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INTRODUCTION TO THE IMMUNE SYSTEM 

The immune system is in many aspects a remarkable physiological network. Not only 

does it recognize and defend us from numerous infectious agents and foreign particles, 

it also manages to separate harmful from harmless and thereby avoids development of 

allergies. Finally, the immune system is intelligent enough to distinguish foreign from 

self. This is crucial to avoid destruction of the own body, which is what autoimmunity 

is all about. A functional immune system is taken for granted by most of us. We tend 

to ask ourselves why we develop infections, allergies, cancer and autoimmune 

diseases, rather than asking why we do not. However, the more one learns about the 

immune system, about tolerance and immunity, the more amazed one gets by its 

actions.  

 

The immune system is divided into two branches, the innate and the adaptive. They 

both protect us from invading pathogens such as viruses, bacteria, fungi and parasites. 

The innate immune system provides the first line of defence and acts rapidly, within 

minutes or hours upon infection. It is comprised of barriers like skin, mucosal 

membranes and antibacterial enzymes, preventing microorganisms to enter the body. 

In addition, specialized immune cells such as macrophages, mast cells, neutrophils and 

dendritic cells (DCs) are included in the innate defence. These cells express different 

pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs), that recognize 

and react to a limited set of evolutionary conserved microbial structures, termed 

pathogen-associated molecular patterns (PAMPs). Examples of such structures are 

components of the bacterial cell wall and viral RNA/DNA. Upon pathogen contact 

innate immune cells bind these patterns, become activated and thus initiate an 

inflammatory response in order to eliminate the pathogen. Additionally, DCs migrate 

to the secondary lymphoid organs (spleen and lymph nodes (LNs)) where, if 

necessary, an adaptive immune response is elicited.  

 

In contrast to innate immune cells that only recognize a limited number of patterns and 

where different cells react to the same antigen, the adaptive immune system recognizes 

nearly an unlimited number of structures. Furthermore, unlike innate immunity which 
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acts rapidly, an adaptive immune response occurs only after several days. 

Lymphocytes; T and B cells, are the main effectors of adaptive immunity. They 

develop in the primary lymphoid organs (thymus and bone marrow (BM) 

respectively), each cell expressing a unique receptor with the ability to recognize a 

specific antigen. Lymphocytes circulate between blood, lymph, and secondary 

lymphoid organs. In the secondary lymphoid organs activated antigen presenting cells 

(APCs), mainly DCs, present antigens to naive T lymphocytes. When lymphocytes 

recognize their specific antigen, they become activated, begin to divide and 

differentiate into effector cells. These cells then promote an efficient immune 

response. Effector cells have a limited life-span and most of them undergo apoptosis 

once the antigen is eliminated. However, some cells persist and are termed memory 

cells. Upon a second encounter with a specific antigen, a more rapid and effective 

immune response is elicited. Memory therefore enables vaccination and prevents re-

infection with pathogens that have already been defeated once by an adaptive immune 

response. 
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T CELLS AND TOLERANCE 

T cell development 

T cells originate from hematopoietic stem cells (HSCs) in the bone marrow (BM). 

HSCs have the capacity to self-renew, thus generating daughter-cells with identical 

properties, including the ability to generate all lineages of blood cells. T cell 

progenitors migrate from the BM to the thymus where T cell development is initiated. 

During this process the T cell receptor (TCR) is formed, consisting of either  chains 

or  chains. From here on, only α T cells will be discussed. To achieve great 

diversity in the TCR repertoire, gene segments coding for the variable domain of the 

TCR-α and TCR-β proteins of the receptor are randomly assembled in a great number 

of combinations. The different types of gene segments that constitute the TCR are 

called V (variable), D (diversity) and J (joining) and the process of combining these is 

called V(D)J recombination [1]. Cleavage of DNA is part of these gene 

rearrangements and the proteins recombination-activating gene (RAG)-1 and RAG-2 

are essential catalysts for this reaction [2-4]. 

 

The earliest thymocyte population is termed CD4CD8 double negative (DN) since it 

does not express the characteristic T cell surface proteins CD4 and CD8. DN cells 

differentiate into a series of developmental stages based on their expression of CD44 

and CD25; DN1 (CD44+CD25-), DN2 (CD44+CD25+), DN3 (CD44-CD25+) and DN4 

(CD44-CD25-) [5]. This process has been shown to be dependent on Notch signaling 

[6] and during these stages, the TCR is gradually formed. During the DN stages, the 

gene segments of the -chain assemble and the -chain protein is expressed, together 

with a pre-T α-chain (pTα), constituting the pre-TCR [7]. This receptor complex, 

together with CD3, signals for survival and progression to the following CD4+CD8+ 

double positive (DP) stage where the α-chain is rearranged [8]. Finally, the αTCR is 

expressed and the next critical step for the DP T cell is to undergo the mechanisms of 

positive and negative selection. 
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Positive and negative selection 

Thymocytes that have made it all the way to the CD4+CD8+ DP stage still have a long 

way to go. Only functional cells that do not react to self-antigens are selected to 

survive and eventually migrate to the periphery. The rest of the cells, comprising the 

large majority of all produced T cells, die by apoptosis in the thymus.   

 

Positive selection is based on the ability of the TCR to react with major 

histocompatibility complex (MHC) molecules expressed by thymic epithelial cells [9-

11]. If the TCR is able to bind the MHC it survives and continues its journey, whereas 

cells failing to recognize MHC are eliminated through apoptosis. The purpose of 

positive selection is to ensure that surviving T cells recognize self-MHC on APCs in 

the periphery, which is required for the T cells to react against foreign antigens. The 

ultimate outcome of positive selection is development of the CD4+CD8+ DP T cells 

into single positive (SP) ones. Cells that maintain the expression of CD8 will be able 

to react to antigens presented by MHC class I molecules in the periphery whereas 

CD4-expressing cells will recognize MHC class II-presented antigens [12]. Two 

models have been suggested to explain how it is determined which one of the CD4 or 

CD8 molecules is down-regulated. The stochastic model suggests random down-

regulation whereas the instructive one implies that the cell is instructed to stop 

transcribing a certain gene, depending on the MHC-restriction of the T cell [13]. 

 

SP T cells that survive positive selection will further be submitted to negative 

selection. The purpose of this process is to eliminate self-reactive T cells to avoid 

auto-immunity in the periphery. This is referred to as central tolerance. During 

negative selection, self-antigens are presented to T cells by MHC molecules on APCs 

[14]. Recognition of these self-antigens induces apoptosis in the T cell whereas cells 

that are not self-reactive survive and migrate from the thymus to the periphery. 

However, the mechanism of negative selection is not perfect. One constraint is the 

requirement for self-antigens to be present in the thymus, at sufficient levels to induce 

T cell deletion. Tissue-specific antigens (TSAs) cause a particular problem since they 

often are present at high concentrations in the peripheral organs, in contrast to the 
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thymus where only trace amounts are detected. The transcription factor autoimmune 

regulator (Aire) partly solves this problem by inducing the expression of several TSAs 

in the thymus, enabling T cell tolerance to these. Mice and humans with defective Aire 

expression develop a multi-organ autoimmune syndrome [15]. However, despite the 

expression of a functional Aire, some self-reactive cells do survive and escape into the 

periphery.  

 

T cell activation 

When the mature, naive T cell leaves the thymus it recirculates between blood, lymph 

nodes and spleen [16]. To become activated it needs to encounter its specific antigen 

which will induce proliferation and differentiation of the T cell. Finally, some of these 

cells leave the lymphoid organs as effector cells, migrate to peripheral tissues and 

exert their effector functions at the site of infection, whereas others stay and act in the 

lymphoid organs. 

 

DCs pick up antigens at sites of infection and thereby become activated. This leads to 

migration of the cells to draining lymph nodes where they act as mature, potent APCs 

[17]. Antigens are processed into peptides and subsequently presented by MHC 

molecules on the DC. Peptides derived from intracellular pathogens are presented by 

MHC class I molecules to CD8+ T cells whereas peptides from extracellular pathogens 

are generally presented by MHC class II to CD4+ T cells [17]. However, binding the 

MHC-peptide complex is not sufficient for T cell activation to occur, co-stimulatory 

signals delivered by the APC are required as well [18].  

 

Naive T cells are attracted to APCs by chemokines [19, 20]. APCs and T cells interact 

transiently with each other in an antigen-independent manner [21], enabling T cells to 

sample a large number of MHC molecules on each APC, thus increasing the chances 

of recognizing the cognate antigen. Upon recognition of the specific antigen, 

strengthening of the transient adhesive interactions occurs, resulting in the formation 

of the immunological synapse [22]. This complex is formed by interactions of 

lymphocyte function-associated antigen 1 (LFA-1), LFA-2, and CD28 on the T cell, 
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with inter-cellular adhesion molecule 1 (ICAM-1), LFA-3 and CD80/CD86 

respectively on the APC. Next, intracellular signalling cascades are activated through 

CD3, a complex associated with the TCR, ultimately resulting in activation of the 

transcription factors nuclear factor (NF)-κB, nuclear factor of activated T-cells (NF-

AT) and activator protein 1 (AP-1). These together initiate the transcription of several 

important genes, such as interleukin (IL)-2 [23, 24]. Upon T cell activation, the 

inhibitory molecule cytotoxic T lymphocyte associated antigen (CTLA)-4 is up-

regulated. It negatively regulates activation of T cells by binding CD80/CD86 with a 

much higher affinity than CD28 [25-27]. CTLA-4 expression is critical and protects 

mice from lymphoproliferative disease [28, 29]. 

 

Following activation, T cells start to divide extensively and differentiate into effector 

cells which express new gene patterns important for their effector functions. CD4+ T 

cells differentiate into different kinds of T helper (Th) cells (Th1, Th2, Th17 or 

follicular T helper cells (Tfh)) or regulatory T cells (Tregs), whereas CD8+ T cells 

differentiate into cytotoxic T cells (CTLs) [30, 31]. Activated cells are subsequently 

directed to their effector sites, in the lymphoid tissues or in the periphery. 

 

Peripheral T cell tolerance  

Self-reactive cells that escape thymic negative selection are controlled by peripheral 

tolerance in healthy individuals. The mechanisms of peripheral tolerance are deletion, 

anergy and active suppression. 

 

Deletion of self-reactive T cells occurs via activation-induced cell death (AICD), 

primarily through the Fas-FasL (CD95/CD95L) cell death pathway, as an 

accumulation of activated cells in the periphery with increased rates of autoimmune 

disease has been observed in Fas deficient lpr mice or FasL deficient gld mice [32-34]. 
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Clonal T cell anergy is a tolerance mechanism defining a state of non-responsiveness 

in T cells following antigen exposure. It affects IL-2 production and proliferation upon 

restimulation but the T cell remains alive in a hyporesponsive state for an extended 

period of time [35]. Anergy is a cell-intrinsic mechanism, although the induction 

might be initiated by other cells. It is important to separate in vitro clonal T cell anergy 

with the related in vivo adaptive tolerance state. In vitro clonal anergy can be induced 

by a strong TCR engagement with antigen or anti-CD3 antibodies (Abs) in the absence 

of costimulation, resulting in a defective proliferation [36]. Costimulation via CD28 is 

essential to prevent clonal anergy, as the old concept of anergy says: “signal 1 leads to 

tolerance and signal 1 plus 2 leads to activation”. However, it is not known whether it 

is a direct effect of CD28 signaling or an indirect effect on IL-2 expression that is 

important [37]. In vitro clonal anergy does not require antigen persistence and is in 

many cases reversible upon the addition of exogenous IL-2 [38]. In vivo adaptive 

tolerance is usually induced after vigorous but transient proliferation caused by 

prolonged antigen stimulation of naive T cells. It requires persistence of the antigen 

and is not reversible by exogenous IL-2 [38].  

 

Suppression, mediated by regulatory T cells, is a third important mechanism of 

peripheral T cell tolerance. A number of distinct subsets of regulatory T cells with 

different suppressive mechanisms have been identified; The CD4+ type 1 regulatory T 

cells (Tr1) that secrete high levels of the suppressive cytokine IL-10 [39] and CD4+ 

Th3 cells producing soluble transforming growth factor beta (TGF-) [40]. These cells 

are induced in the periphery and are currently not thought to represent a distinct T cell 

lineage. Other inducible regulatory T cells that have been discovered are the forkhead 

box P3 (Foxp3) expressing cells derived from naive CD4+CD25- T cells in the 

presence of TGF- [41]. Even though CD4+ regulatory T cells have been most 

extensively studied, CD8+ suppressor cells have been identified as well, for example 

CD8+CD28- cells that inhibit upregulation of costimulatory molecules on APCs [42]. 

Finally, the most studied regulatory T cells are the thymically derived 

Foxp3+CD4+CD25+ natural regulatory T cells (Tregs). These cells are produced in the 

thymus and will be further discussed in the following section.  
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FOXP3
+
 NATURAL REGULATORY T CELLS  

Background 

Foxp3+CD4+CD25+ natural regulatory T cells (Tregs) play key roles in maintaining 

tolerance to self and thus in controlling autoimmunity. In 1995, Sakaguchi et al. 

demonstrated that a subset of CD4+ T cells constitutively expressed the IL-2 receptor 

alpha chain (CD25) and that these cells were highly immunosuppressive [43]. Transfer 

of CD4+CD25- T cells from normal mice into syngeneic T cell-deficient nude mice 

resulted in the development of various autoimmune diseases in the recipients, whereas 

disease could be prevented by co-transfer of CD4+CD25+ cells. This was a major 

breakthrough in the field of Tregs. However, CD25 could not serve as a specific 

marker for these cells, since it is highly expressed on both activated CD4+ and CD8+ T 

cells. Therefore, the discovery of the transcription factor Foxp3 was of great 

importance.  

 

Foxp3 is an X chromosome-encoded gene recently discovered to be mutated in the 

autoimmune disorder “immune dysregulation, polyendocrinopathy, enteropathy, X-

linked syndrome” (IPEX) in humans, and in the analogous lymphoproliferative disease 

observed in the spontaneous mouse mutant “scurfy” [44-46]. Subsequent studies 

revealed that Tregs constitutively express Foxp3 and that this transcription factor is 

required for Treg differentiation and function [47-49]. Since then, Tregs have been 

extensively studied and although a lot of questions have been answered, many of them 

still remain. Foxp3 is a specific marker for Tregs in mice, since it is not expressed by 

conventional T cells [50, 51]. Other markers expressed by Tregs are glucocorticoid-

induced tumor necrosis factor receptor (GITR), CTLA-4 and OX-40L [52]. 

 

Tregs comprise approximately 5-10% of the peripheral CD4+ T cells in mice. They are 

anergic in vitro upon conventional T cell stimuli but the anergy may be broken by the 

addition of exogenous IL-2, which also results in abolished suppressive properties [53, 

54]. Interestingly, Tregs do proliferate when exposed to antigen in vivo and yet they 

maintain their ability to suppress [55-57]. It has been demonstrated that continuous 
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Foxp3 expression in peripheral Tregs is required to actively maintain their suppressive 

function and phenotypic characteristics [58].  

 

Treg differentiation 

Tregs are derived in the thymus as a separate T cell lineage. Early studies using CD25 

as a marker, demonstrated that Tregs are not found in the periphery until day 3 of life 

and that neonatal thymectomy at day 3 after birth results in autoimmunity in mice [59]. 

A more recent report using Foxp3-green fluorescent protein (GFP) transgenic mice 

enabled observation of Tregs in the thymus [60]. It was demonstrated that less than 

0.1% of the SP CD4+ thymocytes expressed Foxp3 12h after birth. However, between 

day 3 and 4 the population had increased to 2.1-4.5% of the SP CD4+ cells and at the 

age of 3 weeks, the proportion had reached the adult level of 10%. These studies 

confirmed what was earlier proposed, that the development of Tregs is delayed relative 

to that of conventional T cells.  

 

Foxp3 induction and thus Treg differentiation occurs relatively late during thymic 

differentiation. Several studies have reported that Foxp3+ cells are detected, although 

at very low levels, among DP CD4+CD8+ thymocytes [50, 51, 60, 61]. Furthermore, 

Liston et al. proposed that the DP subset represented precursors to SP Foxp3+ cells 

[61]. However, a recent study reports that the majority of DP Foxp3+ cells detected by 

flow cytometry are doublets comprised of DP Foxp3- and SP CD4+ cells [62]. 

Although it remains to be established whether Foxp3 is expressed in DP cells or not, 

these studies do agree on the fact that the majority of Foxp3 expressing cells in the 

thymus are SP CD4+ cells. 

 

How thymocytes are committed to the Treg lineage is still under investigation. It has 

been proposed that TCR specificity would be an important factor and that Tregs are 

self-reactive in contrast to conventional T cells [63]. However, others claim that Tregs 

are not particularly self-reactive [64]. In addition, Tregs and conventional T cells have 

been shown to have an overlapping TCR repertoire [65, 66]. 
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Another important issue that has been addressed is whether Foxp3 is necessary and/or 

sufficient for commitment to the Treg lineage. Studies were performed with mice 

expressing a non-functional Foxp3 protein. Cell surface phenotype and gene-

expression profile of these cells appeared similar as that of wild type (WT) Tregs but 

distinct from that of conventional T cells. Thus, lineage commitment does not require 

the expression of a functional Foxp3 protein [67, 68]. 

 

Recently, Lio et al. looked for the immediate precursors to Tregs within SP CD4+ 

thymocytes. They found that the CD4+CD25hi population was highly enriched in Treg 

cell precursors, and that the presence of IL-2 induced Foxp3 expression in these cells 

[69]. However, previous data have shown that IL-2 signaling is important, although 

not crucial, for Treg development, since mice lacking IL-2 or IL-2Rα show a 50% 

decrease in proportion and number of Foxp3+ thymocytes [70]. Other molecules that 

have been shown to participate but not to be indispensable for Treg development are 

CD28, CD80 and CD86 [71, 72]. It is not clear whether TGF- is important or not for 

thymic Treg development [73, 74]. 

 

Mechanisms of suppression 

The mechanisms by which Tregs suppress their cellular targets are not well 

understood. In vitro studies have shown that activation and/or expansion of multiple 

cell types such as CD4+ T cells, CD8+ T cells, B cells, natural killer (NK) cells and 

NKT cells, might be suppressed by Tregs [75]. It has become clear that Tregs may 

exert a number of different suppression mechanisms that can be divided into four 

groups, further discussed below; (1) inhibitory cytokines, (2) cytolysis, (3) metabolic 

disruption, and (4) modulation of APC function. The growing number of mechanisms 

by which Tregs suppress suggests that their function is context dependent, and that the 

type and magnitude of the immune response might be of importance. Furthermore, 

different target cells might be susceptible or resistant to distinct Treg mechanisms.  
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Development of an in vitro model system [53, 54] to study Treg function was thought 

to represent their actions also in vivo. However, a number of molecules and processes 

contributing to Treg suppression in vitro have not been confirmed to be important in 

vivo [76]. In vitro studies strongly suggest that the suppressive capacity of Tregs 

requires activation through their TCR but that once activated, suppression is antigen 

independent [54]. Whether this is true also in vivo is not clear. It has been discussed 

whether Tregs act directly on responder cells or whether they mediate their 

suppression via APCs. Suppression assays in vitro have been performed in two distinct 

ways, in the presence or absence of APCs. Suppression was observed in both systems, 

meaning that Tregs are able to suppress responder cells directly. However, this does 

not necessarily occur when APCs are present, as a number of mechanisms of 

suppression involving APCs have been observed as well.  

 

In vitro suppression has been shown to be dependent on cell-cell contact or at least 

vicinity between Tregs and responders, since abrogated suppression was observed 

when cells were separated by a permeable membrane [53, 54]. This does not rule out a 

potential role for cytokines or other secreted molecules in suppression, since they may 

require proximity between cells. 

 

Inhibitory cytokines such as IL-10 and TGF- have been shown to be important for 

Treg suppression in vivo [77-82]. However, neither of these cytokines are required for 

in vitro suppression of proliferation [54, 83]. More recently, IL-35 and galectin-1 (Gal-

1) have been proposed to be implicated in Treg suppression in vitro [84, 85]. 

 

It has been demonstrated that activation of Tregs results in the upregulation of 

granzyme B expression, and one study claimed that Tregs kill responder cells by a 

granzyme B-dependent, perforin-independent mechanism [86]. However, this could 

not be confirmed by other in vitro studies [87], although an in vivo study demonstrated 

that a population of Tregs in a tumor microenvironment expressed granzyme B and 

could kill T cells in a granzyme B- and perforin-dependent manner [88]. 
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Metabolic disruption is another mechanism of suppression mediated by Tregs, and the 

modulation of cyclic adenosine monophosphate (cAMP) is one such example. 

Elevated levels of cAMP are associated with inhibition of proliferation, differentiation 

and repression of IL-2 and interferon (IFN)- gene expression in lymphocytes, by the 

blocking of NF-κB activity [89]. Tregs have been demonstrated to increase cAMP 

levels in target cells through direct transfer of cAMP from Tregs into activated T cells 

via gap junctions [90]. Furthermore, two other studies describe the importance of 

CD39 or CD73, both expressed on activated Tregs, for the generation of adenosine 

which was shown to suppress proliferation and cytokine production by effector T cells 

[91, 92]. This was dependent on the adenosine receptor A2A. 

 

Several in vitro studies have demonstrated that Tregs inhibit mRNA-induction of IL-2 

and other effector cytokines in responder Foxp3- T cells [53, 54, 93]. Another study 

reports that Tregs compete for IL-2 with Foxp3- cells, and that their large consumption 

due to constitutive expression of CD25 causes apoptosis of Foxp3- cells [94].  

 

As previously mentioned, Tregs may also act via APCs and several mechanisms of 

suppression affecting APCs have been proposed. Tregs constitutively express CTLA-4 

on their cell surface, and downregulation of the costimulatory molecules CD80 and 

CD86 on DCs, in a CTLA-4 dependent manner, has been reported [95]. This has 

recently been confirmed in vivo [96], and results in a limited capacity of APCs to 

stimulate T cells through CD28. Additional in vivo studies have been performed 

supporting the important role of DCs in Treg suppression. Using two-photon laser-

scanning microscopy, Tang et al. demonstrated that no stable interactions were formed 

between Tregs and effector T cells, whereas Tregs formed long-lasting conjugates 

with antigen-loaded DCs [97]. Tadokoro et al. applied the same technique and showed 

that contacts between T cells and antigen-bearing DCs were of shorter duration in the 

presence of Tregs than in their absence [98]. 

 

Tregs have also been demonstrated to induce expression of the tryptophan degrading 

enzyme indoleamine 2,3-dioxygenase (IDO) in DCs, by interactions between CTLA-4 
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on Tregs and CD80/CD86 on DCs [99, 100]. However, it is not clear whether IDO is 

involved in Treg suppression. Another cell surface molecule that has been suggested to 

play a role in DC-mediated Treg suppression is lymphocyte activation gene 3 (LAG-

3), a CD4 homolog binding MHC class II molecules on DCs, resulting in suppressed 

DC maturation and thus reduced immunostimulatory function [101]. Finally, two 

additional molecules proposed to be implicated in Treg suppression are fibrinogen-like 

protein 2 (FGL2) and neuropilin 1 (Nrp-1), both interacting with DCs [102, 103].  

  

Foxp3 has been shown to physically interact with the transcription factors NF-κB and 

NFAT [104]. Further studies have demonstrated that the NFAT-Foxp3 complex is 

important for upregulation of the Treg markers CD25 and CTLA-4, and that it is 

required for the suppressive activity of Tregs [105]. 

 

In summary, Tregs are able to suppress by numerous different mechanisms and more 

studies have to be performed to better understand this area. Further questions to be 

answered are where Tregs exert their suppression, in the secondary lymphoid organs, 

in peripheral tissues or both, and whether the suppression mechanisms are dependent 

on the site where the Tregs act. 

 

Migration and site of suppression 

Where Tregs act and how they migrate in vivo is still under investigation. Tregs have 

been shown to affect the initiation of immune responses by suppressing activation and 

proliferation of naive T cells, and were therefore suggested to act in the secondary 

lymphoid organs [106]. However, other papers report that Tregs also migrate to and 

function in tumors, transplanted organs and inflammatory tissues [107]. Using a TCR-

transgenic diabetic model, Chen et al. demonstrated that Tregs had no effect on the 

priming of T cells in the lymph nodes but rather inhibited the T cell effector functions 

at the inflammatory site [108]. Another study reported an accumulation of Tregs in the 

skin, where they dampened the immune response to an infectious agent [80]. 

Migration of Tregs to the skin was dependent on their expression of the integrin αEβ7 

(CD103) [109]. 
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CD103 has been used to distinguish Treg subsets [110], and the migration of T cells to 

different tissues is determined by the cell surface expression of adhesion molecules 

and chemokine receptors (CCRs) [111]. Naive Tregs are CD103-, express L-selectin 

(CD62L) and CCR7, and recirculate through lymphoid tissues. In contrast, CD103+ 

Tregs display an effector/memory phenotype, expressing high levels of E/P-selectin 

binding ligands, multiple adhesion molecules as well as receptors for inflammatory 

chemokines, allowing efficient migration into inflamed tissues [112]. CCR7 is crucial 

for recirculation of naive Tregs through the lymph nodes and the lack of CCR7 

abolishes their ability to control the priming of an immune response [113]. In contrast, 

CCR7-deficient effector/memory Tregs accumulate at the site of inflammation and 

exert enhanced suppression compared to WT cells.  

 

A more recent study confirms that Tregs play an important role both in the lymph 

nodes and at the site of inflammation. Using an allograft model, these authors 

particularly demonstrate that sequential migration of Tregs is required, from blood to 

inflamed tissues and then to the draining lymph node, for efficient inhibition of 

effector T cell responses [114]. 

 

Thus, Tregs may act in the lymph nodes, at the site of inflammation or both, however 

it is still uncertain where they primarily exert their suppression.  

 

Role in infectious disease 

To survive an infection, a controlled immune response is required where the invading 

pathogen is recognized at the same time as the collateral damage to self-tissues is 

limited. Several studies have demonstrated the importance of Tregs during parasitic, 

fungal, viral and bacterial infections. Common consequences of Tregs preserving 

homeostasis by controlling excessive immune responses are enhanced pathogen 

survival or even long-term persistence. 
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During cutaneous infection with Leishmania major, Tregs accumulate at the site of 

infection where they suppress the response to the parasite [80]. This prevents 

immunity against the pathogen and thus allows a persistent infection. Further studies 

demonstrated that Tregs were parasite-specific rather than self-reactive [115]. In this 

model, parasite persistence was necessary for maintaining immunity to re-infection. 

Other examples where Tregs control immunopathology are a mouse model of 

Pneumocystis pneumonia [116], a model in which mice were infected in the eye with 

herpes simplex virus (HSV) [117], and mice infected with Schistosoma mansoni [118], 

affecting the liver. However, in other cases where Treg control is excessive, the 

survival of the host is compromised. Malaria might be one such example, since 

depletion of Tregs in a mouse model of malaria protects from death caused by the 

lethal strain of Plasmodium yoelii [119]. A restored immune response against the 

parasite and control of the infection was observed in the absence of Tregs. 
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TOLL LIKE RECEPTORS 

Background 

Toll like receptors (TLRs) are important for innate immune responses since they 

recognize a variety of microbial products. The TLR family was first identified in 

Drosophila, where the Toll protein was shown to play an important role during 

embryonic development [120]. Almost 10 years later subsequent studies revealed the 

involvement of Toll in resistance to fungal pathogens in the adult fly [121] and shortly 

thereafter, in 1997, the first mammalian TLR-homologue was identified [122]. At 

present, 10 TLRs have been discovered in humans and 13 in mice [123]. TLR1, TLR2, 

TLR4, TLR5, TLR6, and TLR10 are all situated at the cell surface, predominantly 

recognizing bacterial components. In contrast, TLR3, TLR7, TLR8, and TLR9 are 

located in intracellular endosomal or lysosomal compartments where they recognize 

microbial RNA and DNA.  

 

Expression and structure 

TLRs are expressed by hematopoietic cells, including mast cells, DCs, macrophages, 

and B cells, but they have also been detected on nonimmune cells such as fibroblasts 

and epithelial cells [124]. TLRs are transmembrane glycoproteins with an extracellular 

domain characterized by leucine-rich repeats (LRRs) of different size and abundance, 

responsible for binding pathogen-associated molecular patterns (PAMPs). The 

conserved residues within each repeat provide a rigid structure whereas the variable 

residues are the ones interacting with ligands [125]. The intracellular part of the 

receptor is composed of Toll/Interleukin-1 receptor (TIR) domains important during 

TLR activation [126].  
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Activation  

Each TLR recognizes specific microbial patterns and numerous TLR ligands have 

been identified, some of them presented in table 1.  

 

Table 1. TLR ligands, modified from Mogensen et al. (2009) and Kumar et al. (2009) [127, 128]. 

TLR Microbial Ligands 

TLR1/2 Triacyl lipopeptides 

TLR2 Lipoproteins, peptidoglycan (PGN), lipoarabinomannan (LAM), hemagglutinin,  

  zymosan, viral envelope glycoproteins 

TLR3 dsRNA 

TLR4 Lipopolysaccharide (LPS), mannan, glycoinositolphospholipids, viral envelope  

  glycoproteins, HSP70 

TLR5 Flagellin 

TLR6/2 Diacyl lipopeptides, lipoteichoic acid (LTA) 

TLR7 ssRNA  

TLR8 ssRNA  

TLR9 CpG DNA  

TLR10 Unknown 

TLR11 Uropathogenic bacteria, profilin-like molecule 

TLR12 Unknown 

TLR13 Unknown 

 

TLR1 forms heterodimers with TLR2 and recognizes triacyl lipopeptides such as the 

synthetic ligand Pam3Cys. TLR2 also heterodimerizes with TLR6, and then recognizes 

diacyl lipopeptides, of which lipoteichoic acid (LTA) is one example. Other TLRs 

rather form homodimers. TLR3 is activated by dsRNA, such as the synthetic ligand 

polyinosinic-polycytidylic acid (pI:C). TLR4 is a receptor with the ability to recognize 

structurally and biochemically unrelated ligands. Lipopolysaccharide (LPS), viral 

envelope glycoproteins and heat shock proteins (HSPs) are some examples. Flagellin 

is a ligand of TLR5. TLR7 and TLR8 both recognize ssRNA, whereas TLR9 is 

activated by CpG DNA. The ligands for TLR10, TLR12 and TLR13 are still not 

known. TLR11 has been reported to recognize uropathogenic bacteria and a profilin-

like molecule in mice. 
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Most TLRs directly bind their ligands whereas others require accessory proteins to 

facilitate recognition and binding. LPS is recognized by a receptor complex consisting 

of TLR4 and myeloid differentiation protein-2 (MD-2). In addition, two other proteins 

have been reported to be involved in LPS-induced activation of TLR4, namely LPS-

binding protein (LBP) and CD14. The role of these accessory proteins is not yet 

completely understood. The former is thought to be a shuttle protein that catalyzes the 

transfer of LPS from the outer membrane of Gram-negative bacteria to CD14, which 

in turn binds to LPS and presents it to the TLR4/MD-2 receptor complex [129]. While 

MD-2 is indispensable for LPS-recognition [130], LBP and CD14 were reported to be 

crucial only for MyD88-independent LPS signaling of LPS [131-133]. Furthermore, 

CD14 was also shown to participate in TLR2/TLR6- and TLR2/TLR1 activation [134] 

and an additional accessory protein, CD36, was reported to be involved in the 

recognition of certain ligands by TLR2/TLR6 [134, 135].  

 

A given pathogen may activate various different TLRs via alternative PAMPs and 

moreover, several structurally unrelated pathogens can activate the same TLR. 

Activation and homo- or heterodimerization of TLRs is believed to result in the 

recruitment of adaptor proteins that bind TIR domains of the receptors, and thereby 

initiate their signaling [136].  

 

Signaling 

Binding of microbial components to TLRs triggers the activation of signaling 

cascades, starting from the cytoplasmic TIR domains and ultimately resulting in the 

induction of genes important for antimicrobial responses. There are four TIR-domain 

containing adaptor molecules involved in TLR signaling, namely myeloid 

differentiation factor 88 (MyD88), TIR-associated protein (TIRAP)/MyD88 adaptor-

like (MAL), TIR-domain containing adaptor protein-inducing IFN-β (TRIF), and 

TRIF-related adaptor molecule (TRAM) [127]. Distinct TLRs signal via different 

adaptors, which at least partly determine the specificity of the response.  
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The four adaptor molecules mentioned above do all have activating functions. 

However, a fifth TIR adaptor has been identified, sterile α- and armadillo-motif 

containing protein (SARM) [137]. SARM is a negative regulator of TLR-induced 

TRIF signaling, since its expression blocks the induction of genes downstream of 

TRIF but not of MyD88. 

 

TLR signaling pathways are broadly divided into MyD88-dependent and MyD88-

independent [138], since this adaptor molecule is the most widely used, recruited by 

all TLRs except TLR3. MAL is required for linking MyD88 together with TLR2 and 

TLR4 [139, 140], whereas other TLRs directly interact with MyD88. TLR3 and TLR4 

are unique in their ability to signal via the MyD88-independent pathway, mediated by 

TRIF [141]. TLR3 directly binds to this adaptor whereas TRAM is required as a 

bridging molecule connecting TLR4 and TRIF [142, 143].  

 

TLR signaling involves three major pathways responsible for mediating antimicrobial 

responses. These include NF-κB, mitogen-activated protein kinases (MAPKs), and 

IFN regulatory factors (IRFs), and result in transcription of proinflammatory genes 

and IFN production [127]. The MyD88-dependent pathway is mainly responsible for 

expression of proinflammatory cytokines such as IL-1, tumor necrosis factor (TNF)-α 

and IL-6 [144], induced by activated NF-κB and mitogen-activated protein kinases 

(MAPKs). An alternative MyD88-dependent pathway is triggered in plasmacytoid 

DCs (pDCs), where TLR7- and TLR9 activation results in the activation of IRFs and 

production of type I interferons (IFNs). A second alternative MyD88-dependent 

pathway was recently discovered in TLR2 activated cells, in which viral but not 

bacterial ligands resulted in IRF-dependent IFN production [145]. Finally, the 

MyD88-independent, TRIF dependent pathway is generally accepted as the main one 

for induction of type I IFN responses in non-pDCs, and it also contributes to the 

activation of NF-κB [127]. Figure 1 represents a simplified schematic overview of the 

different TLRs and their signaling pathways.  
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Figure 1. TLRs and their signaling pathways. Modified from Mogensen (2009) [127]. 

 

 

 

An interesting feature of TLR4 signaling was recently discovered by Kagan et al. This 

group demonstrated that TLR4 activates the MyD88-dependent and MyD88-

independent pathways sequentially from different cellular compartments, the former 

from the plasma membrane and the latter from endosomes after endocytosis of the 

receptor complex [146]. Another study demonstrated that even TLR2-induced type I 

IFN production was dependent on receptor internalization [145]. 
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Role in innate and adaptive immunity 

TLRs play a key role in innate immunity where they initiate inflammatory responses. 

Rapidly after microbial invasion, TLRs on tissue-resident macrophages, DCs and mast 

cells are activated, leading to the production of proinflammatory cytokines and type I 

IFN [144]. This results in the expression of selectins, chemokines, and chemokine 

receptors important for recruitment of leukocytes to the site of inflammation [147]. 

Monocytes, neutrophils, basophils, eosinophils and NK cells are all part of the innate 

immune system and migrate from peripheral blood into the inflamed tissue where they 

participate in killing pathogens and infected cells. 

TLRs are also involved in adaptive immune responses, which begin with the capture 

of antigens by DCs in peripheral tissues. Activation of TLRs on DCs is followed by 

phagocytosis of the pathogen, upregulation of MHC- and costimulatory molecules, a 

switch in chemokine receptor expression and migration to the draining lymph nodes 

where the processed antigens are presented by MHC molecules on the DCs to T cells 

[17]. In addition, DCs secrete cytokines and chemokines that are important for the 

differentiation of T cells. It is generally accepted that most TLR-mediated signals 

stimulate DCs to produce IL-12, which promotes development of Th1 cells [124]. 

However, TLR-mediated induction of IL-10 has been observed with certain ligands 

and this favors a Th2 response [148]. Furthermore, TLRs may also induce production 

of IL-6, TGF-β and IL-23, and thereby promote Th17 cells [149]. 

DCs activated by some TLRs have also been shown to affect the differentiation of 

CD8+ T cells into cytotoxic T cells by inducing cross-presentation of extracellular 

antigens [150]. The role of TLRs in modulating antibody responses by B cells is not 

well understood [149]. However, it has been demonstrated that activation and 

differentiation of Th cells in mice is not sufficient for T-dependent B cell responses. In 

addition, TLR-mediated stimulation directly on B cells is required for the induction of 

a proper antibody response [151]. 
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INTERFERON BETA 

Background 

Interferon (IFN)-β is part of the type I IFN family together with IFN-α and other less 

well characterized IFNs. Production of IFN-β is mainly controlled at the 

transcriptional level where multiple transcription factors are involved, including the 

IRFs [152]. In response to appropriate stimuli, several different cell types have been 

shown to express IFN-β, including monocytes, macrophages, neutrophils and DCs 

[153]. IFN-β was initially considered to display anti-viral effects only, however, today 

there are no doubts that this cytokine has multiple functions in addition to those 

inhibiting viral replication [154]. 

 

Receptor and signaling 

IFN-β signaling is mediated by the type I IFN receptor [155, 156], which consists of 

two transmembrane subunits, IFN receptor 1 (IFNAR1) and IFNAR2, associated with 

the cytoplasmic tyrosine kinases Tyk2 and Jak1, respectively. Binding of IFN-β to the 

receptor induces rapid trans-phosphorylation of these kinases, followed by 

phosphorylation of critical residues of the intracellular domain of the receptor itself. 

These phosphorylated residues serve as recruitment sites for the transcription factors 

signal transducer and activator of transcription (Stat) 1 and Stat2, which are then 

phosphorylated by Tyk2 and Jak1. Once phosphorylated, these Stats form two distinct 

transcriptional activator complexes, namely, IFN-α-activated factor (AAF) and IFN-

stimulated gene factor 3 (ISGF3). The former is a homodimer of Stat1 whereas the 

latter is a heterotrimer consisting of Stat1, Stat2, and IRF9. These complexes 

translocate from the cytoplasm into the nucleus where they bind specific DNA 

sequences, the IFN-γ-activated sequence (GAS) and the IFN-stimulated response 

element (ISRE), respectively [157]. This results in transcriptional induction of 

hundreds of target genes [158]. Figure 2 represents a schematic overview of the type I 

IFN receptor and its signaling. 
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Figure 2. Type I IFN signaling. Modified from Taniguchi and Takaoka (2001) [159]. 

 

 

 

Target genes 

IFN-β induces transcription of numerous genes. Der et al. studied mRNA profiles of a 

human cell line and found that IFN-β stimulation resulted in a more than 2-fold 

increase of 268 genes, and a greater than 4-fold change in 56 genes [160]. Although 

the functions of many IFN-inducible genes remain to be elucidated, some are known 

and have been shown to have antiviral, antiproliferative, and immunomodulatory 

properties [161]. 
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The important activity against viral infections is mediated by the expression of IFN-

inducible genes that contribute to cellular resistance, inhibition of viral replication and 

spread. The best studied IFN-β-dependent antiviral proteins include the protein kinase 

R (PKR), the 2´,5´-oligo-adenyl synthetase (2´,5´-OAS) and the Mx proteins, involved 

in blocking de novo protein synthesis, preventing viral replication and promoting 

apoptosis of virally infected target cells, and blocking viral RNA transcription 

respectively. Other well-studied IFN-inducible genes are STATs and interferon 

regulatory factors (IRFs) [160].  

 

IFN-β has been demonstrated to induce expression of ICAM-1 and CD47, which are 

important for the recruitment of lymphocytes to the infection site. Furthermore, 

expression of several molecules involved in MHC class I- and MHC class II 

presentation, as well as proapoptotic caspases and the important signaling molecules 

MAPKs, were also shown to be IFN-β dependent [161].  

 

It is important to note that the genes transcribed, and thus the effects exerted by IFNs, 

depend on the type of microbial pathogen that initiates the immune response [153]. 

Further studies will have to be done to increase the understanding of the IFNs and their 

complex signaling. 
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QUINOLINE-3-CARBOXAMIDES 

Background 

Since the 1980´s, quinoline-3-carboxamides have been developed for treatment of 

human disease. Linomide, the first chemical compound in use, was tested in a series of 

Phase II- and III trials in multiple sclerosis (MS) and type I diabetes patients [162-

164]. However, the development was interrupted due to unacceptable side effects, and 

a new set of quinoline-3-carboxamides was developed. One of them, laquinimod, 

showed efficacy in Phase II trials in MS patients [165, 166], and is now involved in 

Phase III studies of this disease. Laquinimod is also tested in a Phase II study in 

patients with Crohn´s disease. ABR-215757 (5757) is another quinoline-3-

carboxamide which is currently in clinical development for treatment of the 

autoimmune rheumatic disorder systemic lupus erythematosus (SLE). The target 

molecule and mode of action of quinoline-3-carboxamides have remained unknown 

for years. 

 

Target molecule and mode of action 

The cytosolic calcium-binding protein S100A9, expressed by granulocytes and 

monocytes [167], was recently identified as a molecular target of 5757 and other 

quinoline-3-carboxamides [168]. The compounds were shown to inhibit interactions of 

S100A9 with the proinflammatory receptors TLR4 and receptor for advanced 

glycation end products (RAGE). Although binding of the quinoline-3-carboxamides to 

S100A9 correlated with their ability to inhibit autoimmune disease, it remains to find 

out whether their primary pharmacological activity is mediated by this blocking. 

 

Quinoline-3-carboxamides have shown inhibiting effects in several models of T cell-

mediated inflammatory autoimmune diseases and it would be reasonable to assume 

that these compounds affect a common mechanism involved in such disorders, for 

example T cell activation. One obvious target would be DCs, since they are involved 

in early stages of immune responses as professional APCs.  
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DENDRITIC CELLS 

Background 

Dendritic cells (DCs) are hematopoietic cells that are specialized in capturing, 

processing and presenting antigens to T cells. Depending on the type- and activation 

state of the DC, this may lead to tolerance or immunity. DCs are heterogeneous and 

can be divided into two major populations: (1a) nonlymphoid tissue migratory, (1b) 

lymphoid tissue-resident, and (2) plasmacytoid DCs (pDCs) [169]. The migratory DCs 

pick up antigens in peripheral tissues and then migrate through the lymph to the lymph 

nodes. Migration occurs also in the steady state, although at a lower rate [170]. The 

lymphoid tissue-resident DCs, in contrast, collect and present antigens in the lymphoid 

organs and thus do not migrate through the lymph. pDCs migrate from the blood into 

secondary lymphoid organs under steady-state conditions and their main function is to 

rapidly secrete massive amounts of type I IFN upon viral infection [171]. 

 

Lymphoid tissue-resident DCs and pDCs derive from the common macrophage/DC 

precursor (MDP) [172] that divides in the bone marrow and further differentiates into 

the common DC precursor (CDP) [173]. This is a precursor of pDCs and lymphoid 

tissue-resident DCs but it is unable to give rise to monocytes [174]. Furthermore, other 

precursors were reported to give rise to lymphoid tissue-resident DCs but not to pDCs 

[175-177]. 

 

Lymphoid tissue-resident DCs 

Splenic lymphoid tissue-resident DCs constitutively express MHC class II and CD11c 

in mice. These cells are subdivided into three populations: CD8α+CD4-CD11b- DCs, 

CD4+CD8α-CD11b+ DCs, and CD4-CD8-CD11b+ double negative (DN) DCs [178, 

179]. CD8α+ DCs are mainly localized in the T cell zone whereas CD4+ DCs mainly 

reside in the marginal zone [180]. CD8α is not expressed on human DCs.  
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Lymph node DCs are more heterogeneous than those of the spleen and thymus, since 

they include migratory DCs entering via the afferent lymphatics, in addition to the 

spleen-equivalent populations CD8α+, CD4+, and DN DCs. In steady state, 

approximately half the LN DCs seem to be lymphoid tissue-resident [181, 182], 

whereas the spleen and thymus include mostly tissue-resident cells [179]. One can 

distinguish between migratory- and lymphoid tissue-resident DCs by studying their 

phenotype; migratory DCs typically have a mature phenotype when they arrive in the 

lymph nodes, in contrast to lymphoid tissue-resident DCs that are immature [181].  

 

Functional distinctions between CD8α- and CD8α+ DCs have been demonstrated in 

mice. First, CD8α- DCs are more efficient at presenting antigens via MHC class II to 

CD4+ T cells while CD8α+ DCs efficiently present antigens to CD8+ T cells via MHC 

class I [183]. Furthermore, CD8α+ but not CD4+ DCs have been shown to cross-

present cell-associated antigens [184]. CD8α- and CD8α+ DCs have also been reported 

to differ in the production of IL-12, IFN-α, and IFN-γ [185]. 
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PAPER I 

T-cell tolerance induced by repeated antigen stimulation: Selective loss of Foxp3
-
 

conventional CD4 T cells and induction of CD4 T-cell anergy. 

 

Background 

Immunization of mice with bacterial superantigens (SAg) causes deletion of SAg-

reactive CD4+ T cells [186-188], while the remaining SAg-reactive cells become 

anergic and thus fail to respond to the immunizing SAg both in vivo and in vitro [189, 

190]. Several reports have demonstrated that such anergic cell populations contain 

cells which are able to suppress immune responses to the antigen in vivo and in vitro 

[191-194]. These data suggest that Tregs might be involved in T cell anergy, stressing 

the difference between active suppression and inherent anergy, both possibly 

responsible for the unresponsiveness of T cells. During persistent infections, microbes 

are repeatedly in contact with immune cells of the host, and an increased frequency of 

Foxp3+ cells has been observed in blood of infected individuals [195, 196]. It has been 

assumed that this increase was a result of de novo development of Tregs.  

 

Our previous data show that both CD4+CD25+ and CD4+CD25- T cells from mice 

repeatedly immunized with SAg suppressed T cell proliferation and IL-2 production in 

cells stimulated with SAg in vitro. These results indicated a potential presence of 

Tregs in the CD4+CD25- population and we addressed this hypothesis in paper I. We 

further investigated the role of Foxp3+ cells in anergy caused by repeated antigen 

stimulation of mice, both in vitro and in vivo. 

 

Summary 

We report that repeated antigen stimulation results in an increased proportion of 

Foxp3+ cells in the CD4+ population of T cells in mice. This was caused by a 

decreased number of antigen-reactive conventional CD4+ T cells rather than by de 

novo development of Foxp3+ Tregs. Proliferation of naive transferred CD4+ T cells 

was inhibited in repeatedly immunized mice and cells transferred from such mice into 
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naive recipients were shown to be anergic. Finally, we demonstrate that the in vitro 

anergy is partially dependent on Foxp3+ cells whereas the in vivo anergy is not. 

 

Results and discussion 

We immunized DO11.10 TCR-transgenic (TCR-TG) mice three times with 

recombinant staphylococcal enterotoxin B (SEB) and observed, as expected, poor 

proliferation of spleen cells restimulated with SEB in vitro, confirming T cell anergy. 

Further, cells were analyzed by flow cytometry and we found that both CD4+CD25+ 

and CD4+CD25- populations expressed Foxp3, in control- as well as in 3xSEB cells. 

However, the proportion of Foxp3+ cells in the CD4+CD25- population was 

significantly increased in 3xSEB- compared to control splenocytes, and by counting 

the total cell number, we concluded that this was due to selective reduction of 

CD4+CD25-Foxp3- cells. In support of this, Papiernik et al. have demonstrated that 

chronic stimulation with a viral SAg eliminated CD4+CD25- T cells while the 

CD4+CD25+ cells were maintained [197]. Another study shows a selective deletion of 

CD4+CD25- cells in septic shock patients [198]. 

 

Using an analogous immunization protocol, where OTII TCR-TG mice were injected 

with ovalbumine–peptide (OVAp) or OVA protein, we obtained similar results as with 

SEB in regards of T cell anergy and the increased frequency of Foxp3+ cells. As 

expected from previous studies [199-202], these data demonstrate that the effects on 

CD4+ T cells were not specifically caused by the SAg but were rather a result of 

repeated stimulation of these cells. 

 

The extent of CD4+ T cell deletion in mice immunized with SAg has been shown to be 

dose-dependent [189, 203]. Furthermore, the unresponsiveness of remaining T cells 

varies as well, depending on the immunization protocol [191, 204, 205]. In the present 

study, we have used two different immunization protocols. Initial experiments were 

performed with 5μg SEB i.v. on day 0, 4, and 8. Mice were sacrificed on day 10. For 

convenience, we changed the protocol and used i.p. injections instead. Here, mice 

were immunized with 20μg SEB on day 0, 2, and 4, and sacrificed on day 5. 
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Experiments with OVAp or OVA protein were all performed according to the latter 

protocol. We obtained similar results in 3xSEB mice with the different protocols. 

 

It is well established that antigen exposure may induce conversion of peripheral naive 

CD4+ T cells to Foxp3+ Tregs [206, 207]. To determine whether our immunization 

protocol could convert Foxp3- cells into Foxp3+ cells, we used Rag-/- mice, which do 

not express Foxp3 at steady state [49], but have been shown to induce expression of 

Foxp3 upon tolerogenic antigen stimulation [206, 207]. By analyzing mRNA with 

quantitative RT-PCR and proteins with flow cytometry, we concluded that our 

protocol did not induce Foxp3 expression. These data supported our early conclusions 

that the increased frequency of Foxp3+ cells in repeatedly immunized mice was caused 

by selective reduction of CD4+CD25-Foxp3- cells. 

 

Others have observed suppression in 3xSEB mice [192, 194]. To study this 

phenomenon in our models, we transferred naive CFSE-labeled CD4+ T cells into 

repeatedly immunized mice and studied their proliferation in response to antigen. 

Thus, we could confirm the previously published data since SEB-induced proliferation 

of naive CD4+ T cells was profoundly inhibited in 3xSEB mice, and we also observed 

corresponding results in 3xOVAp mice. Interestingly, inhibition was only transient, 

since proliferation was not significantly reduced when cells were transferred 1- or 2 

weeks after the last antigen immunization. Although with a different protocol than 

ours, it has previously been demonstrated that OVAp could stimulate T cells for 5-10 

days after injection [201]. This suggests that the absence of antigen might be a reason 

for the transient suppression in our experiments, since we transferred the cells 8- or 15 

days after the last immunization. Interestingly, the increased frequency of Foxp3+ cells 

remained in recipient mice, suggesting these cells did not play a major role in 

suppression. However, a possible role of Foxp3+ cells in suppression could not be 

excluded, since these cells somehow gradually might have lost their capability to 

suppress. In a previous study, IL-10 was shown to be involved in suppression 

mediated by T cells from mice repeatedly immunized with SEB [192, 208]. To address 

whether this cytokine was involved also in our model, we used a neutralizing antibody 
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specific for IL-10. No difference in proliferation was observed in presence of this 

antibody, indicating that suppression was independent of IL-10. Another credible 

explanation for the suppression observed in our model would be competition, as 

antigen-primed cells in recipient mice can compete for antigen stimulation [209], 

which would result in reduced proliferation of transferred naive cells. Our preliminary 

data show that naive OT-I CD8+ T cells are not suppressed when transferred into 

3xOVAp mice. This is consistent with competition, since the MHC class II-restricted 

CD4+ T cells of the repeatedly immunized recipient mice would not be expected to 

compete with the activation of MHC class I-restricted CD8+ T cells. 

 

To extend our studies of T cell anergy, we aimed to determine whether cells from 

repeatedly immunized mice were anergic also in vivo. CFSE-labeled cells from such 

mice were transferred into naive recipients and proliferation was measured upon 

antigen stimulation. The poor proliferation of cells transferred from immunized mice 

compared to that of controls, was a clear evidence for in vivo anergy. Similar to the 

suppression discussed in the previous section, anergy was also shown to be transient, 

despite a persistent increased frequency of Foxp3+ cells in the repeatedly immunized 

mice. It is established that in vivo anergy is antigen-dependent [201, 210, 211], which 

suggests that the gradual loss of anergy in our study might be due to disappearance of 

the antigen.  

 

In the final part of paper I, we studied the role of Foxp3+ cells in T cell anergy. Based 

on our observation of an increased Foxp3-frequency, in combination with our 

previously published data where CD4+ T cells from repeatedly immunized mice 

potently suppressed T cell proliferation in vitro [193], we thought that Foxp3+ cells 

might contribute to this phenomenon as active suppressors. To address this possibility, 

we used flow cytometry to remove Foxp3+ cells from the CD4+ T cell population of 

control- and repeatedly immunized mice. The remaining cells were subsequently 

stimulated in vitro, in parallel with total CD4+ T cells. Although Foxp3- cells from 

immunized mice did not proliferate to the same extent as those from control mice, 

their proliferation was slightly increased compared to total CD4+ T cells from 
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repeatedly immunized mice. Thus, we concluded that the in vitro anergy of cells from 

repeatedly immunized mice was partially due to suppression by Foxp3+ cells.  

 

The observation that in vivo anergy was gradually lost despite of the remaining 

increased frequency of Foxp3+ cells in repeatedly immunized mice, suggested that 

these cells might not be involved as suppressor cells during anergy in vivo. Total 

CFSE-labeled CD4+ T cells or CD4+Foxp3- cells from control- or repeatedly 

immunized mice were transferred into naive mice, and their proliferation in response 

to antigen was studied. Cells from immunized mice proliferated poorly compared to 

those from controls. Importantly, depletion of Foxp3+ cells did not change the 

proliferative pattern of CD4+ T cells from repeatedly immunized mice. Thus, we 

conclude that the anergy observed in our model in vivo is independent of Foxp3+ T 

cells. We further performed in vivo anergy experiments with neutralizing antibodies 

specific for IL-10. Proliferation of transferred T cells was unaffected by these 

antibodies, suggesting that the in vivo anergy in our model is independent of IL-10. 

Instead, we propose it might be a T-cell intrinsic phenomenon, similar to previous 

observations in other models [212, 213]. Finally, in vivo T cell responsiveness to 

antigen varies in different studies and the relative contribution of T-cell intrinsic 

anergy and suppression seems to depend on the experimental model used [211, 212, 

214, 215]. 
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PAPER II 

TLR2-induced expression of inducible nitric oxide synthase is interferon β-

dependent.  

 

Background 

Toll like receptors (TLRs) play a central role in innate immune responses as they 

recognize various microbial products. Activation of TLRs triggers intracellular 

signaling cascades involving different adaptor molecules, ultimately resulting in the 

expression of genes important for an immune response. Distinct TLRs signal via 

different pathways and thus exert different immune responses. TLR signaling is 

generally divided into two major pathways, the MyD88-dependent and the TRIF-

dependent [138]. TLR2 is known to signal only via the former, whereas TLR3 signals 

via the latter, and TLR4 uses both these pathways [216]. TLR3- and TLR4 activation 

via TRIF is known to induce the expression of IFN-β, a pleiotropic cytokine, and its 

downstream molecule inducible nitric oxide synthase (iNOS). Activation of TLR2 has 

also been reported to induce the expression of iNOS, and a recent study demonstrated 

that IFN-β expression was induced as well. However, this was only shown in presence 

of a viral ligand. 

 

Summary 

In this study we have used bone marrow-derived dendritic cells (BM-DCs) from IFN-

β-/- mice to study the role of IFN-β in TLR2-mediated induction of iNOS. We 

demonstrate that the TLR2 ligands LTA and Pam3Cys induce the expression of iNOS 

in an IFN-β dependent manner. Furthermore, iNOS activity induced by these ligands 

did not require receptor internalization or endosomal maturation, and was 

differentially dependent on the TRIF- and IRF3 molecules.  

 

Results and discussion 

We used BM-DCs from WT- and IFN-β-/- mice to study iNOS expression upon 

stimulation of TLR4 and TLR2. As expected, stimulation with the TLR4 agonist LPS 



36 
 

induced iNOS expression in an IFN-β-dependent manner. Interestingly, the iNOS 

response in cells stimulated with the TLR2 agonist LTA was also dramatically reduced 

in IFN-β-/- mice compared to WT, suggesting an important role of IFN-β in TLR2-

mediated iNOS expression. We further showed that addition of rIFN-β or rIFN-γ to the 

cell cultures could compensate for the IFN-β-/- deficiency, and thus contribute to an 

increased iNOS response in the IFN-β-/- cells. In contrast to the iNOS response, TNF-α 

production was as expected independent of IFN-β.  

 

Since our results regarding TLR2 were contradictory to previous reports [217, 218], 

we wanted to perform additional experiments to confirm our data. In addition to LTA 

and LPS, the TLR2- and TLR3 agonists Pam3Cys and pI:C were used in these 

experiments. Firstly, we added a blocking antibody specific for the type I IFN receptor 

(IFNAR) to BM-DC cultures and observed a reduced iNOS response upon TLR2 

stimulation, similar to that in TLR4-and TLR3-stimulated cells. Secondly, we 

investigated the possibility that IFN-γ, rather than IFN-β, would be the crucial factor 

for iNOS induction. It is well established that IFN-γ is able to induce iNOS expression 

in murine cells [219]. Furthermore, the expression of IFN-γ has been shown to be 

dependent on IFN-β [220]. We added an IFN-γ specific blocking antibody to the cell 

cultures without observing any effect on the iNOS response, suggesting that IFN-β 

rather than IFN-γ, is the essential factor for TLR2-mediated iNOS activity. Finally, we 

studied iNOS expression in cells from IFNAR-/- mice and observed a dramatically 

reduced iNOS response in TLR2-stimulated cells compared to WT. Together, these 

data support our finding that TLR2-induced iNOS expression is indeed dependent on 

IFN-β.  

 

Expression of programmed cell-death ligand-1 (PD-L1) has also been suggested to be 

IFN-β-dependent [221]. We therefore used flow cytometry to study PD-L1 expression 

in TLR-stimulated BM-DCs, and observed increased levels of this protein in WT- 

compared to IFN-β-/- cells. This was true for cells stimulated with either LPS or LTA, 

and thus further reinforces the role of IFN-β in TLR2 signaling. 
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We next wanted to investigate what intracellular signaling molecules were involved in 

the TLR2-mediated iNOS expression. BM-DCs from MyD88-/-, TRIF-/-, and IRF3-/-

mice were stimulated with TLR2-, TLR3- and TLR4 agonists and the iNOS response 

was measured. We confirmed that the TLR3- and TLR4-induced iNOS response was 

dependent on TRIF and IRF3 [141, 222, 223], but we also observed a reduced iNOS 

response upon TLR3- and TLR4 stimulation of MyD88-/- cells. This was rather 

unexpected, however these cells responded poorly to stimulation overall, even upon 

addition of exogenous rIFN-β. TLR2-induced iNOS expression was reduced in 

MyD88-/- cells, which was expected since TLR2 is known to signal via this adaptor 

[224]. However, the absence of TRIF and IRF3 also resulted in a decreased iNOS 

response in TLR2 activated cells, even though the impact of these molecules was 

different depending on the TLR2 agonist used. This is supported by previously 

published data where the inflammatory response induced by LTA was shown to differ 

from that of Pam3Cys [225]. However, no firm conclusions may be drawn from these 

data concerning signaling molecules involved in TLR2-induced iNOS expression, as 

different results were obtained with the various ligands. Further experiments will 

therefore have to be done to elucidate this. 

 

In previously mentioned experiments, NO concentration was determined in cell culture 

supernatants, as a measure of iNOS protein expression. To study mRNA expression of 

iNOS in BM-DCs stimulated with LPS or LTA, we performed a qRT-PCR. iNOS 

mRNA expression was markedly reduced in IFN-β-/- cells compared to WT, both upon 

LPS and LTA stimulation, and thus further shows the importance of IFN-β in TLR-2 

induced iNOS expression. Similarly, reduced mRNA levels were observed in   

MyD88-/-, TRIF-/-, and IRF3-/- cells, indicating that MyD88, TRIF, and IRF3 are all 

involved in iNOS expression mediated by LPS or LTA. 

 

We were further interested in studying the role of IFN-β in the TLR2-mediated iNOS 

expression in vivo. WT- and IFN-β-/- mice were immunized intra peritoneally with LPS 

or LTA, and peritoneal cells were isolated 2h thereafter. CD11b+ cells were sorted out 

and cultured for 48h ex vivo, without the addition of agonists. NO concentration was 
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then measured in the supernatants, and consistent with the in vitro data, it was 

dramatically reduced in the IFN-β-/- cells compared to WT. These results suggest that 

IFN-β plays an important role for the TLR2-induced iNOS activity also in vivo. 

 

Previous studies have reported that LPS might contaminate commercial bacterially 

derived TLR agonists, which then results in incorrect conclusions regarding TLR 

activation and signaling [226, 227]. To investigate whether our results concerning the 

TLR2-mediated IFN-β-dependent iNOS response might be due to such a 

contamination, we studied BM-DCs from TLR4-/- mice. A reduced but not an 

abolished iNOS response was observed in cells stimulated with Pam3Cys. 

Unexpectedly, iNOS was not expressed at all in LTA-stimulated cells. We do not have 

an explanation for this; however, it is consistent with previously published data [228]. 

We further used a highly purified LTA, specifically deprived of LPS, and studied 

iNOS expression in IFN-β-/- cells. Since we observed a dramatically decreased iNOS 

activity in these cells, we concluded that the IFN-β-dependent iNOS response 

observed upon TLR2 stimulation was not a result of LPS contamination. 

 

TLR4-induced IFN-β expression has been demonstrated to require receptor 

internalization [146]. Furthermore, a viral agonist was recently shown to induce IFN-β 

downstream of TLR2, and this was dependent on endosomal maturation [145]. To 

determine whether the IFN-β-dependent iNOS expression induced by the bacterial 

TLR2 ligands used in our experiments involves a similar pathway, we used 

chloroquine and cytochalasin D, inhibitors of endosomal maturation and receptor 

internalization respectively. BM-DCs were preincubated with these inhibitors and 

subsequently stimulated with different TLR agonists. TLR3- and TLR4-induced iNOS 

expression was abrogated when cultured with chloroquine, which was expected since 

both these receptors signal in a vesicular compartment. Cytochalasin D did also have 

an inhibitory effect on TLR3- and TLR4 signaling but the iNOS response was only 

moderately reduced with this inhibitor. The effect of chloroquine and cytochalasin D 

appeared to be different in cells stimulated by TLR2 agonists. Low concentrations of 

the inhibitors increased the iNOS response in these cells, while it was reduced at the 
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highest concentration. However, the overall reduction was only minor, suggesting that 

the iNOS activity induced by LTA and Pam3Cys does not require receptor 

internalization or endosomal maturation. Finally, TNF-α expression was hardly 

affected by the inhibitors, excluding the possibility that the reduced iNOS response in 

TLR3- and TLR4 activated cells would be due to toxicity. 

 

Several reports have demonstrated that TLR2 stimulation induces iNOS expression in 

various cell types [229-233]. However, TLR2 signaling was reported not to involve 

the expression of IFN-β [217, 218], which is crucial for TLR4- and TLR3-mediated 

iNOS expression. Recently, Barbalat et al. demonstrated that TLR2 activation induced 

IFN-β in the presence of viral ligands only [145], which is contradictory to our results. 

We believe that the discrepancies between our results and those previously published 

might be due to different kinetics. Toshchakov et al. detect IFN-β mRNA in cells 

stimulated for 1h, while the expression is absent in cells stimulated for 6h [218]. Their 

Southern blot actually does reveal a certain IFN-β expression in cells stimulated for 1h 

with Pam3Cys, although it is markedly reduced compared to that of LPS-stimulated 

cells. Han et al. did not observe any IFN-β mRNA expression in LTA-stimulated cells, 

but they only show expression at one time point [217]. Barbalat et al. also report the 

absence of IFN-β mRNA in cells stimulated by Pam3Cys; however, they analyzed the 

cells after 12h of stimulation. Furthermore, Han et al. did observe phosphorylation of 

Stat1 in cells stimulated with LTA for 2h, while Toshchakov et al. claim they did not 

observe phosphorylated Stat1 in Pam3Cys-stimulated cells.  

 

To clarify the contradictions between our data and those previously published, it 

would be of relevance to study IFN-β expression per se at several time points, in 

parallel with the iNOS response. 
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PAPER III  

Selective depletion of splenic CD4 dendritic cells in mice treated with 

immunomodulatory quinoline-3-carboxamide ABR-215757. 

 

Background 

Quinoline-3-carboxamides have been developed for treatment of human disease since 

the 1980´s. One such compound, ABR-215757 (5757), is currently in clinical 

development for treatment of the autoimmune rheumatic disorder systemic lupus 

erythematosus (SLE). We recently identified a molecular target of 5757, the S100A9 

protein, and we further showed that 5757 blocks the interaction of this protein with the 

receptors TLR4 and receptor for advanced glycation end products (RAGE) [168]. 

Dendritic cells (DCs) are important for T cell activation and could therefore be a 

possible target for 5757 and other quinoline-3-carboxamides. 5757 has shown efficacy 

in mouse models of the autoimmune diseases multiple sclerosis (MS) and arthritis 

(unpublished data), but whether 5757-treatment has an effect during steady state 

conditions is not known. 

 

Summary  

We have investigated the impact of in vivo 5757-treatment on cells in lymph nodes 

and spleen of steady state mice. We show that the cell number of a specific DC-subset, 

CD4+CD8α-, is selectively reduced in the spleen of 5757-treated mice. The reduction 

was reversible and was not caused by decreased cell division or increased apoptosis. 

Finally, the overall structure of the marginal zone (MZ), where CD4+CD8α- DCs 

normally reside, remained intact in mice treated with 5757, ruling out the hypothesis 

that these DCs would emigrate from the spleen because of a disrupted MZ. 

 

Results and discussion 

Mice were treated for 10 days with ABR-215757 (5757) dissolved in the drinking 

water and subsequently, spleen, mesenteric lymph nodes (MLNs), and peripheral 

lymph nodes (PLNs) were isolated, counted, and analyzed by flow cytometry. We did 
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not detect any significant changes in the number or frequency of CD4+ T cells, CD8+ T 

cells or B cells. In contrast, a selective reduced frequency of CD4+CD8α- (CD4+) DCs 

was observed in the spleen but not in the lymph nodes of treated mice, whereas the 

frequency of two other DC populations, CD4-CD8α+ (CD8+) and CD4-CD8α- (double 

negative, (DN)), remained unchanged.  

 

We next decided to study the kinetics of the 5757-effects on CD4+ spleen DCs, and 

observed a continuous decrease in cell number of these cells during the 9 days of 

treatment. The number of DN- and CD8α+ DCs remained constant, confirming that the 

loss of CD4+ DCs was not due to downregulation of CD4. We further aimed to 

determine whether the reduction of splenic CD4+ DCs was reversible. Mice were 

sacrificed at different time points after the 10-day treatment with 5757. Already three 

days after terminated treatment, an increased number of CD4+ DCs was detected in 

treated mice and normal CD4+ DC levels were reached about nine days thereafter. 

These data are consistent with the previously determined half-life (about three days) 

for splenic CD4+ DCs [234], and suggest that 5757-treatment might influence the 

replacement of CD4+ DCs in the spleen. 

 

Selective cell death could be one possible explanation for the reduced number of 

splenic CD4+ DCs in 5757-treated mice. However, we did not observe a different 

frequency of apoptotic cells in treated- compared to control mice, which indicates that 

the reduction of CD4+ DCs is not caused by direct toxicity of 5757. 

 

CD4+-, DN-, and CD8α+ splenic DCs are all generated from common precursors [176, 

177]. Therefore, if 5757 would affect these cells, a general reduction of all three DC 

populations would be expected. It is well established that precursors of splenic DCs 

divide in the spleen [234, 235]. To investigate whether 5757 had an impact on the 

proliferation of CD4+ DCs, mice were treated with 5757 for 5 days and during the last 

12h of treatment, the thymidine analogue bromodeoxyuridine (BrdU) was injected. 

The frequency of BrdU+ (dividing) cells was not decreased, but rather slightly 

increased in the CD4+ DC population. These data excluded the hypothesis that the 
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reduction of CD4+ DCs would be caused by a decreased proliferation of these cells. 

Proliferation of DN- and CD8+ DCs was not influenced by the 5757 treatment. 

 

A similar selective reduction of splenic CD4+ DCs as in 5757-treated mice has 

previously been reported in CD47-/- mice [236, 237], raising the question whether 5757 

somehow interferes with this receptor. In CD47-/- mice, migration of DCs from 

inflamed skin to local draining lymph nodes was shown to be reduced. To determine 

whether 5757-treatment had similar effects, DC migration experiments were 

performed. Inflammation was induced by painting abdominal skin or ear epidermis 

with fluorescein isothiocyanate (FITC) dissolved in irritant. After 24h, FITC-labeled 

DCs were counted in the draining inguinal- or auricular lymph nodes. There was no 

difference in frequency of FITC-labeled CD11c+ DCs in lymph nodes from control- or 

5757-treated mice. Thus, 5757-treatment does not seem to have the same functional 

consequences as the loss of CD47, indicating that the reduction of CD4+ DCs in 5757-

treated mice might be caused by a different mechanism than that in CD47-/- mice. 

 

CD4+ DCs are mainly localized in the marginal zone (MZ) of the spleen [238, 239] 

and we hypothesized that a change of this structure might have caused the loss of these 

DCs in 5757-treated mice. To address this question, we stained spleen tissue sections 

with antibodies and studied them in a fluorescence microscope. As expected, a 

reduction in MZ DCs was observed in spleen from 5757-treated mice compared to 

controls. However, no change in the overall structure of the MZ was observed, as 

staining of marginal metallophilic macrophages (MMMs) was similar in spleen from 

control- and 5757-treated mice. In addition, we injected the fluorescently labeled 

polysaccharide FITC-dextran, previously demonstrated to rapidly be taken up by 

marginal zone macrophages (MZMs) [240], and observed a similar distribution pattern 

of these cells in spleen from control- and from mice treated with 5757. Taken together, 

these data indicated that the loss of CD4+ splenic DCs in 5757-treated mice was not 

due to a disrupted MZ structure. 
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To conclude, 5757-treatment of steady-state mice causes a selective reduction of 

splenic CD4+ DCs. It is not known whether these cells are the primary target of 5757, 

or whether the effects observed are rather a secondary phenomenon. Finally, DCs do 

not express S100A9, the only molecular target of 5757 known so far. 
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POPULÄRVETENSKAPLIG SAMMANFATTNING  

Immunförsvaret består av flera olika sorters celler vars uppgift är att skydda oss från 

sjukdomsframkallande mikroorganismer, såsom bakterier och virus. Immuncellerna 

har proteiner på sin yta som känner igen olika delar av dessa främmande inkräktare 

och därmed bidrar till att de kan bekämpas. Förutom förmågan att kunna utveckla 

immunitet har immunförsvaret en annan viktig uppgift, nämligen att skapa tolerans. 

Dels mot goda bakterier, men även mot främmande födoämnen och inte minst mot den 

egna kroppen. Om detta misslyckas kan allergi eller autoimmuna sjukdomar uppstå, 

där immunförsvaret alltså felaktigt reagerar mot ofarliga ämnen eller kroppsegna 

strukturer. Exempel på autoimmuna sjukdomar är ledgångsreumatism, MS, typ 1 

diabetes och psoriasis. 

 

Artikel I 

I det första projektet har vi studerat fenomenet tolerans, närmare bestämt T-cells 

tolerans, vilket utförs av en viss sorts immunceller, så kallade T-celler. Vi använde oss 

av en toleransmodell där T-celler i möss upprepade gånger utsattes för ett främmande 

ämne. Detta förlopp skulle kunna liknas vid en kronisk inflammation. Som förväntat 

enligt teorin utvecklade mössen tolerans mot ämnet i fråga och vi kunde därmed 

studera de bakomliggande mekanismerna. Man vet nämligen att flera olika sorters 

celler och molekyler är involverade i T-cells tolerans men många frågor kvarstår. 

Regulatoriska T-celler har visat sig vara en av de viktigaste faktorerna för att 

upprätthålla tolerans och vi ville därför ta reda på vilken roll dessa celler spelade i vår 

modell. Regulatoriska T-celler, vilket hörs på namnet, reglerar immunsvar som utförs 

av andra vanliga T-celler.  

Vi kunde ”mäta” tolerans genom att titta på hur mycket T-cellerna i mössen 

delade sig; toleranta celler är vilande och delar sig inte, medan aktiva celler som är 

redo för försvar delar sig för att bli många. Tolerans i mössen visade sig vara ett 

övergående fenomen, det vill säga den avtog med tiden. Vi upptäckte en ökad andel 

regulatoriska T-celler i möss som utvecklat tolerans, jämfört med obehandlade 

kontrollmöss som inte hade några toleranta T-celler. Detta antydde att de regulatoriska 
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T-cellerna var inblandade i toleransmekanismen. Men, vidare resultat var lite 

motsägelsefulla; vid en tidpunkt då toleransen nästan avtagit helt kvarstod fortfarande 

den ökade andelen regulatoriska T-celler i mössen. Man skulle därmed kunna tro att 

dessa celler inte var ansvariga för toleransen, eftersom den då borde bibehållits. För att 

utreda om regulatoriska T-celler spelade någon roll för T-cells tolerans i vår modell 

sorterade vi ut dessa celler från möss och kunde därmed mäta tolerans i frånvaro av 

regulatoriska T-celler. Vi observerade liknande tolerans i möss som blivit av med sina 

regulatoriska T -celler och de som hade dem kvar, vilket fick oss att dra slutsatsen att 

regulatoriska T-celler inte var involverade i T-cells tolerans i vår modell. Däremot 

visade det sig att de regulatoriska T-cellerna delvis var inblandade i den tolerans T-

cellerna utvecklade när de plockades ut från mössen och odlades i cellkultur. 

Slutsatsen är alltså att regulatoriska T-celler inte är ansvariga för den T-cells 

tolerans som uppstod in vivo (i den levande kroppen) medan de är inblandade i den 

tolerans som observerades in vitro (i glaset). 

 

Artikel II 

Vår andra studie handlar om motsatsen till tolerans, nämligen immunitet. 

Immunförsvarets celler har speciella proteiner på sin yta, receptorer. Det finns flera 

olika sorters receptorer med olika funktion och vi har fokuserat på en viss sort som 

kallas Toll-lika receptorer (TLRs). TLRs har till uppgift att känna igen och binda till 

specifika strukturer som finns hos främmande mikroorganismer. När detta sker skickar 

receptorn en signal in i cellen, som talar om för den att ett immunsvar behövs. Cellen 

blir då aktiv och börjar uttrycka många olika gener som kodar för flertalet proteiner 

som behövs för att bekämpa den invaderande mikroorganismen. 

Det finns flera olika TLRs och de känner alla igen olika strukturer. Vissa 

binder till exempel virus medan andra endast binder bakteriella delar. Även 

signaleringen hos de olika receptorerna varierar, vilket gör att olika gener aktiveras 

och därmed också olika proteiner bildas. TLR-signalering är ett välstuderat ämne men 

det är mycket komplext. Oklarheter kvarstår bland annat angående en TLR, den så 

kallade TLR2, vilken vi har studerat närmare. 
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Tidigare resultat från andra forskargrupper har visat att signalering via TLR2 leder till 

bildandet av ett visst protein, iNOS. Andra TLRs, såsom TLR3 och TLR4, är också 

kända för att signalera och få cellen att producera iNOS när de stimuleras av sina 

respektive mikrobiella strukturer. Man vet också att TLR3 och TLR4 endast kan 

instruera cellen att producera iNOS i närvaro av ett annat protein, IFN-β, som alltså 

först måste bildas i cellen. Man säger att iNOS produktionen är IFN-β-beroende. 

TLR2 har däremot i tidigare studier visats inkapabel att instruera cellen att producera 

IFN-β, vilket innebär att produktionen av iNOS i dessa celler, till skillnad från dem 

som aktiverats via TLR3 eller TLR4, skulle vara oberoende av IFN-β. Nyligen 

publicerades en motsägelsefull studie där man visade att TLR2-stimulering kunde leda 

till produktion av IFN-β. Om det inträffade eller inte berodde dock på vilken 

mikrobiell struktur som användes för att stimulera receptorn; en bakterieliknande 

struktur ledde inte till IFN-β-produktion medan en viral struktur gjorde det. Vi har 

använt immunceller framtagna från benmärg i möss, för att studera förhållandet mellan 

IFN-β och iNOS i dessa när de aktiverats via TLR2 med olika bakteriella strukturer.  

Vi använde oss av möss vars celler är inkapabla att bilda IFN-β 

överhuvudtaget, eftersom genen som kodar för detta protein förstörts (en så kallad 

knockout mus (KO)). Cellerna odlades i cellkultur (in vitro) och stimulerades via 

TLR2, varpå bildandet av iNOS studerades. Endast mycket lite iNOS visade sig 

produceras i celler från IFN-β KO möss jämfört med celler från normala möss, vilket 

tydde på att iNOS-produktion i celler stimulerade via TLR2 är beroende av IFN-β. Om 

vi tillsatte rent IFN-β till våra KO celler ökade produktionen av iNOS markant. Vi 

fortsatte sedan att undersöka signaleringsvägen från TLR2-stimulering till iNOS-

produktion genom att använda KO möss för andra proteiner, men vi kunde inte direkt 

dra några tydliga slutsatser från dessa försök. Slutligen stimulerade vi TLR2 på celler 

direkt i mössen (in vivo), och fick liknande resultat som i in vitro experimenten, det 

vill säga att produktionen av iNOS var beroende av IFN-β. 

I denna studie har vi alltså visat att stimulering av TLR2 leder till produktion 

av iNOS och att detta är beroende av IFN-β. 
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Artikel III 

I det tredje projektet har vi studerat ett potentiellt blivande läkemedel vid namn 5757. 

Denna molekyl ingår just nu i kliniska prövningar på patienter med den autoimmuna 

sjukdomen systemic lupus erythematosus (SLE), där den har visat sig dämpa 

sjukdomsförloppet. Dock känner man ännu inte till hur 5757 verkar och vår uppgift 

var att studera dess effekter på immunceller i friska möss för att få ökad kunskap om 

denna molekyl. 

Vi började med att undersöka om antalet av olika sorters immunceller i de 

lymfoida organen mjälte och lymfkörtlar förändrades i möss som behandlades med 

5757. Sammansättningen T och B celler påverkades inte av drogen i något av de organ 

vi studerade. Däremot upptäckte vi att antalet av en annan sorts immunceller, så 

kallade dendritiska celler (DCs), minskade. Detta skedde endast i mjälten och det var 

bara en viss typ av DCs som påverkades. Vi såg att antalet av dessa celler minskade 

mer ju längre tid mössen behandlats med 5757 och att antalet återställdes ca 10 dagar 

efter att behandlingen avslutats.  

En möjlig förklaring till att DCs minskade i antal skulle kunna vara att 5757 

fick dem att genomgå programmerad celldöd, eller att drogen helt enkelt hindrade 

cellerna från att dela sig. Vi undersökte detta men såg ingen effekt av 5757, varken på 

celldöd eller på celldelning. Antalet minskade DCs skulle också kunna bero på att 

5757 påverkar den specifika struktur i mjälten där just dessa DCs finns. Vi studerade 

därför mjältens struktur i mikroskop men såg inga märkbara förändringar i mjälte från 

5757-behandlade möss jämfört med obehandlade.  

Slutsatsen av denna studie är alltså att 5757 leder till ett minskat antal av en 

viss sorts DCs i mjälte i friska möss. Om drogen har en direkt effekt på dessa celler 

eller om det är en sekundär effekt vet vi ännu inte. Fler experiment måste göras för att 

ta reda på hur 5757 verkar. 
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