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Optimizing Visual Vocabularies Using
Soft Assignment Entropies

Yubin Kuang, Kalle Åström, Lars Kopp,
Magnus Oskarsson and Martin Byröd

Centre for Mathematical Sciences
Lund University, Sweden

Abstract. The state of the art for large database object retrieval in
images is based on quantizing descriptors of interest points into visual
words. High similarity between matching image representations (as bags
of words) is based upon the assumption that matched points in the two
images end up in similar words in hard assignment or in similar rep-
resentations in soft assignment techniques. In this paper we study how
ground truth correspondences can be used to generate better visual vo-
cabularies. Matching of image patches can be done e.g. using deformable
models or from estimating 3D geometry. For optimization of the vocab-
ulary, we propose minimizing the entropies of soft assignment of points.
We base our clustering on hierarchical k-splits. The results from our
entropy based clustering are compared with hierarchical k-means. The
vocabularies have been tested on real data with decreased entropy and
increased true positive rate, as well as better retrieval performance.

1 Introduction

One of the general problems in computer vision is to automate the recognition
process using computer algorithms. For problems such as object recognition
and image retrieval from large databases, the state of the art is based on the
bags of words (BOW) framework [18, 20, 21, 23]. Firstly a set of interest points
are extracted in each of the images using interest point detectors[6, 11, 14, 13]
or dense sampling. Then feature descriptors e.g. SIFT or SURF [11, 2, 15] are
computed at each interest point. To enable fast matching, feature descriptors
are quantized into visual words as a vocabulary, where the descriptors assigned
with the same word are regarded as matched. Finally, the co-occurrence of visual
words between a query image and those in the database is then used to generate
hypotheses of matched images. The matching is often based on the histograms of
visual words and the L1 norm or L2 norm of differences between two histograms
(or the intersection of two histograms) after normalization.

A good vocabulary in the quantization step of the BOW pipeline is crucial for
the recognition and retrieval system. Traditional approaches [23, 18, 21, 9] con-
struct vocabulary by clustering descriptor vectors derived from training images
in an unsupervised way, i.e. without ground truth information on which corre-
spondence class a specific feature belongs to. These approaches either suffer from
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quantization errors or have difficulties in matching wide variety of appearances
of objects in images, due to large differences in view points, lighting conditions
and background clutter as well as the large intra-class variations of the ob-
jects themselves. One way to resolve this is through learning, with the presence
of large amount of correspondence ground truth data. While obtaining ground
truth data from raw images can be expensive, incorporating such information
with proper schemes can enable efficient and accurate recognition performance.

Efforts have been made on learning vocabulary with ground truth informa-
tion. Winn et al. [26] quantized features with k-means after which the resulting
words were merged to obtain intra-class compactness and inter-class discrimina-
tion. On the other hand, Moosman et al. used random forests as the quantizer
such that at each split an entropy measure based on the class labels is maxi-
mized [17]. In [19] Perronnin et al. used class-level labels and proposed to train
class-specific vocabularies modeled by GMMs and combine them with a univer-
sal vocabulary. The most related work to ours in technical aspects, is the work
by Lazebnik et al. in [10], where they simultaneously optimize the quantizer in
Euclidean feature space and the posterior class distribution. All these previous
works imposed the supervision such that each word in the vocabulary has a
discriminative representation of the different object classes. However, they have
mainly focused on object categorization and the number of class labels is rel-
atively small (≈ 20) except for the the work in [7] introduced hidden Markov
random fields for semantic embedding of local patch features with relatively large
number of class labels ( ≈ 3600). Our approach is designed for image retrieval
and uses very large scale (≈ 80K − 250K) partially labeled patch correspon-
dences to quantize feature space in a hierarchical manner.

For object recognition, the learned vocabulary has to be more specific regard-
ing matching features. Each word in the vocabulary should contain only small
number of features such that each word might encode the appearance variations
of a single physical point. In [16], Mikulik et al. start with an unsupervised vo-
cabulary and apply a supervised soft-assignment afterwards, where words are
connected based on the statistics of matched feature points from a huge dataset
with ground truth correspondences. Another line of work [22, 24], is to incorpo-
rate the supervision into the feature metric learning before quantization such
that the matched pairs of features have small distances than non-matched pairs
in the new mapping. Both methods achieves substantial improvement in the re-
trieval tasks. Our approach works on the original feature space and encodes the
ground truth correspondences in the process of vocabulary generation.

In this paper, we focus on vocabulary for recognition and would like to ad-
dress systematically the following questions: (i) How large should the vocabulary
be? In the current literature the sizes range from less than a thousand to millions
of words in the vocabulary. This could of course be highly application dependent.
(ii) How can we evaluate the quality of the vocabulary? (iii) What is the optimal
division of the feature space into words and How do we avoid splitting matching
features into different words? To address the first two questions, we first studied
statistically how true positive rates and false positive rates in matching features
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of a vocabulary affect the retrieval performance. We then present a framework
for supervised vocabulary training using partial or full ground truth information
on correspondences. In such a way, we obtain a vocabulary that encodes the
intra-class variation of each correspondence class leading to improved retrieval
performance.

The rest of the paper is organized as follows. Section 2 contains brief discus-
sion on methods for obtaining the ground truth correspondences. In Section 3 we
present the modelling of mAP from vocabulary matching statistics. In Section 4
we describe our optimization method for training the vocabulary using ground
truth data. The method is then tested on real image data in Section 5.

2 Ground Truth Correspondence Data

In order to obtain a good visual vocabulary for object recognition in images, we
propose to learn the vocabulary using ground truth information on corresponding
points. The motivation is that we believe that this strengthens the vocabulary
as opposed to just doing unsupervised clustering and we expect the gain to be
worthwhile since the the more expensive training with ground truth is a off-line
process in the retrieval pipeline.

In order for the learned visual vocabulary to be robust a wide variety of
appearances of objects in images, the ground truth datasets should preferably
present for the same physical point or same object (i) Large intra-class variability
of the objects themselves. (ii) Large differences in lighting conditions. (iii) Large
differences in view points. We will discuss in the following some of the methods
for obtaining such data sets.

a

b c

Fig. 1. Two methods of obtaining ground truth correspondences for vocabulary train-
ing using (a) deformable shape model (b) static scene with lighting changes and (c)
structure and motion algorithms.
.
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For object categorization, intra-class variability that is present for most ob-
ject categories that are interesting for recognition. Deformable models can be
used here to generate correspondences. Training these models can be cumber-
some, but we believe that this will benefit the training process of the visual
vocabulary enabling a very fast but accurate bottom up search process, that is
based on learned high level features. In Figure 1(a) a deformable shape model
estimated from image data is shown, where the correspondences are based on
optimizing the minimum description length according to [8]. The images are
from the starfish category of the Caltech-256 object category dataset [4].

The lighting variabilities could be achieved by having images of static scenes
taken under substantially changing lighting conditions. Images taken by a camera
mounted at the entrance of a moving bus are shown in Figure 1(b). View points
variabilities could be obtained by estimating the geometry of objects from images
taken at different view points using a RANSAC framework in combination with
epipolar geometry estimation such as in e.g. [5, 1]. In Figure 1(c) the typical
result from the geometry estimation is shown. From the corresponding points in
the images, feature descriptors can then be extracted from the images. In [16],
Mikulik et al. present an efficient way of generating large scale ground truth
dataset from collections of images by image matching graph. An alternative
in [24], Strecha et al. also utilize geo-tags in their 3D-reconstruction pipeline
to obtain geometrically consistent patches. In the experimental section of this
paper the visual vocabularies are trained on partial ground truth data obtained
from the UBC Patch Data [25].

3 Modelling Mean Average Precision from Vocabulary
Statistics

One key argument made in this paper is that good retrieval systems, e.g. as
measured by mean Average Precision (mAP) can be obtained by studying the
properties of the vocabulary on the statistics of descriptor distribution both for
random (not necessarily matching) descriptor pairs and for matching descriptor
pairs. By matching descriptor pairs we do not mean descriptors that end up in
the same word in the vocabulary, but rather descriptors of matching interest
regions, i.e. regions which are matching in a ground truth sense.

We can evaluate a vocabulary with two simple characteristics, (i) the false
positive rate pfp or FPR, which is the probability that two random descriptors
end up in the same word and (ii) the true positive rate ptp or TPR, which is the
probability that two matching descriptors end up in the same word.

We argue that the mapping from true positive and false positive rates to mean
average precision can be modelled and analyzed. High mean average precision is
obtained using vocabularies with low false positive rates and high true positive
rates.

The mapping depends on many characteristics of the test, such as the number
of features in each image, the number of images in the database, the proportion
of positive vs negative answers to a image retrieval query etc. In this model we
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have for simplicity assumed that histograms are measured with the normed L1

distance, but other distance metrics could be used. In fact the modelling could
come to good use in determining which metrics to use.

Modelling the L1-distance Distribution for Two Random Images
Assuming that the distribution of features in different visual words is known,

and assuming that features in two random images are independent, it is possible
to simulate and model the distribution of L1 distances. In Figure 2a three such
distributions are shown for small, medium and large vocabularies.

For large vocabularies the histograms are sparse. A reasonable approximation
here is that the distance is d = (2n − 2o)/n, where n is the number of features
in the images and o is the number of common features. The number of over-
lapping features o can be approximated reasonably using binomial distributions
using n samples with probability p = n/w. For increasing vocabulary size this
distribution is pushed towards the right end of the spectrum.

Modelling the L1-distance Distribution for Two Matching Images
For two matching images we assume that there are a number of matching

features. For each matching feature pair there is a certain probability pt that they
end up in the same word. For the remaining features we assume that they end up
in random words according to the distribution above. The resulting distribution
of L1-distance is similar to that of two random features, but pushed slightly to
the left. In Figure 2a three such distributions are shown, again for small, medium
and large vocabularies.

Modelling Precision, Recall and Mean Average Precision
For each vocabulary as characterized by its true and false positive rates

(ptp, pfp), we can estimate the probability distribution of matched image L1-
distance, pm, and the probability distribution of two random image L1-distance,
pr.

Assuming that in a random query there are Ninlier matching images and
Noutlier non-matching images. For each threshold D of L1-distances we obtain
a query result with precision

R =
Ninlier

∫D

0
pm(x)dx

Ninlier

∫ 2

0
pm(x)dx

=

∫ D

0

pm(x)dx

and recall

P =
Ninlier

∫D

0
pm(x)dx

Ninlier

∫D

0
pm(x)dx+Noutlier

∫D

0
pr(x)dx

=

∫D

0
pm(x)dx∫D

0
pm(x)dx+K

∫D

0
pr(x)dx

, where K = Noutlier

Ninlier
is the ratio of outliers to inliers in a typical query.

Note that the domain of the normalized L1 distance is between [0,2]. There-
fore, in the equation for recall, we have used 2 as the integration limit in de-
nominator. It follows that the integral in the denominator is 1. From these two
curves it is straightforward to estimate the mean average precision.

Figure 2b shows how the mean average precision depends on the 10-log of
the true and false positive rates (ptp, pfp). Notice that this confirms the theory
that quite large vocabularies are needed for good performance.
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A key argument made here is that e.g. for hierarchical vocabulary building,
increased levels of splitting of the vocabulary gives lower true and false positive
rates. But already for small vocabularies, by demonstrating that one obtains
higher true positive rates, while retaining a low false positive rate will be bene-
ficial for the end performance as measured by the mean average precision.
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Fig. 2. (a) L1-distance distributions for random image pairs (red) and matching image
pairs (green) for three vocabularies of different size. (b) Mean Average Precision as a
function of 10-log of false positive rate (x-axis) and 10-log of true positive rate (y-axis).

4 Optimizing the Vocabulary with respect to Entropy

We will concentrate on hierarchical divisions of the descriptor space. The result-
ing vocabularies have the advantage that visual word generation is extremely ef-
ficient. Another advantage during training is that the learning and corresponding
optimizations only have to be done at each hierarchical split in the tree.

We assume that a number of descriptors are given, xi ∈ Rd, i = 1 . . . N ,
and that correspondences among such descriptors are known. Here we have rep-
resented such correspondences as the correspondence class Ci for each point i.
The number of correspondence classes is denoted by Nc. In the typical datasets
that we have worked on, the numbers of descriptors are in the order of 500K
and the numbers of correspondence classes are in the order of 150K. The corre-
spondences have been generated by sampling from 3D reconstructions of scenes.
See Section 5.1 for details. Other ways of generating correspondences could be
through geometric matching in image pairs, tracking of points in image sequences
or by hand annotated data.

We will concentrate on the problem of recognizing specific scenes and the
data that we have used is chosen so that points are in correspondence if they
denote the same physical point in the scene. That descriptors are in different
correspondence classes does not necessarily mean that they are not in corre-
spondence. On the contrary, we expect there to be many descriptors in different
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correspondence classes that actually correspond quite well. However for points
that are in correspondence we would like the corresponding descriptors to end
up in the same word in the final vocabulary.

Our hierarchical division will be based on k splits in the descriptor space D
at each step. Each such split is represented by k center points c1, . . . , ck and a
scalar m that can be interpreted as a margin. Low values of m represent sharper
cuts and high values represent softer classification.

We study both hard assignment and soft assignment in the following sense.
For hard assignment a descriptor is put in the bin i corresponding to the closest
center ci. For soft assignment we put each point x in the k bins in proportion to
the weight wi according to

wi =
exp( |x−ci|m )∑k
j=1 exp(

|x−cj |
m )

. (1)

Contrary to [10] we use exponential distributions, which give smoothing that
only depends on the differance of distances to the cluster center. Descriptors
for which the distance to the closest centers is similar fall into several bins to a
fair degree, whereas descriptors for distance difference between the two closest
centers is much larger than m fall essentially only into one part of the tree.

4.1 Entropy Model

To optimize the division parameters z = (c1, . . . , ck) for hard assignment and
z = (c1, . . . , ck,m) for soft assignment, we use entropy as a criterion. Entropy
takes into account both that the split is balanced, i.e. that approximately equal
number of descriptors fall into each bin, and that the correspondence classes are
split as cleanly as possible. The entropy for a random variable X with N possible
states is defined as E = −

∑N
i=1 p(i) log2(p(i)) , where p is the probability density

function of X. Here we use the 2-log as it is more intuitive and easier to interpret.
Entropy is fairly easy to use in the sense that it is straightforward to define

for both hard and soft assignment. The probability density function is calculated
in the following manner. In each split we calculate the (weighted) histogram of
descriptors in each correspondence class htot = (h(1), . . . , h(Nc)) before the split.
Each descriptor falls partly in the k different parts of the tree, thus contributing
in part to both the k-weighted histogram h1, . . . hk.

By normalizing the histograms with the sum, we obtain correspondence class

probabilities, i.e. ptot(i) = htot(i)∑Nc
i=1 htot(i)

, for the distribution of descriptors among

the correspondence classes before the split and similarly for p1, . . . , pk. The en-
tropy before the split is defined as Etot =

∑Nc

i=1−ptot(i) log2(ptot(i)) , and simi-

larly for the k branches, Ej =
∑Nc

i=1−pj(i) log2(pj(i)) . For the split as a whole

we define the entropy as Esplit =
∑k

j=1
nj

ntot
Ej . Here nj =

∑Nc

i=1 hj(i). Ideally
each split, which uses log2(k) extra bits of information, should lower the entropy
with log2(k) bits, i.e. we expect Esplit to be approximately log2(k) less than Etot.
In practice it is difficult to split all examples in the descriptor space as cleanly
as this.



8

4.2 Optimizing Entropy

For training data (x1, . . . , xN ), (c1, . . . , cN ) with possible weights (y1, . . . , yN ),
it is thus possible to define the split entropy Esplit as a function of the divi-
sion parameters z. For hard assignment, using z = (c1, . . . , ck), this function is
not smooth. The entropy is typically constant as the decision boundaries are
perturbed as long as they do not pass through any of the points xi. For soft
assignment, however, entropy is a smooth function of the division parameters
z = (c1, . . . , ck,m).

In our experiments we have tried a few different approaches for optimizing E
with respect to z. We did not optimize E with respect to the margin m in this
paper.

In the main approach we initialize using k-means iterations with a couple
of different starting points. The best initial estimate is then used as an initial
estimate to a non-linear optimization of z. Here we have calculated the analytical
derivatives dE

dz , which are then used in a non linear optimization.

The entropy for the split can be written as Esplit =
∑k

j=1
nj

ntot
Ej . which

since njpj(i) = hj(i) gives Esplit =
∑k

j=1
1

ntot

∑Nc

i=1(−hj(i) log2(pj(i))) . The
derivative of Esplit is thus

dEsplit

dz
=
−1

ntot

k∑
j=1

Nc∑
i=1

(
dhj(i)

dz
log2(pj(i)) +

nj
ln(2)

dpj(i)

dz
) (2)

Here the sum of the second term over all i is zero, since the sum of the proba-
bilities is constant. Thus

dEsplit

dz
=

1

ntot

k∑
j=1

Nc∑
i=1

(−dhj(i)
dz

log2(pj(i))) . (3)

Here

dpj(i)

dz
=

1

nj

dhj(i)

dz
− hj(i)

n2j

Nc∑
m=1

dhj(m)

dz
. (4)

The derivatives of the histogram bins are
dhj(i)
dz =

∑
j,cj=i

dωj(j)
dz . Finally the

derivatives of the weights are

dωj(i)

dz
=

dej(i)
dz∑k

m=1 em(i)
− ej(i)

∑k
m=1

dem(i)
dz

(
∑k

m=1 em(i))2
, (5)

where
dej(i)

dz
= ej(i)(

(xi − cj)
m|xi − cj |

dcj
dz
− |xi − cj |

m2

dm

dz
. (6)

The value E and the gradient dE
dz are utilized in a non-linear optimization

update with the limited-memory Broyden-Fletcher-Goldfarb-Shanno method, [3,
12]. In the implementation we have limited the maximum number of iterations of
the optimization to 20 iterations for the first levels, but increased to 30 iterations
for the subsequent levels to avoid over-fitting. This scheme is general for different
values of k.
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5 Experimental Validation

We have tested our method on vocabulary construction with real image data.
The dataset is described in details in Section 5.1. The resulting vocabularies are
evaluated in Section 5.2.

5.1 Dataset and Evaluation

We use three sets of data with partial ground truth on correspondences, from the
UBC Patch Data [25]. These datasets contain scale and orientation normalized
patches (from either difference of Gaussians (DOG) or Harris corners detectors)
sampled from 3D reconstructions of three landmarks (Statue of Liberty, Notre
Dame and Yosemite). In Figure 3 we show two sets of patches in the same corre-
spondence class from the Statue of Liberty and Notredame dataset respectively.
Each dataset (Notre Dame, Liberty and Yosemite) contain approximately 500K
descriptors in 150K correspondence classes.

For our experiments, we extracted SIFT descriptors on DOG patches. To
provide correspondence ground truth for training and evaluation, we generated
the whole set of matched pairs for each correspondence class, and a random
non-matched for each patch to form non-matched pairs (with the same reference
image as suggested by [25]).

We then used the methods in Section 4 to construct vocabularies based on
the SIFT descriptors and partial ground truth for these datasets. We have here
used a subset of the data for the training and another non-overlapping subset
for the testing.

5.2 Vocabularies with Hard Assignment

In the first experiment we trained vocabularies with hierarchical k = 3 splits
with 9 levels by optimizing entropy based on soft assignment. When testing,
we used hard assignment with respect to the optimized k cluster centers. We
compare the results with those of hierarchical k-means with 3 splits in each
node. The vocabularies are trained both for hierarchical k-means and for entropy
optimization on a subset (50 percent) of the Statue of Liberty dataset.

The resulting vocabularies were then tested on a subset of the Statue of
Liberty dataset (20 percent) which does not contain the same correspondence
classes as were used in the training. We measured how the entropy decreases with
increasing vocabulary size. Also a subset of matching points were used to test
how often two matching points end up in the same word (True Positive Rate,
TPR) . Finally a subset of pair of random unmatched points in the dataset
were used to see how often two unmatched points end up in the same word
(False Positive Rate, FPR). This result is shown in figure 4. Notice also that the
probability of two matching features ending up in the same word is higher for
the entropy minimized vocabulary for unseen data points, which suggests the
generality of the learned vocabulary. Moreover, we obtained slightly lower FPR
across different levels of the tree. We also observed that the entropy is lowered by
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approximately 1.5 bits (log2(3) ≈ 1.585) with each level in the hierarchical split,
but slightly more so when using an entropy minimized vocabulary, suggesting
that entropy is a fair measure on the quality of the resulting clusters. In this
experiment we used a fixed setting for the margin m = 1.

Fig. 3. Correspondence patches from the Statue of Liberty (Top) and Notredame (Bot-
tom) dataset..

To further investigate the generality of the method, we have trained vocab-
ularies on 50% of the features from the Statue of Liberty, the Notre Dame and
the Yosemite datasets and tested it on the remaining 50% features. The op-
timized vocabulary compared to hierarchical k-means results in lower entropy
and higher TPR. The resulting plot is very similar to Figure 4 suggesting the
optimized vocabulary generalized well to new data.

5.3 Vocabularies with Soft Assignment

In the next experiment, we used the same vocabulary as in Section 5.2, but
switched to soft assignment when passing unseen feature points down the hier-
archical tree. Features can then fall in several children nodes where their weights
to the corresponding centers are larger than a preset threshold ε = 10−6. This
results in multiple word ID’s for a single feature. If we regard two features as
matched if they share the same words as before, we will expect higher TPR as
matched features will have greater possibility of overlapping. On the other hand,
two random non-matched features will also tend to have one of the word ID’s
in common. Consequently, the FPR will also increase. Here, we also fixed the
margin to m = 1 during training.

We expect our optimization framework to improve the TPR while controlling
the FPR by training on ground truth data. In Figure 4, we can see that, the
proposed method is marginally better than the hierarchical k-means with respect
to the TPR and FPR curve. Only achieving marginal optimality might be due
to the fact that we have not used enough data for training. On the other hand,
we noted that both soft assignment vocabularies have better matching property
than hard assignment vocabularies. For instance if we aim for 5% false positive
rate, soft assignment achieves approximately 60% true positive rate while hard
assignment obtains only 45%.
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Fig. 4. Evaluation on Liberty data. (50% for training and 20% for testing with k = 3.
Left: Estimated probability of two corresponding (TPR) and two random descriptors
(FPR) ending up in the same word as a function of tree depth. Middle : Entropy as a
function of tree depth. Notice that with each depth entropy is lowered close to 1.5 bit.

5.4 Effects of Margin

In this section, we studied the effect of different margins on soft assignment
tests. Here we fixed the value of m during the training stage and evaluate how
margins affect the match performance for test data. Note that as m becomes
smaller, the soft assignment behaves in a similar way as hard assignment. On
the other hand, larger m implies more ambiguities for each features ending up
in different words; therefore, possibly higher false positive rate for matching.

We have experimented with m = 0.25, 0.5, 1 (Figure 5). As expected, when
increasing the margin we can achieve better TPR with the trade-off of worse
FPR at the same level of the tree. The optimized vocabularies are better than
hierarchical k-means across different margins indicating the usefulness of uti-
lizing ground truth. More importantly, the overall statistics shed lights on how
we should choose the size of the vocabularies (level of hierarchical trees). The
converging trend of all curves with different m’s suggests that at certain number
of words, we can always obtain better TPR with soft assignment but approx-
imately the same FPR. However, such better performance comes at the price
of heavier computation when assigning features to multiple leaf nodes. If m is
too large, features will end up in many words at the leaf node. Therefore, the
efficiency of vocabulary representation of features is overwhelmed by computing
the intersections in the space of word ID’s.

5.5 Image Retrieval

In this section, we verify the usefulness of optimized vocabulary in the recogni-
tion pipeline on the Oxford 5K dataset [20, 21]. The task is to retrieve similar
images to the 55 query images (5 for each of the 11 landmarks in Oxford) in the
dataset of 5062 images. The performance is then evaluate with mean Average
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Fig. 5. The effects of different margins on soft assignment with respect to TPR and
FPR. m = 0.25, 0.5, 1 and hard assignment, where k = 3

Precision (mAP) score. Higher mAP indicates that the underlying system on
average retrieves the similar corresponding images at the top of the ranked list.

We follow the BOW baseline system, and use a hierarchical k-means vo-
cabulary and our optimized vocabulary respectively for vocabulary training.
We trained the vocabulary with 50% of a mixture of Liberty, Notredame and
Yosemite patch data which contains approximately 800K features and 250K cor-
respondence classes in total. After that, we use hard assignment to quantize the
SIFT features from the Oxford 5K images. We observe that our optimized vocab-
ulary is always superior to the unsupervised hierarchical k-means by capturing
the local characteristics of the feature space. When increasing the number of
levels to 11 we can see that the performance drops both for hierarchical k-means
and our method. This can be an indication that the vocabulary is over-trained
on the patch data. Note that these results are not directly comparable with [20]
in which vocabularies are trained on features in the images where the actual
retrieval is performed.

Level HIK k = 3 Our Method k = 3

9 0.1744 0.1955

10 0.1849 0.1979

11 0.1805 0.1837

Table 1. mAPs with different levels of hierarchical k-means and our method with k =
3 on the Oxford 5K dataset

6 Conclusions

In this paper, we have developed a general method for optimizing hierarchical
visual vocabularies using correspondence ground truth between features. The
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ground truth prior knowledge on the feature space is utilized to refine the local
structures of the trained vocabulary such that matched features will tend to fall
in the same word. We propose the use of a soft margin hierarchical k-splits tree
where the optimization of the tree is based on minimizing an entropy criterion
defined on ground truth data. Unlike the traditional clustering methods such as
hierarchical k-means, optimization with respect to entropy enables the cluster
centers to adjust locally to capture the implicit connections between features.
We demonstrate the method on real dataset with promising results. Compared
to the unsupervised hierarchical k-means with hard assignment, the optimized
vocabulary obtained higher true positive rate and lower false positive rates.
We also show that soft assignment boosts the overall performance regarding
matching features.

We have in this paper focused on the optimization aspects of vocabulary
training using existing ground truth data. Due to the high dimensionality of
the parameter space, the learning requires huge amounts of data in order to
avoid over-fitting. Therefore, as future work, we aim to generate and utilize
large scale ground truth data to facilitate robust training with geometry or
deformable models. We need also to cope with the inherent quantization errors
introduced by hierarchical quantization. We would like to investigate how the
soft-assignment process might mitigate the such quantization errors. To enable
large scale training, we are also pursuing efficient optimization techniques for
our approach.
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