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Psychohistory depends on the idea that, while one cannot foresee the 
actions of a particular individual, the laws of statistics as applied to large 
groups of people could predict the general flow of future events. Asimov 
used the analogy of a gas: an observer has great difficulty in predicting the 
motion of a single molecule in a gas, but can predict the mass action of the 
gas to a high level of accuracy. Physicists know this as the Kinetic theory. 
Asimov applied this concept to the population of his fictional Galactic 
Empire, which numbered a quintillion. The character responsible for the 
science's creation, Hari Seldon, established two axioms: 1) that the 
population whose behaviour was modeled should be sufficiently large and 
2) that the population should remain in ignorance of the results of the 
application of psychohistorical analyses. There is a third underlying axiom 
of Psychohistory, which is trivial and thus not stated by Seldon in his Plan: 
3) that Human Beings are the only sentient intelligence in the Galaxy. 
[Wikipedia, February 2010] 

http://en.wikipedia.org/wiki/Empirical_statistical_laws�
http://en.wikipedia.org/wiki/Gas�
http://en.wikipedia.org/wiki/Mass_action_%28physics%29�
http://en.wikipedia.org/wiki/Physics�
http://en.wikipedia.org/wiki/Kinetic_theory�
http://en.wikipedia.org/wiki/1000000000000000000_%28number%29�
http://en.wikipedia.org/wiki/Hari_Seldon�
http://en.wikipedia.org/wiki/Axiom�
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SVENSK SAMMANFATTNING 
Tre skäl till att man behöver förutsäga framtiden av ekologiska system är 
att bevara biologisk mångfald, upprätthålla biosäkerhet och att minska 
negativa effekter av en klimatförändring. Utmaningen består i att på ett 
vetenskapligt trovärdigt sätt göra förutsägelser om framtiden för att forma 
lösningar på dessa problem. Genom att beskriva osäkerhet i form av 
sannolikheter – med probabilistiska metoder – kan man göra förutsägelser 
om framtiden på ett strukturerat och åskådliggörande sätt. Med syfte att 
bringa klarhet i vad det innebär att göra förutsägelser om framtiden baserat 
på vetenskaplig kunskap har jag studerat hur man gör sannolikhetsbaserade 
(probabilistiska) riskanalyser av biologiska invasioner. 

En av svårigheterna är att empiriska data som skall utgöra underlag för 
förutsägelsen saknas, eftersom det som skall studeras inte har hänt eller 
eftersom det som studeras innebär något nytt. Exempel på sådana osäkra 
förutsägelser är vad som kommer följa av ständigt pågående introduktioner 
av främmande arter. Man vill gärna kunna förutse vilka arter som blir ett 
problem, men eftersom empiriska data saknas behöver förutsägelser delvis 
bygga på subjektiva bedömningar av sannolikheter. Dessutom saknas det 
kunskap – eller råder osäkerhet om – de processer som leder fram till att en 
del främmande arter blir skadliga för miljö, hälsa och ekonomi.   

Jag har klassificerat befintliga probabilistiska modeller av etablerings-
framgång hos introducerade populationer av främmande arter. Jag fann att 
etableringsframgång antingen beräknas som en sannolikhet för att en art 
lyckas etablera en population efter introduktion, eller beräknas som den tid 
det tar för detta att ske. Man kan dessutom välja att titta på 
etableringsframgång för enskilda arter eller för flera arter i ett och samma 
system. En händelse som skall förutsägas beskrivs på olika sätt och baseras 
på olika typer av tillgänglig data – för varje kombination krävs en viss 
probabilistisk modell.  

När man har valt en probabilistisk modell som binder samman tillgänglig 
empirisk data med det som skall förutsägas uppstår information. Jag 
fokuserar på information i form av den så kallade likelihood-funktionen. I 
min avhandling visar jag hur denna information förekommer som ett 
verktyg i informationsteoretiska metoder – för att välja bra probabilistiska 
modeller – och i Bayesianska metoder – för att beskriva osäkerhet. 
Bayesianska metoder kan dessutom hantera subjektiva beskrivningar av 
osäkerhet vilket är nödvändigt när man saknar empirisk data. I ett av mina 
arbeten visar jag hur en modell kan värderas utifrån de beslut som 
förutsägelser skall användas till, genom att beräkna värdet av information. 
På detta sätt beräknade jag värdet av data på artegenskaper hos marina 
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makroalger, tänkt att användas till omfattande screening av potentiellt 
invasiva alger. 

Jag har specificerat probabilistiska modeller för att beskriva osäkerheter i 
olika steg av en invasionsprocess.  Jag har visat att mindre än hälften av 
introduktioner av signalkräfta i Sverige har lett fram till en lyckad 
etablering inom fem år efter första introduktion. Jag har visat att det i 
Östersjön under 1900-talet har etablerats en ny främmade art vartannat till 
vart tredje år. Om man tänker sig att nya arter fortsätter introduceras i 
samma takt behöver samhället satsa resurser på att ta bort effekterna av de 
arter som är etablerade och förhindra att nya etableringar äger rum. Detta är 
lättare sagt än gjort.  

Avhandlingen heter ”från data till beslut” för att betona att förutsägelser 
av framtiden blir meningsfulla först i ett beslutssammanhang. Eftersom 
osäkerhet kan vara såväl stokastisk som kunskapsbaserad, spelar 
beslutsfattarens värdering av dessa in på hur förutsägelser skall framställas. 
I ett av mina arbeten undersöker jag hur beslut förändras när 
kunskapsbaserad osäkerhet tas i beaktande. I det fallet använde jag mig 
utav probabilistisk modellering som beskriver osäkerheten i hur ett system 
förändras över tiden. Jag modellerade hur antalet etablerade arter i en 
ekologisk region påverkas av de åtgärder man gör för att minska negativa 
effekter av främmande arter.  

Under avsaknad av data kan man ändå beskriva osäkerhet genom att 
resonera kring vilken typ av probabilistisk modell som skulle kunna passa 
för den ännu ej observerade händelsen. Efterhand som mer empirisk data 
blir tillgänglig kan man låta den beskrivna osäkerheten övergå från att vara 
helt subjektiv till mer och mer (empiriskt) kvantitativ. I ett av mina arbeten 
använder jag mig utav simuleringar för att komma fram till en 
probabilistisk modell som beskriver de observationer jag ännu inte har 
gjort. Jag visar hur osäkerhet i, och även risk relaterad till, 
spridningshastighet av en population är känslig för hur lämpligt habitat är 
utspritt längs med vägen. 
 
Att kunna göra bra förutsägelser om framtiden och dess osäkerhet är en av 
förutsättningarna för att finna bra lösningar på de problem ekologiska 
system står inför. 

 



From data to decision 

10 
 

1 INTRODUCTION 
The aim of this thesis is to shed more light on the art of predicting futures 
in ecology (Clark et al. 2001, Coreau et al. 2009) with the purpose of 
decision making under uncertainty. The starting point of my thesis 
coincided with the publication of two special issues in scientific journals; 
one in Risk Analysis, on what theoretical ecology can do for risk analysis 
of biological invasions (Anderson et al. 2004) and one in Reliability 
Engineering & System Safety, on how to represent uncertainty in risk 
analysis (Helton 2004). These special issues illustrated that risk analysis of 
biological invasions is a field still in progress for which methods, models 
and scientific knowledge are continually being produced. At the same time 
as there is an ongoing mission to improve how we consider uncertainty in 
relation to risk. The combination of science and uncertainty raises 
interesting questions on principles for decision making under uncertainty. 
For example, in the seminal book Risk and Rationality, Shrader-Frechette 
(1991) discusses the scientific approach to assess environmental risks and 
suggests methodological reforms to make risk analysis both rational and 
objective. Ten years later the same philosopher published a paper on the 
problems with the scientific method used when assessing biological 
invasions, such as the lack of a firm definition of a non-indigenous species, 
the flaws in the dominant ecological theory to predict invasions and the 
lack of empirical generalizations that predict which species that become 
invaders (Shrader-Frechette 2001). To me the role of science and how to 
approach scientific knowledge emerged not only as important, but also 
necessary, to discuss before producing any ready to use tools for risk 
analysis as asked for by the Swedish Environmental Protection Agency 
(Naturvårdsverket). Thus the synthesis provided in this thesis contributes to 
the progress in methodologies to be applied in future risk analyses of 
biological invasions. 
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2 BACKGROUND 

2.1 Why biological invasions 

2.1.1 Three reasons to predict futures in ecology… 

I. Preserve biodiversity 
Arguments to why we should preserve biodiversity are of different kinds 
relying on biodiversity having an instrumental value for human well being 
or as having an intrinsic value (Persson 2008). The Millennium Ecosystem 
Assessment (2005), conducted with the aim to provide a scientific state of 
the art, concludes that “biodiversity contributes directly (through 
provisioning, regulating, and cultural ecosystem services) and indirectly 
(through supporting ecosystem services) to many constituents of human 
well-being, including security, basic material for a good life, health, good 
social relations, and freedom of choice and action”. Biodiversity loss 
receives attention on both national and global political agendas such as the 
Convention on Biological Diversity (CBD 2010), which today has been 
approved by 193 parties (countries). The year 2009 was the first year 
biodiversity loss was considered as one of the global threats to the world 
economy (Global risk assessment World economic forum 2009). The threat 
statuses of species are continuously being assessed by the World 
Conservation Union (IUCN). 

II. Protect biosecurity 
Biosecurity (FAO 2010) is a holistic concept of direct relevance to the 
sustainability of agriculture, food safety, and the protection of the 
environment, including biodiversity. It is “a strategic and integrated 
approach that encompasses the policy and regulatory frameworks ... that 
analyse and manage risks in the sectors of food safety, animal life and 
health, and plant life and health, including associated environmental risk”.  

III. Reduce impact from climate change 
Most climate scientists agree that the rate of increase in CO2 and higher 
temperatures are caused by human activities since the dawn of 
industrialization (IPCC 2007b). The negative impacts associated with a 
changing climate may change ecosystems structure and functioning which 
may inhibit the delivery of ecosystem services (IPCC 2007a). Future 
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changes of ecosystems are being predicted based on climate scenarios 
(IPCC 2007b). 
 

 

2.1.2 ...with a commonality 
A problem related to all these three issues above is the introduction of non-
indigenous species leading to harmful biological invasions. A biological 
invasion (Box 1) is the process where a species is introduced into an area 
where it did not exist before, establish a population, expand its range and 
interact with the new community (Mack et al. 2000). Not only have 
introduced non-indigenous species had negative impacts on health and 
socio-economic values (Pimentel et al. 2001, 2005) – they are also 
considered as potential drivers of the problems mentioned above. 
Biological invasions are regarded as a major threat to biodiversity (Sala et 
al. 2000). Article 8(h) of the CBD (CBD 2010) states that “each contracting 
party shall, as far as possible and as appropriate, prevent the introduction 
of, control or eradicate those alien species which threaten ecosystems, 

Box 1. Definitions used by CBD. 
(http://www.cbd.int/ January 2010) 
 
Alien species - refers to a species, subspecies or lower taxon, introduced 
outside its natural past or present distribution; includes any part, 
gametes, seeds, eggs, or propagules of such species that might survive 
and subsequently reproduce. 
 
Invasive alien species - means an alien species whose introduction 
and/or spread threaten biological diversity. 
 
Introduction - refers to the movement by human agency, indirect or 
direct, of an alien species outside of its natural range (past or present).  
 
Intentional introduction - refers to the deliberate movement and/or 
release by humans of an alien species outside its natural range. 
 
Unintentional introduction - refers to all other introductions which are 
not intentional. 
 
Establishment - refers to the process of an alien species in a new 
habitat successfully producing viable offspring with the likelihood of 
continued survival. 
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habitats or species”. Biosecurity aims at preventing “the introduction of 
plant pests, animal pests and diseases, and zoonoses, the introduction and 
release of genetically modified organisms (GMOs) and their products, and 
the introduction and management of invasive alien species and genotypes”. 
The act of deliberately introducing harmful species as an act of bioterrorism 
adds another aspect to biosecurity (Meyerson and Reaser 2003). Climate 
change is believed to increase the threat posed by non-indigenous species 
for example by facilitating the spread of harmful non-indigenous species 
(IPCC 2007a, Walther et al. 2009).  

Many introductions have occurred during 20th century (Hulme 2009) and 
since there often are time lags between the introduction and the impact of 
an introduced species, the problem with biological invasions is expected to 
increase in the future. Thus, predicting the outcome of biological invasions 
is highly relevant if we are to take measures before it is too late. What to 
predict is to be understood from a management perspective of biological 
invasions and I therefore continue with a brief introduction to this subject. 

2.1.3 Managing biological invasions 
Management of biological invasions are generally divided into early 
detection, prevention and control (McNeely et al. 2001). Early detection 
makes it possible to stop potentially harmful species from being introduced 
(Mack et al. 2000), with different approaches depending on if introductions 
are intentional or unintentional (Box 1). Prevention implies allocation of 
resources to stop events that already have a low probability of occurring, 
while measures for control are both low in success and costly for those 
species that already have established self-sustaining populations in the new 
system (Simberloff et al. 2005). Most non-indigenous species are not a 
problem (Williamson 1999). On the contrary many of the introduced 
species are beneficial in agriculture, aquaculture, forestry, horticulture and 
recreation (Gozlan and Newton 2009). All non-indigenous species should 
therefore not be regarded as a problem per se. However, those species that 
become problematic are difficult – and most often impossible – to eradicate 
once established, with potentially irreversible effects as a consequence 
(NRC 2002). Predicting which species that will become harmful (invasive) 
if introduced therefore constitutes a major task in the management of 
biological invasions (McNeely et al. 2001, Lodge et al. 2006). Predictions 
are suggested to be based on species traits as well as similarities found by 
climate matching (NRC 2002, Stohlgren and Schnase 2006). Despite 
considerable efforts to find predictors among species traits, the few robust 
predictors over taxonomic groups are propagule pressure, climate match 
and invasion history (Hayes and Barry 2008).  
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Because of large uncertainties in the outcome of introductions and the 
management alternatives, strategies for managing biological invasions often 
advocate that decisions should be based on risk analysis (McNeely et al. 
2001, Lodge et al. 2006, Hulme et al. 2009). In particular, the quality of 
predictions plays a role when management call for controversial actions, 
such as the trade-off between preventing potentially harmful species to be 
introduced and free trade (Cook and Fraser 2008). Predicting potential 
problem species (Kolar and Lodge 2001), hot spots for invasions (Drake 
and Lodge 2004) and the mechanisms driving invasions (Hulme 2009, 
Hulme et al. 2009) are not only important in order for management to be 
effective, but also necessary for management to be accepted by the society.  

Another difficulty lies in the evaluation of impacts, which could be both 
negative and positive. The ecological impacts from non-indigenous species 
are found on several biological levels ranging between individual, 
population, community and ecosystem levels, and effects can be both direct 
and indirect (NRC 2002). By, so called, invasive non-indigenous species 
some mean those that spread fast and become abundant, while others mean 
that they are species with harmful effects in the new system (Falk-Petersen 
et al. 2006). The rate of spread is not enough to predict species’ impact 
(Ricciardi and Cohen 2007) and there is a need to quantify impact by the 
effects on values that are to be protected and consider expanded range or 
population size (Parker et al. 1999). Impact on biodiversity has been 
estimated by the number of native species threatened by non-indigenous 
species (EEA 2004, Berglund 2009), but this requires consideration of 
threats other than biological invasions and the possible synergistic effects 
among these (Brook et al. 2008). Counts of the number of non-indigenous 
species provide another possibility to assess the status of biological 
invasions (McGeogh et al. 2006), but the actual impact is dependent on 
whether the cumulative effect from multiple non-indigenous species are 
synergistic, independent or antagonistic (NRC 2002, Ricciardi and Kipp 
2008). Economic impacts have been assessed in monetary terms (Pimentel 
et al. 2001, Pimentel 2005, Kettunen et al. 2008, Gren et al. 2009), but this 
holds substantial challenges for economic methods (Nunes and Markandya 
2007, Carlsson and Kataria 2008) to be able to include non-market values 
such as aesthetical ones.   

Not only is the outcome of introduction of a non-indigenous species 
uncertain, we are also uncertain in how uncertain this outcome is. Risks 
associated with biological invasions are, together with new technologies 
such as genetically modified organisms, so called uncertain risks (explained 
below). Therefore uncertainty is the major theme in my thesis and below I 
expand what it means to predict with uncertainty.  
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Box 2. Different ways to predict. 
(after Peters and Herrick 2004, Coreau et al. 2009). 
 
Extrapolation - to extend the spatial extent or refine the resolution of 
measured data to arrive at a broader scale or finer grained estimate 
 
Forecast - the best projection or prediction about the future given by 
one particular model or one particular expert (e.g. weather forecast). 
Clark et al. (2001 Science) defines ecological forecasting as “the 
process of predicting the state of ecosystems, ecosystem services, and 
natural capital, with fully specified uncertainties, and is contingent on 
explicit scenarios for climate, land use, human population, 
technologies, and economic activity.” 
 
Foresight - a construction about the future, with the aim to prepare for 
it. There is a strong link with management and decision making (e.g. 
technology foresight). 
 
Prediction - a statement about what is thought will happen in the 
future, often associated with probability distributions. The main 
characteristics of future predictions are their degree of certainty, which 
lead to only one prediction (compared to the multiplicity of scenarios). 
Many authors use the term prediction to describe the result of a 
modelling exercise based on a set of assumptions. For example, Peters 
and Herrick (2004) let predict be ”to declare or indicate in advance, to 
foretell on the basis of observation, experience or scientific reason”, 
by the motivation that general definition is preferred when common 
usage makes a stricter definition unnecessary and confusing. 
 
Projection - a statement about what would happen, based on the 
extrapolation of past and current trends (e.g. population projections). 
 
Scenario - a plausible description about alternative futures, based on a 
coherent and internally consistent set of assumptions about key 
relationships and driving forces.  
 
Storyline - a coherent story (narrative) about what may happen in the 
future. 
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2.2 Predicting with uncertainty 

There are several ways to produce predictions of futures states (Box 2). 
What to predict may be the result of a dialogue between policy-makers, 
managers, and the general public (Clark et al. 2001). The ability to predict 
may be challenged by uncertainties (Box 3) in how we perceive and express 
the states of systems (Halpern et al. 2006). How uncertainty is dealt with 
depends on the purpose of predictions (Kinzing et al. 2003). When the goal 
is to describe the world, as in traditional science, strategies dealing with 
uncertainty are developed to protect against being wrong. When the goal is 
making good decisions, as in policy making, uncertainty are dealt with 
aiming for accuracy.  
 

 
  

Box 3. The meaning of uncertainty. 
Uncertainty can be broadly classified into epistemic uncertainty 
(uncertainty in determinate facts) being measurement error; systematic 
error; natural variation; inherent randomness; model uncertainty; and 
subjective judgment, and linguistic uncertainty (uncertainty in 
language) being vagueness, context dependence, ambiguity, 
indeterminacy of theoretical terms, and underspecifity (Regan et al. 
2002).  

Some chose to let epistemic uncertainty be separated from 
uncertainty being stochastic (aleatory) (Paté-Cornell 1996, Bedford 
and Cooke 2001). Stochastic uncertainty arises from variability in the 
system and can be quantified from data using statistical methods or by 
expert judgment, while the remaining epistemic uncertainty (state of 
knowledge) can only be quantified by experts (Bedford and Cooke 
2001). However, the distinction between epistemic and stochastic 
uncertainty is not sharp and depend the particular model and purpose 
of prediction. For example, one can choose to model the average 
behaviour of a population instead of the behaviour of each individual. 
Schultz (2008) distinguish between data uncertainty resulting from 
information being inconclusive, incomplete, or non-existent, and 
methodological uncertainty involving disagreement over which 
methodologies or models that are most appropriate or reliable to use. 
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Kinzing et al. (2003) pointed out four difficulties in the encounter of 
science and decision making related to the different ways to deal with 
uncertainty. First, uncertainty may not be properly communicated. The 
success of a prediction depends on the accuracy of estimations and the 
communication of information and uncertainty (Regan et al. 2005b). 
Second, what is useful uncertainty may be different for scientists and 
decision makers. Trying to reduce uncertainty, scientists tend to avoid 
complex ecological systems or use methodologies that remove uncertainties 
that are not of interest to the scientific question. However, it may be just 
these systems that are of interest for the decision makers (Kinzing et al. 
2003). Missing important sources of uncertainty can result in predictions 
appearing to be less uncertain than what they actually are e.g. having too 
narrow confidence intervals (Clark et al. 2001), or not including extreme or 
rare events (Ludwig 1996). Third, difficulties to quantify uncertainty may 
result in avoidance of uncertainty in predictions and scientists may feel 
uncomfortable expressing how likely something is to occur. Four, there is 
no such thing as objective science (see also Shrader-Frechette 1991) – the 
values of scientist influence the scientific output. In fact, scientific work on 
biological invasions is full of value laden and subjective judgment, such as 
whether non-indigenous species pose a threat to native ecosystems or not 
(Larson 2007). 

The failure of management strategies due to missed important 
uncertainties in predictions is not good for the trust in science, managers or 
decision-makers (Clark et al. 2001, Regan et al. 2005a). Focus need to be 
directed on the causes of uncertainty, e.g. mechanisms for long-distance 
dispersal of an invading population (Clark et al. 2001), and on how to 
address and communicate uncertainties when predicting. A scientifically 
based predictive system should be transparent, open to review and 
evaluation by experts, rest on a logical framework and be repeatable (NRC 
2002). Predicting with uncertainty can therefore be approached by risk 
analysis which is meant to provide information for decision resting on 
scientific principles and best knowledge (NRC 2002, Aven and Kristensen 
2005).  
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2.2.1 Risk analysis 
Risk analysis is a tool to predict outcomes while considering uncertainty in 
both the system and in our knowledge of the system (Box 4). A risk 
analysis seeks the answers to the triplet questions:  
 

What can go wrong?, 
How likely is it? and 

What are the consequences?, 
 
with the purpose to show how the risk changes under different decision 
alternatives. Risk is in itself a combination of the likelihood and 
consequences of an undesired event (Kaplan and Garrick 1981, Aven and 
Kristensen 2005). In this thesis I interpret likelihood in the definition of risk 
as the probability of the undesired event.  

Box 4. Some useful definitions related to risk analysis. 
The definitions is taken from Aven (2003) who unless stated otherwise 
use the ISO (International Organization for Standardization) standard. 
 
Risk – uncertainty of the performance of a system (the world), 
quantified by probabilities of observable quantities. 
 
Probability – a measure of the uncertainty of an event. According to 
ISO it is defined as “the extent to which an event is likely to occur”. 
 
Observable quantity – quantity expressing a state of the world that is 
unknown at the time of the analysis but will, if the system being 
analyzed is actually implemented, take some value in the future, and 
possibly become known. 
 
Risk analysis – systematic use of information to identify sources and 
assign risk values. 
 
Risk evaluation – process of comparing a risk against given risk 
criteria to determine the significance of the risk. Risk evaluation may be 
used to assist the decision making process. 
 
Risk management – coordinated activities to direct and control an 
organization with regard to risk. 
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The use of the terms risk analysis and risk assessment is confusing. The 
ISO standard regards risk assessment as the overall process of risk analysis 
and risk evaluation (Aven 2003), while other define risk assessment as part 
of risk analysis; CBD (2010) use risk analysis referring to: (1) the 
assessment of the consequences of the introduction and of the likelihood of 
establishment of an alien species using science-based information (i.e., risk 
assessment), and (2) to the identification of measures that can be 
implemented to reduce or manage these risks (i.e., risk management), 
taking into account socio-economic and cultural considerations. The 
Society for Risk Analysis (SRA 2010) defines risk analysis broadly “to 
include risk assessment, risk characterization, risk communication, risk 
management, and policy relating to risk”. The beauty in the terminology is 
perhaps best captured by Burgman (2005) who view risk analysis as the 
“evaluation and communication of the nature and extent of uncertainty” and 
risk assessment as the ”completion of all stages of the risk management 
cycle, a marriage of risk analysis methods, adaptive management, decision 
tools, monitoring and validation”.  

2.2.2 The “E” in risk analysis 
Non-indigenous species can be seen as a “biological pollution” (Olenin et 
al. 2007), and risk analysis of biological invasions is a sort of 
Environmental risk analysis considering both Ecology and Epidemiology. 
Suter (1993) defines an ecological risk analysis as ”the process of 
evaluating the potential for adverse ecological effects that may occur as a 
result of exposure to contaminants or other stressors”. Stressors can be 
chemical, physical or biological (US EPA 1998) such as toxic chemicals, 
pesticides, nutrient enrichment, ozone depletion, harvesting, habitat loss, 
natural disasters, climate change, genetically modified organisms, but also 
introduced non-indigenous species (US EPA 1998, Chapman 2002). 
Adverse ecological effects are measured on several biological levels 
ranging from the mortality of single organisms to loss of ecosystem 
functions (US EPA 1998). The impacts from biological invasions are not 
purely ecological, but also encompass effects on human health and 
economy (Mack et al. 2000). Environmental risks are typically assessed by 
analyses of exposure and effects (US EPA 1998, McCarty and Power 
2000). The third E comes from Epidemiology highlighting that a biological 
stressor which, as opposed to a chemical or physical one, reproduces and 
spreads in the new system. This requires other types of approaches, e.g. 
with a process perspective, for risk analysis (Mollison 1986, US EPA 
1998).  
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2.2.3 The “P” in risk analysis 
In one way risk analysis is about Predicting using Probabilities. The 
challenge for risk analysis of biological invasions is to make predictions in 
a complex system suffering from scientific uncertainty (Leprieur et al. 
2009) despite sparse empirical data or similar historical events. As a 
consequence, risk analyses of biological invasions are most often 
qualitative (Hayes 1997). However, since such analyses often suffer from 
subjective flaws and are poor in handling uncertainty (Burgman 2000), 
methods for risk analysis should rather be quantitative. A quantitative 
approach is provided by probabilistic risk analysis which has originated 
from the nuclear, aerospace and chemical process sectors to predict events 
“that (almost) never occurs” (Bedford and Cooke 2001). Probabilistic (or 
quantitative) risk analysis may provide the transparent and rigorous 
quantification of uncertainties asked for by policymakers (NRC 2002). 
Probabilistic analysis offers a method being transparent since “once there is 
a model, only accepted rules of probability take us from data to inference to 
prediction” (Clark 2005), and rigorous for example by forcing us to specify 
our knowledge through the use of probabilistic models. 

Using probabilities to quantify uncertainties pose new demands on the 
risk analysis. The first thing to consider is that any measure of probability 
will not be able to describe all types of uncertainty (Bedford and Cooke 
2001). For example, linguistic uncertainty (Box 3) can lead to violations of 
the basic rules of probability (Colyvan 2008). The foundation of the 
probability measure is build upon a few axioms (Kolmogorov 1956) and, 
for example, when events are defined by vague or ambiguous terms, the 
probability of an event and the negation of this event do not necessarily 
sum up to one (Colyvan 2008). One recommendation is to let methods to 
address linguistic uncertainties forego a probabilistic risk analysis 
(Burgman 2005). Other chooses to relax some of Kolmogorov’s axioms 
and quantify uncertainty by non-probabilistic measures such as imprecise 
probabilities, fuzzy logic and intuitionistic logic (Helton 2004, Burgman 
2005, de Rocquigny et al. 2008). This thesis focuses on probabilities as the 
only measure of uncertainty. 

A second consideration when performing probabilistic risk analysis is 
how to handle uncertainty of various strengths of scientific evidence. For 
example, risk analysis of biological invasions needs to address information 
ranging from planned experimental results, peer reviewed journal data, grey 
literature data to unstructured expert opinion (Keith Hayes personal 
communication). When empirical data is unattainable, uncertainty can be 
quantified based on expert judgements. Probability distributions for 
parameters can then be produced by letting the experts themselves produce 
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a consensus probability distribution or by aggregating the experts’ 
individual probability distributions after their elicitation (Bedford and 
Cooke 2001). Whether the quantification of uncertainty has been objective 
or subjective (or both) is important for a decision-maker. Subjective 
judgments of probabilities tend to be biased on individuals’ perception 
(Tversky and Kahneman 1974, Burgman 2000). On the other hand 
subjectivity does display preferences over risk, which motivates why risk 
analysis should strive to be a democratic process involving the opinions of 
stakeholders, i.e. those affected by the risk (Shrader-Frechette 1991).  

A third consideration is the interpretation of probability. Probability can 
have different meanings (Cox 1946, Bedford and Cooke 2001); it can 
express the true probability that something will occur (the classical view), 
the relative frequency given a large enough sample (the frequentist view) or 
our degree of belief about the occurrence of a future event (the subjective 
view). The interpretation of probability becomes important when the risk 
analysis is handed over to a decision maker. Risk analysis in practice is 
more or less influenced by subjectivity (Regan et al. 2005b). Further, 
decision makers may have different attitudes towards risk, ranging from 
being averse, over neutral to prone towards risk. In the same way can 
decision maker have an attitude towards uncertainty (see e.g. Akcakaya et 
al. 2000). Decision-making involves not only assessing the risk but also to 
state once preferences over risk, for example, establishing acceptable levels 
of risk (Shrader-Frechette 1991). A risk analysis should work as a tool for 
decision support even under subjective quantification or large epistemic 
uncertainty (Box 3). Therefore there is (or should be) a close link between 
what framework we choose for the presentation of uncertainty and on what 
basis (rationality) decisions are made (de Rocquigny et al. 2008, Aven 
2010). Frameworks of ecological risk analysis distinguish more or less 
between science and policy, dependent on whether the focus is on the 
assessment of risk or the social dimension on risk (McCarty and Power 
2000). It is important to highlight the meaning behind uncertainty for those 
providing the information and for those making decisions. What strategy to 
use in policy making is affected by the occurrence of risk events, the 
magnitude and perceptions of consequences and the extent of uncertainty 
(Klinke and Renn 2002) Even though this thesis is about predicting the 
future of uncertain ecological systems it has become inevitable to not 
involve the decision making process, which I briefly introduce in the next 
section. 
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2.3 Decision making under uncertainty 

Decision theory can be both normative, how decisions should be done, and 
descriptive, how decisions are done. There is a difference between 
decisions made under risk and decision made under uncertainty (Hansson 
1999), or in other words, under first and second order uncertainty 
(Gärdenfors and Sahlin 1982). In the first case probabilities to describe the 
risk are known, while in the second probabilities are either not known at all 
or only known with insufficient precision.  

When making decisions under uncertainty the preferences over risk and 
uncertainty needs to be specified. Two prevailing approaches for decision 
making under uncertainty are the Bayesian approach and the minimax 
principle (Aven 2003, Shrader-Frechette 1991). The Bayesian approach 
treats all uncertainty as equal by basing decisions on an expected utility. 
This is risky since it ignores uncertainty in utilities and probabilities 
(Burgman 2005). Therefore it is desirable to separate between stochastic 
and epistemic uncertainty. According to the minimax principle the decision 
maker prefers decision alternatives with the lowest possible maximum loss 
and can thereby choose alternatives with a higher expected loss but a with 
less uncertainty. Some even go further and choose to quantify epistemic 
uncertainty with non-probabilistic measures (e.g. fuzzy logic, possibilities; 
Helton 2004, Burgman 2005, de Rocquigny et al 2008). The problem then 
becomes how to make the decisions. This is an ongoing topic, even in 
Ecology (see for example Regan et al. 2005a). 
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3 RESEARCH PROCESS 
3.1 Scientific perspective 

Scientific interest can be either descriptive or prescriptive (March and 
Smith 1995). Descriptive research aims at understanding the nature of, for 
example, ecological systems. It is a knowledge-producing activity 
corresponding to natural science. Prescriptive research aims at improving 
system performance. It is a knowledge-using activity corresponding to 
design science. Both scientific perspectives are relevant and depend on 
output from each other. For example, natural scientists produce scientific 
knowledge which design scientists can exploit to develop new technology, 
and an artefact constructed by design scientists can be used to gain more 
knowledge of natural laws. As one ecologist put it “the role of science in 
the decision-making process and the research required to develop a 
capability of predicting ecological futures is to provide knowledge of the 
system that is to be predicted but also to improve how predictions are 
made” (Clark et al. 2001). The former is a task for traditional natural 
science focusing on understanding the processes in the systems of interest. 
The latter role involves the issue to communicate uncertainties in 
predictions to improve decision-making, and is a task for someone with a 
design perspective on science.  

Distinguishing between natural science and design science can easily 
become complicated and is, in one sense, even unnecessary. March and 
Smith (1995) therefore suggests to instead describe research by its outputs 
and activities. They categorize research outputs as constructs, model, 
method and instantiation (i.e. the implementation in a real setting) and 
divide research activities into build, evaluate, theorize and justify. The 
research activities to build and evaluate is most common in design science, 
while theorize and justify fits into natural science. I believe that adopting 
this broader perspective on science provides legitimacy for asking different 
types of questions when working with solving ecological and 
environmental problems and still doing science. My research is to be 
understood as a process where the research questions have emerged when 
the problems have been presented and after settling criteria for their 
solutions.  
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3.2 Study object: probabilistic risk analysis of 
biological invasions 

The aim of this thesis is to improve the knowledge of how to predict futures 
in ecology with the purpose of making decisions. I have approached this 
aim with five studies focusing on probabilistic risk analysis of biological 
invasions with the purpose to identify and solve issues related to predicting 
with uncertainty for decision making. My research activities have been to 
build and evaluate models for probabilistic risk analysis related to 
biological invasions. My research outputs are therefore models and 
methods. The reasons for choosing probabilistic risk analysis of biological 
invasions as study object for my case studies were: 
 

I. The application of probabilistic risk analysis is relevant to improve 
risk management aiming to preserve biodiversity, maintain 
biosecurity or reduce the impact from climate change. 
 

II. There is a need to consider uncertainty both in stochastic events 
and determinate facts (epistemic uncertainty).  
 

III. There is a need to combine subjective judgment with statistical 
inference.   
 

IV. Models and methods for probabilistic risk analysis are still under 
development and there is a need for standards of the quantification 
of uncertainty. 

 
In the following sections, I give a brief description of risk analysis of 
biological invasions and outline the papers included in this thesis. I 
continue with a cross-cutting analysis of my studies. Finally, I provide a 
synthesis of my findings concerning how to predict with uncertainty. 

3.3 Conceptual model and major endpoints 

A biological invasion can be conceptualized as a chain of event from 
introduction, i.e. the transport from donor to recipient system and survival 
in the new environment, followed by establishment and spread, finally 
leading to impact on human health or economic and environmental values 
(see the front cover of this thesis). An invasion is successful when the alien 
species succeed in each of these steps in the chain (Williamson 1999, Kolar 
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and Lodge 2001, Heger and Trepl 2003). The outcome of a biological 
invasion depends on a combination of factors related to traits of the 
invading species, abiotic and biotic conditions in both the donor and the 
recipient systems, and propagule pressure (Lodge et al. 2006, Catford et al. 
2009).  

Information on environmental matching, previous invasion history, 
propagule pressure, and species traits are examples of entries to target 
invasive species among those with a potential of being introduced (Lodge 
et al. 2006, Barry et al. 2008). Environmental matching and previous 
invasion history are used to predict invasiveness by utilizing the similarity 
between the environment in the native and the potential range, or between 
earlier and future events of invasion, respectively. Propagule pressure as a 
predictor of invasiveness rests on a mechanistic understanding of the 
invasion process, conceptualizing that a stronger introduction effort results 
in a higher probability to succeed. The use of species traits as predictors of 
invasiveness rely on the paradigm that invasive species share certain 
characteristics, which for instance can be specific within a taxonomic 
group. Even though general characteristics are difficult to find (Hayes and 
Barry 2008), species traits are frequently recommended and used as 
predictors of invasiveness (Lodge et al. 2006, Barry et al. 2008).  

Risk analyses of invasions of non-indigenous species are aimed to 
predict the probability of one or several events in this invasion chain 
(Richardson et al. 2000, Kolar and Lodge 2002, Colautti and MacIsaac 
2004) and the impacts on the ecological and socio-economical systems 
following a successful introduction (Leung et al. 2002). The prediction of 
species’ potential to become invasive has been given considerable attention 
in ecological modelling, but with varying success (Kolar and Lodge 2002, 
Hayes and Barry 2008). The consequences following an introduction are 
more difficult to foresee and quantify (Lodge et al. 2006, Strayer et al. 
2006). The losses resulting from introductions of invasive non-indigenous 
species are generally considered to be larger than the potential benefits 
(McNeely et al. 2001, Keller et al. 2007, Hulme et al. 2009), with the 
exception of the most common crops and cultivated species. Monetary 
estimates of the impact of invasive species are difficult to obtain, but 
nevertheless possible, using the wide array of available economic tools 
(Nunes and Markandya 2008).  

Risk analyses of biological invasions can be categorized by their 
assessment endpoints. Assessment endpoints represent the values the 
analyst is trying to protect (Burgman 2005) but can also be the events the 
analyst is trying to avoid. There are five major endpoints of biological 
invasions: Introduction, Establishment, Distribution, Impact – species and 
Impact – system. The first endpoints represent steps in the biological 
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invasion event chain. Risk analysis with a species endpoint aims to 
distinguish harmful invasive species from harmless non-invasive ones. The 
endpoint describing the impact on an invaded system can be impact in 
relation to a specific non-indigenous species (e.g. Ricciardi 2003) or on the 
total impact in the system (e.g. Berglund 2009). The prevailing endpoint for 
risk analysis of a single species invasion is the probability of, or the time 
for, a transition from one stage to another. The prevailing endpoint for risk 
analysis of multi-species invasions is the intensity of endpoint events and 
the accumulated impact over time.  

3.4 Methods studied 

3.4.1 Probabilistic models 
Probabilistic models can be statistical, dynamic state or Bayesian models 
(Aven 2003). A statistical model fits one or several probability distributions 
to a random variable describing the probabilistic behaviour of a quantity 
that can be observed, based on the existence of an underlying statistical 
population. Statistical models are implemented to estimate parameters in a 
regression or relevant characteristics of random variable, such as the mean, 
median or a percentile. Dynamic state (or process) models use probabilities 
for the transition between different states which can be discrete or 
continuous. Bayesian models incorporate prior information on parameters 
in the corresponding statistical or state dynamic model and allow empirical 
data to enter the analysis via the likelihood (Aven 2003).  

3.4.2 Bayesian approach 
A Bayesian analysis consists of a probabilistic model for a (in this example 
discrete) quantity Y and parameter θ denoted as p(data,θ), where the 
parameter is assigned a prior distribution p(θ) based on background 
knowledge. The posterior distribution for the parameter θ is found after 
updating the prior distribution with the observed data using Bayes’ rule and 
is  

p(θ| data) = p(data,θ)p(θ) / ∫ p(data,θ)p(θ)dθ. 

The predictive posterior of Y, P(Y = y| data), is found by combining the 
probabilistic model and the posterior distribution on parameters and is 
given by  

P(Y = y| data) = p(y,θ) p(θ| data). 
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Predictions about the uncertainty in X is given by predictive posterior 
distribution  

P (Y = y| data) = ∫ p(y,θ)p(θ| data) dθ.  

The likelihood L(θ| data) is the same as the joint probability of observing 
the data from Y conditional on the parameters in the probabilistic model, 
here denoted as p(data| θ). 

3.4.3 Information theoretic approach 
Based on the likelihood, the Akaike information criterion is calculated as  

AIC = -2lnL(θ |data) + 2k,  

where k is the number of parameters in θ (the probabilistic model). The 
Akaike weight of model i in the set of candidate models j = 1,…,R is 
calculated as  

wi = exp(-1/2Δi) / Σj exp(-1/2Δj), 

where Δi = AICi – AICmin is the Akaike difference. Sometimes only the 
models with an Akaike difference larger than two are considered (model 
selection).  

The Akaike weight is used to weight the models in the candidate set after 
how much evidence they receive from data. The Akaike weight can also be 
used to produce weighted sums of models for inference or prediction 
(model averaging). For a more comprehensive review I refer to Burnham 
and Anderson 2002 and Johnson and Omland 2004.
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4 MY RESEARCH CONTRIBUTIONS 

4.1 Outline of studies 

The first paper is a review of probabilistic models of establishment success 
in a sample of published articles (Paper I). I particularly ask how 
establishment success was defined and how uncertainty was quantified in 
different studies. In the second study I specified a probabilistic model of 
establishment success in which I addressed various methods for including 
covariate effects (Paper II). In the third study I modelled the uncertainty in 
a biological invasion endpoint as a function of two common metrics of 
landscape characteristics (Paper III). I derived a probabilistic model for the 
uncertainty in expanded range (i.e. related to the distribution endpoint) 
given a certain amount of suitable habitat and its degree of fragmentation 
for two types of dispersal behaviour of the spreading species. In Paper IV I 
derived the value of information on species characteristics when used to 
screen for potentially invasive species. The value of information was then 
used to estimate the benefit of a model to predict species invasiveness 
under different base-rates. In the last study (Paper V) I derived a robust 
strategy to reduce the impact from multiple-species invasions on a system, 
with particular emphasis on robustness to uncertainty in the dynamics of 
the system. Below I describe the objectives and the main results for each 
study (summarized in Table 1). For a detailed description of the studies I 
refer to the original papers appended in this thesis. 
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Table 1. The studies in this thesis with respect to the studied aspect on 
uncertainty, biological invasion endpoint and if focus is on predicting 
solely or on decision making. 
 
 Paper I Paper II Paper III Paper IV Paper V 
Aspects on 
uncertainty  

Type of 
probabilistic 
models, type of 
predictions, 
Bayesian 
approach 

A probabilistic 
model for 
censor data 
considering 
censoring, 
methodology 
considering 
multi-
collinearity, 
information 
theoretic 
approach to 
model 
selection and 
prediction 

A model for the 
likelihood given 
information on 
landscape 
characteristics, 
Competing risk 
model, 
stochastic 
dominance, 
extreme value 
theory 

Pre-posterior 
value of 
information 
analysis, the 
base-rate 
effect 

How to include 
uncertainty in 
decision-
making, 
epistemic 
uncertainty, 
Bayesian 
quantification 
of uncertainty  

Biological 
invasion 
endpoint 

Establishment Establishment Distribution Impact - 
species 

Impact - 
system 

Major focus Predicting risk Risk in a decision context 

 

4.2 Probabilistic risk analyses of establishment 
success 

The first two studies (Paper I and Paper II) focused on the probability of 
establishment success for two reasons: First, establishment success is the 
final step in the chain of events leading to a successful introduction 
(Carlton and Ruiz 2005) and represents the first event in an analysis of the 
biological or economic impact of non-indigenous species (the bow-tie view 
in Figure 1). Establishment success is therefore a common endpoint event 
in risk analyses of biological invasions. Second, establishment can be 
modelled based on mechanistic principles (Rejmanek 2000, Hayes and 
Barry 2008) using factors related to, for example, the intensity of 
introduction, the number of arriving individuals, and the chances of 
survival in combination with measures of reproduction success and 
population growth. It is therefore reasonable to expect a variety of models 
of establishment success emphasizing different key aspects of the invasion 
process. 
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The chain

The bow-tie

The system

time
 

Figure 1. Three different perspectives on risk. The chain perspective places 
endpoint events in a chain of events where one event must happen in order 
for the next to occur. The bow-tie model consider the possible ways an 
undesired event can be initatied (e.g. a fault tree) and/or the events 
following an initating event (e.g. an event tree). The system perspective is 
to let initating events (threats) influence the performance of a system over 
time. 
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The survey of probabilistic models of establishment success in Paper I 
resulted in the classification scheme shown in Figure 1, showing different 
approaches to model uncertainty in establishment success. Some studies 
derived predictions of establishment success based on a likelihood function. 
In these likelihood-based predictions, empirical observations enter the 
analysis via the likelihood function, and risk is derived from the parameters 
in a probabilistic model. Other studies derived forecasting-type of 
predictions. In this approach, there is no data on “similar” events to base 
predictions on; instead one uses a deterministic or stochastic model where 
uncertainty in input parameters is propagated into uncertainty in 
predictions. A number of models were directly implemented in a decision 
theoretical context; in some cases, the uncertainty in predictions was 
expressed as a distribution of errors.  

I found that establishment success was generally measured as a 
probability of success given introduction (transition probability) or as the 
time from introduction until success or failure in establishing a viable 
population (transition time). Time is an important confounder in 
establishment success. Even though time can be included as a covariate in 
models where establishment success is measured as a transition probability, 
the influence of time is given a different and perhaps more consistent 
treatment in models of transition time.  

Establishment success was also measured at various degrees of species 
specificity, with some studies focusing on the establishment success for a 
single species introduced into one or several sites, and others dealing with 
the “average” establishment success for a group of species introduced into a 
bounded system. Establishment success was, for example, quantified at a 
high degree of species specificity when the purpose was to identify species 
with a high potential of establishing using information on species traits. 
Examples of establishment success at a low degree of species specificity are 
quantifications of a base-rate of establishment success for a randomly 
chosen species among a group of species in a system (see more in Paper 
IV) or assessments of the vulnerability of a system to invasions (Paper V).  
Specifying a probabilistic model of establishment requires a definition of 
when a population is regarded as successful in establishing. Among the 
various definitions, establishment success defined as the exceedence of a 
criterion, for example, the time to first passage of population abundance 
above a critical threshold is both consistent with time as an important 
confounder and under recurrent events of introductions. 
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Likelihood based Forecastingtype

Transition
probability

Transition
time

Prediction:

Transition
probability

Transition
time

Measure of 
establishment

success:

S: 21
D: 4
B: 6

Degree of 
species 

specificity:

1: 23
>1: 10

1: 3
>1: 3

1: 25
>1: 2

1: 3
>1: 2

Type of 
probabilistic

model:

S: 2
D: 8
B: 1

D: 25
B: 1

D: 5
B: 0

 
Figure 2. The classification scheme in Paper I to classify probabilistic 
models of establishment success after the type of prediction, measure of 
establishment success, degree of species specificity (the success for a 
single species (1) or the average success in a group of species (>1)) and 
type of probabilistic model (Statistical (S), Dynamic (D) or Bayesian (B)). 
 

 
 
 
 
Predictions of establishment success must partially rely on expert 

knowledge and I therefore looked for explicit Bayesian approaches, which 
offers the possibility to base predictions on combinations of observational 
data and subjective knowledge (Aven and Kvaloy 2002). The second 
objective in Paper I was therefore to investigate the extent to which the 
encountered probabilistic models for predicting establishment success use 
— or has the potential to use — the Bayesian approach for prediction of 
establishment success. A majority of the published studies were based on 
statistical or dynamic state models while few models were explicitly 
Bayesian and almost all of these had been published in the past few years 
(Figure 3). However, many of the models in the review could be used with 
a Bayesian approach by, for example, adding prior distributions to 
parameters. 
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Figure 3. The cumulative number of identified probabilistic models, 
categorized as Bayesian, state dynamic and statistical, as a function of 
publication year. 

 

4.3 Establishment success of signal crayfish 

The objectives in Paper II were 1) to specify a probabilistic time-to-event 
model to predict the time to successful establishment of an introduced 
population for risk analysis, and 2) to parameterize the proposed model by 
using data on establishing populations of signal crayfish in Sweden, 
addressing both model uncertainty and method reliability, and 3) to use the 
model to predict the success of signal crayfish establishments over a larger 
area of Sweden. 

One conclusion in Paper I was that modelling transition time instead of 
the transition probability has several advantages. Probabilistic models of 
transition time were uncommon and there was no example of any 
implementation for the establishment success using data on a single 
species. This motivated me to specify a probabilistic model of the time to 
establishment success of an introduced population.  
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To this end, I used information on the time of introduction and 
establishment for the first years of introductions of the American signal 
crayfish Pacifastacus leniusculus into Sweden. The signal crayfish is a non-
indigenous species with a long invasion history and provides a best-case 
situation when it comes to data availability in risk analysis of biological 
invasions. Despite being one of the best datasets available for introductions 
of signal crayfish in Sweden, it had several characteristics typical for this 
kind of observational data that demand special attention.  

First, the data was censored, i.e. for some populations the time of first 
introduction or the time of successful establishment was unknown. This 
required a time-to-event model of establishment success that can make use 
of information in censored data. My choice therefore fell on the accelerated 
failure time model, a regression-based model on the rate of establishment 
success with the capability of handling censored data (Kalbfleish and 
Prentice 1981). The time-to-event models on establishment success that I 
found in published literature were either not fully probabilistic (Drake et al. 
2005) or did not include the effect of covariates (Caley et al. 2008). I 
approached the uncertainty in the specification of the time-to-event model 
with an information-theoretical approach (Burnham and Anderson 2002). 
This approach uses the information of a model, given by its likelihood and 
the number of parameters, to assign relative weights on a number of 
alternative models based on empirical data. A good model has strong 
support from the observed data without using too many parameters. The use 
of the information-theoretical approach requires a probabilistic model for 
which the likelihood can be estimated from the data available. I therefore 
began specifying different candidate models for the failure rate over time 
(also known as the hazard function) and selected the best models based on 
the information-theoretical approach. 

Second, the data showed severe multi-collinearity, i.e. strong correlations 
between covariates made it difficult to identify their separate (independent) 
effects on the response variable (Quinn and Keough 2002). I used two 
methods to derive the separate effects of covariates: model averaging 
(Burnham and Anderson 2002) and hierarchical partitioning (Chevan and 
Sutherland 1991). Model averaging is an information-theoretical method to 
estimate the effect of a covariate seen over several models making use of 
their relative weights, given by the likelihood and the number of 
parameters. Hierarchical partitioning is a method to estimate the 
independent effect of a covariate from all comparisons of the goodness of 
fit for all models with and without the covariate in question.  
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Figure 4. Curves showing the hazard of a crayfish population to succeed in 
establishing as a function of time since first introduction. I have used three 
different models: a parametric model with either increasing or decreasing 
hazard function, a parametric model being a combination of two hazard 
functions the first between 0 and 3.5 years after introduction and the 
second thereafter, and a semi-parametric model with no specific functional 
form of the hazard function.  

 
The strongest support was found for a time-to-event model with a 

decaying and then increasing rate of establishment success over time (also 
known as the hazard function; Figure 4). Because the shape of the hazard 
function became more uncertain further away from the time of first 
introduction, we regarded predictions from the model within ten years after 
the first introduction as reliable. The probabilistic model predicted 
establishment success to be less than 50% within five years after first 
introduction over the current distributional range of signal crayfish in 
Sweden (Fig 8 in Paper II). 

Among covariates related to air temperature, occurrence of fish species, 
and physical properties of the habitat, the length of the growing season 
constituted the most important and consistent predictor of establishment 
success. Based on our results, the establishment success of signal crayfish 
is expected to increase with the number of days when growth is possible, 
and decrease with the number of days with extremely high temperatures, 
which can be assumed to approximate conditions of stress (Jonsson and 
Edsman 1998, Verhoef and Austin 1999).  



From data to decision 

36 
 

4.4 What uncertainty to expect in the distribution of an 
invading population 

Given the assumption that the impact of a non-indigenous species is 
proportional to the range it occupies (Parker et al. 1999), the rate of 
increase in the loss (or gain) caused by the species can be approximated by 
its speed of range expansion (Neubert and Parker 2004) or the time it takes 
for the species to reach a certain range or destination (Smith et al. 2002). 
These parameters are strongly determined by the existence of extreme 
events such as long-distance dispersal (Higgins et al. 2003a) or the failure 
of populations to continue range expansion (Higgins et al. 2003b). Current 
spread models such as reaction-diffusion models or integro-difference 
equations can handle stochastic dispersal events, and range expansion is 
most often modelled as the expected range given a probabilistic model of 
the dispersal event (Kot et al. 1996, Neubert and Parker 2004). Because the 
time horizon of an ecological forecast is generally short (less than 50 years; 
Clark et al. 2001), we also need to look at the expected uncertainty in range 
expansion seen over a small number of dispersal events. In Paper III, I 
addressed this issue by performing explicit simulations of range expansion 
in artificial landscapes.  

A landscape can be seen as consisting of patches, more or less suitable 
for survival and population growth. The amount and fragmentation of 
suitable habitat represent well-established descriptors of the spatial 
characteristics of a landscape (Fahrig 1997) and have been found to 
influence both dispersal success (With and King 1999, King and With 
2002) and speed of range expansion (Shigesada et al. 1986, Turchin 1998). 
However, although data on landscape heterogeneity are readily available 
for probabilistic risk analysis, few attempts have been made to study how 
spatial characteristics of the landscape affect the uncertainty in range 
expansion (e.g. Minor et al. 2008). I approached this question in Paper III 
by deriving the expected probabilistic model of the endpoint speed of range 
expansion for two types of dispersal behaviour (passive and active), for 
different amounts of habitat and levels of habitat fragmentation, and for 
different time spans (measured as the number of dispersal events). I 
particularly asked 1) when information on dispersal behaviour and 
landscape structure was important for the uncertainty in range expansion, 
and 2) how the risk that a species becomes invasive changes when 
expanding into a landscape of a different spatial heterogeneity. The 
existence of extreme events was modelled by using extreme value theory to 
analyze the uncertainty in speed of range expansion. 
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Figure 5. The risk of an expanding population to be invasive is always 
higher in a landscape with more suitable habitat (left), but can be both 
higher or lower in more fragmented landscape (right), everything else 
equal. When one cumulative probability distribution always is lower than 
another, stochastic dominance tells us that the risk of invasive spread will 
always be higher as well. A step curve is found when the distribution of 
possible values on speed has a small variation, whereas the opposite is a 
sign of large variation and possible extremes in range expansion.  

 
 
 
 
I found that the overall risk of invasion, manifested by the cumulative 

probability function of range expansion, followed the amount of suitable 
habitat in the landscape, whereas the uncertainty in risk, manifested by the 
shape of the cumulative probability function, was dominated by the degree 
of fragmentation (Figure 5). Active dispersal behaviour in a landscape 
consisting of large unsuitable patches generated an expected uncertainty in 
range expansion. The magnitude of this uncertainty was strongly influenced 
by extreme events such as unusually fast advances of the expanded range 
(owing to long-distance dispersal) or populations being permanently 
stopped in their range expansion. The influence of extreme events on the 
uncertainty in speed of range expansion became smaller with time. For 
example, there was marked difference in what uncertainty to expect in 
expanded range seen over five compared to fifty dispersal events, especially 
for a population spreading with active dispersal (Figure 6).  
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Figure 6. The results after characterizing uncertainty in the speed of range 
expansion of a spreading population seen over different number of 
dispersal events (the time horizon of the prediction). Seen over five 
dispersal events we should expect a large variation in speed and a 
probabilistic model of speed consist of a mix of two distributions, 
representing slow and normal spread. Enlarging the time horizon the 
probabilistic model appears as a single statistical distribution. Based on 
simulated values (histogram with gray bars) a mix of one or two Weibull 
distributions were fitted (solid lines) resulting in the probabilistic model 
(dashed line). 

 

4.5 The value of species traits as predictors of 
invasion success 

Information on species-specific traits may be useful when predicting the 
invasiveness of non-indigenous species. Considering the vast number of 
potentially invasive species, the total costs for collecting information on 
species traits and then performing the necessary risk analyses are expected 
to be high. One way to use limited societal resources efficiently is to 
subject the screening models to cost-benefit analyses, weighting the costs 
of doing risk analysis against the potential reduction in future expected 
losses caused by the invasive species (if introduced).  

In Paper IV I performed a pre-posterior value of information analysis to 
evaluate the benefit of a predictive model and then used the model in a 
specific case-study to ask if particular species should be stopped or allowed 
to spread in a particular area. A value-of-information analysis evaluates a 
predictive model in a Bayesian decision context. The analysis is said to be 
pre-posterior because the value of information is being evaluated before the 
information is collected. 
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The probabilistic model in Paper IV predicts the invasiveness of species 
based on information on both species-specific traits and the base-rate of 
invasiveness, i.e. the proportion of invasive species among those 
introduced. The base-rate of invasiveness influences both the ability to 
provide accurate predictions and the expected losses of societal resources to 
be considered by a decision maker. In this regard, it is also necessary to 
consider the uncertainty in the base-rate. One objective in Paper IV was 
therefore to determine whether uncertainty in the base-rate of invasiveness 
influences 1) the benefit of using species-specific information to screen for 
invasive species, and 2) the benefit of increasing the accuracy of the 
predictive model. 

A more accurate model was always more beneficial to a decision maker, 
and the uncertainty in the base-rate significantly affected the benefit of the 
predictive model. Thus, it is important to account for uncertainty in the 
base-rate of invasiveness when evaluating the benefit of models used to 
predict invasiveness of non-indigenous species. However, counter-
intuitively, the benefit of the model was not necessarily higher under 
reduced uncertainty in the base-rate value.  

The pre-posterior value of information analysis was implemented in a 
case study with the purpose of deriving the benefit of using species-specific 
traits when screening for potentially invasive macroalgae in Europe 
(Nyberg and Wallentinus 2005). The benefit of a predictive model based on 
species traits of invasive and non-invasive macroalgae was estimated to be 
at most 20% of the loss of resources resulting from the introduction of one 
invasive species. According to a recent European assessment (Kettunen et 
al. 2008), this figure corresponds to a net present value of 3.4 million euro 
per species and year. 

When working with paper IV, I came to realize that predictive models of 
invasiveness translate current knowledge, such as expert’s know-how and 
empirical data, into information supporting decision making. Therefore, it 
became natural to think of the model itself as information and to ask how 
this factor affected the accuracy and benefit of the predictive model used in 
this paper. Both the accuracy of predictions and the benefit of the model 
based on species traits increased with the amount of information contained 
in the model, evaluated with the likelihood function penalizing for model 
complexity, i.e. the Akaike information criteria (AIC) (Figure 7). 
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Figure 7. The relationship between the information contained in the model 
used to predict invasiveness of macroalgae (measured as the Akaike 
information criteria (Burnham and Andersson 2002)) and a) model benefit 
(measured as the value of information), and b) model accuracy (measured 
as the area under the ROC-curve (Fielding and Bell 1997)). Benefit is 
derived for three different ratios of the cost associated with an invasive 
species compared to the cost associated with stopping a non-invasive 
species from being introduced (K = 1, 2 and 10). 

4.6 Robust prevention and control of an invaded 
system 

The biological invasion endpoint that is most relevant from a societal 
perspective lies in the end of the invasion chain in the impact from an 
invasive species on the invaded system (Keith Hayes personal 
communication). Because the effects from biological invasions may be 
irreversible and established populations difficult to eradicate, measures to 
manage invasions should be directed towards the early phase of invasions. 
The recommended strategy of prevention is to stop potentially invasive 
species from being introduced in combination with monitoring for early 
detection followed by rapid measures for control of introduced species 
(McNeely et al. 2001, Lodge et al. 2006). Successful management of 
biological invasions depends on finding optimal strategies for how to 
allocate resources between prevention and control of introduced non-
indigenous species. Prevention is costly and the immediate gain more 
difficult to grasp compared to controlling species in the system, especially 
after seeing the consequences they have on the economic, environmental or 
human health.  
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The uncertainty in predictions of the outcome of a single species 
introduction increases as we move along the invasion chain. By adopting a 
system perspective on the problem (Haimes 2009) some of these 
uncertainties can be circumvented by focusing on the progress of the 
performance of an invaded system over time instead of the states of single 
species invasions (Figure 2). A recognized indicator of the state of 
ecological systems with respect to invasions is the number of species with 
an undesired impact (McGeoch et al. 2006, Molnar et al. 2008), and not the 
total number of non-indigenous species. In my last study I therefore 
specified a state dynamic model of the number of established non-
indigenous species in a system over time. By regarding successful species 
establishments as a stochastic process, initiating events causing risk 
occurred with certain intensity. Our knowledge on establishments processes 
and possible dynamics are limited, and the optimal strategy should 
therefore also be robust to epistemic uncertainty (Box 3).  

The objective in Paper V was to find a robust allocation between 
prevention and control of multi-species invasions into a system. I addressed 
this question by designing an analysis that 1) was based on available data 
on impact of biological invasions, 2) adopted a system perspective on risk, 
and 3) considered epistemic uncertainty of the invasion process. 

Between 1900 and 1990, every second or third year a new non-
indigenous species have established into the Baltic Sea. During this period, 
non-indigenous species have been introduced more often, but since most 
species fail to establish, we do not know the exact number. By focusing on 
the performance of the system, measured as the number of established 
species, the uncertainty in numbers become smaller.  

We found that resources allocated to control should be the same for 
different values of the quantified uncertainty in intensity and its dynamics 
for the Baltic Sea. We therefore conclude that the strategy to allocate 
resources to control until the maximum eradication success is maintained is 
robust to epistemic uncertainty in intensity and its dynamics. This calls for 
an improvement of eradication success. Resources to be allocated to 
prevention were sensitive to the assumption on the prevailing type of 
system dynamics. Resources allocated to prevention was not robust to 
epistemic uncertainty in dynamics, but were robust to epistemic uncertainty 
in intensity for a given type of dynamics. This means that the allocation of 
resources to prevention derived from the suboptimal solution under full 
uncertainty is to prefer. This result demonstrates that more research is 
needed to increase our understanding of the dynamics of establishment 
processes.  
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4.7 Summary of my research contributions 

My research contributions have been the quantification of uncertainty in 
some biological invasion endpoints, using empirical (Paper II, IV and V) 
and artificial data (Paper III).  

I have also suggested solutions to problems related to predicting under 
uncertainty. I have produced an overview to probabilistic models of 
establishment success (Paper I). I have shown that it is possible to 
implement a model for time-to-event analysis common for other 
applications on risk analysis on ecological problems where prediction is an 
important issue (Paper II). I have shown how extreme value theory can be 
used to answer questions on the uncertainty in a biological invasion 
endpoint (Paper III). I have proposed a way to implement pre-posterior 
Bayesian value of information analysis to evaluate probabilistic models 
(Paper IV). I have specified a probabilistic model for the risk posed by 
biological invasions that is both easy to implement using already available 
data on invasions and that address the large uncertainty in risk by using a 
system perspective (Paper V).  

Finally, my research contribution has been to implement issues of 
uncertainty into scientific questions. Uncertainty is implemented in two 
directions. One direction is to ask for the characteristics of uncertainty 
given certain type of knowledge. This was done in Paper III where I ask 
how ecological variables influence the uncertainty in an endpoint and 
thereby the risk. The other direction is to explore the sensitivity to 
uncertainty. This was done when I asked for the effect of uncertainty in an 
endpoint on the value of predicting (Paper IV) or the robustness in decision 
making (Paper V).  
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5 GENERAL DISCUSSIONS 
The general aim of this thesis is to shed light on what it means to predict 
future events in ecology, with special emphasis on biological invasions. 
Predicting the outcome of biological invasions must often be done before 
the first time a particular species is introduced into a particular system, i.e. 
before any historical data on the endpoint for risk analysis is available. 
Such predictions are inherently difficult to make, given the argument that 
“probability density function cannot be constructed for one-time events 
with no precedents” (Horan et al. 2002 citing Williamson 1996). The aim 
of probabilistic risk analysis is to quantify uncertainties related to the 
undesired event, for example, a successful invasion. The methods used in 
probabilistic risk analysis are useful for predicting futures in ecology – the 
only difference being that the word risk is not needed. 

A number of factors must be considered when using probabilistic 
analysis to predict with uncertainty. First, it is necessary to state the 
purpose of predicting. In the same way as risk analysis has no value in itself 
and is undertaken with the specific purpose of making decisions (Aven 
2003), predictions of future ecology are done with a specific purpose. The 
purpose of predictions and the characteristics of the user are important for 
how predictions are made. Second, although the availability of empirical 
data remains a critical issue, predictions can be made at several different 
levels, depending on to what extent the background information includes 
historical data, expert judgement or modelling (Apeland et al. 2002). A 
probabilistic analysis should be regarded as conditional on the background 
information (Aven 2010) and a unifying framework to predict futures 
should be able to deal with different strengths and types of background 
information. Finally, it is necessary to consider the role of subjectivity 
when predictions have to be made with no or little data, or when the 
interpretation of data is affected by expert’s know-how and risk perception 
(Burgman 2000) and world view (Brown 2001). Predictions are more-or-
less based on subjective knowledge which, if not devoted proper 
consideration, may reduce the trust in predictions. A unifying framework to 
predict ecological futures should therefore suggest how to interpret 
uncertainty under different types of quantification. 

In Paper I the Bayesian approach to predicting were taken as an example 
of a good treatment of uncertainty due to its capability of handling both 
objective and subjective quantification of probabilities. I am aware that this 
statement is naive; the Bayesian approach has been shown to be difficult to 
implement in practise. I do not argue for the Bayesian approach, however 
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its ability to make inference under conditions of sparse data (Dennis 1996) 
and the logic in Bayesian models (Clark 2005) makes it worthwhile and 
perhaps necessary to consider for probabilistic analysis.  

5.1 The interpretation of probabilistic output for 
different strengths of background information 

In Paper I the probabilistic predictions of establishment success found in 
the literature could be categorised as likelihood-based or of the forecasting 
type. Let me discuss the origin of these two types of predictions and their 
interpretation. In my view, both of these types of prediction can be 
interpreted under the unifying framework for risk analysis suggested by 
Aven (2010) (also described in Apeland et al. 2002, Aven and Kvaloy 
2002, Aven and Kristensen 2005). In this approach, the focus is on 
observable quantities describing the state of the world; let us denote it by Y. 
More precisely, Y is a ”quantity expressing a state of the world that is 
unknown at the time of the analysis but will, if the system being analyzed is 
actually implemented, take some value in the future, and possibly become 
known” (Aven 2003). They also suggest that the end product of a 
probabilistic (risk) analysis to be the predictive uncertainty distribution of 
Y. The interpretations of probabilistic output are then different dependent 
on the strength of background information (Table 2). 

First, let us consider the case when data exist on historical events on Y. 
In this case, the predictive distribution P(Y ≤ y) (where P stands for 
probability) can be empiric, estimated directly from data with no particular 
statistical model in mind, or parametric as a probability model, P(Y ≤ y| λ), 
with (for simplicity) the parameter λ. In the latter case, the prediction is 
likelihood-based (cf. Paper I), and the end product of the probabilistic 
analysis is either point estimates of parameter values in the underlying 
statistical model, estimated with the classical frequentist approach, or the 
updated posterior distribution of the parameters based on the likelihood, 
when using the Bayesian approach. In Paper II, the maximum likelihood 
estimates of parameters in the probability model were used to predict the 
predictive posterior of the time to successful establishment. Since we have 
observed Y, there exists an underlying statistical population for Y, and 
therefore the parameters governing the uncertainty in this population, such 
as the mean and variance, are in themselves random variables. When the 
uncertainty in the parameters for these random variables may be valuable 
for prediction, the posterior distribution of parameters is an end product of 
the probabilistic analysis. 
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Table 2. The interpretation of probabilistic output for various strengths of 
background information determined by the type of available data. See the 
text for details. 
Strength of 
background 
information 

Available 
empirical 
data 

Notations Quantified 
uncertainty 

Comment 

Strong Data Y Predictive 
posterior and 
posterior 

Likelihood-
based 
prediction 

 Data on 
another 
variable and 
a model 

X and g(.) Predictive 
posterior  

Forecasting-
type of 
prediction 

 Data on 
similiar 
variables 

Z Subjective 
predictive 
posterior 

Difficult 
interpretation! 

Weak No data   Subjective 
posterior 

Confidence 
interpretation 

 
Now consider the case when no data is available on Y, and data are 

available on quantities regarded as “similar” to Y, let us denote them by Z. 
What is regarded as a “similar” is judged by the analyst. It could be species 
introduced into the same region and from the same taxonomic group. 
Species are made more similar in a statistical meaning by for example 
correcting for phylogenetic control (Fisher and Owens 2004). Observations 
are made more similar by correcting for covariates, for example, using a 
generalized linear model. The uncertainty in Y can then be quantified the 
same way as in the previous examples replacing Y by Z. However, the 
probabilistic output is given a slightly different interpretation. Since the 
values in Z are observations from other populations than a hypothetical 
underlying population of Y, the parameter λ is no longer an observable 
quantity and the posterior is not an end product of the prediction. The 
predictive posterior P(Y ≤ y) quantified as P(Z ≤ z) can simply be 
interpreted as our subjective uncertainty distribution. Another approach is 
to regard the values in Z as part of the background information and argue 
for a probability distribution for each z in Z, using Bayesian approach 
assigning uninformative priors to derive the posterior distribution for Z (see 
Aven and Kvaloy 2002). In this latter case, the quantified uncertainty in Y 
has a more rigorous motivation than in the previous case. 
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When no data is available on Y, another alternative is to use data on a 
lower level of detail, denoted by X. The available knowledge between X 
and Y are then reflected in a deterministic model, y = g(x). Examples of this 
type of forecasting-type of predictions (cf. Paper I) are population viability 
analysis (Beissinger and McCullough 2002) or establishment success 
(Drake et al. 2006). In these cases g(·) is a population dynamic model based 
on estimated life history parameters. The predictive distribution for Y may 
then be  

P(Y≤ y) = ∫{x: g(x) ≤ y} dP(X ≤ x). 

The predictive distribution of Y can be derived by Monte Carlo 
simulations given an empiric or parametric probability distribution of X. It 
can alternatively be assessed as the predictive posterior in a Bayesian 
analysis 

P(Y ≤ y) = E[ P(Y ≤ y| λ) ] = ∫λ∫{x: g(x) ≤ y} dP(X ≤  x| λ) dH (λ), 

where P(X ≤ x| λ) is a probability model for the uncertainty in X given the 
parameter λ, and H(λ) is an uncertainty distribution of the parameter λ. 
Following the probability of frequency or the combined classical and 
Bayesian approaches, the interpretation of P(X ≤ x| λ) in Paper V was a 
model of stochastic uncertainty given the parameter λ, and H(λ) an 
expression of the epistemic uncertainty in the parameter λ (Apeland et al. 
2002).  

A model is a simplifying description of the world. No model is true and 
several possible models could be used to predict Y, let us call them g1, g2, 
etc, which are part of the background information. The approach is then to 
weight each model according to our confidence in the models ability to 
accurately predict Y, as P(Y ≤ y) = P(Y ≤ y| g1)·w1 + P(Y ≤ y| g2) ·w2 + etc 
(Aven 2010).  In Paper II, I weighted models in this way using weights 
derived from the likelihood and an information theoretic approach 
(Burnham and Anderson 2002).  

In our last case, no relevant data exists to predict Y. We can proceed as 
above, but the interpretation is different. The so called confidence 
interpretation is to view P(Y ≤ y| λ) as a candidate for our subjective 
probability that Y ≤ y given that λ is chosen and H(λ) as a measure of our 
confidence in these predictions. When no data exists P(Y ≤ y| λ) is a model 
of our subjective belief and does not describe the world, and H(λ) is no 
longer a measure of uncertainty (Apeland et al. 2002). 

In any of these cases, focus is on observable quantities and their 
uncertainty, probability is used as a measure of uncertainty of the true value 
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of observables, and the predictive posterior is conditional on the 
background information (Aven 2010). Besides the extent of available data, 
the strength on background information depends on the suitability and 
accuracy of models that can be used for prediction. Good probabilistic 
models evaluated with empirical data provides the type of information 
needed to make transparent and scientifically based predictions, and I 
discuss how below. 

5.2 From data to information through the eyes of a 
probabilistic model  

Information has been defined as “data that has been processed into a form 
that is meaningful to the recipient and is of real or perceived value in 
current or prospective actions or decisions” (March and Smith 1995). In 
order to have information we need constructs that organize our thoughts 
about an issue such that we can compile our knowledge into predictions of 
future events. One such construct is the likelihood.  

In this thesis, the term likelihood was first used in the CBD definition on 
risk analysis of biological invasions which had the “aim to assess the 
likelihood of establishment success and the consequences” (CBD 2010). A 
qualitative interpretation of likelihood is a statement of how likely 
something is to occur, for example, less likely or very likely. A 
quantitatively interpretation of likelihood is the probability that something 
will occur. A mathematical or technical definition of likelihood is the joint-
probability density of a model given data. The joint-probability, f (data | 
model), is a quantification of the uncertainty in the events to be predicted. 
The likelihood, L(model | data), express how probable this model is in 
relation to other models. In information theory the likelihood is interpreted 
as a measure of information. Models containing more information are more 
accurate and have higher benefit in decision making (Paper IV). 

The likelihood is important in Bayesian inference, where – according to 
the likelihood principle - data is only allowed to enter through the 
likelihood function. The likelihood is used in classical inference, such as 
when parameters are estimated by maximizing the likelihood function and 
the use of likelihood ratio tests. Information theoretic approaches to 
inference, such as model selection and model averaging, use the likelihood 
as a measure of information (Burnham and Anderson 2002). In my view 
both information theoretic and Bayesian approaches are useful in 
predicting. Since the information theoretic approach only works when data 
is available, its usefulness is to describe and explain the world, for example, 
by finding important and robust predictors of future events and evaluating 
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proper parametric probabilistic models given the available sources of 
background information. In addition, the Bayesian approach (and its 
decedents) is able to combine several types of quantifications of 
uncertainty. So, why not only use the Bayesian approach?  With the 
purpose of describing and explaining the world, the classical frequentist 
approach to statistics has proved to be successful (Dennis 1996) while the 
Bayesian models easily become unnecessary complicated (Clark 2005). An 
alternative could be to use a (well motivated) less strict Bayesian approach 
(e.g. Apeland et al. 2002, Aven and Kvaloy 2002). 

Once we have a probabilistic model, we obtain information by the 
likelihood. The task is then to arrive at a good probabilistic model for an 
endpoint at a specific resolution and for a certain type of information. A 
good probabilistic model should capture the nature of the uncertainty in 
data such as encompass both variability and uncertainty arising from the 
way data is sampled (Paper II). What uncertainty to expect in a given 
biological invasion endpoint conditioned on a specific type of information 
on the system (Paper III). How to enter important covariates in a 
probabilistic model is not straightforward. Propagule pressure, for example, 
is an important predictor of establishment success (Lockwood et al. 2005) 
that is entered as a covariate in a statistical model or by the specification of 
a parametric establishment curve in a state dynamic model (cf. Paper I). 

5.3 From information to decision … and back again 

According to the Bayesian approach, the decision maker is to choose the 
decision alternative that minimizes expected loss, given by the predictive 
posterior distribution of the loss. In Paper IV and V I let the decision maker 
minimize expected loss assuming risk neutrality. The Bayesian (expected 
utility) approach is a normative decision theory showing how rational 
decision ought to be done, but may not capture how decisions are done in 
the real world. In Paper IV I used the expected utility approach to quantify 
the benefit of a predictive model and the decision rule was an instrument of 
the benefit analysis. Paper V was more focused on realistic decision 
making, but I used the expected utility approach as a starting point. Using 
an expected utility strategy is risky since uncertainties in utilities and 
probabilities are not visible in the end product (Burgman 2005). Variations 
of the Bayesian approach have tried to distinguish between risk and 
uncertainty (de Rocquigny et al. 2008). Decision making under uncertainty 
involve a trade-off between robustness to uncertainty and the performance 
of the decision strategy (Regan et al. 2005a, Clark et al. 2001). I suspect the 
influence of uncertainty on the benefit of a model (Paper IV) or the optimal 



– learning by probabilistic risk analysis of biological invasions 
 

49 
 

strategy (Paper V) would have been larger if aversion to risk and/or 
aversion to uncertainty had been taken into account. 

Under large uncertainty the focus changes from predicting effect to 
vulnerability (Shrader-Frechette 1991). The shift is then from prediction 
single events in a biological invasions to the performance of an invaded 
system (Catford et al. 2009, Paper V). Another reason to predict system 
performance is that decision making are directed towards handling several 
threats initiated over time, acknowledging the complexity of systems. 
When predicting with a system perspective (Figure 1) time is important, 
because timing of the growing of populations, the extinction of species, the 
ongoing range expansion, the payoff from management actions, new 
threats, temporal variation and perhaps evolutionary adaptation is what 
determines the performance of the system. Adopting a system perspective 
on risk (and what is to be predicted), the risk triplet questions What can go 
wrong?, How likely is it? and What are the consequences?, are expanded 
with a fourth question  

Over what time frame? 
 

(Haimes 2009). Probabilistic models of time instead of the probability of 
single events should receive more attention, especially if it means that we 
can get more information out of data (Paper II). Predicting using a system 
perspective requires probabilistic models of endpoint events measured as a 
transition time as opposed to transition probability (Paper I). 

The needs and behaviour of the decision maker determine what to predict 
and how to predict. The communicating with decision makers therefore 
start in the direction from the decision maker to the analyst. 
Communication in the other direction should strive to present the output 
from probabilistic analysis so that decision makers understand and use 
them. A presentation of a probabilistic output is the probability of making 
different types of errors. There are probabilistic models that have the error 
distribution as their only output (Paper I), i.e. the probabilistic model is 
incorporated in a decision model.   
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6 FINAL REMARKS  
Three reasons to predict futures in ecology are to preserve biodiversity, 
protect biosecurity and reduce negative impact from climate change. Three 
reasons not to predict futures in ecology are large uncertainties, the 
occasional lack of empirical data and the intrusion of subjective judgements 
into the analyses. Approaching risk and uncertainty means “to reflect our 
knowledge and lack of knowledge about the world” (Aven and Kristensen 
2005). Knowledge based (epistemic) uncertainty should not be regarded as 
high or low, but as more or less manageable, and one could argue that it is a 
responsibility of scientists to make uncertainty manageable (Knaggård 
2009). Methods of probabilistic risk analysis open up for a transparent and 
rigorous treatment of uncertainty as a basis for scientifically based 
decisions.  

This thesis is about probabilistic analysis. Alternative approaches to 
predicting the outcome of invasions under uncertainty are based on, for 
example, measures of similarity between sites (Herborg et al. 2007) or 
species communities (Gevrey et al. 2006). An argument against predictions 
based on similarities is that uncertainty remains unquantified. The error in 
this argument is that when looking at how decisions are actually made. 
People tend to base their decisions on previously known cases rather than 
maximizing the expected utility as in probabilistic analyses. Alternative 
decision theories, such as bounded rationality (in Burgman 2005) and case-
based decision theory (Gilboa and Schmeidler 1995), consider the outcome 
of decisions or events in previous and similar cases. This stresses the 
importance of sharing data and information on past actions, as emphasized 
in evidence-based policy-making (Pulling and Knight 2009). 

The most valuable source of information to probabilistic analysis is the 
knowledge of the world hidden in empirical data. To predict (or doing a 
risk analysis) is not a scientific task, in contrast to the production of 
background information and the development of methodologies for 
probabilistic analysis. However, uncertainty needs to be incorporated into 
the scientific part of the prediction process. This may require training in, for 
example, Bayesian methods and how to communicate uncertainties (Kinzig 
et al. 2003). When it comes to biological invasions, some ecologists claim 
that while describing invasions is relatively easy, explaining is much harder 
and predicting often extremely difficult (Williamson 2006). Whereas 
describing is necessary for providing relevant data and explaining is 
necessary for producing good predictive models, is it necessary to challenge 
the scientific value of ecological predictions. 
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