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Introduction

This thesis is concerned with the filtering problem in non–linear non–Gaussian
state–space models together with the application of filtering techniques for the
positioning in wireless networks and is based on 5 papers.

The state–space model is a stochastic process on two levels. On the first level
there is a discrete time Markov chain, which is not observed directly, but only
through the second level process. This second observation process is related to the
hidden chain in such a way that its distribution at any time point is determined
by the corresponding value of this chain.

The optimal filtering problem (or, more general, the problem of smooth-
ing) refers to the inference about the hidden process based on the values of the
observed process. In case of linear Gaussian state–space model the solution is
provided by well known Kalman filtering technique. For non-linear Gaussian case
methods like extended Kalman filter or Gaussian sum filter exist.

In case of non–linear non–Gaussian state–space model the analytical solution
to the filtering problem is not feasible and approximation methods have to be
employed. The sequential Monte Carlo methods provide an approximation of
the distribution of interest and since early nineties have been widely applied in
the field of non–linear filtering. These techniques (also known as particle filters)
found a lot of applications in different areas like signal processing, automatic
control, localization and tracking. Two papers of the presented thesis are devoted
to the application of particle filtering to positioning of mobile devices in wireless
networks.

The thesis starts with the introduction to the topic, where we define the opti-
mal filtering problem and present basic concepts of sequential Monte Carlo meth-
ods. We give a brief overview of the wireless location and show that this problem
fits the state–space model framework and can be solved using SMC methods. Sec-
ond part consists of 5 papers, from applied papers A and B on wireless location
to paper E, where some theoretical developments of the existing particle filtering
techniques are presented.
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Introduction

1 State–Space Models

1.1 Definition and Examples

A state–space model is defined as a stochastic process on two levels. On the first
level we have a discrete time Markov chain X , {Xn}∞n=0 taking values in some
measurable space (X,X ). We call this chain the state or the state process and refer
to X as the state space. There are no specific requirements to the structure of the
state space, but in a lot of applications one takes X being subset of R

k. Models
with finite X constitute a special class which is often called in the literature hidden
Markov models, see, for example, MacDonald and Zucchini (1997).

Term hidden with respect to the state process arises from the fact that X is
not observed directly, but only through another stochastic process Y , {Yn}∞n=0,
taking values in some measurable space (Y,Y). We call Y the observation or mea-
surement process, and describe its connection to the state process in the following
way. Given the states, all observations are conditionally independent in such a
way that for any n ≥ 0 the conditional distribution of Yn depends on the value of
Xn only.

Denote by gn(· , xn) the conditional density of the observations given the
states, and by Q and n the probability transition kernel and the initial distri-
bution of the states, respectively. Assume that the kernel Q admits the density
q with respect to some measure h, i.e. Q(x, dx′) =

∫

q(x, x′)h(dx′). The state–
space model is then described by the set of equations, which consists of the initial
equation

X0 ∼ n, (1.1)

the evolution equation

Xn+1|Xn = xn ∼ Q(xn, ·), (1.2)

and the observation equation

Yn|Xn = xn ∼ gn(· , xn). (1.3)

Alternatively, on can specify the state–space model in a following way,
{

Xn+1 = f (Xn, Vn+1),

Yn = h(Xn, Wn),
(1.4)

2



1. State–Space Models

where f and h are arbitrary vector-functions. The state noise {Vn}∞n=1 and the
observation noise {Wn}∞n=0 are sequences of independent random variables with
known distributions, which determine the kernel Q and density g in formulation
(1.2)–(1.3), respectively.

The description above is fairly general and includes variety of models applied
in the different scientific disciplines, such as telecommunications or finance. Let
us consider a few examples.

Example 1.1. Linear Gaussian State–Space Model
This state–space model is usually considered in the relation to standard time–

series analysis, see Brockwell and Davis (2002), Chapter 8 and is widely employed
in engineering.
The model is given by

X0 ∼ N (m0,S0),

Xn+1 = AXn + RVn+1,

Yn = BXn + SWn,

(1.5)

where the state noise {Vn}∞n=1 and the observation noise {Wn}∞n=0 are sequences
of independent standard (multivariate) Gaussian random variables. In terms of
(1.2) and (1.3), the kernel Q(xn, ·) corresponds to the multivariate Gaussian dis-
tribution N (Axn, RR′) and the density gn(· , xn) corresponds to the density of the
multivariate Gaussian distribution with mean vector Bxn and covariance matrix
SS′.

Example 1.2. Bearings-only Tracking
Consider the problem of tracking an object traveling in two-dimensional

space. Both the position and velocity of the target are unknown, and have to be
estimated using the noisy measurements of the angle between the target and the
observer with known position. In this case the state vector is four–dimensional
and represents horisonal and vertical positions and velocities of the target, Xn =

(X1,n, Ẋ1,n, X2,n, Ẋ2,n)T. Suppose measurements are done with time interval Dt
and base the evolution equation on well-known physical relationships between
position, velocity and acceleration,

Xn+1 =









1 Dt 0 0
0 1 0 0
0 0 1 Dt
0 0 0 1









Xn +









(Dt)2/2 0Dt 0
0 (Dt)2/2
0 Dt









Vn+1, (1.6)
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Introduction

where {Vn}∞n=1 is a sequence of independent two-dimensional Gaussian random
variables with zero mean vector and covariance matrix s2

vI2. The measurement
equation is given by

Yn = tan(−1) X2,n −O2,n

X1,n −O1,n
+ Wn, (1.7)

where (O1,n, O2,n)T denotes the known position of an observer and {Wn}∞n=0 is a
sequence of independent Gaussian random variables with zero mean and variances2

w.

1.2 State Inference in State–Space Models

In this section we consider the problem of inference about the hidden process,
i.e. drawing conclusions about the properties of the hidden process that usually
provide solutions to problems arising in practice. For example, in bearings only
tracking one would like to estimate the state vector at certain time points given the
observations (measurements) up to this time. A naive way to address this problem
is maximum likelihood estimation (see Casella and Berger (1990)). Suppose we
are given N observations at some time point n, y1:N

n , (y1
n, . . . , yN

n )T and write
the full conditional log-likelihood function of the observations at this time as

l(y1:N
n |xn) =

N
∑

i=1

log gn(yi
n, xn).

Then the state estimates are obtained by maximising the function above with re-
spect to xn. However, this approach is far from efficient and is not applicable
in general settings. First, it does not take into account the underlying dynamics
of states. Second, the conditional densities of observations might involve com-
plicated multimodal functions, making the maximisation unfeasible. Moreover,
there is usually only one observation avaliable at the fixed time point and the
variance of ML estimates becomes quite large in this case.

Suppose we are given the observation sequence in time, y0:n , (y0, y1, . . . , yn)T,
and the goal is to make an inference about the distribution of the hidden states
based on these observations. Denote by fn,k:l|n the density of the conditional dis-
tribution of states Xk:l given the observations y0:n. Different choices of k and l
results in several cases of interest:

• joint smoothing fn,0:n|n for k = 0, l = n,

4



1. State–Space Models

• p - step prediction fn,n+p|n for k = l = n + p,

• filtering fn,n|n for k = l = n.

Smoothing, prediction and filtering are widely explored in the literature since
1960s. However, early works on these topics, starting from Kalman and Bucy
(1961) focused on the linear Gaussian state–space models. In contrast, work on
smoothing in hidden Markov models was done by Baum et al. (1970). Until late
1990s, these two cases – linear Gaussian and finite state space models – dominated
in the research except of some contributions in non-linear filtering, for example,
by Handschin (1970).

1.3 Optimal Filtering Problem

The historical references to the optimal filtering problem date back to 1970, for ex-
ample, a book by Anderson and Moore (1979). This topic receives a lot of atten-
tion within the engineering community, especially in signal processing. Within
this framework the term filtering is often used in the following sense. Suppose
there exists a system of which noisy measurements are avaliable, then the filtering
means the recovery of the system from the measurements. A classical example
of filtering is signal transmission, when the signal being the sequence of bits is
transmitted to the receiver. The received signal is obviously corrupted by noise,
and has to be filtered to recover the transmitted sequence as well as possible.

In the statistical community, the optimal filtering problem consists in com-
putation of the filtering distribution at time n based on measurements up to this
time. This can be done by iterative evaluation of one-step predictionfn,n+1|n(xn+1) , p(xn+1|y0:n)

and filteringfn,n|n(xn) , p(xn|y0:n)

densities1. We start the iterations from the initial distribution,fn,0|−1(x0) = n(x0),

1Here p is a generic symbol for density.
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and for the filtering density application of Bayes’ theorem yields at n = 0fn,0|0(x0) = p(x0|y0) =
p(y0|x0)p(x0|y−1)p(y0|y−1)

=
p(y0|x0)p(x0|y−1)
∫

X p(y0|x)p(x|y−1)dx
=

g0(x0)n(x0)
∫

X g0(x)n(x)dx
.

(1.8)

Similarly, for n ≥ 0,fn,n+1|n(xn+1) = p(xn+1|y0:n) =

∫

X

p(xn+1|xn)p(xn|y0:n)dxn

=

∫

X

q(xn, xn+1)fn,n|n(xn)h(dxn),fn,n+1|n+1(xn+1) =
gn+1(xn+1)fn,n+1|n(xn)

∫

X gn+1(x′n+1)fn,n+1|n(x′n+1)h(dx′n+1)
.

(1.9)

Note, that here and in following we use shortened notation gn(xn) , gn(yn, xn)
for n ≥ 0.

The intuitive explanation behind this recursion is quite straightforward. One-
step prediction is obtained by passing the value filtered at the previous step through
the dynamic of the state model. Then, for the filtering, one uses the conditional
density of the observation at the given time point as a kind of weight for the
predicted values.

The recursive solution to the filtering problem seems to be attractively sim-
ple, but the implementation of (1.9) is complicated by the presence of complex
multidimensional integrals. The analytical evaluation of the involved integrals is
possible in only a few special cases. The most important case which has been
successively applied in various fields are the models with linear Gaussian struc-
ture. Filtering and one-step prediction algorithm for models of this kind is widely
known as a Kalman filter, derived by Kalman (1960). Due to the properties of
the Gaussian distribution, both the filter and the one-step predictor are Gaussian
and the filtering recursion is reduces to the sequential update of corresponding
means and variances. Another special case are hidden Markov models, for which
the integrals in (1.9) are replaced by sums. For filtering algorithms in this context
we refer to works by Baum et al. (1970) and Rabiner (1989).

In case of non–linear (non Gaussian) state–space model analytical solution
to the filtering problem is not avaliable. Since 1960s many works have been

6



2. Sequential Monte Carlo Methods

devoted to finding approximate solution. Proposed methods include the extended
Kalman filter (Anderson and Moore (1979)), the Gaussian sum filter (Sorenson
and Alspach (1971)) and grid–based methods (Bucy and Senne (1971)). In
late 1990s, the great increase of computational power entailed a rapid growth of
numerical integration methods for optimal filtering, called sequential Monte Carlo
methods.

2 Sequential Monte Carlo Methods

During the last decades, sequential Monte Carlo methods – alternatively termed
particle filters – have received much attention as a powerful tool for finding an
approximate solution to the optimal filtering problem. SMC methods constitute a
class of simulation-based algorithms which approximate recursively a sequence of
target measures by a sequence of empirical distributions associated with properly
weighted samples of particles. Originated from work of Gordon et al. (1993),
sequential Monte Carlo techniques have been widely applied within wide range
of scientific disciplines. For early developments of the SMC methods from a
practical point of view we refer to Doucet et al. (2001), and for more extensive
treatment of these algorithms both in theory and practice see Del Moral (2004).

2.1 Sequential Importance Sampling and Resampling

Denote by m the target distribution, which is a probability measure of interest on
a measurable space (X,X ). Usually this measure is known up to a normalising
constant and our aim is to approximate this measure and integrals of the formm(f ) =

∫

X

f (x)m(dx), (2.1)

where f is a real-valued measurable function. For example, with f (x) = x we
recover a problem of estimating the mean, and with f (x) = (x − E(x))2 one can
estimate the variance. If it is possible to sample from the target distribution, the
Monte Carlo estimates for integrals of this type are obtained by first drawing the

sample
{xi
}N

i=1 from m and then evaluating sample meansm̂MC (f ) =
1
N

N
∑

i=1

f (xi). (2.2)

7
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The importance sampling (IS) technique comes to the assistance when sam-
pling from the target distribution is not feasible. Instead one chooses another
measure l, which is easy to simulate from and such that m is absolutely contin-
uous with respect to l. This measure is referred to as the importance sampling
distribution.

Given the i.i.d. sample
{xi
}N

i=1 of particles from the importance distribution,
the empirical importance sampling estimate of the target distribution is given bym̂IS,N (dx) =

N
∑

i=1

wi

∑N
j=1 wj

dxi (dx), (2.3)

where dxi is the delta-Dirac mass located at the particle xi, and wi denotes the
importance sampling weight associated with this particle. The importance weights
are proportional to the Radon-Nikodym derivative of the target measure with
respect to the instrumental measure, wi ∝ dm

dl (xi). Recall that m is absolutely
continuous with respect to l, i.e. for any m-integrable function f ,m(f ) =

∫

dm
dl (x) f (x)l(dx). (2.4)

Then the importance sample estimates for integrals of type (2.1) are given by the
corresponding weighted sample means,m̂IS,N (f ) =

N
∑

i=1

wi

∑N
j=1 wj

f (xi). (2.5)

Due to the normalisation, both estimators (2.3) and (2.5) are free from any scaling
factor in the Radon-Nikodym derivative and can be used when either target or
importance distribution are known up to a constant only.

The IS algorithm can be modified to allow sequential implementation when
targeting the sequence of measures {mn}∞n=0, which satisfies the recursionmn+1(dx0:n+1) = mn(dx0:n)mn+1(dxn+1|x0:n). (2.6)

This is done by selecting the importance distribution of the similar form,ln+1(dx0:n+1) = ln(dx0:n)ln+1(dxn+1|x0:n), (2.7)

8



2. Sequential Monte Carlo Methods

so that new particles
{xi

0:n+1

}N

i=1 are obtained by drawing the last componentxi
n+1 from the conditional distribution ln+1(dxn+1|xi

0:n).
It is easy to see that the importance weights are then sequentially updated

according towi
n+1 =

dmn+1

dln+1
(xi

0:n+1) =
dmn

dln
(xi

0:n)
dmn+1(xi

0:n, ·)
dln+1(xi

0:n, ·)
(xi

n+1)

= wi
n

dmn+1(xi
0:n, ·)

dln+1(xi
0:n, ·)

(xi
n+1).

(2.8)

The estimates of the target distribution and corresponding integrals are again the
empirical distribution of the weighted sample,m̂n,SIS,N (dx0:n) =

N
∑

i=1

wi
n

∑N
j=1 wj

n

dxi
0:n

(dx0:n), (2.9)

and the weighted sample meansm̂n,SIS,N (f ) =

N
∑

i=1

wi
n

∑N
j=1 wj

n

f (xi
0:n), (2.10)

as in (2.3) and (2.5).
The sequential importance sampling (SIS) algorithm is attractively easy to im-

plement, and is applicable for a wide class of distributions irrespectively of their
shape. However, it suffers from a serious drawback known as weight degeneracy.
For longer time records, the distribution of the importance weights becomes more
and more skewed. This means that after several time iterations only a few parti-
cles have non-zero weights and the representation of the distribution of interest
is not any longer adequate. To avoid degeneracy, one should use the resampling
procedure, proposed by Gordon et al. (1993). The idea of resampling procedure
is quite simple and consists of eliminating particles having relatively small impor-
tance weights and duplicating particles with relatively large importance weights.
Denote by M i

n the number of offspring of particle xi
0:n. This number is selected

in a way that
∑N

i=1 M i
n = N and the weighted empirical distribution and the

empirical distribution of selected particles produce the same approximations to

9



Introduction

the target measure and to the integrals with respect to the target measure, i.e.m̂n,SISR,N (dx0:n) =
1
N

N
∑

i=1

M i
ndxi

0:n
(dx0:n) ≈

N
∑

i=1

wi
n

∑N
j=1 wj

n

dxi
0:n

(dx0:n),m̂n,SISR,N (f ) =
1
N

N
∑

i=1

M i
nf (xi

0:n) ≈
N
∑

i=1

wi
n

∑N
j=1 wj

n

f (xi
0:n).

(2.11)

The most popular way to select the particles is introduced in the original paper
by Gordon et al. (1993), and consists in resampling with replacement from a
multinomial distribution with probabilities of selection given by the normalised
importance weights. Note that it is not necessary to include the resampling step at
each time iteration, but only at time points when the weights start to degenerate.
The simplest criterion for degeneracy is the coefficient of variation used by Kong
et al. (1994),

CVN ,n =

√

√

√

√

1
N

N
∑

i=1

(

N
wi

nWn
− 1

)

,

where we denote by Wn the normalising sum, Wn ,
∑N

j=1 wj
n. The related crite-

rion, called the effective sample size

Ne,n =

[

N
∑

i=1

(wi
nWn

)2
]−1

have been widely applied in practice due to its simple interpretation.

2.2 Application of SISR to the Optimal Filtering

In this section we describe the sequential Monte Carlo solution to the optimal fil-
tering problem. The importance sampling procedures, being introduced at quite
general level, are applied to the larger problem of estimating joint smoothing dis-
tributions with the densities fn,0:n|n , p(x0:n|y0:n). After that, the estimates of the
filtering distribution are obtained by restricting the approximate joint smoothing
distribution to its last component.

10



2. Sequential Monte Carlo Methods

Using Bayes’ theorem one can derive the following form of the joint smooth-
ing distribution. For the particular sequence of observations,fn,0:n|n(dx0:n) = L−1

n n(dx0)g0(x0)
n
∏

k=1

Q(xk−1, dxk)gk(xk),

where Ln denotes the full likelihood of the observations,

Ln(y0:n) =

∫

. . .

∫ n(dx0)g0(x0)
n
∏

k=1

Q(xk−1, dxk)gk(xk).

From this point we drop the initial distribution of the chain n from the no-
tation since the dependence of the joint smoothing distribution with respect to
the initial distribution is out of importance here. We write the recursive update
for the joint smoothing distribution in a following way. Starting from the initial
smoothing distribution,f0(dx0) =

n(dx0)g0(x0)
∫ n(dx)g0(x)

, (2.12)

for n = 0, 1, 2, . . . we obtainf0:n+1|n+1(dx0:n+1) = f0:n|n(dx0:n)T u
n (xn, dxn+1), (2.13)

where T u
n is the unnormalised transition kernel defined by

T u
n (x, dx′) =

(

Ln+1

Ln

)−1

Q(x, dx′)gn+1(x′). (2.14)

The likelihood ratio in (2.14) is not computable in a closed form, and the prob-
lem of computing the joint smoothing distribution perfectly fits into the se-
quential Monte Carlo framework with mn+1(dx0:n+1) = f0:n+1|n+1(dx0:n+1) andmn+1(dxn+1|x0:n) = T u

n (xn, dxn+1).
Consequently, the importance sampling distribution should satisfy a recur-

sion of form (2.7). Denote by {r0:n}∞n=0 the family of probability measures as-
sociated with the inhomogeneous Markov chain with initial distribution r0 and
transition kernels {Rn}∞n=0,r0:n(dx0:n) = r0(dx0)

n−1
∏

k=0

Rk(xk, dxk+1). (2.15)

11
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Assume that the initial distribution is absolutely continuous with respect to the
initial importance sampling distribution and, moreover, the unnormalised kernels
are absolutely continuous with respect to the importance sampling kernels. In-
serting mn+1(dxn+1|x0:n) = T u

n (xn, dxn+1) and ln+1(dxn+1|x0:n) = Rn(xn, dxn+1)
into (2.8) we obtain following update for the importance weights,wi

n+1 = wi
n

dT u
n (xi

n, ·)
dRn(xi

n, ·)
(xi

0:n+1) = wi
ngn+1(xi

k+1)
dQ(xi

n, ·)
dRn(xi

n, ·)
(xi

n+1) (2.16)

with the initial weights given by wi
0 =

df0
dr0

(xi
0). At each time step, approximations

of the joint smoothing distributions and corresponding integrals are calculated
according to (2.11). Approximations of the filtering distribution and integrals
w.r.t. the filtering distribution are given by the marginal estimates,f̂n|n,SISR,N (dxn) =

N
∑

i=1

wi
nWn
dxi

n
(dxn),f̂n|n,SISR,N (f ) =

N
∑

i=1

wi
nWn

f (xi
n).

(2.17)

Note, that for the sequential approximation of the filtering distribution one does
not have to store all particle trajectories obtained up to the current time point.
This enables on-line implementation of the algorithm, updating current estimates
at the moment when a new observation becomes avaliable.

The general algorithm for approximating joint smoothing distribution via
SISR procedure is presented in a following scheme.

Algorithm 1: standard SISR algorithm

• Initialisation: Draw an i.i.d. sample x1
0, . . . , xN

0 from r0 and

set wi
0 = g0(xi

0)
df0

dr0
(xi

0), i = 1, . . . , N .

For n = 0, 1, . . .

• Sampling: Draw x̄1
n+1, . . . , x̄N

n+1 conditionally independently

given {xi
0:n}N

i=1 from the importance distributionx̄i
n+1 ∼ Rn(xi

n, ·), i = 1, . . . , N .

12



2. Sequential Monte Carlo Methods

Compute the updated importance weightswi
n+1 = wi

ngn+1(x̄i
n+1)

dQ(xi
n, ·)

dRn(xi
n, ·)

(x̄i
n+1) i = 1, . . . , N .

• Resampling (optional): Draw, conditionally independently

given {xi
0:n, x̄j

n+1}N
i,j=1 the indices I1

n+1, . . . , IN
n+1 from the

multinomial distribution with probabilitiesw1
n+1Wn+1

, . . . ,
wN

n+1Wn+1
.

Reset all importance weights to a constant value.

If the resampling step is not applied, set

I i
n+1 = i, i = 1, . . . , N .

• Trajectory update: Set xi
0:n+1 = (xI i

n+1
0:n , x̄I i

n+1
n+1).

The importance sampling and resampling steps are common for all particle
filters and can be accomplished in various ways, see the collection of Doucet et
al. (2001) for different variations of the basic scheme and many applications of
state-space models. Often particle filtering are referred to as genetic type algo-
rithms, with the importance sampling step as mutation step, followed with the
selection procedure.

Two key issues of the particle filtering algorithms are the choice of the pro-
posal kernel for the mutation of the particle swarm and choice of the resampling
scheme in the selection step. In the following sections we will briefly describe
various alternatives to address the first issue and conclude the chapter with the
short overview of the basic convergence results for the particle filtering estimates.

Regarding the resampling schemes, most straightforward is the multinomial
resampling, and drawing N random indices I 1, . . . , I N conditionally indepen-
dently given the G2 from the set {1, . . . , MN} such that P(I j = i|G) = w̃i is
usually conducted by the inverse transform method.

There are several variations of the standard resampling scheme reducing its
computational complexity. These include residual resampling (Liu and Chen

2We denote by G a s-field such that all current particles and normalised importance weights are
G-measurable.
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(1998)), stratified resampling (Kitagawa (1996)) and systematic resampling (Car-
penter et al. (1999)). For overview of these schemes we refer to Cappé et al.
(2005), pp. 242-250 and references therein.

Note, that the number of particles sampled in the mutation step might be
larger, than the size of the final sample. In other words, one can draw an instru-
mental sample of size aN from the instrumental distribution and resample only
N particles in the selection step. The use of multiple offspring has been suggested
by Rubin (1987) and has been subsequently taken into account in studying the
asymptotic properties of importance sampling/resampling estimates, see, for ex-
ample Cappé et al. (2005) or Douc and Moulines (2005).

The simplest way to introduce multiple offspring is to mutate several times
independently from each of the initial particles. In paper D we apply this scheme
to the standard bootstrap filter and suggest to modify the sampling step intro-
ducing the correlation between particles mutated from the same ancestor. We
expect that the correlated particle cloud will explore state-space in a more system-
atic way, leading to the improvement of the standard scheme with independent
mutations in terms of mean squared error. In addition, we investigate the scheme
with number of offspring different for different initial particles and let this num-
ber to be determined by the observations. Last is carried out via two-stage sampling
procedure, which will be considered in more details in the end of next section.

In paper E we investigate correlated mutation scheme on a theoretical level
and prove that if the importance weights are close to uniform and the correla-
tion structure of each block is negative, the asymptotic variance of the obtained
estimates is decreased.

2.3 Choice of the Instrumental Kernel

2.3.1 Prior Kernel

The most obvious and simple choice of the importance kernel is setting Rn =

Q, ∀n ≥ 0, i.e. to propagate the particles according to the distribution of the
hidden chain. In this case the particle filter is referred to as the bootstrap particle
filter. This filter is easy to implement, and very adaptable in a sense that when
changing the problem one needs only to change the expressions for the impor-
tance distribution and the importance weights in the code. Note that updating
coefficient for the importance weights are reduced to the conditional density of
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the observations given the current particle,wi
n+1 = wi

ngn+1(xi
n+1),

and does not depend on the previous position of the particles.
Despite of its simplicity the bootstrap filter suffers from a serious drawback.

Namely, this filter moves the particle cloud "blindly" in the state space without
taking into account the observations. Such way of propagation leads to poor per-
formance if there is a large mismatch between the prior and the posterior distri-
butions, for example, if the sequence of observations contains the outliers. In this
case under the prior kernel all particles might be propagated to the region where
the conditional density of the observation is low, and even the particles with large
normalised weights might be not important for the distribution of interest.

2.3.2 Optimal Kernel

The exact opposite way to sampling from the prior kernel is to propagate the
particles according to the normalised version of the optimal kernel (2.14),

Tn(x, dx′) =
Q(x, dx′)gn+1(x′)
∫

X Q(x, dx′)gn+1(x′)
. (2.18)

The optimal kernel incorporates the information both on the dynamics of states
and on the current observation. The increment of the importance weight in one
time step is now equal to the normalising coefficient,wi

n+1 = wi
n

∫

Q(xi
n, dxi

n+1)gn+1(xi
n+1),

and depend on the previous position of the particle only. While sampling from
the optimal kernel, particles tend to cluster in the regions with high conditional
density of the observations, providing more robust estimates.

However, sampling directly form the optimal kernel might not be feasible
and the expression for the importance weights might not be computable in the
closed form. Different approaches for sampling from the optimal kernel include
local approximations, introduced as the auxiliary particle filter by Pitt and Shep-
hard (1999). This algorithm is applied when the optimal distribution is unimodal
with the mode located in some way. The idea is first to locate the high-density
regions of the optimal distribution and then to imitate sampling from the optimal
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kernel by drawing from some distribution with more heavy tails, like multidimen-
sional t-distribution with l degrees of freedom. The mean of such instrumental
distribution is fitted to the mode of the optimal distribution and covariance ma-
trix is set to the negative inverse of the Hessian of the optimal log-density evalu-
ated at the mode.

For further developments on the choice of the proposal distribution we refer
to recent works by Olsson et al. (2007) and Cornebise et al. (2008). These
papers are based on the two-stage sampling procedure, which serves to form an
idea of the values of the importance weights before the particles are mutated,
and introduces an additional resampling pass in order to select most promising
particles.

2.3.3 Two–Stage Sampling

To set up the two-stage sampling procedure we have to reformulate the problem
of estimating joint smoothing distribution discussed in the section 3.2., following
the lines of Cappé et al. (2005), chapter 8.

Recall the recursive form (2.13) of the joint smoothing density and rewrite it
inserting the normalised version of the optimal kernel,f0:n+1|n+1(dx0:n+1) = f0:n|n(dx0:n)

(

Ln+1

Ln

)−1 gn(xn)Tn(xn, dxn+1), (2.19)

where gn(xn) ,
∫

Q(xn, dxn+1)gn+1(xn+1). Since the equation above contains
an unknown likelihood ratio, it is preferable to write the expression in auto-
normalised form,f0:n+1|n+1(dx0:n+1) =

f0:n|n(dx0:n)gn(xn)Tn(xn, dxn+1)
∫

. . .
∫ f0:n|n(dx0:n)gn(xn)

. (2.20)

Now plug in the importance sampling estimate of the joint smoothing distribu-

tion at time n, f̂0:n|n,N (dxn) =
∑N

i=1
wi

n
PN

j=1 wj
n
dxi

0:n
(dx0:n), yieldingf̄0:n+1|n+1(dx0:n+1) ,

N
∑

i=1

wi
ngn(xi

n)
∑N

j=1 wj
ngn(xj

n)
dxi

0:n
(dx0:n)Tn(xi

n, dxn+1). (2.21)

The equation above defines a finite mixture distribution which restriction to

n + 1 component is a weighted empirical distribution with support
{xi

0:n

}N

i=1
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and weights proportional to wi
ngn(xi

n). Sampling from this mixture is carried out
by first sampling the trajectory xI

0:n with probability proportional to wI
ngn(xI

n) and
appending a (n+1)-st component drawn from the optimal distribution Tn(xI

n, ·).
The obvious attempt to simulate new particle trajectories from this mixture distri-
bution, unfortunately, cannot be accomplished so easily because optimal kernels
are usually not avaliable in the closed form. Instead one can again employ the im-
portance sampling approach, approximating the finite mixture distribution (2.21)
as close as possible. A reasonable choice is a measure of formr0:n+1(dx0:n+1) =

N
∑

i=1

wi
nvi

n
∑N

j=1 wj
nv

j
n

dxi
0:n

(dx0:n)Rn(xi
n, dxn+1), (2.22)

where vi
n are some strictly positive weights called adjustment multiplier weights as in

Pitt and Shephard (1999), and Rn is a Markovian transition kernel. Assume that
optimal kernels Tn are absolutely continuous with respect to the kernels Rn, then
the target distribution that defined in (2.21) is dominated by the instrumental
distribution r0:n+1 with Radon-Nikodym derivative

d f̄0:n+1|n+1

dr0:n+1
(x0:n+1) = Cn

N
∑

i=1

1{xi
0:n}

(x0:n)
gn(xi

n)
vi

n

dTn(xi
n, ·)

dRn(xi
n, ·)

(xn+1)

= Cn

N
∑

i=1

1{xi
0:n}

(x0:n)
gn+1(xn+1)

vi
n

dQ(xi
n, ·)

dRn(xi
n, ·)

(xn+1),

(2.23)

where

Cn =

∑N
j=1 wj

nv
j
n

∑N
j=1 wj

ngn(xj
n)

.

The adjustment multiplier weights serve to sample in the first stage particle tra-
jectories that are most likely under f̄0:n+1|n+1, and usually depend on the new
observation. The suggestion of Pitt and Shephard (1999) is to set the adjustment
multiplier weights to the conditional density of the observation given the mean
of the predictive distribution corresponding to each particle,

vi
n = gn+1(

∫

xQ(xi
n, dx)). (2.24)
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The general two-stage sampling procedure is described in the following scheme.

Algorithm 2: two-stage algorithm

First stage sampling

• Draw I1
n , . . . , IMN

n conditionally i.i.d. given {xi
0:n}N

i=1 with

probabilities P(I1
n = j) ∝ wj

nv
j
n, for j = 1, . . . , MN.

• Draw x̄1
n+1, . . . , x̄MN

n+1 conditionally independently given {xi
0:n}N

i=1

and
{

I i
n

}MN

i=1
from the importance distribution x̄i

n+1 ∼ Rn(xI i
n

n , ·).
Set x̄i

0:n+1 = (xI i
n

0:n, x̄i
n+1) for i = 1, . . . , MN.

• For i = 1, . . . , MN compute the second-stage weightsti
n =

gn+1(x̄i
n+1)

v
I i
n

n

dQ(xI i
n

n , ·)
dRn(xI i

n
n , ·)

(x̄i
n+1).

Second-stage resampling

• Draw J 1
n+1, . . . , JN

n+1 conditionally i.i.d. given {x̄i
0:n+1}M

i=1

with probabilities P(J 1
n = j) ∝ tj

n, for j = 1, . . . , MN.

• Set xi
0:n+1 = x̄J i

n+1
0:n+1 and wi

n+1 = 1 for i = 1, . . . , N.

The theoretical properties of the weighted sample produced in the two-stage
sampling procedure have been investigated by Olsson et al. (2006). In this work
authors established several convergence results for the estimates obtained by the
two-stage sampling algorithm and suggested the possible improvements of the
basic scheme leading to the decrease in the asymptotic variance of the estimates.

2.4 Convergence Results

Several convergence results have been developed for the estimates produced by
the SISR algorithm during last years. In this section we will consider the filter-
ing problem only, despite the fact that asymptotic for sequential Monte Carlo
estimates is avaliable on much more general level within the framework of inter-
acting particle systems, which is extensively explored by Del Moral (2004). Some
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existing results related to the filtering algorithms are briefly described in Crisan
and Doucet (2002).

Consider the SISR estimate f̂n|n,N of the filtering distribution fn|n at time n.
We start from the almost sure convergence, firstly explored by Del Moral (1996).
For the kernel K on (X,X ) and real measurable function f on (Y,Y) define the
real measurable function Kf on (X,X ) by

Kf (x) ,

∫

X

K (x, dy)f (y).

Theorem 2.1. Assume that the densities of the observations gn are bounded, contin-
uous and strictly positive for all n ≥ 0, and for any continuous bounded function g,
Qg is also a continuous and bounded function.
Then

lim
N→∞

f̂n|n,N = fn|n (2.25)

almost surely.

Next question to address is the magnitude of the estimation error. Results
concerning bounds on the bias of the estimates were developed in Del Moral and
Guionnet (2001) and latter bounds on Lp errors were obtained in Del Moral and
Miclo (2000). Denote the Lp-norm of a random variable h by ‖h‖p , (E|h|p)1/p.

Theorem 2.2. For any time-point n ≥ 0 and any p ≥ 1 there exists a finite constant

C
(p)
n such that

‖f̂n|n,N (f )− fn|n(f )‖p ≤
1√
N

C (p)
n ‖f ‖∞ (2.26)

for all real-valued bounded measurable functions f on (X,X ), where ‖f ‖∞ is the
supremum norm.

Under certain assumptions on the transition kernel it is possible to derive a
time-uniform bound for the Lp-norm, i.e. to find D such that Dn = D ∀n. These
assumptions are typically fulfilled when X is compact and will not be considered
here. Recently, bounds on the bias of the bootstrap particle filter were studied in
the work by Olsson and Rydén (2006).

Weak convergence of the particle filtering estimates was extensively explored
by Chopin (2004), who established the central limit theorem as in following.
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Theorem 2.3. Assume that the conditional densities of the observations, gn, are
bounded for n ≥ 0. Then for any measurable function f ∈ L2(X,fn−1|n−1)

√
N (f̂n|n,N − fn|n)

D→ N(0,s2(f )), as N →∞, (2.27)

where L2(X,fn−1|n−1) is the set of functions which second order moments with respect
to distribution fn−1|n−1 are finite.

All asymptotic results for particle filtering estimates are now days avaliable as
a special case of more general theoretical developments concerning the asymp-
totic properties of weighted samples. For further reading in this topic we refer
to the recent paper by Douc and Moulines (2005) and to the book by Cappé et
al. (2005), chapter 9.
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3 Location of Mobile Devices in Wireless Networks

3.1 Wireless Location: Definition and Applications

The general term wireless location refers to the determining the position of a Mo-
bile Station (MS) in Wireless Local Area Networks (WLAN) or in cellular net-
works, operated by Base Transceiver Stations (BTS). In practice distinguish two
main cases of location: self-positioning, when MS determines its own coordinates,
and target tracking, where the aim is to determine the unknown target position.
Such dichotomy is irrelevant for the present section and in following we will joint
these terms under the name ”wireless location” describing the general problem of
estimating the MS position based on the measurements of a certain type, avaliable
either on observer (network) or target side.

In the network–based positioning the estimates of a mobile coordinates are
obtained using measurement avaliable on the BTSs. This technology relies on an
existing networks and does not involve the MS into the positioning process, with
an advantage of using existing handsets without any modification. An overview
of existing network–based location methods can be found in Sayed et al. (2005).

In the mobile–based positioning the MS determines its own position using
measurements either form BTS or form the global positioning system (GPS).
The advantage of this method is that it allows to use some additional informa-
tion, for example, the own speed in the positioning of a moving object. However,
the implementation of the mobile–based techniques requires the replacement of
an existing equipment and in some cases may increase cost, size and battery con-
sumption of a handset. The costly MS with built-in GPS receivers are able to
estimate the own position with high degree of accuracy in outdoor applications,
but the accuracy degrades in indoor or urban environment.

Broad and active research in wireless location was provoked by the order of
United States Federal Communication Commission (FCC) issued in 1996. Ac-
cording to the FCC requirements all wireless service providers have to be able
to report accurate location information of an emergency caller to the emergency
answering points. Due to the widespread of mobile phones among the people,
a hight rate of emergency calls originate from mobile stations. In contrast to a
fixed-network user, the location of a mobile caller is unknown, which leads to the
lower quality of an emergency assistance. Thus the positioning problem becomes
very important in public safety sector. Another application in this area is asset
tracking, for example, location of lost children, patients or pets.
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The wireless location can also be used to track personnel in a hospital or a
manufacturing site to provide more efficient management. It can serve as a base
for interactive tour guides, smart shopping guides that direct shoppers based on
their location in a store, and traffic controls in parking structures that guides cars
to free parking slots.

Many fleet operators, such as police forces, emergency cars and shuttle or taxi
companies may use wireless location for tracking and operating their vehicles in
order to minimize response time. The tracking of drivers on roads and highways,
which carry the mobile phones while driving might be used to provide real-time
traffic information and maintain the transportation safety. Another application
is location sensitive billing, when wireless services providers can offer flexible call
plans or rates or services based on the caller location.

Finally, wireless location may also serve to maintain WLAN security. For
example, by using location information one allows access to files or databases
only for users from certain physical areas.

A detailed survey of the different wireless location methods and applications
can be found in Drane et al. (1998). For more recent overview see Gustaffson
and Gunnarsson (2005) and references therein.

3.2 Solution of the Wireless Location Problem

Let us translate the location problem into more formal language. As it was men-
tioned in the previous section, the location of a mobile device is based on the
noisy measurements of a certain kind. These measurements include received sig-
nal strength, when the transmitted and received signal power are known to the
system and thus the channel attenuation can be computed. Other types of mea-
surements provide directional (angle of arrival), temporal (time of arrival, time
difference of arrival) or spatial (digital map, position estimates from GPS) in-
formation about the MS position. The relationship between measurements and
position is described using a stochastic model.

First assume that the MS is fixed. Denote the two-dimensional position (co-
ordinates) of a MS at time n by Xn = (X1,n, X2,n)T and the measurements collected
from this position by Yn. The general model which relates the measurements with
the position and noise can be written as follows,

Yn = h(Xn, Wn), (3.1)

where h is an arbitrary vector-function and Wn is a random variable with known
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probability distribution. In general there are no specific assumptions on the form
of the h function or on the distribution of the measurement noise. For example,
the relationship between received signal strength from the BTS j with known
position and the MS position at time n is usually described by the empirical
Okumura-Hata model (Hata (1980))

Yn,j = K − 10a log10 |Xn − X
j
BTS|+ Wn, (3.2)

where |·| denotes Euclidian distance, Yn,j is the received power on the log-scale, K
is a known constant determined by the environment and antenna configuration,a is the damping parameter and Wn are i.i.d. Gaussian random variables. In paper
A we used an alternative non–linear version of this model,

Yn,j = K ′ · |Xn − X
j
BTS|−a ·Wn (3.3)

with the received power on the original scale and with Wn being i.i.d. random
variables with exponential distribution. Another example of non-linear relation-
ship is the bearings only tracking problem, where the measurement equation in-
cludes the tangent function.

The measurement model with additive noise,

Yn = h(Xn) + Wn,

is widely applied in practice, often with further restriction on measurement noise
to follow Gaussian distribution. This restriction is mainly motivated by the cen-
tral limit theorem and by the convenient properties of the Gaussian distribution.

The positioning problem in case of additive model consists in computing
the coordinates Xn that minimise a given norm of the difference between actual
measurements and the measurement model. Setting this norm to the quadratic
form (weighted with the inverse of covariance matrix Sn in case of correlated
measurements) results in the weighted least squares estimates,

X̂n = arg min (Yn − h(Xn))TS−1
n (Yn − h(Xn)). (3.4)

Alternatively, given the probability density of the measurement noise, pw, one
can use maximum likelihood approach, minimising the − logpw(Yn − h(Xn)).

The analytical solution of the minimisation problem is possible only in case
of Gaussian measurement noise, which explains wide use of the additive Gaus-
sian models in practice. For non-Gaussian case numerical approximations are
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avaliable, for example, the gradient or Gauss-Newton algorithms (see Dennis and
Schnabel (1983)).

Now we make a step further and consider the problem of positioning a mov-
ing target. We add another model which describes the time changes of coordinates
and relies on physical relationship between position, speed and acceleration. In
the simplest case such model is given as follows,

{

X1,n+1 = X1,n +Dt · V1,n+1

X2,n+1 = X2,n +Dt · V2,n+1,
(3.5)

where V1,n+1 and V2,n+1 correspond to horisonal and vertical velocities, and Dt
is the time difference between measurements n and n + 1. Another option is to
model the time changes in speeds as well, using corresponding accelerations, i.e.

{

Xk,n+1 = Xk,n +Dt · Vk,n +
(Dt)2

2 Ak,n+1,

Vk,n+1 = Vk,n + Dt · Ak,n+1.
(3.6)

for k = 1, 2. Motion model may use the speed as an input in case of self-
positioning or incorporate altitude information in aircraft navigation and track-
ing.

In papers A and B of this thesis we used a polar approach in motion model,
where the coordinates are related to the velocity vn of the MS and the directionfn of movement. The velocity and the directions are modeled as linear Markov
chains with random accelerations and turns,

{

vn+1 = vn + Dt · an+1,fn+1 = fn + yn+1,
(3.7)

and coordinates are then given by

{

X1,n+1 = X1,n + Dt · vn+1 · cosfn+1,

X2,n+1 = X2,n + Dt · vn+1 · sinfn+1.
(3.8)

We show that this approach gives better results in terms of mean squared error,
but at the same time is more computationally intensive.

Polar model was also used in paper B, where we applied particle filtering al-
gorithms in multiple-input multiple-output (MIMO) settings.
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3. Location of Mobile Devices in Wireless Networks

Write the general form of the motion model as

Xn+1 = f (Xn, Vn+1) (3.9)

without any specific restrictions on the vector-function f and the process noise
Vn. Suppose that at each time point we observe a measurement Yn and at time
point n are given a sequence of measurements y0:n. Combining the motion model
(3.9) with the measurement equation (3.1) we immediately recognise the state-
space model formulation (1.4) or (1.2)–(1.3) with the kernel Q determined by
the process noise and the density g determined by the observation (measurement)
noise. Indeed, the movement of a mobile is a process hidden from the observer,
and one has to make an inference about this process using the measurements
and use this inference to estimate a position. Thus, the positioning problem
corresponds to the problem of filtering in state-space model formulation and in
non–linear non–Gaussian settings can be solved using SMC methods.

Since early 20th, particle filters have been widely applied in wireless position-
ing, location and tracking. For early examples see Jwa et al. (2000) or Gustafsson
et al. (2002). A review of the particle filter algorithms for non–linear non–
Gaussian tracking problems can be found in the tutorial by Arulampalam et al.
(2002) and in the book by Ristic et al. (2004). For more recent developments we
refer to the collection of papers in doctoral thesis by Schön (2006).
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4 Overview of the Papers

In this section we give a brief outline of the papers included in the thesis.
Paper A is a report about a simulation study on particle filtering performance

in mobile positioning using received signal strength measurements. We use two
different approaches: polar and Cartesian – to model the mobile movement, com-
bined with two different models for the received signal strength: model with
constant propagation coefficient and model where the propagation coefficient
depends on the distance between the mobile and the base station. We found,
that the particle filters based on a power model with varying propagation coeffi-
cient show better performance compared to filters based on a power model with
constant propagation coefficient. The difference between polar and Cartesian ap-
proaches for the mobile movement is not so clear: filters based on the polar model
have smaller error, but larger resampling rate, i.e. degenerate too often.

In paper B we apply particle filters for positioning in multiple-input multiple-
output (MIMO) systems, where both the transmitter and the receiver have more
than one antenna element. Increasing the system capacity, MIMO technologies
have received a lot of attention as one of the most promising approaches for high
data-rate wireless systems. As in paper A, we use polar and Cartesian approaches
for mobile movement, but now combined with the geometrical model for the
MIMO propagation channel, proposed by Molisch (2004). A simulation study
shows that all tested filters are able to provide position estimates that satisfy the
FCC requirements both for network and mobile–based positioning.

In paper C we investigate an algorithm for particle filtering for multi-dimensional
state–space models which are decomposable in the coordinates. We call the model
decomposable, if there exists a natural decomposition of the state space into two
disjoint sub–spaces and if there exists a similar decomposition of the measurement
equations into two independent parts. Instead of sampling multi-dimensional
particles we propose to sample a smaller set of particles in each dimension and
then to combine the resulting estimates. We demonstrate using the simulations
that this approach effectively reduces the computation time without a large preci-
sion loss.

It is known that the quality of SMC estimates depends on the number of
particles involved in the approximation. Several authors have studied the adap-
tation of the number of particles along the estimation procedure. For example,
Fox (2003) suggested to increase the sample size until the Kullback–Leibler di-
vergence between the true and the estimated target distribution is below a given
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threshold. In paper D we explore two different strategies to increase the size of an
instrumental sample: correlated sampling and observation–driven sampling and
compare them with the independent sampling approach. Simulation examples
do not show any improvement of the suggested methods over the naive one, but
some issues are pointed out for future research.

Finally, in paper E we continue work on the correlated sampling scheme for
SMC methods. We establish convergence result for this method and employ the
idea of using antithetic variates – a well known method to reduce the variance of
the standard Monte Carlo estimates. We show, based on the theoretical devel-
opments, that under certain conditions the antithetic sampling approach reduces
the asymptotic variance of SMC estimates and illustrate our findings on numerical
examples within the state–space models framework.
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Paper A

Maximum Likelihood and Particle
Filter-based Mobile Positioning from
Signal Strength Measurements

Svetlana Bizjajeva, Tobias Rydén

Abstract

In this paper we implement particle filtering methods for mobile positioning
using received signal strength measurements. We used two different approaches
for modeling the mobile movement and two different models for the received
signal strength, resulting in four different particle filters. The performance of
the filters was investigated in a simulation study, and compared to the results
of maximum-likelihood estimation. The superiority of particle filtering over
maximum-likelihood estimation is clearly demonstrated. Particle filters, based on
a power model with varying propagation coefficient showed better performance
compared to filters based on a power model with constant propagation coefficient.
The difference between polar and Cartesian approaches for the mobile movement
was not so clear: filter based on the polar model had smaller error, but larger
resampling rate, i.e. degenerated too often.

Key words: Mobile positioning, particle filtering, simulations

1 Introduction

In wireless communication networks the positioning of mobile units is a key tech-
nology for location-based services such as location-sensitive billing, efficient hand-
off, or emergency calls. In recent years several mobile location methods using
various types of measurements have been explored. Widely used types of mea-
surements include time of arrival (TOA), time difference of arrival (TDOA) and
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angle of arrival (AOA). These can be accompanied by the received signal strength
of signals transmitted with known power, and by map information. Exhaustive
overviews of different methods can be found in Rappaport et al. (1996) or Drane
et al. (1998).

Once measurements are avaliable, the problem to filter out the mobile posi-
tion arises. One possible solution is to linearize the models and use a Gaussian
approximation for the noise, so that the Kalman filter can be applied. More ad-
vanced techniques include extended Kalman filtering (Mark and Zaidi (2002))
or Bayesian bootstrap filtering (Jwa et al. (2000)) to overcome the non-linearity
problem. Recently, sequential Monte Carlo techniques, also known as particle
filters (Doucet et al. (2001)), have been applied for positioning problems, see for
example Nordlund et al. (2002).

In this paper we will explore the performance of particle filtering techniques
in the self-positioning problem, i.e. when the mobile itself makes appropriate sig-
nal measurements and uses these measurements to determine its own position. A
solution to the positioning problem when the only avaliable information is the re-
ceived signal strength allows developing mobile-based equipment for positioning
which could work independently of the mobile network operator.

2 Models for the mobile movement and for the received

signal strength

Suppose the mobile moves along an arbitrary trajectory within the coverage area
of several Base Transceiver Stations (BTS’s) with known positions. The location
of the mobile at a certain time point is unknown, and is subject to determine.
We assume that the only available information is the received power from all the
BTS’s that are able to communicate with the mobile at the given time point.

The position of the mobile at time point t can be expressed in the common
coordinate system by abscise xt and ordinate yt . The polar motion model relates
these quantities to the velocity vt of the mobile and the direction ft of move-
ment. The velocity is generally unknown, but is assumed to follow a simple linear
Markovian model with random acceleration at . The direction is defined by an an-
gle with axis Ox, and is assumed to follow a linear model with random turns yt .
Thus the changes in speed and direction of the movement during time interval
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2. Models for the mobile movement and for the received signal strengthDt can be described by the following system of equations:

{

vt = vt−1 + Dt · at ,ft = ft−1 + yt .
(2.1)

In this model the acceleration, at , and the size of turn, yt , are assumed to be
sequences of independent random variables with N (0, s2

a) and U [−p, p] distri-
butions, respectively.

The mobile’s coordinates at time point t are completely determined by the
coordinates at the previous time point and by the velocity and direction in (2.1).
Indeed,

{

xt = fp(vt , ft) = xt−1 + Dt · vt · cosft ,

yt = gp(vt , ft) = yt−1 +Dt · vt · sinft .
(2.2)

Alternatively, the motion of the mobile might be described using horizontal
and vertical velocities ẋt and ẏt . Both are generally unknown and assumed to fol-
low a simple linear Markovian model with corresponding random accelerations.
The direction and speed of the movement are then determined by the size and
sign of the horizontal and vertical velocities.

Thus in the Cartesian model the changes in the velocities during the time
interval Dt are described by the following equations:

{

ẋt = ẋt−1 +Dt · ax,t ,

ẏt = ẏt−1 + Dt · ay,t .
(2.3)

In this model the accelerations ax,t and ay,t are sequences of independent random
variables with N (0, s2

x ) and N (0, s2
y ) distributions, respectively. The mobile’s

coordinates at time t are determined by the previous coordinates and by the ve-
locities given in (2.3):

{

xt = fc(ẋt , ẏt ) = xt−1 + Dt · ẋt ,

yt = gc(ẋt , ẏt ) = yt−1 + Dt · ẏt .
(2.4)

The power received at time t from the j-th BTS is modeled as

Pt,j = P0,j · d−at,j · et,j, (2.5)
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where dt,j is the Euclidian distance between the mobile and the BTS, and the
noise et,j are independent random variables from an exponential distribution with
mean l. In the simplest case the propagation coefficient a is fixed to some value
between 2 and 4, while in a more complicated caseat =











2, if dt,j ≤ 50 m;a0 + a1dt,j, if 50 < dt,j < 1000 m;

4, if dt,j ≥ 1000 m,

(2.6)

where a0 and a1 are set as to make at continuous in dt,j. If there are M BTS’s, the
received powers are described by the following system of equations:























Pt,1 = P0,1 · d−at,1 · et,1,

Pt,2 = P0,2 · d−at,2 · et,2,
...

Pt,M = P0,M · d−at,M · et,M .

(2.7)

We assume that the transmitted power is the same for all BTS’s,

P0,1 = P0,2 = · · · = P0,M . (2.8)

Also note that the noise variables ei,j for different time points and for different
BTS’s are independent and identically distributed.

3 Maximum Likelihood Estimation

This section presents the ML solution to the positioning problem. Consider first
the power model with constant propagation coefficient. The conditional distribu-
tion of the power received from j-th BTS at time t, given the mobile’s coordinates,
is exponential,

Pt,j ∼ Exp
(lP0d−at,j

)

, (3.1)

with density

p(ut,j) =
dat,j
P0l exp

(

−
ut,jd

a
t,j

P0l ) , (3.2)
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where

dt,j =

√

(xt − xBSj )2 + (yt − yBSj )2 (3.3)

and xBSj and yBSj are abscise and ordinate of the j-th BTS. The log-density is then

log p(ut,j) = a log dt,j − log(P0l)−
ut,jd

a
t,j

P0l . (3.4)

Suppose there are n observations taken at the same point (or, at the same distance
from all BTS’s)

ut,j = (ut,j,1, . . . , ut,j,n)′. (3.5)

Then the log-likelihood function is given by

l(ut,j ; xt , yt ) =

n
∑

k=1

(a log dt,j − log(P0l)−
ut,j,kdat,j

P0l )

= an log dt,j − n log(P0l)−
dat,j
P0l n

∑

k=1

ut,j,k.

(3.6)

Since the power measurements for the different BTS’s are independent, the log-
likelihood for the data ut from all BTS’s at time t is expressed by the sum over
j.

The score equations are then































∂
∂xt

l(ut ; xt , yt ) =

M
∑

j=1

a(xt−xBSj
)
“

P0ln−dat,j∑n
k=1 ut,j,k

”

P0ld2
t,j

= 0,

∂
∂yt

l(ut ; xt , yt ) =

M
∑

j=1

a(yt−yBSj
)
“

P0ln−dat,j∑n
k=1 ut,j,k

”

P0ld2
t,j

= 0.

(3.7)

If the propagation coefficient depends linearly on the distance,at,j = a0 + a1dt,j, (3.8)
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the score equations take form



































∂
∂xt

l(ut ; xt , yt ) =

M
∑

j=1

ãt,j (xt−xBSj
)

„

P0ln−d
a0+a1dt,j
t,j

∑n
k=1 ut,j,k

«

P0ld2
t,j

= 0,

∂
∂yt

l(u ; xt , yt ) =

M
∑

j=1

ãt,j (yt−yBSj
)

„

P0ln−d
a0+a1dt,j
t,j

∑n
k=1 ut,j,k

«

P0ld2
t,j

= 0,

(3.9)

where ãt,j = a1dt,j log dt,j + a0 + a1dt,j. (3.10)

The ML estimates of the position are obtained by solving the score equation
system w.r.t. xt and yt .

Using the Fisher information matrix, it is possible to construct approximate
confidence ellipses for the ML estimate (x̂t , ŷt ). The approximate 95% confidence
ellipse is given by the equation

(x − x̂t , y − ŷt )B(x̂t , ŷt )(x − x̂t , y − ŷt )
′
= q2

0.95(2), (3.11)

where B(x̂t , ŷt ) is the Fisher information matrix

B(xt , yt ) =









−E
[

∂2

∂x2
t
l(ut ; xt , yt )

]

−E
[

∂2

∂xt∂yt
l(ut ; xt , yt )

]

−E
[

∂2

∂yt∂xt
l(ut ; xt , yt )

]

−E
[

∂2

∂y2
t
l(ut ; xt , yt )

]









, (3.12)

evaluated at (x̂t , ŷt ), and q2
0.95(2) is 95% quantile of the chi-square distribution

with 2 degrees of freedom.
For constant propagation coefficient a the Fisher information matrix is

B(xt , yt ) = a2n



















M
∑

j=1

(xt−xBSj
)2

d4
t,j

M
∑

j=1

(xt−xBSj
)(yt−yBSj

)

d4
t,j

M
∑

j=1

(xt−xBSj
)(yt−yBSj

)

d4
t,j

M
∑

j=1

(yt−yBSj
)2

d4
t,j



















, (3.13)
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while if the propagation coefficient depends on the distance as in (3.8), it is

B(xt , yt ) = n



















M
∑

j=1

(xt−xBSj
)2ã2

t,j

d4
t,j

M
∑

j=1

(xt−xBSj
)(yt−yBSj

)ã2
t,j

d4
t,j

M
∑

j=1

(xt−xBSj
)(yt−yBSj

)ã2
t,j

d4
t,j

M
∑

j=1

(yt−yBSj
)2ã2

t,j

d4
t,j



















. (3.14)

4 Particle filtering

Equations (2.1)–(2.2) or (2.3)–(2.4) and (2.7) define a state-space model. Sup-
pose that the values of the power received from M BTS’s up to time t are known:

P1:t = (P1, . . . , Pt) =







P1,1 . . . P1,t
...

. . .
...

PM ,1 . . . PM ,t






. (4.1)

We are interested in the coordinates of the mobile at this time point, rt = (xt , yt )′,
which are defined using either the polar (2.2) or the Cartesian (2.4) models.

Write in general

rt = h(zt ), (4.2)

where zt denotes the state vector at time t:

zt =

{

(vt , ft , xt , yt )′ for the polar model (2.1)–(2.2),

(ẋt , ẏt , xt , yt )′ for the Cartesian model (2.3)–(2.4).
(4.3)

The best guess, in the sense of mean squared loss, about the value of h(zt) at time
t is the expected value of this function w.r.t. the joint conditional distribution of
states,

I = Ep(z0:t |P1:t ) [h(zt)] =

∫

h(zt)p(z0:t |P1:t ) d (z0:t). (4.4)

Integrals like these can be approximated using Monte Carlo methods. If it is pos-
sible to simulate from p(z0:t |P1:t), then usual Monte Carlo estimates can be cal-
culated. This is not the case in our situation, so the importance sampling method
was applied.
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The key idea of importance sampling is to introduce an importance distri-
bution, p(z0:t |P1:t), which is easy to simulate from. Then the integrals can be
written as weighted expectations w.r.t. to the importance distribution,

I =

∫

h(zt )p(z0:t |P1:t) d (z0:t)

=

∫

h(zt )
p(z0:t|P1:t )p(z0:t |P1:t)

p(z0:t |P1:t) d (z0:t )

= Ep(z0:t |P1:t )[f (zt)w∗(z0:t)],

(4.5)

where w∗(z0:t) =
p(z0:t |P1:t)p(z0:t |P1:t)

. (4.6)

Suppose there are N i.i.d. samples from the importance distribution. Then an
estimate of the integral is the weighted sample mean

ÎN =
1
N

N
∑

i=1

h(z(i)
t )w∗(i)t , (4.7)

with importance weightsw∗(i)t = w∗(z(i)
0:t) =

p(z(i)
0:t |P1:t)p(z(i)
0:t |P1:t)

=
p(P1:t |z(i)

0:t)p(z(i)
0:t)

p(P1:t)p(z(i)
0:t |P1:t )

. (4.8)

Since the importance weights contain the normalizing constant p(P1:t), which is
typically unknown, the estimate (4.7) can in general not be computed.

However, the integral can be expressed as the ratio of two expectations,

I =
Ep(z0:t |P1:t )[h(zt )w(z0:t )]

Ep(z0:t |P1:t )[w(z0:t)]
, (4.9)

with weightsw(z0:t) =
p(P1:t |z0:t)p(z0:t)p(z0:t |P1:t)

. (4.10)

Hence an estimate of the integral is given by

ÎN =

1
N

∑N
i=1 f (z(i)

0:t)w(i)
t

1
N

∑N
j=1 w(j)

t

=

N
∑

i=1

f (z(i)
t )w̃(i)

t , (4.11)
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4. Particle filtering

where the importance weights arew(i)
t = w(z(i)

0:t ) =
p(P1:t |z(i)

0:t)p(z(i)
0:t)p(z(i)

0:t |P1:t)
, (4.12)

and w̃(i)
t are normalized importance weights,w̃(i)

t =
w(i)

t
∑N

j=1 w(j)
t

. (4.13)

Restricting the importance distribution to the formp(z0:t |P1:t ) = p(z0:t−1|P1:t−1)p(zt |z0:t−1, P1:t−1), (4.14)

allows for evaluating the importance weights sequentially in time. If the prior dis-
tribution of the states (system dynamics) is taken as the importance distribution,
then the updating coefficients are equal to the values of the conditional density of
the observations, evaluated at the observed values,w(i)

t = w(i)
t−1p(P1:t |z(i)

0:t) = w(i)
t−1

M
∏

j=1

p(Pt,j), (4.15)

where p, in our setting, corresponds to the exponential density with mean lP0d
−at,j

t,j .
To avoid degeneracy of the importance sampling method, the resampling pro-

cedure according to the normalized weights was included, namely, the systematic
resampling scheme (Carpenter et al. (1999)). The effective sample size estimate
(Kong et al. (1994))

Ne =

[

N
∑

i=1

[w̃(i)
t ]2

]−1

(4.16)

was used as the measure of degeneracy, and resampling was carried out if Ne fell
below a fixed threshold. In our algorithm the threshold was set to 60% of the
total number of particles.

The filtering algorithm is specified as follows:
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1. Initialization, t = 0
• For i = 1 to N , sample

(x(i)
0 , y(i)

0 ) ∼ Uniform[coverage area],

v(i)
0 ∼ Uniform[20, 70], f(i)

0 ∼ Uniform[0, 2p]

or

ẋ(i)
0 ∼ Uniform[20, 70], ẏ(i)

0 ∼ Uniform[20, 70]

• Set t = 1

2. Propagation and Resampling
• For i = 1 to N , move current samples (or particles) according to (2.1)–
(2.2) or (2.3)–(2.4) to obtain z(i)

t .
• For i = 1 to N and for j = 1 to M , evaluate

d
(ij)
t =

√

(x(i)
t − xBSj )2 + (y(i)

t − yBSj )2.

• For i = 1 to N , update the importance weights according to (4.15), nor-
malize to obtain normalized weights w̃(i)

t and calculate the effective sample
size.
• Take as the position estimate

x̂t =

N
∑

i=1

w̃(i)
t x(i)

t , ŷt =

N
∑

i=1

w̃(i)
t y(i)

t .

- If Ne < 0.6N , resample with replacement N particles

{z(i)
t ; i = 1, . . . , N}

according to the normalized importance weights. Set all weights equal
to 1/N .

• Set t = t + 1 and go to step 2.

5 Simulations

In the first simulation the mobile moves within the coverage area of three BTS’s
during 3 minutes with constant speed and constant direction:

v0 = 60 km/h, v0 = v1 = · · · = vT ;f0 = p/6, f0 = f1 = · · · = fT .
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5. Simulations

The sampling rate is 3 s−1, so Dt = 1/3 s and T = 540. The BTS’s are located
at the points (0, 500), (–500, 500) and (500, –500), and the initial position was
chosen randomly within the square [−1000, 1000] × [−1000, 1000].

The transmitted power was set to 16 dB and the power noise was simulated
from an exponential distribution with mean 2 dB.

The received power from all BTS’s was calculated by (2.7) first with the fixed
propagation coefficient a = 2 and then with the propagation coefficient depend-
ing on the distance as in (2.6).

Figure 1 shows the simulated track and 95% confidence ellipses for three
selected points along the track. The ellipses were computed using the Fisher in-
formation matrix (3.13) or (3.14) around the corresponding ML estimates. These
ellipses thus display the uncertainty of a single measurement taken at this point,
disregarding any dynamics of the movement. As can be expected, the ML esti-
mates for the model with varying propagation coefficient are more precise about
the true values, than the ML estimates for the model with constant propagation
coefficient. The estimation becomes more uncertain when the mobile moves out-
side the area between the BTS’s.

For the on-line estimation of the true trajectory, four different filters were
applied.

• Filter 1: Polar model (2.1)–(2.2) for states and fixed propagation coeffi-
cient a = 2 in the power model (2.7);

• Filter 2: Polar model (2.1)–(2.2) for states and propagation coefficient
determined by (2.6) in the power model (2.7);

• Filter 3: Cartesian model (2.3)–(2.4) for states and fixed propagation co-
efficient a = 2 in the power model (2.7);

• Filter 4: Cartesian model (2.3)–(2.4) for states and propagation coefficient
determined by (2.6) in the power model (2.7).

All four filters were run using 1000 particles and the appropriate received power
input. In filters 1 and 2 the acceleration at ∼ N (0, 1), the random angleft ∼ U [−p, p] and the power noise ei,j ∼ Exp(2 dB). In filters 3 and 4
the random accelerations ax,t ∼ N (0, 1), ay,t ∼ N (0, 1) and the power noiseei,j ∼ Exp(2 dB).
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The RMSE based on 100 runs (R = 100) was calculated in order to estimate
the over-time performance for each filter,

RMSEt =

√

√

√

√

1
R

R
∑

r=1

[

(xt − x̂t,r)2 + (yt − ŷt,r)2
]

, t = 1, . . . , T . (5.1)

Filtering results for the one run and the RMSE are displayed in Figure 2.
The plot of RMSE shows better performance for filters 2 and 4, which are

based on the model with varying propagation coefficient. Among these two, filter
4, based on the Cartesian model for states, has the smallest RMSE for almost
all time points. It takes around 5 s for all filters to find the true trajectory, and
during this time the RMSE drops to around one third of its initial value. After 90
s the first filter loses the track and diverges drastically, with the over-time mean of
RMSE of 1 km. The other three filters follow the true path, and start to diverge
after around 150 s when the mobile moves outside the area between the BTS’s.
After discarding the first 15 (burn-in) and last 90 measurements, filter 4 gives a
mean error of 34.3 m, which is several times smaller that the mean error for filters
2 (71.9 m) and 3 (190.4 m).

The resampling rates for four filters are 13.7%, 29.4%, 6.7% and 11.8%,
respectively. Filter 2 allows particles to explore the state space more actively, as its
resampling rate is about 2–3 times higher than for the other filters.

Figure 3 displays the filtering results with different standard deviations for the
acceleration in models (2.1) and (2.3). Filters based on the polar model for the
states are able to track the true trajectory even with a relatively small standard
deviation (0.5 m/s2), whereas Filters 1 and 2 diverge in this case. A quite large
standard deviation (5 m/s2) allows all filters to find the true position, but the
filters based on the model with constant propagation coefficient are less precise.
Filters 2 and 4 show more similar results as the standard deviation increases.

Figure 4 displays changes in the resampling rate depending on the standard
deviation in the models. The resampling rate shows how often the filter starts
to degenerate. This rate also depends on an arbitrarily chosen threshold of 60%
in the condition for resampling. At this point we consider a resampling rate
between 20% and 25% as optimal. For filter 1 the resampling rate seems to bee
too small. In this case the filter resamples in around 15% of steps, so most of the
time it uses quite a lot of different particles. But if all these particles are far away
from the truth, then the filter might be forced to follow the wrong path. On the
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contrary, filter 3 resamples too often, in around 30% of steps. The resampling
rate for filter 2 changes rapidly as the standard deviation increases to 2 m/s2. It
might be an indication that the filter is trying to find an optimal rate for the given
standard deviation and resampling threshold. As the standard deviation increases,
the resampling rates for filters 2 and 4 become more close to each other.

Results of the filtering with sa = 3, sx = sy = 3 and of the ML estimation
are compared in Figure 5. The superiority of particle filtering is clear for filters 2
and 4 (model with varying propagation coefficient). Particles are highly concen-
trated around the true value, and 95% confidence ellipses are more narrow than
the ML confidence ellipses.

In the second simulation the mobile moves in the area between same BTS’s
during 3 minutes with constant speed of 60 km/h along a track with p/2 and p/4
turns. All other parameters are the same as in the first simulation. Again, four
filters were applied, with exactly the same setup.

Figure 6 shows the true trajectory and the filtering results for four different fil-
ters and the over-time RMSE for each filter. The superiority of filter based on the
polar model for states, with varying propagation coefficient in the power model,
is clear from both plots. After discarding the first 15 and last 90 measurements,
the mean RMSE for this filter is 40.7 m, comparing to the mean errors of 147.9
m, 108.2 m and 50.1 m for filters 1, 3 and 4, respectively. The price to pay for
the best performance is the highest resampling rate, 31.1%, compared to 12.7%,
10.5% and 20.7% for other three filters.

6 Discussion

Two state models and two power models, resulting in four different particle filters,
were compared in the simulation study. Filters based on the power model with
varying propagation coefficient show better performance compared to the filters
based on the power model with constant propagation coefficient. The difference
between polar and Cartesian models for states is not so clear. Filters based on the
polar model estimate the position with smaller error. At the same time they might
resample too often (up to 65%), if the standard deviation of the acceleration in
the state model is small. The resampling rates for the filters based on the Cartesian
model is more stable and are close to the optimal when the standard deviation is
more than 2 m/s2.

For comparison, consider the filter applied for the positioning in Gustafsson
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et al. (2002). In this paper the motion model uses the velocity as an avaliable
input signal. The received power from two BTS’s is modeled on log-scale with
the constant propagation coefficient a ∈ [2, 5], and with additive noise from
N (0,s2

e ), where se = 6 dB. The implemented particle filter with 66.6% resam-
pling threshold yields an RMSE of 36 m. This error is similar to the results of
filtering with varying propagation coefficient in the power model. Hence, inclu-
sion of more information about the distance into the power model allows us to
apply more general model for the states without significant loss in the precision.

It seems reasonable to consider the filter with smallest RMSE as the best
one, but the resampling rate has also be taken into account. The best filter
should therefore combine the small estimation error with reasonable resampling
frequency. The choice of the standard deviations in the state model and of the
resampling threshold in order to have an optimal resampling rate requires further
investigation.
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Figure 1: The simulated track (top left) and ML-estimates with 95% confidence ellipses
for the selected points (other plots). Diamonds and dashed lines correspond to the ML es-
timates and ellipses for the power model with fixed propagation coefficient; triangles and
solid lines correspond to the ML estimates and ellipses for the power model with varying
propagation coefficient. Circles on track indicate the true mobile position, squares show
positions of BTS’s
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Figure 2: Left: Simulated trajectory (thick solid line) and filtered ones for the four
different filters. Circle indicates the initial position of mobile, squares show positions
of BTS’s. Right: RMSE based on 100 runs. Thin solid lines in both plots correspond
to filtered track and RMSE for Filter 1; dotted lines - Filter 2; dashed lines - Filter 3;
dash-dotted lines - Filter 4.
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Figure 3: Filtering results for different standard deviations. Line code: thin solid - Filter
1; dotted - Filter 2; dashed - Filter 3; dash-dotted - Filter 4.
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Paper B

Mobile Positioning in MIMO System
Using Particle Filtering

Svetlana Bizjajeva, Tobias Rydén, Ove Edfors

Abstract

This paper represents the results of a simulation study on positioning of a mo-
bile unit in MIMO settings. We used two different approaches for modeling the
mobile movement, combined with a simple geometrical model for the MIMO
channel. Three different particle filters were implemented for the position es-
timation. The results show that all three filters are able to achieve estimation
accuracy required by Federal Communication Commission. The dimensionality
of the particle filter state space is independent of the number of antenna elements,
and it is possible to increase the number of antennas and use more sophisticated
channel models without changing the filtering algorithms.

Key words: MIMO, mobile positioning, channel modeling, particle filtering,
simulations

1 Introduction

Wireless systems are now used worldwide to help people and machines to com-
municate with each other irrespectively of their location. In a global perspective,
wireless stands to be a method most people will use to connect to the Internet.
New generation wireless communication systems (4G) should be able to provide
clients with all the benefits associated with the World Wide Web: multimedia,
e-commerce, unified messages, peer-to-peer network etc. To increase system per-
formance is thus very important.

Another goal of 4G systems is to allow switching between networks of systems
that gives “the best” connection at the moment. Mixing various connections from
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satellites to local area networks may result in a crowded frequency spectrum and
requires a signaling strategy that is spectrally efficient.

Using multiple antennas at both transmitter and receiver can solve these is-
sues. The MIMO (multiple-input multiple-output) technology, proposed by
Paulraj and Kailath in Paulraj and Kailath (1994), increases the spectral effi-
ciency of a system. It enables high capacities suited for Internet and multimedia
services and also dramatically increases range and reliability. In the last few years,
MIMO systems have emerged as one of the most promising approaches for high
data-rate wireless systems. For more details about the MIMO technology see, for
example, Paulraj et al. (2003).

The positioning of a mobile unit in MIMO settings is a challenging problem.
During the last decade various location technologies have been invented using ei-
ther cellular network-based, mobile-based, or hybrid approaches. A comprehen-
sive overview of different positioning methods can be found in Syrjärinne (2001).
Most known and widely used is the satellite Global Positioning System (GPS),
which is based on measurements of time difference of arrival. The propagation
time of signals is measured simultaneously from satellites at known locations and
the distance between a satellite and a user receiver is obtained by multiplying the
propagation time with the speed of light, assuming the line of sight (LOS). In
most applications however, the LOS signal is succeeded by multi-path compo-
nents that arrive to the receiver with a short delay. This introduces significant
errors in the LOS path time of arrival and gain estimation, especially in urban
environments with many reflections from buildings and other objects. On the
contrary, MIMO systems can use the information from multipath components to
improve the accuracy of the estimation.

The key concept for the positioning in MIMO settings is the selection of an
appropriate model for the propagation channel. With the proper channel model
the location problem can be solved using sequential Monte Carlo methods, also
called particle filtering, see Doucet et al. (2001). In this paper we will investigate
the performance of particle filtering in MIMO system settings.

2 State-space model and particle filtering

The positioning problem in a MIMO setting consists in the estimation of the
receive antenna coordinates at time t given the signal strength measurements at
the receiver end up to this time, if the transmitted signal is known. In a state-
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space model framework this problem corresponds to computation of the filtering
probability density function and estimation of the expected values of the state
variables.

Consider a discrete state-space model with additive noise,

{

zt+1 = f (zt) + et ,

ut = h(zt ) + et ,
(2.1)

where the process noise et and the measurement noise et are independent random
variables with known probability density functions pe(et ) and pe(et ), respectively.
Arbitrary, often non-linear functions f (zt ) : R

n → R
n and h(zt ) : R

n → R
m

describe the evolution of the state variables, zt , and the measurements, ut , over
time.

Suppose that the measurements up to time t, u0:t , are avaliable. Then the fil-
tering probability density for the state variables, p(zt |u0:t ), is derived using Bayes’
formula,

p(zt |u0:t ) =
p(ut |zt)p(zt |u0:t−1)

p(ut |ut−1)
, (2.2)

where

p(ut |ut−1) =

∫

p(ut |zt )p(zt |u0:t−1) dzt .

This density can be used to estimate the expected values of the state variables
according to

I (g(zt)) = Ep(zt |u0:t )
(

g(zt)
)

=

∫

g(zt)p(zt |u0:t ) dzt . (2.3)

The integrals involved in (2.2) and (2.3) can be analytically evaluated only in a
limited number of cases. The most important special case is the linear Gaussian
state-space model, when the Kalman filtering technique is applicable. Many pop-
ular algorithms for the non-linear/non-Gaussian case, like the extended Kalman
filter and Gaussian sum filter, rely on analytical approximations of the integrals
Anderson and Moore (1979). The great computational power of modern com-
puters however allows using numerical methods based on Monte Carlo integra-
tion. A complete description of sequential Monte Carlo methods can be found
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in Doucet et al. (2000). In the next paragraphs we shall briefly explain the basic
steps in the derivation of the particle filtering algorithm.

The particle filter approximates the density by a large set of M samples (par-
ticles), {z(i)

t|t , i = 1 . . . M}, where each particle has an associated normalized

weight, w̃(i)
t , such that w̃(i)

t ≥ 0 for all i and
∑M

i=1 w̃(i)
t = 1. An empirical

estimate of the filtering probability density function is then given by

p̂(zt |u0:t ) ≈
M
∑

i=1

w̃(i)
t d(zt − z(i)

t|t),

where d(·) is the Dirac delta function. Further, an estimate of the integral (2.3) is
the weighted sample mean,

ÎM (g(zt)) =

M
∑

i=1

w̃(i)
t g(z(i)

t|t).

The particles are initialized at random points of the state space. The filter
updates the particle locations and weights each time a new observation is avaliable.
Firstly, the particle location is obtained by passing the current particles through
the system dynamics:

z(i)
t+1|t = f (z(i)

t|t) + e(i)
t+1, where e(i)

t+1 ∼ pe(et+1).

The unnormalized weights w(i)
t are usually updated sequentially in time, and the

updating coefficients are equal to the values of the conditional density of the
observations, evaluated at the observed values,

w(i)
t+1 = w(i)

t p(ut+1|z(i)
t+1|t).

This updating mechanism has the serious drawback that normalized weights tend
to degenerate with time, in the sense that after few steps of the algorithm all but
one of the normalized weights are very close to zero. As a result, a large computa-
tional effort is spent on updating trajectories with very small contribution to the
final estimate. To avoid the degeneracy problem, a resampling procedure is intro-
duced. This step consists of resampling with replacement among the predictive
particles, according to the updated and normalized weights,

P(z(i)
t+1 = z

(j)
t+1|t) = w̃

(j)
t+1, i = 1 . . . M ,
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where normalized weights are given by

w̃(i)
t =

w(i)
t

∑M
j=1 w(i)

t

.

After resampling all weights are set to 1/M .
The weight of a particle reflects how likely the obtained measurement is, given

the present state. Particles with large weights have high probabilities to be drawn
from the true distribution and thus have high probabilities of being resampled.
At the same time, particles with low weights appear to come from the wrong
distribution and have to be discarded. There are several resampling algorithms
proposed in the literature, namely, simple random resampling, stratified resam-
pling, systematic sampling and residual sampling, see Kitagawa (1996) and Liu
and Chen (1998).

If the state-space model (2.1) contains a linear Gaussian sub-structure, the es-
timates can be improved by using a marginalized particle filter (Schön et al. (2006)).
Consider a state-space model, that is linear in all states and with additive Gaussian
noise for some states. The state vector zt can then be split into two parts,

zt = (zk
t , z

p
t )′,

where zk
t corresponds to the states with Gaussian dynamics and z

p
t corresponds to

the rest of the states. Similarly we split the vector of errors et = (ek
t , ep

t )′, whereek
t ∼ N (0,Se) and ep

t ∼ pe(ep
t ).

Then the model (2.1) can be rewritten in the following way:











zk
t+1 = Ak

t zk
t + A

p
t z

p
t + ek

t+1,

z
p
t+1 = Bk

t zk
t+1 + B

p
t z

p
t + ep

t+1,

ut = ht (z
p
t ) + Ctz

k
t + et .

(2.4)

This split of the state variables and errors allows us to split the filtering prob-
ability density into two components,

p(zt |u0:t ) = p(zk
t |z

p
t , u0:t)p(zp

t |u0:t).

Here the first term can be evaluated analytically by the Kalman filter and the
second term can be estimated using particle filtering. Such a combination reduces
the computational complexity of the algorithm (Karlsson et al. (2005)) and allows
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to obtain better estimates with the same number of particles. More about this
splitting technique, also called Rao-Blackwellization, can be found in Doucet et
al. (2000).

3 Models for positioning in MIMO settings

3.1 Movement models

The transmit antenna is assumed kept at a fixed point with a fixed orientation.
The receiver moves along an arbitrary trajectory and the receiving antenna turns
randomly at some time points. The position of the receiver at time t is expressed
by the abscise xR,t and the ordinate yR,t of the reference point.

In the Cartesian approach, these quantities are related to the horizontal and
vertical velocities ẋR,t and ẏR,t . These velocities, in turn, are assumed to follow
a simple linear Markovian model with random accelerations. The evolution of
these four states is described by the system of equations























ẋR,t+1 = ẋR,t + Dt · ax,t+1,

ẏR,t+1 = ẏR,t + Dt · ay,t+1,

xR,t+1 = xR,t + Dt · ẋR,t+1,

yR,t+1 = yR,t + Dt · ẏR,t+1,

(3.1)

where ax,t and ay,t are independent random variables with N (0, s2
x/Dt) and

N (0, s2
y /Dt) distributions, respectively.

In the polar approach the coordinates of the receiver are related to the speed
of the receiver, vR,t , and the direction of movement, fR,t . Both the velocity and
the direction are assumed to follow simple linear Markovian models with random
acceleration and turns. This gives the evolution equations











































vR,t+1 = vR,t + Dt · at+1,fR,t+1 =











et+1 with probability d,fR,t +
√Dt · et+1

with probability 1− d,
xR,t+1 = xR,t + Dt · vR,t+1cos

(fR,t+1
)

,

yR,t+1 = yR,t t + Dt · vR,t+1sin
(fR,t+1

)

.

(3.2)
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The acceleration, at , and the turns, et , are assumed to be sequences of indepen-
dent random variables with N (0, s2

a/Dt) and U [−p, p] distributions, respec-
tively.

The dynamics of the receiving antenna orientation was modeled asyR,t+1 =











nt+1 with probability d′,yR,t +
√Dt · nt+1

with probability 1− d′, (3.3)

where the random turns nt are independent variables from a U [−p, p] distribu-
tion.

3.2 MIMO propagation channel model

Recently, many different models for MIMO propagation channels have been pro-
posed. An overview of these models can be found in Yu and Ottersten (2002),
and the research on this topic is continued. In our simulation study we will model
the channel using the geometrical approach introduced in Molisch (2004). The
basic idea of this approach is to place scatterers at random and then emulate the
propagation process from the transmitter to the receiver, taking into account the
effect of scattering.

Consider a MIMO system with NT transmit elements and NR receive ele-
ments. At time t the relationship between input and output can be expressed
as

ut = Htvt + et , (3.4)

where vt is the NT -vector of the transmitted signal, ut is the NR-vector of the
received signal and et is an additive Gaussian noise term. The channel is described
by the deterministic NR × NT channel response matrix Ht . A single element of
this matrix, hnm,t , is the impulse response from the m-th transmit to the n-th
receive antenna element. Suppose there are NS scatterers around the receiver and
the transmitter. Then the impulse response is determined by

hnm,t =

Ns
∑

s=1

As,t exp(jfs) exp(jzms) exp(jhns,t). (3.5)
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n

dT ,m

dT ,s

dT ,ms

dR,n

dR,s,t

dR,ns,tjT ,s jR,s,t

�

Figure 1: The distances and angular parameters used in the phase shift derivations.

Here As,t denotes the amplitude damping for the path between the transmitter,
scatterer s and the receiver,

As,t = d−ns,t · as, (3.6)

with the total traveling distance ds,t , random damping as at the scatterer and
propagation coefficient n. Note that we assume no LOS and single scattering for
all paths.

The phase shift is composed of three components: random phase shift fs

at scatterer s, phase shift zms at the m-th transmit antenna element and phase
shift hns,t at the n-th receive antenna element. These are derived from simple
geometrical relationships and given byzms =

2pl · dT ,m · |sin(jT ,s)|
· sign(dT ,s − dT ,ms),

(3.7)hns,t =
2pl · dR,n · |sin(jR,s,t +

p
2
− yR,t)|

· sign(dR,ns,t − dR,s,t),
(3.8)

where l denotes the wave length and the angular parameters and the distances are
explained in Figure 1.
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4 Particle filtering algorithms

Equations (3.1)–(3.3)–(3.4) and (3.2)–(3.3)–(3.4) define a state-space model with
five states. The position of the receiver is involved in the measurement equation
in a highly non-linear way. It influences both the amplitude damping and the
phase shifts, since the coordinates of a reference point at the receiver are used in
the calculation of all distances in (3.6), (3.7), and (3.8). In addition, the direction
of arrival, jR,s,t , depends on the position of the receiver at time t. In the Cartesian
model the velocities, however, have linear Gaussian dynamics and do not appear
in the measurement equation.

The distribution of the measurement noise et is the NT -dimensional complex
Gaussian distribution with zero mean and covariance matrixSe .

The particle filter weights equal the conditional density of the observations,
given the states:

w(i)
t = p(ut |zt|t−1) = pe(ut − h(zt ))

=
1pNT |Se|

×

× exp
{

−(ut −Hi,tvt )
′S−1

e (ut −Hi,tvt)
}

(4.1)

The estimates of the position of the receiver are simply the weighted sample means
over M particles, evaluated with the normalized weights:

(x̂R,t , ŷR,t) =

(

M
∑

i=1

w̃t,ixR,i,t ,

M
∑

i=1

w̃t,iyR,i,t

)

. (4.2)

The estimate of the direction of the receiver is the circular mean direction
(Fisher (1993)):

S =

M
∑

i=1

√

w̃t,i cosyR,i,t ,

C =

M
∑

i=1

√

w̃t,i sin yR,i,t ,ŷR,t =











tan−1(S/C ), if S > 0, C > 0;

tan−1(S/C ) + p, if C < 0;

tan−1(S/C ) + 2p, if S < 0, C > 0.

(4.3)
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To measure the degeneracy of the algorithm we used the effective sample size
estimate (Kong et al. (1994)), defined as

N̂e =

[

N
∑

i=1

[w̃(i)
t ]2

]−1

. (4.4)

Resampling was carried out if N̂e fell below 60% of the total number of particles.
The filtering algorithm is specified as follows:

1. Initialization, t = 0

(a) For i = 1 to M , sample

(xR,i,0, yR,i,0)′ ∼ U
(

[a, b]× [a′, b′]
)yR,i,0 ∼ U [0, 2p]

ẋR,i,0 ∼ U [c, d ], ẏR,i,0 ∼ U [c, d ]

or

vR,i,0 ∼ U [c, d ], fR,i,0 ∼ U [0, 2p]

(b) Set t = 1

2. PF time update

For i = 1 to M , move current particles according to (3.2) or (3.1) and turn
the antenna according to (3.3).

3. PF measurement update

(a) For i = 1 to M evaluate the channel matrix Hi,t , update the weights,
normalize, calculate the effective sample size estimate. Estimate the
position and the direction according to (4.2).

(b) If the effective sample size estimate is less than 0.6M , resample with
replacement M particles according to the normalized weights using
systematic sampling. Set all weights equal to 1/M .

4. Set t = t + 1 and iterate to step 2.
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4. Particle filtering algorithms

The algorithm for the marginalized particle filtering combines the Kalman
filter for the velocities in the Cartesian model (ẋR,t , ẏR,t ) with the particle filter for
the coordinates and the direction of the antenna.

1. Initialization, t = 0

(a) For i = 1 to M , sample

(xR,i,0, yR,i,0)′ ∼ U
(

[a, b]× [a′, b′]
)yR,i,0 ∼ U [0, 2p]

ẋR,i,0 ∼ U [c, d ], ẏR,i,0 ∼ U [c, d ]

(b) Set t = 1

2. Resampling (PF measurement update)

(a) For i = 1 to M evaluate the channel matrix Hi,t , update the weights,
normalize, calculate the effective sample size estimate. Estimate the
position and the direction according to (4.2).

(b) If the effective sample size estimate is less than 0.6M , resample with
replacement M particles according to the normalized weights using
the systematic sampling procedure. Set all weights equal to 1/M .

3. PF time update and KF update

(a) KF measurement update:

(ẋR,i,t|t, ẏR,i,t|t) = (ẋR,i,t|t−1, ẏR,i,t|t−1),

Pt|t = Pt|t−1.

(b) PF time update:
For i = 1 to M , move current particles according to (3.2) or (3.1)
and turn the antenna according to (3.3).

(c) KF time update:

ẋR,i,t+1|t =
1Dt

(

xR,i,t+1|t − xR,i,t|t

)

,

ẏR,i,t+1|t =
1Dt

(

yR,i,t+1|t − yR,i,t|t

)

,

Pt+1|t = Pt|t = Dt

( s2
x 0

0 s2
y

)

.
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4. Set t = t + 1 and iterate to step 3.

5 Simulations

The transmitting antenna is linear with NT = 3 elements distanced by the half
wave length, and the wave length l = 3/20 m corresponding to 2 GHz frequency.
The transmitter is located at the origin, (xT , yT )′ = (0, 0)′, and the orientation of
the transmit antenna is 90◦.

The receiving antenna is also linear with three elements, NR = 3, distanced
by the half wave length. The receiver starts moving at (100, 0) with speed 6 km/h
and direction 0◦. The initial orientation of the antenna is 45◦. The receiver
moves along the trajectory with turns of size 90◦ and 45◦ during 3 minutes, and
turns the antenna by 90◦ or 45◦ at some time points.

There are 45 scatterers, placed randomly within the area [0, 300] × [0, 250]
m. The amplitude damping at each scatterer is simulated from a Rayleigh distri-
bution with mean -6 dB, and the phase shifts are uniformly distributed between
0 and 2p. All these are fixed over time, and used as the filter input.

The standard deviation for signal noise is set to 10−8 for each antenna el-
ement in order to keep signal to noise ratio between 10 and 30 dB. Noises on
different antenna elements are assumed to be independent, which gives the diag-
onal covariance matrixSe =





10−16 0 0
0 10−16 0
0 0 10−16



 ,

for the calculation of weights by (4.1).
The sampling rate is 100 times per sec, so Dt = 0.01 sec and T = 18, 000.

Propagation coefficient n is set to 3.5.
Three different filters are applied: common particle filters with either Carte-

sian (3.1) or polar (3.2) model for the mobile movement (Filters 1 and 2, respec-
tively) and the marginalized particle filter, based on the Cartesian model (Filter
3). All filters are run using 500 particles, with s2

x = s2
y = 3, s2

a = 3 in common
particle filters, and with s2

x = s2
y = 2 in the marginalized particle filter. The

probabilities d and d′ in the models of the direction of movement (3.2) and of
the antenna orientation (3.3) are set to 0.01. In all three filters initial positions
are sampled within the area [95, 105]× [−5, 5] m, and initial speeds are sampled
from U [1, 6] km/h.
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5. Simulations

To estimate the over-time performance for each filter we calculated the RMSE,
based on R runs for the position estimates,

RMSEt =

√

√

√

√

1
R

R
∑

r=1

[

(xt − x̂t,r)2 + (yt − ŷt,r)2
]

,

t = 1, . . . , T ,

and the arithmetic sample mean over R runs for the angle estimates.
Figures 2 and 3 show the true trajectory and the true direction of the receiver

together with the results for three different filters. All filters seem to perform quite
well and are able to follow the track, with the estimation error not more than 25
m. Filter 1 has the largest over-time mean estimation error in the position, 4.9 m,
compared to 3.5 m and 3.4 m for filters 2 and 3, respectively.

The estimation error in the orientation of the receiver is quite large at the
turning times, but at the next time point decreases to less than 25◦ for all three
filters. Over-time mean errors for all three filters are around 4◦.

Figure 4 displays the RMSE for these filters based on 68 runs. Over-time
performance for all filters corresponds with the results from one run. Filter 1 has
largest over-time mean RMSE of 16.3 m, whereas for the filters 2 and 3 over-time
mean RMSE is 5.4 m and 3.9 m, respectively. The mean estimation error in the
antenna orientation is displayed in Figure 5. All three filters have similar precision
of estimation, with the mean error staying below 20◦ most of the time.

Table 1 shows the Federal Communication Commission (FCC) performance
requirements for the mobile location, expressed in error probability. For example,
at least 67% of the positioning errors should be smaller than 100 m. To compare
our results with these requirements, we have calculated the positioning error at
each time point for 68 runs of three different filters, and then evaluated 67 and
95 percentiles for each time point. Maximal over-time values for three filters are
given in Table 2. Comparing these two tables, we see that the estimation accuracy
for all three filters fits the FCC requirements for both network-based and mobile-
based positioning.

We have also applied these three filters in more sophisticated situations, where
the receiver moves along the circular or sinusoidal track and the receiving antenna
makes a full round during the movement.

Results are displayed in Figure 6 and show good performance of all three
filters in the estimation of both the position and the antenna orientation.
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6 Conclusions

Three different particles filters were applied for mobile positioning in a MIMO
settings: Filter 1, based on the Cartesian model (3.1) for the states variables;
Filter 2, based on the polar model (3.2) for states, and Filter 3, marginalized
particle filter. Results, averaged over 68 independent runs of these filters, show
good performance, satisfying the FCC performance requirements for the mobile
location in network-based positioning as well as in mobile-based positioning. The
marginalized particle filter, being the combination of Kalman filter and particle
filter, shows the best performance with over-time mean RMSE of 3.9 m and 95%
of positioning errors below 25 m.

In our simulation we used a very simple channel model with a small number
of transmit and receive antennas. It is possible to increase the number of anten-
nas and use more sophisticated channel models (including e.g. effects of multiple
scattering) without changing the filtering algorithms. In addition, the dimen-
sionality of the particle filter state space is independent of the number of antenna
elements, as well as of the number of scatterers.

Note however, that the positioning with particle filters in these settings re-
quires large computational power. There are two reasons for that. First, the
calculations involve high-dimensional matrices, with one dimension equal to the
number of particles. Second, all tested filters have high resampling rate about
98%, which means that the filters degenerate and need to resample at almost ev-
ery step. The practical solution to the first problem can be to reduce the number
of particles. It will increase the positioning error, but at the same time decrease the
computation time. A solution for the second problem is somewhat more difficult.
In our filtering algorithms we sampled particles according to the system dynamics.
In other words, we chose the prior distribution of states as the sampling distribu-
tion This choice gives a simple expression for the calculation of weights, but filter
may perform badly if the likelihood is peaked. As a solution, one can use so-called
auxiliary particle filter, discussed by Pitt and Shephard in Doucet et al. (2001).
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Table 1: FCC requirements for mobile- and network-based positioning, expressed
in error probability.

Error % Mobile-based Network-based

67 50 m 100 m
95 150 m 300 m

Table 2: The maximal percentiles for 68 runs of three different filters,with the
maximum is taken over all time points.

Error % Filter 1 Filter 2 Filter 3

67 17 m 16 m 12 m
95 34 m 24 m 25 m
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Figure 2: True trajectory and the filtering results based on one run. Stars corre-
sponds to the initial position of the mobile (red) and to the starting positions of
three filters (green: Filter 1, blue: Filter 2 and magenta: Filter 2. Squares show
positions of scatterers. Green line shows the results for Filter 1, blue: Filter 2,
magenta: Filter 3.
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Figure 3: True orientation of antenna (red line) and the filtered one for three
different filters. Over-time mean errors are 4.4◦, 4.1◦ and 3.8◦ for Filter 1 (green
line), Filter 2 (blue line) and Filter 3 (magenta line), respectively.
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Figure 4: RMSE for the position estimate with three filters, based on 68 runs.
Color code: green – Filter 1, blue – Filter 2, magenta – Filter 3.
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Figure 5: Mean error in the estimation of the antenna direction. Over-time mean
is 5◦ for Filter 1 (green line), 12◦ for Filter 2 (blue line) and 4◦ for Filter 3
(magenta line).
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Figure 6: True trajectory (left) and true orientation of the antenna (right) together
with the filtering results for the circular (upper panel) and the sinusoidal (lower
panel) movement. Green lines show the results for Filter 1, blue: Filter 2, ma-
genta: Filter 3. Over-time mean errors in the positioning do not exceed 10 m.
Over-time mean errors in estimation of the antenna orientation are around 10◦.
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Paper C

Sequential Monte Carlo Methods and
Decomposable State–Space Models

Svetlana Bizjajeva, Tobias Rydén

Abstract

Sequential Monte Carlo methods (particle filters) for non-linear filtering have
been applied since early nineties in many different areas. The convergence results
and computational load of the filtering algorithms depend on the number of par-
ticles, and often a very large number of particles is required in order to obtain
good estimation. From the other side, using too many particles drastically slows
down the algorithm. In this paper we consider a method for particle filtering for
multi-dimensional models which are decomposable in the coordinates, allowing a
reduced number of particles without a large precision loss.

Key words: Particle filtering, simulations, multi-dimensional state–space
models.

1 Introduction

Many problems in applied statistics, from signal processing to modeling of biolog-
ical sequences, can be formulated in terms of a state-space model. The transition
equation describes the evolution of states, i.e. the Markov chain {Xt}t≥0, which
is subject to interest but not observable directly. Instead one can observe another
stochastic process {Yt}t≥0 that is linked to this chain in a way that the conditional
distribution of Yt is determined by Xt and described by the observation equation.
The goal is to estimate the conditional distribution of the states given the obser-
vations and often one of its marginals, the filtering distribution of the state at time
t, given the observations up to this time. This problem is known as a Bayesian
filtering or optimal filtering problem. Except for a very few cases (linear Gaussian
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systems and discrete finite state space), analytical solution of this problem is not
possible and numerical methods have to be employed.

Particle filters, first suggested in Gordon et al. (1993) and throughly de-
scribed in Doucet et al. (2000), have been shown to be an effective solution to
the optimal filtering problem. They consist in approximating filtering distribu-
tions by the empirical distribution of a weighted set of particles. This method is
relatively easy to implement and can be applied to wide class of models with non-
linear/non-Gaussian structure; for examples, see Doucet et al. (2001). Summary
descriptions of particle filtering (or sequential Monte Carlo) methods together
with convergence results can be found in Doucet et al. (2001). It is known that
the number of particles is very important in determining the performance of par-
ticle filters. The number of particles and the processing rate directly affect the
hardware complexity of the implemented filter. Moreover, in applications like
mobile tracking the measurements are collected with very high sampling rate and
the filter has to work very fast in order to perform on-line estimation. For an
efficient implementation it is important to use as few particles as possible at any
given time.

Existing methods for changing the number of particles during filtering in-
clude the Kullback-Leibler distance (KLD) sampling (Fox (2001)) and its im-
proved version (Soto (2005)). These methods are based on the idea of propagat-
ing a small number of particles when the density is concentrated in a small region
and propagating a large number of particles in the case of a wide density region.
Decreasing the number of particles becomes essential when the state space has
more than one dimension. Taking a large number of particles for each dimension
drastically increases the dimension of the filter and notably affects its working
time.

In this paper we consider a method for particle filtering in the case when there
exists a natural decomposition of the state space and a similar decomposition of
the measurement equations. Instead of sampling multi-dimensional particles we
sample a smaller set of particles in each dimension and then combine the resulting
estimates. We demonstrate that this effectively reduces the computation time
without a large precision loss.
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2. Monte Carlo solution to the smoothing problem in state-space models

2 Monte Carlo solution to the smoothing problem in

state-space models

Consider a Markov chain {Xt}t≥0, taking values in some measurable state space
(X,X ) at the discrete time-points t ∈ Z+. Let Q and n denote the probability
transition kernel, Q(x, dz) = P

(

Xt+1 ∈ dz |Xt = x
)

, and the initial distribution
of the chain, respectively. This chain is partially observed through a stochastic
process on Y, {Yt}t≥0, in a way that given {Xt}, {Yt} is a sequence of indepen-
dent random variables such that the conditional distribution of Yt depends on the
value of Xt only. Denote by gt(xt ) the density function of Yt given Xt = xt w.r.t.
some measure m on (Y,Y). This density and the transition kernel Q describe the
state-space model in the following way:

Xt+1 |Xt = xt ∼ Q(xt , ·),
Yt |Xt = xt ∼ gt(xt ).

(2.1)

Statistical inference about the hidden Markov chain {Xt}t≥0 can be done
using the observations {Yt}t≥0 only. The general problem, usually referred as
joint smoothing, consists in the evaluation of the joint conditional distribution
of hidden states X0:s, given the observations y0:t

.
= (y0, y1, . . . , yt ), t ≥ s. The

special case of the marginal distribution with t = s is called the filtering problem,
i.e. evaluating the conditional distribution of the hidden state at time t given the
observations up to this time. Denote the joint smoothing distribution by f0:t|t ,
and the filtering distribution by ft|t .

For the particular sequence of observations y0:t the joint smoothing distribu-
tion satisfiesf0:t|t(dx0:t ) = L−1

t n(dx0)g0(x0)
t
∏

s=1

Q(xs−1, dxs)gs(xs), (2.2)

where Lt denotes the full likelihood of the observations,

Lt(y0, . . . , yt ) =

∫

. . .

∫ n(dx0)g0(x0)
t
∏

s=1

Q(xs−1, dxs)gs(xs).

This gives a recursive update for the joint smoothing distribution. Starting withf0(dx0) =
g0(x0) n(dx0)
∫

g0(x) n(dx)
,
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at time t ≥ 0 we havef0:t+1|t+1(dx0:t+1) = f0:t|t(dx0:t) Tt (xt , dxt+1), (2.3)

where Tt is the unnormalized transition kernel on (X,X ) defined by

Tt(x, dx′) =

(

Lt+1

Lt

)−1

Q(x, dx′)gt(x
′). (2.4)

Except in some special cases (models with linear/Gaussian structure) the likeli-
hood ratio in (2.4) can not be computed in closed form. This makes analytical
evaluation of Tt and f0:t|t impossible. However, it is possible to approximate the
distribution of interest using a set of samples from this distribution. Moreover,
if the target distribution is known only up to a constant, one can sample from
an importance distribution which is absolutely continuous w.r.t. the target and
which is easy to sample from. Then the appropriately weighted samples from the
importance distribution serve for the approximation of the target one.

Let {r0:t}t≥0 be the family of probability measures associated with the in-
homogeneous Markov chain with initial distribution r0 and transition kernels
{Rt}t≥0,r0:t(dx0:t ) = r0(dx0)

t−1
∏

s=0

Rs(xs, dxs+1). (2.5)

This family can be used to compute importance sampling estimates for the joint
smoothing distribution f0:t|t . Assume that f0 ≪ r0 and Tt(x, ·)≪ Rt(x, ·) for all
t ≥ 0. Then f0:t|t ≪ r0:t with Radon-Nikodym derivative (Billingsley (1986))

df0:t

dr0:t
(x0:t) =

df0

dr0
(x0)

t−1
∏

s=0

dTs(xs, ·)
dRs(xs, ·)

(xs+1). (2.6)

Suppose we have N independent samples x1
0:t , . . . , xN

0:t from r0:t . The impor-
tance sampling estimate of the joint smoothing distribution f0:t|t(dx0:t ) is given
by f̂0:t|t(dx0:t ) =

∑N
i=1 wi

t dxi
0:t

(dx0:t )
∑N

i=1 wi
t

, (2.7)
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3. Decomposition of the joint smoothing distribution

where the unnormalized importance weights wi
t are computed recursively aswi

0 =
df0

dr0
(xi

0) for i = 1, . . . , N ,

and wi
t+1 = wi

t

dTt (xi
t , ·)

dRt (xi
t , ·)

(xi
t+1) for t ≥ 0, i = 1, . . . , N . (2.8)

Due to the normalization of the weights in (2.7), the importance sampling esti-
mator remains unchanged if the weights are evaluated up to a constant only. This
allows us to omit the unknown scaling factor in Tt and makes possible the practi-
cal implementation of the recursive importance sampling procedure: at each time-
point, first sample a set of particles

(x1
t+1, . . . , xN

t+1

)

conditionally independently
given the history

{xi
0:t, i = 1, . . . , N

}

from the distribution xi
t+1 ∼ Rt (xi

t , ·),
and then update the importance weights according towi

t+1 = wi
t × gt+1(xi

t+1)
dQ(xi

t , ·)
dRt (xi

t , ·)
(xi

t+1) for i = 1, . . . , N . (2.9)

The main drawback of this procedure is that sequentially updated importance
weights tend to degenerate and after few iterations the estimate of the joint smooth-
ing distribution will be based in fact on one particle only. To avoid degeneracy,
one has to introduce a resampling step, which serves to eliminate particle trajecto-
ries with low importance weights and duplicate trajectories with lage importance
weights. This is achieved by sampling with replacement among the particles with
probability of sampling a particle equal to its normalized importance weight.

3 Decomposition of the joint smoothing distribution

Consider the case where the state space X is a product of two spaces, X = Xa×Xb ,
and the kernel Q can be decomposed in two components Qa and Qb defined on
(Xa,X a) and (Xb ,X b ) respectively:

Qa(x, dz) = P(X a
t+1 ∈ dz |X a

t = x) for x, z ∈ X a,
Qb (x, dz) = P(X b

t+1 ∈ dz |X b
t = x) for x, z ∈ X b ,
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so that

Q
(

(xa, xb ), (dza, dzb )
)

= Qa(xa, dza)Qb (xb , dzb ).

Assume also that a similar decomposition exists for the initial distribution n, with
components na and nb defined on Xa and Xb respectively. Finally assume that we
can decompose the density function of the observations:

gt(xt ) = gt

(

(xat , xbt )
)

= P

(

(Y a
t , Y b

t )|(X a
t , X b

t ) = (xat , xbt )
)

= P(Y a
t |X a

t = xat )P(Y b
t |X b

t = xbt ) = gat (xat )gbt (xbt ).

In other words, the model decomposes into two separate independent submodels
evolving on Xa and Xb , respectively.

Then the joint smoothing distribution has product form:f0:t|t(dx0:t) = f0:t|t(dxa0:t × dxb0:t )

= L−1
t na(dxa0 )ga0 (xa0 )

t
∏

s=1

Qa(xas−1, dxas )gas (xas )

× nb (dxb0 )gb0 (xb0 )
t
∏

s=1

Qb (xbs−1, dxbs )gbs (xbs )

.
= fa0:t(dxa0:t)fb0:t(dxb0:t ),

(3.1)

and for the recursion we havef0(dx0) =
ga0 (xa0 )na(dxa0 )gb0 (xb0 )nb (dxb0 )
∫

ga0 (xa)na(dxa)gb0 (xb )nb (dxb )
,f0:t+1|t+1(dx0:t+1) = f0:t|t(dx0:t )T

a
t (xat , dxat+1)T b

t (xbt , dxbt+1),

(3.2)

where

T a
t (xa, dz) ∝ Qa(xa, dz)gat (z) for xa ∈ Xa,

T b
t (xb , dz) ∝ Qb (xb , dz)gbt (z) for xb ∈ Xb . (3.3)

It follows that a convenient importance distribution should also be on product
form. Let {Rat }t≥0 and {Rbt }t≥0 be Markov transition kernels on (Xa,X a) and
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3. Decomposition of the joint smoothing distribution

(Xb ,X b ), respectively, and let ra0 and rb0 be probability distributions on Xa and
Xb , respectively.

Taker0 = ra0 × rb0 and Rt = Rat × Rbt for all t ≥ 0.

Then the probability measures {r0:t}t≥0 associated with the non-homogeneous
Markov chain with initial distribution r0 and transition kernels {Rt}t≥0 are given
by r0:t(dx0:t ) = r0(dx0)

t−1
∏

s=0

Rs(xs, dxs+1)

= ra0(dxa0 )
t−1
∏

s=0

Ras (xas , dxas+1)× rb0 (dxb0 )
t−1
∏

s=0

Rbs (xbs , dxbs+1)

.
= ra0:t(dxa0:t )rb0:t(dxb0:t ).

(3.4)

Assume thatfa0 ≪ ra0, fb0 ≪ rb0 ,

T a
t (xa, ·)≪ Rat (xa, ·), T b

t (xb , ·)≪ Rbt (xb , ·) ∀ t ≥ 0, xa ∈ Xa, xb ∈ Xb .
Then for any t ≥ 0,f0:t|t(dx0:t ) =

dfa0
dra0 (xa0 )

{

t−1
∏

s=0

dT a
s (xas , ·)

dRas (xas , ·) (xas+1)

} ra0:t(dxa0:t )

× dfb0
drb0 (xb0 )

{

t−1
∏

s=0

dT b
s (xbs , ·)

dRbs (xbs , ·)
(xbs+1)

} rb0:t(dxb0:t ).

(3.5)

Suppose we have N independent samples from each of the marginal importance
distributions,xa,10:t , . . . , xa,N0:t ∼ ra0:t and xb ,1

0:t , . . . , xb ,N
0:t ∼ rb0:t.

All possible combinations of xa,i0:t and xb ,j
0:t give us a sample of size N 2 from the

joint importance distribution,

(xa,i0:t , xb ,j
0:t ) ∼ r0:t for i, j = 1, . . . , N .
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Unnormalized importance weights for this sample are calculated using the corre-
sponding Radon-Nikodym derivatives:wij

0 =
dfa0
dra0 (xa,i0 )

dfb0
drb0 (xb ,j

0 )
.
= wa,i0 wb ,j

0 for i, j = 1, . . . , N , (3.6)

and for t ≥ 0,wij
t+1 = wa,it

dT a
s (xa,is , ·)

dRas (xa,is , ·)
(xa,is+1)× wb ,j

t
dT b

s (xb ,j
s , ·)

dRbs (xb ,j
s , ·)

(xb ,j
s+1)

= wa,it+1wb ,j
t+1 for i, j = 1, . . . , N .

(3.7)

DenoteWt
.
=

∑

i,j

wij
t , Wa

t
.
=

∑

i

wa,it , Wb
t

.
=

∑

j

wb ,j
t ,

so that Wt = Wa
t Wb

t .
Then the importance sampling estimate of the joint smoothing distributionf0:t|t is given byf̂0:t|t(dx0:t ) =

∑N
i,j=1 wij

t d(xa,i
0:t ,xb,j

0:t )
(dxa0:t × dxb0:t )Wt

=

N
∑

i,j=1

wa,itWa
t

dxa,i
0:t

(dxa0:t )
wb ,j

tWb
t

dxb,j
0:t

(dxb0:t ) = f̂a0:t|t(dxa0:t )f̂b0:t|t(dxb0:t ),

(3.8)

and one can estimate the two components of joint smoothing distribution sepa-

rately, using two samples {xa,i0:t , i = 1, . . . , N} and {xb ,j
0:t , j = 1, . . . , N} with

importance weights wa,it and wb ,j
t , respectively.

In this case the importance sampling procedure with optional resampling step
consists of the following steps:

1. Initialization, t = 0.
Sample independently xa,10 , . . . , xa,N0 from ra0 and xb ,1

0 , . . . , xb ,N
0 from rb0 ,

and setwa,i0 = ga0 (xa,i0 )
dna
dra0 (xa,i0 ), wb ,j

0 = gb0 (xb ,j
0 )

dnb
drb0 (xb ,j

0 ) for i, j = 1, . . . , N .

84



4. Application in target tracking

Set t = 1.

2. Propagation and updating weights

(a) Sample new sets of particles

{xa,it+1, i = 1, . . . , N} and {xb ,j
t+1, j = 1, . . . , N}

conditionally independently given previous history from the distribu-

tions Rat (xa,it , ·) and Rbt (xb ,j
t , ·) respectively. Form xa,i0:t+1 = (xa,i0:t , xa,it+1)

and xb ,j
0:t+1 = (xb ,j

0:t , xb ,j
t+1).

(b) Compute the updated importance weights wa,it+1 and wb ,i
t+1 as in (2.9).

(c) Calculate importance sampling estimates using (3.8) and combine
them to obtain an estimate of the joint distribution.

3. Resampling
Resample with replacement N particles from each of sets {xa,i0:t+1, i =

1, . . . , N} and {xb ,j
0:t+1, j = 1, . . . , N} according to the normalized im-

portance weights
wa,i

t+1Wa
t+1

and
wb,j

t+1Wb
t+1

, respectively. Reset all importance weights

to a constant value.

4. Set t = t + 1 and go to step 2.

4 Application in target tracking

Consider a linear Gaussian state-space model for target movement observed in
noise. The position of the target at time-point t is described by its coordinates at
the plane, (Xt , Yt ), and related vertical and horizontal velocities which change in
time due to the random accelerations. The true position is unknown because of
measurement noise.

The resulting model has four states






















Ẋt+1 = Ẋt + Dt · Ẍt+1

Ẏt+1 = Ẏt + Dt · Ÿt+1

Xt+1 = Xt + Dt · Ẋt

Yt+1 = Yt + Dt · Ẏt ,

(4.1)
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and two observations
{

Mx,t = Xt + ex,t

My,t = Yt + ey,t ,
(4.2)

where the accelerations Ẍt and Ÿt are independent Gaussian random variables
with zero mean and standard deviations sx/

√Dt and sy/
√Dt, respectively. The

measurement errors ex,t and ey,t are independent Gaussian random quantities
with zero mean and standard deviations tx and ty, respectively.

In the simulation study the target started at (–600 m, 1400 m) and moved
with constant speed 90 km/h along a trajectory with turns of size p/4 and p/2.
The standard deviations of the measurement errors were set to 200 m for both
observations, tx = ty = 200 m. Observations were collected 3 times per second
(Dt = 1/3) during 3 minutes. Figure 1 (left panel) shows the true trajectory and
the observations.

Our goal was to estimate the true position of the target at time t, given the
observations up to this time. In this case the two-dimensional estimate of the
coordinates is the weighted expectation w.r.t. the two-dimensional filtering dis-
tribution. Suppose we have a sample from this distribution; then the estimate is
simply the weighted sample mean.

The states in the model (4.1) have natural split into two independent pairs
(Ẋt , Xt ) and (Ẏt , Yt ). This enabled us to work with two one-dimensional Gaus-
sian distributions, propagating and resampling particles independently. For the
instrumental distribution we took Rt = Q for all t. In this case, the importance
weights are proportional to the conditional density of the observations, given the
current position.

We applied two particle filters for this problem: a filter with N particles, based
on the decomposed model and the common bootstrap filter with N 2 particles.
The results were compared with the results of the Kalman filter, which is optimal
for the linear Gaussian model.

The algorithm for the decomposed filter is given below.

1. Initialization, t = 0.
Sample independently

Ẋ 1
0 , . . . , Ẋ N

0 ∼ U [85, 95], Ẏ 1
0 , . . . , Ẏ N

0 ∼ U [85, 95],

X 1
0 , . . . , X N

0 ∼ U [−700,−500], Y 1
0 , . . . , Y N

0 ∼ U [1300, 1500]
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4. Application in target tracking

and setwX ,i
0 = 1/N , wY ,j

0 = 1/N for i, j = 1, . . . , N .

Set t = 1.

2. Propagation and updating weights

(a) Sample

Ẋ i
t ∼ N (Ẋ i

t−1,Dt ·s2
x ), Ẏ i

t ∼ N (Ẏ i
t−1,Dt ·s2

y ) for i = 1, . . . , N .

Calculate
(

X 1
t , . . . , X N

t

)

and
(

Y 1
t , . . . , Y N

t

)

according to (4.1).

(b) Given the measurements
(

Mx,t , My,t

)

, compute the importance weightswX ,i
t = gX (X i

t ), wY ,j
t = gY (Y j

t ),

where gX (X i
t ) and gY (Y i

t ) correspond to the densities of N (X i
t , t2

x )
and N (Y i

t , t2
y ), respectively.

(c) Calculate the position estimates

X̂t =

N
∑

i=1

wX ,i
tWX
t

X i
t and Ŷt =

N
∑

i=1

wY ,j
tWY
t

Y
j

t .

3. Resampling
Resample with replacement N particles from {(Ẋt , Xt )1, . . . , (Ẋt , Xt )N}
and N particles from {(Ẏt , Yt )1, . . . , (Ẏt , Yt )N} according to the normal-
ized importance weights, using systematic sampling (Carpenter et al. (1999)).
Reset all importance weights to 1/N .

4. Set t = t + 1 and go to step 2.

Note that we estimate marginal filtering distribution at time t and hence do not
have to save the full particle trajectories up to this time. The algorithm was im-
plemented on-line, i.e. we updated current estimates at the moment when a new
observation became avaliable.

In step 2(b) in the equivalent common bootstrap filter we evaluated joint
importance weights according towi

t = gX (X i
t )gY (Y i

t ) for i = 1, . . . , N 2,
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and calculated the position estimates using these weights:

X̂ 1
t =

N
∑

i=1

wi
tWt
X i

t and Ŷ 1
t =

N
∑

i=1

wi
tWt
Y i

t .

In step 3 we resampled with replacement N 2 particles from

{(Ẋt , Ẏt , Xt , Yt )
1, . . . , (Ẋt , Ẏt , Xt , Yt )

N 2}
according to the normalized importance weights using systematic sampling. The
initialization and propagation steps remain unchanged.

Filtering results with N = 50, sx = sy = 10 are displayed in Figure 1
(right panel). The decomposed particle filter had a larger over-time mean error,
93 m, compared to 87 m and 85 m for the bootstrap filter and the Kalman filter,
respectively. However, due to the smaller number of particles, the decomposed
filter required much less computational power than the common bootstrap filter.
In this simulation the CPU working time (2.39 GHz) for the bootstrap filter with
2500 particles was 131 s, whereas the decomposed filter with 50 particles took
only 1.5 s of CPU working time. Figure 2 displays the mean CPU working time,
evaluated over 100 runs, and the average RMSE for different number of particles.
The decomposed filter with 100 particles took on average 2 s, compared to 22
minutes for the corresponding bootstrap filter, and had an average RMSE only 5
meters larger.

In the second simulation we worked with exactly the same settings except
that the observational noise was simulated form a t-distribution with 5 degrees of
freedom, which has more heavy tails than the Gaussian one. Figure 3 displays the
mean CPU working time, evaluated over 100 runs, and the average RMSE for
different number of particles.

We close this section with a brief discussion of the above results in a theo-
retical framework. Denote by fN

t|t the estimate of the filtering distribution ft|t

with N particles and by ‖x‖p
.
= (E|x|p)1/p the Lp-norm of a random variable x.

According to Del Moral and Miclo (2000), for any time-point t ≥ 0 and any

p ≥ 1 there exists a finite constant C
(p)
t such that

‖fN
t|t(f )− ft|t(f )‖p ≤

1√
N

C
(p)
t ‖f ‖∞ (4.3)

for all real-valued bounded measurable functions f on (X,X ), where ‖f ‖∞ is the
supremum norm.
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4. Application in target tracking

For an Rd -valued random variable x, put ‖x‖p
.
= (E|x|pp)1/p. Then for a

vector f = (f1, . . . , fd )′ of real-valued bounded measurable functions, we have

‖fN
t|t(f )− ft|t(f )‖p

p = E

d
∑

i=1

|fN
t|t(fi)− ft|t(fi)|p

≤
d
∑

i=1

N−p/2(C (p)
t )p‖fi‖p

∞,

so that

‖fN
t|t(f )− ft|t(f )‖p ≤

1√
N

C
(p)
t |(‖f1‖∞, . . . , ‖fd‖∞)|p ≤

1√
N

C
(p)
t ‖f ‖∞

where we defined ‖f ‖∞ = max1≤i≤d ‖fi‖∞.
For the bootstrap particle filter with N 2 particles we have

‖fN 2

t|t (f )− ft|t(f )‖p ≤
1
N

C
(p)
t ‖f ‖∞.

For the corresponding decomposed particle filter, consider a vector-valued
bounded measurable function f on product form, i.e.

f (x) = f ((xa, xb )) = f a(xa)⊗ f b (xb ),

where f a and f b are real vector-valued bounded measurable functions on (Xa,X a)
and (Xb ,X b ), respectively. Then the filtering distribution and its estimate have
product form,ft|t(f ) = fat|t(f a)fbt|t(f b ), fN

t|t(f ) = fa,Nt|t (f a)fb ,N
t|t (f b ).

Using the triangle inequality we obtain

‖fN
t|t(f )− ft|t(f )‖p = ‖fa,Nt|t (f a)fb ,N

t|t (f b )− fat|t(f a)fbt|t(f b )‖p

≤ ‖fa,Nt|t (f a)fb ,N
t|t (f b )− fat|t(f a)fb ,N

t|t (f b )‖p

+ ‖fat|t(f a)fb ,N
t|t (f b )− fat|t(f a)fbt|t(f b )‖p

≤ ‖f b‖∞ 1√
N

A
(p)
t ‖f a‖∞ + ‖f a‖∞ 1√

N
B

(p)
t ‖f b‖∞

=
1√
N

max(A(p)
t , B

(p)
t )‖f a‖∞‖f b‖∞,
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Figure 1: Left panel: True trajectory (line) and measurements (dots). The circle
marks the starting point. Right panel: True trajectory (solid line) and filtered ones
with the decomposed filter (dashed line), the bootstrap filter (dash-dotted line),
Kalman filter (dotted line).

where A
(p)
t and B

(p)
t correspond to the constant C

(p)
t for the spaces Xa and Xb

respectively (and the systems on these spaces). The heuristic is now that both A
(p)
t

and B
(p)
t are (much) smaller than C

(p)
t , because the dimensions of Xa and Xb are

less than the dimension of X.
In general, there are two sources that contribute to the error of the particle

filter, relative to the actual true state at a given time point. First, the observations
are noisy. Secondly, part of error is caused by the discrepancy between between
particle filter and the exact filter; this error is what is discussed above. Increasing
the number of particles helps to reduce the second source of error, but the size of

the error also depends on the constants C
(p)
t etc., as described above. Although

the bootstrap filter converges to the optimal filter faster, at rate N if the filter
has N 2 particles, it is still beaten by the decomposed particle filter which has
only 2N particles, but whose constant is so much smaller that the resulting total
error is only slightly larger that for the bootstrap filter, but at a much smaller
computational cost.
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Paper D

Sequential Monte Carlo Methods:
strategies for changing the instrumental
sample size

Svetlana Bizjajeva, Tobias Rydén

Abstract

SMC methods constitute a class of IS methods which serve for the approxi-
mation of the target measure with the samples from the importance measure. The
quality of the approximation naturally depends on the involved sample size. In
this paper we introduce different strategies to increase the size of an importance
sample and investigate performance of suggested algorithms on the simulation
examples.

Key words: SMCM, state–space models, sample size, two–stage sampling

1 Introduction

During the last decades, sequential Monte Carlo methods have drawn much at-
tention as a powerful tool for approximating the joint smoothing distributions
for non-linear and non-Gaussian state-space models. Originating from pioneer-
ing work of Gordon et al. (1993), sequential Monte Carlo (or particle filtering)
techniques have been widely applied in different areas such as signal processing or
finance, see for instance Doucet et al. (2001).

Particle filtering algorithms approximate the target distribution by a properly
weighted set of samples (also called particles) and are usually proceed in two main
steps. In the first mutation step, one samples the collection of particles from the
instrumental distribution and assigns to each particle an appropriate importance
weight, which reflects how likely the current observation is, given this particle.
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The resulting weighted sample approximates the target distribution. The second,
selection step is optional and serves to eliminate particles with low weights and
duplicate particles with high weights. This step consists in resampling with re-
placement among the particles according to their normalised importance weights.

The quality of the approximation with the particle filter depends on two key
factors, namely, the number of particles used in the approximation and the choice
of the instrumental distribution. Adaptation of the instrumental distribution is
based on two stage sampling procedure, proposed by Pitt and Shephard (1999).
Recently, Cornebiseet al. (2008) proposed algorithms for adapting instrumental
distribution using chi-square and Kullback-Leibler (KL) distances between the
target and proposal distributions. They suggest an estimate of chi-square distance
based on coefficient of variation, establish empirical estimate of the KL distance
and propose an algorithm adapting the importance distribution by minimisation
of the estimated distances.

The KL divergence have been employed by Fox (2003) in adapting the num-
ber of particles. The idea of so-called KLD–sampling is to increase the sample
size until the KL distance between the true and estimated target distribution is
below a given threshold. Another approach is introduced by Legland and Oud-
jane (2006) and is based on the idea to increase the size of the particle sample
until the total weight mass reaches a positive threshold. Recently, Soto (2005)
suggested a revised version of KLD–sampling, with the threshold corrected by the
variance of the importance sampling estimates, and combined this algorithm with
the adaptation of the importance sampling distribution.

Adaptive methods discussed above are concerned with the criteria for deci-
sion whether the sample size is enough to provide an adequate estimate or more
particles are needed. In this paper we address the question how, given the collec-
tion of particles after resampling step, increase the sample size during mutation
procedure. The first and the most obvious choice is simply to duplicate the ini-
tial particles and mutate independently from the enlarged collection. In addition
we will try an algorithm introducing correlation between the particles, mutated
from the same ancestor. In both these strategies the number of offspring is the
same for all particles and is set a priori. Alternatively, one can mutate the particles
independently, but with different number of offspring for each particle, which is
determined using the observations.

The paper is organised in the following way. First, we describe the general
state-space model and recall the standard algorithm for the particle filtering. In
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the second section we review the two-stage sampling procedure. Next we intro-
duce three different approaches for changing number of particles and formulate
the algorithms. The last sections contains application of suggested algorithms to
different models and we conclude this section with the discussion of the results.

2 Sequential Monte Carlo approximation to the joint

smoothing distribution

Consider a general state-space model that is a stochastic process on two levels. On
the first level we have a discrete time Markov chain {Xn, n ≥ 0} taking values
in some measurable state space (X,X ). The initial distribution of the chain n
and the transition probability kernel Q which describes the evolution of the chain
in time are assumed to be known, but the chain itself is not observable. Instead
one can observe another stochastic process {Yn, n ≥ 0} taking values in some
measurable space (Y,Y). This process is linked to the first level chain in the
following way. Given {Xn}n≥0, {Yn}n≥0 is a sequence of independent random
variables such that the conditional distribution of Yn depends on Xn only. Usually
X is referred to as a hidden chain or states, and Y is called the observation process.
The conditional density of the observations together with the initial distribution
and the transition kernel of the hidden chain fully describe a state-space model,

X0 ∼ n,
Xn+1 |Xn = xn ∼ Q(xn, ·),

Yn |Xn = xn ∼ gn(xn).

(2.1)

In general the structure of X and Y is not specified, but we can consider both X

and Y being subsets of R
c and R

d , respectively. Models with a countable X are
usually referred as hidden Markov models in the literature.

Suppose we are given a sequence of observations, y1, . . . , yn. The main in-
terest is in estimating the joint smoothing distribution of the states given the
observations, f0:n|n , P(X0:n|y0:n) and often one of its marginals, the filtering

distribution fn|n , P(Xn|y0:n).

Using Bayes’ rule, one can derive recursive formulas for the joint smoothing
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distribution, f0(dx0) =
g0(x0) n(dx0)
∫

g0(x) n(dx)
,f0:n+1|n+1(dx0:n+1) = f0:n|n(dx0:n) T u
n (xn, dxn+1) ,

(2.2)

where T u
n is the unnormalised transition kernel on (X,X ) defined by

T u
n (x, dx′) =

(

Ln+1

Ln

)−1

Q(x, dx′)gn+1(x′) (2.3)

and Ln denotes the full likelihood of the observations at time n. Unfortunately,
the likelihood ratio in (2.3) cannot be computed in closed form except for a few
cases – linear Gaussian models and models with countable state space. For models
with more complicated structure, approximation methods have to be employed.

Denote by {r0:n}n≥0 the family of probability measures associated with the
inhomogeneous Markov chain with initial distribution r0 and transition kernels
{Rn}n≥0,r0:n(dx0:n) = r0(dx0)

n−1
∏

k=0

Rk(xk, dxk+1). (2.4)

This family can be used as an instrumental (importance) distribution to compute
estimates of the joint smoothing distribution f0:n|n recursively in time. Assume
that f0 is absolutely continuous with respect to r0 and that T u

n (x, ·) is absolutely
continuous with respect to Rn(x, ·) for all n ≥ 0. Then f0:n|n is absolutely con-
tinuous with respect to r0:n with Radon-Nikodym derivative (Billingsley (1995))

df0:n

dr0:n
(x0:n) =

df0

dr0
(x0)

n−1
∏

k=0

dT u
k (xk, ·)

dRk(xk, ·)
(xk+1). (2.5)

Suppose we have N independent samples
{xi

0:n

}N

i=1 from the importance

distribution r0:n and associated importance weights
{wi

n

}N

i=1 . The sequential
importance sampling estimate of the joint smoothing distribution f0:n|n(dx0:n) is
given byf̂0:n|n(dx0:n) =

N
∑

i=1

wi
n

∑N
j=1 wj

n

dxi
0:n

(dx0:n) , (2.6)
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where the unnormalised importance weights are computed recursively aswi
0 =

df0

dr0
(xi

0) for i = 1, . . . , N ,

and wi
n+1 = wi

n × gn+1(xi
n+1)

dQ(xi
n, ·)

dRn(xi
n, ·)

(xi
n+1) for i = 1, . . . , N . (2.7)

The general algorithm for the sequential importance sampling with resam-
pling is presented below.

Algorithm 1: standard SISR algorithm

Initialisation: Draw an i.i.d. sample x1
0, . . . , xN

0 from r0 and setwi
0 = g0(xi

0)
dn
dr0

(xi
0), i = 1, . . . , N .

For n = 0, 1, . . .

• Sampling: Draw x̃1
n+1, . . . , x̃N

n+1 conditionally independently

given {x1
0:n}N

i=1 from the importance distributionx̃i
n+1 ∼ Rn(xi

n, ·), i = 1, . . . , N

Compute the updated importance weightswi
n+1 = wi

ngn+1(x̃i
n+1)

dQn(xi
n, ·)

dRn(xi
n, ·)

(x̃i
n+1) i = 1, . . . , N .

• Resampling (optional): Draw, conditionally independently

given {xi
0:n, x̃j

n+1}N
i,j=1 the indices I1

n+1, . . . , IN
n+1 from the

multinomial distribution with probabilitiesw1
n+1

∑N
i=1 wi

n+1

, . . . ,
wN

n+1
∑N

i=1 wi
n+1

.

Reset all importance weights to a constant value.

If the resampling step is not applied, set

I i
n+1 = i, for i = 1, . . . , N .

99



D

• Trajectory update: Set xi
0:n+1 = (xI i

n+1
0:n , x̃I i

n+1
n+1).

The simplest case of the algorithm with resampling at each step and prior
importance kernel Rn = Q is usually called the bootstrap filter. It is very easy
to implement, but sometimes it has poor performance especially when there is
a large mismatch between the prior and the target distribution. Another choice
for the importance kernel is the optimal kernel which is simply the normalised
version of T u

n ,

Tn(x, dx′) =
Q(x, dx′)gn+1(x′)
∫

Q(x, dx′)gn+1(x′)
. (2.8)

The optimal kernel incorporates the information both on the dynamics of states
and on the current observations. However, sampling directly form the optimal
kernel and computation of the associated importance weightsgn(x) =

∫

Q(x, dx′)gn+1(x′)

might not be feasible. Different approaches to sampling from the optimal kernel
include accept-reject algorithms and local approximation for the optimal kernel.
Most known is the two-stage sampling procedure which was introduced as the
auxiliary particle filter in the work of Pitt and Shephard (1999).

3 Two-stage sampling with prior kernel

Recall the recursive form of the joint smoothing distribution from (2.2) and
rewrite it in the self-normalised form using the optimal kernel defined in (2.8),f0:n+1|n+1(dx0:n+1) =

f0:n|n(dx0:n)gn(xn)Tn(xn, dxn+1)
∫ f0:n|n(dx0:n)gn(xn)

.

Now plug in the importance sampling estimate defined in (2.6) to obtainf̃0:n+1|n+1(dx0:n+1) =

N
∑

i=1

wi
ngn(xi

n)
∑N

j=1 wj
ngn(xj

n)
dxi

0:n
(dx0:n)Tn(xn, dxn+1), (3.1)
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which defines a finite mixture distribution. Sampling from this distribution is
carried out by first sampling the trajectory xI

0:n with probability proportional towI
ngn(xI

n) and then appending a (n + 1)-st component drawn from the optimal
distribution Tn(xI

n, ·).
In general this cannot be accomplished so easily because the kernels Tn are

usually not available in closed form. Instead one can use importance sampling
approach again, taking the prior kernel Q as an instrumental kernel. Construct a
measure on Xn+2 of the formr0:n+1(dx0:n+1) =

N
∑

i=1

vidxi
0:n

(dx0:n) Q(xi
n, xn+1). (3.2)

Here v1, . . . , vN are some normalised weights. Then the finite mixture distribu-
tion defined in (3.1) is dominated by this instrumental distribution with Radon-
Nikodym derivative

d f̃0:n+1|n+1

dr0:n+1
(x0:n+1) =

N
∑

i=1

wi
ngn(xi

n)

vi
∑N

j=1 wj
ngn(xj

n)
1{xi

0:n}
(x0:n)

Tn(xi
n, ·)

Q(xi
n, ·)

(xn+1)

=

N
∑

i=1

wi
n

vi
∑N

j=1 wj
ngn(xj

n)
1{xi

0:n}
(x0:n)gn+1(xn+1).

Thus to a sampled trajectory (xi
0, . . . , xi

n, xn+1) is associated an importance
weight proportional to wi

ngn+1(xn+1)v−1
i . When the weights vi are uniform, we

recover the bootstrap filter weights proportional to wi
ngn+1(xn+1).

Once the joint smoothing distribution is estimated, the approximation of the
filtering distribution is obtained by restricting the estimates to the last component.
In the following we will focus on the filtering distribution, but the presented
algorithms can be applied to the joint smoothing distribution as well.

4 Strategies for changing the number of particles

Suppose that we are given a weighted sample of size N approximating the filtering
distribution at time n. We wish to transform this sample into a weighted sample of
size aN approximating the filtering distribution at time n + 1. The most obvious
and simple choice is to duplicate each of the initial particles a times and mutate
them independently according to the prior kernel. The use of multiple offspring
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was suggested by Rubin (1987): an increase in the number of distinct particles in
the importance sampling step will increase the number of distinct particles after
the resampling step. For an illustrative example of this finding see Cappé et al.
(2005), pp. 309–310. Moreover, we suggest a modification of the sampling step,
introducing correlation between particles mutated from the same ancestor. In the
one-dimensional case the correlation is introduced using a sample (u1, . . . , ua) of
correlated draws from the uniform distribution by the inverse transform method,
so that the mutation step in the standard SISR algorithm is modified. Note that
we resample at each time step in order to maintain the same number of particles
in the mutation step.

Algorithm 2: Bootstrap filter with correlated mutation

Initialisation: Draw an i.i.d. sample x1
0, . . . , xN

0 from n and setwi
0 = g0(xi

0), i = 1, . . . , N .

For n = 0, 1, . . .

• Sampling: For i = 1, . . . , N draw ui
0 ∼ U(0, 1) and setx̃i,j

n+1 = F−1
Q (ui

j), where FQ is the cumulative distribution

function corresponding to the prior kernel Q(xi
n, ·), and

ui
j = 〈ui

0 +
j − 1a 〉, j = 1, . . . , a

with 〈x〉 denoting the fractional part of x.
Combine all particles into a large sample x̃1

n+1, . . . , x̃aN
n+1 and

compute the importance weightswi
n+1 = gn+1(x̃i

n+1) i = 1, . . . , aN .

• Resampling: Draw, conditionally independently given

({xi
0:n}N

i=1 and {x̃j
n+1}aN

j=1) the indices I1
n+1, . . . , IN

n+1 from the

multinomial distribution with probabilitiesw1
n+1

∑aN
j=1 wj

n+1

, . . . ,
waN

n+1
∑aN

j=1 wj
n+1

.

Reset all importance weights to a constant value.

• Trajectory update: Set xi
n+1 = x̃I i

n+1
n+1.
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4. Strategies for changing the number of particles

We expect that the algorithm with correlated mutations will produce more
stable estimates, especially in the case of multidimensional particles. For example,
consider the positioning problem. In the common filter with a replications one
moves a particle a times from the same initial position. Instead, in the correlated
sampling approach we suggest to move a particle only once and obtain remaining
proposals simply by reflecting this first draw in a − 1 directions symmetrically
around the initial position. In this way the algorithm explores the state space in a
more systematic way, potentionally improving the performance of the filter.

In the mutation step of the previous algorithm we duplicate each particle the
same number of times, a, and this number is a priori set to some constant value.
But when choosing which particle to mutate we would like to favor particles that
tend to locate their offspring in the regions where the density of the observation,
gn+1 is large. The bootstrap filter does nothing particular to favor such particles.
On the other hand we can use an auxiliary filtering approach adapting the weights
vi along the way as we are sampling, thus gradually increasing the weights of those
particles that tend to give large gn+1 when mutated.

In order to do this we start by exploring the following scenario. Assume that
we have sampled M trajectories from a measure r as in (3.2) with normalised
weights vi. Now we switch to a different importance sampling measure r′ of the
same form, by changing the weights to some other normalised weights v′i and
sampling one more trajectory. We thus have a total of M + 1 sampled trajectories
and one can think of them as being sampled from the measurer′′ = M

M + 1
r+

1
M + 1

r′,
with normalised weights

v′′j =
M

M + 1
vi +

1
M + 1

v′i.

With this new measure r′′ the importance weight of a sampled trajectory is pro-
portional to wI

ngn+1(x)/v′′I , where x is the current element (at time n + 1) of the
trajectory and I is the index of the particle from which this current position was
mutated.

One could imagine now the following strategy for sampling. First mutate
each existing particle once. This is equivalent to having v1,i = 1/N . Then for
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each particle xi
n compute the mean of the gn+1 over all positions mutated from

this particle so far. Denote this mean by ḡ i
n+1, compute new weights v1,i ∝ ḡ i

n+1
and use them to select a new particle to mutate, thus obtaining another sam-
pled trajectory. After each new trajectory sampling re-compute the means ḡ i

n+1,
weights v1,i and update the first stage weights v2,i. After sampling aN particles
in total re-compute all importance weights using the final first stage weights v2,i.
We summarise the proposed strategy in the algorithm below.

Algorithm 3: Adaptive filter with prior kernel

Initialisation: Draw an i.i.d. sample x1
0, . . . , xN

0 from n and setwi
0 = g0(xi

0), i = 1, . . . , N .

For n = 0, 1, . . .

• Sampling:

– Draw x̃1
n+1 . . . , x̃N

n+1 conditionally independently given previ-

ous particles, from Q(xi
n, ·), i = 1, . . . , N. Compute the se-

lection weights

v1,i
0 = ḡ i

n+1, i = 1, . . . , N ,

and set first stage weights v2,i
n+1 to 1/N for i = 1, . . . , N.

– For k = N + 1, . . . , aN
Select I by drawing one element from multinomial distri-

bution with probabilities equal to the normalised selec-

tion weights. Sample x̃k
n+1 ∼ Q(xI

n, ·).
Update the first stage weights

v2,i
n+1,k =

k − 1
k

v2,i
n,k−1 +

1
k

v1,i
k−1, i = 1, . . . , N .

Recompute the mean ḡ I
n+1 and the selection weight v1,I

k .

– Compute the importance weightswi
n+1 =

1

v2,i
n+1,aN

gn+1(x̃i
n+1) i = 1, . . . , aN .

• Resampling: Draw, conditionally independently given {xi
0:n}N

i=1

and {x̃j
n+1}aN

j=1 the indices I1
n+1, . . . , IN

n+1 from the multinomial dis-

tribution with probabilitiesw1
n+1

∑aN
j=1 wj

n+1

, . . . ,
waN

n+1
∑aN

j=1 wj
n+1

.
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Reset all importance weights to a constant value.

• Trajectory update: Set xi
n+1 = x̃I i

n+1
n+1.

In the next section we compare the performance of the described schemes on
a few examples.

5 Simulations

5.1 ARCH model

As a first example we consider the Gaussian autoregressive heteroscedasticity (ARCH)
model observed in noise, which is described by the equations

Xn+1 |Xn = xn ∼ N(0, b0 + b1x2
n),

Yn |Xn = xn ∼ N(xn,s2).
(5.1)

We compared three different filters: the common bootstrap filter with a indepen-
dent replications per particle, the bootstrap filter with a correlated replications
per particle (algorithm 2) and the filter with ai independent replications per par-
ticle (algorithm 3). The experiment was repeated for the case of informative and
non-informative observations with parameters (b0 b1 s) = (0.9 0.5 0.2) and
(b0 b1 s) = (0.9 0.5 4), respectively. In each case 16 observations were simulated
according to the model (5.1) and the corresponding set of parameters. For these
observational records, each filter approximated 250 filter means using N = 500
particles, and with aN particles in the mutation step, where a took values from 2
to 5. The resulted mean square errors based on reference values obtained with the
standard bootstrap filter with 106 particles are displayed in Figures 1 and 2.

For the case of informative observations introducing correlation does not im-
prove the performance except for some time points and a ≥ 3. Note that for these
time points the improvement grows with number of replications, with the MSE
almost 10 times smaller for n = 10 and a = 5. The adaptive filter is more elab-
orative and more computationally intensive, but has larger MSE than the filters
with independent or correlated replications. Moreover, it shows no improvement
over the common bootstrap filter with 500 particles only and sometimes even per-
forms worse. This might be explained by the fact that while choosing a particle
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for the mutation the adaptive filter repeatedly selects only a few particular par-
ticles. As a consequence, after the second-stage resampling the resulted particle
cloud is originated from a few ancestors.

If the observations are non-informative, the correlated sampling beats the fil-
ter with independent mutations, but the improvement is not very large, and again
increases with the number of replications as in the informative case.

5.2 Two-dimensional tracking

Consider a linear Gaussian state-space model for target movement observed in
noise. The position of the target at time point t is described by its coordinates in
the plane, (Xn, Yn), and is changing in time with random vertical and horizontal
velocities. The true position is unknown because of measurement noise.

The resulting model has two states

{

Xn+1 = Xn + Dt · Ẋn+1,

Yn+1 = Yn + Dt · Ẏn+1,
(5.2)

and two observations
{

Mx,n = Xn + ex,n,

My,n = Yn + ey,n,
(5.3)

where the speeds {Ẋn}n≥1 and {Ẏn}n≥1 are independent Gaussian random vari-
ables with zero mean and standard deviations sx/

√Dt and sy/
√Dt, respectively.

The measurement errors ex,n and ey,n are independent Gaussian random quanti-
ties with zero mean and standard deviations tx and ty, respectively.

In the simulation study the target started at the point (100 m, 800 m) and
moved with constant speed of 60 km/h along a trajectory which includes turns
and circular movement. The standard deviations of the measurement errors were
set to 100 m for both observations, tx = ty = 100 m. Observations were
collected 3 times per second (Dt = 1/3) during 3 minutes. Figure 3 (left panel)
shows the true trajectory and the observations.

As in the previous example, three different filters were applied for this prob-
lem, each estimating the position of the target with N = 250 particles and withaN particles in the mutation step, a = 8. The performance was compared using
the root mean square error (RMSE) relatively to the estimates obtained by the
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Kalman filter (X̄n, Ȳn),

RMSEn =

√

√

√

√

1
R

R
∑

r=1

[

(X̂n,r − X̄n)2 + (Ŷn,r − Ȳn)2
]

,

with R = 100 runs.
The plot of RMSEs is displayed in the Figure 3, right panel. The adaptive

filter shows similar performance as the filter with independent replications. The
RMSE for the correlated filter is larger for all time points.

The overall conclusion we draw from the simulation study of the proposed
algorithms is that both approaches are not significantly better than the standard
one, at least for the considered examples. Selecting the most promising particles
for further mutation may lead to the poor performance if only a few particles
are selected. In this case large particle swarm is originated from just a couple of
particles, which may increase the overall variance of the estimates. Regarding the
filter with correlated mutations we notice that it improves the standard algorithm
a little for the non-informative ARCH model. However, the scheme to introduce
the dependence between the particles was proposed ad hoc, without detailed in-
vestigation of the correlation structure. We suggest that there exist some specific
correlation structures that provide better estimates and recommend this topic for
future research.
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Figure 1: MSE on log10-scale for the bootstrap filter with replications(�), the
correlated filter (◦) and the adaptive filter (∗) for different a, informative ARCH
model. The MSE values are computed using 500 particles and 250 runs of each
algorithm. Results for the common bootstrap filter with 500 particles (△) are
shown for the reference.
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Figure 2: MSE on log10- scale for bootstrap filter with replications (�), the corre-
lated filter (◦) and the adaptive filter (∗) for different a, non-informative ARCH
model. Results for the common bootstrap filter with 500 particles (△) are shown
for the reference.
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Antithetic Sampling for Sequential
Monte Carlo Methods with Application
to State Space Models

Svetlana Bizjajeva, Jimmy Olsson

Abstract

In this paper we cast the idea of antithetic sampling, widely used in standard
Monte Carlo simulation, into the framework of sequential Monte Carlo meth-
ods. A version of the standard auxiliary particle filter (Pitt and Shephard, 1999)
is proposed where the particles are mutated blockwise in such a way that all parti-
cles within each block are, firstly, offspring of a common ancestor and, secondly,
negatively correlated conditionally on this ancestor. By examining the weak limit
of a central limit theorem describing the convergence of the algorithm, we con-
clude that the asymptotic variance of the produced Monte Carlo estimates can be
straightforwardly decreased by means of antithetic techniques when the particle
filter is close to fully adapted, which involves approximation of the so-called opti-
mal proposal kernel. As an illustration, we apply the method to optimal filtering
in state space models.

Key words: Antithetic sampling, central limit theorem, optimal filtering,
optimal kernel, particle filter, permuted displacement method, state space models

1 Introduction

Sequential Monte Carlo (SMC) methods — alternatively termed particle filters —
refer to a collection of algorithms which approximate recursively a sequence (often
called the Feynman-Kac flow) of target measures by a sequence of empirical dis-
tributions associated with properly weighted samples of particles. These methods
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have received a lot of attention during the last decade and are at present applied
within a wide range of scientific disciplines. Doucet et al. (2001) provides a sur-
vey of recent developments of the SMC methodology from a practical viewpoint
and a comprehensive treatment of theoretical aspects of basic SMC algorithms is
given by Del Moral (2004).

In standard SMC methods two main operations are alternated. In the mu-
tation step the particles are propagated according to a Markovian kernel and as-
sociated with importance sampling weights proportional to the Radon-Nikodym
derivative of the target measure with respect to the instrumental distribution of
the particles. In the subsequent selection step the particle sample is transformed
by selecting new particles from the current (mutated) ones using the normalized
importance weights as probabilities of selection. This step serves to eliminate or
duplicate particles with small or large weights, respectively.

In this paper we propose a modification of the auxiliary particle filter (APF)
(introduced originally by Pitt and Shephard, 1999) which relies on the classical
idea of antithetic sampling used in standard Monte Carlo estimation: when esti-
mating the expectation

I (f ) ,

∫

R

f (x)p(x) dx ,

where p is a probability density function and f is a given real-valued target func-
tion, the unbiased estimator

Î N (f ) ,
1

2N

N
∑

i=1

[f (xi) + f (x′i)]
of I (f ), where {xi}N

i=1 and {x′i}N
i=1 are two samples from p, is more efficient

(has lower variance) than the standard Monte Carlo estimator based on a sam-
ple of 2N independent and identically distributed (i.i.d.) draws, if the variables
f (xi) and f (x′i) are negatively correlated for all i ∈ {1, . . . , N}. In this setting, the
variables {x′i}N

i=1 are referred to as antithetic variables. Antithetically coupled vari-
ables can be generated in different ways, and in Section 2 we discuss how this can
be achieved by means of the well-known permuted displacement method (Arvidsen
and Johnsson, 1982). In order to allow for antithetic acceleration within the SMC
framework we introduce (in Section 2) a version of the standard APF where the
particles are mutated blockwise in such a way that all particles within each block

116



2. Auxiliary particle filter with blockwise correlated mutation

are, firstly, offspring of a common ancestor and, secondly, statistically dependent
conditionally on this ancestor. Moreover, in Section 3 we establish convergence
results for our proposed method in the sense of convergence in probability and
weak convergence. By examining the weak limit of the obtained central limit
theorem (CLT) in Corollary 3.2 we conclude that the asymptotic variance of the
produced Monte Carlo estimates is decreased when the particle filter is close to
fully adapted (in which case close to uniform importance weights are obtained by
means of approximation of the so-called optimal kernel, see Pitt and Shephard,
1999) and the inherent correlation structure of each block is negative. Finally, in
the implementation part, Section 4, we apply our algorithm to optimal filtering
in state space models and benchmark its performance on a noisily observed ARCH
model as well as a univariate growth model. The outcome of the simulations indi-
cates that introducing antithetically coupled particles provides, besides a lowered
computational burden, a significant gain of precision for these models.

2 Auxiliary particle filter with blockwise correlated mu-

tation

2.1 Notation and definitions

In order to state precisely our results and keep the presentation streamlined, we
preface the description of the algorithm with some measure-theoretic notation.
In the following we assume that all random variables are defined on a common
probability space (W,F , P). A state space X is called general if it is equipped
with a countably generated s-field B(X), and we denote by P(X) and B(X) the
sets of probability measures on (X,B(X)) and measurable functions from X to
R, respectively. For any measure m ∈ P(X) and function f ∈ B(X) satisfying
∫X |f (x)| m(dx) < ∞ we let m(f ) ,

∫X f (x) m(dx) denote the expectation of f

under m. A kernel K from (X,B(X)) to some other state space (X̃,B(X̃)) is
called finite if K (x, X̃) < ∞ for all x ∈ X and Markovian if K (x, X̃) = 1 for
all x ∈ X. Moreover, a kernel K induces two operators, the first transforming a
function f ∈ B(X× X̃) satisfying

∫X̃ |f (x, x̃)|K (x, dx̃) <∞ into the functionx 7→ K (x, f ) ,

∫X̃ f (x, x̃) K (x, dx̃)
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in B(X); the other transforms any measure n ∈ P(X) into the measure

A 7→ nK (A) ,

∫X K (x, A) n(dx)

in P(X̃). Finally, in order to describe lucidly joint distributions associated with
Markovian transitions, we define the outer product, denoted by K ⊗T , of a kernel
K from (X,B(X)) to (X̃,B(X̃)) and a kernel T from (X × X̃,B(X) ⊗ B(X̃))
to some other state space (X̄,B(X̄)) as the kernel from (X,B(X)) to the product
space X̃× X̄, equipped with the product s-algebra B(X̃)⊗ B(X̄), given by

K ⊗ T (x, A) ,

∫∫X̃×X̄ 1A(x̃, x̄) K (x, dx̃) T (x, x̃, dx̄) (2.1)

for x ∈ X , A ∈ B(X̃)⊗ B(X̄).

2.2 Blockwise correlated mutation

In the following we say that a collection of random variables (particles) {xN ,i}MN
i=1,

taking values in some state spaceX, and associated nonnegative weights {wN ,i}MN
i=1

targets a probability measure n ∈ P(X) if, denoting the weight sum by WN ,
∑MN

i=1 wN ,i,W−1
N

MN
∑

i=1

wN ,if (xN ,i) ≈ n(f ) ,

for all functions f in some specified subset of B(X). Here {MN}∞N=0 is an increas-
ing sequence of integers. The set {(xN ,i,wN ,i)}MN

i=1 is referred to as a weighted sam-
ple on X. In this paper we study the problem of transforming a weighted sample
{(xN ,i,wN ,i)}MN

i=1 targeting n ∈ P(X) into a weighted sample {(x̃N ,i, w̃N ,i)}aMN
i=1 ,a ∈ N

∗, targeting the probability measurem(A) =
nL(A)nL(X̃)

=

∫X L(x, A) n(dx)
∫X L(x′, X̃) n(dx′) , A ∈ B(X̃) , (2.2)

where L is a finite transition kernel from (X,B(X)) to (X̃,B(X̃)). Feynman-Kac
transitions of type (2.2) occur within a variety of fields (see Del Moral, 2004, for
examples from, e.g., quantum physics and biology) and in Section 4 we show how
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the flow of posterior distributions of the noisily observed Markov chain (state
signal) of a state space model can be generated according to (2.2). The transfor-
mation is carried out by, firstly, drawing particle positions {x̃N ,i}aMN

i=1 according
to, for j ∈ {1, . . . , MN }, k ∈ {1, . . . , a} and A ∈ B(X̃),

P

( x̃N ,a(j−1)+k ∈ A
∣

∣

∣
FN ,a(j−1)+k−1

)

= Rk(xN ,j, x̃N ,a(j−1)+1, . . . , x̃N ,a(j−1)+k−1, A) ,

where we have defined the s-fields FN ,ℓ , s({(xN ,i,wN ,i)}MN
i=1, {x̃N ,j}ℓj=1), ℓ ∈

{0, . . . , aMN }, and each Rk is a Markovian kernel from (X × X̃k−1
,B(X ×X̃k−1

)) to (X̃,B(X̃)). Hence, using the kernel outer product notation ⊗ de-
fined in (2.1), the joint distribution, conditional on FN ,a(j−1), the each block

{x̃N ,a(j−1)+k}ak=1 can be expressed as
⊗a

k=1 Rk(xN ,IN ,j , ·). Secondly, these parti-
cles are associated with the weightsw̃N ,a(j−1)+k = wN ,jFk(xN ,j, x̃N ,a(j−1)+k)

with Fk(x, x̃) ,
dL(x, ·)

dR0,k(x, ·) (x̃) , (x, x̃) ∈ X× X̃ ,

and, for integers 0 ≤ m < k and A ∈ B(X̃),

Rm,k(x, x̃1:m, A) ,

k
⊗

i=m+1

Ri(x, x̃1:m, X̃k−m−1 × A)

=

∫X̃ · · · ∫X̃ Rk(x, x̃1:k−1, A)
k−1
∏

ℓ=m+1

Rℓ(x, x̃1:ℓ−1, dx̃ℓ) ,

where we have introduced vector notation am:n , (am, am+1, . . . , an) with the
convention am:n = ∅ if m > n. Thus Rm,k(xN ,j, x̃N ,a(j−1)+1:a(j−1)+m, ·) is
the distribution of x̃N ,a(j−1)+k conditionally on FN ,a(j−1)+m. Finally, we take

{(x̃N ,i, w̃N ,i)}aMN
i=1 as an approximation of m. This blockwise mutation opera-

tion, which extends, since it allows for statistically dependent particles within
each block, the blockwise mutation operation suggested by Douc and Moulines
(2005), is summarized in Algorithm 1.

Here the mutation step (2) is expressed using the kernel outer product nota-
tion ⊗ defined in (2.1).

119



E

Algorithm 1 Blockwise correlated mutation

Require: {(xN ,i,wN ,i)}MN
i=1 targets n.

1: for j = 1, . . . , M̃N do

2: draw {x̃N ,a(j−1)+k}ak=1 ∼
⊗a

k=1 Rk(xN ,IN ,j , ·),
3: set, for k ∈ {1, . . . a},w̃N ,a(j−1)+k ← Fk(xN ,IN ,j , x̃N ,a(j−1)+k) ,

4: end for

5: let {(x̃N ,i, w̃N ,i)}aM̃N
i=1 approximate m.

2.3 Blockwise correlated mutation with resampling

In the sequential context, where the problem consists in estimating a sequence of
measures generated according to the mapping (2.2), it is, in order to avoid weight
degeneracy, essential to combine the correlated blockwise mutation operation de-
scribed in Algorithm 1 with a prefatory resampling operation where particles having
small weights are eliminated and those having large ones are duplicated. As ob-
served by Pitt and Shephard (1999) (see also Douc et al., 2008, for a theoretical
study), the variance of the produced SMC estimates can be reduced efficiently
by introducing, as in the APF, a set {yN ,i}MN

i=1 of adjustment multiplier weights

and selecting the particles with probabilities proportional to {wN ,iyN ,i}MN
i=1. This

gives us the scheme described in Algorithm 2.

Algorithm 2 APF with blockwise correlated mutation

Require: {(xN ,i,wN ,i)}MN
i=1 targets n.

1: Draw {IN ,j}M̃N
j=1 ∼M(M̃N , {wN ,iyN ,i/

∑MN

ℓ=1 wN ,ℓyN ,ℓ}MN
i=1),

2: for j = 1, . . . , M̃N do

3: draw {x̃N ,a(j−1)+k}ak=1 ∼
⊗a

k=1 Rk(xN ,IN ,j , ·),
4: set, for k ∈ {1, . . . a},w̃N ,a(j−1)+k ← y−1

N ,IN ,j
Fk(xN ,IN ,j , x̃N ,a(j−1)+k) ,

5: end for

6: let {(x̃N ,i, w̃N ,i)}aM̃N
i=1 approximate m.
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2.4 Antithetic blockwise mutation with resampling

The main motivation of Pitt and Shephard (1999) for introducing the adjustment
multiplier weights was the possibility of designing these in such a manner that the

resulting (second stage) particle weights {w̃N ,i}aM̃N
i=1 become close to uniform; in

this case, in which the APF is referred to as fully adapted, the instrumental and
target distributions of the APF coincide. Adapting fully the APF involves typically
some approximation of the so-called optimal proposal kernel L(x, ·)/L(x, X̃). In-
deed, let L be a kernel from (X,B(X)) to (X̃,B(X̃)) such that L(x, A) ≈ L(x, A)
for all x ∈ X and A ∈ B(X̃); then Algorithm 2 with yN ,i = L(xN ,i, X̃) and
R0,k(x, ·) = L(x, ·)/L(x, X̃) for all i ∈ {1, . . . , MN } and k ∈ {1, . . . , a} re-
turns, since thenw̃N ,a(j−1)+k = L−1(xN ,IN ,j , X̃)

dL(xN ,IN ,j , ·)
dR0,k(xN ,IN ,j , ·)

(x̃N ,a(j−1)+k)

=
dL(xN ,IN ,j , ·)
dL(xN ,IN ,j , ·)

(x̃N ,a(j−1)+k) ≈ 1 ,

a close to uniformly weighted particle sample. Thus, methods for approximat-
ing the optimal kernel have been proposed by several authors; see e.g. Pitt and
Shephard (1999) and Doucet et al. (2000).

For our purposes, putting the APF in a close to fully adapted mode is attrac-
tive from another point of view: the close to uniform weights render efficient
antithetic acceleration of the standard APF possible, which might reduce the vari-
ance of the produced SMC estimates significantly. Hence, the aim of this paper is
to justify, in theory as well as in simulations, the following algorithm in which L
and f denote a given approximation of L and a given target function, respectively.

Step (3) in Algorithm 3 can be carried out in several different ways. The
simplest way to introduce negative correlation between two real-valued random
variables is to use a pair (U , U ′) of uniforms, where U = r, U ′ = 1 − r, and
r ∼ U (0, 1) is uniformly distributed (on (0, 1)). Such a coupling has the extreme
antithetic (EA) property: if F is an arbitrary distribution function, then the corre-
lation between x = F←(U ) and x′ = F←(U ′), F← denoting the inverse of F ,
achieves the minimal possible value subject to the constraint that x, x′ ∼ F . This
implies immediately that the strategy also achieves EA for variates g(x) and g(x′),
where g : R→ R is any monotone function such that

∫

g2(x) F (dx) <∞, since
(U , U ′) achieves EA simultaneously for all F and g(x) (and g(x′)) has distribu-
tion function F ◦ g←. This remarkable observation is related to the fact that the
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Algorithm 3 APF with antithetic blockwise mutation

Require: {(xN ,i,wN ,i)}MN
i=1 targets n.

1: Draw {IN ,j}M̃N
j=1 ∼M(M̃N , {wN ,iL(xN ,i, X̃)/

∑MN
ℓ=1 wN ,ℓL(xN ,ℓ, X̃)}MN

i=1),

2: for j = 1, . . . , M̃N do

3: simulate, using an appropriate family of kernels {Rk}ak=1, a
block {x̃N ,a(j−1)+k}ak=1 ∼ ⊗a

k=1 Rk(xN ,IN ,j , ·) of particles such that

R0,k(xN ,IN ,j , ·) = L(xN ,IN ,j , ·)/L(xN ,IN ,j , X̃) and the real-valued variables

{f (x̃N ,a(j−1)+k)}ak=1 are, conditionally on xN ,IN ,j , mutually negatively cor-
related,

4: set, for k ∈ {1, . . . , a},w̃N ,a(j−1)+k ← L−1(xN ,IN ,j , X̃)Fk(xN ,IN ,i , x̃N ,a(i−1)+k) ,

5: end for

6: let {(x̃N ,i, w̃N ,i)}aM̃N
i=1 approximate m.

construction (U , U ′) satisfies the stronger property of negative association, which
requires that the negative correlation is preserved by monotone transformations.
The following definition, adopted form Craiu and Meng (2005), extends this
property to an arbitrary number of variates.

Definition 2.1 (Pairwise negative association). The random variables x1, x2, . . . , xn

are said to be pairwise negatively associated (PNA) if, for any nondecreasing (or non-
increasing) functions f1, f2 and (i, j) ∈ {1, . . . , n}2 such that i 6= j,

Cov[f1(xi), f2(xj)] ≤ 0

whenever this covariance is well defined.

In the light of the previous it is appealing to mutate the particles in such a
way that the a offspring particles of a certain block are conditionally EA given the
common ancestor. A rather generic way to achieve this goes via the permuted dis-
placement method (developed by Arvidsen and Johnsson, 1982) presented below,
where Sa denotes the set of all possible permutations of the numbers {1, . . . , a}.

In this setting, Craiu and Meng (2005, Theorem 3) showed that the uni-
formly distributed variates {Ui}ai=1 produced in Algorithm 4 are PNA for a ≤ 3.
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Algorithm 4 Permuted displacement method
1: Draw r1 ∼ U (0, 1),
2: for k = 2, . . . , a− 1 do

3: set rk = 〈2k−2r1 + 1/2〉,
4: end for

5: set ra = 1− 〈2a−2r1〉,
6: pick a random s ∈ Sa,
7: for k = 1, . . . , a do

8: set Uk , rs(k).
9: end for

For a ≥ 4 one has not at present been able to neither prove nor refute a simi-
lar result. Thus, Step (3) of Algorithm 3 can be carried out by producing, using
Algorithm 4, PNA uniforms {Uk}ak=1 and setting, for k ∈ {1, . . . , a},x̃N ,a(j−1)+k = F←k,xN ,j

[f ](Uk) ,

where Fk,x[f ](x) , L(x, {f (x̃) ≤ x})/L(x, X̃), x ∈ R, denotes the conditional
distribution function of the f (x̃N ,a(j−1)+k)’s given xN ,j = x ∈ X. Since each

function F←k,x[f ] is monotone, it follows that {f (x̃N ,a(j−1)+k)}ak=1 are condition-
ally EA. Of course, this method is applicable only when Fk,x[f ] is easy to invert;
this is however not always the case and in Section 4 we present some alternative
techniques for introducing negative correlation between the offspring particles.

3 Theoretical results

In this section we justify theoretically Algorithm 3 using novel results on triangu-
lar arrays obtained by Douc and Moulines (2005). The arguments rely on results
describing the weak convergence of Algorithms 1 and 2 in a rather general setting.

3.1 Notation and definitions

From now on the quality of a weighted sample will be described in terms of the
following asymptotic properties, adopted from Douc and Moulines (2005), where
a set C of real-valued functions onX is said to be proper if the following conditions
hold: i) C is a linear space; ii) if g ∈ C and f is measurable with |f | ≤ |g|, then
|f | ∈ C; iii) for all c ∈ R, the constant function f ≡ c belongs to C.
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Definition 3.1 (Consistency). A weighted sample {(xN ,i,wN ,i)}MN
i=1 on X is said

to be consistent for the probability measure m and the proper set C if, for any f ∈ C,
as N →∞,W−1

N

MN
∑

i=1

wN ,if (xN ,i)
P−→ m(f ) ,W−1

N max
1≤i≤MN

wN ,i
P−→ 0 .

Definition 3.2 (Asymptotic normality). A weighted sample {(xN ,i,wN ,i)}MN
i=1 onX is called asymptotically normal (AN) for (m, A, W,s,g, {aN }∞N=1) if A and W

are proper and, as N →∞,

aNW−1
N

MN
∑

i=1

wN ,i[f (xN ,i)− m(f )]
D−→ N [0,s2(f )] for any f ∈ A ,

a2
NW−1

N

MN
∑

i=1

(wN ,i)
2f (xN ,i)

P−→ g(f ) for any f ∈W ,

aNW−1
N max

1≤i≤MN

wN ,i
P−→ 0 .

We impose the following assumptions.

(A1) The initial sample {(xN ,i,wN ,i)}MN
i=1 is consistent for (n, C).

(A2) The initial sample {(xN ,i,wN ,i)}MN
i=1 is AN for (n, A, W,s,g, {aN }∞N=1).

Under (A1) and (A2), we define

C̃ , {f ∈ L1(X̃, m) : L(·, |f |) ∈ C} ,

Ã , {f : L(·, |f |) ∈ A,R0,k(·,F2
k f 2) ∈W; k ∈ {1, . . . , a}} ,

W̃ , {f : R0,k(·,F2
k |f |) ∈W; k ∈ {1, . . . , a}} .

(3.1)
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Moreover, let, for f ∈ Ã and x ∈ X, assuming that m ≤ n,

Mm,n(x, f )

, E

[Fm(xN ,j, x̃N ,a(j−1)+m)Fn(xN ,j, x̃N ,a(j−1)+n)f (x̃N ,a(j−1)+m)f (x̃N ,a(j−1)+n)

| xN ,j = x]
= E

[

E

[Fn(xN ,j, x̃N ,a(j−1)+n)f (x̃N ,a(j−1)+n)
∣

∣

∣ xN ,j = x, x̃N ,a(j−1)+1:a(j−1)+m

]

×Fm(xN ,j, x̃N ,a(j−1)+m)f (x̃N ,a(j−1)+m)
∣

∣

∣ xN ,j = x]
=

∫X̃ · · · ∫X̃Rm,n(x, x̃1:m,Fn(x, ·)f )

× Fm(x, x̃m)f (x̃m)
m
⊗

ℓ=1

Rℓ(x, dx̃1 × · · · × dx̃m) ,

and introduce the conditional covariances

Cm,n(x, f ) , Cov
[Fm(xN ,j, x̃N ,a(j−1)+m)f (x̃N ,a(j−1)+m),Fn(xN ,j, x̃N ,a(j−1)+n)f (x̃N ,a(j−1)+n)

∣

∣

∣ xN ,j = x]
= Mm,n(x, f )− L2(x, f ) .

(3.2)

3.2 Convergence of Algorithms 1 and 2

Under the assumptions above we have the following convergence results, whose
proofs are found in the appendix.

Theorem 3.1. Assume (A1) and suppose that L(·, X̃) ∈ C. Then the set C̃ defined in
(3.1) is proper and the weighted sample {(x̃N ,i, w̃N ,i)}aMN

i=1 produced in Algorithm 1

is consistent for (m, C̃).

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. In addition, assume (A2)

and suppose that all functions R0,k(·,F2
k ), k ∈ {1, . . . , a}, belong to W. More-

over, assume that L(·, X̃) belongs to A. Then the sets Ã and W̃ defined in (3.1) are
proper and the weighted sample {(x̃N ,i, w̃N ,i)}aMN

i=1 produced in Algorithm 1 is AN

for (m, Ã, W̃, s̃, g̃, {aN }∞N=1), where, for f ∈ Ã,s̃2(f ) , s2{L[f −m(f )]}/[nL(X̃)]2
+

∑

(m,n)∈{1,...,a}2

gCm,n[f −m(f )]/[anL(X̃)]2 ,
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(3.3)

and, for f ∈ W̃,g̃(f ) ,

a
∑

k=1

gR0,k(F2
k f )/[anL(X̃)]2 .

Remark 3.1. In the case where Rk(x, x̃i:k−1, ·) = R(x, ·) and Fk = F = dL/dR,
that is, the particles within a block are mutated independently of each other, we have
that Cm,n = 0 for all m 6= n. This yields an asymptotic variance (3.3) of forms̃2(f ) = s2{L[f − m(f )]}/[nL(X̃)]2

+

a
∑

m=1

gCm,m[f − m(f )]/[anL(X̃)]2

= s2{L[f − m(f )]}/[nL(X̃)]2

+ a−1{gR(F2[f − m(f )]2)− gL2[f − m(f )]}/[nL(X̃)]2 ,

(3.4)

which is exactly the expression obtained by Douc and Moulines (2005, Theorem 2).

We move on to the convergence of Algorithm 2. Throughout the rest of this
paper assume, entirely in line with Algorithm 3, that the adjustment multiplier
weights satisfy the following assumption.

(A3) There exists a function Y : X → R
+ such that yN ,i = Y(xN ,i) and Y ∈

C ∩ L1(X, n).

Define

C̄ , {f ∈ L1(m, X̃) : L(·, |f |) ∈ C ∩ L1(n, X̃)} ,

Ā , {Y−1L2(·, |f |) ∈ C ∩ L1(n,X), L(·, |f |) ∈ A, L2(·, |f |) ∈W,Y−1R0,k(·,F2
k f 2) ∈ C ∩ L1(n,X); k ∈ {1, . . . , a}} ,

W̄ , {Y−1R0,k(·,F2
k |f |) ∈ C ∩ L1(n,X); k ∈ {1, . . . , a}} ;

(3.5)

now, by combining Theorem 3.2 with results obtained by Douc et al. (2008) we
establish the convergence of Algorithm 2. This is the contents of the following
corollaries whose proofs are omitted for brevity.
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Corollary 3.1. Let the assumptions of Theorem 3.1 hold and assume (A3). Then the

set C̄ defined in (3.5) is proper and the weighted sample {(x̃N ,i, w̃N ,i)}aM̃N
i=1 obtained

in Algorithm 2 is consistent for (m, C̄).

Corollary 3.2. Let the assumptions of Theorem 3.1 hold and assume (A2) with
a2

N /MN → b , b ∈ [0,∞). In addition, suppose that Y ∈ A, Y2 ∈ W and
that all functions Y−1R0,k(·,F2

k ), k ∈ {1, . . . , a}, belong to C ∩ L1(n, X̃). More-

over, assume that Y−1L2(·, X̃) ∈ C ∩ L1(n, X̃), L(·, X̃) ∈ A, and L2(·, X̃) ∈
W. Then the sets Ā and W̄ defined in (3.5) are proper and the weighted sample

{(x̃N ,i, w̃N ,i)}aM̃N
i=1 obtained in Algorithm 2 with M̃N /MN → ℓ, ℓ ∈ [0,∞], is AN

for (m, Ā, W̄, s̄, ḡ, {aN }∞N=1), where, for f ∈ Ā,s̄2[Y](f ) , s2{L[·, f − m(f )]}/[nL(X̃)]2

+ bℓ−1n(Y)
∑

(m,n)∈{1,...,a}2

n(YMm,n{·,Y−1[f − m(f )]})/[anL(X̃)]2

(3.6)

and, for f ∈ W̄,ḡ[Y](f ) , bℓ−1n(Y)
a
∑

k=1

n[Y−1R0,k(·,F2
k f )]/[anL(X̃)]2 .

Remark 3.2. The resampling step (1) in Algorithm 2 can, of course, be based on
resampling techniques different from multinomial resampling, e.g., residual resam-
pling or Bernoulli branching. However, we believe that the convergence results stated
in Theorems 3.1 and 3.2 as well as the methodology developed above can be extended
straightforwardly to these selection schemes, since their asymptotic behavior is well in-
vestigated (see Chopin, 2004, Douc and Moulines, 2005).

3.3 Theoretical justification of Algorithm 3

In order to justify the use of antithetic variables in Algorithm 3, we examine the
asymptotic variance given in (3.6). Since the first term is not at all effected by the
way the particles are mutated, we direct focus to the second term and write, using
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(3.2), bℓ−1n(Y)
∑

(m,n)∈{1,...,a}2

n(YMm,n{·,Y−1[f − m(f )]})/[anL(X̃)]2

= bℓ−1n(Y)n(YL2{·,Y−1[f − m(f )]})/[nL(X̃)]2

+ bℓ−1n(Y)
∑

(m,n)∈{1,...,a}2

n(YCm,n{·,Y−1[f − m(f )]})/[anL(X̃)]2 ,

where the first term on the RHS is again independent of the correlation struc-
ture of the mutation step. The second term will be smaller than in the case
where all particles within each block are mutated independently if the covariances
Cm,n{·,Y−1[f − m(f )]} are negative for all m 6= n; however, sinceY−1(x)F(x, x̃) ≈ 1, for all (x, x̃) ∈ X× X̃
in the close to fully adapted case, it holds that

Cm,n{x,Y−1[f −m(f )]} ≈ Cov
[

f (x̃N ,a(j−1)+m), f (x̃N ,a(j−1)+n)
∣

∣

∣ xN ,j = x] ,

(3.7)

which is negative when the functions f (x̃N ,a(j−1)+k) are negatively correlated.
In addition, it is possible to relate the performance of the antithetic SMC

scheme in Algorithm 3 to that of the standard APF (for which a = 1). More
specifically, we establish a criterion (depending on the model and target function
under consideration) which guarantees that introducing antithetic variates yields
a strictly more accurate (in terms of variance) and computationally more efficient
algorithm than the standard APF. In order to keep the particle population size
constant, i.e. having M̃N = MN , through a run of Algorithm 3 for a given block
size a, only a fraction M̃N = ⌈MN /a⌉ (yielding ℓ = 1/a in Corollary 3.2) of
the original particle population should be selected at the resampling operation. In
this case Corollary 3.2 provides, using (3.2), the asymptotic variances̄2[Y](f ) , s2{L[·, f − m(f )]}/[nL(X̃)]2

+ ban(Y)
∑

(m,n)∈{1,...,a}2

n(YMm,n{·,Y−1[f − m(f )]})/[anL(X̃)]2 .

(3.8)
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4. Application to state space models

On the other hand, letting a = 1 and ℓ = 1, corresponding to the uncorrelated
standard APF, in Corollary 3.2 yields the asymptotic variances̄2a=ℓ=1[Y](f ) , s2{L[·, f − m(f )]}/[nL(X̃)]2

+ bn(Y)n(YM1,1{·,Y−1[f − m(f )]})/[nL(X̃)]2 ,

and, under the assumption that the inherent covariance structure of each block
is uniform with Mm,n = M

∗ for all (m, n) ∈ {1, . . . , a}2 such that m 6= n, the
criterion s̄2[Y](f ) ≤ s̄2a=ℓ=1[Y](f )

⇔
−n(YC

∗{·,Y−1[f − m(f )]}) ≥ n(YL2{·,Y−1[f − m(f )]}) .

(3.9)

Remark 3.3. From the criterion (3.9) it is evident that mutating the particles in
blocks without any (or positive) inherent correlation structure (that is, letting C

∗ ≥ 0)
will, not surprisingly, increase the asymptotic variance vis-à-vis the standard APF.
Moreover, since the correlation C

∗ ≥ 0 is a decreasing function of a, we conclude
that there is a critical block size above which (3.9) will not hold even if the offspring
particles of a block have the EA property conditionally on their ancestor.

4 Application to state space models

In state space models a time series Y , {Yn}∞n=0, taking values in some state space
(Y,B(Y)), is modeled as noisy observation of an unobservable (possibly time-
inhomogeneous) Markov chain X , {Xn}∞n=0. The Markov chain, also referred
to as the state sequence, is assumed to take values in some state space (X,B(X)). In
the examples discussed below we will exclusively let X ≡ R. The observed values
are assumed to be conditionally independent given the latent process X in such a
way that the distribution of Yn depends on Xn only. For a model of this type, all
inference about the hidden states has to be made through the observations only.

Denote by {Qn}∞n=0 and n0 the Markov transition kernel and initial distribu-
tion of the hidden chain, respectively. In addition, suppose that the conditional
distribution of Yn given Xn admits a density gn on Y with respect to some reference
measure h, that is,

P(Yn ∈ A|Xn) =

∫

A
gn(Xn, y) h(dy) , A ∈ B(Y) .
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This gives us a the following complete description of a state space model:

X0 ∼ n0 ,

Xn+1|Xn ∼ Qn(Xn, ·) ,

Yn|Xn ∼ gn(Xn, ·) .

In this setting, the optimal filtering problem consists in computing, recursively
in time as new observations become available, the filter posterior distributionsfn(A) , P(Xn ∈ A|Y0:n) , A ∈ B(X), n ≥ 0 .

A straightforward application of Bayes’ rule yields, for A ∈ B(X), the recursionf0(A) =

∫

A g0(x, Y0) n0(dx)
∫

X g0(x, Y0) n0(dx)
,fn+1(A) =

∫

X

∫

A gn+1(x′, Yn+1) Qn(x, dx′)fn(dx)
∫∫

X2 gn+1(x′, Yn+1) Qn(x, dx′)fn(dx)
,

(4.1)

referred to as the filtering recursion. Since closed form solutions to the filtering
recursion are obtainable only in the case of a linear/Gaussian model or when the
state space X is finite, we apply the SMC methodology described in the previous;
indeed, having defined, for A ∈ B(X) and x ∈ X, the unnormalized transition
kernels

Ln(x, A) =

∫

A
gn+1(x′, Yn+1) Qn(x, dx′) , (4.2)

yielding the equivalent Feynman-Kac representationfn+1(A) =
fnLn(A)fnLn(X)

, A ∈ B(X) ,

of (4.1), we conclude that the optimal filtering problem can be perfectly cast into
the framework of Section 2 withX = X̃ = X, n = fn, L = Ln, and m = fn+1.

4.1 ARCH model

As a first example we consider the classical Gaussian autoregressive conditional het-
eroscedasticity (ARCH) model observed in noise (Bollerslev et al., 1994) given by

Xn+1 = Wn+1

√b0 + b1X 2
n ,

Yn = Xn + sVk .
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4. Application to state space models

where {Wn}∞n=1 and {Vn}∞n=0 are mutually independent sequences of standard
normal distributed variables such that Wn is independent of {(Xi, Yi)}n

i=0 and Vn

is independent of {(Xi, Yi)}n−1
i=0 and Xn. In this case the optimal kernel

Ln(x, ·)/Ln(x, X), x ∈ R, being the conditional distribution of the state Xn+1

given Xn = x and the observation Yn+1, is Gaussian with mean mn(x) and varianceŝ2
n(x), where

mn(x) =
b0 + b1x2b0 + b1x2 + s2 Yn+1 , ŝ2

n(x) =
b0 + b1x2b0 + b1x2 + s2s2 .

Thus, the optimal adjustment multiplier weight function Yn(x) = Ln(x, X) can
be expressed on closed form asYn(x) = N (Yn+1; 0, b0 + b1x2

+ s2) (4.3)

whereN (x; m,s2) , exp[−(x−m)2/(2s2)]/
√

2ps2 denotes the univariate Gaus-
sian density function, yielding exactly uniform importance weights w̃N ,i ≡ 1,
i ∈ {1, . . . , aMN }.

In this setting we used SMC to estimate posterior filter means fn(IX), where
IX denotes the identity mapping IX(x) = x on X. Initially, to form an idea
of the effect of the antithetic coupling we compared the auxiliary particle filter
in Algorithm 2, using a ∈ {2, 3} conditionally independent offspring of each
particle xN ,i, i ∈ {1, . . . , MN }, in the mutation step, to the filter in Algorithm 3
using equally many antithetically coupled offspring. In the case a = 2 we used
the standard couplingx̃(n+1)

N ,a(i−1)+1 = mn(x(n)
N ,i) + ŝn(x(n)

N ,i)e(n)
i ,x̃(n+1)

N ,a(i−1)+2 = 2mn(x(n)
N ,i)− x̃(n+1)

N ,a(i−1)+1 ,
(4.4)

where {e(n)
i }MN

i=1 is a sequence of mutually independent standard normal dis-
tributed random variables being independent of everything else. This coupling
yields largest possible negative correlation (that is, is EA) conditionally on x(n)

N ,i,

i.e. Corr(x̃(n+1)
N ,a(i−1)+1, x̃(n+1)

N ,a(i−1)+2|x(n)
N ,i) = −1, and in the kernel language of

Section 2 it holds that R1(x, A) =
∫

AN (x̃; mn(x), ŝ2
n(x)) dx̃ and R2(x, x̃1, A) =d2mn(x)−x̃1

(A) for Borel sets A. A similar technique was used in the case a = 3;
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here we setx̃(n+1)
N ,a(i−1)+1 = mn(x(n)

N ,i) + ŝn(x(n)
N ,i)e(n)

i,1 ,x̃(n+1)
N ,a(i−1)+2 =

1
2

(

3mn(x(n)
N ,i)− x̃(n+1)

N ,a(i−1)+1 +
√

3ŝn(x(n)
N ,i)e(n)

i,2

)

,x̃(n+1)
N ,a(i−1)+3 = 3mn(x(n)

N ,i)− x̃(n+1)
N ,a(i−1)+1 − x̃(n+1)

N ,a(i−1)+2 ,

(4.5)

where the independent sequences {e(n)
i,1}MN

i=1 and {e(n)
i,2}MN

i=1 are as above. The cou-
pling (4.5) yields the conditional correlation

Corr(x̃(n+1)
N ,a(i−1)+m, x̃(n+1)

N ,a(i−1)+m′ |x(n)
N ,i) = −1/2,

for (m, m′) ∈ {1, 2, 3} and m 6= m′.
The comparison was done for two different data sets obtained by simulation

of ARCH models parameterized by (b0, b1,s) = (0.9, 0.6, 1) and (b0, b1,s) =

(0.9, 0.6, 10), corresponding to informative and non-informative observations,
respectively. The mean squared errors (MSEs) for 400 runs of each filter with
MN = 6,000/a are, for the different values of a, displayed in Figure 1(a) (the
informative case) and Figure 1(b) (the non-informative case). The MSEs are based
on reference posterior filter mean values obtained by means of the standard APF
(for which a = ℓ = 1) using as many as 500,000 particles. From both figures
it is evident that letting the particles of a block be antithetically coupled instead
of conditionally independent decreases the variance significantly. Moreover, the
improvement is especially noticeable in the informative case.

More relevant is to compare the performance of Algorithm 3, again with a ∈
{2, 3} and MN = 6,000/a, to that of the standard fully adapted APF using 6,000
particles without any block structure. In this setting, both antithetic filters are
clearly more computationally efficient since, firstly, only a half and a third of the
particles are selected at each resampling operation, and, secondly, a half and a third
of the random moves at each mutation step are replaced by simple assignments
(matrix manipulations) in the two cases a = 2 and a = 3, respectively. The
outcome is displayed in Figure 2(a) (the informative case) and Figure 2(b) (the
non-informative case), from which it is clear that performances of the antithetic
filters are, despite being less costly, superior, especially in the case of informative
observations; indeed, the improvement is over 20 Decibel at some time steps.
Moreover, it is evident that the computational gain of using g a = 3 instead ofa = 2 offspring in each block is at the expense of a slight decrease of precision.
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Figure 1: Plot of MSEs (in Decibel) of filters being implementations of Algo-
rithm 3 with a = 2 antithetically coupled (�) and conditionally independent
(•) offspring for the ARCH model with informative (a) and non-informative (b)
observations. The MSE values are based on 400 runs of each algorithm with
MN = 3,000.
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Figure 2: Plot of MSEs (in Decibel) of the standard optimal APF (∗) with 6,000
particles and antithetic filters with a = 2 (�) and a = 3 (△) for the ARCH
model with informative (a) and non-informative (b) observations. aMN = 6, 000
for both antithetic filters and the MSE values are based on 400 runs of each
algorithm.
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4.2 Growth model

The univariate growth model given by, for n ≥ 0,

Xn+1 = an(Xn) + swWn+1 ,

Yn = bX 2
n + svVn , (4.6)

where

an(x) = a0x + a1
x

1 + x2 + a2 cos(1.2n) , x ∈ R ,

and the sequences {Wn}∞n=1 and {Vn}∞n=0 are as in the previous example, was
discussed by Kitagawa (1987) (see also Polson et al., 2002) and has served as
a benchmark for state space filtering techniques during the last decades. We
will follow the lines of Cappé et al. (2005) and consider the parameter vector
(a0, a1, a2, b,s2

v ) = (0.5, 25, 8, 0.05, 1) and s2
w ∈ {1, 10}, the values of the

latter parameter corresponding to non-informative and informative observations,
respectively. The initial state is set deterministically to X0 = 0.1. For a given
observation Yn in R, the local likelihood for the state at time n is given by the
function

x ∈ R 7→ g(x, Yn) = N (Yn; bx2
n ,s2

v ) ∈ R
+ . (4.7)

which is symmetric about zero for any observation Yn. Interestingly, functions
(4.7) associated with negative observations Yn ≤ 0 are unimodal, while those
associated with positive observations Yn > 0 are bimodal with modes located at
±
√

Yn/b. This bimodality is challenging from a filtering point of view and puts
heavy demands on the applied SMC method.

Unlike the ARCH model in the previous section, direct simulation from the
optimal kernel is infeasible in this case since the measurement equation (4.6) is
nonlinear in the state. Thus, in order to mimic efficiently the optimal kernel
and adjustment multiplier weights we approximate the local likelihood (4.7) by a
mixture

G(x, Yn) , N (x; m1(Yn), 
2(Yn))/2 +N (x; m2(Yn), 
2(Yn))/2

of two Gaussian densities, where

(m1(Yn), m2(Yn), 
2(Yn)) ,

{

(0, 0,−s2
v/(2bYn)) for Yn ≤ 0 ,

(−
√

Yn/b,
√

Yn/b,s2
v/(4bYn)) for Yn > 0 .
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4. Application to state space models

Consequently, we let the means and standard deviations of the two strata be the
locations (which coincide when Yn ≤ 0) and (common) inverted negated log
curvature of the modes of the local likelihood, respectively; more specifically,
2(Yn) = −1/(d2 log g(x, Yn)/dx2)|x=m1(Yn). From now on we omit for brevity
the dependence on the observation from the notation of the quantities above and
write (m1, m2, 
2) instead of (m1(Yn), m2(Yn), 
2(Yn)). Plugging the approximation
G into the expression (4.2) of the unnormalized optimal kernel yields straightfor-
wardly the mixture

Ln(x, A) ,

∫

A
G(x′, Yn+1) Qn(x, dx′) = b (1)

n (x)G(1)
n (x, A)+b (2)

n (x)G(2)
n (x, A) ,

for x ∈ X , A ∈ B(X), where each Gaussian stratum

G(d )
n (x, A) ,

∫

A
N (x′; t(d )

n (x), h2
n) dx′ , d ∈ {1, 2} ,

with means and variance (recall that md , d ∈ {1, 2}, and 
2 depend on Yn+1)t(d )
n (x) ,

s2
wmd + 
2an(x)s2

w + 
2 ,h2
n ,

s2
w
2s2

w + 
2 ,

is weighted byb (d )
n (x) , N (md ; an(x),s2

w + 
2) , d ∈ {1, 2} .

By normalizing we obtain the approximation

Ln(x, A)/Ln(x, X) = b̄n(x)G(1)
n (x, A) + (1− b̄n(x))G(2)

n (x, A) , (4.8)

for x ∈ X , A ∈ B(X), of the optimal kernel, where we have defined the normal-
ized weightb̄n(x) ,

b (1)
n (x)b (1)

n (x) + b (2)
n (x)

, x ∈ X .

Moreover, in this setting the approximate optimal adjustment multiplier weights
are given byYn(x) = Ln(x, X) = b (1)

n (x) + b (2)
n (x) , x ∈ X .
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Using (4.8) as proposal, the experiment of the previous example was repeated
with focus set on the case a = 2. In order to impose a conditionally negative
correlation structure we let each pair of offspring particles evolve according tox̃(n+1)

N ,a(i−1)+1 = t(1)
n (x(n)

N ,i)1{U (n)
i <b̄n(x(n)

N ,i)}
+ t(2)

n (x(n)
N ,i)1{U (n)

i ≥b̄n(x(n)
N ,i)}

+ hne(n)
i ,x̃(n+1)

N ,a(i−1)+2 = t(1)
n (x(n)

N ,i)1{1−U (n)
i <b̄n(x(n)

N ,i )}
+ t(2)

n (x(n)
N ,i)1{1−U (n)

i ≥b̄n(x(n)
N ,i)}
− hne(n)

i ,

(4.9)

where {U (n)
i }MN

i=1 and {e(n)
i }MN

i=1 are independent sequences of mutually indepen-
dent uniformly (on [0, 1]) and standard normal distributed random variables,
respectively, such that each pair (U (n)

i , e(n)
i ) is independent of everything else. It is

easily established that each of the offspring particles x̃(n+1)
N ,a(i−1)+1 and x̃(n+1)

N ,a(i−1)+2
of the coupling (4.9) is marginally distributed according to the approximate opti-
mal kernel (4.8). In addition, one can show that (see Section A.3 for details) the
correlation between the offspring of a block is given by, for x ∈ X,

Corr
[ x̃(n+1)

N ,a(i−1)+1, x̃(n+1)
N ,a(i−1)+2

∣

∣

∣ x(n)
N ,i = x]

= −
[t(1)

n (x)− t(2)
n (x))2b̄n(x)(1− b̄n(x)) + h2

n

](−1)

×
(

[t(1)
n (x)− t(2)

n (x)
]2 [b̄2

n (x)1{b̄n(x)≤1/2}

+
(b̄2

n (x)− 1
)2 1{b̄n(x)>1/2}

]

+ h2
n

)

(4.10)

which is always negative and simplifies to −1 in the unimodal case (as t(1)
n (x) =t(2)

n (x) for all x ∈ X when Yn+1 < 0). Figure 3 displays MSE (in Decibel) com-
parisons between the antithetic APF with a = 2 and aMN = 5,000, a (close to)
fully adapted APF, based on the proposal kernel (4.8) and 5,000 particles, and
the plain bootstrap filter using 5,000 particles. Like in the ARCH example, we
let the filters approximate filter posterior means fn(IX) for observation records
of length 30, and since the initial value is known deterministically the log MSE
is null at time zero. The comparison was made for informative (s2

w = 10, Fig-
ure 3(a)) as well as non-informative (s2

w = 1, Figure 3(b)) observations and the
MSEs, measured with respect to reference values obtained with the fully adapted
APF using 500,000 particles, were based on 400 runs of each algorithm. Also for
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Figure 3: Plot of MSEs (in Decibel) of the plain bootstrap filter (◦) using 5,000
particles, the standard optimal APF (∗) using 5,000 particles, and the antithetic
filter (�) with a = 2 and aMN = 5,000 for the growth model with informative
(a) and non-informative (b) observations. The MSE values are based on 400 runs
of each algorithm.

this demanding model the variance reduction introduced by the antithetic cou-
pling is significant; indeed, despite being clearly less computationally costly (see
the discussion in the previous example), the antithetic filter improves the MSE
performances of the APF and the bootstrap filter by more than 10 Decibels at
several time points for both observation records. Moreover, from the figures it
is evident that proposing particles according to the approximate optimal kernel
(4.8) instead of the prior kernel yields, as we may expect, generally more precise
posterior filter mean estimates, since the APF outperforms the bootstrap particle
filter at most time steps.

A Proofs

A.1 Proof of Theorem 3.1

The result follows straightforwardly from Slutsky’s theorem and results obtained
by Douc and Moulines (2005) in the case of independently mutated particles.
Indeed, by (Douc and Moulines, 2005, Equation (36)) we have, for any 1 ≤ k ≤a, W−1

N

MN
∑

j=1

w̃N ,a(j−1)+kf (x̃N ,a(j−1)+k)
P−→ nL(f ) ,
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yielding immediately

(aWN )−1
aMN
∑

i=1

w̃N ,if (x̃N ,i) = a−1
a
∑

k=1

W−1
N

MN
∑

j=1

w̃N ,a(j−1)+kf (x̃N ,a(j−1)+k)

P−→ nL(f ) .

(A.1)

By applying (A.1) for this limit for f ≡ 1 (recall that L(·, X̃) ∈ C by assumption,
implying that the constant function belongs to C̃) we obtain, using again Slutsky’s
theorem,W̃−1

N

aMN
∑

i=1

w̃N ,if (x̃N ,i)
P−→ nL(f )/nL(X̃) = m(f ) .

To prove the second property in Definition 3.1, write

(aWN )−1 max
1≤i≤aMN

w̃N ,i ≤ a−1
a
∑

k=1

W̃−1
N max

1≤j≤MN

w̃N ,a(j−1)+k ; (A.2)

however, by inspecting the proof of (Douc and Moulines, 2005, Theorem 1) we
conclude that each term on the RHS of (A.2) tends to zero in probability, which
in combination with (A.1) implies thatW̃−1

N max
1≤i≤aMN

w̃N ,i = (aWN /W̃N )(aWN )−1 max
1≤i≤aMN

w̃N ,i
P−→ 0 .

This completes the proof.

A.2 Proof of Theorem 3.2

Let f ∈ Ã and assume without loss of generality that m(f ) = 0. Then write,
following the lines of the proof of (Douc and Moulines, 2005, Theorem 2),

aN W̃−1
N

aMN
∑

i=1

w̃N ,if (x̃N ,i) = aWN W̃−1
N (AN + BN ) , (A.3)

where

AN ,

MN
∑

j=1

E
[

UN ,j

∣

∣FN ,a(j−1)
]

, BN ,

MN
∑

j=1

{

UN ,j − E
[

UN ,j

∣

∣FN ,a(j−1)
]}

,

138



A. Proofs

and UN ,j , aN (aWN )−1∑a
k=1 w̃N ,a(j−1)+kf (x̃N ,a(j−1)+k).

Since, by (A.1), W̃N /(aWN )
P−→ nL(X̃), as N →∞, it is enough to prove that

AN + BN
D−→ N{0,s2[L(·, f )] + h2(f )} ,

where h2(f ) , a−2
∑

(m,n)∈{1,...,a}2

gCm,n(f ) .

For AN it holds, since the weighted sample {(xN ,i,wN ,i)}MN
i=1 is AN for

(m, A, W,s,g, {aN }∞N=1) by assumption and L(·, f ) ∈ A, that

AN = aN (aWN )−1
MN
∑

j=1

a
∑

k=1

E

[ w̃N ,a(j−1)+kf (x̃N ,a(j−1)+k)
∣

∣

∣FN ,a(j−1)

]

= aNW−1
N

MN
∑

j=1

wN ,jL(xN ,j, f )
D−→ N{0,s2[L(·, f )]} .

We now consider BN and establish that, for any u ∈ R,

E
[

exp(iuBN )| FN ,0
] P−→ exp(−u2h2(f )/2) (A.4)

from which the result of the theorem follows. The proof of (A.4) consists in
showing that the two conditions of Theorem 13 in (Douc and Moulines, 2005)
are satisfied for the triangular array {(UN ,j,FN ,aj)}MN

j=1.
For establishing condition i) of the theorem in question, write

E

[

U 2
N ,j

∣

∣

∣
FN ,a(j−1)

]

= a2
N (aWN )−2

×
∑

(k,m)∈{1,...,a}2

E

[w̃N ,a(j−1)+kf (x̃N ,a(j−1)+k)w̃N ,a(j−1)+mf (x̃N ,a(j−1)+m)
∣

∣FN ,a(j−1)

]

= a2
N (aWN )−2

MN
∑

j=1

w2
N ,j

∑

(k,m)∈{1,...,a}2

Mk,m(xN ,j, f ) .

(A.5)
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However, for all (k, m) ∈ {1, . . . , a}2,

Mk,m(·, f ) ≤ R0,k(·,F2
k f 2) +R0,m(·,F2

mf 2) ∈W;

since W is proper, this implies (under (A2)) the limit

a2
N (aWN )−2

MN
∑

j=1

w2
N ,j

∑

(k,m)∈{1,...,a}2

Mk,m(xN ,j, f )

P−→ a−2
∑

(k,m)∈{1,...,a}2

gMk,m(f ) .

(A.6)

Now consider
MN
∑

j=1

E
2 [UN ,j

∣

∣FN ,a(j−1)
]

= a2
N (aWN )−2

×
MN
∑

j=1

w2
N ,jE

2

[ a
∑

k=1

Fk(xN ,j, x̃N ,a(j−1)+k)f (x̃N ,a(j−1)+k)
∣

∣FN ,a(j−1)

]

= a2
NW−2

N

MN
∑

j=1

w2
N ,jL

2(xN ,j, f )

(A.7)

Here, for any k ∈ {1, . . . , a},
L2(·, f ) = R2

0,k(·,Fkf ) ≤ R0,k(·,F2
k f 2) ∈W,

and reusing the asymptotic normality of {(xN ,i,wN ,i)}MN
i=1 yields

a2
NW−2

N

MN
∑

j=1

w2
N ,jL

2(xN ,j, f )
P−→ gL2(f ) . (A.8)

Finally, by combining Equations (A.5)–(A.8) we conclude that

MN
∑

j=1

{

E

[

U 2
N ,j

∣

∣FN ,a(j−1)

]

− E
2 [UN ,j

∣

∣FN ,a(j−1)
]

}

P−→ a−2
∑

(k,m)∈{1,...,a}2

gMk,m(f )− gL2(f ) = h2(f ) ,
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which establishes condition i).
It remains to check condition ii), that is, for any e > 0,

CN ,

MN
∑

j=1

E

[

UN ,j1{|UN ,j|≥e} ∣∣FN ,a(j−1)

]

P−→ 0 .

Thus, argue along the lines of the proof of (Douc and Moulines, 2005, Theo-
rem 2) and write, for any C > 0,

CN ≤ a2
N (aWN )−2

MN
∑

j=1

w2
N ,j

∑

(k,m)∈{1,...,a}2

Mk,m

(xN ,j, f 1{|Pa
k=1 Fk f |≥C}

)

+ 1{aN (aWN )−1 maxi wN ,i≥eC−1}

MN
∑

j=1

E

[

U 2
N ,j

∣

∣FN ,a(j−1)

]

. (A.9)

Under (A2) the indicator function of the second term on the RHS of (A.9) tends
to zero in probability and since, for all (k, m) ∈ {1, . . . , a}2,

Mk,m(·, f 1{|Pa
k=1 Fkf |≥C}) ≤ R0,k(·,F2

k f 2) +R0,m(·,F2
mf 2) ∈W

we obtain

a2
N (aWN )−2

MN
∑

j=1

w2
N ,j

∑

(k,m)∈{1,...,a}2

Mk,m

(xN ,j, f 1{|Pa
k=1 Fk f |≥C}

)

P−→ a−2
∑

(k,m)∈{1,...,a}2

gMk,m

(

f 1{|Pa
k=1 Fk f |≥C}

)

. (A.10)

By dominated convergence, the RHS of (A.10) can be made arbitrarily small by
taking C sufficiently large. Therefore, also condition ii) of (Douc and Moulines,
2005, Theorem 13) is satisfied, implying the convergence (A.4). This establishes
(A.3).

We turn to the second property of Definition 3.2 and show that, for any
f ∈ W̃,

a2
N W̃−2

N

aMN
∑

i=1

w̃2
N ,if (x̃N ,i)

P−→ g̃(f ) . (A.11)
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However, since

R0,k(·,F2
k f ) ≤ 1{· :|f (·)|>1}R0,k(·,F2

k f 2) + 1{· :|f (·)|≤1}R0,k(·,F2
k ) ∈W,

a direct application of (Douc and Moulines, 2005, Equation 39) yields that, for
any k ∈ {1, . . . , a},

a2
NW−2

N

MN
∑

j=1

w̃2
N ,a(j−1)+kf (x̃N ,a(j−1)+k)

P−→ gR0,k(F2
k f ) .

Combining (A.11) with the limit W̃N /(aWN )
P−→ nL(X̃) (see (A.1)) we obtain,

using Slutsky’s theorem,

a2
N W̃−2

N

aMN
∑

i=1

w̃2
N ,if (x̃N ,i)

= (aWN /W̃N )2a−2
a
∑

k=1

a2
NW−2

N

MN
∑

j=1

w̃2
N ,a(j−1)+kf (x̃N ,a(j−1)+k)

P−→ a−2
a
∑

k=1

gR0,k(F2
k f )/[nL(X̃)]2

= g̃(f ) .

Finally, we establish the last property of Definition 3.2, that is,

aN W̃−1
N max

1≤i≤aMN

w̃N ,i
P−→ 0 . (A.12)

However, since, as shown by Douc and Moulines (2005, p. 30), for any k ∈
{1, . . . , a},

a2
N (aWN )−2 max

1≤j≤MN

w̃2
N ,a(j−1)+k

P−→ 0 ,

we immediately obtain

a2
N W̃−2

N max
1≤i≤aMN

w̃2
N ,i ≤ (aWN /W̃N )2

a
∑

k=1

a2
N (aWN )−2 max

1≤j≤MN

w̃2
N ,a(j−1)+k

P−→ 0 ,

from which (A.12) follows.
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It remains to show that the sets Ã and W̃ are proper. Since, by assumption,
L(·, X̃) ∈ A and R0,k(·,F2

k ) ∈ W, k ∈ {1, . . . , a}, we conclude immediately
that all constant functions f ≡ c belong to Ã. Now, let |f | ≤ |g|, where g belongs
to Ã. Then L(·, |f |) ≤ L(·, |g|) ∈ A and R0,k(·,F2

k f 2) ≤ R0,k(·,F2
k g2) ∈ W,

k ∈ {1, . . . , a}, implying, by property ii) in the definition of a proper set, that
f ∈ Ã. Finally, let f and g be any two functions in Ã. Then, for any constants
(a, b) ∈ R

2, L(·, |af + bg|) ≤ |a|L(·, |f |) + |b|L(·, |g|) ∈ A; moreover, for all
k ∈ {1, . . . , a},
R0,k(·,F2

k [af +bg]2) ≤ (a2
+|a|)R0,k(·,F2

k f 2)+(b2
+|b|)R0,k(·,F2

k g2) ∈W ,

implying that af + bg ∈ Ã. The properness of W̃ is established in a similar
manner. This completes the proof.

A.3 Proof of (4.10)

Since U (n)
i and e(n)

i are independent, it holds that

Cov
( x̃(n+1)

N ,a(i−1)+1, x̃(n+1)
N ,a(i−1)+2

∣

∣

∣ x(n)
N ,i = x)

= [(t(1)
n (x))2

+ (t(2)
n (x))2] Cov

(1
{U (n)

i <b̄n(x)},1{1−U (n)
i <b̄n(x)}

∣

∣

∣ x(n)
N ,i = x)

+ 2t(1)
n (x)t(2)

n (x) Cov
(1
{U (n)

i <b̄n(x)},1{1−U (n)
i ≥b̄n(x)}

∣

∣

∣
x(n)

N ,i = x)− h2
n .

(A.13)

In addition, as U (n)
i is independent of x(n)

N ,i we obtain

Cov
(1
{U (n)

i <b̄n(x)},1{1−U (n)
i <b̄n(x)}

∣

∣

∣ x(n)
N ,i = x)

= P

(

1− b̄n(x) < U (n)
i < b̄n(x)

∣

∣

∣
x(n)

N ,i = x)− b̄2
n (x)

= 1{b̄n(x)>1/2}(2b̄n(x)− 1)− b̄2
n (x) ,

(A.14)

and, analogously,

Cov
(1
{U (n)

i <b̄n(x)},1{1−U (n)
i ≥b̄n(x)}

∣

∣

∣
x(n)

N ,i = x)
= P

(

U (n)
i ≤ min{b̄n(x), 1− b̄n(x)}

∣

∣

∣ x(n)
N ,i = x)− b̄n(x)(1− b̄n(x))

= 1{b̄n(x)≤1/2}b̄n(x) + 1{b̄n(x)>1/2}(1− b̄n(x))− b̄n(x)(1− b̄n(x)) .
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(A.15)

Now, assume that b̄n(x) > 1/2; then, using (A.13)–(A.15),

Cov
( x̃(n+1)

N ,a(i−1)+1, x̃(n+1)
N ,a(i−1)+2

∣

∣

∣ x(n)
N ,i = x)

= −[(t(1)
n (x))2

+ (t(2)
n (x))2](1− b̄n(x))2

+ 2t(1)
n (x)t(2)

n (x)(1− b̄n(x))2 − h2
n

= −(t(1)
n (x)− t(2)

n (x))2(1− b̄n(x))2 − h2
n .

Moreover, that assuming b̄n(x) ≤ 1/2 yields similarly

Cov
( x̃(n+1)

N ,a(i−1)+1, x̃(n+1)
N ,a(i−1)+2

∣

∣

∣ x(n)
N ,i = x) = −(t(1)

n (x)−t(2)
n (x))2b̄2

n (x)−h2
n .

Finally, since x̃(n+1)
N ,a(i−1)+1 and x̃(n+1)

N ,a(i−1)+2 have, conditionally on x(n)
N ,i, the same

marginal distributions, and

Var
( x̃(n+1)

N ,a(i−1)+1

∣

∣

∣ x(n)
N ,i = x)

= (t(1)
n (x)− t(2)

n (x))2 Var
(1
{U (n)

i <b̄n(x)}

∣

∣

∣
x(n)

N ,i = x)+ h2
n

= (t(1)
n (x)− t(2)

n (x))2b̄n(x)(1− b̄n(x)) + h2
n ,

the identity (4.10) follows.
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