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Introduction, Motivation,

and Methods





1

Popular Science Summary

Many of the mass produced commodity products we encounter in our every day
life, such as laser printers, laser pointers, CD and DVD players contain diode
lasers. Also, telephone communication and Internet nowadays rely on fiber op-
tics communication technology for data transfer, in which diode lasers are used
as light source. Most of these devices emit light with wavelengths in, or close
to, the visible range. However, in certain situations this is a limitation. For
instance, most gases have clear absorption features in the infrared region (IR)
of the electromagnetic spectrum, while being invisible to the naked eye. In this
spectral region, the light has longer wavelength than visible light. Therefore, a
diode laser emitting light in the IR region would be useful for gas detection.

A second situation where long wavelength light is advantageous is at the
security screening at airports. Terahertz (THz) radiation, sometimes called
T-rays, with even longer wavelengths than IR, would penetrate clothes but not
enter the body, unlike harmful X-ray radiation. This type of security screening
was recently installed at Manchester Airport1. Other potential applications
are dental imaging and detection of skin cancer. The quantum cascade laser,
studied in this thesis, is a small and compact laser emitting in both the IR and
THz region.

Both the standard diode laser and the quantum cascade laser are build from
semiconductor materials. However, as the light emitted by the diode laser is
determined by the so-called band gap, which is a property of the material,
the wavelength of the light emitted from the quantum cascade laser is instead
dependent of how the laser is designed.

Quantum cascade lasers are made by putting thin layers of two different
semiconductor material on top of each other. There are typically 1000 layers
in a quantum cascade laser and in some cases these layers are only a few layers
of atoms thick. When the layers are connected to a battery, electrons will flow
from layer to layer in a steplike manner, see Fig. 1.1.

A useful analogy is that in standard diode lasers the electrons flow like
water down a water fall, and every electron emit a little bit of light in the fall.

1See, e.g., Swedish newspaper Dagens Nyheter 13 Oct 2009, “Nakenröntgen i Manchester”.
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Figure 1.1: Sketch of a quantum cascade laser. The thin line is the electron
potential created by the layer structure. Electrons flow, as indicated by black
arrows, between discrete states (black lines). When the electrons fall down in
energy light is emitted (grey arrows). The slope of the whole structure is given
by an applied voltage. The structure above, where only two layers are repeated
is somewhat simplified. A realistic structure can be seen on the cover of this
thesis or in Fig. 3.2.

The color of the light is determined by the height of the waterfall. On the other
hand, in quantum cascade lasers electrons flow like water down a staircase, and
at every step light is emitted. The fundamental difference is that the height
of the steps are determined by the width of the layers and not the type of
semiconductor material. Also, due to the very many layers, the electrons emit
light multiple times while going through the laser.

The operational principle of the quantum cascade laser was first proposed
almost 40 years ago. However, it took until 1994 for the technology to produce
these thin layers of high quality materials reached the stage for a working
quantum cascade laser to be built. Since then, the research field of quantum
cascade lasers has grown in many directions. After the first IR quantum cascade
laser operating at room temperature in 2002, this type is now commercially
available. The THz lasers currently operate up to -80◦C, and are therefore
rarely used in applications.

This thesis focus on what mechanism affect and degrade the laser per-
formance. More specifically, the temperature dependence screening, a conse-
quences from the fact that electrons repel each other, is investigated. In a
longer perspective, this thesis might aid the progress of the research field, such
that, in future, the THz quantum cascade laser will operate at room tempera-
ture. Then, maybe, the waiting lines at airports would be shorter, the radiation
exposure at the dentist would be less, and skin cancer detection would be faster
and more accurate.
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Populärvetenskaplig

sammanfattning

Många av de massproducerade apparater vi stöter p̊a i v̊ar vardag, s̊asom laser-
skrivare, laserpekare, CD- och DVD-spelare inneh̊aller diodlasrar. Även telefo-
ni och Internet använder numera fiberoptik för dataöverföring där diodlasrar
används som ljuskällor. De flesta av dessa lasrar avger ljus med v̊aglängder
inom strax eller utanför det synliga omr̊adet. I vissa situationer är detta en
begränsning. Till exempel har de flesta gaser tydliga absorptionslinjer i det
infraröda (IR) omr̊adet av det elektromagnetiska spektrumet, samtidigt som
de är osynliga för blotta ögat. I detta spektrala omr̊ade har ljuset en längre
v̊aglängd än synligt ljus. Därför skulle en diodlaser som avger ljus i IR-omr̊adet
vara mycket användbar för att t.ex. detektera gaser.

En annan tillämpning där ljus med l̊ang v̊aglängd vore fördelaktigt är vid
säkerhetskontroller p̊a flygplatser. Terahertzstr̊alning (THz), med ännu längre
v̊aglängder än IR, skulle tränga igenom kläder men inte komma in i kroppen
till skillnad fr̊an skadlig röntgenstr̊alning. Denna typ av säkerhetskontroll har
nyligen installerats vid Manchesters flygplats1. Andra potentiella tillämpningar
är tandröntgen och diagnostisering av hudcancer. Kvantkaskadlasern, som stu-
deras i denna avhandling, är en liten och kompakt laser som sänder ut ljus i
b̊ade IR- och THz-omr̊adet.

B̊ade den vanliga diodlasern och kvantkaskadlasern är tillverkade av halvle-
darmaterial. D̊a v̊aglängden p̊a ljuset fr̊an diodlasern bestäms av det s̊a kallade
bandgapet, en egenskap hos materialet, s̊a är v̊aglängden fr̊an kvantkaskadla-
sern istället beroende av hur lasern är konstruerad.

Kvantkaskadlasrar tillverkas genom att tunna skikt av tv̊a olika halvledar-
material läggs ovanp̊a varandra. Det finns vanligen ca 1000 lager i en kvant-
kaskadlaser och i vissa fall är dessa lager bara n̊agra f̊a atomlager tjocka. När
lagren ansluts till ett batteri kommer elektroner att flöda fr̊an lager till lager
p̊a ett steglikt sätt, se figur 2.1.

1Se t.ex. Dagens Nyheter 13 oktober 2009, “Nakenröntgen i Manchester”.
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Figur 2.1: Skiss av en kvantkaskadlaser. Den tunna linjen är elektronpotentialen
som skapats av lagerstrukturen. Elektronerna flödar, vilket indikeras av svarta
pilar mellan olika energitillst̊and (svarta linjer). När elektronerna faller ned̊at
i energi utsänds ljus (gr̊a pilar). Lutningen p̊a strukturen ges av en p̊alagd
spänning. Strukturen ovan, där endast tv̊a lager upprepas tre g̊anger, är n̊agot
förenklad. En realistisk struktur kan ses p̊a omslaget till denna avhandling eller
i figur 3.2.

En användbar analogi är att i en vanlig diodlaser flödar elektronerna som
vatten ner för ett vattenfall och varje elektron avger lite ljus i fallet. Färgen
p̊a ljuset bestäms av höjden p̊a vattenfallet. I kvantkaskadlasern flödar elektro-
nerna som vatten ner för en trappa och vid varje steg utsänds ljus. Den fun-
damentala skillnaden är att höjden p̊a stegen bestäms av bredden p̊a lagren
och inte av typen av halvledarmaterial. P̊a grund av de många lagren avger
elektronerna ocks̊a ljus flera g̊anger d̊a de passerar igenom lasern.

Principen för laserverkan i kvantkaskadlasern föreslogs för nästan 40 år
sedan. Emellertid dröjde det fram till 1994 innan tekniken att tillverka des-
sa tunna lager av högkvalitativa material n̊att en fungerande niv̊a för att en
kvantkaskadlaser kunde byggas. Sedan dess har forskningen kring dessa lasrar
fortsatt i flera riktningar. Efter att den första kvantkaskadlasern i IR-omr̊adet
n̊adde rumstemperatur 2002 är nu denna typ kommersiellt tillgänglig. Kvant-
kaskadlasrar i THz-omr̊adet fungerar för närvarande bara upp till -80◦C och är
därför sv̊ara att tillämpa praktiskt.

Denna avhandling fokuserar p̊a de mekanismer som p̊averkar och försämrar
laserns prestanda. Mer specifikt studeras temperatureberoendet hos skärmning,
en effekt av att elektroner repelerar varandra. I ett längre perspektiv kan denna
avhandling stödja framsteg inom forskningsomr̊adet s̊a att kvantkaskadlasrar
i THz-omr̊adet i framtiden kan fungera vid rumstemperatur. D̊a skulle köer
p̊a flygplatser kunna bli kortare, str̊alningsexponering hos tandläkaren vara
mindre och metoder för att upptäcka hudcancer skulle kunna bli snabbare och
mer exakta.
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The Quantum Cascade Laser

The Quantum Cascade Laser (QCL) was first experimentally realized at Bell
Labs in 1994 [1] after the theoretical study by Esaki and Tsu on negative dif-
ferential conductance in superlattices in 1970 [2]. This system was also studied
by Kazarinov and Suris in 1971 [3] when the authors proposed amplification
of electromagnetic radiation between different subbands. This effect was ex-
plained in more details by the same authors the following year [4].

The QCL is an unipolar opto-electronic semiconductor device with laser
emission now covering a large range of the electromagnetic spectrum, from the
infrared (IR) to the terahertz (THz) region. These regions are important in
many technological applications such as gas sensing, environmental monitoring,
telecommunications and security screening [5].

The standard semiconductor diode laser is a mature technology used in a
variety of applications, such as laser pointers, laser printer, DVD/CD-players
etc. They are efficient, compact and cheap. However, their spectral range is
limited to the band gap of the lasing material. This is due to the operational
principle of these interband lasers, namely that electrons in the conduction
band and holes in the valence band recombine and photons are emitted. The
frequency of the light is determined by the band gap of the material. The QCL
differs in a fundamental way from the ordinary diode laser. Here, the light
is emitted by transitions between subbands in quantum wells formed in the
conduction band.

Quantum wells are manufactured by growing thin layers of different semi-
conductor materials, often only a few atom layers thick, on top of each other, see
right part of Fig. 3.1. A step-like conduction band potential is created, which
confines the electrons in the growth direction. Electronic states are formed in
these quantum wells at discrete energies. These energies are determined by the
well widths and material parameters, such as effective masses, and conduction
band offsets. In QCLs, inverted populations between these subbands give rise
to the laser action. The main advantage is that by tailoring the dimensions
of the quantum wells the energy spacing between the lasing subbands can be
controlled, which determines the lasing frequency.
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Figure 3.1: A THz Laser. Left: Scanning electron microscope image of a
GaAs/Al0.15Ga0.85As THz QCL covered on top by a metal waveguide. The
laser ridge is 25 µm wide with a 10 µm thick active region. For more details
see Ref. [6]. Right: Transmission electron micrograph of five periods of semi-
conductor layers from the front side of the laser ridge to the left. The dark
regions correspond to Al0.15Ga0.85As and the bright to GaAs. The device con-
stitutes of approx. 200 periods, corresponding to 1600 semiconductor layers,
each only a few atom layers thick. Under operation, a voltage is applied be-
tween the top and bottom of the laser ridge, which causes an electron flow
governed by scattering and coherent evolution. The device studied in Papers
II-V is identical to the one in the images. The potential structure is depicted
on the cover of this thesis. [Courtesy of S. Kumar].

3.1 Principle of Operation

The operational principle of most lasers is to have more electrons in an excited
state than in a state with lower energy, a situation known as population in-
version. This is a highly non-equilibrium state and is often difficult to achieve
and maintain. The inversion can be achieved either by optical or electrical
pumping, the latter is the case for the QCL. Practically, this means that the
quantum wells in QCLs are tailored such that a population inversion between
two specific subbands is built up when a certain bias is applied to the device.

The two key issues to obtain a large population inversion are a long lifetime
for the upper laser state and a short for the lower laser state. Efficient filling
of the upper laser subband from an injector subband together with a minimum
of outward transport channels is important to reach a highly populated upper
laser subband.

Longitudinal optical (LO) phonons couple strongly to electrons and have an
almost constant dispersion close to 36 meV in most semiconductors of interest.
This scattering mechanism is used in the most common way of achieving a
short lifetime in the lower laser subband. The quantum wells are tailored such
that there is an ejector subband located one optical phonon energy below.
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Figure 3.2: The subband structure of a THz QCL [7] on the left and a mid-IR
QCL [8] on the right. The lasing transition occurs from the blue to the red
subband. The green subbands are the injector subband designed to efficiently
inject electrons in the upper laser subband via resonant tunneling at the design
bias. The yellow subbands are the ejector subbands designed to efficiently
depopulate the lower laser subbands via phonon emission. The full black lines
are the heterostructure potentials plus bias, Vh.c.(z)− eFz, and the thin grey
lines are other subbands not essential for laser action. Note that the THz device
has much fewer subbands per period, e.g., the ejector subband of one period is
the same as the injector for the next.

Thereby, electrons will relax fast from the lower laser subband by emitting
optical phonons, see Fig. 3.2.

A second feature that differs between ordinary semiconductor diode lasers
and QCLs, is that the electrons are re-used in QCLs. Once the electrons enter
the ejector subband they are reinjected into the upper laser subband of the
neighboring quantum wells, see Fig. 3.2. This is made possible by a periodic
repetition of a set of quantum wells, usually referred to as a period. Thereby,
electrons may emit many photons when going through the QCL, while only
one photon can be emitted per electron entering a diode laser. This periodic
repetition of a set of quantum wells is clearly visible in right part of Fig. 3.1.

Most QCLs are based either on the Al0.48In0.52As/Ga0.47In0.53As material
system or AlxGa1−xAs/GaAs. The first material system has a conduction
band offset, or quantum well depth, of approximately 520 meV and is lattice
matched to InP. In the AlGaAs/GaAs system there is a degree of freedom,
AlAs and GaAs have approximately the same lattice constant and mixing these
materials does not give rise to any strain. Therefore, x can in principle be any
concentration between 0 and 1 and the resulting conduction band offset is
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approximately 995x meV for x . 0.51 [9, 10]. More exotic material systems
have been proposed, mainly to reach larger conduction band offsets in order to
achieve lasing at higher frequencies.

The first lasers where based on the AlInAs/GaInAs system because of its
large conduction band offset, the low effective mass and the fact that InP is
a suitable waveguide material. However, both alloy and interface roughness
scattering are strong in this material system. In GaAs, alloy scattering is
not present, and the lower conduction band offset that can be chosen in Al-
GaAs/GaAs diminish interface roughness scattering. Therefore, this is often
the material system of choice for long wavelength, THz lasers.

3.2 Current Status

Since the first realization one and a half decade ago, the QCL designs have
improved fast. The current wavelength span, without the use strong magnetic
fields are from 2.6 µm [11] to 250 µm (1.2 THz) [12], which is almost two
orders of magnitudes for the same lasing principle. Also, lasing far above room
temperature has been achieved [13].

Due to the strong relaxation at the LO phonon energy2, maintaining a
population inversion at this specific energy has so far been unfruitful. This
energy divides the QCLs into two groups: First, high frequency lasers, called
mid-IR QCLs having lasing frequencies above the optical phonon frequency,
and second, THz QCLs that emit radiation below this frequency.

While the mid-IR QCL is now a mature, commercially available technology,
lasing up to and beyond room temperature, there is ongoing research towards
higher frequencies [14]. THz lasers are, however, still bound by their low op-
erating temperatures, which strongly restricts any potential applications. In-
creasing the temperature operating range of these devices is an area of intense
research [15, 16], but also lasing at lower frequencies is of interest.

There are a few different design schemes for THz QCLs occurring in liter-
ature [15]. In Fig. 3.3, the design are simply grouped into Resonant Phonon
(RP) designs and other designs. The uniting feature of the other designs is that
they are not based on depopulation of the lower laser subband via LO phonon
emission. Instead, electrons leave the lower laser subband via tunneling and
scattering into a miniband of closely separated subbands. The electrons flow via
this miniband into the upper laser subband of the next period. From Fig. 3.3,
it can be can concluded that these other designs are favorable for lower laser
frequencies but have inferior temperature performance.

1For x > 0.38 the Γ-point is no longer the minimum of the conduction band [9] and
transport complications will arise.

236 meV, 8.7 THz or 34 µm in GaAs, 50 meV in AlAs and 30 meV in InAs.
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Figure 3.3: Maximum operating temperature vs. emission frequency for THz
QCLs. At higher temperatures, resonant phonon designs are leading while for
low frequencies other designs are favorable. There is strong ongoing research
toward higher operating temperatures (up in figure) and, also, towards lower
frequencies (left in figure). A magnetic field of 31 T was needed for the strongly
deviating laser in the upper left corner of the figure [17]. The figure is adapted
from Ref. [15] with data added from Refs. [17–20].

Resonance phonon depopulation differs slightly from standard phonon de-
population. In order to quench relaxation directly from the upper laser subband
to the ejector subband by phonon emission in THz lasers, the ejector subband
is shifted spatially to lower the overlap with both the lasing subbands. To
maintain strong depopulation of the lower laser subband a second subband
with a strong overlap with the ejector subband is put in resonance with the
lower laser subband. Thus, electrons leave the lower laser subband via reso-
nant tunneling to the energetically aligned subband and, from there, relax to
the ejector subband by emitting an optical phonon. This extra subband can
be seen in left part of Fig. 3.2.

A second advantage with the other, non-RP, designs is much better wall-
plug efficiency [21]. This quantity is defined as the power of the outgoing laser
light divided by the electric power put in the device. The rest of the power will
be dissipated and heat up the device. In an absolutely ideal RP THz laser one
optical phonon is emitted for every photon. The energy loss to the phonons will
heat the device and therfore, the maximum wall-plug efficiency will be hf/(hf+
ELO) or ∼25 % at 2 THz in GaAs, which gets worse for lower frequencies. In
the other designs, there are no theoretical limit for the wall-plug efficiency since
the energetic width of the miniband (energy difference between the lower laser
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subband and the upper laser subband of the next period) can, in principle, be
made arbitrarily small. However, as scattering within the miniband is expected
to be so strong that the electrons are in quasi-equilibrium, the energetical width
of the miniband and the electron temperature alone determine the population
inversion.

This is also the reason for the low maximum operation temperature in these
devices; As the emitted photons should not be re-absorbed in the miniband,
the energetic width of the miniband must be smaller than hf . Currently, an
optimized non-RP THz QCL has and wall-plug efficiency of 2.4 % [22] while
the corresponding figure is 0.6 % for RP designs [23]. In this thesis only RP-
designs are studied, so unless explicity mentioned, THz QCL will refer to RP
THz QCL.

In order to turn these different designs into working lasers they need to be
paired up with some waveguide that confine the laser light field to the gain
material while, at the same time, absorb as little energy as possible. This is a
research field on its own and will not be discussed here.

An alternative approach to obtain THz emission is to design a mid-IR de-
vice that emits light at two frequencies. THz emission can then be generated
by difference frequency generation inside the laser device. Emission has been
observed up to room temperature [16]. However, the poor conversion efficiency
of the nonlinear process gives an output power of only 3 µW.
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Heterostructures

Semiconductors are characterized by a finite energy gap between states filled by
electrons, the so-called valance band, and empty available states, the conduc-
tion band. This band gap is often of the order of the energy of a photon in the
visible region of the electromagnetic spectrum, which is the feature employed
in most opto-electronic devices. As the size of the gap is relatively small, the
conductivity of the semiconductor can be controlled by external voltages or
doping, which is key feature of building block of computers, the transistor.

This thesis deals with the physics of electrons in the conduction band only.
In bulk semiconductor the energy of an electron in the bottom of the conduction
band can be written as

E(~k) =
~

2|~k − ~k0|2
2m∗

+ Ec, (4.1)

where ~k is the 3-dimensional crystal wave vector, ~k0 is the wave vector at the
bottom of the conduction band, m∗ is the effective mass determined by the
curvature of the conduction band at ~k0, and Ec is the energy of the conduction
band at ~k0. In the semiconductors relevant here, the bottom of the conduction
band is the Γ-point, where ~k0 = 0. This is not the case in, e.g., the popular
material for electronics, silicon. In general the (inverse) effective mass will be a
tensor. However, the high symmetry of the crystal at the Γ-point results in an
isotropic effective mass. The effective mass is generally much lower than the
free electron mass.

The wavefunctions in the conduction band for bulk materials are Bloch
functions, given by Bloch’s theorem [24],

ϕ~k(~r) = ei
~k·~ru~k(~r), (4.2)

where u~k(~r) is a fast oscillating lattice periodic function. Close to the Γ-point
a common approximation is u~k(~r) ≈ u~k0

(~r) and, thus, the Bloch functions,
Eq. (4.2), show strong similarities to plane waves, on a long length scale.
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4.1 Heterostructures – Quantum Wells

Different types of semiconductors can be grown in layers, a structure known
as heterostructure. Each layer has a certain conduction band energy and ef-
fective mass. An often used approximation in these type of systems is the
envelope function approximation [25], where the system is described, in the
growth direction, by the Hamiltonian [26],

Ĥ = −~
2

2

d

dz

1

m∗(z)

d

dz
+ Vh.s.(z), (4.3)

where the layers have been grown in the z-direction. The effective mass and
the heterostructure potential, Vh.s.(z), are material dependent and therefore z
dependent in a step-like manner. The eigenstates of the Hamiltonian are the
envelope functions. The planewave form of the envelope function in Eq. (4.2)
suggests that the eigenstates of the full heterostructure Hamiltonian, including
the ionic potential, are the envelope functions together with the lattice periodic
function, u~k(~r). The effective mass has been placed between the two spatial
derivatives in order to have a hermitian Hamiltonian, although there is an on-
going discussion regarding the correct form of the kinetic energy with spatially
dependent mass, see, e.g., Refs. [27,28]. Most ambiguities comes from fact that
the boundary conditions for the envelope functions are not well defined, such
as for the full wavefunction.

A simple, but interesting, heterostructure is the quantum well, where a
thin layer of a material with a low conduction band energy, Ec, is sandwiched
between barrier material with larger conduction band energy. This potential
structure will localize electrons in the z-direction, with the resulting envelope
function,

Ψn
k(~r) =

eik·r√
A
ψn(z), (4.4)

where bold quantities are two-dimension vectors in the plane of the quantum
well, A is the normalizing area of the structure and ψn(z) the envelope function
in the growth direction. The n-index corresponds to different subbands in the
quantum well. The corresponding energy is

Enk = En +
~

2|k|2
2m∗

, (4.5)

where En is eigenenergy of the one dimensional Hamiltonian, Eq. (4.3), and
the second terms is the in-plane kinetic energy. As the envelope functions
overlap both well and barrier material the choice of effective mass in not straight
forward. However, as the envelope functions mainly reside in the well material,
this effective mass is often chosen. The parabolic energy dispersion is known as
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a subband and is central in this thesis. The density of states for each subband
is constant in energy,

ρn(E) =
m∗

π~2
θ(E − En). (4.6)

A further complication in these heterostructures is that the mass is en-
ergy dependent. In the effective mass approximation the conduction band is
Taylor expanded in wave vector, and the second order term, or the curvature,
corresponds to the effective mass. Close to the Γ-point this is an excellent
approximation. However, in many mid-IR lasers, such as the one studied in
Paper I, quite high energies are involved, and accordingly, the effective mass
needs to be adjusted. At higher energies, the conduction band becomes more
flat and the effective mass increases. To capture this energy dependence the
following expression is used (see Ref. [29] or Eq. (49), Chap. 1 in Ref. [25])

m∗(E) = m∗
(

1 +
E − Ec

Eg

)

, (4.7)

where m∗ is the effective mass at the Γ-point and Eg is the band gap of the
material. The energy scale on which the effective mass changes is the band gap
energy, of the order of 1 eV in most materials, and is relatively large compared
to the energy scale of subbands in the quantum wells. Thus, the resulting
Hamiltonian used throughout this work for evaluating the envelope functions
in the z-direction is

Ĥ = −~
2

2

d

dz

1

m∗(z, E)

d

dz
+ Vh.s.(z). (4.8)

The term envelope function will be dropped for the more commonly used term
wavefunction.

4.2 Periodic Structures – Superlattices

The laser structures studied in this thesis consist of sets of quantum wells,
repeated on the order of hundred times, a system known as superlattice. This
periodicity in the growth direction gives a certain form of the solutions to
Eq. (4.8). By the use of Bloch’s theorem the solutions can be written as

ϕν
q (z) = eiqzuν

q (z), (4.9)

where ν refers to different minibands, q is the wave vector in the growth direc-
tion, uν

q (z) = uν
q (z+ d) is the superlattice periodic function and d is the period

length of the superlattice. The corresponding energies form minibands. Note
that previously Bloch’s theorem was used for a periodic array of ions resulting
in the valance and conduction band, and here, a periodic array of quantum
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wells gives rise to minibands within the conduction band. The main difference
is that normal crystals are given by Nature, while here, the periodic poten-
tial, Vh.s.(z), is controlled by the grower. These interesting systems, similar
to quantum cascade lasers but simpler, are studied in more detail in the field
of superlattices [30]. It should be noted, however, that the simplest working
quantum cascade laser has only two quantum wells per period [20].

The Bloch functions in Eq. (4.9) are infinitely extending and are therefore
not suitable for numerical computations. Even analytically, infinitely extending
states can give rise to problems with negative spectral functions, see Chap. 11.2
in Ref. [31] and references therein. Instead, the Bloch functions can be trans-
formed to localized Wannier -functions,

Ψν(z − nd) =
√

d

2π

∫ π/d

−π/d

dq e−inqzϕν
q (z). (4.10)

These states are not eigenstates of the Hamiltonian, but are localized and
orthonormal, and each state, periodically translated, spans a full miniband.
The trick here is to choose the phase of the Bloch functions, ϕν

q (z), to get a
strongly localized Wannier functions, see, e.g., Ref. [32].

Under operating conditions, strong static electric fields are applied to the
heterostructures, which break the translation invariance, resulting in a Hamil-
tonian of the form

Ĥ = −~
2

2

d

dz

1

m∗(z, E)

d

dz
+ Vh.s.(z)− eFz, (4.11)

where e < 0 is the electron charge and F the electric field. Mathematically,
the electric field gives rise to problems; The Hamiltonian is not bounded from
below and this will result in a continuous energy spectrum [33]. However,
for any approximate eigenstate Ψ(z) with energy E, there will be infinitely
many similar states Ψ(z − nd) with energy E − eFdn, where n is an arbitrary
integer. This structure is known as the Wannier-Stark ladder. In order to find
these approximate eigenstates, the Hamiltonian in Eq. (4.11) is diagonalized
including a few Wannier states per period and a few periods, and the central
wavefunctions are chosen as approximate Wannier-Stark states. For a typical
THz laser ∼5 states/period are chosen and ∼15 for a mid-IR laser, and states
from three periods are usually diagonalized. An alternative to the approach
described above is to solve Eq. (4.11) for one or a few periods and choose the
resulting states as basis states.

There are, however, a few advantages with the scheme described above. By
including a certain number of Wannier states one can be sure to fully span
the Hilbert space up to a certain energy. Even further, this energy can be
higher than the height of the barriers, an energy region where the electrons
are unbound. These states are difficult to obtain correctly by simply solving
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Eq. (4.11) are important in Paper I where absorption to these high energy
states is discussed.

In the transport calculation, the average potential from the ionized dopants
and mean-field electron-electron interaction, which also are periodic in the
growth direction, are included in Vh.s.(z). This, however, has to be calculated
self-consistency.

Calculating the properties of quantum well structures, such as the QCL,
can usually be divided into three different tasks. First, the eigenstates and
eigenenergies of the heterostructure potential are calculated by solving the
Schrödninger equation. Once the wavefunctions are known, the occupation of
these states and the current are calculated via some transport method. Finally,
to obtain the optical laser characteristics, the response to an electromagnetic
field is calculated.

The first part of the calculations was discussed above. The periodicity
of these structures together with the static electric field gives rise to some
complications, as described above, but can be solved by certain approximation
schemes. The second step, the transport calculation, is needed to obtain the
current and distribution of electron, will be addressed in Chap. 6. There are,
however, transport implementations that do not require any basis states and
are instead spatially meshed in the z-direction [34]. And, at last, the optical
properties are calculated via the response to an oscillating electromagnetic field,
as described in Chap. 8.
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5

Scattering Mechanisms

Independent of calculation method, including the important scattering mecha-
nisms is crucial to correctly model the transport properties of QCLs. In order
to understand the operational state of the QCL and to further optimize its per-
formance, knowledge about the features of the different scattering mechanisms
is necessary. The dominant scattering mechanisms are summarized in Tab. 5.1.

5.1 Phonon Scattering

Scattering with longitudinal optical phonons is an important scattering mech-
anism in most QCLs. The most common scheme to reach a high depletion
rate from the lower laser subband is to tailor the conduction band profile such
that an ejector subband is located one optical phonon energy below. This
situation causes the electrons in the lower laser subband to relax down the
ejector subband by emitting optical phonons. This scheme is referred to as the
phonon depopulation scheme and is used frequently in both THz and mid-IR

Scattering Mechanism Elastic Temp. dep. Comment

Optical phonon No Yes Dominant relax. proc.
Acoustic phonon No Yes Weak
Ionized impurity Yes Noa

Interface roughness Yes No Growth & material dep.
Alloy disorder Yes No Material dep.

Electron-electron Yes/Nob Yes/Noa

Table 5.1: The most common scattering mechanisms in QCLs.

aBoth impurity and electron-electron scattering are temperature independent. However,
in most approximations regarding the screening, an effective electron temperature enters.

bSince electron-electron scattering is a many-body effect each electron might lose och gain
energy, however, the total energy of the electron gas is conserved at each scattering event.
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Figure 5.1: Phonon dispersion in GaAs obtained by inelastic neutron scattering.
Red lines show the acoustic phonon branches and blue show optical branches.
Full lines correspond to longitudinal and dashed to transverse polarization. In
the calculation only the longitudinal phonons (full lines) are taken into account.
The optical phonon dispersion is approximated by a constant at 36 meV and
the acoustic with a linear dispersion with a slope corresponding to the sound
velocity. The phonon wave vector is given in dimensionless units. The typical
electron wave vector on this scale is much smaller, ke

typ ≈ 0.02. The figure is
adapted from Ref. [35].

devices. The dispersion of optical phonons is approximately constant and close
to 36 meV in GaAs, see Fig. 5.1.

Acoustic phonons are only weakly coupled to electrons and this scattering
mechanism is often omitted in calculations. However, although the coupling
between electrons and acoustic phonons is relatively weak, it constitutes the
only coupling to the lattice at energies below the optical phonon energy and can
be crucial to thermalize the electron gas and couple it to the lattice tempera-
ture. Acoustic phonon scattering is also more difficult to include in calculations
compared to optical phonon scattering due to the linear dispersion, instead of
the constant dispersion for optical phonons, see Fig. 5.1. A detailed derivation
of a self-energy for acoustic phonon scattering, and a study of its importance
in RP THz QCLs, can be found in Paper III.
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The Hamiltonian describing electron-phonon interaction can be written as

Ĥe−ph =
∑

αβk

∑

qzq

g(~q)Mαβ(qz)â
†
α,k+qâβ,k

[

b̂~q + b̂†−~q

]

, (5.1)

where b̂~q (b̂†~q) annihilates (creates) a phonon with 3-dimensional wave vector

~q, Mαβ(qz) =
∫

dz ψ∗α(z)e
iqzzψβ(z) and g(~q) is the coupling strength. Lon-

gitudinal acoustic phonons (full red lines in Fig. 5.1) cause time and space
varying contractions and elongation of the lattice and couple to electrons via
the deformation potential. The corresponding coupling strength is

|g(~q)|2 = EphD
2

2ρV v2
, (5.2)

where Eph is the phonon energy,D is the deformation potential, i.e., the change
in the conduction band energy due to deformation, ρ is the mass density, and v
is the speed of sound in the material, corresponding to the slope of the disper-
sion. In our current model, the acoustic phonon energy is set, for simplicity, to
be a constant close to kBT .

Optical phonons in polar materials, such as the ones used for QCLs, cause
an oscillating polarization of the material with a coupling to electrons described
by

|g(~q)|2 = Ephe
2(εr − ε∞)

2εrε∞ε0V q2
, (5.3)

where εr is the relative dielectric constant of the semiconductor material, ε∞ is
the high frequency relative dielectric constant, and ε0 the permittivity of free
space. This form is known as the Fröhlich coupling [36].

The phonon emission rate is proportional to nB(Eph) + 1 where nB(E) is
the Bose-Einstein distribution function, (eE/kBT −1)−1, and Eph is the phonon
energy. The nB(Eph) term is due to stimulated phonon emission and the 1
corresponds to spontaneous emission. The strong temperature dependence of
phonon emission starts when stimulated emission dominates over spontaneous
emission, i.e., nB(Eph) ≈ 1 or Eph ≈ kBT . For an optical phonon energy of
36 meV this temperature equals 420 K. Therefore, the temperature dependence
of the optical phonon scattering is expected to be negligible for THz lasers
operating close to 200 K.

The phonons are assumed to be bulk-like, although the QCL consists of
many thin layers of different materials. In ternary alloys, such as Al0.15Ga0.85As,
most material parameters are well estimated by the weighted average between
AlAs and GaAs. This is not the case for the phonon frequencies, where instead
both the phonon frequency of AlAs and GaAs is expected to be present [37].
However, due to the low Al concentration in most THz QCLs, only a low
fractions of the phonon modes will be AlAs-like. In bulk AlxGa1−xAs, the
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AlAs-like phonon modes becomes dominant for x ≈ 0.4. The lighter Al ions
have higher phonon frequency, EAlAs

LO = 50 meV, and hence a stronger coupling,
see Eq. (5.3).

More important than the frequency of the phonons is the overlap with the
electronic states [38,39]. As the AlAs-like modes are, to a large extent, localized
to the barriers, and the electrons to the quantum wells, these modes are ex-
pected to play a minor role. Also, taking localized and interface phonon modes
into account in transport calculation would very much complicate matters.

5.2 Impurity Scattering

In order to get a high and controlled electron concentration in QCLs certain re-
gions of the laser period are doped. These doping atoms lose one electron each
and become ionized. The result is a background charge density of ions, ran-
domly located, which breaks the in-plane translation invariance and therefore
gives rise to scattering [40].

The potential from an ionized dopant is proportional to one over the dis-
tance. Due to the long-range nature of this potential screening becomes im-
portant. This will lower the magnitude of the potential at long distances and
the effective potential from an ion located at ~ri, reads

V i
eff(~r) =

e2

4πε0εr

e−λ|~r−~ri|

|~r − ~ri|
, (5.4)

where λ is the inverse screening length. The screening of ionized dopants is
central in this work, and a more detailed discussion can be found in Chap. 7
as well as in Papers II and V.

5.3 Interface Roughness Scattering

The interface between two materials can be made atomically sharp, meaning
that the change from one material to the other is between two neighboring
atomic layers. However, while the interface might be sharp and well defined,
it is not flat, see right side of Fig. 5.2. This breaks the in-plane translation
invariance and is taken into account by interface roughness scattering. Here,
the interface is assumed to be sharp, but the location in the growth direction
fluctuates randomly. The deviation of an interface from its expected position is
described by the random function ξ(r) with the following statistical properties

〈ξ(r)〉 = 0,

〈ξ(r)ξ(r′)〉 = η2e−|r−r′|/λ,
(5.5)
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Figure 5.2: Sketch of a AlAs/Al0.5Ga0.5As/GaAs/AlAs structure. Left: The
Al0.5Ga0.5As is not a homogeneous material, but a random mixture GaAs and
AlAs. This random potential will give rise to alloy scattering. Right: The
interfaces between to materials are not flat, they usually deviates from the
average interface position by an atomic layer, η ∼ 1 Å, and the fluctuation
have a typical length scale of λ ∼ 10 nm in the in-plane direction. This will
give rise to interface roughness scattering.

where η is the average fluctuation strength, often of the order of one atomic
layer, and, here, λ is the correlation length. Other correlation functions than
the exponential can be found in the literature, such as Gaussians [34,41]. Cor-
relations between neighboring interfaces are often neglected, although this is
questionable for very thin layers. Since the scattering is due to fluctuations
of positions of the interfaces, the magnitude of the scattering depends on the
conduction band offset. Therefore, this scattering mechanism is smaller in THz
devices due to the smaller conduction band offset compared to mid-IR devices.
In mid-IR devices, this scattering mechanism is dominant and alone determines
the linewidth of the laser [42]. Some simulation has also shown that this is the
dominant scattering mechanism in THz QCLs [34].

The fluctuating well widths can in principle localize electrons to regions
where the quantum well is extra wide and, therefore, interface roughness should
not be treated perturbatively. If a particle in a 3D box is considered, the
energy is proportional to l−2

x + l−2
y + l−2

z . The particle will localize if the
energy reduction of a wider well, lz → lz + 2η, is greater than energy gain
for localizing in the plane, lx,y = ∞ → lx,y = λ. This results in that it is
energetically favorable to localize in the plane if

lz <
3
√

2ηλ2, (5.6)

which for common parameters, η ∼ 1 Å and λ ∼ 10 nm, gives an upper limit for
the quantum well width of ∼3 nm. Most wavefunctions and quantum wells are
much wider, and also, at very thin quantum wells strong correlation between
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neighboring interfaces is expected, which would reduce the risk of localization
even further. An excellent text on the theory of localization due to scattering
potentials in semiconductors can be found in Chap. 7.1 of Ref. [43].

5.4 Alloy Scattering

The binary III-V semiconductor materials used in QCLs are obtained by mix-
ing materials from group III in the periodic system (aluminum (Al), gallium
(Ga), indium (In)) with materials from group V (phosphorus (P), arsenic (As),
antimony (Sb)). This, however, only gives a discrete number of materials since
the density of atoms of both groups must be equal. Even further, only a few
of these are lattice matched. Mixing two binary alloys gives a ternary alloy.
For instance, mixing AlAs and GaAs gives AlxGa1−xAs where 0 ≤ x ≤ 1.
Material parameters, such as effective mass, band gap and conduction band
offset, for the new material are usually linearly interpolated from its two con-
stituent binary alloys. In some situation linearly interpolated parameters do
not describe the ternary alloy well and bowing parameters must be taken into
account. These usually have the form Cx(1 − x) and can be found for most
III-V alloys in Ref. [9].

This interpolation scheme is, however, not entirely correct. In Al0.5Ga0.5As
for example, half of the crystal molecules are AlAs and half are GaAs. The
spatial distribution of these different crystal molecules are random and will
therefore give rise to scattering [44, 45]. A common way of minimizing alloy
scattering in QCLs is to choose GaAs for the well material and AlxGa1−xAs
for the barriers. Most electronic states have small overlap with the barrier
material, and therefore, alloy scattering becomes negligible compared to other
scattering mechanisms. Therefore, this is the material system of the optimized
lasers studied in Papers II-V.

A common approach is to treat alloy scattering in a ternary alloy of two
constituents, material A and B, as a random perturbing potential with one
value at regions of A and another at regions of B,

V i(~r) =

{

x∆V f(~r − ~ri) with probability 1− x
−(1− x)∆V f(~r − ~ri) with probability x

, (5.7)

where ∆V = EA
c − EB

c is the conduction band offset of material A and B,
f(~r) is equal to one inside the volume of a molecule of A or B located at the
origin and zero elsewhere. Since there are four Ga or Al atoms per unit cell
the size of the molecule is one fourth of the volume of the unit cell. Also,
since the dimension of the electron wavefunction is much larger than the lat-
tice constant, f(~r) is often approximated by a δ-function, f(~r) ≈ (a3/4)δ3(~r),
where a is the lattice constant. The δ-function gives a simple, wave vector in-
dependent scattering potential where the matrix element only depends on the
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wavefunction overlap. The material composition of neighboring unit cells is as-
sumed to be uncorrelated, although the fitting of phonon modes to reflectivity
measurements suggests some clustering [46].

5.5 Electron-Electron Scattering

All previous scattering mechanisms have involved a single electron interaction
with a scattering potential or a phonon bath. Electron-electron (e-e) scattering
differs since here, two electrons are involved. This causes an increased numerical
complexity, and therefore, up until recently, this scattering mechanism has only
been been included in simpler rate equation and Monte Carlo transport models.

Physically, e-e scattering is important for thermalization [47], as this is the
only scattering mechanism that facilitates direct energy exchange between the
particles. This scattering mechanism is especially important in non-RP THz
laser, which are designed such that optical phonon emission is quenched due
to small energy differences between subbands. Scattering within and between
the closely spaced subbands in the miniband is expected to be by large extent
determined by e-e scattering. These devices are typically employed for low
frequency operation at low temperatures, see Fig. 3.3, a situation where a closed
expression for the e-e scattering rate can be obtained [48]. It is found that e-
e scattering, from the upper to the lower laser subband, increases strongly
with smaller energy separation. However, the rate strongly depends on the
wavefunction symmetry.

In the transport implementation used in Papers II-IV, e-e scattering is ne-
glected. To phenomenologically remedy this lack of thermalization for the
carriers the coupling to the acoustic phonons can be increased. This will how-
ever not only thermalize the electron gas but also cool it, while a more detailed
Monte Carlo calculation has shown that e-e scattering heats the gas [47]. Also,
for the device presented in Ref. [7] the discrepancy between the experimen-
tal and simulated current-voltage relation increases with increased coupling to
acoustic phonons, see Paper III.

With strong approximations, e-e scattering has recently been implemented
in Non-Equilibrium Green’s Function transport calculations. In Ref. [34], e-e
scattering is included within the GW-approximation [49] where the screened
e-e interaction is approximated by the corresponding static scattering poten-
tial for an isotropic 3D electron gas at thermal equilibrium. Alternatively, in
Ref. [50], the GW-approximation is also employed, but with the plasmon pole
approximation instead, resulting in dynamic screening.
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Transport Models

As discussed in Chap. 4, electrons in QCL are confined by the heterostructure
potential in the growth direction, defined here as the ~z-direction, and are free
to move in the ~x~y-plane. The translational invariance in the ~x~y-plane suggests
the suitable form of the basis states,

Ψnk(z, r) = ψn(z)
eik·r√
A
, (6.1)

where n is the subband index, r and k are 2-dimensional vectors in the normal
and reciprocal ~x~y-plane, respectively, and A is the normalizing area.

The Hamiltonian describing the system is split up,

Ĥ = Ĥ0 + Ĥscatt, (6.2)

where Ĥ0 is diagonal in k and Ĥscatt contains all scattering mechanisms which
break the translational invariance in the ~x~y-plane and therefore couple states
with different in-plane wave vector, k. The form of Ĥ0 is

Ĥ0 =
∑

m,n,k

Umnkâ
†
mkânk,

Umnk = Umn +
~

2k2

2m∗
δmn,

(6.3)

where ânk (â†nk) is the annihilation (creation) operator corresponding to sub-
band n and in-plane wave vector k, and Umn is the matrix element including
the heterostructure potential, the mean-field electron-electron and electron-
dopant interaction, as well as applied electric field. The scattering part of the
Hamiltonian, Ĥscatt, is treated perturbatively via scattering rates or so-called
self-energies, as described below.

6.1 Rate Equations

The simplest approach to transport is rate equations [51]. Here, one starts with
the eigenstates of the heterostructure potential and calculates the scattering
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rates between the states using Fermi’s Golden Rule,

Γnk→n′k′ =
2π

~
|〈n′,k′|Hscatt|n,k〉|2δ(Enk − En′k′ ±∆E) , (6.4)

where ∆E is either 0 for elastic scattering or the phonon energy for phonon
scattering. The rates between subbands are then calculated via

Γn→n′ =
∑

k,k′

fn,kΓnk→n′k′(1− fn′,k′), (6.5)

where fn,k are momentum resolved occupations, such that

nn = (2/A)
∑

k

fn,k. (6.6)

The key simplification is that only subband populations nn are calculated, and
not the momentum resolved occupations, which are assumed to be Fermi-Dirac
distributions in Eq. (6.5).

Finally, the task is to find the stationary occupations nn, which are the
solution to

dnn

dt
= −

∑

n′

Γn→n′nn +
∑

n′

Γn′→nnn′ , (6.7)

when the time derivative is set zero with the constraints that
∑

n nn = ntot

and all nn ≥ 0. This equation can easily be solved once the scattering rates
are evaluated.

The advantage of choosing a simple model is that solutions can be found fast
and also, that it is possible to include very many scattering mechanisms, even
complex electron-electron scattering. Due to the many parameters in QCL de-
sign, such as barrier and well widths and bias, a fast transport implementation
is favorable for optimization.

6.2 Monte Carlo Method

Solving the rate equations for the momentum resolved occupations, fn,k instead
of the subband populations nn by simply inverting the rate equations is nu-
merically demanding. Instead, the Monte Carlo method can employed [52,53].
Here, the approach is quite different, a few electrons are followed in time while
random scattering events occur. Each scattering event is treated randomly with
probability proportional to the corresponding scattering rate. After a certain
time, the occupations fn,k can be estimated via the time averaged occupation
of the different states.
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A simplification used in Refs. [52,53] is using momentum independent scat-
tering matrix elements when calculating the scattering rates,

Γnk→n′k′ =
2π

~
|〈n′|Hscatt|n〉|2δ(Enk − En′k′ ±∆E) , (6.8)

where the momentum dependence comes from the energy conserving δ-function.

6.3 Density Matrix Theory

In order to improve the semi-classical methods described above, the so-called
coherences, or polarizations, are included, 〈â†mkânk〉 where m 6= n. These are
put in a matrix,

ρnm(k) =
〈

â†mkânk

〉

, (6.9)

where the diagonal elements correspond to the occupations, fnk = ρnn(k). This
is the reason for the name, the density-matrix method [54, 55]. The dynamics
is described by the von Neumann equation,

∂ρ

∂t
=

1

i~
[H, ρ], (6.10)

where [a, b] = ab− ba. The solution to [H, ρ] = 0 is the stationary state of the
QCL system [56,57].

Once the density matrix is found the expectation value of any operator, A,
can be found via,

〈A〉 = Tr[Aρ], (6.11)

where Tr[·] is the trace, in this system ∑

n,k〈n,k| · |n,k〉.

6.4 Non-Equilibrium Green’s Functions

To study the QCL system, the formalism of Non-Equilibrium Green’s Functions
(NEGF) can be used [31,58,59]. This method has successfully been applied to
analyze and describe superlattices [30] and QCLs by different groups [34, 60–
63]. The central quantity is the lesser Green’s function or correlation function,
defined by

G<
mn(k; tm, tn) = i

〈

â†n(k, tn)âm(k, tm)
〉

, (6.12)

also called the particle propagator. Due to the translational invariance in the
~x~y-plane, the Green’s functions are diagonal in k. Similarly, the retarded and
advanced Green’s function are defined as

Gret
mn(k; tm, tn) = −iθ(tm − tn)

〈{

âm(k, tm), â
†
n(k, tn)

}〉

, (6.13)

Gadv
mn (k; tm, tn) = iθ(tn − tm)

〈{

âm(k, tm), â
†
n(k, tn)

}〉

, (6.14)
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where θ(t) = 0 for t < 0 and θ(t) = 1 for t > 0. Furthermore, {a, b} = ab+ba is
the anti-commutator. The external potential in the studied system is assumed
to be constant in time. Therefore, the Green’s functions are only functions of
the difference between tm and tn and working with the Fourier transform is
more suitable

Gmn(k, E) =
1

~

∫

dt eiEt/~Gmn(k; t+ t0, t0). (6.15)

The lesser Green’s function can be related to the better known density
matrix by

ρmn(k) = −i
∫

dE

2π
G<

mn(k, E), (6.16)

i.e., the lesser Green’s function can be interpreted as an energy resolved density
matrix. From this expression, expectation values of any observable can be
calculated from Eq. (6.11). The energy-broadening is due to the time-energy
uncertainty,

∆t ·∆E ≈ ~ (6.17)

where ∆t is approximately the lifetime of an electron in a specific state and
∆E is a measure of the broadening.

The derivation of the equations of motion for the Green’s functions can be
found in Ref. [30]. The result is the Dyson equation1

∑

α

[

E −H0
mα(k) − Σret

mα(k, E)
]

Gret
αn(k, E) = δmn, (6.18)

and the Keldysh relation

G<
mn(k, E) =

∑

α,β

Gret
mα(k, E)Σ

<
αβ(k, E)G

adv
βn (k, E), (6.19)

where δnm is the Kronecker delta function and Σmn(k, E) are the self-energies
that take into account the different scattering mechanisms in Ĥscatt and are
functionals of the Green’s functions. A common graphical representation of the
Dyson equation, Eq. (6.18), is k, E =!k, E +"k, Ek, E

G(k, E) = G0(k, E) +G0(k, E)Σ(k, E)G(k, E),

(6.20)

1By identifying the bare Green’s function G0 = (E −H0)−1, Eq. (6.18) can be expressed
in a more common “Dyson form”, Gret = G0 +G0ΣretGret.
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where the thin arrows represent bare or free electron Green’s functions, G0,
and the thick arrows corresponds to dressed or full Green’s functions G. The
filled circle represents the self-energy,

Σαβ(q, E) = , (6.21)

describing the interaction with the scattering potentials. One advantage with
self-energies is that they can be expanded into infinite series where each term
can be intuitively represented by a Feynman diagram. In the calculations, only
one of these terms is included, which corresponds to the self-consistent Born
approximation,

Σ</ret
mn (k, E) =

∑

αβq

〈Vmα(k− q)Vβn(q − k)〉s.c.G
</ret
αβ (q, E)

=
∑

q
!k− q

q

k− q
,

(6.22)

where V (q) is the scattering potential in momentum space for a static scatterer
and the average is over different scattering configurations. Similar expressions
for self-energies corresponding to inelastic scattering can be found in Ref. [30].
As for the Green’s functions, these self-energies can be related to better-known
quantities,

∫

dE Σ<
mm(k, E) ≈ i~

∑

nk′

fnk′Γnk′→mk, (6.23)

i.e., the diagonal lesser self-energy can be seen as the scattering into a state. For
a detailed discussion on the interpretation of the self-energies, see Chap. 4.4 in
Ref. [59]. A similar expression for other self-energies can be found in Ref. [30].
The Keldysh relation and the Dyson equation, together with expressions for
the self-energies, such as the Born approximation, constitute a closed set of
equations, which can be solved self-consistently using an iterative scheme.

6.5 Scattering Averaging

All scattering processes described in Chap. 5 will break the in-plane transla-
tion invariance and thus couple states with different wave vector. However,
to simplify matters the self-energies are statistically averaged over all possible
scattering configurations [64, 65], such that the average of a quantity A that
depends on the spatial location of the impurities {Ri} is [31]

〈A({Ri})〉s.c. =
∏

i

∫

V

dRi

V
A({Ri}), (6.24)
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where any correlations in the impurity positions are neglected. This should be
valid in the QCL system of interest here since the in-plane area is large.

Thus, all scattering potentials are treated perturbatively and give a finite
lifetime of an electron state with a certain wave vector, which then is reflected
in the energy broadening of that state. Since alloy-, ionized impurity- and
interface roughness scattering are represented by static potentials, these could
in principle be diagonalized and new stationary states would be obtained. The
energy broadening in the averaging scheme above would then be reflected by
the different energies of the states obtained by diagonalizing the scattering
potentials. To the authors knowledge there exist no transport studies without
averaged scattering potentials but a study of alloy scattering under strong
magnetic fields is presented in Ref. [66]. Also, in Ref. [67], a study of interface
roughness scattering with focus on optical linewidth is presented.

6.6 Summary

In summary, in the NEGF method, the equations of motion for the quantity
〈

a†n(k, tn)am(k, tm)
〉

are solved. Neglecting dynamical effects, i.e., assuming
tn = tm, the density matrix approach is obtained and the quantity of interest
is
〈

a†n(k, t)am(k, t)
〉

. Going one step further and neglecting coherences one
arrives at the rate equation model and only densities are taken into account,
〈

a†n(k, t)an(k, t)
〉

. These methods are suitable for different types of studies,
e.g., the numerically demanding NEGF method is probably the method of
choice for studying the nature of coherent transport while a fast rate equations
implementation can be more efficient when optimizing mid-IR structures or
comparing the magnitude of different scattering mechanisms.
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Screening

The different scattering potentials from the previous chapter will, to different
degrees, affect the electron dynamics. Positive potentials will attract electrons
and negative will repel electrons. This will give rise to a lowering of the mag-
nitude of the scattering potential and is called screening. In this chapter, two
different screening models will be derived, first the isotropic screening model,
used in the transport calculations in first four papers of this thesis, and dis-
cussed in Papers II and V. QCLs are, however, far from isotropic, the thousands
of layers in the growth direction can strongly affect the screening, and there-
fore, a screening model for these multi-subband system is derived in the first
section of this chapter and is examined in Paper V.

7.1 Induced Charge in Quantum Wells

In this section the amount of induced charge due to a small perturbing poten-
tial will be calculated in quantum cascade structures. A first step is to deter-

mine the dynamics of the quantity
〈

â†m,k−qân,k

〉

. By combining Eqs. (6.10)

and (6.11) the equation of motion is of form,

d

dt

〈

â†m,k−qân,k

〉

=
i

~

〈[

Ĥ, â†m,k−qân,k

]〉

− γ
(〈

â†m,k−qân,k

〉

− δq,0δm,nfn,k

)

,
(7.1)

where Ĥ = Ĥ0 + Ĥscatt is the Hamiltonian, and the second row is added to
phenomenologically damp the coherences at large times. Later, γ is put to
zero. The Hamiltonian can be split up into two parts: Ĥ0, in which the basis
is diagonal, and Ĥscatt, which contains the scattering potential that couples
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different momentum states

Ĥ0 =
∑

n,k

En,kâ
†
n,kân,k,

Ĥscatt =
1

A

∑

n,m

∑

k,q 6=0

Vmn(q, t)â
†
m,k+q

ân,k,
(7.2)

where Vmn(q, t) is related to the scattering potential via,

V (~r, t) =
1

A

∑

q

∑

m,n

Vmn(q, t)ψ
∗
m(z)ψn(z)e

iq·r. (7.3)

Note that the potential is defined in units of electron energy, i.e., the electron
charge times the electrostatic potential. Also, the charge density is given by

ρ(~r) = 2
e

A

∑

n,n′

∑

k,q

ψ∗n(z)ψn′(z)eiq·r
〈

â†n,k−qân′,k

〉

, (7.4)

where the factor 2 in front is due to the spin degeneracy.
A Fourier transformation in time of Eq. (7.1) will result in the transforma-

tions dt → −iω and 1 → 2πδ(ω). To linear order in the scattering potential,

i.e.,
〈

â†i âj

〉

= fiδi,j +O{V }, the result is
〈

â†m,k−qân,k

〉

ω
=2πδq,0δm,nfn,k

+
1

A

fm,k−q − fn,k

Em,k−q − En,k + ~ω + i~γ
Vmn(q, ω) +O{V 2}.

(7.5)

By Eq. (7.4), the induced charge density due to the potential, is given by

ρind
mn(q, ω) = 2

e

A

∑

k

fm,k−q − fn,k

Em,k−q − En,k + ~ω + i~γ
Vmn(q, ω). (7.6)

The proportionality constant between the induced charge and the potential
is called the polarizability or polarization function,

Πnm(q, ω) = lim
γ→0

2

A

∑

k

fm,k+q − fn,k

Em,k+q − En,k − ~ω − i~γ
. (7.7)

This form of the polarizability is called the Random Phase Approximation
(RPA) [68], and can be seen as a time dependent Hartree approximation for
screening. Worth noting is that in the static case (ω = 0), the polarizability is
the occupation difference divided by the energy difference, which at equilibrium
always is negative. As e < 0, Eq. (7.6) shows that a positive electron potential



7.2 Isotropic Screening 35

will, quite intuitively, accumulate positive charge, or repel electrons. In the
dynamical situation (ω 6= 0), or in non-equilibrium systems, this will no longer
be the case. Evaluation of the polarizability for realistic structures is discussed
in App. A.

To summarize, in the presence of a scattering potential the electrons will
not only interact with the potential, but also the induced charge. The next
step is to calculate the interaction with the induced charge, which also will be
screened.

7.2 Isotropic Screening

Calculating the screened potential in realistic QCLs under operational condi-
tions is a complex task that has to be solved numerically. A simpler situation,
an ionized dopant screened by an isotropic electron gas at thermal equilibrium,
can be calculated analytically.

The effective, or total, scattering potential is the sum of the potential from
the bare impurity and the potential from the induced charge,

V eff(~r) = V imp(~r) + V ind(~r). (7.8)

In the mean-field approximation, the induced potential is governed by the Pois-
son equation,

∇2V ind(~r) = −e~ρ
ind(~r)

εrε0
, (7.9)

which can easily be solved in momentum space,

V ind(~q) =
eρind(~q)

εrε0|~q|2
= V ee(~q)Π(~q)V eff(~q), (7.10)

where V ee(~q) = e2/εrε0|~q|2 is the unscreened electron-electron matrix element
in 3 dimensions, and the induced charge is Π(~q)V eff(~q). Note that the effective
potential is giving rise to the charge, and not only in the impurity poten-
tial. This choice gives a self-consistent effective potential, which now can be
expressed by

V eff(~q) =
V imp(~q)

1− V ee(~q)Π(~q)
. (7.11)

In this isotropic system, the polarizability has a similar form as in pre-
vious section, however without the subband-index. The assumption of static
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screening and long wavelength results in

Π(~q) =
2

V

∑

~k

f~k−~q − f~k

E~k−~q − E~k

≈ 2

V

∑

~k

−~q · ∇~kf~k

−~q · ∇~kE~k

=
2

V

∑

~k

−~q · ∇~kE~k

∂f~k

∂µ

−~q · ∇~kE~k

=
∂

∂µ

2

V

∑

~k

f~k =
∂n

∂µ
.

(7.12)

With the inverse screening length defined as

λ =

√

e2

εrε0

∂n

∂µ
, (7.13)

the effective potential form a point charge with charge e located at the origin
becomes,

V eff(~r) =
e2

4πεrε0|~r|
e−λ|~r| = V imp(~r)e−λ|~r| (7.14)

which clearly illustrates the role of the inverse screening length, namely that
the Coulomb potential is exponentially suppressed at distances corresponding
to the screening length.

The partial derivative in the expression for the screening length can be eval-
uated in two limits: First, the non-degenerate, high temperature limit, where
the electron distribution can be approximated by a Boltzmann distribution,

∂n

∂µ
=

∂

∂µ

2

V

∑

~k

fFD
~k

≈ ∂

∂µ

2

V

∑

~k

e−(E~k
−µ)/kBT =

n

kBT
, (7.15)

which is called Debye screening. The second case is the degenerate, low tem-
perature, limit called Thomas-Fermi screening where the distribution function
is approximated with a step function, fFD

~k
= θ(µ− E~k). The resulting charge

accumulation is
∂n

∂µ
≈ m

π4/3~2
(3n)1/3, (7.16)

valid at very low temperatures, or high electron concentrations.
One central result in Paper V is that when the screening length is of the

order of the period of the laser structure or longer, all electrons contribute
to screening and the isotropic screening model described above gives excellent
agreement with the full RPA model with non-equilibrium distributions.

7.3 Screened Electron-Electron Interaction

In the first section of this chapter the polarizability for quantum cascade struc-
tures was derived. The next step is to calculate the screened impurity potentials
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in this anisotropic subband system. One approach, as outlined below and used
in Paper V, is to first calculate the screened electron-electron interaction and
then determine the screened scattering potentials.

The bare, or unscreened, electron-electron interaction is

V (~r1, ~r2) =
e2

4πεrε0|~r1 − ~r2|
, (7.17)

or, in the layered structures of interest here, its matrix elements are given by

Vijkl(q) =
e2

2Aε0εr

Fijkl(q)

q
, (7.18)

where the form factors are

Fijkl(q) =

∫

dz

∫

dz′ ψ∗i (z)ψj(z)e
−q|z−z′|ψ∗k(z

′)ψl(z
′). (7.19)

Calculating these matrix elements is computationally demanding and numerical
efficient schemes are presented in App. B.

The screened interaction matrix elements, Wijkl(q, ω), can be evaluated via
the infinite sum

W = V + VΠV + VΠVΠV + ..., (7.20)

where the subband indices and the wave vector and frequency dependence
have been omitted for simplicity. The first term on the right side represents
the direct interaction, the second term interaction with the induced charge
density, the third term represents interaction with the induced charge density
by the induced charge density, and so on. Along the lines of previous section,
this expression can be rewritten to

W = V + VΠ(V + VΠV + ...) = V + VΠW, (7.21)

which is knows as the Dyson equation. Including indices, wave vector and
frequency, the equation is

Wijkl(q, ω) = Vijkl(q) +
∑

mn

Vijnm(q)Πmn(q, ω)Wmnkl(q, ω), (7.22)

which is studied in detail for quantum cascade structures in Paper V. These
equations have a common graphical representation with Feynman diagrams,
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 =! +" +# + . . .

=$ +% ×
[& +' + . . .

]

=Æ +) ,

(7.23)

which is identical to Eq. (7.22). The double and single wavy lines corresponds to
bare and screened electron-electron interaction respectively, and the “bubble”
corresponds to the polarization,

Vijkl(q) =*q
i

j

k

l

, Πijkl(q, E) =+Glj(k, E
′)

Gik(q+ k, E + E′)

. (7.24)

This diagrammatic approach gives a simple interpretation of the polariz-
ability, namely the creation of an electron-hole pair, where a Green’s function
line with arrow in the opposite direction corresponds to a hole. Also, this di-
agrammatic form of the polarizability suggests the expression (Eq. (18.9) in
Ref. [31] Fourier transformed),

Πijkl(q, E) ≈ −2i
∑

k

∫

dE′

2π
Gik(k+ q, E′ + E)Glj(k, E

′). (7.25)

Time ordering, together with a simplified form of the Green’s functions [69]

G
ret/adv
ij (k, E) ≈ δij

1

E − Ei,k ± iΓi/2
, (7.26)
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yields (Eq. (18.18) in Ref. [31] Fourier transformed at steady state)

Πret
ijkl(q, E) ≈ −2i

∑

k

∫

dE′

2π
Gret

ik (k+ q, E′ + E)Gadv
jl (k, E′) [fj,k − fi,k+q]

=− 2iδikδjlk

∑

k

∫

dE′

2π

fj,k − fi,k+q

(E′ + E − Ei,k+q + iΓi/2)(E′ − Ej,k − iΓj/2)

=2δikδjlk

∑

k

fj,k − fi,k+q

Ej,k + E − Ei,k+q + i(Γj + Γi)/2

=2δikδjl

∑

k

fi,k+q − fj,k

Ei,k+q − Ej,k − E − i(Γj + Γi)/2
,

(7.27)

which indeed is similar to Eq. (7.7) derived earlier in this section. This deriva-
tion of the polarizability shed light on two things. First, the reason for that the
polarizability only has two indices, and not four like the electron-electron inter-
action matrix element is that the constituent Greens functions are assumed to
be diagonal. Secondly, the γ in Eq. (7.7) (and the δ in Eq. (6) in Paper V) re-
flect the spectral width of the Green’s functions. However, one should note that
approximating the γ in Eq. (7.7) by the average spectral width of the Green’s
functions, (Γj +Γi)/2 as suggested above, is a strong over-estimate [70], and a
more detailed calculation is necessary. A more detailed self-consistent calcula-
tion would yield a finite γ when calculating the polarizability. This is expected
to decrease the polarizability and therefore diminish the screening and increase
scattering.

Once screened electron-electron interaction matrix elements are obtained
from solving Eq. (7.22) by inversion, the screened matrix element can be ob-
tained by direct multiplication, =! +" +# + . . .

=$ +

[% +& + . . .

]

×'
=( +) ,

(7.28)

where the screened impurity scattering matrix element is represented by

W imp
αβ (q, ω) =*q, ω

α

β

. (7.29)
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The approach outlined above was used in Paper V. An alternative approach
would be to group the diagrams to form a Dyson equation for the impurity
matrix elements. This way, the screened electron-electron matrix elements do
not have to be calculated explicitly [71], =! +" +# + . . .

=$ +% [& +' + . . .

]

=( +) .

(7.30)
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Light Matter Interaction

The macroscopic Maxwell equations, governing the electromagnetic field in the
presence of materials,

∇ · ~D = ρ ∇× ~E = −∂
~B

∂t

∇ · ~B = 0 ∇× ~H =
∂ ~D

∂t
+~j,

(8.1)

can be solved together with the constitutive relations, describing the material
properties,

~D = ε0εtot ~E = ε0εr ~E + ~P = ε0εr(1 + χrel) ~E,

~H =
1

µ0µr

~B =
1

µ0

~B − ~M,
(8.2)

where εtot is the total relative dielectric constant or permittivity and εr is the
relative dielectric constant of the background material, in most cases bulk GaAs
och InP, and χrel is the susceptibility due to polarization of the electrons in the
subband system of the QCL. The background dielectric constant is related to
the index of refraction, n, via

n2 = εr, (8.3)

assuming a non-magnetic material (µr = 1). The semiconductor materials used
for QCLs will throughout this treatment be assumed to be non-magnetic.

The left two equations in Eq. (8.1) only give rise to static fields and are
therefore not considered here. Thus, Eq. (8.1) becomes

∇× ~E = −∂
~B

∂t
,

∇× ~B = ε0εrµ0
∂ ~E

∂t
+ µ0

(

∂ ~P

∂t
+~j

)

,

(8.4)
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where the terms in the parenthesis are the source terms. By taking the curl of
the first equation, the wave equation for the electric field is obtained1

ε0εrµ0
∂2 ~E

∂t2
−∇2 ~E = −µ0

(

∂2 ~P

∂t2
+
∂~j

∂t

)

. (8.5)

Using a plane wave traveling in the y-direction and polarized in the z-direction
as ansatz,

~E(~r, t) = ℜ{E(y)~eze
i(ky−ωt)}, (8.6)

together with the relations ~P = χrelε0εr ~E and ~j = σ ~E, where σ is the conduc-
tivity, Eq (8.5) becomes

2ik
dE(y)

dy
+ (ω2ε0εrµ0 − k2)E(y) = µ0

(

−ω2χrel(ω)ε0εrE(y)− iωσ(ω)E(y)
)

.

(8.7)
Here, a short wavelength compared to the length scale of the amplification of
the electric field has been assumed, so that the second order spatial derivative
of E(y) can be neglected2. As ω2εrε0µ0 = k2, the equation above can be
simplified to

dE(y)

dy
=

(

i
ω
√
εr

2c
χ(ω)− 1

2cε0
√
εr
σ(ω)

)

E(y), (8.8)

where c = nω/k is the speed of light in vacuum. The gain of the material,
g(ω), can be defined as3

d|E(y)|
dy

=
g

2
|E(y)|. (8.9)

Thus, the gain can be calculated with Eq. (8.8) by dividing the electric field
into amplitude and phase, E(y) = |E(y)|eiφ(y). The gain is then

g(ω) = −ω
√
εr

c
ℑ{χ(ω)} − 1

cε0
√
εr
ℜ{σ(ω)}, (8.10)

which has been the starting point when deriving the spatial resolved gain in
Paper I.

According to Eq. (8.10), electromagnetic fields can be affected by currents,
via the conductivity, and by polarizations, via the susceptibility. At lower
frequencies than THz, often currents are the source of radiation such as in

1
∇×∇× ~E = ∇(∇· ~E)−∇2 ~E and ∇· ~E = 0 as the electric field is polarized perpendicular

to the direction of propagation for a plane wave.
2Typical gain in THz lasers is ∼20 cm−1, which is much longer length scale than wave

vector in the medium, k ≈ 2π/(200µm/n) ≈ 1000 cm−1

3The factor 1/2 comes from that the gain usually is defined for the intensity I ∝ E2
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antennas connected to some transistor or other electronics. At frequencies
higher than THz, the tradition is often that polarizations are giving rise to
the radiating fields. The two contributions come from the popular division of
the charge into bound charges, giving rise to polarizations, and free charges
that can cause currents, see, e.g., Sect. 6.6 in Ref. [72]. In most systems this
division is clear, while the QCL is a system between the two regimes. The same
electrons that emit light are giving rise to the electrical current suggesting that
they are free, while the light is emitted in transitions between spatially localized
quantum states suggesting the polarization description.

8.1 Microscopic Approach

In the previous section, the way was described in which electromagnetic fields
interact with a material from a macroscopic point of view. Here, instead a
more microscopic approach is presented. The mechanisms with which elec-
trons interact with electromagnetic radiation are central when analyzing laser
materials. Either the electromagnetic field is being amplified by the electrons,
known as gain, or the radiation is being absorbed. The Hamiltonian for an
electron in the presence of an electromagnetic field is

Ĥ =
1

2m

(

~̂p− e ~A(~r, t)
)2

+ eφ(~r, t), (8.11)

where ~A and φ are the electromagnetic vector and scalar potential, respectively,
related to the electromagnetic field by

~E = −∇φ− ∂ ~A

∂t
, ~B = ∇× ~A. (8.12)

If the A2-term is neglected and ~̂p and ~A are assumed to commute, the perturb-
ing term in the Hamiltonian due to the radiation field is

Ĥem ≈
e

m
~̂p · ~A(~r, t). (8.13)

Using Fermi’s Golden Rule [73], the rate of optical transitions from state u to
l (upper and lower laser state) is

Γem
u→l =

2π

~
|〈ψl|Ĥem|ψu〉|2δ(Eu − El − ~ω) (8.14)

where ω is the angular frequency of the incoming electromagnetic radiation.
The gain from two states, u and l where Eu > El, can then be defined as the

number of photons generated minus the number absorbed per volume divided
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by the incoming photon flux,

g(ω) =
~ω

V

Γstim. em.
u→l − Γstim. abs.

l→u

Photon flux per area

=
πω|ezul|2√
εrcε0V

δ(Eu − El − ~ω) (fu − fl),
(8.15)

where zul = 〈ψu|z|ψl〉. Worth noticing here is that the only way to achieve
positive gain is through population inversion, i.e., fu > fl. However, a more
detailed derivation of the material gain will show that a positive gain can be
observed without inversion [74].

According to Eq. (8.15), non-zero gain or absorption only occurs at discrete
energies. This unphysical result can be circumvented by replacing the δ(E)-
function with a Lorentzian,

δ(E − E0) −→
1

π

Γ/2

(E − E0)2 + (Γ/2)2
, (8.16)

where Γ is the full width at half maximum of the peak. Γ is usually chosen
to be the sum of the lifetime induced energetic widths of the two correspond-
ing states. This approximation works well for mid-IR devices, while for THz
devices, correlations in the scattering environment of the two states can be of
importance [69], see also Papers II, IV and V. This correlation in the scatter-
ing potential of the two states causes the gain/absorption peak to be narrower
than the sum of the scattering induced energetic width of the two respective
states. Taking this effect into account is crucial for THz devices where the
energy separation of the two lasing states is comparable to their widths.

8.2 ~p · ~A vs. ~r · ~E

From the definition of the scalar and vector potential, Eq. (8.12), it is clear
that any change in the vector and scalar potential that can be expressed by a
function Λ(~r, t) via

~A′ = ~A+∇Λ, Φ′ = Φ− ∂Λ

∂t
, (8.17)

will not change the physical electric and magnetic field. This invariance in the
potentials is called gauge invariance, and similarly, the transformation above is
called gauge transformation. Typically, two difference gauges are used. First,
the Lorenz gauge or velocity gauge defined by

∇ · ~A+
1

c2
∂Φ

∂t
= 0, (8.18)
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and secondly, the Coulomb gauge, or radiation-, or length-, or transverse gauge
is defined by

∇ · ~A = 0. (8.19)

The electromagnetic field present in the QCL due to the laser light can be
written as

~E(~r, t) = E0~eze
i(ky−ωt), ~B(~r, t) =

k

ω
E0~exe

i(ky−ωt), (8.20)

which becomes

~A(~r, t) = − k
ω
E0z~eye

i(ky−ωt), Φ(~r, t) = −E0ze
i(ky−ωt), (8.21)

in Lorenz gauge and

~A(~r, t) =
E0

iω
~eze

i(ky−ωt), Φ(~r, t) = 0. (8.22)

and Coulomb gauge. To simplify matters, the long wavelength approximation
is often employed in Lorenz gauge. As the typical wavelength for a THz laser
is ∼30 µm and the size of the wavefunctions in the z direction ∼30 nm, kz =
2πz/λ≪ 1 in the expression for the vector potential and is therefore neglected.
This results in the simple rule that in Lorenz gauge the laser field couples to
the electron via the position and in Coulomb gauge via the momentum.

The two different couplings of the electron Hamiltonian to the electro-
magnetic field are

ĤLorenz
em = eΦ(~r, t) = −eE0ze

i(ky−ωt),

ĤCoul.
em =

e

m
~̂p · ~A(~r, t) = e

m
p̂z
E0

iω
ei(ky−ωt).

(8.23)

Although quantum mechanics can be proven to be gauge invariant4, the two
different couplings will in simplified situations give different results [75, 76].

If only two states are considered, |u〉 and |l〉, which are eigenstates of the
Hamiltonian without the applied electromagnetic field, the momentum matrix
element can be rewritten,

pul = m
drul

dt
=
im

~
[r,H ]ul = −

im

~
∆Eulrul, (8.24)

where ∆Eul = Eu − El. This leads to a simple ratio between the interaction
Hamiltonians for the two gauges,

HLorenz
em

HCoul.
em

=
~ω

∆Eul
. (8.25)

4The Hamiltonian in Eq. (8.11) is invariant under the transformation Eq. (8.17) together
with the unitary transformation ψ′(~r, t) = eiΛ(~r,t)ψ(~r, t)
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For a simple model, with only resonant interaction, the two couplings are iden-
tical. However, in THz QCLs, where the width can be a substantial fraction
of the central frequency, this difference can result in a quite large difference in
gain. Also, as low frequencies often are desired, waveguides can be designed
to support radiation on the low-frequency side of the gain peak where the
Coulomb gauge is expected to give higher gain. E.g., in Paper II, the laser
emitted at 7.9 meV while the peak gain occurred at 9 meV.

Part of the reason for this discrepancy between the to gauges is that in
the example above and in most calculations, truncated Hilbert space are used.
If broadening occurs, the electromagnetic field induces transitions between all
possible states in the system, which must be taken into account. By an ar-
gument presented in Ref. [77], the position matrix elements are all bound by
the size of the system, while the momentum matrix element pαβ ∝ ∆Eαβzαβ

increase with energy difference. As the Hilbert space often is truncated at a
certain energy, the error is larger for the momentum matrix elements and hence
a larger error is expected in the Coulomb gauge.

A second inconsistency in finite Hilbert spaces is the canonical commutation
relation, [z, p] = i~, used in the derivation of gauge invariance, is not valid [77].
If all states are equally populated, the density matrix is proportional to the
identity matrix, ρ = I/N , where N is the number of states in the considered
system. The expectation value of the operation [z, p] is then both i~ and 0. By
the use of Eq. (6.11)

〈[z, p]〉 = Tr{[z, p]ρ} = i~

N
Tr{I} = i~,

〈[z, p]〉 = Tr{(zp− pz)ρ} = 1

N
Tr{zp− pz} = 0,

(8.26)

where in the second row, the cyclic property of the trace has been used. Hence,
[z, p] 6= i~ in finite Hilbert spaces. As the proof for gauge invariance is based
on the validity of this commutation relation, numerical calculations in which
finite Hilbert spaces are used, are not necessarily gauge invariant.

A similar problem occurs when calculating the gain. From Eq. (8.10) it
can be seen that the gain can either be calculated from the susceptibility or
the conductivity. The susceptibility is obtained by calculating the polarization,
i.e., the change in position, δz, induced by the electromagnetic field. Similarly,
the conductivity is obtained by the change in current, δJ , which is proportional
to the change in momentum, δp [74]. As for the coupling of the electromagnetic
field to the electron, whether δz or δp is chosen the result differs by a factor of
~ω/∆Eul. The results are summarized in Tab. 8.1.
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z · F p ·A
χ→ δz g ∝ ω g ∝ ∆E

σ → δJ ∝ δpz g ∝ ∆E g ∝ (∆E)2

ω

Table 8.1: Different couplings of the electromagnetic field to the motion on the
electrons give different expressions for the gain when energetic broadening of
the states is considered. Also, defining the gain from the response in different
observables gives different results.

8.3 Spectral Broadening and Correlation Effects

With a simple Lorentzian model for the gain spectra, the peak gain is inversely
proportional to the linewidth and proportional to the inverted population. The
linewidth of the transition reflects the energetic width, or uncertainty, of the
two lasing states. This width can be estimated by the time-energy uncertainty,

∆E ·∆t ≈ ~, (8.27)

where ∆t corresponds to the lifetime of the electron in the lasing states.
This energetic broadening of the states gives a finite width of the optical

transition. A first estimate is that the optical linewidth is the sum of the
energetic width of the two corresponding states. This is an excellent estimate
for mid-IR lasers, but strongly over-estimates the optical linewidth for THz
QCLs due to neglecting the correlation effects [69, 78].

If the same scattering mechanism is causing the width of the two lasing
states, the optical linewidth can be smaller than the sum of the widths of the
respective states. These correlations in the scattering environment are difficult
to quantify, but a simple approach results in a spectral linewidth that is a
measure of the square of the difference in the scattering matrix element, and
not the sum of squares, see, e.g., Refs. [69,79], Paper V or Fig. 3 in Paper IV,

Γno.corr(q) ∝
〈

V 2
u (q) + V 2

l (q)
〉

s.c.
,

Γsimp.corr(q) ∝
〈

|Vu(q)− Vl(q)|2
〉

s.c.
.

(8.28)

The correlation effects in these systems are well explained in Ref. [78]. The
light interacts with a polarization between the upper and lower laser level,
which means that the electron is in a superposition between the upper and
lower laser level at a certain wave vector, α|u,k〉 + β|l,k〉. If the intraband
scattering matrix elements are identical for the two laser levels a scattering
event does not destroy the coherences and the resulting state after the scatter-
ing occurred is α|u,k′〉+ β|l,k′〉. In these intersubband devices the curvature
of the subbands are approximately the same and, hence, the energy difference
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between the upper and lower subband is independent of wave vector. Since a
scattering mechanism with identical matrix element for both laser levels does
not affect the polarization, this does not give rise to spectral broadening. By
this argument the spectral broadening should be better described by the dif-
ference in scattering environments, as used in Paper V.

At higher temperatures the width is expected to increase due to more scat-
tering, which is caused by both more phonons and less screening. In Paper II a
calculation is presented that shows that the linewidth of the gain transition is
expected to increase with temperature and approximately follow the impurity
scattering strength, at least for low temperatures.

Another aspect regarding correlation effects is the discussion on scattering
averaging in Chap. 6. In standard laser theory, see, e.g., Sect. 2.5 in Ref. [80],
the contributions to the optical linewidth is divided into homogenous and inho-
mogeneous parts. In ordinary gas or solid-state lasers each lasing atom is clearly
spatially isolated, and will therefore have an intrinsic linewidth mainly due to
lifetime broadening. This is homogenous broadening. Especially in solid-state
lasers, each lasing atom will be influenced by a different random crystal strain
field that will shift the lasing frequency slightly. Adding the spectra of all las-
ing atoms with their respective randomly shifted lasing frequency will give a
inhomogeneously broadened spectra.

If different wave vector states in QCLs correspond to different atoms in
standard lasers no inhomogeneous linewidth is present in our model. This is
however due to the scattering averaging, where all scattering mechanisms are
assumed to give lifetime broadening, while preserving wave vector as a good
quantum number, instead of shifting the energy between two lasing states.
However, as described in Chap. 6, many scattering potentials are static and
in a more detailed calculation the lasing should occur between states obtain
by diagonalizing the scattering potential. This would result in inhomogeneous
broadening instead, and the inclusion of correlation effect on a more intuitive
level [67].

8.4 Dispersive Gain

The underlying approximation by assuming Lorentzian lineshape in Eq. (8.16)
is that the spectral function, Aα(k, E), similar to a density of states for a single
state, is Lorentzian in shape,

Aα(k, E) ≈
Γα

(E − Eα(k))2 + (Γα/2)2
. (8.29)

In Eq. (8.16) it is assumed that the spectral functions are equally populated in
energy, or expressed in lesser Green’s function,

G<
αα(k, E) = ifα,kAα(k, E). (8.30)
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Figure 8.1: Density of states combined with occupation probability in grey-scale
(upper panel) and gain spectrum (lower panel) for different levels of description
for the gain in a two level system. Left: two pure levels. Center: Broadened
levels. Right: Broadened levels with energy-dependent occupations fk(E).

This is an excellent approximation if the scattering strength, Γ, is much less
then the temperature, kBT . If this in not the case, the above expression must
be modified. If the state |α,k〉 is coupled to a reservoir of particles, in this case
phonons, the level occupation function, fα,k, becomes energy dependent,

G<
αα(k, E) = ifα,k(E)Aα(k, E), (8.31)

which can be interpreted as the low energy part of the state as a higher average
occupation than the high energy part.

This effect in lasers gives rise to dispersive gain [81]. If the two lasing states
have similar populations, fu,k ≈ fl,k, both absorption and gain can occur at
the same time between the two states, see Fig. 8.1. In most situations, fα,k(E)
is decreasing with E, which can give rise to gain at the low energy side of the
transition and absorption at the high energy side.

Dispersive gain in QCLs was first experimentally demonstrated in Ref. [82]
and then later in Ref. [83]. The spectral width needs to be larger than the
temperature to observe dispersive gain. Thus, the first laser [82] was tailored
for strong scattering. As most lasers optimized for technological applications
operate at high temperature and are designed for a minimum of scattering for
the lasing states, dispersive gain is often not observed. In the optimized laser
of Ref. [7], no dispersive gain is observed in simulation, see Fig. 2 in Paper II.
This effect does, however, result in a red shift of the peak gain of ∼1 meV and
is therefore of importance in quantitative gain calculations.
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8.5 Spatially Resolved Gain

In order to pinpoint the spatial location of different spectroscopic features with-
out resorting to investigating the absorption/gain between every pair of states,
an expression for the spatially resolved gain has been derived. Studying every
possible transition in the complex subband system of a mid-IR QCL with ap-
prox. 15 subbands per period, see Paper I, is cumbersome due to the many
anti-crossings when changing the bias.

The derivation of spatially resolved gain starts with the relation between
conductivity and gain, Eq. (8.10), as can be seen in the Appendix of the Paper I.
If the current is in phase with the applied oscillating electric field, energy is
being accumulated in the material and hence absorption is measured, and vice
versa. The conductivity is calculated through the current response of the QCL
system due to a small oscillation electric field, and finally, the conductivity can
easily be spatially resolved through the spatially resolved current operator.

The expression for spatially resolved gain derived in Paper I is consistent
with the standard gain expression, i.e., averaging the spatially resolved gain
over the laser structure gives the standard gain expression. However, it is not
clear if the spatially resolved gain can be measured, or if it is just a quantity
of theoretical interest. For instance, a single transition can exhibit both gain
and absorption in different spatial regions.
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Temperature in THz Lasers

As mentioned in Chap. 3, the mid-IR QCL is now a fairly mature technology
with devices that work up to and above room temperature. The THz devices
are, however, still bound by low operating temperatures. To this date, the
highest reported operation temperature is, without the use of strong magnetic
fields, 186 K in pulsed mode [19]. When the laser is pulsed, there is a period of
time between the laser pulses to cool down the device, hence higher operating
temperature. The quest toward higher temperatures has shown the empirical
relation [15],

kBTmax . hflas, (9.1)

namely, that the maximum lasing temperature is approximately limited by the
lasing frequency. To the authors knowledge there are no generally accepted
explanations for this trend.

Temperature in QCLs is a complicated quantity, partly because of a strong
temperature gradient between the electron system and the heat-sink and partly
because the laser, by definition, is in a non-equilibrium state. Often, three
temperatures are used in the literature: heat-sink, lattice and electron temper-
atures.

Under operating conditions, the laser is usually in contact with some ther-
mal reservoir. For instance, at low temperatures the laser might be in contact
with liquid helium or liquid nitrogen. In these cases the heat-sink tempera-
ture would be 4 and 77 K, respectively. This temperature is usually easy to
determine in experiments and is often stated in publications.

The lattice temperature is the temperature of the atomic lattice inside the
laser. The occupation of phonon modes are exponentially dependent on this
temperature. Since phonon scattering is a strong electron relaxation process,
this temperature is important. In phonon depopulation designs, electrons emit
optical phonons at a high rate, which can cause a substantial deviation from
the equilibrium phonon distribution [84].

Finally, the electron temperature is the temperature of the electrons con-
tributing to lasing and current in the laser device. The electrons are generally
far from equilibrium and often subband temperatures are mentioned, referring
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to the temperature of each subband. Scattering within each subband is gener-
ally much stronger than between subbands, so electrons in different wave vector
states within a single subband are usually in quasi-equilibrium [47].

Under operating conditions, there is a strong temperature gradient between
the electron system and the heat sink. The exact temperature difference is
dependent on many laser and material parameters, such as laser design, mate-
rials, operating bias, etc. A rule of thumb is that the electron temperature is
approximately 30-50 K higher than the heat-sink temperature [85]. Photolu-
minescence measurements have shown that the different subband temperatures
differ strongly under operation condition in RP THz QCLs, the lasing subbands
are 100 K warmer than the lattice, while the injector subband temperature is
only slightly elevated [86]. However, the error bars are large in these experi-
ments.

The limited temperature range of operation for THz QCLs together with
the complexity of the device have led the way for theoretical studies in order
to pinpoint the source of the fast temperature degradation [87–90]. Three
causes are usually mentioned: Thermal backfilling, lifetime broadening, and
new transport channels at higher temperatures.

9.1 Thermal Backfilling

The first experimentally realized QCL was a mid-IR device that lased up to 90 K
in pulsed mode [1]. What successfully brought the operating range of the mid-
IR device up to room temperature, and beyond, in continuous operation was
the double phonon resonance [91]. This means that a second ejector subband
was placed two optical phonon energies below the lower laser subband and,
hence, a more efficient depopulation of the lower laser subband was achieved.

Neglecting the wave vector dependence, the emission rate of longitudinal
optical phonons is proportional to 1 + nLO ≈ 1 + e−ELO/kBT where the first
term corresponds to spontaneous emission and the second to stimulated emis-
sion. Phonon absorption is proportional to nLO. At room temperature and an
optical phonon energy of 36 meV, nLO = 0.25 and the emission and absorption
rates become comparable. Therefore, with a single ejector subband, at room
temperature, a substantial amount of electrons from the ejector subband ab-
sorb phonons and are re-injected to the lower laser subband. This effect lowers
the population inversion and is called thermal backfilling, see Fig. 9.1(b).

With the double phonon resonance, electrons in the lowest of the two ejector
subbands have to absorb two phonons in order be re-injected into the lower laser
subband, which is a more unlikely process.

Due to the success with the mid-IR device, the double phonon resonance
scheme was tried out to increase the maximum operating temperature of the
THz devices [92]. This did, however, not improve the temperature performance
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Figure 9.1: Temperature degrading effects. (a) Intended laser operation at
low temperatures. A low population in the lower laser subband is obtained by
tailoring the structure so that an ejector subband is located one optical phonon
energy below. Electrons then relax by emitting optical phonons (black arrows).
(b) Thermal backfilling. At elevated temperatures, electrons in the extractor
subband can absorb phonons and get reinjected into the lower laser subband.
This effect will decrease the population inversion and, thereby, degrade the
lasing properties. (c) Thermally activated optical phonon emission. When
the temperature increase, the average kinetic energy of the electrons in the
upper laser subband increases and electrons with a kinetic energy of more than
ELO − hflas can emit longitudinal optical phonons and relax to the lower laser
subband, which would strongly decrease the population inversion.

of the device and suggested that the temperature limiting effect in RP THz
QCLs is not thermal backfilling. It is probable that this effect is what limits
high temperature operation for other designs with smaller energy difference
between the lower laser subband and the upper laser subband of next period.

9.2 Thermally Activated Phonon Emission

A second effect, first seen in a simulation by Indjin et. al. [87], is that at higher
temperatures the average kinetic energy of electrons in the upper laser subband
is higher, and these can emit optical phonons and relax down to the bottom
of the lower laser subband, see Fig. 9.1(c). This effect has also been quantified
by others [88, 90] and is well explained in Ref. [93].

The free in-plane motion gives rise to a continuous, and constant, density of
states in each subband. This continuum is responsible for the many scattering
possibilities that are necessary for the degradation process described above. A
way to suppress the scattering is to change the density of states by applying
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a strong magnetic field perpendicular to the layers. This field will force the
electrons into cyclotron motion and the constant density of states will be split
up into discrete Landau Levels (LLs), where the spacing between two neigh-
boring levels is ~eB/m∗. If the energy difference of the LLs is larger than the
temperature most electrons will reside in the lowest LL. This discrete density
of state will quench thermally activated phonon emission and strong magnetic
field has successfully raised the maximum operating temperature to 225 K at
19.3 T [17].

The cyclotron motion will also spatially localize electrons in-plane to the
length scale l =

√

~/eB = 25.7/B1/2 nmT1/2. At 30 T, the localization to
∼5 nm will also lower scattering since the interface roughness length scale is
li.r. ≈ 10 nm and the average nearest neighbor distance between two ionized
dopants at a sheet doping concentration of n = 1010 cm−2 is ldop. = 1/2

√
n =

50 nm [94]. Transport properties of QCLs under strong magnetic field have been
studied theoretically in Ref. [95] using a density matrix formalism including
phonon scattering.

The major drawback with this method is the extremely high magnetic fields;
If the LL spacing must be greater than temperature then,

B &
m∗kB

e~
T ≡ αT, (9.2)

where αGaAs ∼ 0.05 T/K. A magnetic field of more than 10 T is thus necessary
to reach 200 K. This magnetic field strength strongly limits any future practical
application of the device.

This mechanism explains the empirical relation hflas & kBTmax quite poorly,
because this effect would be weaker for lasers with lower frequencies. The ex-
perimental argument in favor of this mechanism is the empirical temperature
dependence of the threshold current density,

Jt.h. ∝ eT/T0 . (9.3)

The threshold current density is the current density necessary to reach lasing
and T0 is then a measure of the robustness of the laser with respect to tem-
perature. Low frequency lasers, where thermally activated phonon emission is
expected to be small, indeed show high temperature robustness, i.e., large T0,
even though these lasers have smaller maximum operating temperature, see,
e.g., Fig. 5(b)b in Ref. [15]. It is however likely that this effect is what limits
THz lasers at higher frequencies.

A second approach is to lower the spatial overlap between the upper and
lower laser subband and thereby reduce phonon scattering. This scheme has
given the maximum lasing temperature of 186 K [19], without magnetic field.
This approach can, however, lower the dipole matrix element and thereby de-
grade lasing.
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A third avenue towards higher temperatures can be to change material
system from gallium arsenide (AlGaAs/GaAs) to gallium nitride (AlGaN/GaN)
[63, 96, 97]. In standard interband laser technology, GaN is advantageous for
its large band gap and hence the high frequency of the emitted light. Here,
GaN is interesting for its large optical phonon energy, ∼90 meV compared to
∼40 meV in GaAs- and InP-based designs. A higher optical phonon energy
would require more kinetic energy of an electron to relax from the upper to
the lower laser subband and is therefore expected to yield better temperature
performance.

9.3 Spectral Broadening and Temperature De-

pendence of Screening

This mechanism was introduced in Paper II and studied in more detail in
Paper V. As the electrons increase their average kinetic energy with increasing
temperature, they are less affected by any perturbing scattering potentials.
This will decrease screening and enhance scattering. Enhanced scattering will
then increase the width of the gain peak and lower the peak value. Regarding
the dominant intrasubband scattering effect for THz QCLs in our simulations,
impurity scattering, the temperature dependence becomes particularly simple
with the Debye approximation, see Chap. 7.

This temperature degrading mechanism differs from all others presented
here in that it works independent of population inversion. The main issue here
is that calculating the linewidth of THz QCLs is complicated due to correlation
effects, see Chap. 8.

9.4 Broadening and Resonant Injection

Increased scattering with temperature does not only lead to a broadening of
the optical spectra, but also give rise to an uncertainty of the energy of the
electrons. Many of the scattering mechanism in these devices are inelastic,
meaning that the energy of the electron before and after the scattering event
is the same. These scattering mechanisms are impurity, interface roughness
and alloy scattering. Also, tunneling between states are strongly enhanced if
the two states are aligned. This is often used when designing QCLs, e.g., the
injector subband is aligned with the upper laser subband in order to efficiently
fill the upper laser subband with electrons and not the lower laser subband.

When the temperature is increased, the energetic width of the states in-
crease and resonant injection exclusively into the upper laser level can be more
difficult to achieve. As the energetic width of the two lasing states are com-
parable with their energy difference, electrons can be injected directly into the
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Figure 9.2: Spectral function, Aα(k, E) for the injector (green), upper (blue)
and lower (red) laser state at Ek = 10 meV for the device presented in Ref [7].
With increasing temperature the width of each state increases and at higher
temperature there is a substantial energetic overlap between the injector and
lower laser state. This situation would facilitate injection of electrons directly
into the lower laser subband, which would be followed by a lowering of the
population inversion and lasing performance. The largest width is observed
in the lower laser subband since the successful design of the laser has given a
fast extraction rate from this subband. Similarly, the smallest width (longest
lifetime) is observed in the upper laser subband.

lower laser level, which would lower the population inversion, see Fig. 9.2.
This mechanism would qualitatively explain the empirical relation, Eq. (9.1),

that the maximum lasing temperature is approximately limited by the las-
ing frequency, since the broadening basically scales linearly with temperature,
Γ ∝ T . Also, the current high temperature record [19], was obtain by making
the lasing transition more diagonal by decreasing the spatial overlap between
the lasing subbands. As the authors of Ref. [19] point out, this is expected to
lower the effect from thermally activated phonon emission. An alternative ex-
planation can be that this also lowers the spatial overlap between the injector
and lower lasing subband and hence decrease electron injection directly into
the lower laser subband.
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Summary and Outlook

This thesis deals with transport and optics in Quantum Cascade Lasers (QCLs).
This device is a new, unipolar semiconductor laser in which the lasing occurs
between subbands formed in quantum wells. Since the first realization in 1994,
the high frequency mid-IR QCL now operates above room temperature and is
commercially available. In spite of intense research efforts the low frequency
THz QCL is still bound by low operating temperatures and currently only oper-
ate below 200 K. Experiments suggest that maintaining a population inversion
at an energy difference below kBT is difficult in these systems, although there
is no known reason for this. This open problem, in these rather complicated
heterostructures far from equilibrium, calls for theoretical modeling to gain a
better understanding of the limiting factors. Most complications, and interest-
ing physics, stem from the fact that the temperature, the level spacing and the
scattering are of the same order of magnitude in these systems.

To investigate this problem the physics of QCLs was presented and dis-
cussed in this thesis. After a short review of the laser, heterostructures, and
relevant scattering mechanisms, the theory of Non-Equilibrium Green’s Func-
tions (NEGF) was briefly explained and compared to alternative transport
approaches. The main advantage of NEGF is that energetic broadening of the
states is included, which is essential for describing transport in THz QCLs,
where the broadening is of the order of the typical subband spacing.

Different aspects of optics and temperature dependent processes in QCLs
were then discussed later chapters. The focus was put on the temperature de-
pendence of screening and the way this affect the spectral features and trans-
port. In Papers II and V it is found that the impurity scattering strength is
strongly enhanced with temperature. The way in which this scattering mecha-
nism is expected to reflect in the optical spectra is difficult to estimate due to
correlation effects, see Paper IV. Along the same lines, the impact of acoustic
phonon scattering is investigated in Paper III, and is found to play a secondary
role.

A next step in this work would be to study the effects of dynamical screen-
ing. Also, the effect of broadening on screening would be both interesting and
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relevant in THz QCLs. Calculating the dynamically screened electron-electron
interaction and impurity scattering within the random phase approximation
(RPA) is a trivial extension of the work presented in Paper V. However, how
to relate the dynamical scattering matrix elements to any observable, such as
linewidths or scattering rates, is not straightforward. As a first approxima-
tion, broadening can be included in screening by a finite imaginary part in the
denominator of the RPA polarization function.

A longer term goal is to include screening self-consistently in the trans-
port simulations based on NEGF. However, this transport model, without
many-body effects, is already numerically demanding and including anisotropic
screening calls for efficient approximations that still capture the important fea-
tures.



Appendices





A

Polarization Function

The RPA polarization function in the Boltzmann

limit

In this work, the most complete model for the polarization function is the RPA
approximation,

Παβ(q, E) = lim
γ→0+

2

A

∑

k

fα,k+q − fβ,k

Eα,k+q − Eβ,k − E − iγ
. (A.1)

In this section, an efficient way of evaluating this expression in the Boltzmann
limit will be explained.

The Boltzmann limit is an excellent approximation in THz QCLs because
the strong intraband electron-electron scattering thermalizes each subband [51],
and, also, the average occupation is low at the elevated temperatures of inter-
ests, i.e.,

fα,k ≈
1

eβα(Ek−µα) + 1
≈ e−βα(Ek−µα), (A.2)

where µα is the chemical potential of subband α and βα = 1/kBTα. In the
Boltzmann limit, the polarization function becomes particular simple to eval-
uate. This method was first described be Lee and Galbraith in Sect. 2B of
Ref. [98], where only two subbands are studied, with the same temperature
and chemical potential. Here, the expression will be generalized to systems
where each subband has arbitrary temperature and chemical potential, rele-
vant for describing screening in THz QCLs.

Since both the occupation and subband energy are only functions of the
magnitude of momentum, the quantity

Π̃±αβ(q, E) = lim
γ→0+

2

A

∑

k

fα,k

Eα,k − Eβ,k+q ± E ± iγ
, (A.3)
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can be investigated since Παβ(q, E) = Π̃−αβ(q, E) + Π̃+
βα(q, E). One crucial

approximation is that all subbands have the same in-plane effective mass, m∗.
If this approximation is relaxed, the denominator in Π̃±αβ will be a second order
polynomial in k, instead of a first order, which will make efficient evaluation
more complicated.

With equal effective mass,

Π̃±αβ(q, E) = lim
γ→0+

2

A

∑

k

fα,k

∆Eαβ − Eq − ~2k · q/m∗ ± E ± iγ
, (A.4)

where ∆Eαβ = Eα − Eβ . In the continuum limit, with radial coordinates,

∑

k

=
A

(2π)2

∫

d2k =
A

(2π)2

∫ ∞

0

dk

∫ 2π

0

dθ k, (A.5)

Eq. (A.4) becomes

Π̃±αβ(q, E) = lim
γ→0+

2

(2π)2

∫ ∞

0

dk

∫ 2π

0

dθ
kfα,k

∆Eαβ − Eq − ~2kq cos θ/m∗ ± E ± iγ
.

(A.6)
This, together with the relation

lim
γ→0+

1

E − E0 ± iδ
= P 1

E − E0
± iπδ(E − E0), (A.7)

the real and imaginary part are

ℜ
{

Π̃±αβ(q, ω)
}

=
2

(2π)2

∫ ∞

0

dkP
∫ 2π

0

dθ
kfα,k

∆Eαβ − Eq − ~2kq cos θ/m∗ ± E ,

ℑ
{

Π̃±αβ(q, ω)
}

= ± 1

2π

∫ ∞

0

dk

∫ 2π

0

dθ k fα,kδ
(

∆Eαβ − Eq − ~
2kq cos θ/m∗ ± E

)

.

(A.8)

Useful Integrals

In this derivation a few mathematical identities will be used. First,

P
∫ 2π

0

dx

a+ b cosx
=

{

0 if a2 < b2

sign{a} 2π√
a2−b2

if a2 > b2
, (A.9)

secondly,
∫ 2π

0

dθ δ(a cos θ − b) =
{

0 if a2 < b2

2√
a2−b2

if a2 > b2
, (A.10)



Polarization Function 63

and third, the integral

∫ ∞

1

dx
e−µx

√
x− 1

=

√

π

µ
e−µ, if ℜ{µ} > 0, (A.11)

will be used. Last, the confluent hypergeometric function of first kind, Φ(α, β; z)1,
is introduced, with the integral representation, see, e.g., Eq. (13.2.1) in Ref. [99],

Φ(α, β; z) =
Γ(β)

Γ(β − α)Γ(α)

∫ 1

0

ezttα−1(1− t)β−α−1dt. (A.12)

For α = 1, β = 3/2 and with the variable substitution v = zt, the function
becomes,

Φ(1,
3

2
; z) =

1

2

1√
z

∫ z

0

ev√
z − vdv, (A.13)

and with a negative argument,

Φ(1,
3

2
;−z) = 1

2

1√
z

∫ z

0

e−v

√
z − vdv. (A.14)

The advantage with expressing the complicated integrals in the expression for
the polarization function as confluent geometric functions is that there are
numerical software packages, well tested and optimized, for evaluating these
functions, see, e.g., Ref. [100]. These functions are often evaluated via a Taylor
expansion,

Φ(α, β; z) = 1 +
α

β

z

1!
+
α(α+ 1)

β(β + 1)

z2

2!
+
α(α + 1)(α+ 2)

β(β + 1)(β + 2)

z3

3!
+ . . . (A.15)

With the expansion above, all terms in the series have the same sign for positive
z, so rapid convergence is expected. For negative z, the terms in the series have
alternating signs, which can result in cumbersome numerics. Here, the relation,
Eq. (13.2.27) in Ref. [99],

Φ(α, β; z) = ezΦ(β − α, β;−z), (A.16)

can be used for faster convergence.

1Alternative name and notations are Kummer’s function, 1F1(α, β; z) and M(α, β; z)
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Final expression

With the use of the integrals above the polarization function, in the Boltzmann
limit, becomes

Παβ(q, E) =−
1

8π

2m∗

~2

×
(

eβαµα

[

E+

Eq
Φ

(

1;
3

2
;−βα

4

E2
+

Eq

)

+ i

√

π

βαEq
exp

[

−βα

4

E2
+

Eq

] ]

+ eββµβ

[

E−
Eq

Φ

(

1;
3

2
;−ββ

4

E2
−
Eq

)

− i

√

π

ββEq
exp

[

−ββ

4

E2
−
Eq

] ])

,

(A.17)

where, E± = Eq±∆Eβα±E. The Boltzmann limit can be relaxed for evaluation
of the polarization function for general occupations. Still, the angular integrals,
Eqs. (A.9) and (A.10), can be evaluated analytically while the integration over
k have to be calculated numerically. This has been performed for Fermi-Dirac
distributions for the devices in Paper V, however, with negligible corrections.

The static RPA polarization function in the long

wavelength limit

A popular approximation for transport in QCLs is the long wavelength limit
[71, 98],

Παβ(q→ 0, E = 0) =
2

A

∑

k

fα,k + q · ∇kfα,k − fβ,k

Eα,k + q · ∇kEα,k − Eβ,k

=

{

− m∗

π~2 fα,k=0 if α = β
nα−nβ

∆Eα,β
if α 6= β,

(A.18)

where nα is the subband concentration,

nα =
2

A

∑

k

fα,k. (A.19)

For the diagonal polarization functions ∇kfα,k = (∇kEα,k)∂fα,k/∂Eα,k has
been used together with

2

A

∑

k

∂fα,k

∂Eα,k
=

2

A

∑

k

∂fα,k

∂k

∂k

∂E
=
1

π

∫ ∞

0

dk k
∂fα,k

∂k

m∗

~2k
= −m∗

π~2
fα,k=0.

(A.20)
This long wavelength limit is an excellent approximation regarding static screen-
ing, see Paper V.



B

Coulomb Interaction Matrix

Elements

In screening and electron-electron scattering the necessary matrix elements that
need to be evaluated are

Vijkl(q) =
e2

2Aε0εr

Fijkl(q)

q
, (B.1)

where all constants have their usual meaning and the form factors, F , are

Fijkl(q) =

∫

dz1

∫

dz2 ψ
∗
i (z1)ψj(z1)e

−q|z1−z2|ψ∗k(z2)ψl(z2). (B.2)

Brute force computation can be quite lengthy due to the double integral and
the four indices. With Nz = 3000 z-points, a total of 106 terms are added for
each form factor, which can be time-consuming, since with Nq = 1000 q-points
and Nν = 20 states, there are 1.6·108 of them. A method presented by Bonno,
Thobel and Dessenne [47] strongly ease the numerical burden with these form
factors. This method is based on the fact that the wave functions are usually
smooth in the z-direction and can, therefore, be approximated well by only the
lowest Fourier components. Also, the factor in Fourier space corresponding to
e−q|z1−z2| in real space in Eq. (B.2) can be factorized, such that the double sum
becomes only five single sums. In this appendix the method will be explained
in more detail.

A fast Fourier transform of every wave function pair gives

ψ∗i (z)ψj(z) =

NH
∑

σ=−NH

γij
σ e

ik0σz , (B.3)

where k0L = 2π and L is the size of the wave functions in z-direction. The
wave functions are usually very well-behaved functions of z and only a few of
the lowest Fourier components are needed to quantitatively approximate the
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wave functions, i.e., NH ≪ Nz/2. Eq. (B.2) then becomes

Fijkl(q) =
∑

σ1

∑

σ2

γij
σ1
γkl

σ2

∫ L

0

dz1

∫ L

0

dz2 e
ik0z1σ1e−q|z1−z2|eik0z2σ2

≡
∑

σ1

∑

σ2

γij
σ1
γkl

σ2
Gσ1σ2

(q),

(B.4)

where a closed expression for Gσ1σ2
(q) will be derived.

A first step is the variable change

{

Z = (z1 + z2)/2
z = (z1 − z2)/2

{

z1 = Z + z
z2 = Z − z (B.5)

6z2

-
z1L

L

−→

6z

-
ZL

L/2

L/2

This variable change gives a factor of 2 in the integral and the result is

Gσ1σ2
(q) = 2

∫ L

0

dZ eik0(σ1+σ2)Z

∫ min{Z,L−Z}

−min{Z,L−Z}
dz e−q|z|eik0(σ1−σ2)z. (B.6)

Evaluating these two integrals is now straightforward and the result is

Gσ1σ2
(q) =

2Lqδσ1,−σ2

q2 + σ2
2k

2
0

+
2(e−qL − 1)(q2 + σ1σ2k

2
0)

(q2 + σ2
1k

2
0)(q

2 + σ2
2k

2
0)

. (B.7)

The main advantage here is that the double sum, Eq. (B.4), over the first term
in Gσ1σ2

(q) becomes a single sum due to the Kronecker delta function. The
second term can be split in two and then factorized in parts only functions of
either σ1 or σ2,

2q2(e−qL−1) 1

q2 + σ2
1k

2
0

· 1

q2 + σ2
2k

2
0

+2(e−qL−1) σ1k0

q2 + σ2
1k

2
0

· σ2k0

q2 + σ2
2k

2
0

. (B.8)

Thus, the double sum in Eq. (B.4) becomes only five single sums. The result
is a sum with 103 terms for NH = 100, instead of 107 as a brute force inte-
gration would require. The factor 104 increase in computational speed is quite
substantial and can turn a week of computation into a minute.
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There are a few symmetries that can simplify calculations even further, e.g.,
γij

σ = (γji
−σ)

∗ and for real wave functions γij
σ = γji

σ . Also, if Nper states per pe-

riod are included, γ
i+Nper,j+Nper

σ = eik0dγi,j
σ where d is the length of one period.

In this context, one should, however, not forget the implicit periodic bound-
ary conditions in the z-direction imposed by the discrete Fourier transform,
Eq. (B.3).

An alternative approach to efficiently calculate the Coulomb matrix ele-
ments has been proposed by Pereira et. al. [101]. The idea is that the main
matrix elements are calculated in the two limits, q → 0 and q → ∞, and then
interpolated for finite q.
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The Papers — Summary

Paper I

In 2006, the first spectroscopy experiments on a QCL under operating condi-
tions were presented by D. G. Revin et. al. [102]. This provided a new way of
characterizing the state of a QCL. Parameters such as gain coefficient, wave-
guide loss and temperature of the laser can be measured by this method. In
order to explain the rather complicated experimental spectra, the spectra is
calculated for the same device and its features are thoroughly discussed in this
paper. Results at an early stage of this project can be found in Papers VI
and VII, not included here.

The key finding is that the evolution of most spectral features with changing
bias can be explained by a spatial shift of the electrons from the active region
at low bias towards the injector region at higher bias.

I performed the calculations, analyzed the data, and wrote a large part of
the paper. I did not take part in any of the experiments.

Paper II

As discussed earlier in this thesis, there is intense ongoing research to bring
the operating temperature of THz QCLs up to room temperature, see Chap. 9
for details. In the second paper of this thesis, a new mechanism for the gain
reduction in THz QCLs is presented, namely the temperature dependence of
screening of ionized dopants by electrons in the laser. It is found that this is
both the dominant and most temperature dependent scattering mechanism in
the studied THz QCL. This mechanism is different from others since it acts
independent of population inversion.

I performed the calculations, analyzed the data, and wrote a large part of
the paper.
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Paper III

Acoustic phonon scattering strength is small compared to most scattering
mechanism in QCLs. However, in Paper II, a phenomenological scattering
strength was used, see App. B3 in Ref. [60]. Although small, acoustic phonon
scattering constitutes the only coupling to the lattice temperature, and the
only channel of inelastic scattering, at energies below the optical phonon en-
ergy. In the third paper of this thesis a microscopic form of the self-energy
for interaction with a bath of acoustic phonon via the deformation potential
interaction is derived.

The main achievement in this paper is that the effect of acoustic phonon
scattering on the spectra is quantified.

I modified the code to include acoustic phonon scattering, performed the
calculations and analyzed the data. I wrote a large part of the paper.

Paper IV

In Paper IV, some of our work related to the optics of QCLs is summarized.
More specifically, focused on the optical linewidth. The key point of my con-
tribution to the paper is the comparison of different estimates for the width
of the gain peak. A full NEGF gain calculation gives a linewidth in between
the widths from a simple approach when neglecting correlation effects, and
including them on the simplistic level, as presented in Paper V.

I performed the calculations, prepared Fig. 2, and participated in writing
the paper.

Paper V

When the screening related temperature dependent lasing performance degra-
dation mechanism was proposed in Paper II, a very simple screening model was
used. Also, one of the important approximations in the transport calculation is
the so-called ktyp-approximation, see App. B in Ref. [60]. In Paper V, different
aspects of screened impurity scattering are studied in much more detail, via a
numerical implementation to study impurity scattering alone.

There are two main findings in this paper. First, on the physics side, a
more refined model, compared to the one used in Paper II, including the sub-
band structure and temperature difference between the subbands, still shows
a strong increase in impurity scattering with temperature due to less screen-
ing. Second, on the numerics side, the isotropic Debye screening model is an
excellent approximation for THz devices at temperatures of interest.

I initiated the project, wrote the code, did all calculations, and wrote most
of the manuscript.
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IV

Simulation of gain in quantum

cascade lasers

Errata:
Eq. 1 should read:

Gsimple(ω) =
e2|zlo,up|2ω(nup − nlo)
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Below Eq. (11), should read: ni = (2/A)
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