En jämförelsemetod för kommunala risker
- Ett underlag till SÄRFs handlingsprogram -

Dan Jernberg

Department of Fire Safety Engineering and Systems Safety
Lund University, Sweden

Brandteknik och Riskhantering
Lunds tekniska högskola
Lunds universitet

Report 5255, Lund 2008
En jämförelsemetod för kommunala risker
- Ett underlag till SÄRFs handlingsprogram -

Dan Jernberg

Lund 2008
Title:
A comparison method for municipals risks
- a support for SÄRF’s action program

Författare/Author: Dan Jernberg

Rapport/Report 5255
ISSN: 1402-3504
ISRN: LUTVDG/TVBB--5255--SE

Antal sidor/Number of pages: 47

Sökord
Handlingsprogram, indikatorer, kommunala riskanalys, lag om skydd mot olyckor.

Keywords
Action program, indicators, municipals risk analysis, the law of protection against accidents.

Abstract
This essay describes a comparison method that SÄRF can use to work in a simpler way to describe how the protection against accidents is within its area of activity. The method assume from the IDA-tool which is a tool The Swedish Rescue Services Agency has developed so the Swedish municipalities should be able to compare their own protection against accidents.

© Copyright: Brandteknik och Riskhantering, Lunds tekniska högskola, Lunds universitet, Lund 2008.
Förord

Arbetet har varit mycket lärorikt och intressant. Speciellt har det varit intressant att vara delaktig i Räddningsverkets arbete med att utvärdera IDA. Vidare har möjligheten att sätta sig in i kommuners säkerhetsarbete varit otroligt spännande och har gett många intressanta stunder under skrivandets gång.

Göteborg den 26 april 2008

Dan Jernberg
Sammanfattning

År 2004 ersattes Räddningstjänstlagen med LSO - Lagen om skydd mot olyckor (2003:778). I kap 3 § 8 säger lagen:

En kommun skall ha ett handlingsprogram för räddningstjänst. I programmet skall anges målet för kommunernas verksamhet samt de risker för olyckor som finns i kommunen och som kan leda till räddningsinsatser

SÄRF – Södra Älvsborgs Räddningstjänstförbund är ett förbund med fem medlemskommuner, Borås, Ulricehamn, Svenljunga, Bollebygd och Tranemo. Dessa fem kommuner har ingått ett avtal om att driva en gemensam räddningstjänst och därför har SÄRF tagit över ansvaret att ta fram det handlingsprogram för räddningstjänsten som LSO syftar till i kap 3 § 8.

Rapporten beskriver en jämförelsemetod som SÄRF kan använda för att på ett enklare sätt beskriva hur skyddet mot olyckor ser ut inom sitt verksamhetsområde. Metoden utgår ifrån IDA-verktyget som är ett verktyg Räddningsverket har tagit fram för att Sveriges kommuner ska kunna jämföra sitt skydd mot olyckor. IDA står för Indikator, Data och Analys och det är främst indikatordelen i IDA-verktyget som används för att beskryva skyddet mot olyckor. Rent praktiskt används IDA genom att varden på indikatorer hämtas från dess webbplats som sedan kan användas i vidare utvärdering och uppföljning av kommunernas skydd mot olyckor.

SÄRF har utifrån en lista på indikatorer från Räddningsverket tagit fram tio stycken indikatorer som de vill kunna jämföra på kommunnivå. Två stycken av dessa tio finns idag representerade i IDA på kommunnivå och de är antal olyckor och antal svårt skadade. Övriga indikatorer som SÄRF vill kunna jämföra är antal räddningsinsatser, antal omkomna, antal förlorade levnadsår, totalkostnad för olyckor, riskhänsyn i fysisk planering, miljöskador, naturolyckor och trafiknykterhet, vilka har fått ett visst utrymme för diskussion och det har getts förslag på hur dessa kan behandlas.

Syftet med Lagen om skydd mot olyckor går att läsa i lagens första paragraf:

Bestämmelserna i denna lag syftar till att i hela landet bereda människors liv och hälsa samt egendom och miljö ett med hänsyn till de lokala förhållanden tillfredsställande och likvärdigt skydd mot olyckor.

Skyddet mot olyckor ska vara likvärdigt och tillfredsställande vilket är entydigt vad som menas. Paragrafen säger också att det ska tas hänsyn till lokala förhållanden som kan finnas. Ett sådant lokalt förhållande kan till exempel vara att trafikintensiteten är större i en kommun och kan därför tillåtas ha fler olyckor men ändå ha ett likvärdigt skydd som andra kommuner som har lägre trafikintensitet och färre trafikolyckor. Lokala förhållanden är den delen av LSO som är svårast att tillämpa men också den del som är viktigast att ta hänsyn till. Detta är något som ska utvecklas mer i IDA.

Resultaten från indikatorerna kan användas för att göra riskanalyser. Ett exempel är fallet trafikolyckor. Det visade sig att Svenljunga hade ett högre antal olyckor per invånare än övriga kommuner. I detta fall går det att använda en WhatIf-analys för att ställa frågor som
”vad händer om vi sänker hastigheterna på vägarna?” eller ”vad händer om vi sätter upp fartkameror?”. Detta tillvägagångssätt är ett exempel på en enkel metod som SÄRF kan använda för att planera förebyggande åtgärder. Andra exempel finns och ytterligare andra exempel kan med fördel arbetas fram för att utveckla arbetet med skydd mot olyckor.

En slutsats som har gjorts av rapporten är att jämförelsemetoden som beskrivits kan bli ett framgångsrikt sätt att arbeta på. Dock är inte IDA tillräckligt utvecklat ännu mest med tanke på de få antal jämförbara indikatorer men också med tanke på svårigheten att ta hänsyn till lokala förhållanden. Med hänsyn till detta behöver SÄRF i dagsläget använda sig av fler metoder för att utvärdera sitt skydd mot olyckor.
Summary

The year of 2004 the legislation of Swedish rescue service was replaced by the legislation of protection against accidents – LSO (2003:778). Following can be read in chapter 3 § 8 of the legislation:

An municipality shall have an action program for the rescue service. In the program shall the goals for the activity in the municipality and the risks for accidents that are in the municipality and that can lead to a rescue be mentioned.

SÄRF – (Southern Elvsborgs Rescue Service Compact) is a compact with five member municipalities, Borås, Ulricehamn, Svenljunga, Bollebygd and Tranemo. These five municipalities have entered into an agreement to pursue a common rescue service and therefore SÄRF has taken over the responsibilities to achieve the action program for the rescue service that LSO refer to in chapter 3 § 8.

Formerly SÄRF used the municipalities risk and vulnerability analysis to describe the risks that are within SÄRF and that could lead to a rescue. However it has come up problems working that way. The main reason is that the methodology in the municipalities risk analysis does not follow each other and therefore it has been hard to compare them.

This essay describes a comparison method that SÄRF can use to work in a simpler way to describe how the protection against accidents is within its area of activity. The method assume from the IDA-tool which is a tool The Swedish Rescue Services Agency has developed so the Swedish municipalities should be able to compare their own protection against accidents. IDA stands for Indicator, Data and Analysis and it is especially the indicator part in the IDA-tool that is used to describe the protection against accidents. Practically you use the tool by taking the value of the indicators from its web site, which than can be used in further evaluation and follow-up of the municipalities’ protection against accidents.

SÄRF has from a list of indicators that The Swedish Rescue Services Agency has come up with, picked ten indicators that they would like to compare on a municipality level. Two of these ten indicators are today represented in IDA on a municipality level which are; the number of accidents and the numbers of serious injured. The other indicators that SÄRF would like to compare are; the numbers of rescues, numbers of died, numbers of lost year of life, total cost of accidents, consideration of risks in the physical planning, environmental damages, nature damages and traffic sobriety. These indicators have been given some space for discussion and it has been given recommendations how these can be treated.

The purpose of the LSO can be read in the first paragraph of the legislation:

The provisions in this law aim to in the whole country give the people lives and health and also property and environment one with consideration to the local circumstances satisfactory and equivalent protection against accidents.

The protection against accidents should be equivalent and satisfactory, which is clear what it mean. The paragraph also says to have consideration to the local circumstances that can exist. One local circumstance can for example be that the intense of traffic is bigger in one municipality and therefore can more accidents be allowed but still have the same protection as other municipality that have less intense of traffic and less accidents. Local circumstances is that part of LSO that is the hardest to apply but is also that part that is the most important to consider. This is a part that will be developed more in IDA.
The result from the indicators can be used to do risk analysis. One example is the case of traffic accidents. It was shown that Svenljunga had a higher number of accidents per capita than the other municipalities. In this case a WhatIf-analysis can be used to ask questions like “what happens if we lower the speed limit on the roads?” or “what happens if we install speed cameras?” This way of working is one example of a simple method that SÄRF can use to plan preventing measures. Other examples are to be found and further example can with advantage be developed to widen the work with protection against accidents.

A conclusion that has been taken from the essay is that the method of comparison that has been described can be a successful way of working. Yet IDA is not developed enough, especially the few numbers of comparable indicators but also the difficulty to take consideration to local circumstances. With consideration to this, SÄRF so far needs to use more methods to evaluate its protection against accidents.
Innehållsförteckning

1 Inledning ... 1
 1.1 Bakgrund ... 1
 1.2 Mål och Syfte .. 1
 1.3 Avgränsning .. 2
 1.4 Målgrupp ... 3

2 Lagstiftning och handlingsprogram .. 5
 2.1 LSO - Lagen om skydd mot olyckor ... 5
 2.2 Handlingsprogram ... 7

3 Metod .. 9
 3.1 Risk vs. Indikatorer ... 9
 3.2 Vilka indikatorer .. 9
 3.3 Information till indikatorerna .. 10

4 Teori .. 11
 4.1 Begrepp .. 11
 4.2 Riskhanteringsprocessen ... 12
 4.2.1 Riskanalys ... 13
 4.2.2 Riskvärdering .. 16
 4.2.3 Riskreduktion .. 19

5 Jämförelsemetod ... 21
 5.1 Indikator 1 - Antal olyckor ... 22
 5.2 Indikator 2 - Antal svårt skadade ... 24

6 Resultat ... 27
 6.1 Indikator 1 – Antal olyckor ... 28
 6.2 Indikator 2 – Antal svårt skadade ... 29
 6.3 Värdering av resultat .. 30
 6.3.1 Exempel 1 – Nuläge .. 30
 6.3.2 Exempel 2 – Trend .. 31
 6.4 Riskanalyser .. 32
 6.4.1 Exempel 1 – Antal trafikolyckor ... 32
 6.4.2 Exempel 2 – Utsläpp av farligt ämne ... 32
 6.4.3 Exempel 3 – Antal svårt skadade vid bränder ... 32

7 Diskussion ... 35
 7.1 Val av metod .. 35
 7.2 Övriga indikatorer .. 35
 7.2.1 Antal räddningsinsatser .. 35
 7.2.2 Antal omkomna och antal förlorade levnadsår ... 35
 7.2.3 Trafiknykterhet ... 36
 7.2.4 Riskhantering i samhällsplanering ... 37
 7.2.5 Totalkostnad för olyckor .. 41
 7.3 Riskvärdering ... 42
 7.4 GIS-användning ... 42

8 Slutsatser .. 43
 8.1 Att använda indikatorer som en metod för jämförelse ... 43
 8.2 Värdering av risker .. 43
 8.3 Framtiden .. 43
 8.4 Avslutningsvis ... 43
9 Källförteckning ... 45

9.1 Böcker .. 45
9.2 Elektroniska källor ... 46
9.3 Muntliga källor .. 46
1 Inledning

1.1 Bakgrund

År 2004 ersattes Räddningstjänstlagen med LSO - Lagen om skydd mot olyckor (2003:778). I kap 3 § 8 säger lagen:

En kommun skall ha ett handlingsprogram för räddningstjänst. I programmet skall anges målet för kommunens verksamhet samt de risker för olyckor som finns i kommunen och som kan leda till räddningsinsatser

1.2 Mål och Syfte

SÄRF använder bland annat kommunernas risk- och sårbarhetsanalyser som underlag för deras handlingsprogram. SÄRF ser dock svårigheter med att få fram en samlad riskbild utifrån dessa analyser. Därför behöver de hjälp med att ta fram en metod som underlättar deras arbete.

Syftet med examensarbetet är att ta fram en jämförelsemetod som dels SÄRF kan använda sig av för att utvärdera sitt skydd mot olyckor och strukturera upp sitt arbete med handlingsprogrammet samt att det ska ge kommunerna vägledning så att deras analyser följer samma metodik.

Målet är att denna jämförelsemetod ska fungera som underlag till SÄRFs handlingsprogram. Detta genom att den underlättar för att skapa en klarare bild över de risker som finns i medlemskommunerna.
1.3 Avgränsning

SÄRF – Södra Älvsborgs Räddningstjänstförbund har fem stycken medlemskommuner: Borås Stad, Ulricehamn, Svenljunga, Bollebygd och Tranemo kommun. Förbundet bildades den 1 mars 1995. SÄRF har som uppdrag att sköta räddningstjänsten i dessa fem kommuner och är reglerad genom avtal mellan kommunerna och uppgifterna är redovisade i en förbundsordning. Totalt finns 19 stationer med totalt ca 400 anställda som är placerade på olika platser i kommunerna (se figur 1.1).

Figur 1.1. SÄRFs 19 stationer utplacerade inom de fem medlemskommunerna¹.

SÄRF har en vision som lyder:

Vår vision är att uppfattas som Nordens effektivaste räddningstjänst.

Med effektivaste räddningstjänst menar dem att det dels inom deras område ska inträffa minst bränder och trafikolyckor och dels att de är en attraktiv arbetsgivare med motiverade medarbetare som har den bästa utrustningen och tillämpar de mest moderna metoderna.²

Denna rapport kommer i huvudsak att beskriva en metod som passar för SÄRF. Metodiken bakom kan dock ses som mer generell och kan därför till stor del användas av andra myndigheter och kommuner som arbetar med handlingsprogram för räddningstjänst.

I kommunerna görs handlingsplaner utifrån både lagen om skydd mot olyckor och lagen om extraordinära händelser i fredstid hos kommuner och landsting. Dock är det endast utifrån

¹ http://www.serf.se, (hämtad 2007-12-04)
² ibid.
lagen om skydd mot olyckor (LSO) som denna rapport utgår ifrån och utelämnar därför alla andra eventuella lagstiftningar som SÄRF också ska utgå ifrån i sitt handlingsprogram.

1.4 **Målgrupp**

Målgrupp för rapporten är i första hand SÄRF och säkerhetssamordnare i SÄRFs medlemskommuner. I andra hand är det myndigheter och kommuner som också arbetar med handlingsprogram för räddningstjänst, där en generalisering av denna metod kan användas.
2 Lagstiftning och handlingsprogram

2.1 LSO - Lagen om skydd mot olyckor

Den 1 januari 2004 kom Lagen om skydd mot olyckor (2003:778) att ersätta den tidigare Räddningstjänstlagen. Lagen innehåller olika krav som ställs på dels kommunen och dels på individen. Lagen börjar med följande paragraf:

Bestämmelserna i denna lag syftar till att i hela landet bereda människors liv och hälsa samt egendom och miljö ett med hänsyn till de lokala förhållanden tillfredsställande och likvärdigt skydd mot olyckor.

Vad lagen vill syfta till är att färre ska dö eller skadas samt att förstörelse av egendom och miljö minskar. Dessutom ska det finnas ett tillfredsställande och likvärdigt skydd i hela landet med hänsyn till lokala förhållanden som på olika sätt kan förhinder detta. Att skyddet ska vara likvärdigt betyder att alla människor i landet ska ha samma skydd mot olyckor. Dessutom räcker det inte med att det är likvärdigt, det ska också vara tillfredsställande.

Förutsättningarna att hålla ett tillfredsställande och likvärdigt skydd kan vara olika på olika platser i Sverige på grund av lokala förhållanden, vilket lagen har tagit hänsyn till. Ett lokalt förhållande kan till exempel vara användandet av brandsläckare och brandvarnare i hemmen. I en kommun där det är vanligt förekommande är det också troligt att det händer färre bränder än i en kommun där det är mindre förekommande. Ett annat lokalt förhållande är åldersfördelning i en kommun. Äldre skadar sig oftare i fallolyckor än yngre och därför är det troligt att det i kommuner med stor del äldre människor har fler fallolyckor per invånare än i en kommun med stor del yngre människor. Detta är två exempel på lokala förhållanden som kan påverka hur skyddet mot olyckor är i en kommun och längre fram i rapporten diskuteras detta vidare.

Det tredje kapitlet i lagtexten berör kommunens skyldigheter och är uppdelad i tre skeden:

- **Förebyggande verksamhet**
- **Räddningstjänst**
- **Efterföljande åtgärder**

Denna rapport utgår endast från de två första, förebyggande verksamhet och räddningstjänst.

Förebyggande verksamhet

Lagen om skydd mot olyckor säger i 3 kap 3 § följande:

En kommun skall ha ett handlingsprogram för förebyggande verksamhet. I programmet skall anges målet för kommunens verksamhet samt de risker för olyckor som finns i kommunen och som kan leda till räddningsinsatser. I programmet skall också anges hur kommunens förebyggande verksamhet är ordnad och hur den planeras.

Handlingsprogrammet skall antas av kommunfullmäktige för varje ny mandatperiod. Innan programmet antas skall samråd ha skett med de myndigheter som kan ha ett väsentligt intresse i saken. Kommunfullmäktige kan uppdra åt kommunal nämnd att under perioden anta närmare riktlinjer. I ett kommunalförbund skall handlingsprogrammet antas av den beslutande församlingen.

Den förebyggande delen framhäver kommunens ansvar att göra förebyggande åtgärder och att ett handlingsprogram upprättas för detta. I detta handlingsprogram skall kommunens mål för
räddningstjänsten presenteras, risker tydliggöras och hur den förebyggande verksamheten är ordnad och planerad. Kommunen kan i detta sammanhang bytas ut mot kommunalförbund.

Räddningstjänst

Lagen om skydd mot olyckor säger i **3 kap 8 §** följande:

En kommun skall ha ett handlingsprogram för räddningstjänst. I programmet skall anges målet för kommunens verksamhet samt de risker för olyckor som finns i kommunen och som kan leda till räddningsinsatser. I programmet skall också anges vilken förmåga kommunen har och avser att skaffa sig för att göra sådana insatser. Som en del av förmågan skall anges vilka resurser kommunen har och avser att skaffa sig. Förmågan skall redovisas såväl med avseende på förhållandena i fred som under höjd beredskap.

Handlingsprogrammet skall antas av kommunfullmäktige för varje ny mandatperiod. Innan programmet antas skall samråd ha skett med de myndigheter som kan ha ett väsentligt intresse i saken. Kommunfullmäktige kan uppdra åt kommunal nämnd att under perioden anta närmare riktlinjer. I ett kommunalförbund skall handlingsprogrammet antas av den beslutande församlingen.

Den andra delen berör räddningstjänsten som kommunen ansvarar för och dessutom ska upprätta ett handlingsprogram för. Handlingsprogrammet antas vid varje ny mandatperiod av kommunfullmäktige eller i ett kommunalförbund av den beslutande församlingen.
2.2 Handlingsprogram

Enligt lagen om skydd mot olyckor ska varje kommun ha ett handlingsprogram. Ett handlingsprogram kan förklaras som ett styrdokument för det systematiska säkerhetsarbetet i en kommun. Detta görs idag i form av en handlingsplan i varje kommun inom SÄRF. Räddningsverket har i boken Systematiskt säkerhetsarbete – att arbeta med kommunala handlingsprogram⁴ arbetat fram en processmodell över hur en kommun kan jobba med systematiskt säkerhetsarbete där handlingsprogrammet är en del av denna process vilket också åskådliggörs grafiskt i figur 2.1.

Figur 2.1. Processmodell för systematiskt säkerhetsarbete i en kommun eller i ett räddningstjänstförbund som SÄRF⁵.

Vidare i kapitlet förklaras översiktligt denna processmodell, dock har kommun bytts ut till SÄRF då de har tagit över ansvaret för räddningstjänsten genom ett avtal med kommunerna⁶. Vidare i rapporten är det i första hand nuläge och analys som det fokuseras på.

Nuläge

Att skapa sig en bra bild av hur SÄRF ser ut med dess invånare, vilka risker som finns och hur säkerheten ser ut är viktigt för att lägga grunden för ett bra arbete med skydd mot olyckor. En genomgång hur förvaltningar och organisationer jobbar med säkerhet kan ge en bra vägledning var resurser ska läggas för vidare arbete. Dessutom behövs en omvärldsanalys göras för att skapa sig en uppfattning om hur framtidsprognoser ser ut för SÄRF och vilka

³ Räddningsverket (2007)
⁴ Räddningsverket (2006a)
⁵ ibid.
⁶ http://www.serf.se, (hämtad 2007-12-04)
trender som kan tänkas urskiljas. Det kan vara trendern när det gäller befolkningstillväxt, olycksutveckling och ekonomi.

Analys
Utifrån den bilden man får från beskrivningen av nuläget görs sedan riskanalyser. Dessa samlas för att ge en samlad bild över SÄRFs riskbild. Det finns flera olika metoder som kan användas och flera olika statistikkällor för att få indata.

Prioriteringar
Utifrån den riskbild som skapats vid riskanalysen ska man värdera riskerna. Dessa värderingar bör utgå ifrån politiska ställningstaganden som har baserats på medborgarnas behov och SÄRFs resurser. Prioritering behöver göras utifrån vilka resurser som olika aktörer innehar och därmed måste hänsyn tas till vilka skyddsåtgärder som ska göras och när i tiden de ska utföras.

Mål

Dokumentet handlingsprogram
Enligt LSO ska varje kommun, i detta fall SÄRF, ha ett handlingsprogram dels för den förebyggande verksamheten och dels för räddningstjänsterksamheten. Dessa kan sättas samman till ett gemensamt dokument. Handlingsprogrammet ska godkännas av den beslutande församlingen för varje ny mandatperiod.

Handlingsprogrammet ska innehålla SÄRFs mål för sin verksamhet. En riskbild över de risker som finns inom det geografiska ansvarsområdet vilka kan leda till räddningsinsats. Dessutom ska en beskrivning av hur den förebyggande verksamheten planeras och hur den är ordnad. Till sist ska SÄRF beskriva hur dess förmåga är att genomföra räddningsinsatser eller hur de har tänkt införska sig den förmågan.

Åtagande och genomförande
Säkerhetsarbetet inom SÄRF ska vara ständigt pågående vilket ska vara beskrivet i handlingsprogrammet.

Uppföljning och utvärdering
För att ha kontroll över vad som sker i verksamheten är det av stor vikt att uppföljning och utvärdering görs med jämna mellanrum. Vid uppföljning kan man se hur verksamheten utvecklas utifrån de utsatta målen. Vid utvärderingen analyseras och värderas de resultat som åstadkommits och en förklaring på varför arbetet har lätt fram till just dessa resultat.

Förbättring och nuläge
De resultat som har getts i uppföljning och utvärdering ligger till grund för förbättringar och verksamhetsutveckling. Förbättringar kommer sedan att ligga till grund för fortsatta arbetet med en ny nulägesanalys och så går varvet runt igen.
3 Metod

För att ta fram en rapport krävs att urvalet av metoder är genomtänkt. I detta kapitel beskrivs två alternativa metoder varav den ena ligger till grund för denna rapport.

3.1 Risk vs. Indikatorer

En annan metod som är tillämplig är att utgå ifrån mätbara indikatorer i de olika kommunerna. Dessa indikatorer kan sedan jämföras mellan de olika kommunerna eller landet i övrigt och utifrån det göra åtgärder. Att jämföra sig med landet i övrigt är i linje med vad lagen om skydd mot olyckor säger. Detta är en metod som redan finns till viss del i något som kallas IDA. IDA är ett internetbaserat verktyg som står för Indikator, Data och Analys. Detta verktyg har arbetats fram av Räddningsverket för att hjälpa kommunerna att planera, följa upp och utvärdera verksamheten inom området skydd mot olyckor. I IDA kan jämförelser göra med andra kommuner, länet och riket. Det är i dagsläget under konstruktion och det finns begränsat med indikatorer att jämföra. Valet av indikatorer kommer från ett tidigare projekt kallat SUUS-projektet, där ca 50 indikatorer har identifierats för att gå vidare till IDA. Dock kommer inte alla dessa 50 indikatorer att finnas med i en slutlig version av IDA bland annat på grund av svårigheten att ta fram statistik som är tillförlitlig. Tillgången till IDA är öppen för alla, dock finns vissa delar av IDA där inloggning behövs, som förövrigt är fri att få tillgång till av Räddningsverket.

Eftersom kommunernas nuvarande handlingsplaner innehåller risk- och sårbarhetsanalyser som inte följer samma metodik skapar det hinder att jämföra riskerna och få fram en riktig riskbild över SÄRFs verksamhetsområde utifrån dessa. Därför har den första metoden uteslutits och istället är det mätbara indikatorer som kommer att ligga till grund för jämförelser.

3.2 Vilka indikatorer

Vilka indikatorer som ska ligga till grund för planering, uppföljning och utvärdering av verksamheten inom området skydd mot olyckor inom SÄRF är svårt att komma fram till på ett enkelt sätt. Det är viktigt att arbetet med indikatorerna blir relativt effektivt och då behöver en begränsning göras i antalet indikatorer. Dessutom är det viktigt att det finns underlag för att ta fram mätbara värden till indikatorerna. SÄRF har utifrån SUUS-projektets lista över tänkbara indikatorer valt ut tio stycken de ansåg skulle vara representativt som underlag för deras handlingsprogram. Det ska tilläggas att

7 Svenljunga kommun (2004)
8 Borås (2005), Tranemo (2005), Ulricehamn (2005)
SÄRF kan tänka sig att byta ut indikatorer som i framtiden visar sig inte behövas. Följande indikatorer har de valt ut:

- Antal förlorade levnadsår
- Antal olyckor
- Antal omkomna
- Antal svårt skadade
- Miljöskador
- Totalkostnad för olyckor
- Riskhänsyn i fysisk planering
- Trafiknykterhet
- Antal räddningsinsatser
- Naturolyckor

LSO säger att skyddet mot olyckor ska vara likvärdigt i landet med hänsyn till lokala förhållanden. Därför är det viktigt att en indikator är mätbar. Det betyder att det måste finnas mätbara underlag för indikatorerna inte bara i en enskild kommun utan också i övriga kommuner i landet. I detta skede finns inte den möjligheten i IDA för alla dessa indikatorer och därför måste en begränsning göras. I dagsläget finns underlag för följande indikatorer i IDA utifrån SÄRFs lista över indikatorer:

- Antal olyckor
- Antal svårt skadade

Dessa indikatorer har i IDA delats in i ett antal olika typer av händelser. Dessa är brand i byggnad, brand ej i byggnad, drunkning/-tillbud, trafikolycka, fallolycka, utsläpp av farligt ämne samt övriga olyckssaker.

Att i en uppsats i den storleken som görs på en Civilingenjörsutbildning i Riskhantering arbeta fram underlag för övriga indikatorer som det i dagsläget inte finns underlag för i IDA är en omöjlighet. Därför kommer övriga indikatorer från SÄRFs lista endast diskuteras övergripande i diskussionskapitlet.

3.3 Information till indikatorerna

Att ta fram information om indikatorerna har i stor utsträckning gjorts utifrån litteratur som kommer från Räddningsverket och NCO (Nationellt centrum för lärande från olyckor). Valet att använda dessa källor i stor utsträckning är att de forskar mycket inom ämnet skydd mot olyckor och fungerar också som resurs för kommunerna i arbetet med skydd mot olyckor. Litteraturen har studerats mer eller mindre djupt beroende på dess relevans för rapporten.

Författaren har funnits med vid workshops för IDA-projektet i Stockholm vid flera tillfällen. Här har författaren fått inblick i hur IDA fungerar och värdefull kunskap har inhämtats vid dessa tillfällen. Dessutom har IDA-verktyget studerats på dess portal på Internet.
4 Teori

För att bättre förstå resonemang och diskussioner i rapporten kommer detta kapitel att förklara teori inom ämnet riskhantering. Först definieras ett antal begrepp som används i rapporten. Därefter förklaras riskhanteringsprocessens olika delar för att ge en överblick hur den kan fungera.

4.1 Begrepp

I detta delkapitel förklaras några begrepp. Anledningen är att i vissa fall kan begreppen vara svårdefinierade eller så definieras de olika beroende på vilket sammanhang det är.

Olycka
Särdqvist\(^9\) definierar olycka som:

> en plötsligt inträffad händelse som har medför eller kan befara medföra skador på människor, miljö eller egendom.

Risk
I en rapport från Räddningsverket\(^10\) som försöker kartlägga hur Räddningsverkets arbete med riskanalys och säkerhetsarbete går visar att risk och säkerhet är två begrepp som används flitigt men är svåra att förklara enligt många intervjuade personer. Den definition som används för risk i den rapporten och som används även i denna rapport är:

> Risk är en produkt av sannolikhet att ett scenario ska inträffa och konsekvensen om scenariot inträffar.

Sårbarhet
Krisberedskapsmyndigheten\(^11\) (2007) definierar sårbarheten som:

> hur mycket och hur allvarligt (delar av) samhället påverkas av en händelse. De konsekvenser som en aktör eller samhället - trots en viss förmåga - inte förmår förutse, hantera, motstå och återhämta sig från anger graden av sårbarhet.

Riskanalys
en en analys där risker identifieras och beskrivs.

Riskbild
den samlade bedömningen av risker över ett visst geografiskt område.

Riskhanteringsprocessen
en process som genomgås då en risk ska identifieras, värderas och åtgärdas.

Riskvärdering
bestämma huruvida en risk är acceptabel eller inte

\(^9\) Särdqvist S. (2005)
\(^10\) All R., Harrami O., et al. (2006)
\(^11\) http://www.krisberedskapsmyndigheten.se, (hämtat 2007-12-03)
4.2 Riskhanteringsprocessen

Riskhanteringsprocessen kan delas in i tre delar: Riskanalys, riskvärdering och riskreduktion (se figur 4.1).

![Riskhanteringsprocessen](image)

Figur 4.1. En modell över ingående delar i en riskhanteringsprocess

4.2.1 Riskanalys

Första steget i riskhanteringsprocessen är riskanalysen. I riskanalysen ska riskerna identifieras och i vissa fall beräknas. Detta kan vara ett omfattande jobb, beroende på vilken kontext arbetet utförs i. Till exempel kan en riskanalys för ett kärnkraftverk bli mycket mer omfattande än det skulle bli för en bensinstation.

Som hjälp vid utförandet av riskanalyser finns flera olika metoder att tillgå. Valet av metod beror på vilken grad av kvantifiering som önskas och en indelning görs ibland som figur 4.2.

![Figur 4.2. En modell över olika kvantifiering av riskanalysmetoder](image)

Figur 4.2. En modell över olika kvantifiering av riskanalysmetoder

Principen för *What-If analysen* är i stort sett som för grovanalysen. Fokus ligger dock mer på att identifiera starthändelser i system som avvikar från normalsituationen. Tillvägagångssättet är att frågor ställs som ”vad händer om…” och på så sätt kan risker identifieras i ett system. Till exempel ”vad händer om det blir översvämning i centrum”, ”vad händer om en allvarlig influensa drabbar kommunen”. Till detta kan följdfrågor ställas som ”hur ska de drabbade behandlas”. Målet med analysen är att identifiera små möjliga avvikelser och händelser som kan orsaka större allvarliga incidenter. Analysen utförs som en form av strukturerad brainstorming av erfarna personer inom området.

15 ibid.
Riskmatriser används för att presentera resultat från riskanalyser\(^{16}\) och kan se ut som i figur 4.3. Axlarna i riskmatrisen beskrivs antingen kvalitativt eller kvantitativt, i detta fall kvalitativt. De identifierade riskerna förs in i matrisen efter hur de har värderats. Ibland görs också en indelning i olika färger. Ligger risken i grönt fält är det en acceptabel risk och i ligger den i rött fält är den inte acceptabel och måste åtgärdas omgående. Ligger risken i gult fält ska den åtgärdas ifall det är samhällsekonomiskt försvarbart.

![Figur 4.3. Exempel på en riskmatris](image)

Semikvantitativa metoder är av namnet till viss del kvantitativa. Till skillnad från kvalitativa metoder används en viss kvantifiering av sannolikheten och konsekvenser. Det kan till exempel innebära att axlarna i en riskmatris rangordnas med intervall. Till exempel kan sannolikheten delas in med intervall för liten sannolikhet att det händer en gång på 100-1000 år och stor sannolikhet att det händer är en gång på 1-10 år. En annan semikvantitativ metod är konsekvensanalys som av namnet analyserar konsekvenser av möjliga händelser.

Anledningen att endast konsekvenserna analyseras kan vara att det i verksamheter är önskvärt att ha koll på vilka konsekvenser som kan hända oberoende på sannolikheten för att det ska inträffa.

Kvantitativa metoder är helt numeriska, vilket betyder att man sätter ett numeriskt värde på sannolikhet och konsekvens. Detta tillvägagångssätt är mer tidskrävande än kvalitativa riskanalyser. QRA (quantitativ risk analysis) och PRA (probabilistic risk analysis) är två metoder som används för kvantitativa riskanalyser. QRA kom till inom processindustrin\(^{17}\) och kvantifierar risker som finns inom och utanför anläggningsnäring. PRA används bland annat inom kärnkraftsindustrin och är till skillnad från QRA mer ingående när det gäller att identifiera utlösende faktorer och mer arbete läggs på händelse- och felträdskridskolanalyser.

\(^{16}\) Davidsson et al., (2003)
\(^{17}\) ibid.
Vid kvantitativa metoder kan risker för individen (individrisk) och risker för samhället (samhällsrisk) beräknas. **Individrisk** är ett mått på sannolikheten för att en viss individ omkommer under en tidsperiod, ofta ett år. Individrisk kan uttryckas som platsspecifik risk eller individspecifik risk. Platsspecifik risk innebär risken att omkomma för en hypotetisk person som antas befinner sig kontinuerligt på en specifikt plats oftast utomhus. Individspecifik risk tar hänsyn till att individen i fråga inte befinner sig på samma plats hela tiden. **Samhällsrisk** inkluderar risker för alla personer som utsätts för en risk, och är i hög grad beroende av populationstätheten. Syftet med samhällsrisk är att begränsa risken för lokala områden, t.ex ett visst bostadsområde. Samhällsrisk anges i frekvens (antal händelser per år) och konsekvens (antal omkomna). Dessa risker jämförs sedan mot uppställda kriterier som till exempel ALARP-området (se vidare i kapitel 4.2.2).\(^{18}\)

Att observera vid användandet av kvantitativa riskanalysmetoder är osäkerheter i ingångsvärden som lätt kan fortfarande sig genom beräkningarna. Och därför måste osäkerhetsanalyser göras för att visa på hur osäkra ingångsvärden kan påverka utgångsvärden.\(^{19}\)

\(^{18}\) Davidsson et al, (1997)

\(^{19}\) Davidsson et al., (2003)
4.2.2 Riskvärdning

Andra steget i riskhanteringsprocessen handlar om att värdera riskerna huruvida de är acceptabla eller inte.

Det kan vara mångas intresse som ska beaktas när värdering av risker ska göras. Även om det är experter inom organisationer eller myndigheter som gör värderingar så kan deras personliga åsikter spegla av sig i besluten. Hur en risk värderas kan bli avgörande för vilka åtgärder som utförs. Det är med stor sannolikhet att en risk värderas olika beroende på vem som värderar risken. Riskkollegiet tar upp frågan om hur människor upplever risk och de menar på att det finns flera olika faktorer som påverkar detta. Deras slutsatser är följande:

- Hur en människa bedömer en risk avviker ofta från tekniska bedömningar utifrån sannolikheter och konsekvenser
- Människor tar med flera aspekter i riskbedömningar än förluster i liv. Karaktären på konsekvensen spelar också roll. Till exempel en risk som ligger långt fram i tiden värderas lägre.
- Produkten av sannolikhet och konsekvens svarar inte mot de flestas riskbedömningar i de fall konsekvensen är hög och sannolikheten är mycket liten. Då lägger fler vikt vid att konsekvensen är hög trots att sannolikheten är mycket liten.

Både Mattson och Davidsson et al. skriver om ett antal kriterier för värdering av risker. Ett urval av dessa beskrivs nu vidare i detta kapitel:

- Teknologibaserade kriterier
- Rättighetsbaserade kriterier
- Nyttobaserade kriterier
- ALARPEtt teknologibaserat kriterium betyder att alltid använda bästa möjliga teknik. Ett exempel skulle kunna vara att alltid använda den bästa asfalten på vägarna för att förhindre vattenplanering eller att räddningstjänsten alltid ska ha den bästa släckutrustningen. Dessa exempel på tekniska förutsättningar för att reducera antalet skadade och döda till följd av olyckor har en stor nackdel. För att upprätthålla bästa möjliga teknik kan kostnaden bli ofantligt mycket högre än nyttan åtgärden ger.

Rättighetsbaserade kriterier betyder att alla har rätt till samma risknivå. Inom riskhantering finns ofta gränser inom vart det är acceptabla att utsätta sig för risk. Att rädda ett statistiskt liv kostar pengar och görs insatser inom t.ex. vägtrafiken kan den kostnaden skilja sig från vad det skulle kosta att rädda ett statistiskt liv inom flygtrafiken. Ett exempel Mattson tar upp är den s.k. noll-visionen att inga människor ska dö eller skadas allvarligt till följd av en olycka i trafiken. Att minska antalet kan till en början vara relativt billig. Men när de sista

20 Riskkollegiet (1993)
21 Mattson (2000)
22 Davidsson et al. (1997)
23 Mattson (2000)
24 ibid.

ALARP (As Low As Reasonably Practicable) är det område som brittiska myndigheter (HSE) har tolkat att ett företag är tvungen att vidta säkerhetshöjande åtgärder i de fall då kostnaden inte är oproportionerligt hög jämfört med vilken riskreduktion som erhålls. Området ovanför ALARP har risker som är helt oacceptabla och området nedanför har risker som allmänt kan anses vara acceptabla (se figur 4.4). 26

![Diagram of ALARP criteria](image)

Figur 4.4. Exempel på kriterium för värdering av risk 27

Utifrån dessa områden har Davidsson et al. 28 gett förslag på tolerabla risknivåer för individrisk och samhällsrisk.

Följande kriterier för individrisk föreslås:

- Risknivåer högre än 10^{-5} per år tolereras ej.

25 Mattson (2000)
26 Davidsson et al. (1997)
27 Davidsson et al. (2003)
28 Davidsson et al. (1997)
Risknivåer under 10^{-7} per år anses så låga att ytterligare säkerhetshöjande åtgärder inte behöver värderas.

Vid risknivåer mellan dessa gränser som är ALARP-området ska säkerhetshöjande åtgärder värderas ur ett kostnads-nyttaperspektiv. Rimliga åtgärder bör vidtas så att riskerna hålls så låga som är praktiskt möjligt.

För samhällsrisk används ofta FN-kurvor där F står för Frequency of accidents och N står för Number of Fatalities. En FN-kuva visar den accumulerade frekvensen av händelser och antal omkomna. Ett exempel på en FN-kurva visas i figur 4.5.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fnkurva.png}
\caption{Exempel på FN-kurva med gränser för ALARP-området inritat.}
\end{figure}

Följande kriterier för samhällsrisk föreslås:

- Övre gräns för område där risker under vissa förutsättningar kan tolereras: $F=10^{-4}$ per år för $N=1$
- Övre gräns för område där risker kan anses små: $F=10^{-6}$ per år för $N=1$
- Lutning på FN-kurva: -1
- Övre gränsvärde för möjliga konsekvenser: Inget
- Undre gränsvärde för tillämpning av kriterier: $N=1$

\footnotesize
\begin{itemize}
 \item Davidsson et al. (1997)
 \item ibid.
\end{itemize}
4.2.3 Riskreduktion

![Figur 4.6. Effekten av riskreducerande åtgärder](image)

Olycksförebyggande åtgärder skulle till exempel kunna vara:
- Alkolås på bilar
- Utbildning i brandsäkerhet
- Simskola i tidig ålder

Skadebegränsande åtgärder skulle till exempel kunna vara:
- Vajerräcken på vägar
- Brandsläckare i hemmen

31 Davidsson et al. (2003)
32 ibid.
5 Jämförelsemetod

I kapitel 1 § i Lagen om skydd mot olyckor står det följande:

Bestämmelserna i denna lag syftar till att i hela landet bereda människors liv och hälsa samt egendom och miljö ett med hänsyn till de lokala förhållandena tillfredsställande och likvärdigt skydd mot olyckor.

Utifrån lagtexten ska kommunen se till att skyddet mot olyckor är tillfredsställande och ligga på samma nivå som övriga landet. Detta ansvar har räddningstjänstförbundet SÄRF fått ta över för kommunerna Borås, Ulricehamn, Svenljunga, Tranemo och Bollebygd genom det avtal de har. SÄRF har till uppgift att göra en samlad riskbild av medlemskommunernas risker och sammanfatta dessa i ett handlingsprogram för räddningstjänstens arbete under varje mandatperiod.

För att SÄRF ska kunna ta fram ett handlingsprogram behöver den information de tar del av från de olika kommunernas följa samma metodik, vilket inte helt och hållet funnits tidigare. För att detta ska fungera bättre i framtiden ska jämförelsemetoden som presenteras i denna rapport ligga till grund för den riskbild som SÄRF vill kunna skapa över sitt verksamhetsområde. Jämförelsemetoden utgår ifrån IDA-verktyget som Räddningsverket har arbetat fram. I IDA kan mätbara indikatorer jämföras med övriga landet. Värdena som IDA ger är av typen antal per invånare och inte ett riskmått av den typ som förklaras i kapitel 4 (Teori). För att teorin i kapitel 4 ska komma mer till användning kommer det i kapitel 6 (Resultat) att bland annat diskuteras hur värdena från IDA kan användas för att göra olika typer av riskanalyser. Dessutom kommer en diskussion att föras om svårigheter som kan uppkomma vid användning av jämförelsemetoden och speciellt problematiken med att ta hänsyn till lokala förhållanden. Vidare kommer teorin att tillämpas även i kapitel 7 (diskussion) som behandlar övriga indikator som inte finns med i detta kapitel.

Jämförelsemetoden är en del av övergången till ett gemensamt sätt att arbeta på inom SÄRF. Viktigt att tänka på är att det ska vara en metodik som fungerar på ett relativt enkelt vis och är hanterbart för alla inblandade.

Som tidigare nämnt finns idag inte alla indikatorer representerade i IDA utav de tio indikatorer som SÄRF vill kunna jämföra och det är därför endast följande indikatorer som kommer att behandlas i detta kapitel:

- Antal olyckor
- Antal svårt skadade

Vidare i detta kapitel presenteras hur statistik från IDA tas fram för att kunna jämföra dels kommunerna inom SÄRF och dels med övriga landet.

[33](http://www.serf.se) (hämtad 2007-12-18)
5.1 **Indikator 1 - Antal olyckor**

En av indikatorerna som idag finns i IDA är konsekvensen olycka\(^{34}\). Statistiken till indikatomen är tagen ur Insatsdatabasen hos Räddningsverket och är uppdelad inom ett antal typer av olyckor. Åren som finns representerade just för tillfället är 1998-2006. Denna indikator ger ett värde på antalet olyckor som händer varje år inom de olika olyckstyperna. Med hjälp av värdena går det dels att göra en nulägesanalys och dels en trendkurva som visar hur utvecklingen har sett ut under ett antal år. Värdena som tas fram är antal per 100 000 invånare.

I tabell 5.1 har en nulägesanalys gjorts för år 2006. Tabellen visar de olyckstyper som finns representerade i IDA. För varje kommun och för hela riket visas en nulägesbild för år 2006 över de olyckor som inträffat. Dessa värden kan sedan ligga till grund för vidare analyser, vilket kommer att utföras i nästa kapitel (Resultat).

Tabell 5.1 En nulägesanalys av år 2006 för de olika typer av olyckor som finns presenterade i IDA.

<table>
<thead>
<tr>
<th></th>
<th>Bollebygd</th>
<th>Borås</th>
<th>Svenljunga</th>
<th>Tranemo</th>
<th>Ulricehamn</th>
<th>Riket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafikolycka</td>
<td>159</td>
<td>139</td>
<td>327</td>
<td>187</td>
<td>218</td>
<td>140</td>
</tr>
<tr>
<td>Brand ej i byggnad</td>
<td>207</td>
<td>160</td>
<td>182</td>
<td>102</td>
<td>125</td>
<td>182</td>
</tr>
<tr>
<td>Brand i byggnad</td>
<td>49</td>
<td>107</td>
<td>173</td>
<td>77</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td>Drunkning/-tillbud</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Utsläpp av farligt ämne</td>
<td>24</td>
<td>18</td>
<td>38</td>
<td>9</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Övrig kommunal räddningstjänst</td>
<td>672</td>
<td>567</td>
<td>404</td>
<td>520</td>
<td>383</td>
<td>520</td>
</tr>
<tr>
<td>Totalt</td>
<td>1111</td>
<td>998</td>
<td>1124</td>
<td>895</td>
<td>868</td>
<td>985</td>
</tr>
</tbody>
</table>

Tabellen visar att antalet olyckor är relativt stort för bränder och trafikolyckor. Dessutom representerar övrig kommunal räddningstjänst en stor del av antalet olyckor vilket till exempel är stormskador. Vad det går att utläsa så händer flest olyckor i Bollebygd och minst i Ulricehamn per 100 000 invånare.

Denna nulägesanalys kan göras för varje år som finns presenterat i IDA. Det går även att göra en trendanalys vilket presenteras i figur 5.1 på nästa sida.

\(^{34}\) http://ida.srv.se (hämtad 2007-12-04)
Figur 5.1 Ett exempel på hur en *trendsanalys* kan göras med värden från IDA35

Att mäta antalet olyckor kan vara ett sätt att snabbt se hur trenderna ser ut över ett antal år. I denna figur går det att utläsa att antalet olyckor per 1000 invånare har varit lägre inom SÄRF varje år jämfört med Sverige.

För framtiden är det följande punkter som SÄRF behöver ta fram ur IDA för dessa indikatorer:

- *Hur många olyckor inom varje olyckstyp inträffar varje år per 100 000 invånare i varje kommun inom SÄRF*
- *Hur många olyckor inom varje olyckstyp inträffar varje år per 100 000 invånare i landet.*

35 SÄRF (2007)
5.2 **Indikator 2 - Antal svårt skadade**

En av indikatorerna som idag finns i IDA\(^\text{36}\) att jämföra med övriga landet är konsekvensen svårt skadad. Statistiken till indikatorn är tagen bland annat från Socialstyrelsen och Epidemiologiskt Centrum (EpC) och är uppdaterad inom ett antal typer av olyckor. Åren som finns representerade just för tillfället är 1988-2005. Denna indikator ger ett värde på antalet svårt skadade för varje år inom de olika olyckstyperna. Med hjälp av värdena ger det dels att göra en nulägesanalys och dels en trendkurva som visar hur utvecklingen har sett ut under ett antal år. Värdena som tas fram är antal per 100 000 invånare.

<table>
<thead>
<tr>
<th>Vägtrafik</th>
<th>Bollebygd</th>
<th>Borås</th>
<th>Svenljunga</th>
<th>Tranemo</th>
<th>Ulricehamn</th>
<th>Riket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>-</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Fallolyckor</td>
<td>660</td>
<td>765</td>
<td>782</td>
<td>603</td>
<td>736</td>
<td>778</td>
</tr>
<tr>
<td>Drunkning</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Övriga olycksfall</td>
<td>282</td>
<td>209</td>
<td>204</td>
<td>239</td>
<td>206</td>
<td>204</td>
</tr>
<tr>
<td>Totalt</td>
<td>1120</td>
<td>1127</td>
<td>1164</td>
<td>1036</td>
<td>1112</td>
<td>1141</td>
</tr>
</tbody>
</table>

Tabellen visar att det till största del orsakas svårt skadade till följd av fallolyckor, medan brand och drunkning orsakar minst. Övriga olycksfall orsakar antalet svårt skadade i samma storleksordning som vägtrafiken. Ett exempel på övriga olycksfall är arbetsplatsskador. Totalt är antalet svårt skadas nästan lika många per 100 000 invånare i alla SÄRFs kommuner samt i riket för år 2005.

\(^\text{36}\) http://ida.srv.se (hämtad 2007-12-04)
Det går även att göra trendanalyser av statistiken i IDA och det kan se ut som i figur 5.2.

**Figur 5.2 Ett exempel på hur en *trendanalys* kan göras med värden från IDA*37*

Det går att se hur trenden har sett ut under ett antal år och under de flesta år har antalet svårt skadade per 1000 invånare varit lägre i SÄRF än i övriga landet. Det som går att utläsa är att SÄRFs värden varierar mer än Sveriges värden.

För framtiden är det följande punkter som SÄRF behöver ta fram ur IDA för dessa indikatorer:

- **Hur många blir svårt skadade inom varje olyckstyp varje år per 100 000 invånare i varje kommun inom SÄRF**
- **Hur många svårt blir skadade inom varje olyckstyp varje år per 100 000 invånare i landet.**

37 SÄRF (2007)
6 Resultat

I 1 kap § 1 i Lagen om skydd mot olyckor står det följande:

Bestämmelserna i denna lag syftar till att i hela landet bereda människors liv och hälsa samt egendom och miljö ett med hänsyn till de lokala förhållandena tillfredsställande och likvärdigt skydd mot olyckor.

Lagen säger att skyddet mot olyckor ska vara likvärdigt i landet vilket kan ses som ett rättighetsbaserat kriterium. Det betyder att alla människor i Sverige har rätt till att få samma skydd mot olyckor i hela landet, dock med hänsyn till lokala förhållanden. Man ska därför inte ha fler olyckor och skadade en övergripande del av landet, utan de skall vara likvärdiga. Om det sedan betyder att det är acceptabelt i en viss region är inte sagt i denna rapport. Med denna lag som grund har Räddningsverket arbetat fram verktyget IDA för att kunna jämföra rikets kommuners skydd mot olyckor och genom det värdera sin skyddsposition inom kommunen eller i detta fall SÄRF.

SÄRF har en vision som sträcker sig längre än LSO. De beskriver sin vision på följande vis:

Att uppfattas som Nordens effektivaste räddningsstjänst

En vision vilket de avser dels betyda att det inom deras område inträffar minst bränder och trafikolyckor, att de ska ha den bästa utrustningen samt att de tillämpar de mest moderna metoderna. Med en sådan vision siktar man att ha likvärdig skydd som andra. Med denna vision har SÄRF dels ett teknologibaserat kriterium där de till exempel säger att de ska ha den bästa utrustningen. Men också ett rättighetsbaserat kriterium där de säger att det ska inträffa minst bränder och trafikolyckor inom SÄRF.

De värden som hämtas ur IDA kan användas för att planera förebyggande åtgärder, vilket är samma sak som att planera för att minska riskerna för framtidiga olyckor. Dock kan inte vilka slutsatser som helst göras från värdena. Det kan i många fall finnas tydliga orsaker till varför statistiken ser ut som den gör. En sådan orsak kan vara att olika lokala förhållanden påverkar värdena eller att exempel förekomsten av brandvarnar, simkunnighet bland invånarna eller kilometer väg. Idag tar inte IDA hänsyn till lokala förhållanden i någon stor utsträckning utan det enda som IDA hänsyn till är att mäta antal olyckor per 100 000 invånare, vilket dock ska implementeras mer i framtiden. Hur det går att praktiskt att ta hänsyn till lokala förhållanden är för komplext att utreda i denna rapport, men kortfattat går det till på följande vis: Olika lokala förhållanden viktar för att de från olika kommuner kan inte jämföras. Denna faktor används sedan för att ge kommuner ett form av "handikapp". Detta handikapp kan betyda att det inte är konstaterat att de i en annan kommun kan ha fler olyckor än i en annan men ändå likställas.

38 http://www.serf.se (hämtat 2007-12-04)
6.1 **Indikator 1 – Antal olyckor**

1. **Trafikolyckor**

 Antalet olyckor i trafiken kan till exempel påverkas av att en kommun har högre intensitet i trafiken än en annan kommun. Efter kan olycksstatistiken bero på vilken typ av väg som finns representerade. Till exempel kan förekomsten av mitträcken, planksersiong, obevakade övergångsställen etc. påverka antalet olyckor. Det behöver alltså inte betyda att en kommun har sämre skydd bara för att antalet olyckor är högre. Till exempel har Svenljunga haft flest trafikolyckor inom SÄRF per invånare nästan varje år sedan 1997. Detta kanske inte behöver vara något konstigt i sig om man tittar närmare på de lokala förhållanden, vilket dock inte har gjorts i denna rapport.

2. **Brand i byggnad**

 Antalet bränder i byggnader kan till exempel påverkas av hur många som har brandvarnare och brandsläckare i hemmen. Är förekomsten av brandsläckare stark kan det påverka statistiken över antalet olyckor. Förre som byggnation av fastbränningsen villapannor och lokalbyggnader som finns i kommunerna kan påverka mängden bränder och i kommuner med stor andel villor är det därför troligt att det procentuellt är högre antal bränder i byggnad än i en kommun med endast lägenheter, av denna orsak. Antal tillsyn av räddningstjänsten kan också påverka hur skyddet ser ut i kommunen.

3. **Brand ej i byggnad**

 Stor del av brandorsakerna i denna kategori är skogsbrand och därför skulle kommunens skogs-areal kunna påverka hur många bränder ej i byggnad som inträffar.

4. **Drunkning**

 Antalet drunkningsolyckor kan till exempel påverkas av hur förekomsten av flytvästar i kommunen är samt simkunnigheten bland invånarna. En annat lokalt förhållande kan vara om det är en kommun med många badmöjligheter, vilket kan påverka antalet drunkningsolyckor.

5. **Utsläpp av farligt ämne**

 Antalet utsläpp av farliga ämnen kan påverkas av hur stor täckning avtiller brännande ämnen som hanteras i kommunen. År det en kommun som av olika anledningar hanterar större mängder skulle det kunna vara troligt att frekvensen är högre för utsläpp.

6. **Övriga kommunal räddningstjänst**

 Behandlas ej i denna rapport då det inte är specifiserat vad det är för typ av olyckor detta representerar.
6.2 **Indikator 2 – Antal svårt skadade**

Den andra indikatorn är antal svårt skadade och värdena som erhålls i IDA är tagna bland annat från Socialstyrelsen och Epidemiologiskt Centrum (EpC). I stor utsträckning är de lokala förhållanden liknande de som har diskuterats i indikatorn antal olyckor. Därför blir det en del upprepning, vilket i sig inte behöver vara negativt. Liksom den förra indikatorn har även denna indikator diskuterats utifrån de olika typerna av olyckor som orsakat svårt skadade.

1. **Trafikolyckor**

 Antalet svårt skadade i trafikolyckor kan till exempel påverkas av hur stor andel av vägarna i kommunen som har höga hastigheter och hur många som använder bilbälte. Andra förhållanden som kan påverka är antal mopeder i bruk och hur många som använder cykelhjälm när de cyklar.

2. **Brand**

 Antalet svårt skadade i bränder kan påverkas av hur många som har brandvarnare och brandsläckare i hemmen. Hur god brandutbildningen bland invånarna är kan också påverka hur bra skyddet är mot olyckor som orsakar svårt skadade. Hur stor del av befolkningen som nås av räddningstjänst inom en viss tid kan också påverka hur många som blir allvarligt skadade.

3. **Drunkening**

 Antalet svårt skadade vid drunkningsolyckor kan påverkas av hur simkunnigheten är samt hur ofta flytvästar används. Ett annat förhållande som påverkar kan vara om räddningstjänstens personal är dykutbildad och kan göra dykinsatser vid olyckor.

4. **Fallolyckor**

 Antal svårt skadade vid fallolyckor kan påverkas av åldersfördelningen i kommunen då statistik visar att det är vanligast med fallolyckor bland äldre. Dessutom kan antalet påverkas positivt om en fixar-malte finns i kommunen.

5. **Övriga olycksfall**

 Här specificeras inte vilka typer av olyckor det rör sig om utan det är olika och det kan till exempel vara olyckor som till exempel arbetsolyckor.
6.3 **Värdering av resultat**

Att ta ställning till vilken skyddsnivå som ska råda i en kommun kan vara svårt och är de folkvalda politikernas uppgift att ta ställning till. Faktorer som påverkar ställningstagandet kan vara kostnader och resurstillgång i kommunen och det är nog ofta kostnaden som avgör vilket skydd som kan uppnås. Utifrån Lagen om skydd mot olyckor ska skyddet vara likvärdigt som övriga kommuner och är antagligen den nivån som de flesta kommuner har som målsättning.

Vidare i detta kapitel ges förslag på hur man kan använda resultat från IDA för att ta ställning till skyddsnivån utan att man behöver ta ställning till hur mycket de får kosta.

6.3.1 Exempel 1 – Nuläge

Det första exemplet är att titta på hur nuläget ser ut i kommunerna och det går att göra med hjälp av IDA genom att ställa upp värdena som i tabell 6.1 och jämföra kommuner med varandra och med riket. Från tabellen går det utläs att Svenljunga har flest olyckor per 100 000 invånare tätt följt av Bollebygd. Minst har Ulricehamn. Utifrån dessa värden går det dra vissa slutsatser. Vad man dock måste tänka på är att det kan finnas lokala förhållanden som gör att Svenljunga i detta fall har flest olyckor per invånare än övriga kommuner. En annan sak att tänka på är att det är små varden vi rör oss med. Därför kan värdena för enskilda kommuner variera från år till år och kan ge en felaktig bild över hur det ser ut över tiden.

Därför är det bättre att titta på hur trenden ser ut över ett antal år, vilket är fallet i exempel 2.

Tabell 6.1 En nulägesanalys av år 2006 för de olika typer av olyckor som finns presenterade i IDA.

<table>
<thead>
<tr>
<th></th>
<th>Bollebygd</th>
<th>Borås</th>
<th>Svenljunga</th>
<th>Tranemo</th>
<th>Ulricehamn</th>
<th>Riket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafikolycka</td>
<td>159</td>
<td>139</td>
<td>327</td>
<td>187</td>
<td>218</td>
<td>140</td>
</tr>
<tr>
<td>Brand ej i byggnad</td>
<td>207</td>
<td>160</td>
<td>182</td>
<td>102</td>
<td>125</td>
<td>182</td>
</tr>
<tr>
<td>Brand i byggnad</td>
<td>49</td>
<td>107</td>
<td>173</td>
<td>77</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td>Drunkning/-tillbud</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Utsläpp av farligt</td>
<td>24</td>
<td>18</td>
<td>38</td>
<td>9</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>ämne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Övrig kommunal</td>
<td>672</td>
<td>567</td>
<td>404</td>
<td>520</td>
<td>383</td>
<td>520</td>
</tr>
<tr>
<td>räddningstjänst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt</td>
<td>1111</td>
<td>998</td>
<td>1124</td>
<td>895</td>
<td>868</td>
<td>985</td>
</tr>
</tbody>
</table>
6.3.2 Exempel 2 – Trend

![Diagram of trend analysis](image)

Med dessa två enkla exempel kan man sätta en nivå på skyddet mot olyckor som är helt acceptabelt i förhållande till den rådande lagstiftning som säger att skyddet mot olyckor ska vara likvärdigt med riket.

39 SÄRF (2007)
6.4 Riskanalyser

Genom att ha koll på vilka risker som finns inom SÄRF kan förebyggande eller riskreducerande åtgärder göras. För att kunna besluta om vilka riskreducerande åtgärder som ska införas behöver kunskap finnas om hur stora riskerna är. Denna kunskap kan inhämtas med hjälp av riskanalyser med utgångspunkt från de två indikatorerna som har presenterats tidigare i detta kapitel. Detta kommer inte att ge en heltäckande bild av riskerna inom SÄRF, utan hänsyn måste även tas till de indikatorer som idag inte finns med i IDA. Dessa kommer att diskuteras i kapitel 7 (Diskussion).

I kapitel 4 (Teori) förklarades ett antal olika metoder som finns att tillgå för att göra en riskanalys. Utifrån dessa ska nu ett par exempel diskuteras för att belysa användningen av indikatorerna i riskanalyser.

6.4.1 Exempel 1 – Antal trafikolyckor

När en grovanalys är genomförd kan en WhatIf-analys göras för att utreda vad förebyggande åtgärder skulle innebära för framtida risker. Till exempel vad händer om en upprustning görs av alla vägar i Svenljunga, skulle det minska risken för olyckor? Vad händer om vi sänker hastigheten på vägarna eller sätter upp hastighetskameror?

Att göra denna typ av analyser av alla indikatorer och typolyckor. Detta sätter igång en tankeprocess som ger en bättre överblick över riskerna som finns inom SÄRF. Det kan säkert i flera fall bli svårt att få en rättvis bild eftersom inte hänsyn tas i stor utsträckning till lokala förhållanden. Detta ska dock bli bättre för framtiden.

6.4.2 Exempel 2 – Utsläpp av farligt ämne

Utsläpp av farligt ämne sker oftast i små mängder. Sannolikheten att utsläpp ska ske i stora mängder som ger stor skada på människor och miljö är liten. Vad som kan göras är att göra konsekvensanalys inom SÄRF för att ta reda på vad stora olyckor kan ge för konsekvenser även om sannolikheten är mycket nära noll. Det är först och främst inom industri och vid transporter, där stora mängder farliga ämnen hanteras, som ska analyseras. En sådan konsekvensanalys kan ge en bra bild av vad som kan hända även att sannolikheten säger att det antagligen aldrig händer. Exempel på svåra konsekvenser kan vara om farliga ämnen sprider sig i kommunernas vatten eller giftiga gaser sprider sig över täth wpływade områden.

I flera fall kan kvantitativa riskanalyser behöva göras vid nyetablering av till exempel industri som hanterar stora mängder farliga ämnen i närheten av skyddsobjekt som till exempel skolor och vårdhem.

6.4.3 Exempel 3 – Antal svårt skadade vid bränder

Ett sätt att använda sig av indikatorerna är att använda resultatet från riskanalyserna vid marknadsföring av olika skyddsåtgärder. Till exempel kan man ta reda på hur många av alla
som skadats svårt i en brand som inte hade brandsläckare och brandvarnare och jämför detta med som hade det. Förmodligen är det större antal som skadas svårt som inte har skydd och då kan resultatet användas nästa gång som brandsläckare ska marknadsföras i hemmen.

Detta var ett par exempel som visar på hur indikatorerna kan användas för vidare analyser. Detta är endast ett litet urval och därför rekommenderas det att SÄRF jobbar vidare med att ta fram flera exempel som kan användas.
7 Diskussion

I detta kapitel kommer i huvudsak en diskussion om de indikatorer som SÄRF vill kunna jämföra men som inte finns med i IDA. I övrigt kommer en diskussion om valet av metod, riskvärdning samt användning av GIS.

7.1 Val av metod

Förväntningarna för framtiden är givetvis att IDA-verktyget ska bli framgångsrikt och att det ska underlätta för landets kommuner att utvärdera sitt skydd mot olyckor. Vägen dit är nog dessvärre lång.

7.2 Övriga indikatorer

Diskussionen är underbygd med dels vetenskapliga teorier men även författarens tankar utifrån egna erfarenheter.

7.2.1 Antal räddningsinsatser

Denna indikator finns inte med i IDA men kan dock i stor utsträckning likställas med indikatormen för antal olyckor. Skillnaden dem emellan är att i antalet räddningsinsatser ingår också automatlarmin, vilka har uteslutits för indikatormen antal olyckor, eftersom det inte räknas som en olycka. Med dessa förklaringar ges inga mer kommentarer om denna indikator.

7.2.2 Antal omkomna och antal förlorade levnadsår

Dessa två indikatorer är i stor utsträckning lika indikatorern i antal svårt skadade i arbetssätt. Anledningen till att inte dessa indikatorer finns med i IDA på kommunnivå är att det är så små tal per kommun, underlaget är helt enkelt för litet. Uppgifterna lyder under statistiksekretess och i vissa kommuner kan det vara en omkommen i olycka per år och så små tal får inte Räddningsverket redovisa i IDA. Vad som går att göra är att kontakta respektive kommun för att ta reda på om de vill ge ut uppgifterna. Statistik hur det ser ut i riket som helhet finns däremot presenterat på IDA.

40 Stenbäck I, Räddningsverket, 2007-11-30
Exempel på frågeställningar att använda vid analysarbetet:

- Hur många omkommer och hur många levnadsår förloras per 1000 invånare i jämförelse med nationellt genomsnitt.

- Hur många förlorade levnadsår förloras i jämförelse med antalet omkomna varje år i olika olyckstyperna per 1000 invånare och år.

7.2.3 Trafiknykterhet

Antalet olyckor till följd av rattonykterhet är stor. År 2006 omkom 445 personer i trafiken varav ca 25 % var alkoholrelaterade. Det finns två grupper av människor som kör onyktra, den ena gruppen är alkoholberoende människor och den andra är människor som kör onykter någon enstaka gång. Åtgärder för de förstnämnda är antingen alkolås eller behandling av missbruket.

Polisen för statistik över sina nykterhetskontroller och vad SÄRF kan göra är att titta på trenderna över ett antal år och jämföra antal nykterhetskontroller och antalet skadade/dödade med riket i övrigt.

41 Vägverket (2007)
7.2.4 Riskhantering i samhällsplanering

Det SÄRF förmodligen har svårast för är att få en bra överblick över är riskerna som har med samhällsplanering att göra. Till exempel kan det vara riskerna med farligt godstransporter, kemiska industrier, naturrisker, miljöskador och transportrisker. Dessa exempel ingår i tre av indikatorerna som SÄRF önskade att ta med som underlag för sitt handlingsprogram och indikatorerna är följande:

- Riskhänsyn i fysisk planering
- Miljöskador
- Naturolyckor

Räddningsverket har ett antal punkter de anser att man ska tänka på vid riskhänsyn i den fysiska planeringen. Bland annat nämner de vikten av att lokalisera var farligt gods hanteras och omlastas, vilka industrier och lager som lagrar farliga ämnen samt transporter. Det som rekommenderas för framtiden är att använda ett GIS-program för att skapa en bättre överblick var det finns farliga ämnen inom SÄRF. En förutsättning är då att det finns koordinater för var det finns farliga ämnen vilket inte författaren har undersökt. Det går också att koppla information som klassningsplaner, bilder på fastigheten, intilliggande skyddsobjekt och riskavstånd till GIS. Detta skulle även kunna användas i ledningsbilen under utryckning av räddningstjänsten.

En annan sak att tänka på är kommunikationer och transporter inom SÄRF. Håller väg- och järnvägsnätet bra standard? Finns det vissa platser som har högre frekvens olyckor? En lokalisering var olyckor sker och insättning av dessa i ett GIS-program ger en bättre överblick.

Naturolyckor är något som de senaste åren har fått mer plats i media. En naturolycka kan förklaras som när en naturhändelse inträffar och samtidigt påverkar något av värde. De naturolyckor som räddningsverket främst arbetar med är skred och ras, översvämningar, skogsbränder och storm och går att läsa mer om i Räddningsverket arbete med naturolyckor. Vikten av att arbeta förebyggande med naturolyckor är stor eftersom konsekvenserna kan bli stora. Att förebygga en naturolycka kan vara mer samhällsekonomiskt än att låta den inträffa och det finns även möjlighet att söka bidrag från staten för förebyggande åtgärder. Dessutom har kommuner rätt till ersättning från staten för räddningsinsatser vid naturolyckor för kostnader som överstiger den egna självrisken.

42 Räddningsverket (1998)
44 Räddningsverket (2006b)
45 http://www.srv.se (hämtat 2007-09-27)

Figur 7.1 Ett exempel på översiktlig översvämningskartering längs Viskan\(^{46}\).

Vidare kan man identifiera områden med risk för skred och ras. Räddningsverket har sedan 1987 gjort översiktliga karteringar av markens stabilitet i bebyggda områden. Dessa kan till viss del användas av SÄRF. Ett exempel på kartering av stabilitetszoner visas i figur 7.2.

\(^{46}\) SMHI (2002)
Både översvämningskarteringen och stabilitetskarteringen som Räddningsverket gör finns med kartor som kan användas i GIS-program.

Till hjälp vid planering för naturolyckor har Räddningsverket fått i uppdrag från Regeringen att bygga upp en databas över inträffade naturolyckor som ska vara klar i oktober 2007. Uppdragets syfte är att åtgärda bristen på en samlad tillgång på dokumenterad information över lärdomar kring nationellt inträffade naturolyckor.

Denna databas ska Räddningsverket bygga upp tillsammans med berörda myndigheter och genom det skapa en samlad bild över inträffade naturolyckor.

Skyddsvärda objekt måste definieras och även de lokaliseras och föras in i GIS. Det kan vara skyddsvärda objekt som till exempel skolor, vårdhem, viktiga funktioner för samhället som el- och vattenförsörjning.

Sammanfattningsvis är det följande punkter att tänka på inom samhällsplanering.

47 http://srv.se/templates/SRV_Page____15249.aspx (hämtad 2007-12-13)
• GIS-användning för att skapa en bättre överblick
• Lokalisera områden med risk för skred, ras och översvämningar
• Användning av diverse olika typer av karteringar
• Identifiera skyddsvärda objekt

Ett antal olika metoder att analysera risker finns även presenterade i kapitel 4 vilka med fördel kan användas vid analysarbetet.

Exempel på frågeställningar som skulle kunna användas för att göra arbetet enklare kan vara till exempel:

• Vilka riskkällor finns
• Vilka skyddsvärda objekt finns
• Hur sårbara är de olika skyddsvärda objekten
• Var geografiskt finns riskkällor/skyddsvärda objekt (GIS)
• Vad kan hända för typer av olyckor. Till exempel skred och ras, farligt godsolyckor mm.
• Finns mycket bebyggelse samt befolkning omkring riskkällorna (GIS)
• Finns risk för sabotage
• Hur är robustheten i samhällsviktiga funktioner som till exempel el- och vattenförsörjning
7.2.5 Totalkostnad för olyckor

En sanning som finns med viss förbehåll för korrekthet är att allting inom en kommun handlar i slutändan om pengar. Åtgärder kan tas emot positivt fram till diskussionen om vad det kostar. Totalkostnad för olyckor är en indikator som i dagsläget är svårt att ta fram statistik för. Det finns siffror på nationell nivå fördelat på olika områden (se tabell 7.1). Där kan man se hur vi ligger till i Sverige. Att applicera detta på kommunnivå kan bli svårt.

Tabell 7.1 Exempel på indelning av kostnader för olyckor inom Sverige för ett antal olika år. Kostnaderna presenteras i miljoner kronor.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt</td>
<td>36 681</td>
<td>40 479</td>
<td>33 377</td>
<td>36 438</td>
</tr>
<tr>
<td>därav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medicinska kostnader</td>
<td>16 327</td>
<td>18 930</td>
<td>13 419</td>
<td>13 961</td>
</tr>
<tr>
<td>rehabiliteringsskostnader</td>
<td>213</td>
<td>245</td>
<td>338</td>
<td>365</td>
</tr>
<tr>
<td>produktionsbortfall</td>
<td>6 825</td>
<td>9 502</td>
<td>8 190</td>
<td>9 601</td>
</tr>
<tr>
<td>materiella kostnader</td>
<td>8 079</td>
<td>7 583</td>
<td>6 785</td>
<td>7 525</td>
</tr>
<tr>
<td>administrativa kostnader</td>
<td>4 936</td>
<td>3 895</td>
<td>4 350</td>
<td>4 671</td>
</tr>
<tr>
<td>övriga kostnader</td>
<td>299</td>
<td>324</td>
<td>295</td>
<td>315</td>
</tr>
</tbody>
</table>

Exempel på frågeställningar som skulle kunna användas för att göra arbetet enklare kan vara till exempel:

- Vilken typ av olyckor kostar mest att hantera?
- Vilka åtgärder ska bekostas för att nytta ska bli så stor nytta som möjligt?
- Vilka värderingsgrunder har vi i våran kommun?

49 Räddningsverket (2004)
7.3 Riskvärdering

7.4 GIS-användning

Det har under arbetets gång av rapporten mer och mer blivit klart att GIS-användning är något som måste implementeras i arbetet med handlingsprogrammet. GIS är ett oslagbart verktyg att använda för att skapa en överblicksbild på de risker som finns inom det geografiska ansvarsområdet. Dock är det ett verktyg som kräver resurser i form av kompetens och pengar.
8 Slutsatser

8.1 Att använda indikatorer som en metod för jämförelse

Att använda IDA och dess indikatorer är i sig en metod som i många fall kan vara framgångsrik. Dock har det inte utvecklats tillräckligt för att kunna ge en heltäckande bild över hur SÄRFs skydd mot olyckor ligger till jämfört med övriga landet. Dels är antalet indikatorer väldigt få samtidigt som man inte tar hänsyn till lokala förhållanden i stor utsträckning. Dock ska metoden inte förkastas utan det rekommenderas starkt att SÄRF redan nu börjar använda sig av denna metod. Främst för att IDA inom en snar framtid kommer att utvecklas till ett mycket användbart verktyg men också för att det är ett enkelt verktyg att använda där räddningsverket bistår med statistikinsamling.

Det ska tilläggas att det idag behöver användas flera metoder för att få en heltäckande bild över SÄRFs skydd mot olyckor, vilket har diskuterats i kapitel 7.

8.2 Värdering av risker

Att risker värderas olika beroende på vem som värderar risken kan nog de flesta förstå. Att det också påverkar resultaten i riskvärderingsarbetet med riskanalyserna i de respektive kommunerna är ett faktum. Därför är detta ett område som måste utvecklas för att resultaten ska värderas på samma grunder. Vilka värderingsgrunder som ska råda bör bestämmas på kommunnivå och dessutom behöver detta samordnas mellan SÄRFs medlemskommuner eftersom de har en gemensam räddningstjänst.

8.3 Framtiden

För framtiden behöver SÄRF tänka igenom hur deras arbete ska fungera rent praktiskt för att skapa förutsättningar för kommunerna och deras arbete med riskanalyser. Det kommer att ta tid för SÄRF att arbeta fram ett bra sätt att jobba på, men det är hög tid att de funderar igenom hur de ska skapa förutsättningarna för att jämförelsemetoden ska kunna användas som ett underlag för sitt handlingsprogram. Det kan behövas nya resurser som till exempel en person som är med i arbetet i alla kommunerna för att bistå med dels kompetens inom området och dels med samordning mellan kommunerna.

8.4 Avslutningsvis

I ett examensarbete i denna omfattning är det omöjligt att gå in i detalj med detta komplexa problem, att jämföra skyddet mot olyckor, som mer och mer har blivit tydligt under arbetets gång. Dock har arbetet utmynnat i en metod som kan vidareutvecklas för att sedan kunna användas av SÄRF och andra kommuner i deras arbete med att utvärdera sitt skydd mot olyckor.
9 Källförteckning

9.1 Böcker

Svenljunga kommun, (2004), Risk och sårbarhetsanalys för Svenljunga kommun

Borås kommun, (2005), Risk och sårbarhetsanalys för Borås Stad

Tranemo kommun, (2005), Riskrapport - Risk och sårbarhetsanalys

Ulricehamn kommun, (2005), Risk och sårbarhetsanalys för Ulricehamns kommun

Davidsson et al., (2003), Handbok för riskanalys, Räddningsverket, Karlstad.

Davidsson et al, (1997), Värdering av risk, Räddningsverket, Karlstad

Riskkollegiet (1993), Upplevd risk, Skrift nr 3, Stockholm

Räddningsverket (1998), Riskhänvisning i fysisk planering, Karlstad, ISBN 91-88891-51-8

Räddningsverket (2006a), Räddningsverket arbete med naturolyckor, beställningsnummer 199-135/06, Karlstad

Räddningsverket (2007), Kommunala handlingsprogram enligt lagen om skydd mot olyckor – för ett bättre skydd mot olyckor, Karlstad, Publikationsnummer 199-151/07

SMHI (2002), Översiktlig översvämningskartering längs Viskan, Rapport nr 27, Norrköping

Särdqvist S., (2005), Olycksundersökningar, NCO 2005:3, Räddningsverket, Karlstad

SÄRF (2007), Remissutgåva av SÄRFs handlingsprogram, Borås
Vägverket (2007), *Alkohol, droger och trafik*, utg 5, Best.nr 88294, Borlänge

9.2 Elektroniska källor

Krisberedskapsmyndigheten, URL: http://www.krisberedskapsmyndigheten.se, hämtad 2007-12-03

Räddningsverket, URL: http://www.srv.se, hämtat 2007-09-27

9.3 Muntliga källor

Stenbäck I, Räddningsverket, 2007-11-30