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Preface

This thesis considers the problem of image based localization. This means that the objec-
tive is to find the position and the direction from which an image was taken. To achieve
this two subproblems are first studied, triangulation and polynomial equations. In the
last paper a complete localization system is constructed using improvements to the pose
problem.

The work of this thesis has been founded by the Swedish Research Council through
grant no. 2004-4579 ’Image-Based Localisation and Recognition of Scenes’.

The thesis consists of the following three papers:

o K. Josephson, F. Kahl, Triangulation of Points, Lines and Conics, to appear in
Journal of Mathematical Imaging and Vision, 2008.

e M. Byrsd, K. Josephson, K. Astrom, Fast and Stable Polynomial Equation Solv-
ing for Computer Vision, manuscript for International Journal of Computer Vision,
2008.

e K. Josephson, M. Byréd, E Kahl, K. Astrom, Localization with Hybrid Features,
submitted to Journal of Mathematical Imaging and Vision, 2008.

The first paper considers optimal triangulation in arbitrary many views. The second
paper concerns solving systems of polynomial equations. This can for example be used
for fast and optimal three view triangulation. The last paper considers localization with
hybrid features. In this paper the methods of paper two are necessary.

During the work with this thesis the following papers have also been written of which
some in parts overlap with those of this thesis.

o K. Josephson, E Kahl, Triangulation of Points, Lines and Conics, Proc. 15th Scan-
dinavian Conference on Image Analysis, Aalborg, Denmark, 2007.

o K. Josephson, M, Byrod, E Kahl, K. Astrém, Image Based Localization Using
Hybrid Features Correspondences, Proc. ISPRS workshop BenCOS at CVPR, Min-
neapolis, MN, USA, 2007.

e M, Byrod, K. Josephson, K. Astrom, Improving Numerical Accuracy of Grébner
Basis Polynomial Equation Solvers, Proc. International Conference on Computer
Vision, Rio de Janeiro, Brazil, 2007.

e M, Byrod, K. Josephson, K. Astrém, Fast Optimal Three View Triangulation, Proc.
Asian Conference on Computer Vision, Tokyo, Japan, 2007.



o M, Byréd, Z. Kukelova, K. Josephson, T. Pajdla, K. Astrom, Fast and Robust
Numerical Solutions to Minimal Problems for Cameras with Radial Distortion,
Proc. ar Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA,
2008.

e 7. Kukelova, M, Byrod, K. Josephson, T. Pajdla, K. Astrom, Fast and Robust
Numerical Solutions to Minimal Problems for Cameras with Radial Distortion,
submitted to Computer Vision and Image Understanding, 2008.

e M, Byrod, K. Josephson, K. Astrom, Fast Optimal Three View Triangulation, sub-
mitted to [PS] Transactions on Computer Vision and Applications, 2008
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Introduction

1 Background

The scope of this thesis is geometrical computer vision. The geometrical foundation of
this field is old and probably begun in 1855 by Chasles [5]. In his paper Chasles looks at
the problem of finding the geometry between two cameras if seven point correspondences
are known between two images. The next important paper in the field was written by
Kruppa in 1913 [20]. In this paper he almost correctly solves the problem of relative pose
between two cameras when the inner calibration of the cameras is known. A corrected
solution of the problem was presented by Thomson in 1959 [33]. After that the field
really took off and the amount of publications has constantly increased.

One of the fundamental problems in geometrical computer vision is the structure and
motion problem. Given one or many images of the same object, this refers to the problem
to say something about the structure of the imaged object and/or the camera motion
between the images. The structure and motion problems can be stated in several different
ways depending what is known about the different entities. In some the placement of two
or more cameras is known and the problem is to calculate the three-dimensional structure.
This is the so-called triangulation problem. In other cases the three-dimensional structure
of the object is known but nothing is known about the camera that took the images. The
problem of finding the location of the camera is then known as the pose problem. Another
situation is when neither the three-dimensional structure nor the camera positions are
known. This is called the structure and motion problem. A special case of the structure
and motion problem consists of calculating the motion between two images. This is
known as the relative pose problem. All these problems can also be varied depending on
the knowledge about the inner parameters of the cameras used, such as, for example, the
focal length.

Of course there are some fundamental limitations in the problem of structure and
motion. Depending on the a priori knowledge of the camera there are different levels
of these ambiguities. For example, if the full inner information of a camera is known,
that is, the camera can be seen as a tool for measuring angles, then there will only be an
ambiguity in size. In other words, it is impossible to know if both the object and the
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INTRODUCTION

movements of the camera is small or if both are large.

This thesis considers several of these structure and motion problems. The first paper
deals with the triangulation problem. This is a well studied area in computer vision [18],
buc still more work is needed especially in the area of globally optimal methods. Globally
optimal methods were developed for two and three views for points [17, 32] but for more
views or other structures, such as lines and conics, things get more complicated.

The second paper deals with Grébner basis methods. Grobner basis methods are used
to solve systems of polynomial equations which naturally arise in structure and motion
problems. The notion of Grébner bases was introduced by Buchberger in his thesis from
1965 [2] and builds on methods in algebraic geometry. The Grébner basis methods give
an algorithmic way to solve systems of polynomial equations, but these algorithms require
exact arithmetics. To overcome this problem Fauggre [10] introduced the F4 method that
applies methods from numerical linear algebra. This can be used in simpler problems but
the numerical accuracy become problematic even for this method. Due to this problem,
specific solvers have been presented inspired by the F4 method. In the second paper of
this thesis an improved method to this problem is presented that can handle more difficult
problems than previously.

1.1 Localization

"Where am I and what am I seeing?" is the question in the localization problem. Many
localization system have been constructed over the time e.g. [27, 3]. Common for these
two are that they only solve the problem in two dimensions. In this thesis the focus
instead is on localization in three dimensions. In three dimensions GPS is a competing
technic, but the GPS has several drawbacks. For example it is not possible to get the
direction from a GPS and it needs an open sky to work.

To solve the localization problem many steps are necessary to carry out. Two of these
steps are those addressed in the first two papers. The problem of triangulation is necessary
to solve to be able to build a model by the training data and the Grébner Basis method
has shown to be an important step if minimal cases are to be used. The improvements on
the Grobner Basis methods are also possible to apply for better solving the triangulation
problem.

The last paper of the thesis builds a complete localization system. To do this several
more problems need to be addressed. One of these is the correspondence problem. This
problem is not directly addressed in this thesis instead commonly used methods are car-
ried out. The focus is on a set of new minimal cases that are derived and used in the
process of localization. By showing how to solve these new minimal cases, we give new
contributions towards solving the general localization problem.

Next will be a short introduction to the most fundamental concepts of geometrical
computer vision and algebraic geometry. In the introduction an overview of important
concepts in computer vision will be given, such as how a camera is modeled, the geometry



2. GEOMETRY IN COMPUTER VISION

between two images and some aspects of the triangulation problem. In algebraic geom-
etry the concepts of ideal and variety are explained. This is followed by the basics on
Grobner bases, and an introduction to the important concept the action matrix. For the
localization problem the correspondence problem is shortly reviewed along with outliers

handling using RANSAC.

2  Geometry in Computer Vision

2.1 The Pinhole Camera

One of the foundations of geometrical computer vision is the pinhole camera. The mod-
eled pinhole camera consists of two components, the focal point and the image plane.
Figure 1 shows a schematic figure of a pinhole camera. There C is the focal point and 7
the image plane, further, X and X3 are world points and x; and x5 are projected image
points.

g<
X2

Figure 1: The geometry of a pinhole camera. X; are points in the three dimensional
space projected to the image points, X; on the image plane w. C is the focal point, also
referred to as the camera center.

The Pinhole camera can be modeled mathematically with the so called camera equa-
tion,

Ax = PX. (1)

In this equation A is the distance between the focal point and the world point and both
the image and the world point are in homogeneous/extended coordinates. P is the camera
matrix of size 3 X 4 and holds both the intrinsic and extrinsic parameters of the camera.
To understand why (1) models a pinhole camera put the focal point in the origin and the
image plane as z = f where f is the focal length, that is, the distance between the image
plane and the focal point. In this case the setup looks as in Figure 2.
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f

Figure 2: A pinhole camera with the image plane, 7, placed at z = f where f is the focal
length of the camera. The focal point C is placed in the origin and the world point X is
projected to the image plane.

As can be seen in Figure 2 a point X = (0, Y, Z)T is mapped to the point (0, fY/Z, f)T.
Since it is possible to rotate this setup to include X, with values different from zero, the
mapping becomes,

X fY.or
XY, 2)" (=) 2
xv.oT e (X ®
With homogenous coordinates this mapping can be expressed with matrix multiplication
according to

0
= Y| = f 0 3)
0

X

v s
Z

1 Z 1

X
Y
Z
1

The principal point is the orthogonal projection of the focal point on the image plane.
During this derivation it is assumed that the pinhole camera has its principal point at the
origin of the image plane. This can not be taken for granted so the mapping in (3) can
be adjusted to account for different principal points by putting

X X
v JX + Zp, f pe O [
2= | Y +2py | = fopy O, (4)
) A Loof {7

where (pz,py) is the principal point. The camera matrix can now be written as Ax =
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2. GEOMETRY IN COMPUTER VISION

K[I|0]X, where K is
f Pa
K=|" 1 nl. 5)
1

There are two more calibration parameters that are associated with the design of the
CCD, the image registration sensor of a digital camera. The first of those is the aspect
ratio of the pixels, y. If the pixels are square than 7 equals 1, which is true for almost
all CCD’s. The second parameter is the skew, s. The skew parameter will be zero if the
x and y axes are perpendicular on the CCD, which for almost all cameras will be true.
These parameters are included in the calibration matrix as follows,

f s D2
K= v byl - (6)
1

This is the full calibration matrix that is used to model a pinhole camera. The only thing
that are still needed is to move the camera away from the origin and to incorporate full
freedom in rotation. This is done by defining the general camera matrix as,

P=K[R|t], @)

where R is an orthogonal matrix and ¢ a translation vector. This is the the camera matrix
for an arbitrary pinhole camera. With this camera (1) represents a projection through a
pinhole camera in homogenous coordinates. This model of a camera is used throughout
this thesis. For a more exhausted derivation of the camera equation see [18].

2.2 Two View Geometry

Geometrical computer vision often includes several cameras, or several images with dif-
ferent views with the same camera. In two-view geometry, the most important property
is the epipolar geometry. The epipolar geometry is the intrinsic geometry between two
views. One main motivation to the study of epipolar geometry is the search for corre-
spondences in triangulation. The reason for this is that the epipolar geometry defines a
line to search along in the second image to find a corresponding point, given a point in
the first image. But the epipolar geometry is also used the other way around, the epipolar
geometry can be calculated through several correspondences between two images which
then can be used to find the camera matrices in the relative pose problem.

Given two corresponding points x and X’ in two images, then these two points have
a common point X in the three dimensional space. With the information from one of
the images the possible locations of X are reduced to a line Ze. the point is known but
not the depth. This line is projected down to a line in the second image and x’ should be
placed on this line, at least in absence of noise. The line which the corresponding point
can be located on is called the epipolar line.
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The geometric entities of the epipolar geometry are shown in Figure 3. The epipoles
are the intersection of the image planes with the baseline joining the camera centers.
Another way to characterize the epipoles is that they are the images of the focal points
of the other. The second entity is the epipolar plane, which is a plane containing the
baseline and the point of interest in the three dimensional space. The last entity is the
epipolar line, which is the intersection of an epipolar plane with the image plane. If the
epipolar geometry is known between two cameras, a point in one image defines a epipolar
line in the other image. Furthermore the epipolar line always intersects the epipole.

X
)

/H

o
C € e C’

Figure 3: A geometry with two cameras and a point X projected down to x and X/,
respectively, in the cameras. The baseline between the two camera centra, C and C’,
intersect the image planes in the epipoles, € and €’. The lines | and I’ in the images,
given by the plane II, are called epipolar lines. The plane II is defined by the camera
centers and the point X.

2.2.1 The Fundamental Matrix

To algebraically describe the epipolar geometry between two cameras the fundamental
matrix is used. The fundamental matrix holds the information of how a point in one of
the images generate the corresponding epipolar line in the other image and the funda-
mental matrix F will map points to lines in homogeneous coordinates according to,

I = Fx. (8)

According to the properties of the epipolar geometry described in the last section the
corresponding point X’ to x has to be contained in the epipolar line I, hence

X7l =xTFx = 0, )

has to be fulfilled for all corresponding points. The fundamental matrix has several im-
portant properties. If F is the fundamental matrix of a camera pair (P, P’) then F7 is
the fundamental matrix for the pair (P’, P). This follows directly from (9). Furthermore
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the fundamental matrix is only given up to scale and has rank 2. The reason why F' has
rank 2 can be understood by the fact that the fundamental matrix maps points into lines
and all these lines intersect in the epipole. Hence it is enough to give a point on a circle
around the epipole.

The fundamental matrix has seven degrees of freedom. The nine elements of the
fundamental matrix encodes these seven degrees of freedom since it is homogenous and
that det(F') = 0 due to the fact that it does not has full rank.

2.2.2 The Essential Matrix

If the cameras are calibrated the degrees of freedom for the fundamental matrix get re-
duced, and the name also changes to the essential matrix. Without calibration the funda-
mental matrix had seven degrees of freedom but the essential matrix has only five. This
can be realized since if the cameras are calibrated the first camera can be set P = [I | O]
and the second to P = [R | t]. Both the translation, t, and the rotation, R, have three
degrees of freedom but since the essential matrix only is given up to scale it only remains
five degrees of freedom.
The essential matrix is defined in the same way as the fundamental matrix,

*TEx =0, (10

where X" and X are the coordinates when the effects of the calibration is removed, so-called
normalized coordinates. From this definition and the relation * = K ~'x it follows that
xTK'"TEK'x = 0. This equation gives the connection between the essential and
fundamental matrices to be as follows,

E=KT"TFK. (11)

The reduced number of degrees of freedom gives additional constraints on the essen-
tial matrix compared to the fundamental matrix. These constraints are that the essential
matrix is a matrix where two of the singular values values are equal and the last zero [18].

In [28] Nistér uses the property,

2FEETE — w(EE')E =0, (12)

introduced by Demazure [8] and later also used by [9], of the essential matrix. This
property is derived from the fact that two singular values are equal and is used to find the
essential matrix given the minimum set of five correspondences between two calibrated
cameras. This constraint has later been used with different constraints on the calibra-
tion matrix to solve several minimal cases in geometrical computer vision [22, 30]. This
method is also used in several occasions in this thesis.
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2.3 The Triangulation Problem

A classical problem in geometrical computer vision is the triangulation problem for points.
The formulation of this problem is:

Problem 2.1 (Triangulation). Given two or more images and corresponding points in those,
find which point in the world that is the source given that the cameras are known.

Figure 4 holds a sketch of the problem of triangulation, where the task of triangulation
is to find the point X that best fulfills the image points.

X

?
.

Figure 4: Sketch of multiple view triangulation. If there were no noise, all lines would
intersect in a single point, but due to noise this is not true. The problem of triangulation
is to find the point X that is the best approximation to such a point given some type of
measure.

The triangulation problem is well studied and hence a lot of literature can be found,
see [18, 26] and the references therein. In the absence of noise this problem is trivial and
can be solved with two views by constructing the matrix,

rp3 —pj
ypP3 — P
~ |#'ps" =) 1
y/pgT - pzT

where p;, pj is the iith row of the camera matrices P and P’, respectively, of the two
views. This matrix will not have full rank and the null space will be the sought after point
in homogeneous coordinates.

If there is noise in the images the problem becomes more difficult. First of all an
optimization criterion has to be chosen. The most common choice and the statistically
optimal given gaussian noise is the reprojection errors in Lg-norm. In recent years also
the L -norm have bee given more interest, see e.g. [16, 19] but in this thesis the focus is
on the Ly-norm.

14



3. ALGEBRAIC GEOMETRY

If the Ly-norm is chosen the most widely used method to triangulate a point is to use
local optimization methods based on gradient decent. After an initialization using a linear
method, so called bundle adjustment is applied [18]. This method is used even though
it is well known that the error function will not be convex and hence local minima can
exists.

To overcome the problem of local minima, global optimal methods are interesting.
Such methods have been given for two and three views. The solution of the two view
case was given by Hartley and Sturm in 1997 [17]. The solution is given by calculating
the stationary points to the cost function. This leads to solving a polynomial of degree
6. The three view case was solved in 2005 by Stewénius ez al. [32]. Also this problem is
solved by calculating the stationary points to the cost function, but in this problem, the
number of those points is 47. To solve that problem Grobner basis methods are used.
The paper of Stewénius ¢t al. was one of the main inspirations to the second paper of this
thesis due to the numerical difficulties they had. The problem of three view triangulation
is used as a benchmarking problem in our paper.

If more than three views are used there are to our knowledge no published global
methods on closed form. You may argue that the solutions to two and three views are
neither closed but they can be solved by an eigenvalue problem. Instead of these methods
other approaches need to be taken. This was done in 2006 by Agarwal ez a/l. [1]. This
method is based on a branch and bound algorithm where the bounding is accomplished
by fractional programing. Branch and bound algorithms have theoretically an exponential
complexity but if both the branching and bounding are done wisely the complexity can
in real examples be considerably lower. In the paper by Agarwal ez al. it is shown that this
indeed is the case with their solution.

2.3.1 Triangulation of Other Geometric Structures

In the paper by Agarwal et 4l. only points are considered. But not only points are of in-
terest in the problem of triangulation. Other structures such as lines, conics and arbitrary
patches, can be interesting to triangulate. The triangulation of lines in two views gives
an exactly determined line in the three dimensional space, since a line in space has four
degrees of freedom.

In the first paper of this thesis an extension to the method used by Agarwal is given
that deals with lines and conics that also gives the globally optimal triangulated structures.

3 Algebraic Geometry

Due to the structure of the camera equation (1) minimal problems in geometrical com-
puter vision often lead to solving systems of polynomial equations. This is also true if
equation (12) is studied. The occurrence of polynomial systems get even more obvious
for the camera equation if the camera is calibrated. In this case only the rotation and
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translation have to be determined. With use of a quaternion ¢ = (a,b,¢,d)” and a
translation vector t = (, 9, z)7 the camera matrix can then be described as follows:

a? +b? —c? — d? 2bc — 2ad 2ac + 2bd x
P = 2ad + 2bc a? —b? +c? — d? 2cd — 2ab yl|. @14
2bd — 2ac 2ab + 2cd a2 = - +d* 2
Under these prerequisites it is natural that many computer vision problems end up in
solving a system of m polynomial equations in s variables, x = (21, ..., zs), formalized
as,
filx) =0,
: (15)
Jm(x) = 0.

To solve systems like this many methods exist, see [4] and references therein. The method
studied to solve these problems in this thesis is through algebraic geometry, see [6, 7] for
a introduction to the field.

One of the benefits of using methods from algebraic geometry in computer vision
is that these can be solved by fast algorithms under certain conditions. In these cases a
problem specific solver can be constructed that computes a solution in a few milliseconds
on a standard PC. This is a very attractive feature since these often are used in the kernel
of a hypothesis and test algorithm and hence have to be executed many times.

The two most important objects in algebraic geometry are the variety and the ideal.

Definition 3.1 (Variety). The variety V' is the set of points X where all equations in a system
of polynomial equations vanish.

The variety does not need to be a finite set but in this thesis only varieties consisting of a
finite set of points are considered.

Definition 3.2 (Ideal). The ideal I generated of a set of polynomials equation f; = 0 is,
ideal I =, hi(x) fi(x), where h; € C[x].

In this definition C[x] denotes the set of all polynomials over the complex numbers.

The reason to study the ideal I to a set of equation as in (15) is that a point X is a
zero of (15) iff it is a zero to the ideal. Now the ideal is used to define equivalence of two
polynomials. This is done by saying that two polynomials f and g are equivalent modulo
Tiff f — g € I, denoted by f ~ g. With this definition a quotient space C[x]/I is
achieved of all equivalent classes modulo 1.

It is also possible to construct equivalence classes based on the variety V. Here two
polynomials are said to be equivalent if they are equal on all x € V. It is obvious that if
two polynomials are equivalent modulo I then they are also equal on V. If furthermore
the ideal is a radical, that is [7], if f™ € I for some m > 1 then f € I, then the converse
is also true and the two structures are isomorphic.

16



3. ALGEBRAIC GEOMETRY

The most important property is that the dimension of C[x]/I is equal to the number
of solutions of (15).

3.1 The Action Matrix

Knowledge of ideals and varieties can be used to solve systems of polynomial equations.
To understand this let us start of by looking at the problem of finding the roots to a
polynomial of degree three. If the polynomial is

f(z) = 23 + agz? + a1z + ao, (16)
then the roots to can be found through the so-called companion matrix,
—a9 1 0
—a; 0 1]. (17)
—ap 0 0

The eigenvalues of the companion matrix are equal to the zeros of (16). This is easily
seen since the characteristic polynomial of (17) is equal to (16). This is well known and
for example used by the Matlab command roots as it is a numerically stable way to find
the roots.

The method of the companion matrix can be extended to the multivariate case [6, 23].
Consider again the system of polynomial equations in (15), and the corresponding ideal
I and variety V. Since the dimension of the quotient space is equal to the number of
solutions to the system, the quotient space forms a linear vector space with the same
dimensionality as the number of solutions. Take p € C[x] and consider the operation
T, : f(x) — p(x)f(x). This operation is now linear and given some basis in C[x]/]
it can be represented with a matrix my,. This matrix is called the action matrix and is a
generalization of the companion matrix.

The action matrix m,, has some nice properties. The eigenvalues of m,, are p(x)
evaluated at the points of V. Furthermore, the eigenvectors of mg are equal to the vector
elements evaluated on V. To understand this consider an arbitrary polynomial p(x). It
can be represented as p(x) = cT'b, where c is a vector with coefficients and b a vector
of monomials forming a basis of the quotient space. Further, let [-] denote the reduction
modulo I, then the following holds for any ¢,

[p- ¢"b] = [(myc)"b] = [¢"my b]. (18)

Since its holds for any ¢ it holds especially for [pb] = [mgb]. If ¢his is evaluated where
x € V the brackets can be left out and the result becomes,

p(x)b(x) = mgb(x), forx e V. (19)
This is recognized as an eigenvalue problem for m;";. Hence the eigenvalues of mg is
equal to p(x) evaluated at the points of V' and the eigenvectors are the basis elements of
b evaluated at the zeros.
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3.2 Grobner Basis

The difficulties in solving systems of polynomial equations are now reduced to construct-
ing the action matrix since the eigenvalue problem is well studied and several algorithms
to solve the problem exist [13]. One way to find the action matrix is to select a linear
basis B of C[x]/I and for each element of B calculate [p - b;] where b; € B. To do these
calculations it is necessary to be able to represent each equivalent class of C[x]/I by a well
defined representative.

One way to find these representatives is to use so called Grobner bases [7]. The key
idea is to use multivariate polynomial division. A Grébner basis exists for each ideal
and yields a well defined reminder for every polynomial. Well defined means that for all

f1, f2 € [f] the reduction with the Grobner basis EG = EG. There is also an algo-
rithm called Buchberger’s algorithm [7] that is guaranteed to find this basis. This method
unfortunately only works with exact arithmetics. The Grébner basis is also dependent of
monomial order that is needed to define a consistent division of multivariate polynomials.

The reason way Buchberger’s algorithm only works with exact arithmetics is that in
each step a check is done if a remainder is zero. With floating points arithmetics it is
impossible to be certain about that since the calculations always are plagued by round of
errors. There has been work to overcome this problem by Faugere [10]. The main idea
of his work is to do many reductions in one step using well studied methods of linear
algebra. This is done by putting the system in (15) on the form,

CX =0, (20)
where X = [x*1,...,x%]T is a vector holding all occurring monomials and C is a
coefficient matrix. With this notion all operation may be done on the coefficient ma-
trix C and the numerics can be enhanced with different methods from numerical linear
algebra [13].

This method of working with Grobner basis methods has been adopted by the com-
puter vision community and used to write special purpose solvers to several problems
such as, relative pose with two calibrated cameras [29], autocalibration with radial distor-
tion [21], relative pose with unknown but common focal length [30], optimal three view
triangulation [32], calculation of the fundamental matrix for a catadioptric camera [12]
and more. Even though the method of Faugere improves the numerical stability it is not
always enough. This becomes obvious in the problem of optimal three view triangulation
where the authors were forced to used 128 bits mantissa on the floats to be able to get
accurate results, which resulted in an extremely slow solver.

4 Global Localization

The problem of global localization is also known as the kidnapped robot problem. The
reason for this is that the problem to solve is to find the location of the robot where the
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only knowledge is some kind of model. In this thesis it is done by using an image so the
problem can be formulated as:

Problem 4.1 (Localization). Given a query image and a model of the 3D scene structure,
[find where the image was taken and how the camera was oriented relative to the model.

In general it is not necessary that the query is in form of an image, even other methods
have been used such as laser sensors [3].

To solve the localization problem several methods from computer vision have to be
used. The triangulation problem, that is the subject for the first paper of this thesis,
is an important step in the construction of a model. The Grobner Basis methods have
also been showed to be useful in this type of problem. Also other problems have to be
solved among those is the correspondence problem. The correspondence is the problem
of finding common points between a query image and the model. This problem is not
directly considered in this thesis instead a widely used method is applied, the method
includes solving many minimal geometrical problems.

With the triangulation and correspondence problems and several minimal cases that
are solved by using Grobner Basis technics it is possible to build a global localization
system. This is the theme of the last paper of this thesis. In that paper several new
minimal cases are derived that are shown useful in global localization.

In the next two subsections a short introduction to the correspondence problem and
to minimal problems are given.

4.1 The Correspondence Problem

The correspondence problem is, given two or more images of the same scene find a set
of points which can be identified as the same points in another image. This problem is
not directly addressed in this thesis. Instead one of the commonly used methods in the
computer vision community is used. This means that interest points are located with
the Maximally Stable Extremal Regions (MSER) method [25]. This method looks for
regions that have similar intensity. These regions are then used as interest points, where
the points is the center of the regions. For each such point a descriptor is calculated
that makes it possible to locate the point in the model. The descriptor used is the SIFT
descriptor [24]. The SIFT descriptor is rotation invariant and moderately scale invari-
ant. The SIFT descriptor looks at gradients in the region around an interest point and
constructs a histogram over directions of the gradients. This information is stored in
128 element feature vectors that are used for matching,.

When the matching between model and query image has been done there will be
a large number of outliers in a vast majority of the cases. One method to handle the
outliers is to use the RANSAC method (RANdom SAmple Consensus). RANSAC was
introduced by Fischler and Bolles [11]. RANSAC takes a small random subset, usually
minimal, of all correspondences and calculates a possible solution. The solution is then
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tested on all correspondences and the number of correspondences that agree with the
solution is counted as inliers. This procedure is performed a large number of times and
the inliers to the solution with most inliers are then considered to be true inliers. On this
larger set it is now possible to apply other methods in order to calculate a better solution,
typically involving local non-linear optimization. In Figure 5 an example of fitting lines
to data with outliers using RANSAC is shown.

Figure 5: Estimation of a line using RANSAC: The open points are outliers and the solid
points inliers. A random minimal set of two points is chosen and an exact fitting is made
to this minimal set. One random set is (a,b) and the other (c,d). In both cases a
margin is added (dashed lines) and the number of points that falls within the margin are
counted as inliers. In this case the (a, b) set gives 10 inliers whereas (c, d) only results
in two. Hence the inlier set of (a, b) is chosen.

4.2 Minimal Cases

In RANSAC minimal cases are the standard method to find the solutions for a random-
ized set of correspondences. In Figure 5 the minimal set is two points to give a test line.
In the pose problem this, of course, gets more complicated. One well know minimal
case for pose problems is if the camera is calibrated, 7.e. K in equation (6) is known. In
this case it is only necessary to have three correspondences between the image and known
world points to decide the pose of the camera, see [15]. On the other hand, this does not
give a single solution, as in Figure 5, instead it can give up to four possible solutions.

The given minimal case is applicable if the model holds three-dimensional points.
Another way to attack the problem is to let the model hold other cameras with points
in those images. Then the problem becomes to decide the relative pose between two
cameras.

Problem 4.2 (Relative Pose). Given a model with known cameras and known image points
in those cameras, find where a query image was taken and how the camera was orientated.
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This problem was as mentioned before almost solved by Kruppa [20] in 1913 and
corrected by Thomson in 1959 [33] given that calibrated cameras are used. If uncali-
brated cameras are used, the problem was solved by Chasles [5] in 1855. This problem
requires at least seven corresponding points and can give up to three possible solutions.

It is not necessary that the camera is either calibrated or uncalibrated. There are
also levels in between. One of these cases of semi-calibrated camera is when the inner
calibration of the camera is known except for the focal length. In this case it is still
possible to solve the pose problem with a minimal setup, which was shown by Stewénius
et al. in [30]. The minimal setup in this case is six corresponding points and it yields 15
solutions.

In the problem of relative pose it is not necessary that all correspondences refer to the
same camera. If this is not the case Stewénius ez a/. [31] solved the problem and showed
that there can be up to 64 solutions if 6 correspondences are used when the unknown
camera is calibrated.

5 Summary of the Papers

PAPER I — Triangulation of Points, Lines and Conics

This paper approaches one of the most fundamental problems in computer vision, the
triangulation problem. The paper continues on a work by Agarwal ez /. [1] presented
in 2006, where a method was presented that guaranteed a globally optimal solution for
triangulation of points in arbitrary many views, if the error measure was the Lo-norm of
the reprojection errors. The method is based on a branch and bound algorithm where the
under estimators are calculated through fractional programming.

In the paper the method is extended in two directions. First it is shown how to handle
uncertainties in measurements of the image objects. It is also shown how the method can
be applied to lines and conics. In the line case Pliicker coordinates [18] are used which
leeds to a more complicated relaxation in the bounding step of the algorithm.

Author contribution: This paper is the result of work carried out by myself and my
supervisor Fredrik Kahl. I acted as first author and carried out the experiments.

PAPER II — Fast and Stable Polynomial Equation Solving for Com-
puter Vision

This paper addresses the problem of numerical instability when systems of polynomial
equations are solved with Grobner basis methods. This is a common problem; e.g. in [32]
Stewénius ez al. were forced to use emulated floats with higher accuracy than usual, which
resulted in a very slow algorithm. Another example of numerical instability is the pa-
per [22] where Kukelova ez al. were not able to construct a floating point solver due to
numerical problems.
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To overcome the numerical problems two new methods are presented, and a combi-
nation of these. The first method truncates the ideal and makes the basis over-redundant.
This gives additional false solutions but we show that all true solution still appear. The
other method used is a change of monomials used for the basis in the quotient space.
This is also extended so that polynomials can be used in the basis instead of monomials.
The combination of these methods is also used with an adaptive step deciding to what
extent the truncation should be done.

The methods are tested on several recently reported problems involving a step where
a system of polynomial equations was solved. On all these problems a significant increase
in numerical stability is shown with a small extra cost in complexity.

Author contribution: This is joint work by myself, Martin Byrsd and Kalle Astrém.
Martin acted as first author but I carried out most of the experiments.

PAPER III — Localization Using Hybrid Feature Correspondences

In the last paper of this thesis the pose problem is considered. Several new minimal cases
are considered with different degree of calibration of the camera. The minimal cases are
based on what we call hybrid features. By hybrid features we mean that both correspon-
dence to other images and correspondences to known world points are used simultane-
ously. For most of these minimal cases upper bounds on the number of solutions are
given. Most of these bounds are found by Grébner basis methods using Macaulay 2 [14].
Some of the new minimal cases are also solved by Grébner basis methods and in some
cases the improved methods of Paper II were necessary to achieve a solution.

Author contribution: This is a joint work of myself, Martin Byréd and our super-
visors Fredrik Kahl and Kalle Astrom. I acted as first author and carried out most of the
experiment with aid primary by Martin.
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Triangulation of Points, Lines and
Conics

Klas Josephson and Fredrik Kahl

Abstract

The problem of reconstructing 3D scene features from multiple views with known camera
motion and given image correspondences is considered. This is a classical and one of the most
basic geometric problems in computer vision and photogrammetry. Yet, previous methods fail
to guarantee optimal reconstructions - they are either plagued by local minima or rely on a
non-optimal cost-function. A common framework for the triangulation problem of points,
lines and conics is presented. We define what is meant by an optimal triangulation based on
statistical principles and then derive an algorithm for computing the globally optimal solution.
The method for achieving the global minimum is based on convex and concave relaxations for
both fractionals and monomials. The performance of the method is evaluated on real image
data.

1 Introduction

Triangulation is the problem of reconstructing 3D scene features from their projections.
Naturally, since it is such a basic problem in computer vision and photogrammetry, there
is a huge literature on the topic, in particular, for point features, see [7, 13]. The standard
approach for estimating point features is a two-step approach:

(i) Use a linear least-squares algorithm to get an initial estimate.

(ii) Refine the estimate (so called bundle adjustment) by minimizing the sum of squares
of reprojection errors in the images.

This methodology works fine in most cases. However, it is well-known that the cost-
function is indeed non-convex and one may occasionally get trapped in local minima [6].
The goal of this paper is to derive the statistically optimal cost-function, cf. [12], and
an algorithm which gives the globally optimal solution with a guarantee. The algorithm
may setve as a benchmarking tool for other methods which are non-optimal. On the
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other hand, as we shall see, the developed algorithm shows good empirical performance
on real data and it can be used for reliably computing optimal estimates in a structure
from motion system.

In [6], the two-view triangulation problem for points was treated. The solution to the
optimal problem was obtained by solving a sixth degree polynomial. This was generalized
for three views in [16], but the resulting polynomial system turns out to be of very high
degree and the solution method based on Grobner bases becomes numerically unstable.
Even though the state-of-the-art methods have improved in this area [2], this approach is
not generalizable for an arbitrary number of views. In [11] convex linear matrix inequali-
ties relaxations are used to approximate the non-convex cost-function (again, in the point
case), but no guarantee of actually obtaining the global minimum is provided. For line
and conic features, the literature is limited to closed-form solutions with algebraic cost-
functions and to local optimization methods, see [7] and the references therein. Global
optimization techniques have also been applied to other problems in multiple view ge-
ometry, see [10] as well as the survey paper [5].

In this paper, we present a common framework for the triangulation problem for any
number of views and for three different feature types, namely, points, lines and conics.
An algorithm is presented which yields the global minimum of the statistically optimal
cost-function. Our approach is most closely related to the work in [9], where fractional
programming is used to solve a number of geometric reconstruction problems including
triangulation for points. Our main contributions are the following. First, we show how
a covariance-weighted cost-function - which is the statistically correct thing to consider
- can be minimized globally. For many feature detectors, e.g., [4, 19], it is possible to
obtain information of position uncertainty of the estimated features. Second, we present
a unified framework for the triangulation problem of points, lines and conics and the
corresponding optimal algorithms. Finally, from an algorithmic point of view, we apply
convex and concave relaxations of monomials in the optimization framework in order to
handle the Pliicker constraints for line features. To our knowledge, global optimization
over the Pliicker manifold has not been done previously in multiple view geometry.

The paper is organized as follows. Section 2 contains a recapitulation on projective
geometry and how points, lines and conics projection can be written in a similar man-
ner. In Section 3 we give expressions for the geometrical reprojection error and state the
problem we solve. Further on in Section 4 the optimization using a branch and bound
algorithm is described, including calculation of a lower bound for the objective function.
In Section 5 evaluation of the method is presented with experiments on three different
data set.

2 Projective Geometry

In the triangulation of points, lines and conics, it is essential to have the formulation of the
projection from the three dimensional space to the two dimensional image space in the
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same way as the standard projection formulation used in the point case. For that reason
we begin with a short recapitulation of the projection of points with a standard pinhole
camera. After that the methods to reformulate the projection of lines and quadrics into
similar equations are considered. For more reading on projective geometry see [7].

2.1 Points

A perspective/pinhole camera is modeled by,
Ax=PX, A>0, (1)

where P denotes the camera matrix of size 3 x 4. Here X denotes the homogeneous
coordinates for the point in the 3D space, X = [U V W 1]7, and z denote the coor-
dinates in the image plane, = [u v 1]T. The scalar A can be interpreted as the depth,
hence A > 0 if the point appears in the image. This property is useful in the optimization
performed in this paper.

2.2 Lines

Lines in three dimensions have four degrees of freedom - a line is determined by the in-
tersection of the line with two predefined planes. The two intersection points on the two
planes encode two degrees of freedom. Even if lines only have four degrees of freedom,
there are no universal way of representing every line in P*. One alternative way to repre-
sent a line is to use Pliicker coordinates. With Pliicker coordinates, the line is represented
in an even higher dimensional space P°. The over parameterization is hold back by a
quadratic constraint that has to be fulfilled for every line.

The Pliicker coordinates to a line in three dimensional space can be obtained from
the Pliicker matrix,

L = ABT — BAT, ()

where A and B are two arbitrary 3D points in homogeneous coordinates on the line. It
is easy to see that L is a skew-symmetric 4 x 4 matrix. Further on are the six Pliicker
coordinates defined as the elements',

L ={la,li3, 14,123, la2, 134} (3)

of L.
From the fact that L has rank 2 and hence det L = 0 it follows that the coordinates
satisfy the constraint

lialza + lLislao 4 l14lo3 = 0. (4)

! Alternative definitions are also used.
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The Pliicker coordinates are also easy to deal with when changing coordinate systems.
If a points X transforms according to X’ = H X, the construction of the Pliicker matrix
gives,
L' = (HA)(HB)T - (HB)(HA)T =
H(ABT)HT — H(BAT)HT = )
H(ABT — BA"YH" = HLH".

Thus the Pliicker matrix transforms as L' = HLH™ . Further, it is easy to show that the
coordinates are independent of the choice of points defining the line.

One advantage with the Pliicker representation of lines is that it is possible to con-
struct a Pliicker camera, F., that makes it possible to write the projection formula in a
similar way as in the point case. The Pliicker camera equation looks like,

AN=RL, (6)
where P, is the so called Pliicker camera. The Pliicker camera is given by

P2 A D3
E =1\ psApt |, @)
p1 N\ P2

where p] denote the rows of the point camera matrix and p; A p; denotes the Pliicker
line constructed by p; and p;. The Pliicker camera is hence a 3 X 6 matrix with elements
that are quadratic in the elements of the standard camera matrix. Further, [ denotes the
projected image line, represented by a 3 x 1 vector.

One difference, however, in the projection equation for lines compared with that of
points is that it is not possible to interpret the scale A as depth.

2.3 Conics

As for lines, we are interested in writing the projection of a quadric to an image conic in
the form of the projection formula for points. Before that we first make a short recapitu-
lation on conics and quadrics.

A general conic in the plane is defined by the quadratic form

2Tex = 0. (8)

Here x are points in homogeneous coordinates on the edge of the conicand cisa 3 x 3
symmetric matrix. In a similar manner a quadric in space is defined by the quadratic
form,

xTcx =o, 9)

where X is a point in homogeneous coordinates and C'a 4 X 4 symmetric matrix.
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When quadrics are projected through a pinhole camera (1), is it a lot easier to work
with the duals to the conics and quadrics. These duals are the envelopes of the structures.
For conics, the envelope consists of lines and for quadrics, the envelope consist of all
planes tangent to the quadric locus. Provided the quadrics and conics are non-degenerate,
one can show that the equations for the duals are

UTLU =0, (10)
where U are homogeneous plane coordinates and L = C L. Similar for conics, one gets
wllu=0, (11)

where u are homogeneous line coordinates and [ = ¢~1. The projection for the envelope
forms are

M =PLPT X+#0. (12)

Now we want to reformulate (12) so it appears in a similar form as the point projec-
tion formula. This is indeed possible.

Lemma 2.1. The projection of a quadric,
M = PLPT, (13)

can be written

AN =PL. (14)
where | and L denote column vectors of length 6 and 10 obrained from stacking the elements
inl and L. R, is an 6 x 10 matrix. The entries in F, are quadratic expressions in P.

Proof. Equation (13) can be written as a tensor product, M = (P ® P)L, where [ and
L denote the stacked columns of [ and L. Due to the symmetry in [ and L it can be
rewritten as (14). O

As for the line case, it is not possible to make the interpretation that the scalar A of
the projected conic corresponds to the depth.

3 Triangulation

In triangulation the goal is to reconstruct a three dimensional scene from measurements
in N images, N > 2. The camera matrices P;, ¢ = 1... N, are considered to be known
for each image. In the point case, the camera matrix can be written P = (p1, p2, p3)7,
where p; is a 4—vector. Let (u,v)” denote the image coordinatesand X = (U, V, W, 1)T
the extended coordinates of the point in 3D. This gives the reprojection error

T X X
r:(u—p; ,v—pzT > (15)
ng ng
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Further, Zfil ||7:13 is the objective function to minimize if the smallest reprojection
error is to be achieved in Lo-norm. To use the optimization algorithm proposed in this
paper (see next section), it is necessary to write the error in each image as a rational
function f/g where f is convex and g concave.

The residual 7 in (15) can be rewritten as

. (up;?X—p?X vpsTX—pzTX)
X 1 piX ’

(16)

is it easy to see that the La-norm of the residual can be written as ||7]|? = ((a7 X)? +
(b7 X)2)/(pY X)?2, where a, b are 4-vectors determined by the image coordinates and the
elements of the camera matrix. By choosing f = ((a® X)%+ (b7 X)?)/(p} X) (with the
domain p? X > 0) and g = pI' X, one can show that f is indeed convex and g concave.
It is straight forward to form the same residual vectors in the line and conic cases - the
only difference is that the dimension is different.

3.1 Error Distribution

In the remainder of this paper, it will be assumed that the errors on the residual elements
are Gaussian. This is true when triangulating points given that the errors that appear in
the image plane are normally distributed. For lines and conics this will not be entirely
true [8] but we argue that it is an good approximation when the magnitude of the errors
is small.

In order to validate this claim, the following experiments were performed: 100,000
random images were created consisting of one conic and one line. These structures were
than sampled with 21 and 63 points for the line and the conic, respectively. Gaussian
noise was then added to these points with a standard deviation corresponding to one pixel
in an image with a resolution 1000 x 1000 pixels. In the next step, a line and a conic
were fitted to these points using least-squares. In the line case, the scale was adjusted such
that the first two coordinates have a norm of one and translated such that the distance to
the origin was one in order to avoid passing through the origin (since this would mean
that the third coordinate would be zero).

As can be seen in Figure 1 the elements in the line vector residual is not perfectly
normally distributed but it is an good approximation. In the conic case, Figure 2 shows
that two of the elements are closer to be perfect normally distributed. These two elements
correspond to the center of the conic divided by a scale factor. The other three elements
are close to normal distributions even though they are not as close as the other two.

3.2 Incorporation of Covariance

The residual vector (16) may in dimension independent notation be written

r— (flsz - p1TX xnflpZX - png)
pEX T pEX

(17)
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Figure 1: The distributions of the errors in the two residuals for line case when Gaussian
noise is added to 21 sample points of the true line. A Gaussian distribution is overlaid to
the histogram to compare with.
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Figure 2: The distributions of the errors in the five elements of the conic residual vector
when Gaussian noise is added to 63 sample points. A Gaussian distribution is overlaid to
the histogram to compare with.
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The statistically optimal cost-function is to weight the residual vector by its covariance
[12] (at least to a first order approximation). Incorporating covariance weighted error

transforms to,
I T ng — p?X
—pTTL X Yo

where L is the cholesky factorization of the inverse covariance matrix to the structure in

| Lr| = , (18)

each image. Notice that we have chosen to normalize by the last coordinate and in that
case the covariance becomes a 2 X 2 symmetric matrix in the point and line cases and a
5 x 5 in the conic case. The reason why the covariance matrix is one dimension lower
than the image vector is that there is no uncertainty in the last element of the extended
image coordinates.

3.3 Problem Formulation

For the triangulation of points, lines or conics, the optimization problem to solve can be
formulated as follows:

min Y || Liri|*. (19)
=1

The only thing which differs (except for dimensions) in the different cases is that in the
line case it is necessary to fulfill the quadratic Pliicker constraint (4) for the coordinates
of the three dimensional structure.

4 Branch and Bound Optimization

Branch and bound algorithms are used to find the global optimum for non-convex opti-
mization problems. The result of the algorithm is a provable upper and lower bound of
the optimum and it is possible to get arbitrary close to the optimum.

On a non-convex, scalar-valued, objective function ® at the domain )y the branch
and bound algorithm works by finding a lower bound to the function ® on the domain
Qo- The lower bounding function should ideally be a convex function to make it possible
to find a minimum reliably. If the difference between the optimum for the bounding
function and the lowest value of the function ® - calculated so far - is small enough, say
€, then the optimum is considered to be found. Otherwise the domain Q) is splitted into
subdomains and the procedure is repeated in these domains. The algorithm repeats until
the gap between the bounding function and the value of the objective function is smaller
than the predefined value €. Hence, the global optimum is attained within a preset e > 0
which can be chosen arbitrarily small.

If the lower bounding function on a subdomain has its minimum higher than a
known value of the objective function in another subdomain, it is possible to neglect
the first subdomain since we know that the optimum in that region is greater than the
lowest value obtained so far.
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4.1 Bounding

The goal of the bounding function @y, is that it should be (i) a close under-estimator
to the original objective function ® and (ii) easy to compute the lowest value @y, in a
given domain. For practical reasons, convex functions are good candidates as bounding
functions. Further, as the domain of the bounding functions is partitioned into smaller
regions, the approximation gap to the objective function must converge (uniformly). A
good choice of @y, is the convex envelope, defined as follows.

Definition 1 (Convex Envelope). Let f : S — R, where S C R" is a nonempty convex
set. The convex envelope of f over S (denoted convenv f) is a convex function such that
(i) convenv f(z) < f(x) V¥V x € S and (i) for any other convex function u, satisfying
u(z) < f(x) Vo € S, we have convenv f(z) > u(z) Vz € S.

In Figure 3, an example of a convex envelope of a one dimensional function is plotted.

f(x)

Figure 3: Illustration of the convex envelope; the blue solid line is a function f(z) and
the dashed red line is its convex envelope convenv f ().

The concave envelope is defined in a similar manner. It can often be hard to compute
the convex envelope (or concave envelope), in fact, it may be as hard as computing the
global optimum itself.
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Fractional Relaxation

Fractional programming is used to minimize/maximize a sum of p > 1 fractions subject
to convex constraints. In this paper we are interested of minimizing

min Z fi(z) (20)
z i—1 gz 37
subject to z e D,

where f; and g; are convex and concave, respectively, functions from R” — R, and the
domain D C R" is a convex set. On top of this it is assumed that f; and g; are positive
and that one can compute a priori bounds on f; and g;. Even under these assumptions it
can be shown that the problem is N'P-complete [3].

Instead of studying equation (20) more let us rewrite it. Assume that we have bounds
on the functions f;(z) and g;(x), where the intervals are [I;, u;] and [L;, Uj], re-
spectively. Let the 2p-dimensional rectangle [l1, u1] X -+ X [Ip, up] X [L1, U] X

x [L,, Up] be denoted Qp. With auxiliary variables t = (t1,...,t,)T and s =
(81, 8p)T it can be showed that the global optimum to (20) is identic as to the fol-
lowing optimization problem,

. 123
w2y e

subject to  fi(x) <t; gi(x) >s;
xeD (ts) € Qo.
In [18] it has been shown that the problem of finding the convex envelope to a single

fraction t/s as the parts in the sum in (21), where ¢ € [l,u] and s € [L, U], is given as
the solution of the following Second Order Cone Program (SOCP):

t
convenv [} = minimize r (22)
S
subject to ’ TQA_\[/ ’ <7r' 44

2(1 — \)vau

r—r —s+s

’gr—r’—i—s—s’

AL <s<\U (1-XNL<s—s<(1-NU
>0 r—r' >0
1 <t<u L<s<U
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4. BRANCH AND BOUND OPTIMIZATION

where \ = Z—j for ease the notation and 7, 7, s’ are auxiliary scalar variables.

When @ is a sum of ratios as in (21) a bound for the function can be calculated
as the sum of the convex envelopes of the individual fractions. When summarizing the
convex envelopes the sum will, however, generally not be the convex envelope to the
function. Still the function will be a lower bound and it fulfills the requirements of a
bounding function. This way of calculating @y, by solving p SOCP problems can be
done efficiently [17].

A more exhaustive description on fractional programming in multiple view geometry
can be found in [9] where point triangulation (without covariance weighting) is treated.

Monomial Relaxation

In the line case the Pliicker coordinates have to fulfill the Pliicker constraint (4). This
gives extra constraints in the problem to find lower bounds.

If we make the choice in the construction of the Pliicker coordinates that the first
point lies on the plane z = 1 and the second on the plane z = 0, remember that the
Pliicker coordinates are independent of the construction points, the two points X =
(w1, w2, 1, DT and Y = (y1, y2, 0, 1)T gives the following Pliicker coordinates for
the line (2.2),

L= (T1y2 — Tay1, —Y1, T1 — Y1, —Y2, Y2 — Ta, 1)7. (23)

This parameterization involves that the last coordinate is one and that only the first one
is nonlinear to the points of intersection. Thanks to this it is only necessary to make a
relaxation of the first coordinate (in addition to the fractional terms).

The choosen parameterization does not work if the line is parallel to the plane z = 0.
If this is the case we change the coordinate system.

In [14] the convex and the concave envelopes are derived for a monomial y;y2. The
convex envelope is given by

U v, _ ,Uu,U
convenv(ylyg) — Inax{ Y1Ys + Y1 Y2 Y1 Yz } . (24)

y1ys +yiye — ylys

Similarly the concave envelope is

y1y2§ + ylz ys — y{Lf y{gi } 25)
Yz T YrY2 — Y1'yYs

Given bounds on 1, z2,y; and y2 in the parameterization of a line, it is possible to
propagate the bounds to the monomials z1y2 and x2y;.

concenv(y;ys) = min {

4.2 Branching

It is necessarily to have a good strategy when branching. If a bad strategy is chosen the
complexity can be exponentially but if a good choice is made it is possible to achieve a
lower complexity - at least in practice.
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A standard branching strategy for fractional programming [1] is to branch on the
denominator s; of each fractional term t;/s;. This limits the practical use of branch and
bound optimization to at most about 10 dimensions [15] but in the case of triangulation
the number of branching dimensions can be limited to a fixed number (at most the degree
of freedom of the geometric primitive). Hence, in the point case is it enough to branch
on three dimensions, in the line case four and in the cases of conics nine dimensions
maximally.

In the line case, we choose not to branch on the denominators. Instead the coordi-
nates of the points where the line intersect with the planes 2 = 0 and z = 1 are used
for the parameterization (4.1). This gives four dimensions to split at, independent of the
number of images. It is also important to choose a coordinate system such that the nu-
merical values of these parameters are kept at a reasonable magnitude. When the decision
of which rectangle to split is taken there are two choices to make. The first is on which
dimension to split and the second where to split in the chosen dimension. A reasonable
pick of dimension is the one with the largest interval. The decision to split can be made
in several different ways. One alternative is to make use of the bounding function. The
hypothesis is that the domain with the minimum bounding function is the best candidate
for the minimum of the objective function. To get as good estimation as possible close
to that point the splitting location can be chosen close to the minimum of the bounding
function. Another way to split is to split the dimension into two equal parts. Both these
splitting procedure can be shown to be convergent [1].

4.3 Initialization

It is necessary to have an initial domain g for the branch and bound algorithm. The
method used for this is similar in the point and conic case but different in the line case
due to the Pliicker constraint.

Points and Conics

In order to get a bound on the denominators, we assume a bound on the maximal repro-
jection error. Thus the bounds are constructed from a user given maximal reprojection
error. The bounds on the denominators g;(x) can then be calculated by the following
optimization problem,

fori=1,...,p, min/max g;(x) (26)

subject to 1i(®) <~ j=1,...,p,
g (x)

where 7y is the user given bound on the reprojection error. This is a quadratic convex
programming problem. In the experiments, + is set to 3.
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Lines

In the case of lines, the Pliicker constraint makes things a bit more problematic. Instead
we choose a more geometric way of getting bounds on the coordinates of the two points
defining the line.

For each image line [ we first set the scale such that the norm of the first two coor-
dinates equals one and then we make a translation to avoid the line to pass through the
origin. Two parallel lines ({1 and l2) are then constructed with 7y pixels apart (one on each
side of [). Then, we make the hypothesis that the two points defining the optimal 3D
line (with our choice of coordinate systems) are located on the planes z = 0 and z = 1,
respectively. Now, in order to find bounds on x1, 2, y1, Y2, see equation (23), we need
to solve the optimization problems,

max/min x;
subjectto 1L, P,X <0 27)
lg;PiX >0,

where X = [21,22,0,1]7

[y1,2,1,1]T . Again, it is important to choose the coordinate system such that the

and the corresponding for y; with X substituted to ¥ =

planes z = 0 and z = 1 are located appropriately. In addition, to avoid getting an
unbounded feasible region, the maximum depth is limited to the order of the 3D point
furthest away. In the experiments, we set ¥ to 5 pixels.

5 Experiments

The implementation is made in Matlab using a toolbox called SeDuMi [17] for the con-
vex optimization steps.

The splitting of dimensions has been made by taking advantage of the information
where the minimum of the bounding function is located, as described in Section 4.2.

While testing the various cases, we have found that the relaxation performed in the
line case - a combination of fractions and monomials - the bounds on the denominators
is a critical factor for the speed of convergence. To increase the convergence speed, a local
gradient descent step is performed on the computed solution in order to quickly obtain a
good solution which can be employed to discard uninteresting domains.

Two public sets of real data® were used for the experiments with points and lines.
One of a model house with a circular motion and one of a corridor with a mostly forward
moving camera motion. The model house has 10 frames and the corridor 11. In these
two sequences there were no conics. In Figure 4 samples of the data sets for points and
lines are given. A third real data sequence was used for conic triangulation, see Figure 6.

Zhttp://www.robots.ox.ac.uk/~vgg/data.html
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Figure 4: Image sets used for the experiments.

Points and lines were reconstructed and then the reprojection errors between different
methods were compared. The other methods compared are bundle adjustment and a
linear method [7]. The covariance structure for the lines was computed by fitting a line
to measured image points. In the reconstruction only the four first frames were used.
In the house scene, there are 460 points and in the corridor 490. The optimum was
considered to be found if the gap between the global optimum and the under-estimator
was less than 10 %. The results are presented in Tables 1 and 2.

Data set Optimal Bundle Linear

Mean Std | Mean Std | Mean  Std
House 0.15 0.14 | 0.15 0.14 | 0.16 0.15

Corridor | 0.13 0.11 | 0.13 0.11 | 0.13 0.11

Table 1: Reprojection errors for points with three different methods on two data sets.

Data set Optimal Bundle Linear

Mean Std | Mean Std | Mean  Std
House 140 092 | 141 093 | 1.62 1.03

Corridor | 3.42  4.29 | 3.30 4.34 | 4.02 545

Table 2: Reprojection errors for lines with three different methods on two data sets.

In the house scene, the termination criterion was reached already in the first iteration
for all points and for most of them the bounding functions was very close to the global
minimum (less than the 10 % required). In the corridor scene, the average number of
iterations were 3 and all minimas were reached within at most 23 iterations.

In the line case, the under-estimators works not as well as in the point case. This is due
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5. EXPERIMENTS

(@ (b)

Figure 5: The result from reprojection of lines. The green dashed line is the original and
the red solid line is the reprojected. Image (a) is from the house scene and (b) is from the
corridor.

to the extra complexity of the Pliicker coordinates. This makes it necessary to perform
more iterations before it is possible to state that the global optimum is reached within
a given certainty. In the house scene with the circular camera motion the breakpoint is
reached within at most 120 iterations for all the tested 12 lines. However, for the corridor
sequence with a weaker camera geometry (at least for triangulation purposes) it is not
even enough with 500 iterations for 6 of the tested 12 lines. Even if a lot of iterations
are needed to certify the global minimum, the location of the optimum in most cases is
reached within less than a handful of iterations.

It can be seen in Tables 1 and 2 that both a linear method and bundle adjustment
work fine for these problems. However, in some cases the bundle adjustment reprojection
errors get higher than the errors for the optimal method. This shows that bundle adjust-
ment (which is based on local gradient descent) sometimes gets stuck in a local minimum.
The opposite also occurs in some cases: bundle adjustment gets better results than the op-
timal method. The reason for this is twofold. The first reason is that a threshold is used
in the optimal method for the gap between the optimal value and the found value of the
objective function. This gap is fixed to 10% in our experiments which leaves a margin.
The second reason is that this margin of error is not attained in all line experiments where
we instead reach the maximum iteration number.

The result can also be seen in Figure 5 where two lines from each data set are compared
with reprojected line.

5.1 Conics

For conics, some example images can be found in Figure 6 with marked image conics. The
covariance structure was estimated by fitting a conic curve to measured image points. The
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Figure 6: The images with the data used for conics.

corresponding 3D quadrics were first computed with the optimal and a linear method.
The result of the reprojected conics from these two methods are imaged in Figure 7.

The number of iterations performed to reach the global minimum with a gap less
then 5 % of the bounding function for the three conics were 3, 6 and 14. As can be seen
from the images, the quadrics in the data set are planar and hence the condition number
of the corresponding 4 x 4 matrix should be zero. For the three estimated quadrics with
the optimal method, the condition numbers are 1.2 - 1072, 3.7 - 10~7 and 8.8 - 1075,
This can be compared with the result for the linear estimate with condition numbers of

3.7-107%,4.1-10"% and 1.1 - 1074,

The result of the optimal method was also compared with bundle adjustment. In the
local optimization the result of the linear method were used as initialization. The norm
of the residual from the three estimated quadrics are shown in Table 3. As can be seen
there the result of the optimal method and bundle adjustment is identical. This shows
that bundle adjustment reached the global optimum in all the experiments.

Conic # | Optimal | Bundle | Linear
1 39.5 39.5 1190
2 5.00 5.00 160
3 15.3 15.3 2660

Table 3: The norm of the residuals when quadrics were reconstructed. It is obvious
that the linear method isn’t good enough and that bundle adjustment reaches the global
optimum.

Figure 7 (a) shows the reprojected conic compared with the original for one of the
conics. The fitting is very good and it is obvious from Figure 7 (b) that the linear result
is far from acceptable. In part (c) of Figure 7 a comparison of the optimal method and
bundle adjustment is shown. As can be seen there the result is almost identical.
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[ RN

(a) (b) (©

Figure 7: The result of the reprojected conics of the data set in Figure 6. In image (a)
a part of the reconstruction with optimal method is viewed. The light green line is the
reprojection and the dark red the original conic. In (b) the red lines are the reprojection
after linear method and the white when the optimal method were used. In (c) the image
in (b) is zoomed in. The added blue dashed line is the result from bundle adjustment
initialized with the result from the linear method (red), as can be seen this line almosst
perfectly coincide with the result from the optimal method.

6 Discussion

A unified treatment of the triangulation problem has been described using covariance
propagation. In addition to traditional local algorithms and algorithms based on algebraic
objective functions, globally optimal algorithms have been presented for the triangulation
of points, lines and conics. For most cases, local methods work fine and they are generally
faster in performance. However, none of the competing methods have a guarantee of
globality.

The performed experiments show that bundle adjustment works well. This conclu-
sion may come as no surprise. It has already been observed in the two-view case for
points [6]. Now it is shown that this is true for any number of views for point features.
Perhaps the main contribution of this paper is to serve as a benchmarking algorithm of
other algorithms since it gives a way to evaluate the performance of other methods.

A future line of research is to include more constraints in the estimation process, for
example, planar quadric constraints. This opens up the possibility to perform optimal
auto-calibration using the image absolute conic. An other line of research is to improve
computational efficiency for global optimal triangulation problems.
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Fast and Stable Polynomial Equation
Solving for Computer Vision

Martin Byrsd, Klas Josephson and Kalle Astrom

Abstract

This paper presents several new results on techniques for solving polynomial problems in com-
puter vision. Grobner basis techniques for equation solving have been applied successfully ro
several geometric computer vision problems. However, in many cases these methods are plagued
by numerical problems. In this paper we show that an extension of current state of the art
by not only considering reduction based on a Gribner basis can yield dramatic improvements
in numerical stability. Furthermore, we show how the action matrix can be computed in the
general setting of an arbitrary linear basis for C[X|/1. In particular, two improvements on
the stabality of the computations are made by studying how the linear basis for C[x|/I should
be selected. The first of these strategies utilizes QR-factorization with column pivoting and the
second is based on singular value decomposition (SVD). Moreover, it is shown how to improve
stability further by an adaptive scheme for truncation of the Gribner basis. These new rech-
niques are studied on some of the latest reported uses of Grobner basis methods in computer
vision and we demonstrate dramatically improved numerical stability making it possible to
solve a larger class of problems than previously possible.

1 Introduction

Numerous geometric problems in computer vision involve the solution of systems of
polynomial equations. This is particularily true for so called minimal structure and mo-
tion problems, e.g. [5, 22, 35]. Solutions to minimal structure and motion problems can
often be used in RANSAC algorithms to find inliers in noisy data [10, 36, 37]. For such
applications one needs to solve a large number of minimal structure and motion problems
as fast as possible in order to find the best set of inliers. There is thus a need for fast and
numerically stable algorithms for solving particular systems of polynomial equations.
Another area of recent interest is global optimization used for e.g. optimal triangula-
tion, resectioning and fundamental matrix estimation. Global optimization is a promis-
ing, but difficult pursuit and different lines of attack have been tried, e.g. branch and
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bound [1], Lo norm methods [14, 19] and methods using linear matrix inequalities
(LMIs) [20].

An alternative way to find the global optimum is to calculate stationary points directly
(usually by solving some polynomial equation system) [15, 34]. So far, this has been
an approach of limited applicability since calculation of stationary points is numerically
difficult for larger problems. By using the methods presented in this paper it should be
possible to handle a somewhat larger class of problems, thus offering an alternative to
the above mentioned optimization methods. An example of this is optimal three view
triangulation which has previously not been solved in a practical way [34]. We show
that this problem can now be solved in a reasonably efficient way with an algorithm
implemented in standard IEEE double precision.

Traditionally, researchers have hand-coded elimination schemes in order to solve sys-
tems of polynomial equations. Recently, however, new techniques based on algebraic
geometry and numerical linear algebra have been used to find all solutions, ¢f. [30]. The
outline of such algorithms is that one first studies a specific geometric problem and finds
out what structure the Grébner basis the ideal I has for that problem, how many solutions
there are and what the degrees of monomials occurring in the Grobner basis elements are.
For each instance of the problem with numerical data, the process of forming the Grob-
ner basis follows the same steps and the solution to the problem can be written down as
a sequence of pre determined elimination steps using numerical linear algebra.

Currently, the limiting factor in using these methods for larger and more difficult
cases is numerical problems. For example in [34] it was necessary to use emulated 128
bit numerics to make the system work, which made the implementation very slow. This
paper improves on the state of the art of these techniques making it possible to handle
larger and more difficult problems in a practical way.

In the paper we pin-point the main source of these numerical problems (the condi-
tioning of a crucial elimination step) and propose a range of techniques for dealing with
this issue. The main novelty is a new approach to the action matrix method for equation
solving, relaxing the need of adhering to a properly defined monomial order and a com-
plete Grobner basis. This unlocks substantial freedom, which in this paper is used in a
number of different ways to improve stability.

Firstly, we show how the sensitive elimination step can be avoided completely, by
using an overly large/redundant (linearly dependent) basis for C[x]|/I to construct the
action matrix. This method yields the right solutions along with a set of false solutions
that can then easily be filtered out by evaluation in the original equations.

Secondly, we show how a change of basis in the quotient space C[x]/I can be used
to improve the numerical precision of the Grobner basis computations. This approach
can be seen as an attempt at finding an optimal reordering or even linear combination of
the monomials and we investigate what conditions such a reordering/linear combination
needs to satisfy. We develop the tools needed to compute the action matrix in a general
linear basis for C[x]/T and propose two strategies for selecting a basis which enhances the
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stability of the solution procedure.

The first of these is a fast strategy based on QR-factorization with column pivoting.
The Grébner basis like computations employed to solve a system of polynomial equa-
tions can essentially be seen as matrix factorization of an under-determined linear system.
Based on this insight, we combine the robust method of QR factorization from numer-
ical linear algebra with the Grobner basis theory needed to solve polynomial equations.
More precisely, we employ QR-factorization with column pivoting in the above men-
tioned elimination step and obtain a simultaneous selection of linear basis and triangular
factorization.

Factorization with column pivoting is a very well studied technique and there exist
highly optimized and reliable implementations of these algorithms in e.g. LAPACK [25],
which makes this technique accessible and relatively straight forward to implement.

The second technique for basis selection goes one step further and employs singular
value decomposition (SVD) to select a general linear basis of polynomials for C[x]/I.
This technique is computationally more demanding than the QR-method, but yields
even better stability.

Finally, we show how a redundant linear basis for C[x]/I can be combined with
the above basis selection techniques. In the QR-method, since the pivot elements are
sorted in descending order, we get an adaptive criterion for where to truncate the Grébner
basis like structure by setting a maximal threshold for the quotient between the largest
and the smallest pivot element. When the quotient exceeds this threshold we abort the
elimination and move the remaining columns into the basis. This way, we expand the
basis only when necessary.

The paper is organized as follows. We give an overview of the classical theory of alge-
braic geometry underlying the ideas presented in this paper in Section 2 after a brief dis-
cussion of related techniques for polynomial equation solving in Section 1.1. Thereafter,
in Section 3.1, we present the theoretical underpinnings of the new numerical techniques
introduced in Sections 4, 5, 5.3 and 6. In Section 7 we evaluate the speed and numeri-
cal stability of the proposed techniques on a range of typical geometric computer vision
problems and finally we give some concluding remarks.

1.1 Related Work

The area of polynomial equation solving is currently very active and only few of the
available methods have yet found their way into the computer vision community. See
e.g. [4] and references therein for a comprehensive exposition of the state of the art in this
field.

One of the oldest and still used methods for non-linear equation solving is the Newton-
Raphson method which essendially works by gradient descent. Newton-Raphson is fast
and easy to implement, but depends heavily on initalisation and finds only a single zero
for each initialisation. In the univariate case, a numerically sound procedure to find the
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complete set of roots is to compute the eigenvalues of the companion matrix. However,
if only real solutions are needed, the fastest way is probably to use Sturm sequences [17].

In several variables, a first method is to use resultants [6], which using a determinant
construct enables the successive elimination of variables. However, the resultant grows
exponentially in the number of variables and is in most cases not practical for more than
two variables. An alternative way of eliminating variables is to compute a lexicographical
Grobner basis for the ideal generated by the equations which can be shown to contain
a univariate polynomial representing the solutions [6]. This approach is however often
numerically unstable.

A radically different approach is provided by homotopy continuation methods [38].
These methods typically work in conjunction with mixed volume calculations by con-
structing a simple polynomial system with the same number of zeros as the actual system
that is to be solved. The simple system with known zeros is then continously deformed
into the actual system. The main drawback of these methods is the computational com-
plexity with computation time ranging in seconds or more.

At present, the best methods for geometric computer vision problems are based on
eigendecomposition of a certain matrices (action matrices) representing multiplication in
the quotient space C[x]/I. The action matrix can be seen as a direct generalization of the
companion matrix in the univariate case. The factors that make this approach attractive
is that it (i) is fast and numerically feasible, (ii) handles more than two variables and
reasonably high degrees (up to around 10) and (iii) is well suited to tuning for specific
applications. To the authors best knowledge, this method was first used in the context
of computer vision by Stewenius ez a/. [30] eventhough Grébner basis methods were
mentioned in [16].

The work presented in this paper is based on preliminary results presented in [2, 3]
and essentially develops the action matrix method further to resolve numerical issues
arising in the construction of the action matrix. Using the methods presented here, it is
now possible to solve a larger class of problems than previously possible.

2 Review of Algebraic Geometry for Equation Solving

In this section we review some of the classical theory of multivariate polynomials. We
consider the following problem

Problem 1. Given a set of m polynomials f;(x) in s variables x = (z1,...,;), deter-
mine the complete set of solutions to

fl(X) = O
: 1)
fm(x) =0.
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2. REVIEW OF ALGEBRAIC GEOMETRY FOR EQUATION SOLVING

We denote by V' the zero set of (1). In general V' need not be finite, but in this paper we
will only consider zero dimensional V/, z.e. V is a point set.

The general field of study of multivariate polynomials is algebraic geometry. See [6]
for a nice introduction to the field and for proofs of all claims made in this section. In
the language of algebraic geometry, V' is an affine algebraic variety and the polynomials
fi generate an ideal I = ¥;h;(x) f;(x), where h; € C[x] are any polynomials and C[x]
denotes the set of all polynomials in X over the complex numbers.

The motivation for studying the ideal I is that it is a generalization of the set of
equations (1). A point x is a zero of (1) iff it is a zero of I. Being even more general, we
could ask for the complete set of polynomials which vanish on V. If I is equal to this set,
then I is called a radical ideal.

We say that two polynomials f, g are equivalent modulo I iff f — g € I and denote
this by f ~ g. With this definition we get the quotient space C[x]/I of all equivalence
classes modulo I and let [-] denote the natural projection C[x] — C[x]/I, i.e. by [f;] we
mean the set {g; : f; — gi € I} of polynomials equivalent to f; modulo I.

A related structure is C[V], the set of equivalence classes of polynomial functions on
V. We say that a function F' is polynomial on V' if there is a polynomial f such that
F(x) = f(x) for x € V and equivalence here means equality on V. If two polynomials
are equivalent modulo I, then they are obviously also equal on V. If I is radical, then
conversely two polynomials which are equal on V' must also be equivalent modulo I.
This means that for radical ideals, C[x]/I and C[V] are isomorphic. Moreover, if V is a
point set, then clearly C[V] is isomorphic to C", where r = |V/|.

2.1 The Action Matrix

Turning to equation solving, our starting point is the companion matrix which arises for
polynomials in one variable. For a third degree polynomial

p(x) = 2 + as2® + arx + ay, 2
the companion matrix is
—as 1 0
—aq 0 1]. (3)
—ap 0 O

The eigenvalues of the companion matrix are the zeros of p(x) and for high degree poly-
nomials, this provides a numerically stable way of calculating the roots.

With some care, this technique can be extended to the multivariate case as well,
which was first done by Lazard in 1981 [26]. For V finite, the space C[x|/I is fi-
nite dimensional. Moreover, if I is radical, then the dimension of C[x]/I is equal to
|[V|, i.e. the number of solutions [6]. For some p € C[x] consider now the operation
T, : f(x) — p(x)f(x). The operator T}, is linear and since C[x]/I is finite dimen-
sional, we can select a linear basis B of polynomials for C[x]/I and represent T}, as a
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matrix m,. This matrix is known as the action matrix and is precisely the generalization
of the companion matrix we are looking for. The eigenvalues of m,, are p(x) evaluated
at the points of V. Moreover, the eigenvectors of m equals the vector of basis elements
evaluated on V. Briefly, this can be understood as follows: Consider an arbitrary poly-
nomial p(x) = ¢I'b, where c is a vector of coefficients and b is a vector of polynomials

forming a basis of C[x]/I. We then have
[p- c"b] = [(myc)"b] = [¢"m]b]. (4

This holds for any coefficient vector ¢ and hence it follows that [pb] = [m]'b], which
can be written pb = mgb + g for some vector g with components g; € I. Evaluating
the expression at a zero X € V we get g(X) = 0 and thus obtain

p(X)b(X) = m; b(%), ®)

which we recognize as an eigenvalue problem on the matrix m/ with eigenvectors b(X).
In other words, the eigenvectors of m! yield b(x) evaluated at the zeros of I and the
eigenvalues give p(x) at the zeros. The conclusion we can draw from this is that zeros
of I corresponds to eigenvectors and eigenvalues of my,, but not necessarily the opposite,
i.e. there can be eigenvectors/eigenvalues that do not correspond to actual solutions. If 1
is radical, this is not the case and we have an exact correspondence.

2.2 Grobner Bases

We have seen theoretically that the action matrix m,, provides the solutions to (1). The
main issue is now how to compute m,,. This is done by selecting a basis B for C[x]/I
and then computing [p - b;] for each b; € B. To do actual computations in C[x]/I we
need to represent each equivalence class [f] by a well defined representative polynomial.
The idea is to use multivariate polynomial division and represent [f] by the remainder
under division of f by I. Fortunately, for any polynomial ideal I, this can always be
done and the tool for doing so is a Grébner basis G for I [6]. The Grébner basis for 1

is a canonical set of generators for I with the property that multivariate division by G,
=G
denoted f , always yields a well defined remainder. By well defined we mean that for any

f1, f2 € [f], we have EG = EG. The Grobner basis is computed relative a monomial

order and will be different for different monomial orders. As a consequence, the set of

representatives for C[x]/I will be different, whereas the space itself remains the same.
The linear basis B should consist of elements b; such that the elements {[b;]}7_;

together span C[x]/I and E—G = b;. Then all we have to do to get is m,, is to compute

—G
the action pb; ~ for each basis element b;, which is easily done if G is available.
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Example 2. The following two equations describe the intersection of a line and a circle

?+yP -1 = 0
. (©)
z—y = 0.
A Grobner basis for this system is
2 _ 1
y =5 = 0
z—y = 0, @

from which we trivially see that the solutions are %(17 1) and %(—17 —1). In this

case B = {y, 1} are representatives for a basis for C[x]/I and we have T;;[1] = [z] and
T, ly] = [zy] = [y?] = [%], which yields the action matrix

m =3 3. ®

2

with eigenvalues %, -1 a

V2

2.3 A Note on Algebraic and Linear Bases

At this point there is a potentially confusing situation since there are two different types
of bases at play. There is the linear basis B of the quotient space C[x]/I and there is the
algebraic basis (Grobner basis) G of the ideal I. To make the subsequent arguments as
transparent as possible for the reader we will emphasize this fact by referring to the former
as a linear basis and the latter as an algebraic basis.

2.4 Floating Point Grobner Basis Computations

The well established Buchberger’s algorithm is guaranteed to compute a Grébner basis in
finite time and works well in exact arithmetic [6]. However, due to round-off errors, it
easily becomes unstable in floating point arithmetic and except for very small examples it
becomes practically useless. The reason for this is that in the Grébner basis computation,
leading terms are successively eliminated from the generators of I by pairwise subtraction
of polynomials, much like gaussian elimination. This leads to cancellation effects where
it becomes impossible to tell whether a certain coefficient should be zero or not.

A technique introduced by Faugere ez /. in [9] is to write the system of equations (1)
on matrix form

CX =0, )

o o 1T . . . . o
where X = [X S < "] is a vector of monomials with the notation x** =
x* - x%= and C is a matrix of coefficients. Elimination of leading terms now trans-

lates to matrix operations and we then have access to a whole battery of techniques from

57



PAPER II

numerical linear algebra allowing us to perform many eliminations at the same time with
control on pivoting etc.

This technique takes us further, but for larger more demanding problems it is neces-
sary to study a particular class of equations (e.g. relative orientation for omnidirectional
cameras [11], fundamental matrix estimation with radial distortion [23], optimal three
view triangulation [34], etc.) and use knowledge of what the structure of the Grobner
basis should be to design a special purpose Grobner basis solver [30]. The typical work
flow has been to study the particular problem at hand with the aid of a computer algebra
system such as Maple or Macaulay2 and extract information such as the leading terms of
the Grébner basis, the monomials to use as a basis for C[x]/1, the number of solutions,
etc. and work out a specific set of larger (gauss-jordan) elimination steps leading to the
construction of a Grobner basis for 1.

Although, these techniques have permitted the solution to a large number of previ-
ously unsolved problems, many difficulties remain. Most notably, the above mentioned
elimination steps (if at all doable) are often hopelessly ill conditioned [34, 24]. This is in
part due to the fact that one has focused on computing a complete and correct Grébner
basis respecting a properly defined monomial order, which we show is not necessary.

In this paper we move away from the goal of computing a Grébner basis for I and
focus on finding a representative of f in terms of a linear combination of a basis I3, since
this is the core of constructing m,,. We denote this operation f for a given f € C[x] and
specifically note that we only need to compute f for f € R. It should however be noted
that the computations we do much resemble those necessary to get a Grobner basis.

A first advantage of not having to compute a Grébner basis is that we can replace the
gauss-jordan elimination by standard linear equation solving techniques which are both
faster and numerically more sound. Furthermore we are not bound by any particular
monomial order which as we will see, when used right, buys considerable numerical
stability.

Drawing on these observations, we investigate in detail the exact matrix operations
needed to compute f and thus obtain a procedure which is both faster and more stable,
enabling the solution of a larger class of problems than previously possible.

3 A New Approach to the Action Matrix Method

In this section we present a new way of looking at the action matrix method for poly-
nomial equation solving. The advantage of the new formulation is that it yields more
freedom in how the action matrix is computed. We start with a few examples that we will
use to clarify these ideas.

Example 3. In the five point relative orientation problem for calibrated cameras, ¢f". [22,

7, 27, 31], the calculation of the essential matrix using 5 image point correspondences
leads to 10 equations of degree 3 in 3 unknowns. These equations involve 20 monomials.
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By writing the equations as in (9) and using a total degree ordering of the monomials we
get a coefficient matrix C of size 10 x 20 and a monomial vector X = [x*1 ... x%]T
with 20 monomials. It turns out that the first 10 x 10 block C1 of C = [Cl Cg] is
in general of full rank and thus the first 10 monomials X can be expressed in terms of
the last 10 monomials X as

X; = —C7'CoXo. (10)

This makes it possible to regard the monomials in X as representatives of a linear basis
for C[x]/I. It is now straightforwad to calculate the action matrix for T, (the multi-
plication operator for multiplication by x) since monomials in the linear basis are either
mapped to monomials in the basis or to monomials in X, which can be expressed in
terms of the basis using (10). O

In this example the linear basis X3 can be thought of as a basis for the space of
remainders after division with a Grébner basis for one choice of monomial order and
this is how these computations have typically been viewed. However, the calculations
above are not really dependent on any properly defined monomial order and it seems that
they should be meaningful irrespective of whether a true monomial order is used or not.
Moreover, we do not use all the Grébner basis properties.

Based on these observations we emphasize two important facts: (i) We are not in-
terested in finding the Grébner basis or a basis for the remainder space relative to some
Grobner basis per se; it is enough to get a well defined mapping f and (i) it suffices to
calculate f on the elements x - x*1, i.e. we do not need to be able to compute f for all
f € C[x]. These statements and their implications will be made more precise further on.

Example4. Consider the equations

fi=zy+x—y—1=0

fomay—z+y—1=0, (1

with solutions (—1, —1), (1,1). Now let B = {2, y, 1} be a set of representatives for the
equivalence classes in C[x] /I for this system. The set I3 does not constitute a proper basis
for C[x]/I since the elements of B3 represent linearly dependent equivalence classes. They
do however span C[x]/I. Now study the operator T}, acting on . We have T),(1) = v,
T,(x) =2y ~ x—y+1and T, (y) = y* ~ 2y ~ x—y+1 which gives a multiplication
matrix

1 10
-1 -1 1
1 1 0

An eigendecomposition of this matrix yields the solutions (—1, —1), (1,1), (—1,0). Of
these the first two are true solutions to the problem, whereas the last one does not satisfy
the equations and is thus a false zero. O
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In this example we used a set of monomials 3 whos corresponding equivalence classes
spanned C[x]/I, but were not linearly independent. However, it was still possible to
express the image T}, (B) in terms of B. The elements of the resulting action matrix are
not uniquely determined. Nevertheless we were able to use it to find the solutions to
the problem. In this section we give general conditions for when a set B can be used to
construct a multiplication matrix which produces the desired set of zeros, possibly along
with a set of false zeros, which need to be filtered out.

More generally this also means that the chosen representatives of the linear basis of
C[x]/I need not be low order monomials given by a Grobner basis. In fact, they need
not be monomials at all, but could be general polynomials.

Drawing on the concepts illustrated in the above two examples we define a solving
basis, similar to B in Example 4. The overall purpose of the definition is to rid our selves
of the need of talking about a Grébner basis and properly defined monomial orders,
thus providing more room to derive numerically stable algorithms for computation of the
action matrix and similar objects.

In the following we will also provide techniques for determining if a candidate basis 3
constitutes a solving basis and we will give numerically stable techniques for basis selection
in too large (linearly dependent) solving bases, here referred to as redundant bases.

3.1 Solving Bases

We start off with a set of polynomial equations as in (1) and a (point) set of zeros

V(f1,-.., fm) and make the following definition

Definition 5. Consider a finite subset B C C[x] of the set of polynomials over the com-
plex numbers. If for each b; € B and some p € C[x] we can write

p(x)bi(x) = Xjm;;b;(x) (12)
for some (not necessarily unique) coefficients m;; and where equality means equality on
V, then we call B a solving basis for (1) w.r.t p. a

We now get the following for the matrix m, made up of the coefficients m;;.

Theorem 6. Given a solving basis B for (1) w.r.t p, the evaluation of p on'V is an eigenvalue
of the matrix m,,. Moreover, the vectorb = (b1, ..., b,)T evaluated on'V is an eigenvector

of my,
Proof. By the definition of my, we get
pbl Ejmlj bj
px)b(x)=| : | = = m,b(x) (13)

forxeV. O
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As will become clear further on, when B is a true basis for C[x]/I, then the matrix
my, defined here is simply the transposed action matrix for multiplication by p.

Given a solving basis, the natural question to ask is now under which circumstances
all solutions to (1) can be obtained from an eigenvalue decomposition of m,,. We next
explore some conditions under which this is possible. A starting point is the following
definition

Definition7. A solving basis 15 is called a complete solving basis if the inverse image of the
mapping  — b(x) from variables to monomial vector is finite for all points. O

A complete solving basis allows us to recover all solutions from m,, as shown in the
following theorem.

Theorem 8. Let B be a complete solving basis for (1) and my, as above and assume that for
all eigenvalues \; we have N\ # Xj for i # j. Then the complete set of solutions to (1) can
be obtained from the set of eigenvectors {v; } of M.

Proof- The vector b(x) evaluated on V' is an eigenvector of my,. The number of cigen-
vectors and eigenvalues of m,, is finite so we can compute all eigenvectors {v;} and get
{b(x)} forall X € V as a subset of these. Applying b~! to v; for all i thus yields a finite
set of points containing V. Evaluation in (1) allows us to filter out the points of this set
which are not solutions to (1). a

If on the other hand the inverse image is not finite for some v; so that we get a pa-
rameter family X corresponding to this eigenvector, then the correct solution can typically
not be obtained without further use of the equations (1) as illustrated in the following
example.

Example 9. Consider the polynomial system

2-2=0
2 1—0 (149
with V. = {(1,v2),(-=1,v2),(1,Vv2),(~1,—v2),}. Clearly, B = {z,1} with
. T . . . . .
monomial vector b(z,y) = [# 1], is a solving basis w.n# « for this example since
l-z=zandz-x =22 =10nV. Hence, b(z,y) evaluated on V is an eigenvector of
0 1

which is easily confirmed. However, these eigenvectors do not provide any information
about the y-coordinate of the solutions. We could try adding y to B but this would not
work since the values of £y on V' cannot be expressed as a linear combination of x and y
evaluated on V. A better choice of solving basis would be B = {zy, z,y, 1}. O
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At a first glance, Theorem 8 might not seem very useful since solving for z from
b(z) = v; potentially involves solving a new system of polynomial equations. How-
ever, it provides a tool for ruling out choices of B which are not practical to work with.
Moreover, there is usually much freedom in the choice of B. In general, B is a set of
polynomials. However, it is often practical work with a basis of monomials. For each b;

[0 22 N rQis

we then have b;(z) = 27 @+ and get the following result

Corollary 10. If B consists of monomials and the v X s matrix A with A;j = v is of rank
s, then all solutions to (1) are obtained from the eigenvectors of M, .

Proof. Taking the logarithm of b;(x) we get component wise
log(bi(x)) = X;ai; log(7;), (16)
where T; = £ if necessary. Using the matrix A, this can be written

log(z1)
log(b(x)) = A : ) (17)
log(<s)

If rank(A) = s then in particular A is full rank and we can solve linearly for log(%).
Theorem 8 then yields the conclusion. O

We get an even more convenient situation if the right monomials are included in B:

Corollary 11. [f{x1,..., x5} C B, then all solutions to (1), can be directly read off from

the eigenvectors of My, .

Proof. Since the monomials {1, ..., 24} occur in B, they enter in the vector b(x) and
hence the mapping in Definition 7 is injective with a trivial inverse. O

The situation in Corollary 11 is certainly the most convenient one. However, even
if not all variables are included as elements in B3, we can often still express each variable
Zy as a linear combination of the basis elements b;(x) for x € V by making use of
the original equations. We thus again obtain a well defined inverse to the mapping in
Definition 7.

Example 12. Consider the polynomial system (11) from Example 4. Subtracting f; and
f2 and dividing by 2 we get a third polynomial f5 = 2 —y. Thus B = {y, 1} constitutes
a solving basis w.r.t. zsince T, (1) =z =y (on V) and Ty (y) =2y =z —y+ 1 =1
(on V). The vector of monomials b(z,y) = [y 1] " is not invertible since it does not
give any information about the  coordinate. However, we can use f3 =z —y = 0 to

get the solutions from from the eigenvectors. O
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Finally, we show how the concept of solving basis connects to the standard theory of
action matrices in the quotient space C[z]/I.

Theorem 13. If the ideal I generated by (1) is radical, then a complete solving basis B w.r.t
to p for (1) with the property that all eigenvalues of m,, are distinct spans Clx]/ 1.

Proof Since [ is radical, C[z]/I is isomorphic to C[V], the ring of all polynomial func-
tions on V. Moreover, since V is finite, all functions on V' are polynomial and hence
C[V] can be identified with C", where » = |V|. Consider now the matrix B =
[b(21),...,b(z,)]. Each row of B corresponds to a (polynomial) function on V.
Hence, if we can show that B has row rank 7, then we are done. Due to theorem 6,
all b(z;) are eigenvectors of m,, corresponding to eigenvalues p(z;). By the assumption
of distinct eigenvalues we have p(z;) # p(x;) whenever b(z;) # b(z;). Since B is
a complete solving basis we have b(x;) # b(x;) whenever 2; # ;. This means that
the 7 points in V' correspond to distinct eigenvalues and hence, since eigenvectors cor-
responding to different eigenvalues are linearly independent, B has column rank r. For
any matrix row rank equals column rank and we are done. O

The above theorem provides an obvious correspondence between solving bases and linear
bases for C[x]/I and in principle states that under some extra restrictions, a solving basis
is simply a certain choice of basis for C[x]/I and then the matrix my, turns into the
(transposed) action matrix.

However, relaxing these restrictions we get something which is not necessarily a basis
for C[x]/I in the usual sense, but still provides a method for solving (1). More specifically,
using the concept of a solving basis provides two distinctive advantages.

(i) For a radical polynomial system with 7 zeros, C[x]/I is r-dimensional, so a basis
for C[x]/I contains r elements. This need not be the case for a solving basis, which
could well contain more than r elements, but due to Theorem 8 still provides the right
solutions. This fact is exploited in Section 4.

(ii) Typically, the artithmetic in C[x]/I has been computed using a Grobner basis for
I, which directly provides a monomial basis for C[x]/I in form of the set of monomials
which are not divisible by the Grébner basis. In this work we move focus from Grobner
basis computation to the actual goal of expressing the products pb; in terms of a set of
linear basis elements and thus no longer need to adhere to the overly strict ordering rules
imposed by a particular monomial order. This freedom is exploited in Sections 5.1 and
5.2.

Finally, (i) and (ii) are combined in Section 5.3.

3.2 Solving Basis Computations using Numerical Linear Algebra

We now describe the most straight forward technique for deciding whether a candidate
basis B w.r.t. one of the variables x, can be used as a solving basis and simultaneously
calculate the action of T, on the elements of B.
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We start by generating more equations by multiplying the original set of equations by
a hand crafted (problem dependent) set of monomials. This yields additional equations,
which are equivalent in terms of solutions, but hopefully linearly independent from the
original ones. In Example 9, we could multiply by e.g. {x,y, 1}, yielding zy? — 22, 3 —
x,y =2y, 2%y —y,y? — 2,22 — 1.

Given a candidate for a linear basis B of monomials one then partitions the set of
all monomials M ocurring in the equations in to three parts M = E|JR|J B, where
R = x1B \ B is the set of monomials that need to be expressed in terms of B to satisfy
the definition of a solving basis and £ = M \ (R|J B) are the remaining (excessive)
monomials. Each column in the coefficent matrix represents a monomial, so we reorder
the columns and write

C=[Ce Cr Cpl. (18)

reflecting the above partition. The £-monomials are not of interest to us so we eliminate
them by putting Cg on row echelon form using LU factorization

X
Ugi Cra 051} £

X =0. 19
0 Cry Cp Xg (19)

We now discard the top rows and provided that enough linearly independent equa-
tions were added in the first step so that Crz is of full rank, we multiply by C} from
the left producing

_ X
[T CryCoo [Xﬂ =0, (20)
or equivalently
Xg = —CxryCp2Xs, (21)

which means that the R-monomials can be expressed as a linear combination of the basis
monomials. Thus B is a solving basis and the matrix m,, can easily be constructed as in
(12). In other words, given an enlarged set of equations and a choice of linear basis B,
the full rank of Cry is sufficient to solve (1) via eigendecomposition of m, . The above
method is summarised in Algorithm 1 and given the results of Section 3.1 we now have
the following

Result 14. Algorithm 1 yields the complete set of zeros of a polynomial system, given that the
pre- and postconditions are satisfied.

Proof. The postcondition that Cry is of full rank ensures that B is a solving basis and
together with the preconditions, Theorem 8 and Corollary 11 then guarantees the state-
ment. =
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Example 15. Consider the equations from Example 2. Multiplying the second equation
by 2 and y yields the enlarged system

2
1 0 1 0 0 1| |2y
1 -1 0 0 0 O0f [y _
0o 1 -1 0 0 O T =0, (22)
00 0 1 -1 0|y
1
with M = {2% 2y, y?, 2,9, 1} and since we chose B = {y, 1}, we get R = {xy,x}
and & = {22, y?}. After Step 11 and 12 of Algorithm 1 we have Cro = [2 9] and

Cpo = [_01 (1)] and inserting into (33) we obtain

#-k A0

which then allows us to construct m,, for this example. O

Algorithm 1 Compute a solving basis w.r.t. j, and use it to solve a polynomial system.

Require: List of equations ' = {f1,..., fm}, set of basis monomials 3 containing the
coordinate variables 21, . . . x5, m lists of monomials {L;}7 ;.
Ensure: Cgy is of full rank, eigenvalues of m,, are distinct.
1: Fext — F
: forall f; € F do
for all x* € L; do
Foxt < Fext U{Xa'j ’ fz}
end for
end for
Construct coefficient matrix C from Fiys.
M «— The set of all monomials occurring in Fixt.
R«—xp-B\B
&— M\ (RUB)
. Reorder and partition C: C = [C¢ Cr Cp].
LU-factorize to obtain Cx9 and Cgs as in (19).
Use (21) to express T - X% in terms of BB and store the coefficients in m,,, .
Compute eigenvectors of m;;, and read off the tentative set of solutions.

— = = = = =
AN S ol =

: Evaluate in F to filter out possible false zeros.

A typical problem that might occur is that some eigenvalues of m;, are equal, which
means that two or more zeros have equal -coordinate. Then the corresponding eigen-
vectors can not be uniquelly determined. This problem can be resolved by computing
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m,, for several k and then forming a random linear combination Mg, ¢, 4...4q,2. =
aymy, + - - + asm,_, which then with very small probability has two equal eigenval-
ues.

As previously mentioned, computing m,, for a larger problem is numerically very
challenging and the predominant issue is expressing pB3 in terms of B3, via something
similar to (21). The reason for this is that without proper care, Cr2 tends to become
very ill conditioned (condition numbers of 101° or higher are not uncommon). This was
also the reason that extremely slow emulated 128 bit numerics had to be used in [34] to
get a working algorithm.

In the following sections we will investigate techniques to circumvent this problem
and produce well conditioned Cry, thus drastically improving numerical stability.

4 Using Redundant Solving Bases —
The Truncation Method

A typical situation with an ill conditioned or rank deficient Cry is that there are a few
problematic monomials where the corresponding columns in C are responsible for the
deteriorated conditioning of Cga. A straight forward way to improve the situation is to
simply include the problematic monomials in B, thus avoiding the need to express these
in terms of the other monomials. This technique is supported by Theorem 8, which guar-
antees that we will find the original set of solutions among the eigenvalues/eigenvectors of
the larger my, found using this redundant basis. The price we have to pay is performing
an eigenvalue decomposition on a larger matrix.

Not all monomials from M can be included in the basis B and in general it is a
difficult question exactly which monomials can be used. One can however see that 3 has
to be a subset of the following set, which we denote the permissible monomials P = {be
M : pb € M}. The permissible monomials P is the set of monomials which stay in M
under multiplication by p.

An example of how the redundant solving basis technique can be used is provided by
the problem of Ly-optimal triangulation from three views [34]. The optimum is found
among the up to 47 stationary points, which are zeros of a polynomial system in three
variables. In this example an enlarged set of 255 equations in 209 monomials were used
to get a Grobner basis. Since the the solution dimension 7 is 47 in this case, the 47
lowest order monomials were used as a basis for C[x]/I in [34], yielding a numerically
difficult situation. In fact, as will be shown in more detail in the experiments section,
this problem can solved by simply including more elements in B. In this example, the
complete permissible set contains 154 monomials. By including all of these in 3 leaving
55 monomials to be expressed in terms of B, we get a much smaller and in this case better
conditioned elimination step.

The redundant 154-element solving basis and the 154 x 154-matrix m, , was con-

66



4. USING REDUNDANT SOLVING BASES -
THE TRUNCATION METHOD

structed w.r.t. one of the variables z;, and the set of eigenvalues computed from mg,
for one instance are plotted in the complex plane in Figure 1 together with the actual
solutions of the polynomial system.
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Figure 1: Eigenvalues of the action matrix using the redundant basis method and actual
solutions to the polynomials system plotted in the complex number plane. The former
are a strict superset of the latter.
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5 Basis Selection

In the previous section we saw how it is possible to pick a “too large” (> r elements)
linear basis P and still use it to solve the equations. In this section we show how one can
select a true (linearly independent) basis as a subset of P in a numerically stable way and
thus gain both speed and stability. In the following, P denotes any subset of M with the
property that the obtained Cg3 is of full rank, thus making P a solving basis.

Since the set V' of zeros of (1) is finite with r points, P seen as a set of functions
on V contains at most 7 linearly independent elements. It should therefore be possible
to choose a subset P’ C P such that the elements in P’ can be expressed as linear
combinations of elements in P \ P’. By dropping P’ from the solving basis, the set
B = P\ P’ would thus constitute a new tighter solving basis w.r.t. the same multiplier p
and ideal I as P.

We now present two numerically stable techniques for constructing a true basis B
from a redundant solving basis P.

5.1 The QR Method

We start by selecting P as large as possible, still yielding a full rank Cg and form
[Cc Cr Cp]. Any selection of basis monomials B C P will then correspond to a
matrix Cp consisting of a subset of the columns of Cp.

By performing gaussian elimination we again obtain (19), but with B replaced by
P, letting us get rid of the £-monomials by discarding the top rows. Furthermore, the
‘R-monomials will all have to be expressed in terms of the P-monomials so we continue
the elimination putting C2 on triangular form, obtaining

Ur Cpi| [Xr| _
e o ] o

At this point we could simply continue the gaussian elimination, with each new pivot
element representing a monomial expressed in terms of the remaining basis monomials.
However, this typically leads to poor numerical performance since the elimination might
be very ill conditioned. This is where the basis selection comes to play.

As noted above we can choose which of the p monomials in P to put in the basis and
which to reduce. This is equivalent to choosing a permutation II of the columns of Cp2,

C'PQH = [Cﬂ(l) Cﬂ(p)] (25)

and then proceed using standard elimination. The goal must thus be to make this choice
so as to minimize the condition number &( [cﬂ(l) . c,r(p,T)]) of the first p — r
columns of the permuted matrix. In its generality, this is a difficult combinatorial opti-
mization problem. However, the task can be approximately solved in an attractive way by
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QR factorization with column pivoting [12]. With this algorithm, Cpy is factorized as
CpoIl = QU, (26)

where Q is orthogonal and U is upper triangular. By solving for Cpy in (26) and sub-
stituting into (24) followed by multiplication from the left with [(I) Q0T1| and from the

right with [ § 1, we get

Ur Cpill| | Xz | _
s cpl [ Xe 1 -
We observe that U is in general not quadratic and write U = [Up/z CBQ},

where Up is quadratic upper triangular. We also write Cp1II = [Cpy Cpi] and
I*Xp; = [qu XB]T yielding

Xp | =0. 28
0 Upy Cg XZ (28)
Finally
—1
Xr Ur Cpy Cpn1
= — X 2
|:X7>’] { 0 Upe Cpa| 8 @9)

is analogous to (21) and ammounts to solving r upper triangular equation systems which
can be efficiently done by back substitution.

The reason why QR factorization fits so nicely within this framework is that it si-
multaneously solves the two tasks of reduction to upper triangular form and numerically
sound column permutation and with comparable effort to normal Gaussian elimination.

Furthermore, QR factorization with column pivoting is a widely used and well stud-
ied algorithm and there exist free, highly optimized implementations, making this an
accessible approach.

Standard QR factorization successively eliminates elements below the main diagonal
by multiplying from the left with a sequence of orthogonal matrices (usually Householder
transformations). For matrices with more columns than rows (under-determined systems)
this algorithm can produce a rank-deficient U which would then cause the computations
in this section to break down. QR with column pivoting solves this problem by, at
iteration k, moving the column with greatest 2-norm on the last m — k + 1 elements to
position k and then eliminating the last m — k elements of this column by multiplication
with an orthogonal matrix Q.
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5.2 The SVD Method

By considering not only monomial bases, but more general polynomial bases it is possible
to further improve numerical stability. We now show how singular value decomposi-
tion (SVD) can be used to construct a basis for C[x]/I as r linearly independent linear
combinations of elements in a solving basis P.

As in Section 5.1 we start out by selecting an as large as possible (redundant) solving
basis and perform preliminary matrix operations forming (24), where the aim is now to
construct a linearly independent basis from P. We now do this by performing an SVD
on Cpy, writing

Cpy = UXVT, (30)

where U and V are orthogonal and ¥ is diagonal with typically r last elements zero

_ Z/ 0 . .
Y= [ o 0] for a system with 7 solutions.

Now multiplying from the left with [
we get

o Ur ] and from the right with [ O] in (24),

0 Y || VTXp (1)

The matrix V induces a change of basis in the space spanned by P and we write

[UR CmV} { Xz ]0'

Xp = VIXp = [X} X5]", where P’ and B are now sets of polynomials. Using this
notation we get
Ug 0 Cpi] [Xz
0o ¥ 0 Xp | =0, (32)
0 0 o0 ||Xs

where ¥/ is diagonal with n — r non-zero diagonal entries. The zeros above ¥/ enter
since ¥’ can be used to eliminate the corresponding elements without affecting any other
elements in the matrix. In particular this means that we have

{Xp, = 0

- 33
Xzr = -Ux'CpiXp (33)

on V, which allows us to express any elements in span(M) in terms of X g, which makes
B a solving basis.

Computing the action matrix is complicated slightly by the fact that we are now
working with a polynomial basis rather than a monomial one. To deal with this situation

we introduce some new notation. To each element ey, of Xp we assign a vector v, =

T
[0...1..0] € RIPI, with a one at position k. Similarly, we introduce vectors uj, €

RlMl ,wy, € R' | representing elements of X and X5 respectively. Further we define the
linear mapping R : span(M) — SEan(B) which using (33) associates an element of
span(M) with an element in span(B3). We now represent R by a |[B| X | M| matrix

R=[-CLU;T o0 1], (34)
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acting on the space spanned by the vectors uy.
We also introduce the mapping M), : span(P) — span(M) given by M,,(f) = p- f
with the representation

(My)ij = I(z* =p-zv), (35)

where I(-) is the indicator function. )
M, represents multiplication by p on P. In the basis P induced by V we get

- I 0
M, = {0 VT} M, V. (36)

Finally, we get a representation of the multiplication mapping from B to B as
m, = RM,L, (37)

where L = [$] simply interprets the wy, € RIBI vectors as RI”l-vectors. The matrix m,,
derived here is the transpose of the corresponding matrix in Section 3.1.

An eigendecomposition of m yields a set of eigenvectors ¥ in the new basis. It
remains to inverse transform these eigenvectors to obtain eigenvectors of m;. To do this,
we need to construct the change of basis matrix V in the quotient space. Using R and
L, we get V;l = RVTL. And from this we getv = V;Tﬁ in our original basis.

As will be seen in the experiments, the SVD method is somewhat more stable than
the QR method, but significantly slower due to the costly SVD factorization.

5.3 Basis Selection and Adaptive Truncation

We have so far seen three techniques for dealing with the case when the sub matrix Cpsy
is ill conditioned. By the method in Section 4 we avoid operating on Cpo altogether.
Using, the QR and SVD methods we perform elimination, but in a numerically much
more stable manner. One might now ask whether it is possible to combine these meth-
ods. Indeed it turns out that we can combine either the QR or the SVD method with
a redundant solving basis to get an adaptive truncation criterion yielding even better sta-
bility in some cases. The way to do this is to choose a criterion for early stopping in the
factorization algorithms. The techniques in this section are related to truncation schemes
for rank-deficient linear least squares problems, ¢f". [21].

A neat feature of QR factorization with column pivoting is that it provides a way of
numerically estimating the conditioning of Cps simultaneously with eliminiation. By
design, the QR factorization algorithm produces an upper triangular matrix U with diag-
onal elements u;; of decreasing absolute value. The factorization proceeds column wise,
producing one |u;;| at a time. If rank(U) = r, then |uyr| > 0and tpy1 41 = -+ =
Unn = 0. However, in floating point arithmetic, the transition from finite |u;;| to zero
is typically gradual passing through extremely small values and the rank is consequently
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hard to determine. For robustness it might therefore be a good idea to abort the factor-
ization process early. We do this by setting a threshold 7 for the ratio | 1| and abort the
factorization once the value exceeds this threshold. A value of 7 & 10® has been found to
yield good results'. Note that this produces an equivalent result to carrying out the full
QR factorization and then simply discarding the last rows of U. This is practical since
off-the-shelf packages as LAPACK only provide full QR factorization, eventhough some
computational effort could be spared by modifying the algorithm so as not to carry out
the last steps.

Compared to setting a fixed (redundant) basis size, this approach is beneficial since
both rank and conditioning of Cp2 might depend on the data. By the above method we
decide adaptively where to truncate and 7.e. how large the linear basis should be.

In the context of the SVD we get a similar criterion by looking at the singular values
instead and set a threshold for Zt, which for i = rank(Cpyz) is exactly the condition
number of Cps. '

6 Using Eigenvalues Instead of Eigenvectors

In the literature, the preferred method of extracting solutions using eigenvalue decom-
position is to look at the eigenvectors. It is also possible to use the eigenvalues, but this
seemingly requires us to solve s eigenvalue problems since each eigenvalue only gives the
value of one variable. However, there can be an advantage with using the eigenvalues
instead of eigenvectors. If there are multiple eigenvalues (or almost multiple eigenvalues)
the computation of the corresponding eigenvectors will be numerically unstable. How-
ever, the eigenvalues can usually be determined with reasonable accuracy. In practice, this
situation is not uncommon with the action matrix.

Fortunately, we can make use of our knowledge of the eigenvectors to devise a scheme
for quickly finding the eigenvalues of any action matrix on C[x]/I. From Section 2 we
know that the right eigenvectors of an action matrix is the vector of basis elements of
C[x]/I evaluated at the zeros of I. This holds for any action matrix and hence all action
matrices have the same set of eigenvectors. Consider now a problem involving the two
variables x; and ;. If we have constructed m,,, the construction of m,; requires almost
no extra time. Now perform an eigenvalue decomposition m,, = VD,, V1. Since V
is the set of eigenvectors for my; as well, we get the eigenvalues of m, ; by straightforward
matrix multiplication and then elementwise division from

m,,V =VD,,. (38)

This means that with very little extra computational effort over a single eigenvalue de-
composition we can obtain the eigenvalues of all action matrices we need.

010

!Performance is not very sensitive to the choice of 7 and values in the range 106 to 1 yield similar

results.
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7 Experiments

In this section we evaluate the numerical stability of the proposed techniques on a range
of typical geometric computer vision problems. The experiments are mainly carried out
on synthetic data since we are interested in the intrinsic numerical precision of the solver.
By intrinsic precision we mean precision under perfect data. The error under noise is of
course interesting for any application, but this is an effect of the problem formulation
and nor of the particular equation solving technique.

In Section 7.1 all the main methods (standard, truncated, SVD and QR) are tested
on optimal three view triangulation first studied by Stewénius et a/. in [34]. They had
to use emulated 128 bit arithmetics to get usable results, whereas with the techniques in
this paper, we solve the equations in standard IEEE double precision. Furthermore, the
improved methods are tested on: localization with hybrid features [18], relative pose with
unknown but common focal length [32] and relative pose for generalized cameras [33].
Significant improvements in stability are shown in all cases. In the localization example
we failed completely to solve the equations using previous methods and hence this case
omits a comparision with previous methods.

7.1 Optimal Three View Triangulation

The triangulation problem is formulated as finding the world point that minimizes the
sum of squares of the reprojection errors. This means that we are minimizing the likeli-
hood function, thus obtaining a statistically optimal estimate. A solution to this problem
was presented by Stewénius ez a/. in [34]. They solved the problem by computing the
stationary points of the likelihood function which amounts to solving a system of poly-
nomial equations. The calculations in [34] were conducted using emulated 128 bit arith-
metics yielding very long computation times and in the conclusions the authors write
that one goal of further work is to improve the numerical stability to be able to use stan-
dard IEEE double-precision (52 bit mantissa) and thereby increase the speed significantly.
With the techniques presented in this paper it is shown that it is now possible to take the
step to double-precision arithmetics.

To construct the solver for this example some changes in the algorithm of [34] were
done to make better use of the changes of basis according to Section 5. The initial three
equations are still the same as well as the first step of partial saturation (w.r.t. z). However,
instead of proceeding to perform another step of partial saturation on the new ideal, we
saturate (w.r.t. y and z respectively) from the initial three equations and join the three
different partially saturated ideals. Finally, we discard the initial three equations and
obtain totally nine equations.

This method does not give the same ideal as the one in [34] were sat(I, zyz) was
used. The method in this paper produces an ideal of degree 61 instead of 47 as obtained
by Stewénius er al. The difference is 11 solutions located at the origin and 3 solutions
where one of the variables is zeros, this can be checked with Macaulay 2 [13]. The 11
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solutions at the origin can be ignored in the calculations and the other three can easily be
filtered out in a later stage.

To build the solver we use the nine equation from the saturated ideal (3 of degree 5
and 6 of degree 6) and multiply with 2, y and z up to degree 9. This gives 225 equations
in 209 different monomials. easiest way to get rid of the 11 false solutions at the origin is
to remove the corresponding columns and rows from the action matrix.

The synthetic data used in the validation was generated with three randomly placed
cameras at a distance around 1000 from the origin and a focal length of around 1000.
The unknown world point was randomly placed in a cube with side length 1000 centered
at the origin. The methods have been compared on 100,000 test cases.

7.1.1 Numerical Experiments

The first experiment investigates what improvement can be achieved by simply avoiding
the problematic matrix elimination using the techniques of Section 4. For this purpose
we choose the complete set of permissible monomials P as a redundant basis and perform
the steps of Algorithm 1. In this case we thus get a redundant basis of 154 elements and a
154 x 154 multiplication matrix to perform eigenvalue decomposition on. In both cases
the eigenvectors are used to find the solutions. The results of this experiment are shown
in Figure 2. As can be seen, this relatively straight forward technique already yields a large
enough improvement in numerical stability to give the solver practical value.
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Figure 2: Histogram of errors over 100,000 points. The improvement in stability using
the redundant basis renders the algorithm feasible in standard IEEE double precision.
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Looking closely at Figure 2 one can see that even though the general stability is much
improved, a small set of relatively large errors remain. By doing some extra work using
the QR method of Section 5.1 to select a true basis as a subset of P, we improve stability
further in general and in particular completely resolve the issue with large errors, ¢f.
Figure 3.
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Figure 3: Histogram of errors for the standard, redundant basis and QR methods. The
QR method improves stability in general and in particular completely removes the small
set of large errors present in both the standard and redundant basis methods.

In Figure 4, the performance of the QR method is compared to the slightly more
stable SVD method which selects a polynomial basis for C[x]/I from the monomials in
P. In this case, errors are typically a factor ~ 5 smaller for the SVD method compared
to the QR method.

The reason that a good choice of basis improves the numerical stability is that the
condition number in the elimination step can be lowered considerably. Using the basis
selection methods, the condition number is decreased by about a factor 105. Figure 5
shows a scatter plot of error versus condition number for the three view triangulation
problem. The SVD method displays a significant decrease and concentration in both
error and condition number. It is interesting to note that to a reasonable approximation
we have a linear trend between error and condition number. This can be seen since we
have a linear trend with slope one in the logarithmic scale. Moreover, we have a y-axis
intersection at about 1073, since we have a focal length of about 1000 this means that we
have error ~ 1071k = €,,,4cn k. This observation justifies our strategy of minimizing
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Figure 4: Comparison between the SVD and QR methods. The SVD method improves
somewhat over the QR method at the cost of the computationally more demanding SVD
factorization.

the condition number.

As mentioned in Section 6, it might be beneficial to use the eigenvalues instead of
eigenvectors to extract solutions.

When solving this problem using eigenvalues there is two extra eigenvalues problems
of size 50 x 50 that have to be solved. The impact of the switch from eigenvectors to
eigenvalues can be seen in Figure 6. For this example we gain some stability at the cost
of having to perform three eigenvalue decompositions (one for each coordinate) instead
of only one. Moreover, we need to sort the eigenvalues using the eigenvectors to put
together the correct triplets.

However, we can use the trick of Section 6 to get nearly the same accuracy using
only a single eigenvalue decomposition. Figure 7 shows the results of this method. The
main advantage of using the eigenvalues is that we push down the number of large errors
considerably.

Finally we study the combination of basis selection and truncation of the Grobner
basis for the three view triangulation problem. The basis size was determined adaptively
as described in Section 5.3 with a threshold 7 = 108. Table 1 shows the size of the basis
when this method was used. Since the basis is chosen minimal in 94% of the cases for
the SVD-method and 95% for the QR method the time consumption is almost identical
to the original basis selection methods, but as can be seen in Table 2 the number of large
errors are reduced. This is probably due to the fact that truncation is carried out only
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Figure 5: Error versus the condition number for the part of the matrix which is inverted
in the solution procedure.
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Figure 6: Error histograms showing the difference in precision between the eigenvalue

and eigenvector methods.
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Figure 7: This graph shows the increase in performance when the fast eigenvalue method

is used insted of the eigenvector method.
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when the matrices are close to being singular.

50 | 51 | 52 | 53 | 54 | > 55
SVD | 940 | 35| 0.8 |04 | 03| 1.0
QR | 950 (30|07 |03|02]| 0.8

Table 1: Basis sizes for the QR and SVD methods with variable basis size. The table
shows the percentage of times the basis size occurred during 100,000 experiments.

To conclude the numerical experiments on three view triangulation two tables with
detailed error statistics are given. The acronyms S7D, QR, SVD and TRUNC respectively
denote the standard method, QR method, SVD method and redundant basis method.
The suffixes eig, fast and var respectively denote the eigenvalue method, the fast eigen-
value method (Section 6) and the use of a variable size basis (Section 5.3). Table 2 shows
how many times the error gets larger the some given levels for several solvers. This is
interesting for example when RANSAC is used. As can be seen, the QR-method with
adaptive basis size is the best method for reducing the largest errors but the SVD-method
with use of the eigenvalues is the best in general. Table 3 shows the median and the 95:th
percentile errors for the same methods as in the previous table. Notable in here is that
the 95:th percentile is improved with as much as factor 107 and the median with a factor
10°. The SVD-method with eigenvalues is shown to be the best but the QR-method

gives almost as good results.

Method >1073 [>1072 [>1071 [ >1
STD 35633 | 24348 | 15806 | 9703
STD:eig 29847 | 19999 | 12690 | 7610
SVD 1173 562 247 119
SVD:eig 428 222 128 94
SVD:fast 834 393 178 94
SVD:var+fast 730 421 245 141
TRUNC 6712 4697 3339 | 2384
TRUNC :fast 5464 3892 2723 | 2015
QR 1287 599 269 127
QR:eig 517 250 149 117
QR:fast 1043 480 229 106
QR:var+fast 584 272 141 71

Table 2: Number of errors out of 100,000 experiments larger than certain levels. The
QR-method with adaptive basis size yields the fewest number of large errors.
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Method 95th 50th
STD 1.42-10' | 9.85-107°
STD:eig 5.30-10° | 3.32-107°
SVD 1.19-107% [ 6.09 - 107°
SVD:eig 1.20-10°% [ 1.29-107°
SVD:fast 437-107% ] 2.53-1079
SVD:var+fast | 2.34-107% | 2.50- 1077
TRUNC 6.55-10~3 | 1.40- 108
TRUNC:fast | 1.87-1073 | 3.27-1079
QR 1.78-107° [ 1.06 - 1078
QReeig 1.70-107% [ 2.08 - 1079
QR:fast 6.97-107% | 3.64-107°
QR:var+fast | 3.41-1076 | 3.61-107°

Table 3: The 95th percentile and the median error for various methods. The improve-
ment in precision is up to a factor 107. The SVD method gives the best results, but the
QR-method is not far off.

7.1.2 Speed Comparison

The main motivation for using the QR-method rather than the SVD-method is that the
QR-method is computationally less expensive. To verify this the standard, SVD and QR-
methods were run and the time was measured. Since the implementations were done in
Matlab it was necessary to take care to eliminate the effect of Matlab being an interpreted
language. To do this only the time after construction of the coefficient matrix was taken
into account. This is because the construction of the coefficient matrix essentially am-
mounts to copying coefficients to the right places which can be done extremely fast in e.g.
a C language implementation.

In the routines that were measured no subroutines were called that were not built-in
functions in Matlab. The measurements were done with the Matlab profiler.

The time measurements were done on an Intel Core 2 2.13 GHz machine with 2 GB
memory. FEach algorithm was executed with 1000 different coefficient matrices con-
structed from the same type of scene setups as previously. The same set of coefficient
matrices was used for each method. The result is given in Table 4. Our results show
that the QR-method is approximately three times faster than the SVD-method but 50%
slower than the standard method.

7.1.3 Triangulation of Real Data

Finally, the algorithm is evaluated under real world conditions. The Oxford dinosaur [8]
is a familiar image sequence of a toy dinosaur shot on a turn table. The image sequence
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Method | Time per call / ms | Relative time
SVD 66.89 1
TRUNC 55.84 0.83
QR 24.45 0.37
STD 16.44 0.25

Table 4: Time consumption in the solver part for the three different methods. The time
is an average over 1000 function calls.

consists of 36 images and 4983 point tracks. For each point visible in three or more views
we select the first, middle and last view and triangulate using these. This yields a total of
2683 point triplets to triangulate. The image sequence contains some erroneous tracks
which we deal with by removing any points reprojected with an error greater than two
pixels in any frame. The whole sequence was processed in approximately 80 seconds in
a Matlab implementation on an Intel Core 2 2.13 GHz CPU with 2 GB of memory by
the QR-method with variable basis size. The resulting point cloud is shown in Figure 8.
We have also run the same sequence using the standard method, but the errors were
to large to yield usable results (typically larger errors than the dimensions of the dinosaur

itself).

Figure 8: The Oxford dinosaur reconstructed from 2683 point triplets using the QR-
method with variable basis size. The reconstruction was completed in approximately 80
seconds by a Matlab implementation on an Intel Core 2 2.13 GHz CPU with 2 GB of

memory.

7.2 Localization with Hybrid Features

In this experiment, we study the problem of finding the pose of a calibrated camera with
unknown focal length. One minimal setup for this problem is three point-correspondences
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with known world points and one correspondence to a world line. The last feature is
equivalent to having a point correspondence with another calibrated camera. These types
of mixed features are called hybrid features and were introduced in [18], where the au-
thors propose a parameterization of the problem but no solution was given apart from
showing that the problem has 36 solutions.

The parameterization in [18] gives four equations in four unknowns. The unknowns
are three quaternion parameters and the focal length. The equation derived from the line
correspondence is of degree 6 and those obtained from the 3D points are of degree 3.
The coefficient matrix C is then constructed by expanding all equations up to degree 10.
This means that the equation derived from the line is multiplied with all monomials up
to degree 4, but no single variable in the monomials is of higher degree than 2. In the
same manner the point correspondence equations are multiplied with monomials up to
degree 7 but no single variable of degree more than 5. The described expansion gives 980
equations in 873 monomials.

The next step is to reorder the monomials as in (18). In this problem Cp corre-
sponds to all monomials up to degree 4 except f* where f is the focal length, which gives
69 columns in Cp. The part Cr corresponds to the 5:th degree monomials that ap-
pear when the monomials in P are multiplied with the first of the unknown quaternion
parameters.

For this problem, we were not able to obtain a standard numerical solver. The reason
for this was that even going to significantly higher degrees than mentioned above, we did
not obtain a numerical invertible C matrix. In fact, with an exact linear basis (same num-
ber of basis elements as solutions), even the QR and SVD methods failed and truncation

had to be used.

In this example we found that increasing the linear basis of C[x]/I by a few elements
more than produced by the adaptive criterion was beneficial for the stability. In this
experiment, an increase by three basis elements was used.

The synthetic experiments for this problem were generated by randomly drawing
four points from a cube with side length 1000 centered at the origin and two cameras
with a distance of approximately 1000 to the origin. One of these cameras was treated as
unknown and one was used to get the camera to camera point correspondence. This gives
one unknown camera with three point correspondences and one line correspondence.
The experiment was run 10, 000 times.

In Figure 9 the distribution of basis sizes is shown for the QR-method. For the SVD-
method the basis size was identical to the QR-method in over 97% of the cases and never
differed by more than one element.

Figure 10 gives the distribution of relative errors in the estimated focal length. It
can be seen that both the SVD-method and the faster QR-method give useful results.
We emphasize that we were not able to construct a solver with the standard method and
hence no error distribution for that method is available.
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Figure 9: The basis size for localization with hybrid features. The number of solutions
are 36 and since we always add three dimensions to the truncated ideal the minimal
possible basis size is 39.
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Figure 10: The error for localization with hybrid features. The standard method is omit-
ted since we did not manage to construct a standard solver due to numerical problems.
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7.3 Relative Pose with Unknown Focal Length

Relative pose for calibrated cameras is a well known problem and the standard minimal
case for this is five points in two views. There are in general ten solutions to this problem.
For the same problem but with unknown focal length, the corresponding minimal case
is six points in two views [32], which was solved by Stewénius et al. using Grébner basis
techniques.

Following the same recipe as Stewénius ez a/. it is possible to express the fundamental
matrix as a linear combination,

F = Fy+ Fily + Fsls. (39)

Then putting f =2 = p one obtains nine equations from the constraint on the essential
matrix [28]
2EE'E — tr(EEY)E = 0. (40)

A 10th equation is then obtained by making use of the fact that the fundamental matrix
i singular, ze. det(F') = 0. These equations involve the unknowns p, {1 and I3 and are
of total degree 5. The problem has 15 solutions in general.

We set up the coefficient matrix C by multiplying these ten equations by p so that
the degree of p reaches a maximum of four. This gives 34 equations in a total of 50
monomials. It turns out that it is possible to eliminate only one of the four monomials
I3p*, 13p*, Iop* and p* from all of the equations. However, we can discard the equations
where these monomials cannot be eliminated and then proceed as usual. We choose to
eliminate [3p*, but this choice is arbitrary.

The validation data was generated with two cameras of equal focal length of around
1000 placed at a distance of around 1000 from the origin. The six points were randomly
placed in a cube with side length 1000 centered at the origin. The standard, SVD, and
QR-methods have been compared on 100,000 test cases and the errors in focal length are
shown in Figure 11. In this case the QR-method yields slightly better results than the
SVD-method. This is probably due to loss in numerical precision when the solution is
transformed back to the original basis.

7.4 Relative Pose for Generalized Camera

Generalized cameras provide a generalization of the standard pin-hole camera in the sense
that there is no common focal point through which all image rays pass, ¢f. [29]. Instead
the camera captures arbitrary image rays or lines. Solving for the relative motion of a
generalized camera can be done using six point correspondences in two views. This is
a minimal case which was solved in [33] with Grobner basis techniques. The problem
equations can be set up using quaternions to parameterize the rotation, Pliicker repre-
sentation of the lines and a generalized epipolar constraint which captures the relation
between the lines. After some manipulations one obtains a set of sixth degree equations
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Figure 11: The error in focal length for relative pose with two semi calibrated cameras

with unknown but common focal length.

in the three quaternion parameters v, v2 and vs. For details, see [33]. The problem has
64 solutions in general.

To build our solver including the change of basis we multiply an original set of 15
equations with all combinations of 1, v1, v, v3 up to degree two. After this we end up
with 101 equations of total degree 8 in 165 different monomials.

We generate synthetic test cases by drawing six points from a normal distribution
centered at the origin. Since the purpose of this investigation is not to study generalized
cameras under realistic conditions we have not used any particular camera rig. Instead we
use a completely general setting where the cameras observe six randomly chosen lines each
through the six points. There is also a random relative rotation and translation relating
the two cameras. It is the task of the solver to calculate the rotation and translation.

The four different methods have been compared on a data set of 10,000 randomly
generated test cases. The results from this experiment are shown in Figure 12. As can
be seen, a good choice of basis yields drastically improved numerical precision over the

standard method.

8 Conclusions

We have introduced some new theoretical ideas as well as a set of techniques designed
to overcome numerical problems encountered in state-of-the-art methods for polynomial
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Figure 12: The angular error for relative pose with generalized camera.

equation solving. We have shown empirically that these techniques in many cases yield
dramatic improvements in numerical stability and further permits the solution of a larger
class of problems than previously possible.

The technique for solving polynomial equations that we use in this paper can be
summarized as follows. The original equations are first expanded by multiplying the
polynomials with a set of monomials. The resulting equations is expressed as a product of
a coefficient matrix C and a monomial vector X. Here we have some freedom in choosing
which monomials to multiply with. We then try to find a solving basis B for the problem.

For a given candidate basis B we have shown how to determine if BB constitutes a solving
basis. If so then we can use numerical linear algebra to construct the action matrix and
get a fast and numirically stable solution to the problem at hand. However, we do not
know (i) what monomials we should multiply the original equations with and (ii) what
solving basis B should be used to get the simplest and most numerically stable solutions.
Are there algorithmic methods for answering these questions? For a given expansion CX
can one determine if this allows for a solving basis? A concise theoretical understanding
and practical algorithms for these problems would certainly be of great aid in the work
on polynomial problems and is a highly interesting subject for future research.
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Image Based Localization Using Hybrid
Features

Klas Josephson, Martin Byrod, Fredrik Kahl, Kalle Astrém

Abstract

Where am I and what am I seeing? This is a classical vision problem and this paper presents
a solution based on efficient use of a combination of 2D and 3D features. Given a model of a
scene, the objective is to find the relative camera location of a new inpur image. Unlike tradi-
tional hypothesize-and-test methods that try to estimate the unknown camera position based on
3D model features only, or alternatively, based on 2D model features only, we show that using a
mixture of such features, that is, a hybrid correspondence set, may improve performance. We use
minimal cases of structure-from-motion for hypothesis generation in a RANSAC engine. For
this purpose, several new and usefil minimal cases are derived for calibrated, semi-calibrated
and uncalibrated settings. Based on algebraic geometry methods, we show how these minimal
hybrid cases can be solved efficiently. The whole approach has been validated on both synthetic
and real data, and we demonstrate improvements compared to previous work. The software

Jor solving hybrid geometry problems will be made publicly available.

1 Introduction

Localization refers to the ability of automatically inferring the pose and the position of
an observer relative to a model, cf. [3]. We propose to solve the problem using an image-
based approach. The model or the map of the environment can be anything from a single
room in a building to a complete city. In general, one image will be used as a query
image, but in principle several images can be used as input. No prior knowledge of the
observer’s position is assumed and therefore the problem is often referred to as global
localization whereas local versions assume an approximate position. The mapping of the
environment can be regarded as an off-line process since it is generally done once and for
all. Such a mapping can be done using standard Structure from Motion (SfM) algorithms
[13, 17, 23], or by some other means.

The key idea of this paper is to use a mixture of 2D and 3D features simultaneously for
localization. If one were to rely solely on 3D matches, one is restricting the set of possible
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correspondences to relatively few correspondences and a relatively rich 3D model would
be required in order to be successful. On the other hand, using only 2D features requires
relatively many correct correspondences to generate a single hypothesis. In addition, with
existing methods such as the seven point algorithm of two views [13], one is limited to
picking all the 2D correspondences from one single image in the model. Again, one is
restricting the set of correspondences to a relatively small subset. Further, the absolute
scale cannot be recovered solely from 2D correspondences of one query image and one
model image.

Using combinations of 2D and 3D features, what we call hybrid correspondence sets,
for generating hypotheses gives a number of advantages. We can make use of all possible
correspondences simultaneously, even from different 2D model images. Compared to
approaches using only 2D correspondences, the scale relative to the 3D map can be re-
covered and, more importantly, the number of correspondences is smaller which is a good
property when using RANSAC. One can argue that in most cases, traditional methods
would work fine. However, we demonstrate that hybrid correspondence sets are indeed
useful and there is simply no reason why this information should not be used as it leads
to improvements.

The three main contributions of this paper are:

1. We demonstrate how hybrid feature correspondences (combinations of 2D and 3D
features) can be used for improved image-based localization.

2. A complete list of minimal hybrid cases is given and for each case, we also give the
number of possible solutions possible.

3. Algorithms for efficiently computing the solutions of the minimal cases are given.
Further, the behavior and stability on synthetic data is evaluated for some cases.

1.1 Related Work

Localization and scene recognition are key components of any autonomous system. In
robotics, (global) localization is also known as the kidnapped robot problem. Successtul
solutions have generally been achieved with laser, sonar or stereo vision range sensors
and built maps for controlled robots moving in 2D, e.g., [19]. Another example is the
Deutches Museum Bonn tour-guide robot RHINO [4] where laser sensors are used. An-
other competing technique (at least, for some applications) is GPS. However, the accuracy
is typically only in the order of 10-20 meters and no direction information is obtained.

Image-based localization using special landmarks is a common approach, e.g., [2],
but this severely limits the flexibility and the applicability of the method. Similar to
our approach, distinctive visual features were utilized in [22] to overcome this limitation.
They also showed that RANSAC is an effective way of generating hypotheses. However,
only 3D model features were used and this requires a rich 3D model to work well.

For large-scale models, an image search technique is required to speed up the process.
This can be seen as a pre-processing step which produces a small number of hypotheti-
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cal part-models that need further verification. Possible such pre-processing schemes are
developed in [21].

The wealth of research in the SfM field is, of course, related to the present work, in
particular, the work concerned with RANSAC [27] and wide baseline matching [29, 18].
The same approach as proposed in this paper can be used to solve the wide baseline
matching problem to build up 3D models [23].

Understanding of the geometry and the number of solutions of minimal structure
and motion problems has a long history. For the uncalibrated case, the minimal problem
of seven points in two views (which has three solutions) was studied and solved already in
1855, cf. [8]. The corresponding calibrated case was in principle solved in 1913 [14]. The
study of minimal cases has got increased attention with its use in RANSAC algorithms to
solve both for geometry and correspondence in numerous applications [13, 28].

2 Problem Formulation
To solve the localization problem we are interested in solving the following problem:

Problem 1. Under the assumption that for a query image, there are m potential corre-
spondences to image points in views with known absolute orientation and n potential
correspondences to scene points with known 3D coordinates, find the largest subset of
the correspondences that admits a solutions to the absolute orientation problem within a
specified accuracy.

The method that we will use to solve the localization problem is based on hypothesize-
and-test with RANSAC [10] and local invariant features [16]. This involves solving min-
imal structure and motion problem with hybrid correspondence sets.

3 Minimal Hybrid Correspondence Sets

The classical absolute orientation problem (also known as camera resectioning) for cali-
brated cameras for three known points can be posed as finding the matrix P = [Rt],
such that \;u; = PU;, i = 1,2, 3. Here R is a 3 X 3 rotation matrix and ¢ is a 3-elements
translation vector. Thus, the camera matrix encodes six degrees of freedom of unknown
parameters. Each point gives two constrains and therefore three points form a minimal
case. In general there are four possible solutions [11, 12, 13].

We will study the absolute orientation problem both for calibrated cameras as above,
for the case of unknown focal length and for the uncalibrated camera case. As explained
in the introduction we will also consider both known 3D-2D correspondences (U;, u;)
as above and 2D-2D correspondences (v;, ;) with features v; in other views. Here we
will assume that the camera matrices of the other views are known, so that a 2D-2D
correspondence can be thought of as a 3D-2D correspondence where the unknown 3D
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point U; lies on a line expressed in Pliicker coordinates. In this paper the (m,n) case de-
notes the case of m 2D-2D correspondences and n 3D-2D correspondences. Notice that
each 2D-2D correspondence imposes one constraint and each 2D-3D correspondence
imposes two constraints.

Calibrated Cameras For calibrated cameras there are six degrees of freedom, three for
orientation and three for position. One way of parameterizing the camera matrix is to use
a quaternions vector (a, b, ¢, d) for rotation, i.e.

a?4+02—c2—d? 2bc — 2ad 2ac + 2bd T
P = 2ad + 2bc a? -+ —-d? 2¢cd — 2ab yl. (1)
2bd — 2ac 2ab + 2cd a2—bv—-2+d* =z

Potential minimal cases are:

The (0,3) case. This is the well known resection problem, cf. [11, 12, 13] with up to
four solutions in front of the camera.

The (2,2) case. This case is given a numerical solution in this paper. The algorithms
works equally well if the 2D-2D correspondences are to the same or to different cameras.
There are up to 16 solutions.

The (4,1) case. There are two cases here. In the first case all 2D-2D correspondences
are to the same view. In this first case the problem can be solved by first projecting the 3D
point in the known camera and then using the five point algorithm to solve for relative
orientation, (hence up to 10 solutions), cf. [14]. The scale is then fixed using the 2D-3D
correspondence. The second case is when the 2D-2D correspondences are to at least two
different views. This is studied in this paper and we demonstrate that there are up to 32
solutions. No numerical algorithm is presented.

The (6,0) case. This cannot be solved for absolute orientation if all points are from
the same model view. In this case only relative orientation can be found and only five
correspondences are needed as discussed above. However, if the correspondences come
from different views, it is in fact equivalent with the relative orientation problem for
generalized cameras, cf. [26], which has up to 64 solutions.

Unknown Focal Length For calibrated cameras with unknown focal length there are
seven degrees of freedom, three for orientation, three for position and one for the focal
length. One way of parameterizing the camera matrix is as

a?+b% —c? —d? 2bc — 2ad 2ac + 2bd x
P = 2ad + 2bc a? —b2+c2—d? 2cd — 2ab y|l. @
2f(bd — ac) 2f(ab + cd) fla> = —c*+d?) fz

Potential minimal cases are
The (1,3) case. This case is given a numerical solution in this paper.There are 36
solutions.
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The (3,2) case. This is studied in this paper and we demonstrate that there are up to
40 solutions. No numerical algorithm is presented.

The (5,1) case. There are two cases here. In the first case all 2D-2D correspondences
are to the same view. In this first case the problem can be solved by first projecting the 3D
point in the known camera and then using the six point algorithm to solve for relative ori-
entation and focal length [25]. The scale is then fixed using the 2D-3D correspondence.
The second case is when the 2D-2D correspondences are to at least two different views.
This is studied in this paper and we demonstrate that there are up to 112 solutions. No
numerical algorithm is presented.

The (7,0) case. This cannot be solved for absolute orientation if all points are to the
same view. It can be solved for relative orientation using 6 points as discussed above.
However for the case of correspondence to different view it should be solvable, but to our
knowledge it is still an open problem.

Uncalibrated Cameras For the uncalibrated camera case there are 11 degrees of free-
dom. Each 2D-2D correspondence gives one constraint and each 2D-3D correspondence
gives two constraints. Potential minimal cases are

The (1,5) case. This can be solved by as follows. Using the five 3D-2D corre-
spondences, the camera matrix can be determined up to a one-parameter family P =
Py + vPs, where Py and P; are given 3 X 4 matrices and v is an unknown scalar. The
remaining 2D correspondence can be parameterized as a point on a line U = C + pD
for some unknown parameter . The projection equation gives Au X u = u X PU =
ux (P, +vP3)(Uy + pUz) = 0. Thus we obtain two, second degree constraints in v, p.
Using resultants, it follows easily that there are two solutions for the unknowns v, p.

The (3,4) case. There are two cases here. In the first case all 2D-2D correspondences
are from the same view. In this first case the problem can be solved by first projecting the
four 3D point in the known camera and then using the seven point algorithm to solve
for relative orientation [8]. There are then 3 solutions. The projective coordinate system
is then fixed using the 2D-3D correspondences. The second case is when the 2D-2D
correspondences are to at least two different views. In this case the solutions procedure is
analogous to the previous case and can be obtained using resultants, this method shows
that there can be up to eight solutions. No numerical algorithm is presented.

The (1+24k,5-k) case with k = 2,3, 4. These cannot be solved for absolute orientation
if all points originate from one model view. Relative orientation is then still possible using
at least seven points. The remaining case is when the 2D-2D correspondences are to at
least two different views. Once again the methods of the (1,5) case can be used and there

(1+2k

are up to 2 ) solutions. No numerical algorithm is presented.

Summary We conclude this section by summarizing all the minimal cases for hy-
brid 2D and 3D feature correspondences, see Table 1. We state an upper bound on
the number of physically realizable solutions. In general, as we shall see later in Sec-
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tion 5, the number of plausible solutions is much smaller. In the next section, we
clarify the calculations for some of these cases. This will also lead to efficient algo-
rithms for computing the solutions. Algorithms in matlab for solving the (2,2) and
(1,3) cases, that later are evaluated in this paper, will be available for download on
http://www.maths.lth.se/vision/downloads/.

number of

2D-2D | 2D-3D camera
corresp. | corresp. | solutions setting
0 3 4 calibrated
2 2 16 calibrated
4 1 32 or 10* calibrated
6 0 64 calibrated
1 3 36 unknown focal
3 2 40 unknown focal
5 1 112 or 15* | unknown focal
7 0 ? unknown focal
1 5 2 uncalibrated
3 4 8 or 3* uncalibrated
142k 5—k 2T+2k uncalibrated

Table 1: Minimal hybrid cases for structure from motion. The number of solutions
indicates an upper bound of the number of physically realizable solutions. The solution
numbers marked with asterisk ”*” correspond to cases where all 2D-2D correspondences
originate from a single (model) view, whereas for other cases, it is implicitly assumed that
the correspondence set covers multiple views. Note that one case is still an open problem
(marked with ”?”). In the table italic is used to denote cases which are analogous to well
known structure and motion problems and bold face is used for cases that are solved in
this paper. The remaining cases have not be solved to a sufficient detail yet.

4 Solving Minimal Cases with Algebraic Geometry

Minimal structure and motion problems typically boil down to solving a system of poly-
nomial equations in a number of unknowns and in this section we describe how these
types of polynomial problems can be solved with a combination of algebraic geometry
and numerical linear algebra. For a specific application problem the structure of the poly-
nomial system is fixed. Thus the number of solutions to a structure and motion problem
typically depends only on the type of problem at hand. Common examples are relative
orientation for calibrated cameras, five points in two views, which has ten solutions [24]
and fundamental matrix estimation, seven points in two views, which has three solutions.

98



4. SOLVING MINIMAL CASES WITH ALGEBRAIC GEOMETRY

Solving systems of polynomial equations is a challenging numerical task and there
is no general method of universal applicability as for linear equation systems. A first
step towards solving a certain class of polynomial systems is to determine the number of
solutions. There are several techniques for doing this. The theory of mixed volumes [9]
can be used to prove the number of solutions for a set of polynomial equations assuming
general coefficients of the polynomial. The software package phc [30] is useful both for
calculating mixed volume and for finding solutions with homotopy methods. Another
method is to calculate the so called Grobner basis of the polynomial system which then
easily yields the number of solutions to the problem [9]. For problems that are not
synthetic (where the coefficients are represented as floating point approximations) finding
the Grobner basis is numerically difficult due to accumulating round-off errors. One
technique implemented in the computer algebra system Macaulay2 [1] is to work with
integer coefficients and then projecting the equations from C[x] to Z,[x] and computing
the Grébner basis there.

Apart from providing theoretical information regarding the problem structure, Grob-
ner bases are also a popular and efficient tool for constructing numerical solvers for poly-
nomial equation systems. A given polynomial system fi(z) = -+ = fi,(x) = 0,
generates an ideal I = {g(z) : ¢ = Zghy fr, hie € C[x]}, consisting of all linear com-
binations of the fi, where the coefficients hy, are arbitrary polynomials. It is convenient
on a theoretical level to work with [ since it is more general than the original system of
equations, but has exactly the same zeros. A Grobner basis G for [ is a special set of gen-
erators which allows multivariate polynomial division by I denoted f&. Consider now
the quotient space C[x]/I of equivalence classes of polynomials modulo I (f and g are
equivalent modulo I #ff f — g € I) and let [f] denote the equivalence class of f. We get

a convenient representative for [f] to work with by computing f since EG = EG for
fi, f2 € [f].

For an ideal with a finite number of solutions C[x]/I is a finite-dimensional space
with the same number of dimensions as solutions [9]. In this space, the multiplication
mappings Ty, : f +— xpf are especially interesting. By selecting a basis for C[x]/I, we
can represent 17, as an r X 7 matrix M, , known as the action matrix. The eigenvalues
of this matrix are then the variable x;, evaluated at the zeros of I. Moreover, the vector
of basis elements of C[x]/I, which in general is a vector of polynomials, evaluated at the
zeros of I equals the eigenvectors of m, . For proof of this see [9].

Given a set of basis elements B = {b;(x), ... b,(x)} whose equivalence classes span

C[x]/I, all we need to do now is to compute x1b;  for each b;. In other words, x1b;
needs to be expressed in terms of the basis elements {b;}. This can be done as follows.
First we multiply the system of polynomials by a set of monomials, yielding a larger set
of equations. These equations are all members of the ideal and are hence equivalent in
terms of solutions, but hopefully linearly independent. We now write the equations on
matrix form

CX =0, 3)
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where C is a matrix of coefficients and X = [x*1,...,x%|T is a vector of monomials
with the notation x* = " ... x%%. In the basic case, we now partition the set of

monomials M into three subsets M = EURUDB, where B is a set of monomials forming
a basis for C[x]/I, R = x;B \ B is the set of monomials reached by multiplication by
xy, and which needs to be expressed in terms of B and finally £ = M \ (R U B) is the

set of monomials which are not involved in forming m,, . We then get

Xe
[Ce Cr Cs] |Xz| =0 )
X5

Since the £ monomials are not used for computing the action matrix we eliminate them
by putting C¢ on upper triangular form

X =0
0 Cgra2 Cp R )

X
[Us Cri1 CBI] £
X5

and the keeping only the lower part, yielding

[Cra Cis Bﬁﬂ =) ©)

or equivalently

Xg = Cz5Cp2X5 ?)

allowing us to express all the necessary monomials in terms of monomials in the basis.

We will now go into the details of how the systems of equations are derived and how
Grobner basis solvers as described above can be constructed for the more interesting of
the hybrid minimal problems studied in this paper.

4.1 Calibrated Cameras

A calibrated camera can be parameterized using quaternions as shown in (1). Assume that
we have two correspondences between image points and scene points

uy ~ PUy, wug ~ PUs.

Since there is a freedom in choosing coordinate systems both in the scene and in the
images, these can be transformed into

U1: )U2:

, U1 =

_oo O O
—_ o O
_ o O =

<

N}

\

o
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This gives us the following constraints

z=0, y=0, ad = —bc,
2z =u(a?® + b* — ¢ — d?) — 2bd + 2ac.

As the overall scale of the camera matrix is irrelevant, one can set @ = 1 and eliminate d

according to d = —bc. This makes it possible to parameterize the camera matrix as
(1+b2)(1—c?) 4be 2¢(1 — b?) 0
P= 0 (1—=0%)(1+ %) —2b(1+c*) 0
—2¢(1 + b?) 2b(1 — ¢?) 1-H)(1-¢c?) =z

By putting @ = 1 two things happen. First the scale of the camera matrix is fixed,
hence the left-hand 3 x 3 sub matrix in (1) will only be a rotation matrix up to scale.
This will not have any further impact on the problem since the measurement equations
are homogeneous. The second consequence is that solutions with @ = 0 will not be
included. Since a € R the probability for this is zero, but there might be problems if a is
close to zero. However, as the synthetic experiments will show this is no serious problem.

Assume now that we have two correspondences between image points and points that
have been seen in only one other model image. This gives two points on the viewing
line C; and D; associated to a point v; in the query image. If the line is represented
with Pliicker coordinates [13] and the camera is converted to the correspondent Pliicker
camera the constraints above converts to a single equation. It is further on easy to see
that every nonzero element in the Pliicker camera has a common factor of 1 + b?. After
removing the common factor, the constraint polynomials (p1, p2) are of order 2 in b and
order 4 in c.

The dimension of the quotient space C[b, ¢]/I is 16 with I = (p1, p2) which can be
checked with computer algebra [30]. By multiplying the polynomials with {1, b, ¢, bc}
we obtain 8 equations in 24 monomials. It is then possible to express 8 of the monomials
in terms of the remaining 16 monomials

{bc® 32 ¢ bed b2 b3, &3 bc? bPe, b2 ¢ be, b? ¢, b, 1}

which then form a basis for the quotient space C[b, ¢]/I. From this it is straightforward
to construct the 16 X 16 action matrix m,. for the linear mapping C[b, c]/I > p(c) —
cp(c) € Clb,c]/I. From the eigenvalue decomposition of the matrix m,. the 16 (some
possibly complex) solutions are obtained. Similar calculations give that there are 32 solu-
tions for the (4,1) case.

4.2 Unknown Focal Length

For the case of unknown focal length we have one additional unknown. Thus we need
one extra constraint. There are several interesting minimal cases: (1,3), (3,2) and (5,1).
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However for the last case (assuming that all the five points were in correspondence with
the same view) one could solve the relative orientation problem using the six point algo-
rithm [25] and then fix the scale using the known 3D correspondence.

Using (2) as parameterization for the camera matrix and assuming that two of the 3D
point correspondences are with

U, =

= o o o

: 1

U= | m=1{0 ®)
0
1 1

it is possible to eliminate y = 0 and z = zf = g(b, ¢, d, f). We fix the scale by setting
a = 1. For both the (1, 3) case and the (3,2) case we get polynomial constraints in
the four remaining unknowns (b, ¢, d, f). Calculations with computer algebra [30] show
that there are 36 solutions for the (1, 3) case, 40 solutions to the (3,2) case and 112 in
the (5, 1) case.

Constructing a Solver for the (1, 3) Case

Using the parameterization above, one 3D correspondence and one 2D correspondence
remain. The 2D correspondence is handled as in the (2,2) case by constructing the
Pliicker camera. This results in one equation. The other three required equations are
generated from the last 3D point and from Us. If U is projected through the camera,
two equations appear. By eliminating the depth A one equation remains. The last two
equations are generated through the last 3D point correspondence (Us, u3). Let uz =
(71, 22,1)T and then construct the matrix,

0 -1 To
B=-1 0 =], )

—X9 X1 0
from which three equations can be generated by putting,
BPU; = 0. (10)

These three equations are linearly dependent and only the two first are kept.

The four constructed equations will now be multivariate polynomials where the equa-
tion constructed by the Pliicker line will have degree 4 in (b, ¢, d) and degree 2 in f. The
maximal total degree of the polynomials in this equation will be 6. For the other three
equations derived from 3D-2D correspondences the total degree is 3 and the maximal for
each variable is 2 for (b, ¢,d) and 1 for f.

The next step in constructing the solver is to expand the coefficient matrix C. At this
stage the matrix will have size 4 x 82. The expansion is made by adding the equations
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when the polynomial constructed by the Pliicker line is multiplied with all monomials
up to degree 4 but with no single variable with a degree higher than 2. The other three
equations are expanded with all monomials up to degree 7 but with no single variable with
a degree higher than 5. After this expansion the coefficient matrix C is of size 980 x 873.

After C is expanded, we divide the monomials into the three sets £, R and B as
outlined above. The basis B is selected to be all monomials of degree 4 and lower except
for f4. The set R contains the monomials which are not in B but are produced when
the monomials of B are multiplied with b. The rest of the monomials are collected in the
set £. This partition gives 69 monomials in B, 34 in R and the remaining 770 in £.

We use LU-decomposition to eliminate monomials in the set £, which gives a subset
of equations, now with only 103 monomials. The (1,3) problem is numerically signifi-
cantly more challenging than the (2,2) problem and to get a solution a combination of
techniques for improving numerical stability introduced in [6, 7, 5] are used. The tech-
niques are essentially to (i) use a matrix factorization algorithm to select a numerically
well conditioned basis set B and (ii) to add some extra elements to B making it linearly
dependent, but with the advantage that the added elements do not need to be expressed
in terms of the basis since they are now a part of the basis.

5 Synthetical Experiments
5.1 The (2,2)-Solver

The purpose of this section is to evaluate the stability of the algorithm for solving the
(2,2) case introduced in Section 4. To this end we use synthetically generated data in the
form of randomly generated cameras and points. This allows us to measure the typical
errors and the typical number of plausible solutions, over a large range of cases.

The point features are drawn uniformly from the cube £500 units from the origin
in each direction. The cameras (two known and one unknown) are generated at approx-
imately 1000 units from the origin pointing roughly in the direction of the center of the
point cloud.

The algorithm has been run on 10,000 randomly generated cases as described above.
To evaluate the accuracy of the solutions we take the square root of the sum of the for
reprojection errors. The result is illustrated in Figure 1. As can be seen, the error typically
stays as low as 10715 to 10717, but occasionally much larger errors occur. However, since
the solver is used as a subroutine in a RANSAC engine, which relies on solving a large
number of different instances, these very rare cases with poor accuracy are not a serious
problem.

As shown in Section 4 the (2,2) calibrated case in general has 16 solutions. Since
obviously only one of these solutions is the correct one it is interesting to investigate how
many plausible solutions are typically obtained. With plausible solutions we mean real
valued camera matrices that yield positive depths for all four problem points. In Figure 1 a
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Figure 1: Statistics from the evaluation of the solver for the (2,2) case for calibrated
cameras. The solver was run on 10,000 randomly generated cases. Left: Histogram over
the error in matrix norm between the estimated camera P’ and the true camera P. The
error is plotted on a logarithmic scale. Right: Histogram over the number of real valued
solutions yielding positive depths.

histogram which shows the typical number of plausible solutions is given. As can be seen
the most common situation is one to four plausible solutions. In one of the 10,000 cases,
the algorithm was unable to find a real solution with positive depths for all points. This
is probably due to numerical problems when the points and/or cameras are unfortunately
positioned (two or more real solutions irrespective of the sign of the depths were found in
all cases). In three of the cases seven solutions were found and in one case eight plausible
solutions were found. The average number of plausible solutions was 2.6 and the average
number of real solutions was 6.4. In some of the cases all 16 solutions were real.

5.2 The (1,3)-Solver

The synthetic experiments for the (1,3) problem were done in the same manner as in the
(2,2) case. Four points were generated by randomly drawing from a cube with side length
1000 centered at the origin and two cameras with a distance of approximately 1000 to
the origin. One of these cameras was treated as unknown and one was used to get the
camera to camera point correspondence. This gives one unknown camera with three
point correspondences and one line correspondence. The experiment was run 10,000
times.

The result is shown in Figure 2. As can be seen, the error is not as low as in the (2,2)
case but the numerical precision is still good enough and in most cases the error stays
below 107°. The same figure also holds a histogram over the number of solutions that
are real and with positive focal length. The histogram shows that even though there can
be up to 36 real solutions in theory, the actual number of plausible solutions is usually
below ten.
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Figure 2: Statistics from the evaluation of the solver for the (1,3) case for calibrated
cameras with unknown focal length. The solver was run on 10,000 randomly generated
cases. Left: Histogram over the error focal length between the estimated camera and the
true camera. The error is plotted on a logarithmic scale. Right: Histogram over the
number of real valued solutions with positive focal length.

6 Localization System Experiments

To test the new methods on real data a complete localization system was constructed.
Since this paper treats the pose problem, and not the construction of the model, there
will only be a short description of how the model was built. For more on model con-
struction [23] is recommended. Localization with some of the new minimal cases was
then tested and compared with two previous methods. In the calibrated case the previous
method is the (0,3)-solver [12] and in the uncalibrated case we have compared with a
linear resection algorithm using six correspondences.

6.1 Construction of the Model

The model was built from a set of unordered images with nothing known about the
positions of the cameras. The calibrations of the cameras were known for these images.
On all images SIFT descriptors [16] were calculated. The descriptors were then used
together with the knowledge of the calibration to find the relative motion between every
pair of cameras, with enough corresponding points, using the five point algorithm [20].
By using the pairwise connection between all images the best corresponding triplet was
found. By best triplet we here mean the set of three images with most corresponding
points common for all three views. Two of the images in the triplet were then used as the
foundation of the model to fixate the unknown scale.

After that a third camera was added. This was done by using the known relative
motion to one of the first two cameras. Since this relative motion was known it is enough
with one single point to get the scale. To find the scale a RANSAC engine was used.
The remaining cameras were then added stepwise choosing the camera with most known
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correspondences to points that were known in the 3D-space. The placement was then
performed in the same way as with the third camera. After each camera was added bundle
adjustment was applied to points and cameras. In the beginning all points and all cameras
were used in the bundle adjustment step, but to speed up the process only the new camera
and new 3D points were optimized when the size of the model increased. The model
construction is not focused on removing outliers even though RANSAC is used, which
will result in many outliers remaining in the model. The outliers will be handled in the
localization phase.

The complete model holds the following data so it can be used in a hybrid localization
system:

SIFT: All SIFT features found in all images.

Points: The normalized coordinates of all SIFT features in all images.

Structure: The coordinates of all triangulated points in the 3D-space.

Cameras: All positions of the cameras in the model.

Tracks: Groups of feature points that correspond to a single 3D point.

In addition to this the model also holds mappings between these objects.

For the experiments two models were constructed of the same area but with slightly
different properties. The first model, called Model 1 in the following, is built from a
sequence of only seven images. These images are taken along a street with approximately
fifty meters baseline between the most separated views. The sparsity of this model makes
it very challenging for a localization system. The second model, called Model 2, was
constructed using thirty images but covers a much shorter distance. The maximal base-
line between two images is approximately 10 meters. Examples of both images used to
construct the model and test images are shown in Figure 3. The test images were taken
approximately two months after the model images and with a different camera. Some
statistics on the two models are given in Table 2.

Model 1 | Model 2
Number of cameras 7 30
Number of SIFT features | 18675 65385
Number of 3D points 593 3199
Number of 2D points 17097 55925

Table 2: Some data about the models. The SIFT features are the complete set of SIFT
features from all images in the model, the 3D points are all triangulated point and the
2D points are all SIFT features which do not correspond to a triangulated 3D point.
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Figure 3: On the left is one of the images used to construct the models and on the right
is one of the test images. The test images were taken about two months after the model
images. Different cameras were used when the model and test images were taken.

6.2 Testing of Localization

Two of the new methods given in this paper are tested: the (2,2) solver for calibrated
cameras and the (1,3) solver for calibrated cameras with unknown focal length. In the
(2,2) case the number of inliers is measured after the RANSAC step has been carried out
and is compared with the number of inliers when the three point solver is used in the
same RANSAC loop. All located cameras were also manually examined, since we do not
have any ground truth data, to decide whether the localization was correct.

In the (1,3) case more experiments are done. Due to the fact that the focal length is
calculated this value can be verified. This is done by first calculating the calibration of
the camera with more data than during the localization step. By then normalizing the
coordinates we know that the focal length should be one since the inner calibration is
removed.

The comparison for this method is made with uncalibrated cameras. To do that the
principal point of the camera is assumed to be in the middle of the image, the skew is fixed
to zero and the aspect ratio to one. These assumptions on the camera matrix are true for
almost all digital cameras constructed today, even though the principal point may differ
somewhat in location. Since the (1,3) solver is tested in uncalibrated images the solver is
compared with a linear solver of six three dimensional points. This is not a minimal case,
but it is probably the most used method on uncalibrated images today.

The localization step is carried out as follows for all methods used. First the SIFT
descriptors are calculated for the query image. After that, all these SIFT features are
compared with those in the model to find the closest match. To make this more robust
a distance ratio between the best and the second best match is used. The threshold for
the ratio is fixed to 0.7 and the match is only accepted if the matching score for the first
match is 0.7 better than the second match. For each established point track, we only
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match to the best point in the track.

This will give a set of matches between the query image and the model. Some of these
matches are to 3D points and some correspond to 2D features without triangulated 3D
points. These matches will also contain a significant number of outliers. To handle the
outliers RANSAC is used with the proposed minimal solvers. When the number of inliers
is counted during the RANSAC iterations the number of 2D correspondences is divided
by 10. This is done to balance the fact that the number of 2D points in the model is
about ten times as large as the number of 3D points. The thresholds for the reprojection
error in the RANSAC algorithm is fixed to 0.6% of the image size as in [23]. For the 2D
points this value is reduced by a factor ten since the 3D points are first triangulated using
the 2D points. As a final step of the localization, bundle adjustment is performed on the
camera position using the 3D inliers.

Test of the (2,2) Solver

The (2,2) solver is tested and compared with the three point solver [12]. Both these
methods assumes calibrated cameras. Figure 4 shows an example of a test image which
has been correctly positioned by both methods.

Figure 4: The reprojection of visible 3D points when the (2,2) solver (left) and the three
point solver (right) are used. One out of four model points in Model 2 is reprojected and
both solvers have resulted in a correct position.

To evaluate the solver, all images that had three or more correspondences to 3D points
are used. On these images, 500 RANSAC iterations were performed and the number of
inliers was counted. For the (2,2) solver, both the numbers of 3D and 2D inliers are
given. The result of this experiment is shown in Table 3. The three point solver gives a
slightly higher number of 3D inliers. The fact that an incorrectly placed image usually
gives the (2,2) solver two inliers but gives the three point solver three inliers is probably
the reason that the three point solver has a slightly higher number of inliers.
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Model 1 Model 2 Models 1 & 2
Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D
(2,2) solver 9.83 4.60 7.63 9.41 8.68 7.11
(0,3) solver 4.72 9.88 7.42

Table 3: The mean number of inliers after 500 RANSAC iterations for the (2,2) solver
and the three point solver. Model 1 is a sparse model and Model 2 much denser.

Furthermore, the number of correctly located images was counted. For the (2,2)
solver, the number of correctly placed cameras was 55 out of 65 images in Model 1 and
the corresponding figure for the three point solver was 45. The total number of images,
are as before those test images that had at least three 3D correspondences to the model.
The images with fewer correspondences are not counted. In Model 2 the figures are closer.
There were 54 images correctly placed with the (2,2) solver and 53 images with the three
point method. The total number of images was 71. The reason why the performance
differs more in the first model is probably due to the sparsity of that model. When the
model is sparse the importance of also using the 2D correspondences increases.

Test of the (1,3) Solver

If we assume nominal values for the principal point, skew and aspect ratio, then the (1,3)
solver can be used on uncalibrated images. Making these assumptions, we compare the
result with the six point linear solver for the uncalibrated case. The results of an image
positioned by the (1,3) solver and the six point solver are shown in Figure 5.

Figure 5: The reprojection of visible 3D points when the (1,3) solver (left) and the six
point solver (right) is used. In this example Model 1 is used and all points in front of the
camera are reprojected. The (1,3) solver has a correct position but the six point solver has
not.

As in the previous case, we used all images that had more than six 3D correspondences
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and hence could be used in both algorithms. On these images the 500 RANSAC itera-
tions were performed and the number of inliers was counted. For the (1,3) solver both
the numbers of 3D and 2D inliers are given. The result of this experiment is presented in
Table 4. The results are very similar to those of the previous case.

Model 1 Model 2 Models 1 & 2
Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D | Inliers 2D | Inliers 3D
(1,3) solver 14.7 6.52 9.84 11.36 11.42 9.78
(0,6) solver 7.37 12.20 10.63

Table 4: The number of inliers after 500 RANSAC iterations for the (1,3) solver and the

six point solver. Model 1 is a sparse model and Model 2 much denser.

The number of correctly located images was also counted, as in the previous case. For
the (1,3) solver the number of correctly placed cameras was 22 in Model 1, out of 32
images. The six point method on the other hand only managed to locate 4 of these 32
images correctly. In the second model, the (1,3) method succeeded in the localization in
41 out of 62 trials. On the same data, the six point solver managed to place 14 cameras
correctly.

Determining the Focal Length

The (1,3) solver also estimates the focal length and this can be used to evaluate the solver
since we can find the calibration of the camera using other data. The experiment is carried
out as follows. The localization step is performed as usual but the calibration dependency
is removed in the beginning by normalizing the image coordinates. The result should
then be that the (1,3) solver returns a focal length equal to one. To test this every image
with enough of correspondences was localized. All images that got at least one extra inlier
in 3D were then used in kernel voting [15] to estimate the focal length. The constraint
that one extra inlier should appear is used to remove a large part of the miss placed images.
The result of the kernel voting is shown in Figure 6. As can be seen in the figure, the main
peak is localized close to one.

7 Conclusions

In this paper we have presented new minimal cases for the resection problem. These use
a mixture of correspondences to known 3D points and correspondences to points that
have only been found in one image in the model. In all except one of these minimal
cases we have given an upper bound on the possible number of solutions with use of
Grobner basis techniques. In two of the cases we have also presented and evaluated
solvers. The first of these cases is the (2,2) problem that finds the pose for a calibrated
camera. The solution with Grébner basis techniques leads to a very fast and numerically
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Figure 6: The result of the kernel voting for the focal length. The true focal length in this
experiment is one. In the kernel voting only estimations with more the minimal number,
which is three, of inliers are used in the voting process.

stable algorithm. We also present a solver for the (1,3) case for cameras with unknown
focal length. This problem is much more complicated than the (2,2) problem but we
can still present a numerically sound algorithm that is fast with Grobner basis methods.
Both these methods are tested in a complete localization system and they are shown to
improve on the current state of the art. The experiments show also that the (1,3) solver
for pose and unknown focal length can be used on uncalibrated cameras under some
reasonable assumptions. With these assumptions the solver shows promising results. The
improvements are most significant on sparse models.

In the paper all methods are used separately. A convenient way to extend this work
would be to use all methods simultaneously and make an automatic choice of which
method to use depending on the data present. By that our new methods can help to
improve the robustness of every localization system using hybrid cases. In future work
we intend to apply the idea of hybrid features to evaluate the performance on publicly
available benchmarks for example Zurich Building Image Database to compare with the
state of the art.
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