Anlagda våtmarkers betydelse för klockgrodan
-
analys av landmiljön med hjälp av GIS

Lars Holgersson

2011

Miljövetenskap
Examensarbete för magisterexamen 30 hp
Lunds universitet
Anlagda våtmarkers betydelse för klockgrodan – analys av landmiljön med hjälp av GIS

Lars Holgersson
2011

Handledare:
Per Nyström
Miljövetenskap
Lunds universitet

Marika Stenberg
Ekoll AB
Abstract
The fire-bellied toad (*Bombina bombina*) is an amphibian that since its national classification as an endangered species in 2005 (NT- Near Threatened) has increased in population size and distribution. Today the population in Sweden is considered viable since 2010 (LC- Least Concern) and it is possible that constructed wetlands in Scania have had positive effects on the fire-bellied toad. The importance of constructed wetlands for the populations of fire-bellied toads has however not been evaluated. Moreover it is important to identify the aquatic and terrestrial factors that result in colonization to fire-bellied toads in constructed wetlands.

The study was based on data from 2008-2009 in 14 constructed wetlands/ponds in the area of Baldringe, Scania. The aim was to study the underlying causes for establishment of the fire-bellied toad. The method used was GIS (Geographical Information System)-based analysis in which different terrestrial parameters were compared and quantified. More data from various aquatic parameters were also used in order to further expand the analysis. The results from the GIS- analysis were summarized using PCA (Principal Component Analysis) and then a t-test compared the characteristics between wetlands that were or were not colonized by fire-bellied toads.

These results showed that the terrestrial environment surrounding the constructed wetlands did not appear to have any influence on the establishment of a population of fire-bellied toad. The parameters of greatest importance were age of the wetland/pond, coverage of submersed vegetation, pH, distance to roads and conductivity. It was more likely to find fire-bellied toads in older wetlands/ponds, if there was a dense coverage of submersed vegetation, had a pH of at least 8.84 and longer distance to roads in general. At the same time conductivity should be lower than 55 mS/m. This study suggest that some constructed wetlands indeed could have positive effects on the fire-bellied toads and that GIS can be a good tool for analyzing these type of questions.
Innehållsförteckning
Abstract ... 4
Inledning .. 7
 Metapopulationsdynamik ... 7
 Generella hot- globalt och i Sverige .. 8
 Situation i Sverige .. 9
 Klockgrodan i Sverige .. 9
 Krav på habitat .. 10
 Lokala hot .. 10
 Spridningshinder ... 11
 Åtgärder för att gynna klockgrodan ... 12
 Anlagda våtmarker .. 13
 Miljömålen .. 15
 Syfte ... 16
 Frågeställning .. 16
 Frågeställningar ... 17
Material och metod ... 18
 Landmiljö ... 18
 Vattenmiljö .. 20
 GIS .. 20
 Statistik- SPSS .. 21
 Avgränsningar .. 22
 Resultat .. 23
Diskussion .. 30
Referenser ... 33
Inledning
Runt om i världen minskar amfibierna både i utbredning och i antal. Enligt Stuart m.fl. (2004) är amfibier mer hotade än fåglar och däggdjur samt att 43,2 % av groddjurspopulationerna minskar i världen och 7,4 % av dem är nära utrotning.

I den här uppsatsen undersöks dock bara en art i Sverige, klockgroda (*Bombina bombina*), vars utbredning har ökat markant inom ett område, Baldringemorådet i Skåne. För att vända utvecklingen i positiv riktning har det anlagts dammar bl.a. i syfte att underlätta amfibiers spridning. Med hjälp av GIS (Geographic Information System) har jag studerat olika landparametrar, såsom marktyp och vägar, för att se om dessa parametrar påverkar, i det här fallet, klockgrodans möjlighet till att sprida och etablera sig i våtmarker som anlagts med miljöstöd i jordbrukslandskapet. Uppsatsen är uppbyggd i fyra delar, där inledningskapitlet är disponerat i syfte att kortfattat redogöra för hur amfibiepopulationer generellt fungerar, sprider sig och vilka hot som finns. Därefter beskrivs klockgrodan och dess utveckling i det aktuella området. Efter en koppling till de miljömål som indirekt påverkar klockgrodans existens, avslutas inledningen med syfte, hypotes och frågeställningar.

Metapopulationsdynamik
Groddjur lever ofta i metapopulationer, likaså klockgrodan. En fungerande metapopulation består av ett nätverk av sub-populationer i ett område med minst en baslokal varifrån det sker en spridning av individer till närliggande lokaler. För groddjur handlar det ofta om minst ett större vatten med flera andra lekvatten inom spridningsavstånd från baslokalen. Om en mindre population försvinner från, ett till baslokalen närliggande vatten, kan individer från baslokalen återkolonisera det om reproduktionen i baslokalen är god (Nyström & Stenberg, 2008). Det skall också tilläggas att inte alla lekvatten är lika viktiga i en metapopulation. En baslokal med god kontinuerlig reproduktion är viktigare eftersom spridningen av en

Generella hot- globalt och i Sverige

olika goddjursarter i varierande grad, men är dödlig för de flesta. Ranaviruset orsakar blödningar i huden och i inre organ vilket leder till en snabb död hos värddjuret, dock är den inte lika vida spridd i världen.

Situation i Sverige

Klockgrodan i Sverige

Innan den industriella jordbruksrevolutionen sträckte sig klockgrodans utbredningsområde genom södra och delar av västra Skåne, men sedan i mitten av förra århundradet har populationerna stadigt minskat i antal och storlek. Det har varit svårt att bedöma artens naturliga utbredning, populationsutveckling och orsakerna till artens tillbakagång eftersom man under historiens gång planterat ut klockgroda i Skåne. Till slut fanns endast Mölle fälld kvar av de ursprungliga svenska lokalerna, där den sista klockgrodan observerades under 1960-talet (Andrén & Berglund, 2006).
Krav på habitat

Lokala hot
Hotbilden mot amfibier i ett nationellt perspektiv skiljer sig antagligen inte nämnvärt från det globala. Dock visar forskning på ytterligare mer preciserade hot såsom:
Förekomst av rovfisk, utdikning, obrukade marker som tillåts växa igen, intensivt betningstryck (Andrén & Berglund, 2006) samt spridningshinder.

Ett direkt hot är förekomst av rovfisk och kräftor i lekdammar. Förekomst av rovfisk eller kräftor i lekdammar ökar risken för grodyngel att bli uppätta, och när det gäller kräftor (samt gräskarp) att vattenväxtet betas ner. Utdikning, som förekommit tidigare har lett till att många våtmarker försvunnit. I Skåne återstår endast ca 10 % den våtmarksareal som fanns innan man började dika ut i stor skala (K. Olsson muntligen). Konsekvenserna av detta kan bli att många potentiella grodvatten försvinner och förhindrar att en art som klockgroda kan sprida sig vidare i ett område. Förhindras spridningen av en population kan det i slutänden leda till isolering och ökad risk för att arten dör ut i området om arten har dålig reproduktion under något/några år.

Många av de potentiella lekdammar som finns på obrukade marker tillåts växa igen, med följden att spridningen av arten inte blir lika effektiv samt att etablerade populationer tvingas bort eller dör ut. Träd och större buskage eller flytbladsvegetation som täcker hela ytan förhindrar uppvärmning som är avgörande för att klockgrodan skall nå framgång i lek och reproduktion. Klockgrodan påbörjar sin lek när vattentemperaturen når 15 grader °C och en
alltför skuggad vattenyta blir inte lika snabbt uppvärmd av solen (Stenberg & Nyström, 2010). Ett annat problem rör sig om för högt betestryck i anslutning till dammar där grodorna finns vilket leder till söndertrampade strandzoner samt övergödda vatten. Övergödningsen leder till ökad primärproduktion och att fytoplankton (växtplankton och cyanobakterier i den fria vattenmassan) ökar snabbare i tillväxt än annan submers växtlighet (undervattensväxtlighet). Det finns inga studier fram till idag som utrett om klockgrodan är känslig för direkt påverkan av ökade koncentrationer av kväveföreningar som nitrit, nitrat eller ammonium eller olika fosforsutnings. Studier har dock gjorts på embryo från lövgroda och strandpadda vilka utsattes för ammoniumnitratkoncentrationer på 0-200 mg/l. Känsligheten var störst hos lövgrodan och man upptäckte att dödligheten ökade redan vid koncentrationer på 50 mg/l (Ortiz m.fl. 2004). I en annan studie (Nyström m.fl. 2007) fann man att lökgrodan inte kunde reproduera sig i de mest näringsrika vattnen. Reproduktionen var lyckad endast där ammoniumkoncentrationen var lägre än 0,2 mg/l. Ammoniumkoncentrationen i de anlagda dammarna, som undersöks i den här studien, är i alla utom tre under detektionsgränsen 0,009 mg/l.

Spridningshinder
Spridningshinder kan vara vägar och andra faktorer som t.ex. stora sträckor utan vatten, försvårar för groddjuren att förflytta sig mellan olika habitat. I områden med mycket vägar risikerar grodorna bli överkörda i sin vandring från övervintringsplats eller när de försöker sprida sig vidare mellan våtmarker och dammar (Seiler, 1994.)

Likheterna mellan de studier jag tagit del av och denna ligger i antagandet att: en ökad mängd väg i ett område kring en damm och avståndet till denna, leder till ökad trafikintensitet. Finns det ingen väg i ett område blir det ju följaktligen ingen trafikintensitet. Det anses inte heller som optimalt för klockgrodans, eller andra amfibiers, överlevnad om omgivande landskap kring en damm består till stor eller mycket stor del av intensivt odlad mark (Briggs, 1995). Om det beror på höga närsaltsnivåer, bekämpningsmedel, spridningshinder eller någon annan anledning är dock inte helt klarlagt.

Fahrig m. fl. (1994) undersökte korrelationerna mellan trafikintensitet och dödligheten bland grodor och paddor och fann att ju mer trafik på vägarna desto högre var dödligheten bland arterna. Det skall ju tilläggas att den studien och denna rapport inte använt sig av liknande metodik. De använde sig av en in situ metod medan den som använts här endast mätt upp väg
av en viss dimension i GIS. Även i en dansk studie (Hels & Buchwald, 2001), där man tog hänsyn till djurens vandring över dygnet (fram och tillbaka över en väg under ett dygn), kom man fram till att trafikintensiteten korrelerade positivt med antalet döda djur men också att det är beroende på när djuren rör sig över vägen. Under de timmar, närmare natten, då trafiken i princip upphörde minskade dödligheten vid passering drastiskt. De jämförde hastigheten mellan olika grodarter (0,5-2m/min) och kom fram till att det var mindre dödlighet för de snabbare djuren i trafikintensiteter upp till 15000 fordon/dygn. Dock jämnade fler fordon ut skillnaderna.

Det måste sägas att det finns en hel del material att tillgå angående spridningshinder i form av vägar, men att, något hårddraget, slutsatserna de flesta kommer fram till är just att man kan se en tydlig korrelation mellan ökad dödlighet bland amfibier och hög trafikintensitet. Dock har inte någon studie på just klockgrodan kunnat hittas, men det är en av de saker jag indirekt undersöker med denna studie. Jag kommer dock inte att kunna säga något konkret om dödligheten med mycket vägar, bara om det troligen påverkar/ inte påverkar grodans etablering i en damm.

Åtgärder för att gynna klockgrodan
uppskattades till ca 3400 stycken. 2006 upptäcktes ytterligare 28 lokaler med klockgroda i Baldringemarbetet och fortsatt expansion under 2007 gjorde att antalet spelande hanar uppskattades till 7500 stycken på 310 lokaler (Stenberg & Nyström, 2008). Arten antas idag finnas på än fler platser och i större antal men har inte inventerats ordentligt på senare år.

För att underlätta för artens spridning räcker det kanske inte endast med utsättning av individer. Klockgrodan behöver landmiljöer liknande naturbetesmarker med god födotillgång och möjlighet att övervintra under exempelvis stenar och stockar samt fortpplantningsmiljöer. Om detta saknas kan det kanske hjälpa artens fortlevnad om det grävs fler dammar och därigenom bättre på möjligheterna för klockgrodan att kunna sprida sig.

Anlagda våtmarker

Det område som undersöks i den här studien kallas Baldringemrådet och är beläget i Ystad -, Sjöbo - och Tomelilla kommun (Figur 1). Landskapet i och kring Baldringemrådet är väl lämpat för anläggning av dammar med sin varierade topografi och ett kulturlandskap med varierat växtsamhälle som gynnar den biologiska mångfalden.
Figur 1. Överblick av Baldringeområdet. Projektstödsdammarna som avses i denna rapport har valts ut bland en större grupp projektstödsdammar eftersom det inom en radie av 500 m fanns minst ett naturligt lekvatten för klockgroda. Området som dammarna ligger spridda i är beläget främst i Ystads kommun men även Sjöbo och Tomelilla kommun och kallas Baldringeområdet.

Eftersom dammarna i det undersökta området ligger utspridda över en större geografisk areal är det lämpligt att använda sig av ett verktyg som GIS. Med hjälp av GIS går det att sammanfoga betydande mängd geografisk information på ett betydligt lättare sätt än om man endast kunnat arbeta på plats, vid dammarna. Utan GIS hade det varit betydligt svårare att mäta olika parametrar inom en buffertzon på 1000 meter. En buffertzon på 1000 meter är vald
utifrån det avstånd som forskare tror att klockgrodan kan sprida sig över land. Man har i Danmark sett att klockgrodan kan sprida sig upp till 1700 m från det ursprungliga vattnet (Briggs, 1995). Då detta kanske får anses som ett extremvärde valdes ett mindre avstånd som buffertzon baserades på.

Miljömålen
Det som i övergripande mening, på ett nationellt plan, omfattar det som nämnts tidigare i inledningen kring biologisk mångfald är de nationella miljömålen, mer specifikt i tre av dem. Klockgrodan fortsatta existens, främst i det svenska odlingslandskapet, kan kopplas till de tre nationella miljömålen för: Myllrande våtmarker, Ett rikt odlingslandskap och Ett rikt växt- och djurliv.

Generationsperspektivet enligt regeringens prop. 2004/05:150 kapitel 15 om Myllrande våtmarker innebär bl.a.:
- Att det ”i hela landet finns våtmarker av varierande slag, med bevarad biologisk mångfald och bevarade kulturhistoriska värden”.
- ”Hotade arter har möjlighet att sprida sig till nya lokaler inom sina naturliga utbredningsområden så att långsiktigt livskraftiga populationer säkras”.

Det skall tilläggas att denna proposition verkar rikta mest mot myrmarkområden men definitionen av våtmark är vidare än så.

Enligt samma proposition, kapitel 20 om Ett rikt växt- och djurliv innebär detta bl. a:
- Att ”landskapet, sjöar och hav är så beskaffat att arter har sina livsmiljöer och spridningsvägar säkerställda”. Fokus ligger i det här fallet på landskapet.
- Att ”det finns tillräckligt med livsmiljöer så att långsiktiga livskraftiga populationer av arter bibehålls (gynnsam bevarandestatus)”.
- ”I områden där viktiga naturtyper skadats restaureras sådana så att den biologiska mångfalden väsentligt förbättras. Det kan t.ex. handla om naturtyper som generellt minskat kraftigt i yta och utbredning, som fått sina kvaliteter som livsmiljö generellt utarmad, som hyser en stor mångfald av arter eller som hyser genetiskt särpräglade bestånd av arter”.

15
Det tredje miljömål som ligger närmast klockgrodans fortsatta existens är kap. 17 i prop. 2004/05:150 om Ett rikt odlingslandskap, vilket bl. a. nämner att:

- ”Odlingslandskapet är öppet och variationsrikt med betydande inslag av småbiotoper och vattenmiljöer”.
- ”Hotade arter och naturtyper samt kulturmiljöer skyddas och bevaras”.
- ”Odlingslandskapets icke-domesticerade växt- och djurarter har sina livsmiljöer och spridningsvägar säkerställda”.

Syfte

Baserat på en inventering av klockgroda i Baldringeområdet i Skåne år 2008 samt vattenkemiska provtagningar (genomförda av Per Nyström och Marika Stenberg) undersökte jag 14 projektstödsdammar, för att studera hur förutsättningarna för etablering av klockgroda ser ut. Man har i 10 av dessa 14 projektstödsdammar observerat klockgroda sommaren 2008-2009 och jag undersökte varför klockgrodor koloniserar projektstödsdammarna eller inte. I mitt arbete undersökte jag anlagda dammar för att se om man kan urskilja vissa parametrar som påverkar framgången för etablering av klockgroda. Förhoppningsvis skall detta utmynna i någon koncensus om var och hur man i framtiden skall anlägga dammar med syftet att öka spridningen av klockgrodan.

Frågeställning

Klockgrodan är, precis som andra groddjur, beroende av bra lekvatten och bra landmiljöer (skall erbjuda övervintringsmöjligheter, spridningsmöjligheter och födosöksområden). Förutom vattenmiljön kan landmiljön spela stor roll för överlevnad och spridning av klockgrodan. Landmiljön kommer i den här studien att definieras inom en radie av 1000 m från dammarna och där inom skall antalet meter vägsträcka av en viss dimension mätas. Min hypotes är att landmiljön så långt som upp till en radie av 1000 m spelar en avgörande faktor i klockgrodornas val av våtmark. Jag kommer dock bara titta på om de finns eller inte finns i en viss damm, inte överlevnadsgrad över en längre tid.
I och med att amfibier lever i metapopulationer är det nödvändigt att vissa av deras vattenlokaler är större och kan fungera som baslokal till övriga kringliggande vatten. Jag kommer därmed undersöka huruvida en anlagd damms ålder och storlek har betydelse för etablering. Min andra hypotes är att en stor damm kan hyssa många individer och ju högre ålder en damm har desto bättre naturlig flora/ fauna får en damm. Detta innebär att fler klockgrodor kan etablera sig i stora, äldre dammar än i små, nyetablerade dammar. Individer räknas i den här rapporten som spelande hanar, vilka är enklast att räkna.

I ett modern odlingslandskap har många naturliga vatten som klockgrodan kan etablera och sprida sig via försvunnit p.g.a. utdikning och andra orsaker. Om det anläggs dammar i ett område för olika syften t.ex., öka den biologiska mångfalden, näringsretention m.m., kan detta främja arterna i området genom att det ökar dess chanser att hitta lekvatten och levnadsmiljöer. Det kommer inte undersökas på vilket sätt projektstödsdammar påverkar etableringen i ett område, men om man kan konstatera att de faktiskt etablerar sig i projektstödsdammar visar detta att dammarna har positiv effekt för klockgrodor.

Frågeställningar

- På vilket sätt skiljer sig markanvändningen runt vattnen mellan de dammar med klockgrodor och övriga? Markanvändning har delats in i öppen mark, odlad mark, lövskogsmark, barrskogsmark.
- Hur mycket väg finns det inom en radie av 1000 m från dammarna och hur kan det påverka framgången för etablering? Spelar avståndet till vägen/ vägarna någon roll?
- Kan orsaken till klockgodans etablering bero på hur länge en damm har funnits och dess storlek då det inte blir lika stor konkurrens om plats i en större damm. Finns det något samband mellan våtmarkens storlek och ålder och klockgodans möjlighet till etablering? Och hur ser i så fall sambandet ut?
Material och metod
Jag har inriktat mig på att hitta litteratur som på ett eller annat sätt tangerar områdena landhabitat eller vattenhabitat för klockgrodan. Även om litteraturen inte är så omfattande med information om just klockgrodan finns det fortfarande mycket litteratur att tillgå om andra amfibier, som i en del fall går att översätta till att passa i denna rapport om klockgrodan.

Landmiljö
Av de parametrar som ingått i undersökningen kan man kategorisera lövskog, barrskog, öppen mark och odlad mark under denna rubrik. De flesta studier som gjorts på klockgrodans habitat har även tittat närmare på andra miljöfaktorer och jag skall försöka bena ut några av dem. Det som kan sägas om klockgrodans föredragna landhabitat är att de flesta rapporter/studier är överens om vad som verkar bäst för den, vilket är öppna naturbetesmarker med inslag av lövskog med många småvatten i närheten. För att få en överblick över hur mycket mark runt de anlagda våtmarkerna som upptas av t.ex. lövskog är GIS (Geographic Information System)
ett mycket användbart verktyg. I en analys av det här slaget är det viktigt att kunna identifiera vilka parametrar och sedan kvantifiera hur mycket det finns av dessa för att sedan se om det kan bidra till att klockgrodan väljer att etablera sig eller inte.

I en rapport (Glista m.fl. 2007) använde man sig av just GIS för att närmare kunna undersöka vägavsnitt och dess angränsande områden som olika typer av djur blev överkörda. De delade in olika marktyper i nära anslutning till vägarna ungefär på samma sätt som är gjort i denna rapport. På så sätt kunde de med hjälp av GIS koppla ihop var djur blev överkörda med de närmiljöer som låg nära och vidare se hur markanvändigningen inverkade på dödstalen. Inte helt överraskande visade det sig att just grodor var överrepresenterade i antalet överkörda djur men man kunde även konstatera att antalet överkörda tigersalamandrar (*Ambystoma Tigrinum*) ökade, antagligen under deras vårmigration.

En studie av D’Amen och Bombi (2009) undersökte med hjälp av GIS sambandet mellan klimatförändringar och minskning av amfibiearter i Italien. De jämförde antal dagar med och utan nederbörd, hur mycket nederbörd i mm och medeltemperatur över året med historiska data över detta. Sedan jämförde de hur stort antalet amfibier av ett antal arter var med tidigare data och försökte korrelera detta med eventuella klimatförändringar. Deras resultat tydde på en koppling mellan förändringar i klimatet och utdöende av amfibier samt att klimatförändringarnas senare kan leda till ytterligare känslighet för fragmentisering av landskapet. Även om det primära med deras arbete inte hade med GIS att göra visade det sig mycket användbart att med GIS sammankoppla klimatförändringar över större geografiska områden med förändringar i artsammansättningen bland amfibier i Italien.

I en studie på tigersalamanderns genetiska variationsmönster i landskapet (Wang m fl, 2009), i vilken man ville ta reda på om detta mönster är beroende endast av avstånd och isolering men inte av hänsyn till landskapets heterogenitet, använde sig forskarna av GIS för att klarrägga en s.k. ”least- cost path” analys. Man försökte med detta avgöra var deras spridningskorridorer fanns samt uppskatta energiåtgången beroende på vilket markläge det var. Själva GIS-delen bestod i att skapa eller på annat sätt ordna tillräckligt bra landskapsdatalager; konstruera kostnad per distans- raster kring varje damm med den undersökta salamandern och till sist hitta den väg som verkade kostade minst (least-cost path) mellan varje dammpar.

Vattenmiljö

GIS
Området runt varje damm analyserades för att se om man kan urskilja några landskapstyper som gynnar för klockgrodan. Olika parametrar, som mängden väg inom området, hur mycket det finns av en viss vegetationstyp eller avstånd till närmaste damm med lekande hanar, skall sedan vägas mot varandra i ett kvantitativt test för att se om det finns faktorer som verkar mer eller mindre avgörande för en etablering av klockgroda i en damm. Ursprungliga GIS-data har
tillhandahållits av Länsstyrelsen i Skåne. Den data som jag har fått fram med hjälp av GIS är hur stor andel av marken runt varje damm som upptas av en specifik markanvändning. Vidare har jag med hjälp av GIS fått fram hur mycket väg av en viss dimension som finns i området kring varje damm och närmsta avstånd till denna. I övrigt har all den data som jag har använt mig av för mina analyser ursprungligen kommit från fältobservationer av Marika Stenberg och Per Nyström. Vattenkemiska prover togs även av dem och analyserades av LMI.

GIS- analysen är av enkel karaktär och jag använder mig av material som tillhandahållits av mina handledare. Jag har fått markdata över de områden som dammarna är belägna i och kommer analysera hur mycket av marken i en buffertzon av 1000 m runt dammen som används till vad. Markdataen har delats upp i kategorierna: Öppen mark, odlad åker, lövskogsområde, barrskogsområde och vatten. I ”öppen mark” ingår dels betade områden men även mark i träda. De övriga kategorierna är vad de återstår som och i ”vatten” ingår både dammar såväl som sjöar som täcks in i buffertzonen. Det skall dock nämnas att jag inte valt att ta med vatten som parameter i mina analyser då det inte går att urskilja vad som är sjöar och vad som är dammar. Jag har även lagt in hur mycket väg det finns inom området runt varje damm genom att låta programmet räkna ut hur mycket väg det finns inom buffertzonen och avstånd till eventuell sådan.

Avståndet till närmsta väg mätte jag upp för hand i GIS genom att använda verktyget ”mätsticka” och dra upp en linje. Kring i stort sett alla dammar var det mycket klart var den närmsta vägsträckan fanns. Där det var lite oklart testade jag istället flera gånger för att komma fram till den närmsta vägsträckan.

Av totalt 19 dammar används endast 14 i studien. De övriga fem var antingen uthyrningsbenägna eller innehöll fisk som är starkt missgynnande för klockgrods etablering. Om klockgrödor saknas i en våtmark i denna undersökning beror då inte på fiskförekomst eller att vattnen torkar ut tidigt på året så att reproduktion inte kan ske.

Statistik- SPSS

Den efterföljande analysen består av en PCA (Principal Component Analysis) och sedan ett oparat t-test för att testa om karaktärerna för våtmarker som koloniserats eller inte av klockgrödor skiljer sig åt. Med PCA:n vill man reducera antalet miljövariabler till färre hoppslagna komponenter (”Components”) som ändå förklarar större delen av variationen i
variablerna. Enkelt förklarat samgrupperas de variabler som har gemensamma mönster för de olika dammarna. Ett exempel är dammens ålder och andelen submers vegetation, eftersom det tar en viss tid för vegetation att etablera sig i en anlagd damm. För att sedan få fram om de scenarier eller hopslagna komponenter man fått ut från PCA:n skiljer sig mellan våtmarker med och utan klockgrodd kod gjordes en t-test. Då använder man de värden ("scores") som våtmarkerna får på de olika PCA komponenterna. Den version av SPSS som användes var SPSS Statistics 17.0.

Avgränsningar

Jag har tvingats välja bort parametern "klockgrodevatten", vilket innebär naturliga våtmarksvatten med klockgroddor, i min studie för att det inte fanns tillräckligt bra data över dessa. Detta medför att jag inte kunnat utvärdera betydelsen av att det finns flera andra vatten med klockgroddor i närheten av våtmarkerna, men det fanns åtminstone ett klockgrodevatten inom 500 m. Klockgrodan har inte inventerats i Skåne sedan 2005 och den har spridit sig sedan dess, vilket framgår av observationer som lagts in på artportalen. Det skall också nämnas att antalet inkluderade dammar är relativt få och därmed är slutsatserna man kan dra från den statistiska analysen begränsade till vad som gäller för Baldringeområdet.
Resultat

Resultaten visar att det finns signifikanta skillnader i karaktärer mellan dammar som koloniserats respektive inte koloniserats av klockgroda.

De parametrar som enligt min analys har störst betydelse för om klockgrodan etablerar sig i en projektstödsdamm eller inte är:

- Dammens ålder
- Avstånd till väg
- Submers vegetation
- pH
- Konduktivitet

Klockgrodan verkar huvudsakligen kolonisera dammar som inte är helt nygrävda och som därmed börjat få etablerad undervattensvegetation med högre pH-värde och lägre konduktivitet som följd. Dessa dammar bör, enligt analysen inte heller ligga för nära vägar (tabell 1).

<table>
<thead>
<tr>
<th>Miljöparameter</th>
<th>Medelvärde utan spel</th>
<th>Min- och max utan spel</th>
<th>Medelvärde med spel</th>
<th>Min- och max med spel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vägsträcka (m)</td>
<td>3870,5</td>
<td>2072-6616</td>
<td>2373,3</td>
<td>1380-3525</td>
</tr>
<tr>
<td>Ålder (mån)</td>
<td>26,25</td>
<td>22-35</td>
<td>53,7</td>
<td>24-94</td>
</tr>
<tr>
<td>maxdjup (m)</td>
<td>0,925</td>
<td>0,7-1,2</td>
<td>1</td>
<td>0,3-2</td>
</tr>
<tr>
<td>Avstånd till väg (m)</td>
<td>260</td>
<td>90-400</td>
<td>437</td>
<td>90-790</td>
</tr>
<tr>
<td>Dammarea (m²)</td>
<td>4325</td>
<td>300-8000</td>
<td>10300</td>
<td>2000-22000</td>
</tr>
<tr>
<td>Submers veg (%)</td>
<td>7,5</td>
<td>0-20</td>
<td>43,6</td>
<td>1-95</td>
</tr>
<tr>
<td>pH</td>
<td>8,05</td>
<td>7,7-8,3</td>
<td>8,84</td>
<td>7,7-9,8</td>
</tr>
<tr>
<td>Konduktivitet (mS/m)</td>
<td>46</td>
<td>22-77</td>
<td>31,7</td>
<td>15-55</td>
</tr>
<tr>
<td>Cu-konc (mg/l)</td>
<td>0,003</td>
<td>0,001-0,004</td>
<td>0,0038</td>
<td>0,001-0,009</td>
</tr>
<tr>
<td>Zn-konc (mg/l)</td>
<td>0,003</td>
<td>0,002-0,005</td>
<td>0,0037</td>
<td>0,002-0,007</td>
</tr>
<tr>
<td>P-konc (mg/l)</td>
<td>0,1345</td>
<td>0,054-0,215</td>
<td>0,1165</td>
<td>0,043-0,245</td>
</tr>
<tr>
<td>Öppen mark (%)</td>
<td>14,8</td>
<td>9,8-20,8</td>
<td>14,2</td>
<td>8,5-21,7</td>
</tr>
<tr>
<td>Odlad mark (%)</td>
<td>74,7</td>
<td>55,7-88,6</td>
<td>59,5</td>
<td>4,2-89,8</td>
</tr>
<tr>
<td>Lövskog (%)</td>
<td>5,7</td>
<td>0,1-12,4</td>
<td>12,6</td>
<td>0,6-26,7</td>
</tr>
<tr>
<td>Barrskog (%)</td>
<td>4,3</td>
<td>0,01-14,5</td>
<td>9,4</td>
<td>0-28,9</td>
</tr>
</tbody>
</table>

23
Tittar man på medelvärdena för de olika parametrarna ser man en ganska tydlig skillnad i de avgörande parametrarna än övriga parametrar mellan dammar med grodor och de utan grodor. Tre av parametrarna, “vägsträcka”, ”dammarea” och ”lövskogsmark” har även de stora skillnader men bedömdes i PCA:n inte ha tillräckligt avgörande betydelse för etablering, men var väldigt nära (Tabell 2).

<table>
<thead>
<tr>
<th>Scorefaktor</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varians förkl.(%)</td>
<td>31,29</td>
<td>21,27</td>
<td>11,06</td>
<td>10,72</td>
<td>8,13</td>
</tr>
<tr>
<td>Egenvärde</td>
<td>4,69</td>
<td>3,19</td>
<td>1,66</td>
<td>1,61</td>
<td>1,22</td>
</tr>
</tbody>
</table>

Parameter

Öppen mark	-0,937	-0,123	-0,072	0,037	-0,038
Odlad mark	0,793	0,403	-0,285	-0,132	0,253
Lövskogsmark	0,883	0,205	-0,025	-0,201	-0,198
Barrskogsmark	0,111	0,732	-0,384	0,379	-0,028
Älder	-0,165	0,689	0,373	-0,421	0,344
Submers veg	-0,249	0,796	0,269	-0,065	-0,04
pH	-0,486	0,536	-0,015	0,451	-0,239
Avstånd till väg	-0,3	-0,459	-0,412	-0,106	0,604
Vägsträcka	-0,539	-0,631	0,14	-0,133	-0,093
Konduktivitet	-0,793	-0,166	0,045	0,195	0,34
Cu-halt	0,597	-0,36	0,361	0,328	0,28
Zn-halt	0,177	-0,281	0,317	0,725	-0,227
P-halt	-0,164	0,417	0,356	0,515	0,384
Dammarea	0,365	0,066	-0,722	0,217	-0,206
Maxdjup	0,451	0,001	0,386	0,528	0,723

Utfallen i PC1- PC5 kunde sammanlagt förklara ca 82 % av variansen i det totala utfallet. De två första utfallen, PC 1 och PC 2, stod för ca 52 % av variansen vilket gjorde att fokus inriktades på dem. För att se om resultatet i analysen blivit signifikant gjordes därefter ett oparat t-test, vilket visade att endast ett av alla utfall blev signifikant i t-testet, nämligen PC 2. Om man tittar närmare på vilka parametrar som fick höga utslag, över 0,5 eller mindre än -0,5 i PC2 (tabell 2), kan man se att dammens ålder, submers vegetation, pH och avstånd till väg var de parametrar som verkar vara mest avgörande i positiv bemärkelse om klockgrodan skall
etablera sig. Konduktivitet var den parameter som verkade ha störst negativ betydelse för etablering av klockgroda i projektstöddsdammarna. Endast i PC1 gav parametrarna för olika typer av markanvändning (öppen mark, odlad mark, lövskog och barrskog) utslag, men då detta inte visade sig vara ett signifikant resultat kunde det inte användas vidare i den här studien.

I PCA:n fick också dammarna poäng utifrån de förutsättningar som buffertzonen runt dessa gav. PC2 i tabell 2 (ovan) kopplas samman med PC2 i tabell 3 nedan. Tabellen visar de olika positiva och negativa värden som dammarna fick i PCA:n, baserat på de parametrar som fick störst utslag i PCA-analysen (ålder, submers vegetation, pH, avstånd till väg och konduktivitet). Ju större positivt värde dammarna fått (tabell 3) desto bättre svarar buffertzonen och dammen mot de parametrar som fick utslag i PCA:n (tabell 2). Det skall tilläggas att det inte rör sig om en ny PCA- analys. Det är samma analys men redovisar vilka värden eller ”scores” som dammarna fick utifrån parametrarna som hade störst betydelse för respektive axel (PC1, PC2, PC3, PC4, PC5). Parametrarna som hade störst betydelse för respektive axel syns i ”fetstil” i tabell 2.

<table>
<thead>
<tr>
<th>Damm</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damm 2</td>
<td>-0,87021</td>
<td>0,41819</td>
<td>0,52444</td>
<td>1,0723</td>
<td>-0,0351</td>
</tr>
<tr>
<td>Damm 8</td>
<td>0,7788</td>
<td>0,20156</td>
<td>-1,16438</td>
<td>0,73564</td>
<td>-1,65324</td>
</tr>
<tr>
<td>Damm 10</td>
<td>0,04655</td>
<td>1,86093</td>
<td>0,12289</td>
<td>-0,27568</td>
<td>-0,16037</td>
</tr>
<tr>
<td>Damm 11</td>
<td>-0,36746</td>
<td>1,19879</td>
<td>0,74982</td>
<td>-1,26276</td>
<td>-0,5302</td>
</tr>
<tr>
<td>Damm 21</td>
<td>0,41716</td>
<td>0,73415</td>
<td>0,30986</td>
<td>1,81249</td>
<td>0,29339</td>
</tr>
<tr>
<td>Damm 22</td>
<td>0,2819</td>
<td>0,85049</td>
<td>-2,36283</td>
<td>0,04043</td>
<td>0,75252</td>
</tr>
<tr>
<td>Damm 23</td>
<td>-1,352</td>
<td>-1,3748</td>
<td>-0,51834</td>
<td>-0,37311</td>
<td>-0,9792</td>
</tr>
<tr>
<td>Damm 24</td>
<td>0,90073</td>
<td>-0,15654</td>
<td>0,91447</td>
<td>-1,89852</td>
<td>0,3096</td>
</tr>
<tr>
<td>Damm 25</td>
<td>0,83231</td>
<td>-0,44263</td>
<td>-0,27305</td>
<td>-0,98888</td>
<td>-1,27925</td>
</tr>
<tr>
<td>Damm 33</td>
<td>-0,44329</td>
<td>-1,04791</td>
<td>-1,17483</td>
<td>-0,57776</td>
<td>2,07685</td>
</tr>
<tr>
<td>Damm 36</td>
<td>-0,31673</td>
<td>-1,48567</td>
<td>0,63507</td>
<td>0,92391</td>
<td>-0,70962</td>
</tr>
<tr>
<td>Damm 39</td>
<td>2,2833</td>
<td>-0,92622</td>
<td>0,87815</td>
<td>0,61021</td>
<td>0,87388</td>
</tr>
<tr>
<td>Damm 49</td>
<td>-1,13362</td>
<td>-0,32376</td>
<td>0,20205</td>
<td>-0,07333</td>
<td>0,02384</td>
</tr>
<tr>
<td>Damm 50</td>
<td>-1,05743</td>
<td>0,49343</td>
<td>1,15667</td>
<td>0,25506</td>
<td>1,01691</td>
</tr>
</tbody>
</table>

På frågeställning 1, om det finns någon skillnad i markanvändning mellan de dammar med klockgroda och de utan, är svaret att det enligt utfallet i PCA:n och den efterföljande t-testen inte kan påvisas. Det verkar därmed inte vara av avgörande betydelse för klockgrodans
etablering i projektstödsdammar hur markanvändningen runtomkring dem ser ut. Angående min hypotes, om att markanvändningen skulle vara av stor betydelse för etablering, går det inte att påvisa. Vissa parametrar som vägsträckan i buffertzonen, men även mängden lövskog och dammareaan kom inte riktigt upp i riktvärdet på 0,5, men hamnade nära gränsen. Det är några av de parametrar man annars hade kunnat förvänta sig skulle ha betydelse för klockgrodans etablering.

Antal meter till närmsta väg hamnade i PC2, ju närmare vägsträckan låg desto mindre var chansen att den skulle koloniserts av klockgroda (tabell 2) och illustreras nedan (figur 2 och 3). Antal meter vägsträcka i raden runt dammen gav närapå en effekt på koloniseringen av klockgroda.

Man kan se en ganska tydlig skillnad i fördelning mellan dammarna för dem med klockgroda och de utan (Figur 4). Exakta värden “scores” för respektive damm finns i tabell 3.

Det är en klar positiv trend i figur 4, att de dammar (2, 8, 10, 11, 21, 22, 24, 49, 50) med spelande hanar finns till höger vilket innebär att de har fått högre poäng för de positiva parametrarna: våtmarksålder, undervattensvegetation, pH och avstånd till närmsta väg. Det som antagligen förvånar är att man hittar damm nr 39 mitt ibland de dammar som inte har några spelande hanar. Tittar man närmare på damm 39 ser man att det är en ung damm (endast 24 månader) med 10 % täckningsgrad av undervattensvegetation, bara 100 m till närmaste väg och tillsammans med damm 33, utan spelande hanar, lägst pH (7,7) (se appendix). Dock skall det sägas att den är relativt stor och ändå bara hyser två spelande hanar. Damm nr 25 som hamnar en bit till höger om damm 39 kan tyckas, om man tittar på de värden som är positiva i PC2, ha hamnat lite ”fel”. Det är väldigt nära till närmsta väg (90 m), lite undervattensvegetation (10 %), låg ålder (24 månader) och relativt lågt pH (8,3), jämfört med de andra dammarna. Det som är positivt i det här sammanhanget är dess låga konduktivitet (22 mS/m), vilket troligen gör att den hamnar så pass långt till höger som den gör.
Den tredje frågeställningen var om det finns ett samband mellan storleken på en damm, dess ålder och antalet etablerade individer. Antalet spelande hanar ökar med våtmarkens ålder (Figur 5). De anlagda våtmarkernas ålder är också en parameter som har fått positivt utslag i PC2. Det fick inte dammarnas storlek, i lika hög grad. Damm 2 var en av dammarna som hade flest spelande hanar trots att den odlade marken i dess buffertzon uppgår till 85 % och visar på att markanvändningen inte spelar en avgörande roll i det Baldringeområdet (figur 6).

Figur 5. Antalet spelande hanar av klockgroda/ area våtmark i förhållande till våtmarkens ålder. Några av dammarna har samma antal spelande hanar varpå punkterna hamnar ovan varandra. Dammarnas nr syns intill punkterna.
Figur 6. Damm 2 är en av dammarna som har flest antal spelande hannar trots att det är mycket odlad mark i dess buffertzon. Detta tyder på att markanvändningen runt dammen inte spelar en avgörande roll för klockgrodan i detta område.
Diskussion

För att återkomma till det som nämnts i avsnittet avgränsningar: antalet förekommande klockgrodevatten är inte med i buffertzonen kring varje projektstödsdamm. Vissa resultat kan påverkas stort, det enda kriterium som finns i den här rapporten är att det skall finnas minst ett naturligt klockgrodevatten inom 500 m från varje anlagd våtmark. Det betyder att det kan finnas fler än ett klockgrodevatten och dessutom är buffertzonen 1000 m i radie. Det kan med andra ord finnas många klockgrodevatten i varje buffertzon som inte är med i denna rapport. Det bör påverka resultatet och är kanske till och med anledningen till att det finns många spelande hanar i projektstödsdammar som har mycket åkermark runtomkring sig. Kanske är det så, men samtidigt har resultaten från PCA:n visat att klockgrodan etablerar sig i dammar som funnits lite längre, har relativt stor andel submers vegetation, högre pH (vilket kan bero
på högre primärproduktion) och ligger längre från närmsta väg. Det tyder på att de parametrar som använts, trots allt kan förklara om våtmarkerna koloniseras eller inte av klockgroda.

Enligt resultaten verkar en viktig parameter vara att en rik undervattensvegetation etableras för att klockgrodan skall trivas. I anlagda våtmarker kan det snabbt tillkomma nya växter som kan komma att dominera och därmed hindra andra arter i sin etablering (Landin m.fl. 2002). Förekomst av klockgroda (gäller även lökgroda och lövgroda) verkar indikera en rik artdiversitet för växter och djur i vatten. För klockgroda är det visat en positiv korrelation mellan artens yngelstatus och en hög artdiversitet av paddor, högre växter samt alger och bakterier (Briggs, 1995). När våtmarker anläggs för att gynna spridningen av klockgroda gynnas troligen även andra arter.

Antalet spelande hanar per ytenhet ökar ju längre en anlagd våtmark funnits. En av de parametrar som fick positivt utslag för etablering av klockgroda var just dammens ålder. Ju längre en damm har funnits desto större är chansen att viktiga parametrar som t.ex submers vegetation hinner utvecklas och pH stabiliseras, vilket skapar en grund för bra levnadsvillkor och är gynnsamt för fortplantning. Att det finns fler spelande hanar/ m² i en större damm beror antagligen på att dessa dammar kan hyssa en större population tack vare mer föda för yngel och fler spelplatser för hanar, vilket betyder mindre konkurrens. Om så är fallet visar
Detta att anlagda dammar kan fungera för att sprida klockgrodan vidare i ett område och att större dammar kan fungera som baslokaler.

Det sista att tänka på är huruvida de dammar som inte kom med i rapporten av olika anledningar, exempelvis de uttorkningsbenägna påverkar klockgrodan etablering. Är syftet att främja biologisk mångfald i ett område, som t ex spridning av klockgroda, bör grundvattentillgången vara så pass hög att risken för uttorkning minimeras. Detta kan vara ett av problemen med att anlägga dammar i intensiva jordbruksområden, vattenåtgången är hög och det tas oftast från grundvatten. Skall dammar anläggas bör man åtminstone försöka se till att man anpassar grävdjup till den vattentillgång som finns i det aktuella området. Så precis av samma anledning som klockgrodan väljer att leka i grunda dammar som snabbt värms upp solen, kan detta vara en risk. Det kanske bör betänkas när man anlägger dammar i syfte att främja exempelvis klockgroda.

Utifrån det som kommit fram i den här rapporten kan det vara intressant att närmare undersöka inte bara etablering av klockgroda i projektstödsdammar utan även reproduktion. Är reproduktionen exempelvis bäst i de dammar där flest spelande hanar förekommer, vilket vore det mest logiska, eller finns det andra faktorer som spelar in för en lyckad reproduktion?
Referenser

Ahlén, I., Andrén, C., Tjernberg, M. (2010). Rödlista 2010- Grod- och kräldjur- Amphibians and reptiles,

Carr, L.W., Fahrig, L.. (2001). Effect of road traffic on two amphibian species of differing vagility, Conservation Biology vol.15, s. 1071-1078

Hels, T., Buchwald, E. (2001). The effects of roadkills on amphibian populations, Biological conservation 99, s.331-340

Wang, I. J, Savage, W. K, Shaffer, B. (2009). Landscape genetics and least- cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Molecular Ecology 18, s. 1365-1374

Muntlig källa

Olsson, K. 2011-03-22

Nyström, P. 2011-04-21