BASISKA BERGARTER. GÅNGBERGARTER, SEDIMENTBERGARTER
OCH BRECCIOR I VAGGERYDSSYENIT. EN UNDERSÖKNING I
PROTOGINZONEN VID VAGGERYD.

Caroline Jansson
<table>
<thead>
<tr>
<th>Sid.</th>
<th>Rad</th>
<th>Rättelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>36</td>
<td>Meningen "Gruppen har..", skall fortsätta enl. följande: nedsänkts av förkastningar med dominerande NS-liga riktningar och har därmed undgått erosion.</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>....lameller längs (010) → ..längs (100)</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>...s.22 → ...s.21</td>
</tr>
<tr>
<td>28</td>
<td>17</td>
<td>900 C → 900° C</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>...(..sid.3).. → ...(..sid.9)</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>Raden strykes.</td>
</tr>
</tbody>
</table>

Plansch 1, bild 2: ...(100) till vänster, och (001) till höger.
BASISKA BERGARTER, GÅNGBERGARTER, SEDIMENTBERGARTER
OCH BRECCIOR I VAGGERYDSSYENIT. EN UNDERSÖKNING I
PROTOGINZONEN VID VAGGERYD.

Caroline Jansson
FÖRORD

Denna uppsats är utförd som examensarbete på geovetarlinjens 160 poängsnivå, vid geologiska institutionens mineralogiska och petrologiska avdelning, Lunds universitet.

Ett stort tack vill jag rikta till min handledare Per-Gunnar Andréasson för mycket god handledning och för flitigt läsande och granskande av manuskript.
Ett stort tack riktas likaså till Agnes Rodhe för uppmuntran, hjälp och goda råd.
Ett speciellt tack till Christin Andréasson som ritat berggrundskartan. Många tack till Julius Sandecki, Josef Gersner, och alla andra som välvidligt ställt upp med en hjälpande hand under arbetets gång.
Ett tack även till Hugo Wikman vid Sveriges Geologiska Undersökning i Lund, som bidrog med idén till detta arbete genom att fästa mina handledares uppmärksamhet vid Klevabergens märkliga bergarter.
ABSTRACT

The Protogine Zone is a system of steep shear zones running approximately parallel to the boundary between the Svecofennian and the Southwest Scandinavian orogens of southern Sweden. The geological nature of the zone is not very well known, mainly because detailed mapping has not begun until recently.

This work is the beginning of an attempt to start changing this situation. An area of 1 km², situated 3 km north of Vaggeryd in north-western Småland, has been mapped in detail.

The main rock types in the investigated area are syenite and fine-grained mafic rocks. Associated with these two rock types are breccias. Other rock types include volcanics and sandstones. There is also a Fe-Ti mineralization.

The syenites consist of perthitic potash feldspar (36-84 %, mean value 61 %), plagioclase (0-19 %, mean value 5 %), clin- and orthopyroxene (0-18 %, mean value 9 %), occasional olivine, apatite (mean value 2 %) and opaques (mean value 6 %).

Syenites, aged about 1200 Ma, appear at a number of locations along the Protogine zone. They are thought to be closely related to the zone. So are also the mafic rocks called "hyperites". Radiometric datings of some "hyperites" have shown that they are about 1450 Ma old. There is however evidence of several generations of these rocks, so some could be younger than this.

Several details concerning the breccias made the writer infer that the breccia is rheomorphic, and also that the syenite and the mafic rocks have intruded at approximately the same time. Such details include xenoliths of the mafic rocks in the syenite, veins of syenite in the mafic rocks, red feldspar-crystals and also partly assimilated syenite xenoliths in the mafic rocks. In the mapped area there is also a mafic dike intruding the syenite, and chilling against it. These facts should also mean that at least some of the mafic rocks along the Protogine Zone are younger than 1450 Ma.
The volcanic and sedimentary rocks, which appear in the syenite, are also interesting. A comparison between the volcanics of the mapped area and the facts known about other volcanic rocks in Småland has been made. The volcanics outside the mapped area all seem to be older than 1700 Ma. The volcanics of the investigated area intrude both the 1200 Ma old syenite and the mafic rocks, and are therefore younger than these. The sedimentary rocks locally preserve primary sedimentary textures, but they are mostly contact metamorphosed.

The main ore minerals of the investigated mineralization, which appear in mafic rock are ilmenite, hematite and magnetite. There are three other known mineralizations along the Protogene zone containing Fe-Ti minerals, all occurring in "hyperite": Långtjärn, Smålands Taberg and Ranshult.
INNEHÅLLSFÖRTECKNING

1. Inledning 5
2. Bakgrund 6
2.1. Regionalgeologi 6
2.2. Tidigare utförda arbeten. 9
2.3. Metodik 9
3. Beskrivning av detaljkarterat område. 11
3.1. Allmän beskrivning. 11
3.2. Problemställning 12
3.3. Syeniter 13
3.3.1. Röd och brun syenit. 13
3.3.2. Syenitporfyr 16
3.4. Mafiska bergarter. 18
3.5. Breccia och xenoliter. 20
3.6. Vulkanit 22
3.7. Sedimentära bergarter. 23
3.8. Tektonik 24
3.9. Fe-Ti mineralisering 25
4. Tolkning och diskussion. 27
4.1. Inbördes förhållanden mellan syeniter, basiter och breccior. 27
4.2. Tolkning av vulkanitens utseende, samt jämförelse med andra småländska vulkaniter. 29
4.3. Kan de sedimentära bergarterna i Klevabergen korreleras med andra Småländska sedimentbergarter? 30
5. Slutsatser 31

Referenser

Plansch 1.
Plansch 2.
Plansch 3.
Bilaga: Berggrundskarta över Klevabergen.
1. INLEDNING

Protoginzonen är ett system av brant stående förskiffringszoner som i stort löper parallellt med gränsen mellan Smålands-Värmlandsgrani-
terna i öster och Sydvästra Sveriges Gnejser i väster. Zonens geolo-
giska natur är mycket ofullständigt känd. Anledningen till detta är
främst att detaljerad kartering inte börjat utföras förrän helt
nyligen.

Zonen är en sammansatt geologisk företeelse, där tektoniska, magma-
tiska, och vulkaniska händelser har varit intimt relaterade. En
detaljerad undersökning av de syeniter, gabbro och diabaser som
förekommer längs Protoginzonen och dessa bergarters relation till
zonens tektonik har därför stor betydelse för tolkningen av zonens
geotektoniska innebörd. Klevabergen är ur denna synpunkt ett intres-
sant område. På en förhållandevis liten yta kan några för Protogin-
zonen typiska bergarter och deras inbördes förhållanden studeras.
Likaså kan den för zonen så typiska nordsydliga förkastnings- och
förskiffringstektoniken samt en mineralisering studeras.
2. BAKGRUND

2.1. Regionalgeologi.

Det undersökta området är beläget 3 km norr om Vaggeryd och 30 km söder om Jönköping i nordvästra Småland. Områdets storlek är cirka 1 km², och dess centrum utgörs av Klevabergen (se berggrundskartan bil.). Dessa ligger i norra delen av Vaggerydssyenitenets utbredningsområde (fig.1). Syeniten bildar en långsmal kropp, cirka 55 km lång och 2 till 8 km bred, vilken är utsträckt längs med Protopinzonen (fig.1).

Fig.1 Förenklad berggrundskarta över södra Sverige. (Efter Patchett et.al., 1977, och Andrésasson et.al., 1987).

Lösa definitioner av begreppet Protopinzonen i publicerade undersökningar har bidragit till dess kontroversiella och oklara karaktär. Ibländ avses gränsen mellan Sydvästra Sveriges Gnejser och Smålands-Värmlands graniterna. Ibländ avses en "förskiffringszon", vilken enbart i stora drag sammanfaller med berggrundsgränsen. Denna förskiffringszon består av branta till vertikala förskiffringer och förkastningar, med huvudriktningar i NNV, N-S och NNO. Huvudsystemet är 20-30 km brett, och löper från Norge ned till Skåne (se fig.1).
Parallella zoner av förskiffrings och diabasgångar kan påträffas på stora avstånd (> 50 km) från huvudsystemet. Huvudsystemet består av ett antal smala (vanligen < 100 m) branta eller vertikala zoner långs vilka bergrunden har förskiffrats, mylonitiseras, breccierats eller förkastats (Kornfält et al. 1978). Mellan dessa stråk är bergrunden välbevarad. Det finns även en geofysisk definition enligt vilken Protoginzonen kännetecknas av linjära, brant avgränsade zoner med låg magnetiska gnejser och gnejsgraniter samt olikartat magnetiserade diabaser (Henkel i Kornfält et al. 1978).

I föreliggande arbete avses med benämningen Protoginzonen en förskiffringszon.

I stort gäller för bergrunden söder om Vättern att protoginförskiffringen är brant medan flackare stupningar på NS strykande strukturer förekommer väster om Protoginzonen. Öster om zonen uppträder förskiffringer och gångbergarter i OV- till VNV-liga riktningar, även ONO-liga förekommer.

syenit och gångar med diabas av varierande ålder (s.k. "hyperiter" samt Blekinge-Dalarna diabaser; Solyom et al. 1983). I en smal zon närmast öster om Vaggerydssyeniten (1200 Ma) uppträder en ljust röd granit, den s.k. Barnarpssgraniten, som är en tektoniserad variant av Smålandsgranit (se nedan).

Äldre synorogen djupbergarter utgörs av en differentierad kalkalkalin serie från gabbro och diorit över tonalit till granit, där tonaliterna dominerar. Dessa är Rb/Sr-daterade till 1800±57 Ma (Röhoff 1973).

har därmed undgått erosion.

2.2. Tidigare utförda arbeten.

Bland SGU:s bergrundsgeologiska kartmaterial finns "Kartbladet Nydala" (Stolpe, 1892), och "Provisoriska översiktliga berggrundskartan över Jönköping" (Persson & Wikman, 1986).

2.3. Metodik

Under två fältveckor har kartering skett i skala 1:5000. Som underlag vid tillverkning av kartan användes ekonomiska kartan i skala 1:10 000, med inlagda höjdkurvor. De inlagda höjdkurvorna var förstorade från den topografiska kartan (1:50 000), vilket medför att karteringen i 1:5000 har skett efter höjdkurvor lämpade för en betydligt större skala. Då kartan på grund av detta inte alltid överensstämmer med verkligheten har det ibland medfört svårigheter vid hållmarkering.
Huvuduppgiften vid karteringen har varit att utreda relationerna mellan olika bergarter i området samt studera strukturer, mineralisering och samla prover för tunnslipsanalys. Totalt har 40 tunnslip och fyra polerprover studerats i mikroskop för bergartsklassificering, mineralbestämning och för studie av mikrostrukturer.

På grund av den låga blottningsgraden i området har det sällan gått att finna några kontakter mellan bergarterna. De streckade linjerna på kartan visar därför ungefärliga och förmodade bergartsgränser. Mellan de två syenit-typerna är det antagligen så, att de gradvis övergår i varandra och att det därför inte finns någon distinkt gräns. Även i detta fall har gränserna streckats. Delar av området är helt täckta av kvartära avlagringar. Man kan dock med ganska stor säkerhet anta att dessa områden domineras av syenit. Den flacka topografin, som är typisk för den lättvittrande syeniten och block bestående av syenit indikerar detta.
3. BESKRIVNING AV DETALJKARTERAT OMRADE.

3.1. Allmän beskrivning.

Halten mörka mineral varierar i båda syenittyperna; den kan speciellt i den brun-svarta vara betydande (upp till 49 %). De mörka mineralen är vanligtvis ansamlade i aggregat.

Mafiska bergarter med mycket varierande utseende finns i riklig mängd i området. Fortsättningsvis kommer dessa att benämnas "basi-ter", om inte deras makroskopiska och/eller mikroskopiska utseende tydligt visar ursunget.

Det finns finkorniga basaltiska gångar vilka är någon till några dm bredda, och det finns basaltiska hållar som uppvisar mycket vackra flytstrukturer. Många av basiterna är kraftigt amfibolitiseraade.

Gemensamt för alla de olika mafiska bergarterna närmast Klevabergen är att de är relativt finkorniga. Norr om gården Gärghov finns en mycket framträdande basisk gång. Denna skiljer sig från de basiska bergarterna omnämnda ovan genom att den är betydligt grovknorigare. Gångens bredd varierar mellan cirka 40 och 120 m. Den stryker i nordsydlig riktning, och går att följa från gårdshuset cirka 2.5 km i nordlig riktning. Noterbart är att gången på några lokaliteter är tydligt kylt mot omgivande syenit.
Mellan västra kullen och Trålleborgsbäcken i väst löper med nära NS-lig riktning en syenitporfyrisk gång. Även denna har gått att finna kyld mot syenit. Håll med syenitporfyr har även observerats cirka 50 meter öst om södra kullen.

Anmärkningsvärda är de talrika brecciorna i området. Dessa är koncentrerade till själva kullarna. Brecciorna har troligen bidragit till kullarnas bevarade topografi.

Längst i söder på den västra kullens västra förkastningsbrant finns ett mindre gruvhål. Det finns omnämnt i Stolpes beskrivning till kartbladet Nydala (1892) där han skriver: "Magnetisk jernmalms, mycket blandad med hornblende, träffas SO från Byarums kyrka och NO från Gärahov". Vidare skriver han att bergmästaren i distriktet ansett mineraliseringen vara "i och för sig utan synnerlig anmärkningsvärdhet".

Några rester av mineraliseringen har inte gått att finna annät än i de varphögar som omger gruvhålet.

På flera ställen i området förekommer vulkaniter, granitoider och sandstenar.

Förutom vid själva kullarna med sina förkastningsbranter, är berggrunden ganska dåligt blottad. Detta gäller i synnerhet kartans sydöstra hörn, samt området mellan Trålleborgsbäcken och Gärahov.

3.2. Problemställning

1. Beskrivning av syeniter och mafiska bergarter.
2. Beskrivning av sedimentbergarter och vulkaniter.
3. Syeniters och mafiska bergarters intrusions- och åldersrelationer.
4. Beskrivning av brecciornas utseende, samt tolkning av deras och xenolithernas ursprung.
5. Övriga kontaktförhållanden.
7. Regional jämförelse av Klevabergens bergarter, strukturer, och
mineralisering.

3.3. Syeniter.

De två typerna av grovkornig syenit som finns omnämnda under avsnitt 3.1, har visat sig vara betydligt svårare att särskilja under mikroskopet än i fält. De påminner mycket om varandra och beskrivs därför gemensamt. Syenitporfyren beskrivs för sig.

3.3.1 Röd och brun syenit.

De undersökta syeniternas mineralogi består av pertitisk kalifältspat, kvarts, plagioklas, pyroxen, olivin, biotit, hornblände, samt apatit, titanit och opaka mineral.

Apatit, som vanligen räknas till de accessoriska mineralen, förekommer här så riktigt att den bör tillföras huvudmineralen. Titanit, och ibland även zirkon tillhör de accessoriska mineralen.

I de flesta undersökta tunnslipen är plagioklas i form av självstän-
diga individer mycket underordnad, och ibland saknas den helt. Den
uppträder inte med de typiska tvillingarna, och har därför varit
svår att särskilja från kalifältspaten. Försök gjordes därför att
färga kalifältspaten i några slip (markerade ** i tabell 1) för att
se om antalet erhållna kalifältspater från punkträkningsanalysen
målgiven var för högt. Överensstämmelsen av resultatet från punkt-
räkningsanalys före och efter färgningen var emellertid god. Skill-
naden var i vissa fall någon procent. Då även pertiten är mycket
otydlig har det vid punkträkningsanalys inte gått att ens ungefär-
ligt beräkna förhållandet mellan kalifältspat och plagioklas i den-
na, och de plottade punkterna i fig.2 bör ligga längre till höger än
 vad som här är fallet då ingen hänsyn tagits till plagioklasinnehål-
let i pertiten.
Undantag utgör prov nummer 23, där pertiten är mycket tydligt utbil-
dad i form av s.k. schackpertit, och det därför med läthet går att
skilja på de båda fältspaterna. I detta prov är halten plagioklas
hela 16 vol.-%. Troligt är att även övriga prov skulle uppnå liknan-
de värden med andra analysmetoder.

Kvarts förekommer i mycket varierande mängd. Den rödare syeniten,
tektoniserade syeniter samt finkorniga och porfyriska varianter in-
nehåller mer kvarts än övriga. Ofta innehåller syeniterna i området
ingen kvarts alls, eller endast någon procent.
I vissa fall är dock kvartshalterna så höga att bergarten enligt
IUGS klassificering faller inom graniterna (se prov 13 i fig.2 och
tabl.1, provet kommer från en kraftigt tektoniserad syenit). Ber-
garten ger trots detta, både makroskopiskt och mikroskopiskt, in-
tryck av att vara en syenit. Mineralogin är typiskt syenitisk, med
pertitiska kalifältspater, med pyroxener o.s.v. Kvartsen ger intryck
av att vara sekundär. Den uppträder främst längs med korngränser i
form av mycket små korn (bild 1, plansch 1). Man kan även ofta finna
små kvartskorn i ansamlingar av mörka mineral med många omvandlings-
produkter (se nedan).
En jämförelse med avseende på kvarts och plagioklasinnehåll gjordes
mellan norska mangeriter (Malm & Ormaasen, 1977) och syeniter från
Protonizonen i Skåne (Wikman, 1983). Dessa i sin tur jämfördes med
Klevabergens syeniter. Syeniterna i Skåne verkar överlag vara rika
på plagioklas (ca. 20-30 %) och fattiga på kvarts (1-5 %). Detsamma gäller för flertalet av de norska. Klevabergens syeniter uppvisar en mycket stor variation. Man kan dock finna visst samband mellan kvarts och plagioklas; är kvartshalten låg så gäller vanligen samma för plagioklas, och tvärt om. Finns inte det ena så finns inte hel- ler det andra. Ser man i tabell 1 upptäcker man några undantag, men trenden beskriven ovan framgår.

De mörka mineralen uppträder vanligen samlade i aggregat. I dessa aggregat finner man pyroxen, amphibol, biotit, opaka mineral, ofta rikligt med apatit och ibland titanit och kvarts.

Pyroxenens är oftast augitisk klinopyroxen. Ortopyroksen (hypersten) med klinopyroxenlameller längs (010) eller (001) har påträffats (bild 2, plansch 1). Även det motsatta förhållandet, d.v.s. att klinopyroxenens är värd förekommer. I några av de undersöktas proven bildar pyroxenens förhållandevis små, och nästan helt rundade indivi- der. Ofta, men inte alltid, har pyroxenens en reaktionskant av hornblände. Ibland har hornbländet helt ersatt pyroxenens. Då hornblände mestadels uppträder som omvandlingsprodukt av pyroxen följer logiskt att höga pyroxenhalter ofta medför ökade hornbländehalter.

Biotit förekommer både som större flak, och i form av små nålar. Den senare formen är vanligast, och utgör troligen en omvandlingsprodukt av hornbländet.

Apatit förekommer mycket rikligt (bild 3, plansch 1). Den är vanligast i ansamlingarna av mörka mineral. Den bildar ofta förhållande- vis stora individer med väl utbildad kristallform.

Titanit förekommer ofta som en bård runt opaka korn.

Någon analys av de opaka mineralen har inte gjorts för detta arbete, men enligt Quensel (1960) är det ilmenit.
Den mikroskopiska studien bestyrker ytterligare det tidigare omnämn¬
da fakta om att de två syenittyperna, den röda och den bruna, övergår
i varandra utan skarp gräns (se avsnitt 2.3. sid. 10).
Resultaten från punkträkningsanalys visar att den mineralogiska sam-
mansättningen på Klevabergens syeniter varierar ganska kraftigt.
Inom det undersökta området går det att, med avseende på de mörka
mineralen, urskilja tre olika typer av syeniter;
1) Syenit som är pyroxen- och olivinfri (= röd syenit).
2) Syenit som innehåller pyroxen. Ökad pyroxenhalt medför även ökade
mängder amfibol, biotit och opaka mineral. Detta i sin tur medför
att syenitens färg mörknar (= brun syenit).
3) Syenit som innehåller både pyroxen och olivin (= brun syenit).

Med ökande pyroxenhalt övergår således den röda syeniten till brun.

3.3.2. Syenitporfyr.

Denna bergart har i friskt brott en mörk rödbrun färg. Vittringsy-
torna är ljusa. Grundmassan är mycket finkornig. Fenokristerna är
vanligen några mm breda och någon cm långa.

Grundmassan består främst av kvarts och fältspater. Även hos porfy-
ren är det så att plagioklaserna sällan uppvisar tvillingbildning.
Ett slip har därför färgats. Det visade sig att halten av kalifält-
spat är betydligt högre än halten plagioklas.

De mörka faserna består av hornblände och biotit och tillsammans ut-
gör de cirka 20 volym-%. Pyroxen saknas i porfyren.

Fenokristerna består av sammanväxningar av två olika kalifältspater.
Mätningar av 2V-vinkeln har visat att den dominerande fasen har
mycket stor sådan, nära 90°, och den andra ganska liten, cirka 40°.
Troligast rör det sig om sanidin (stor 2V) som är sammanväxt med
anortoklas (liten 2V). Båda är högtemperaturmodifikationer.
TABELL 1. Mineralet fördelning i volym-% hos Klevabergens syeniter. Provtagningspunkter markerade på berggrundskartan (bil.1).

PROVNUMMER

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>15</td>
<td>13</td>
<td>17</td>
<td>6</td>
<td>18</td>
<td>5</td>
<td>19</td>
<td>23</td>
<td>73</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>KFSP.</td>
<td>*</td>
<td>55</td>
<td>45</td>
<td>36</td>
<td>50</td>
<td>62</td>
<td>53</td>
<td>66</td>
<td>74</td>
<td>53</td>
<td>58</td>
<td>84</td>
</tr>
<tr>
<td>KVARTS</td>
<td>17</td>
<td>11</td>
<td>38</td>
<td>22</td>
<td>21</td>
<td>17</td>
<td>16</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>PLAG.</td>
<td>10</td>
<td>19</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>PYROXEN</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>AMFIBOL</td>
<td>-</td>
<td><1</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td><1</td>
<td>2</td>
<td><1</td>
<td>5</td>
</tr>
<tr>
<td>BIOTIT</td>
<td>15</td>
<td>21</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td>4</td>
<td><1</td>
<td>5</td>
<td><1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>OPAK.</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td><1</td>
<td>2</td>
<td><1</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>APATIT</td>
<td><1</td>
<td>2</td>
<td><1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td><1</td>
<td>3</td>
<td><1</td>
<td>3</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td>TITANIT</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ÖVRIGT</td>
<td>1</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SUMMA</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>98</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>98</td>
<td>100</td>
<td>99</td>
<td>97</td>
<td>99</td>
</tr>
</tbody>
</table>

PROVNUMMER

<table>
<thead>
<tr>
<th>MINERAL</th>
<th>9</th>
<th>10</th>
<th>22</th>
<th>24</th>
<th>21</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFSP.</td>
<td>83</td>
<td>77</td>
<td>62</td>
<td>64</td>
<td>48</td>
<td>56</td>
</tr>
<tr>
<td>KVARTS</td>
<td>-</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PLAG.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PYROXEN</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>AMFIBOL</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>BIOTIT</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>OPAK.</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>APATIT</td>
<td><1</td>
<td><1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>TITANIT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ÖVRIGT</td>
<td><1</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>SUMMA</td>
<td>100</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Färgat slip (se sid 10).

Kalifältspat med pertit.

Olivin, samt klorit och serpentin som omvandlings produkt av densamma.
Bergartsindelning enligt IUGS.

A kvartsrik granitoid
B alkalifältspatgranit
C granit
D granodiorit
E tonalit
F alkalifältspatkvartssyenit
G alkalifältspatsyenit
H kvartssyenit
I syenit
J kvartsmonzonit
K monzonit
L kvartsmonzodiorit/kvartsmonzogabbro
M monzodiorit/monzogabbro
N kvartsdiorit/kvartsgabbro/kvartsanortosit
O diorit/gabbro/anortosit

Fig. 2 Klassificering av syenitproven i tabell 1, enligt IUGS.
A=alkalifältspat, P=plagioklas, Q=kvarts

3.4. Mafiska bergarter.

De mafiska bergarterna i området har ett mycket varierande utseende, de flesta är dock relativt finkorniga.

Gången längst i väster på berggrundskartan, norr om Gåravagge, är den som mest skiljer sig från övriga basiter. Denna gång, som bitvis är mycket bred (se avsnitt 3.1.), är finkornig i kontaktarna mot omgivande syenit. Den blir snabbt grovkornigare några meter in från syeniten, och centralt är gången närmast gabbroid.

Även under mikroskopet finner man att basiterna är mycket omvandlade. Luddiga gröna massor av amfiboler och klorit döljer det mesta av den ursprungliga bergarten. Man kan endast ana sig till plagioklassister och pyroxener, samt att många av slipen innehåller förvånansvärt höga kvartshalter. Detta medför att det inte utan kemiska analyser går att bestämma vilken typ av basit det rör sig om. Man skulle till exempel kunna förvänta sig s.k. hyperitdiabaser i området, men det går inte säkert att påvisa detta enbart med hjälp av mikroskopering. De pyroxener som varit tydliga nog att upppvisa spaltning har varit klinopyroxener.

På de östra och västra kullarna uppträder svartgrå dm-breda basaltiska gångar. Dessa skår igenom syenit och breccia med syenitmatrix. De stryker i NS och NNW. Öster om Klevagruvan på den västra kullen finns en gång som i mikroskop visar tydlig flytstruktur och fenokrister med begynnande uppsmältning (bild 6, plansch 2). I en annan gång, som man finner på det västra bergets östra sida, finns små oregelbundet formade inneslutningar i form av cm-stora aggregat av röda fältspater och kvarts. De liknar mycket de inneslutningar av syenit som man finner i basiten på andra ställen i området (se avsnitt 3.5., s.21), fast i mycket mindre skala.

En basaltisk håll i sänkan mellan det västra och det centrala berget uppvisar mycket vacker makroskopisk flytstruktur. Denna flytstruktur är troligen primär och inte någon vittringseffekt, detta eftersom ytan är kyld.

Bland de basiska xenoliterna finns, förutom de som ser ut som den genomsnittliga basiten beskriven ovan, många som uppvisar tydlig ofitisk struktur. Dessa är tydligt härörande från någon ganska grovkornig diabas, och något liknande går inte att finna inom det undersökt området i Klevabergen. Detsamma gäller för de riktigt förekommande bandade xenoliterna.
3.5. Breccior och xenoliter.

Områdets geologi kompliceras betydligt av brecciorna. Det finns inga distinkta gränser mellan de olika brecciorna, eller mellan breccior och sidoberg. Därför är alla breccior på kartan markerade med överbeteckningen B. Kartans rottenfärger visar vilken typ av matrix som dominerar på en viss lokal.

Matrix består av syenit (både röd och brun syenit finns representerade) eller basit. I vissa fall verkar matrix bestå av enbart fältspat, och det rör sig då om mobilisat från syeniten.

Vid karteringsarbetet har minst ett femtontal petrografiskt tydligt olika typer av xenoliter upptäckts, troligt är att det finns fler (Bild 7, plansch 3).

De vanligast förekommande xenoliterna är basiska, finkorniga och ofolierade. De ser makroskopiskt ut precis som den basiska matrixtypen, och som bergarten i de flesta anstående basithällarna (d.v.s. finkorniga, amfibolitiserade, ofta med små vita fältspatkorn). Storleken på fragmenten varierar från någon centimeter till några decimeter. En annan vanlig typ av xenolit utgöres av folierade basiska fragment. Där man finner dessa är de alltid helt slumpmässigt orienterade och det syns i fält tydligt att foliationen inte har bildats i samband med, eller efter breccieringen. Andra xenolitvarianter är bandade. De består av någon basisk bergart med ljusa band av fältspat. Ännu en annan typ av inneslutning utgöres av både finkorniga och ganska grovkorniga diabas-xenoliter med mycket tydlig ofitisk textur. Grovkorniga gabbroida och dioritiska xenoliter är inte lika vanliga men även sådana förekommer.

Det finns även granitoida xenoliter och sandstens xenoliter. Ibland är inneslutningarna av denna typ så stora att det snarare verkar röra sig om anstående flottar av äldre bergarter som klarat sig från brecciering. Detta gäller i synnerhet sandstenarna (se under avsnitt 3.7. Sedimentära bergarter).
Vad gäller fördelningen av olika xenoliter mellan matrixtyperna, finner man i basitmatrix nästan endast basiska fragment, och då främst av den finkorniga ofolierade typen. I syenitmatrix kan man finna alla olika varianter, men även här är finkorniga basiska xenoliter av samma typ som man finner i basitmatrix allra vanligast.

Det går inte att finna något mönster i de olika inneslutningarnas uppträdande. Man skulle kunna förvänta sig att en viss xenolittyp uppräder någorlunda samlad, till exempel alla de bandade i en del av det karterade området, granitoida i en annan, o.s.v. Men så är inte fallet, utan spridningen verkar vara total. Flera xenoliter har dessutom bara påträffats i ett enda exemplar.

Ibland ser man även inneslutningar av syenit i basiten. Dessa inneslutningar bildar inte klart avgränsade, skarpkantade xenoliter, såsom tidigare beskrivna inneslutningar oftast gör, utan snarare mer eller mindre upplösta fragment med diffusa kanter mot omgivande basit.

I basiterna kan man ofta finna röda sliror av fältspat. Dessa sliror är vanligen någon centimeter tjocka, ibland något bredare och kraftigt slingrande. I anslutning till dessa sliror finns dessutom vanligen röda fältspatkorn i basiten.

På grund av den låga graden av blottning har det inte gått att följa slirorna in i moderbergarten. Den enda bergart i området som skulle kunna ge upphov till dessa röda sliror är dock syeniten.

Man får i fält intrycket av att det finns två grupper av xenoliter. En grupp bestående av de folierade basiska, bandade, sandstens-, granitoida, m.fl.xenoliter. Dessa olika xenolittyper har det gemensamt att de finns representerade av enbart ett fåtal exemplar. Vidare gör variationen i kornstorlek det uppenbart att dessa xenoliter representerar olika djupnivåer. Den andra gruppen består av de finkorniga, ofolierade basiska, vilka finns i ett mycket stort antal och vars kornstorlek visar på en relativt ytnära härkomst.
3.6. Vulkanit.

På östra kullens östra sida kan man från dess norra ände mot söder i circa 175 meter följa vad som troligen är resterna av en gång av sur vulkanit, med mycket vackert bevarad sfärulitstruktur (bild 5, plansch 2). Gångens riktning, liksom dess foliation varierar något mellan rakt nordsydlig riktning och N 30° E. Gångens bredd varierar från cirka två meter till enbart någon decimeter. Antagandet att det rör sig om en gång styrks av att den i fält ses skära igenom både finkornig massiv basit, och breccia med syenitmatrix respektive breccia med basitmatrix. På ett ställe finner man en inneslutning i form av ett basiskt brottstycke. Sfäruliternas storlek varierar från några mm till cirka en cm i diameter. Ofta är de mycket välbevarade. Ibland är de utdragna i gångens längdriktning (bild 4, plansch 2). Mest utdragna är de i gångens ytterkanter.

I mikroskop finner man att denna vulkanit främst består av plagioklas och kvarts. I centrum av varje sfärulit finner man många små opaka korn. Från centrum strålar kvarts och fältspat ut radiellt.

I anslutning till vulkaniten, och i linje med dennes utsträckning har en bergart påträffats som kan vara vulkanit där sfäruliter inte har bildats, eller där sfäruliterna har omkristalliserat. Denna bit av den vulkaniska gången är bara någon dm bred, och visar tydliga tecken på uppsmältning. Under mikroskopet finner man mestadels granofyr, plagioklas och kvarts. Övriga faser består av mycket små flak av biotit och muskovit, rutil och opaka mineral.
3.7. Sedimentära bergarter.

På den centrala respektive södra kullen finner man sedimentbergarter i form av sandstenar.

På den centrala kullen ligger sandstenen som en långsmal skiva, med början precis öster om kullens topp. Den går därefter att följa i nordöstlig riktning (N 20° E), cirka 50–75 meter nedför kullens brant. Denna sten verkar ha blivit ordentligt upphettad i samband med den omgivade syenitens intrusion (se nedan). Cirka 30 meter söder om denna långsmala skiva återfinnes ytterligare en blottning med sandsten. Denna håll är tydligt bandad med dm-tjocka band.

Södra kullens östra förkastningsbrant består till största delen av sandsten. I denna sandsten har det inte gått att finna någon bandning, kornstorleksförändring, eller liknande.

På södra kullen kan man även finna två mindre hållar med sandsten. Mycket troligt är dessa mindre brottstycken delar av den sandsten man finner i förkastningsbranten.

Vid västra Klevabergets sydspets, kan man finna ännu en östlig brant bestående av sandsten. Även denna sandsten ligger i stråk med de övriga,

Xenoliter av sandsten har återfunnits i syenit-brecciorna på alla fyra kullarna.

Sandstenarna är tydligt kontaktmetamorfa. Studie i mikroskop visar att kvartskornen i de flesta proven utsläcker jämnt (bild 8, plansch 3), och att antalet trippelpunkter är mycket högt. Förutom av kvarts består proven av varierande mängd muskovit i form av små nålar, samt rikligt med små granater. Dessa granater är i de flesta proven mycket ofullständigt utbildade (bild 9, plansch 3). Det verkar som om de metamorfa förhållanden som gav upphov till granatbildningen inte varade tillräckligt länge för att granaterna helt skulle utvecklas.

3.8. Tektonik.

Som nämnt under avsnitt 2.1. har förkastningarna i Klevabergen en tydlig nordsydlig trend. Nordsydliga riktningar med ett tiotal grader avvikelse mot öst eller väst, samt nordöstliga riktningar är dominerande i området. Nordvästliga riktningar har inte iakttagits mer än på någon enstaka lokal.

Detta tektoniska mönster kommer igen i foliationer, gångbergarters strykning och förkastningsbranter. Samtliga strukturer har en mycket brant stupning, vanligen nära 90°. Alla de fyra kullarna begränsas på sina östra och västra sidor av kraftiga förkastningsbranter. Desse branter stryker företrädesvis i NS och NNE, vilket framgår av berggrundskartan.

Den mest framträdande zonen med kraftig deformation är belägen väster om den västra kullen. Från denna kulles västra förkastningsbrant och västerut är berggrunden kraftigt nordsydligt förskiffrad i en cirka 100 meter bred zon. Bitvis har förskiffringen varit så omfattande att berggrunden mylonitiserats i smala stråk. Syeniten är längs denna zon väldigt kvartsanrikad och vanligtvis granatförande. Försök att bestämma rörelseriktningen längs NS-zonen gjordes dels i fält, och dels med hjälp av orienterade prov och tunnslip. Studien har visat att vertikalrörelser dominerat, och vidare att det västra

Håll med folierad breccia går dock att finna på ett fåtal platser, bland annat på det centrala berget.

Klevagruvans mineralisering är belägen längst i söder på den västra kullens västra trappstegsformade förkastningsbrant. Då inga rester av mineraliseringen har gått att finna har denna studerats utifrån de varphöggar som omger det vattenfyllda gruvhållet.

Opakmikroskopering visar att mineraliseringen består av ilmenit, hematit, och magnetit.

Fyra polerprov har undersöpts i opakmikroskop. I tre av dessa är ilmenit den övervägande fasen, därefter kommer hematit, och slutligen magnetit. Magnetiten, som normalt är helt isotrop upprvisar här ibland svag anisotropi. Detta kan bero på ett visst innehåll av Ti, vilket stör strukturen med anistropi som följd (Uytenbogaardt et al., 1971).

I ilmeniten finner man mycket ljusa avbländningslameller (ter sig vita mot ilmeniten). Ilmenit bildar fast lösning med hematit och när FeO- innehållet i ilmeniten överstiger 6% kan dylika avbländningslameller bildas (Uytenbogaardt et al., 1971). Därför är det troligast hematitlameller man finner i ilmeniten.

Man finner även avbländningslameller i magnetiten. Dessa avbländningslameller bildar nätmönster, och möjligen kan det röra sig om ulvöspinell. Ulvöspinell är instabil och sönderfaller till hematit och magnetit, ibland även till järn (Ramdohr 1960, Uytenbogaardt et al., 1971).

Mikrosondanalyser är nödvändigt för att se om det ovan antagna är korrekt.

Klevabergens mineralisering bör ha samband med basiten eftersom Fe-Ti mineraliseringar i "hyperiter" finns vid åtminstone tre andra lokaler längs Protaginzonen: Långtjärn (30 km V Växjö), Smålands Taberg (5 km S Jönköping) och Ransberg (17 km SV Karlsborg). Den NS-strykande kraftiga tektoniseringen i förkastningsbranten och i syeniten precis väst om branten kan ha omfördelat malmmineralen.
4. TOLKNING OCH DISKUSSION.

4.1. Inbördes förhållande mellan syeniter, basiter och breccior.

Det är svårt att finna någon enkel förklaring till den röriga geologiska bild som brecciorna skapar i Klevabergen, men de utgör förmodligen den bästa nyckeln till förhållandet mellan syeniter och basiska bergarter. Enbart en snabb rekognosering i fält skulle kunna ge ett (troligen) felaktigt inträck av att det rör sig om en normal brecciering, där en yngre syenit intruderat i och breccierat en äldre berggrund främst bestående av basit.

För detta arbete har mer ingående fältstudier visat på många fakta som gjort en sådan enkel tolkning ohållbar.

Mycket tyder på att det rör sig om någon form av rheomorf brecciering, eller "back-veining", där tiden mellan intrusion av basit och syenit kan ha varit mycket kort.

Termerna rheomorf brecciering och "back-veining" kan kräva en kort förklaring. Med en rheomorf breccia menas att sidobergarten har mobiliserats och penetrerat den intrusiva bergarten med följden att en breccia har bildats där sidobergarten förefaller intrusiv.

"Back-veining" sker på liknande sätt, men istället för att brecciera den intrusiva bergarten så slingrar sig den uppsmälta sidobergarten in i denna.

Mycket tyder på att basiten är något yngre än syeniten. Det vore annars mycket svårt att förklara kylda kontakter på associerade basiska gångar, liksom förekomsten av de röda slirorna och syenitinneslutningarna i basiten.

De två grupperna av xenoliter som finns beskrivna på s.22 skulle kunna förklaras med att de tillhör två generationer. Den första gruppen (granitoida, grovkorniga basiska, bandade basiska o.s.v.), som företrädesvis går att finna i syenit, skulle då tillhöra en äldre generation och härröra från den berggrund som först syenit och därefter basit intruderade i. Den andra gruppen (finkorniga basiska) skulle då tillhöra en yngre generation xenoliter som har uppkommit i samband med basitens intrusion och har gemensamt ursprung i denna.

Följande förlopp är tänkbart:

De finkorniga basiska fragmenten i sitt lika finkorniga basitmatrix kan kanske förklaras med pulsvis intrusion av basiskt material, d.v.s. basit intruderar i, och breccierar sig självt.

Det faktum att det finns få, eller inga alls, av de sura xenoliterna i basiten kan bero på att denna med sin höga intrusionstemperatur har helt assimilerat de förhållandevis få och små fragmenten.

Vid jämförelse med mafiska bergarter längre mot söder längs Protoginzonen finner man i beskrivningen till SGU:s kartblad Kristianstad NO (Wikman m.fl. 1983) att de basiska bergarterna företrädesvis utgöres av hyperitdiabaser. Dessa uppträder i NNO- till SSV-liga riktningar. Man har i skånska syeniter funnit brottstycken av hyperit.

Wikman (1983) beskriver även amfibolitkroppar som upptrer i NS till NNO-liga riktningar. Han anser att de sannolikt är helt amfibolomvandlade hyperitdiabaser, och anser sig i något fall kunna verifiera detta.

Frågan återstår om även de kraftigt omvandlade mafiska bergarterna i Klevabergen ursprungligen har varit hyperitdiabaser. Äldrar på 1637±230 Ma för hyperiterna stämmer inte med de ovan beskrivna teorierna att basisk och syenitisk magma skulle ha intruderat vid ungefär samma tidpunkt. Johanssons ålder på 1200 Ma stöder däremot denna teori.

4.2. Tolkning av vulkanitens utseende, samt jämförelse med andra smålandska vulkaniter.

Bland andra Phillips (1973) beskriver hur sfäruliter kan bildas primärt i en magmakammare före konsolidering under kristallisation i en magma. Bildning av sfäruliter vid devitrifiering av vulkaniskt glas har beskrivits av Hatch et. al. (1972).

Om sfäruliterna bildats primärt före konsolidering kan man kanske tänka sig att det fenomen man ser i fält, med sfäruliter utdragna parallellt med gångens strykning (plansch 2, bild 4), kan bero på hastig avkylning i samverkan med friktion i kontakten mot sidobergarten under framtäckningen av smältan längs sprickor. Sfäruliterna skulle då ha bromsats upp mot ytterkanten, samtidigt som den upparkströmmande magman verkat på motsatt sätt. Detta skulle kunna medföra en drageffekt på varje enskild sfärulit, med följd att de drags ut längs med strömningsriktningen.
knappast röra sig om för man kan inte se någon påverkan av en dylik på sidoberget. Man har också svårt att tänka sig att sfäruliterna i gångens mitt skulle ha kunnat bevara en ganska rundad form vid kraftig skjuvning. Tyvärr har det ej gått att finna gångens båda ytterkanter synliga på samma ställe.

Om sfäruliterna har bildats primärt, varför finns det då inga där gången är mycket smal? Är det möjlig en kylningseffekt? Eller är det någon form av omkrystallisation?

Klevabergens vulkanit ter sig fältmässigt yngre än den cirka 1200 Ma gamla syeniten (se sid. 9), och är således avsevärt yngre än de vulkaniter Persson beskrivit.

4.3. Kan de sedimentära bergarterna i Klevabergen korreleras med andra Småländska sedimentbergarter?

Denna fråga går inte att besvara utifrån de fakta som framkommit vid föreliggande undersökning, den kan dock diskuteras.

Almesåkrargruppens sedimentbergarter återfinns inte mer än 25 km E om Klevabergen. Därmed ligger det nära till hands att antaga att Klevabergens sedimentbergarter tillhör dessa. De skulle i så fall kunna tillhöra Almesåkrargruppens understa formation (Rodhe, pers. komm.). Annat som tyder på att det kan vara Almesåkrabergarter är fyndet av några kvartsitbollar i Klevabergens sandsten (Rodhe pers. komm.).
några kvartsitbollar i Klevabergens sandsten (Rodhe pers. komm.). Dylika finns i rikliga mängder i Almesåkra, både i sandstenar och i konglomerat. Om den tidigare beskrivna "argilliten" verkligen är en argillit, är detta ytterligare en faktor som kan tala för Almesåkra. Detta eftersom argilliter förekommer bland Almesåkrabergarterna.

5. SLUTSATSER

Nedan ges i några sammanfattade punkter de slutsatser som kan dras utifrån föreliggande undersökning.

A. Breccian visar många tecken på att vara rheomorf med syenit som breccierande bergart och basit som intruderande.
B. De mafiska bergarterna i området är yngre än syeniten, d.v.s. yngre än 1200 Ma. Förutom den rheomorfa breccian, talar de basiska gångar som är kylta mot syeniten för detta faktum.
C. Klevabergens vulkanit är yngre än både basiter och syeniter.
D. De sedimentära bergarternas ursprung är oklart, men vissa fakta talar dock för att de tillhör Almesåkragruppen.
E. Mineraliseringen har samband med den mafiska bergart den föreligger i, och har sannolikt anrikats i samband med rörelser längs den NS-liga förskiffringen längs med Protoginzonen.
REFERENSES

Klingspor I., 1976: Radiometric age determinations of basalts, dolerites and related syenite in Skåne, southern Sweden. GFF nr. 98 s. 195-215

Phillips W.J., 1973: Interpretation of crystalline spheroidal structures in igneous rocks. Lithos 6, s 235-244.

Stolpe M., 1892: Beskrifning till kartbladet Nydala. SGU ser. Ab 14

Windley B., 1965: The role of cooling cracks formed at high temperatures and of released gas in the formation of chilled basic margins in net-veined intrusions. Geol. Mag. vol. 102, no.6.

Bild 1. Typiskt uppfrädande av nybildad kvarts längs med korngränser i deformad syenit. K=kalifältspat m. pertit, O=kvarts. (Kors. nic., förstorring 10 ggr.)

Bild 2. Ortopyroksenvård med avblandningsämnen av klinopyroxen längs (001) till vänster, och (010) till höger. (Kors. nic., förstorring 25 ggr.)

Bild 3. Olivin och pyroxen i syenit. Olivin med typisk reaktionsrand. O=olivin, P=pyroxen, A=apatit, K=kalifältspat m. pertit, R=reaktionsrand runt olivin. (Kors. nic., förstorring 10 ggr.)
Bild 4. Vulkanit med cm-stora sfärliter vilka är utdragna i gångens längdriktning.

Bild 5. Vulkanit med välbevarade cm-stora sfärliter.

Bild 6. Basalt med tydlig flytstruktur samt delvis uppsmält fenokrist. (Negativt foto.) Skalstrécket= 2 mm.

Bild 8. Sandsten. Q=kvarts (Kors. nic., förstorring 2.5 ggr.)

Bild 9. Sandsten med kontaktmetamorf granatbildning. (Parallelitt ljus, förstorring 2.5 ggr.)
GEOLOGICAL MAP OF THE KLEVABERGEN AREA, PROTOGINE ZONE, S SWEDEN.

Tidigare skrifter i serien "Examensarbeten i Geologi vid Lunds Universitet":

22. Kommer senare.