-
GAs in some way to increase the utilization of processors without violating
the real-time demands? Another dimension on this topic is the very inter-
esting possibility of ‘run-time reconfiguration’ of FPGAs, intentionally left
out of the thesis. Which will the real-time issues be if it is possible to rapidly
change the FPGA configuration depending on task?

In the automotive domain a lot can be done, the obvious is to complete
the rapid prototype system described in Chapter 5. High bandwidth injec-
tion control of Diesel engines, using FPGAs, can be attempted, moving the
control horizon from ‘between-cycle-control’ to ‘in-cycle-control’. It is suit-
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able to survey the FPGA area using ‘automotive-control goggles’ to illustrate
what is performed in other areas and how these gains can be utilized within
automotive control.

Lastly it can be interesting to deploy different automotive-control related
models on FPGAs, to off-load the normal ECU or to model things previ-
ously regarded as too complex. One example could be an NOx model im-
plemented using a neural network on an FPGA.
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Abbreviations

ADC Analog-to-Digital Converter
ALU Arithmetic Logic Unit
ANN Artificial Neural Network
ASIC Application-Specific Integrated Circuit
CA10% Crank Angle of 10% heat release
CA50% Crank Angle of 50% heat release
CA90% Crank Angle of 90% heat release
CAD Crank Angle Degree
CADP Crank Angle Degree Pulse

(not necessarily with on-degree interval)
CAMP Charge Amplifier
CO Carbon monoxide
CO2 Carbon dioxide
CORDIC COordinate Rotation Digital Computer
COTS Commercial Off-The-Shelf
CPLD Complex Programmable Logic Device
CPS Cylinder Pressure Sensor
DAC Digital-to-Analog Converter
DC Direct Current
DFG Data Flow Graph
DMA Direct Memory Access
DSP Digital Signal Processor
EDC Engine Dyno Controller
FADC Framed Analog-to-Digital Converter
FPGA Field Programmable Gate Array
HC Un specified hydrocarbon fuel
HCCI Homogeneous Charge Compression Ignition
HFADC High Frequency Analog-to-Digital Converter
HR Heat Release
I/O Input/Output
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JTAG Joint Test Action Group (standard test access port)
LSB Least Significant Bit
MPC Model Predictive Control
Msps Mega-samples per second
NN Neural Network
NOx Nitric Oxides
PAL Programmable Array Logic
PID Proportional-Integral-Derivative (Controller)
SGDSP System Generator DSP
SoC System-on-a-Chip
TDCP Top Dead Center Pulses
VHDL VHSIC hardware description language
VHSIC Very-High-Speed Integrated Circuits
x86 the instruction set of the most commercially

successful processor architecture defined by Intel in 1978
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B

Symbols

β Over-sampling rate
δ An operator and transform corresponding
∆ Sampling time
γ Specific Heat Ratio
θ Crank Angle
ADCclk ADC clock frequency
Cv Molar specific heat at constant volume
DACclk DAC clock frequency
f−3dB Cut-off frequency, bandwidth
f CAD
max Maximum crank angle pulse frequency

f CAD
min Minimum crank angle pulse frequency

fN Nyquist frequency
fs Sample frequency
FPGAclk FPGA clock frequency
nX

max Maximum engine speed using hardware ‘X’
n Number of moles
Pcyl Cylinder pressure
Plsb Pressure resolution (value of LSB)
Pmax Maximum pressure
P, p Pressure
Qnet

HR Net heat released from combustion
Q Heat
q The shift-operator
R Universal gas constant
T Temperature
t Time
U Internal energy
W Mechanical work
V Volume
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