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In  this  paper,  we  propose  a general  power  model  along  with  a versatile  optimization  methodology  that
can be  applied  to  different  applications  for minimizing  service  delay  while  satisfying  power  budget  in
data  centers.  We  test  our  methodology  on  two totally  different  applications  from  both  cloud  computing
and  enterprise  scenarios.  Our  solution  is  novel  in that it takes  into  account  the  dependence  of power  con-
ata center
ap-reduce
eb-server

hermal-aware optimization
nergy management

sumption  on  temperature,  attributed  to temperature-induced  changes  in leakage  current  and  fan  speed.
While this  dependence  is  well-known,  we  are  the  first  to consider  it in the  context  of  minimizing  service
delay.  Accordingly,  we  implement  our optimization  strategies  with  Hadoop,  Tomcat,  and  MySQL  on a  40-
node cluster.  The  experimental  results  show  that  our  solution  cannot  only  limit  the power  consumption
to  the power  budget  but  also achieves  smaller  delay  against  static  solutions  and  temperature  oblivious
DVFS  solutions.
. Introduction

In this paper, we propose a general power model and tem-
erature aware power allocation (TAPA) optimization framework
hat help to minimize services’ delay with a given power bud-
et in data centers. We  implement and empirically evaluate our
ramework on a Map-Reduce cluster and multi-tier web  servers
espectively. The research challenge is to optimize the trade-off
etween service delay and power consumed. We  do so by devel-
ping algorithms that minimize delay for any given power budget.
arious implementations [7–9] of Map-Reduce have been devel-
ped in recent work. We  modify Hadoop in our implementation
o embody our optimization solutions. For the web server case, we
se Tomcat on the second tier servers, and MySQL on the third tier
ervers.

Our algorithm is novel in that it accounts for thermally induced
ariations in machine power consumption. Prior work on energy-
fficiency of Map-Reduce and web server workloads considered
ower consumption models that are a function of only the energy
tate and machine load. In reality, both leakage current and fan
peed depend on machine temperature. Hence, a higher power

onsumption is incurred at higher temperatures, even at the same
nergy state (e.g., DVFS setting) and at the same load. Modifica-
ions are thus needed to existing energy management algorithms to
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account for the aforementioned temperature-dependency of power
consumption. While the effect of temperature on leakage current
(and, hence, energy) is itself well-known [11–15],  we are the first
to consider its implications on performance (namely, latency) and
energy trade-offs in data centers.

Our algorithm requires that a power budget be expressed. This
can be given by the power supplier. Some data centers do have
a fixed peak power budget [17,30] to avoid excessive charges for
peak power consumption. Even in scenarios without a global power
bound, a local power budget is often used as a proxy for con-
trolling heat distribution since most power consumed by servers
turns into heat. Some researchers [23,22] proposed to divide the
whole data center into small zones and apply elaborately calcu-
lated power budgets to each zone to counter-balance temperature
differences and remove hot spots. Finally, even in systems where
no power budget exists at any level, it is useful to optimize the
power-performance trade-off. This optimization problem can be
generically cast as one of maximizing performance for any given
input power. Hence, our algorithm maximizes the computational
capacity of the cluster, without exceeding a stated power budget.

Improving the power-performance trade-off may result in sig-
nificant monetary savings for data center operators. Hamilton [1]
estimated that, in 2008, money spent on power consumption of
servers and cooling units had exceeded 40 percent of total cost

for data centers, which reached more than 1 million per month
for a single data center. The cost is still increasing as both prices
of energy and scale of data centers are on the rise [2].  The U.S.
Department of Energy states that, by 2012, the cost of powering up
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 data center will surpass the original IT investment [3].  Our experi-
ents show that the temperature-dependent component of power

ontributes a considerable part to the total power consumption of
achines. Given the large variations in temperature among differ-

nt machines (depending on their placement in the cluster) [16,18],
ccounting for temperature dependencies is essential to achiev-
ng a more efficient cluster energy usage and hence a non-trivial
mprovement in data center operation costs.

The remainder of this paper is organized as follows. In Section
, we summarize the related work of this paper. Section 3 demon-
trates the general power model, optimization framework and two
ase studies. Implementation details are described in Section 4.
inally, our experimental results are shown in Section 5.

. Related work

Current cluster energy saving policies cover several different
asic techniques, such as dynamic voltage and frequency scaling
DVFS) [10,19–21,31,32], workload distribution [24,25,29],  as well
s turning machines on and off [26,28,27].  While much work con-
idered energy minimization, other literature [17,30] focused on
aximizing service capacity under a power constraint. Few papers

onsider temperature as a parameter when designing energy sav-
ng policies. Given that most power consumed by servers turns
nto heat, some algorithms, such as OnePassAnalog [22], use the
mount of power as a proxy of workload, and assign an amount
f power to each server inversely proportional to the server’s inlet
emperature. Moore et al. designed the Zone-Based Discretization
ZBD) algorithm [23] to improve the granularity of load and power
istribution. When one server consumes more power than it is
ssigned, this server will “borrow” power from its neighbor servers,
.e.,  neighbor servers have to use less power than assigned. Banerjee
t al. [29] proposed Highest Thermostat Setting (HTS) algorithm to
mooth out hot spots and increase the set point in CRAC. In their
lgorithm, each server si has its own thermostat setting require-
ent (TSR), which indicates the highest possible set point of CRAC

o satisfy si’s cooling demand. They rank servers by TSR in descend-
ng order and place workload according to this ranked list. The CRAC
re set to lowest TSR of all servers.

Dean et al. [4] first proposed Map-Reduce as a programming
aradigm for distributed computing. They divide machines into
ne master node and several worker nodes. The master node chops
ata and passes the chunks to mapper nodes that generate inter-
ediate results that are then aggregated on the reducers into

he final result. Their original paper did not address energy con-
erns. Since then, much literature addressed energy efficiency in
ap-Reduce. For example, Chen et al. [5,6] discuss statistics of Map-

educe workloads and suggest possible strategies to improve their
nergy behavior. Their experiments show that batching and stag-
ered launching of batched jobs can help save energy. To the best of
ur knowledge, this paper is the first in considering the effect of the
ependence of power consumption on temperature in the context
f investigating energy-delay trade-offs of data-center workloads.

. System design

In this paper, we propose a general optimization framework for
ifferent applications, that helps to minimize service delay without
iolating a known power budget.

.1. General problem description
In order to provide a general framework for optimization, we
eed to be aware of the controllable knobs in data centers. In this
aper, we focus on computing and I/O resources. Since the power
Temperature ( C)

Fig. 1. Maximum performance.

consumption of each component only depends on its own  states,
other resources, such as network and memory, can be measured
separately and enclosed into the general model in a similar way.
Let l denote the number of tiers in data centers. We  assume that the
ratio ri between computational workload WC

i
and overall workload

Wi in tier i is known for specific applications. This ratio is charac-
teristic to the tier’s workload and hence is on average the same for
all machines in the tier. Since load balancers are often available in
data-centers, the amount of workload wij assigned to jth machine
in tier i is one obvious knob. The workload wij can be further divided
into computational workload wC

ij
and I/O workload wIO

ij
. Technolo-

gies like DVFS and Wake on Lan (WOL) help us enable two other
widely used knobs: CPU frequency fij of jth machine in tier i and the
number of powered-on machines ni in tier i.

Besides these well studied knobs, we  argue that CPU temper-
ature also exerts considerable influence on power consumption.
Figs. 1 and 2 show the relationship between temperature and power
in experiments where we  run a CPU-intensive program to keep
CPU utilization of the machine at 100%. The ambient temperature
is then changed by controlling the set point of the CRAC unit. The
CPU fan in our server (Dell PowerEdge R210) does not have a con-
stant speed option. Instead, we  measure the relationship between
temperature and power in two cases; one where the fan policy
was set to maximum performance (Fig. 1) and one where it is
set to minimum power (Fig. 2). We  can clearly see that, in both
cases, power consumption increases as temperature rises, even
though the load remains the same. In commercial data centers,
heat is not uniformly distributed. The temperature differences can
reach about 10 ◦C in the same aisle [16]. The thermal gap can be
even larger between CPUs in different server boxes. Fig. 3 illus-
trates measured temperature variability in our testbed when the
Hadoop cluster is running one CPU-intensive job. Hence, it is pos-
sible to improve energy savings by better exploiting temperature
30 40 50 60 70 80
85

Temperature (oC)

Fig. 2. Minimum power.
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Fig. 3. Temperature differences.

nd T = {Tij | i ≤ l, j ≤ ni}. They denote the number of machines per
ier, the load distribution across machines, the frequency settings
f machines, and the machine temperature values, respectively.
able 1 describes the meaning of related parameters used in this
ection.

The power consumption of one machine consists of two compo-
ents: static and dynamic. The static component is incurred even
hen the machine is idle. The dynamic component depends on sev-

ral parameters, such as CPU utilization, disk utilization, and CPU
requency. Our goal is to provide a general power model that applies
o different applications. One server is a collection of several differ-
nt components, such as, CPU, disk, memory, and NIC. The total
ower consumption of a server is the sum of components’ power
raw. This nature of computer systems helps us to decouple the
ig problem into smaller ones. We  can model the power consump-
ion of different components respectively and then, piece them
ogether. Let Pij denote the total power consumption of machine j
n tier i, PC

ij
and PIO

ij
denote the power spent on CPU and disk respec-

ively, and Pidle denote the power consumption when the machine
s idle. Therefore, for CPU and I/O workload, we can write:

ij = PC
ij + PIO

ij + Pidle. (1)

As mentioned in [27], when uij and Tij are fixed, the power PC
ij

can
e modeled as a kth-order polynomial of fij. According to our experi-
ents described in Section 4, k = 2 fits our hardware best. Literature

12] states that the leakage current is proportional to the square of

emperature. Since, in our server, the DVFS component changes CPU
requency by tuning voltage which also affects the leakage power,
C
ij

should be proportional to the product of fij term and Tij term.

able 1
arameters description.

Symbol Description Symbol Description

Pb Power budget PIO
ij

Dynamic part of
disk power
consumption

Wi Total workload in
tier i

uij CPU utilization of
jth server in tier i

Pidle Power
consumption of
idle server

fij CPU frequency of
jth server in tier i

Dij Service delay on jth
server in tier i

ni Number of
powered-on
machines in tier i

D Average Service
delay

PC
ij

Dynamic part of
CPU power
consumption

wij Workload on jth
server in tier i

Pij Power
consumption of jth
server in tier i

ri CPU workload ratio
in tier i

Tij CPU temperature
of jth server in tier i
tics and Systems 2 (2012) 117– 127 119

CPU utilization uij is the ratio of CPU busy time over total time in
each given time interval. Since, the non-busy (idle) power is already
covered in Pidle, we  should consider only busy time. Hence, PC

ij
is pro-

portional to the product of the aforementioned three terms. Eq. (2)
shows the relationship between the dynamic part of CPU power
consumption and these three parameters when computationally
intensive workloads are running.

PC
ij = uij(a1f 2

ij + a2fij + a3)(T2
ij + a4Tij + a5) (2)

We show empirically later that the above equation happens to
fit our measurements very well, and hence will be used for our com-
putational power model. Note also that, CPU utilization represents
busy CPU cycles over total CPU cycles. Given appropriate units, it
can be represented as amount of computational workload over CPU
frequency:

uij = riwij

fij
. (3)

In [34], Heath et al. proposed using a linear model of disk
utilization to estimate disk power consumption. Inspired by this
idea, to compute the I/O power consumption, PIO

ij
, we  conducted

experiments to measure the relationship between power consump-
tion and disk Blocks-read-Per-Second (BPS). As we  will discuss in
Section 4.2, our experiment result confirms validity of the linear
model. Thus, we use Eq. (4) to model the dynamic part of disk power
consumption.

PIO
ij = a6(1 − ri)wij (4)

Since the two power models above contain only hardware sta-
tus, they can be applied to different types of applications. Finally,
Pidle is just a machine constant. Combining Eqs. (2) and (4) with Eq.
(1) produces the general power model.

The purpose of our optimization is to calculate right states for
controllable knobs such that the delay is minimized. Among the
four parameters, CPU temperature is not directly tunable. Since the
thermal state changes much slower than computing state, we pro-
pose to run optimizations periodically with the latest reported CPU
temperature. Therefore, by substituting Eqs. (2)–(4) in (1),  we have:

Pij = wij

(
˛ijfij + ˇij + �ij

1
fij

)
+ Pidle

where ˛ij = ria1T̃ij

ˇij = ria2T̃ij + a6(1 − ri)

�ij = ria3T̃ij

T̃ij = T2
ij

+ a4Tij + a5

(5)

The power model applies to different kinds of applications. In
contrast, the service delay highly depends on the nature of appli-
cation itself. For example, in a web  service system, if real-time
request arrivals are Poisson and service time is exponentially dis-
tributed, the delay can be approximated by an M/M/1  model [33].
However, if we use Map-Reduce to process a large volume of data,
jobs run in batch and the delay is simply modeled as the total
amount of work over the resources the job occupies [35]. Given the
diversity of applications, it is very hard to provide a general delay

model. However, given a general delay function that is monotoni-
cally increasing with load and is a function of machines used and
their frequencies, different applications may  share the same frame-
work for delay minimization subject to power constraints. We  let
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 = G( W , F , N) denote the delay model. The general optimization
roblem becomes:

minimize D = G(W, F, N)

s.t.
l∑

i=1

ni∑
j=1

Pij ≤ Pb

where Pij = wij

(
˛ijfij + ˇij + �ij

1
fij

)
+ Pidle

(6)

With the general formulation above, different applications may
ollow the same set of steps to calculate the global optimal:

Build a delay model, G( W , F , N), according to application char-
acteristics.
Simplify the general power expression for the specific appli-
cation. (e.g., ri equals 1 for workloads consuming only CPU
resources, fij is a constant if the control policy does not tune CPU
frequencies.)
If a convex problem is achieved in step 2, periodically conduct
convex optimization to calculate and maintain optimal states.

In clusters, the controllers usually do not need to tune W , F ,
nd N with the same time scale. The CPU frequencies are stateless,
nd the changes apply instantaneously. Given the states and dura-
ions of jobs, the workload assignments vary in a more gentle way.
urning on and off servers should be performed infrequently, since
he action itself costs extra energy. With these properties, we  are
ften able to manipulate one knob at a time at any given time-scale.
herefore, by virtue of this time-scale separation, convex problem
pproximations can often be achieved without too much difficulty.

In the following, we show the detail of how we apply our
ramework to two totally different applications and achieve global
ptimal.

.2. Cloud computing workload

Hadoop is a widely used implementation of Map-Reduce in
any cloud computing services. The performance objective of the

arget system in this case study is to minimize delay of serving
ne computationally intensive job. According to [35], the delay is
nversely proportional to the amount of resources one job occu-
ies. Since there is only one tier of worker nodes, l equals to 1 in
his case study. Below, we  consider CPU intensive jobs. Hence, the
verall delay of one job can be modeled as:

 ∝ W1∑n1
j=1f1j

, (7)

It is obvious to see that minimizing delay is the equivalent to
aximizing the summation of CPU frequencies for all time units.
In Hadoop, the master node splits one job into many smaller

asks, and whenever one worker has any available resource slots,
t will get one task to run with. This property means that the bot-
leneck resource on worker nodes will always be fully utilized. In
ur case, the CPU utilization is approximately 1. Since we are con-
idering computational workload, the ratio r1 is also 1. Hence, with
ppropriate units, the workload assigned to each machine can be
epresented as:

= f (8)
1j 1j

The purpose of our optimization is to find the right frequency
or each machine such that the sum is maximized. The algorithm
e-computes the solution periodically at fixed intervals. Note that,
atics and Systems 2 (2012) 117– 127

when a machine keeps running at high utilization, the CPU tem-
perature does not change very quickly. Thus, each time when
calculating the frequency for the current time period, we use the
most recent reported temperature of each machine from the previ-
ous period as a constant to estimate the power consumption P1j. In
this way, we  take the temperature dynamics into consideration in
the equation, and, at the same time, we  calculate the optimal fre-
quency assignment taking temperature into account. Intuitively,
we are using CPU frequency to compensate for the power contri-
bution made by CPU temperature dynamics. Thus, substituting Eq.
(8) in (6),  we  get a new estimated power equation:

P1j = ˛1jf
2
1j + ˇ1jf1j + �1j + Pidle. (9)

In this equation, the value of ˛1j, ˇ1j, and �1j may  vary for dif-
ferent machines due to their different individual CPU temperature.
Thus, the optimization problem can be formulated as shown below.

maximize

n1∑
j=1

f1j

s.t.

n1∑
j=1

P1j < Pb

where P1j = ˛1jf
2
1j

+ ˇ1jf1j + �1j + Pidle.

(10)

The beauty of this problem is convexity. The objective function
is linear. Since ˛1i > 0, each quadratic P1i in the only constraint is
positive definite and thus convex, so is their sum. Obviously, the
definition domain is also convex. As a result, the problem is con-
vex. Furthermore, the Slater’s condition is also satisfied, because
we can easily find at least one interior point in the feasible set
after checking the constraint. Hence, the KKT condition is sufficient
for the optimality of the primal problem. In other words, we can
exactly obtain the optimum by solving the KKT conditions because
the duality gap is zero.

Introducing Lagrange multiplier � for the constraint, define:

L(F, �) =
n1∑
j=1

f1j + �

⎛⎝ n1∑
j=1

(˛1jf
2
1j + ˇ1jf1j + �1j + Pidle) − Pb

⎞⎠ .

(11)

Note that, the original problem described in Eq. (10) has an opti-
mal  point at F*, if and only if there exists the optimal point (F*,
�) that maximizes Eq. (11) with respect to F. We  then check the
stationarity of the KKT conditions:

∂L(F, �)
∂�

=
n1∑
j=1

(˛1jf
2
1j + ˇ1jf1j + �1j + Pidle) − Pb = 0,

∂L(F, �)
∂f1j

= 1 + �(2˛1jf1j + ˇ1j) = 0.

Finally, from the 2 equations above, we  get the optimal solu-
tion which also indicates the new frequency assignment for each
machine.

� =
[ ∑n1

j=1
1

4˛1j

Pb − n1Pidle −
∑n1

j=1(�1j − (ˇ2
1j

)/(4˛1j))

]1/2

(12)

−1 − �ˇ

f1j = 1j

2˛1j�
(13)

To calculate the optimal frequencies, we need to know the tem-
perature of all machines in the cluster. Hence, there should be
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 global node that is responsible for the calculation. Fortunately,
ap-Reduce itself provides the master node that collects infor-
ation from all nodes through heartbeat messages. We  add a

emperature field in the heartbeat message and a frequency field
n the return value. The size of heartbeat message may  range from
ens of bytes to hundreds of bytes depending on different MapRe-
uce cluster setup. Appending a four-byte float number will not

ead to much network overhead. We  discuss the implementation
etails in Section 4. The formulation above also indicates that the
omputational complexity is linear for both �, and F . Thus, even
hough the optimization is done by a single centralized node, it will
ot consume too much computational resources. The performance
valuation of the algorithm is presented later in Section 5.1.

.3. Enterprise workload

The 3-tier web server farms are a widely used architecture serv-
ng many enterprise web e-commerce systems. The first tier offers
he static contents in web pages and typically contributes the least
o latency. The second-tier servers usually take care of web applica-
ions, while the third tier consists of a collection of database servers,
hich handle disk-intensive workload. In this section, we discuss

n optimization that minimizes the delay of user queries while sat-
sfying a given power budget. The incoming requests are uniformly
istributed to all available second tier servers. The hosting appli-
ation utilizes the Round-Robin balancer of JDBC to access third
ier MySQL servers. Tuning both F and N makes the problem too
omplex to be solved by convex optimization. Therefore, we con-
ider the more powerful knob N. Let n2 and n3 denote the number of
achines in 2nd-tier and 3rd-tier respectively. Therefore, we  have:

wij = Wi

ni

where i ∈ {2, 3}, j ≤ ni.

(14)

According to our experiments shown in Fig. 7(b) and (c), M/M/1
odel captures the service delay trends of both second and third

ier servers. Thus, we use Eq. (15) to estimate delay where b22 and
32 correspond to the service rate for second tier servers and third
ier servers respectively.

 =
3∑

i=2

(
nibi1

nibi2 − Wi
+ bi3

)
. (15)

The definition domains of ni is ((Wi)/(bi2), ∞),  which guarantees
he system stability according to M/M/1  queueing model.

The second step is applying application properties to achieve
onvexity. Since we tune only the number of powered on servers,
he CPU frequencies are constants in this case. The 2nd-tier servers
andle computational workload that does not touch disk. There-

ore we ignore power dynamics induced by disk for these servers.
urther, by substituting Eq. (14) in (6),  we can reduce the power
quation P2j:

P2j = �2j
W2

n2
+ Pidle,

where �2j = ˛2jf2j + �2j
1
f2j

+ r2a2T̃2j,
(16)
here �2j is the temperature dependent parameter. As we  will
resent in Section 4.2,  the CPU utilizations for 3rd-tier servers
re always very low (less than 1 percent), we ignore the power
tics and Systems 2 (2012) 117– 127 121

dynamics induced by CPU for these servers. Further, by substituting
Eq. (14) in (6),  we  can reduce the power equation for P3j:

P3j = �3
W3

n3
+ Pidle,

where �3 = a6(1 − r3), (17)

For the purpose of optimization, we  first regard ni as a continu-
ous value, and then round the optimal value to the nearest integer
in implementation. Now, we  formulate the optimization problem
as follows.

minimize D

s.t.
3∑

i=2

ni∑
j=1

Pij < Pb (18)

We can evaluate that, in the definition domains of ni, the Hessian
matrixes of D, and Pij are positive definite. Therefore, the objective
and constraint are all convex. Hence, the problem is convex. The
Lagrangian, L(N, �), corresponding to our optimization problem can
be expressed as follows:

L(N, �) = D + �

[
Pb −

(
3∑

i=2

�iWi + Pidle

3∑
i=2

�i

)]

where �2 =
∑n2

i=1�2j

n2

(19)

At the optimal point, the partial derivation of the Lagrangian
with respect to ni, and � are zero. Thus, we get:

∂L(N, �)
∂ni

= −bi1Wi

(nibi2 − Wi)
2

+ �Pidle = 0,

∂L(N, �)
∂�

= Pb −
(

3∑
i=2

�iWi + Pidle

3∑
i=2

�i

)
(20)

From Eq. (20), we get the optimal numbers of servers:

ni = QWi + K(bi1Wi)
1/2

Qbi2
,

� = Q 2

K2Pidle
,

where K =
[

Pb −
∑3

i=2�iWi

Pidle
−

3∑
i=2

Wi

bi2

]
3∏

i=2

bi2,

Q = b32(b21W2)1/2 + b22(b31W3)1/2.

(21)

Eq. (21) presents the closed form solution for ni. The time com-
putation complexities are linear for computing two  knobs, since we
only have one summation equation to calculate �i.

4. Implementation
In this section, we first specify the hardware used in our
experiments. Then we demonstrate how we  modify the Hadoop’s
heartbeat message. Finally, we show the experiments to derive
power model and delay model respectively.
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observed data. The average error is about 0.106 W which is rel-
atively small comparing to the total power consumption of one
machine.
Te

Fig. 4. Correlation between power

.1. System setup

Our evaluation involves 40 DELL PowerEdge R210 servers.
ach server has a 4-core Intel Xeon X3430 2.4 GHz CPU. There
re 10 available frequencies for each core: 1.197 GHz, 1.330 GHz,
.463 GHz, 1.596 GHz, 1.729 GHz, 1.862 GHz, 1.995 GHz, 2.128 GHz,
.261 GHz, and 2.394 GHz. CPU turbo boost is turned off to avoid
npredictable dynamics. The server itself is equipped with CPU
emperature sensors, and we collect the reading via lm sensor

odule. There are two options available for the fan speed of
ur servers: minimum power and maximum performance. Both
f them employed a closed feedback loop to dynamically deter-
ine proper fan speeds. As shown in Fig. 3, the characteristic

f temperature power relationship does not change much for
wo fan configuration options. There is only a constant differ-
nce between them. Therefore, we choose the minimum power
ption in all our experiments to minimize the power consumed
y fans. For the cloud computing case, we use Hadoop − 0.20.2
s an implementation of Map-Reduce. One machine is nomi-
ated as a dedicated master node, i.e.,  TaskTracker and other
rograms for executing tasks are not running on master node.
or enterprise case, 18 dedicated 2nd-tier servers are installed
ith Tomcat − 6.0.32 and 15 dedicated 3rd-tier servers are installed
ith MySQL − 5.5.15. Besides, we have 3 dedicated Remote Browser

mulators (RBE), and one dedicated experiment controller which
utomates the experiment process and logs power consumption.
e use one implementation of TPC-w benchmark designed by
isconsin–Madison to populate our database [36]. Each MySQL

erver stores tables with 1 × 107 items (more than 5 GB) by MyISAM
ngine. The max  connection variable of MySQL is modified to tol-
rate up to 3000 connections. We  use Avocent PM 3000 power
istribution unit (PDU) to supply power for the rack, and directly
ollect readings from the PDU. The temperature of the server room
s set to 18.3 ◦C (65 ◦F).

.2. Power equation

Because of temperature differences, the power consumption
f one machine can be different even though it is running at the
ame frequency and same utilization. Understanding the relation-
hip between CPU frequency, temperature and power consumption
s crucial for conducting proper optimization. Fig. 4 shows how
requency and temperature influence power consumption.

Among, these three parameters, utilization and frequency can
e well controlled by tuning workload and using DVFS. However,
PU temperature is not directly tunable. Actually, the CPU thermal

tates intricately relates to intake air temperature, air flow speed,
ocation, CPU power draw, etc., which is very hard to model. To walk
round this, we  tune the CRAC set point to affect CPU temperature.
hen, we conduct 350 experiments that covers all combination of
ture ( oC) Utilization

mption and different parameters.

10 frequencies (1.2–2.4 GHz), 6 utilization states (0–100%), and 7
CRAC set points (50–80 ◦F). Finally, to plot the correlation of CPU
power consumption with each individual parameter, we pick a sub-
set of the data in which two parameters are roughly constant and
the third one is changing. Fig. 4 shows the relationship between
power consumption and three different parameters. The CPU uti-
lization linearly relates to the power consumption while both CPU
frequency and CPU temperature show a quadratic relationship.
To profile disk power consumption, we submit SELECT request to
MySQL data base with different frequency. Fig. 7(a) presents the
linear relationship between disk block-read-per-second (br) relates
and power consumption.

By piecing different parameters together, we get the following
power model:

P = u × (f 2 + 1.5253 × f ) × (0.9937 × T2 − 1.3357 × T + 3.2714)

+ 3.5321 × br + 40.5743,

As we argued before, for CPU intensive Hadoop workload load,
the CPU utilization is always high. Thus, we pick the data set whose
CPU utilization is higher than 99, and rerun the regression algo-
rithm with a simpler target equation. Thus, we get:

P = 0.0069 × T2 + 7.3865 × f 2 + 0.0405 × f × T − 0.4351

× T − 6.9793 × f + 61.1205.

Regression result is shown in Fig. 5 which fits well with our
Fig. 5. Our power model and observed data: every dot shows the average power for
one temperature–frequency pair according to our measured data.
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Fig. 6. Hadoop cluster: there is one master node and several worker nodes in a
Hadoop cluster. The JobTracker running on master node is responsible for task
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ssignment while the TaskTracker running on worker node will launch tasks and
eport available slots to JobTracker. JobTracker and TaskTracker communicate with
ach other via Heartbeat message and its return value.

In the enterprise experiment, by applying specific restrictions
o power model, we have:

P2j = 0.0782 × w2j × (0.9937 × T2
2j

− 1.3357 × T2j + 3.2714) + 40.5743,

P3j = 0.021 × w3j + 40.5743. (22)

One thing to mention is that, when the MySQL server is handling
isk-intensive requests, we observed that the CPU utilization is
lways less than 1 percent. Thus, we ignore the power consumption
nduced by CPU for third tier servers.

.3. Modify heartbeat message

In the cloud computing case study, a Map-Reduce cluster con-
ists of a master node and many worker nodes. More specifically,
or Hadoop, there is a JobTracker program running on master node
nd a TaskTracker program running on each worker node as shown
n Fig. 6. The TaskTracker sends heartbeat messages to inform Job-
racker that the worker node is alive. In the heartbeat message, the
askTracker will also indicate whether it is ready to run a new task.
obTracker responses a return value to TaskTracker which includes
esponse ID, the interval for next heartbeat and probably informa-
ion about a new task if the TaskTracker is ready. This structure
rants global information to master node which is naturally suit-
ble to run some centralized optimization algorithms.

We  add a CPU temperature field to the heartbeat message. Task-
rackers sense the CPU temperature of its hosting machine and
pdate this information before sending out heartbeat. In this way,
obTracker knows temperatures of all machines. JobTracker peri-
dically calculates optimal frequencies for the cluster and sends
t back via the return value of heartbeat. The calculation interval
an be a tunable parameter which indicates the trade-off between
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hird  tier servers respectively.
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optimization overhead and agility to dynamics. As discussed in
Section 3.2, the computational complexity of our optimization algo-
rithm is linear. Thus, it will not be a high overhead even if the cluster
contains thousands of machines. The JobTracker only returns the
optimal frequency and the frequency selection is done by worker
nodes in order to reduce computation overhead on master node.

4.4. Delay equation

In the enterprise workload case study, to capture the relation-
ship between delay and load, we use one workload generator to
produce SELECT queries, and record the average delay for every 100
request. Fig. 7(b) and (c) shows the experiment results of profil-
ing delay-load relationship for second and third tier web  servers.
We use M/M/1  model to approximate the trends. Below show the
detailed delay equation:

DC
i

= 16440

62 − wC
i

− 293,

DIO
i

= 10068

300 − wIO
i

− 330. (23)

5. Evaluation

In this section, we evaluate the power consumption, service
delay and reactions to dynamics for TAPA with respect to both
MapReduce and web  enterprise web servers.

5.1. TAPA and cloud computing workload

Our evaluation includes five different settings, one with our
temperature-aware DVFS algorithm enabled (TAPA), three static
policies with CPU frequencies set to maximum, minimum and
median respectively, and one temperature-oblivious DVFS policy
proposed in [32]. All experiments involve 11 worker nodes, one
master node, and one logging node which is responsible for log the
real power readings from the power unit. We  call them TAPA, MAX,
MIN, MED, and DVFS below for short. For the DVFS one, we  use their
final control formulation shown in Eq. (24),

fi(k) =
fi(k − 1)

∑
Tjl∈Si

cjlrj

(Us − u(k))fi(k − 1) +
∑

Tjl∈Si
cjlrj

. (24)

Descriptions of all symbols are shown in Table 2. Since this
experiment focuses on computationally intensive jobs, we set the

Us to 0.9. In Map-Reduce framework, master node will assign new
task to a worker node whenever there is empty slot on that node,
which keeps every core busy. Therefore, the estimated execution
time for each processor can be set to the length of one control period
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Table 2
Symbol descriptions for temperature oblivious DVFS.

Symbol Description Symbol Description

fi(k) CPU frequency in the
kth control period

Us CPU utilization set point

u(k) measured CPU
utilization in period k

Tjl subtask of Task Tj

Si set of subtasks located
at processor Pi

rj calling rate of task Tj

cjl estimated execution
time for subtask Tjl
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Fig. 8. Thermal gap in MED.

i.e.,
∑

Tjl∈Si
cjlrj is replaced by a constant value). We  apply a 1000 W

ower budgets to TAPA with 50 W slack (i.e., TAPA will try to keep
he power consumption below 950 W).

All of the experiments with different settings run the same com-
uting PI job with 6,000,000,000 sample points, an example job
rovided by the original Hadoop-0.20.2 release. We  configure each
achine to hold 4 mapping slots since each of them has 4 cores.

he mapper class here generates random points in a unit square
nd then counts points inside and outside the inscribed circle of
he square. The reduce class accumulates point counts results from

appers and use this value to estimate PI. For the mapping phase,
he cluster is computation intensive since all worker nodes are busy
alculating and the traffic in the network is mostly heartbeat mes-
ages and its return value. When this job reaches its reducing phase,
he network starts to become busy because many data need to pass
rom mappers to reducers.

In the MIN  experiment, the CPUs with minimum frequencies
o not generate too much heat and our current cooling system is
dequate to cool down servers with MIN  setting. Hence, we  do not
ee large thermal gaps in MIN  experiments. As we have shown pre-
iously in Fig. 3, the thermal gap in MAX  is about 20 ◦C. Here, we

how the temperature differences for worker nodes of MED  and
APA experiment in Figs. 8 and 9 respectively. As the job trans-
ers from mapping phase to reduce phase, the workload transfers
rom computationally intensive to network-intensive. Therefore,
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Fig. 10. Dynamic response.

there is a sudden drop in the end. Compared with Fig. 5, the ther-
mal  effect is even severe in this experiment. In MED  experiment,
the neighbors of each machine also generate a lot of heat. There-
fore, the heat cannot be drained as easy as one machine cases. We
can conclude at least two benefits from the comparison. Firstly, the
maximum temperature difference between nodes in MED  reaches
20 ◦C, while it is only about 5 ◦C in TAPA. It is obvious that TAPA
achieves much smaller temperature deviation than MED. Secondly,
the temperature of the hottest node is reduced from 68 ◦C to 48 ◦C.
Although we do not consider eliminating hot spot as a direct objec-
tive, reducing energy cost by reducing temperature achieves this as
a bonus effect. These two  benefits are very meaningful in data cen-
ters. Smaller deviation means that the cooling part does not have to
be over-provisioned. Operators can set the temperature target on
CRAC to be just-enough for all machines. It can be a big saving from
the cooling side. Lower temperature can help to increase system
stability and lengthen device life time. Therefore, it is another save
in the long run. For each machine, there is a temperature drop in the
tail. We  believe it is the time point when the map  tasks have been
finished and the whole cluster changes to the dedicated reduce
phase. Therefore, at this time point, the job changes from compu-
tation intensive to communication intensive and the utilizations of
CPUs decrease to low status.

In Fig. 10,  we  can see how our algorithm reacts to the tem-
perature dynamics. This figure shows the relation between the
frequency summation and the temperature trend. As shown in
Fig. 9, different servers have a similar temperature trend. Thus,
we only use temperature curve from one machine to show this
trend without making the figure too complicated. At the begin-
ning, the temperature increases very fast because the cluster just
switched from idle to full utilization status. TAPA immediately
decreases the computational capacity of the whole cluster to curb
power consumption below the budget. As the system keeps run-
ning, the temperature changes which will lead to different power
consumption. In order to compensate for temperature differences,
our strategy decreases total CPU frequency when temperature
increases and increases total CPU frequency when temperature
decreases.

Finally, we show the comparison among TAPA, MAX, MIN, MED,
and DVFS based on their power consumption and efficiency. Fig. 11
shows the experiment result. The power budget is set to be 1000 W
with 50 W slack for TAPA. For other approaches, the power bud-
get does not apply to them since they do not have mechanism
to control power consumption. From the Fig. 11,  we can see that
TAPA makes full use of the power budget without violating it. In
MAX experiment, the power consumption rises as time passing
by. It is because the machines gets hotter and hotter when run-

ning this computational intensive job. It is amazing that the power
gap caused by temperature reaches about 200 W in our small clus-
ter. The power consumption does not increase remarkably in MIN
because machines are set to use the lowest frequency, with which
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he temperature can only reach about 34 ◦C as shown in Fig. 5.
or the MED  experiments, the average temperature is about 55 ◦C
hich leads to a 5 percent increase in total power. This also matches
ith our experiments result shown in Fig. 5. For the DVFS experi-
ent, since all worker nodes stay in very high utilization status in
ap  phase, the CPU frequency keeps increasing until it reaches the

pper bound. Therefore, it shows a similar result as MAX. At the
ail of each curve, there is a sudden drop of power. We  believe it is
ecause the cluster is transferring from mapping phase to reducing
hase, and the CPUs no longer run at a high utilization.

Fig. 12 shows the frequency summation efficiency of five sce-
arios. The efficiency is defined as Fs/P, where Fs is the frequency

ummation of the whole cluster and P is the power consump-
ion. It is clear that TAPA is more efficient to transform power into
omputational capacity when comparing with other solutions. As
hown in Fig. 13,  TAPA uses about 25% less energy comparing to the
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Fig. 15. Service delay.

thermal-oblivious DVFS solution and about 5.6% less energy com-
paring to the most efficient static solution, MED. Given the huge
expenditure spent on data center power supply, TAPA will help to
achieve significant savings.

5.2. TAPA and enterprise workload

In this section, we evaluate how our solution performs with
web servers. The intuition behind TAPA is to allocate the right
number of servers for second and third tiers respectively, which
minimizes service delay while satisfying a global power constraint.
The experiment is designed in the way  that WC and WIO are the
same, and when cluster utilization is very low, delays induced by
Tomcat server and MySQL server are roughly the same. But, as
the volume of load goes up, the delay on Tomcat servers increases
much faster than MySQL servers. We  compare our solution with

a static allocation policy such that both second tier and third tier
have 9 dedicated servers (9-Even). We  set the RBE’s average user
think time to 1 second, and increase the number of users from 600
to 1200 with step 60.
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In Fig. 14,  we show how TAPA reacts to as load increases. To
urb the total power consumption, TAPA uses less machine to serve
eavier load. Because the power induced by each machine rises
ith load, and we will have to reduce the amount of static power

y turning off machines.
Figs. 15 and 16 together show the whole system power con-

umption and service delay for different numbers of users. We  can
learly see that TAPA won in both aspects. In Fig. 15,  even though
-Even policy uses more servers, allocating even number of servers
or each tier results in longer delay than TAPA. The reason is that, the
ottleneck of the system is in 2nd-tier. Spending too much servers
n 3rd-tier does not help to reduce delay. In Fig. 16,  it is not surpris-
ng that 9-Even uses more power, since it is using more machines.
ne phenomenon we want to point out is that, the power consump-

ion for 9-Even cases actually decreases as load goes up, we  believe
t is because when the arrival rate increases, the 2nd-tier spends

ore CPU time on accepting requests, which in turn reduces the
umber of requests it can serve in each second. The power con-
umption of tomcat servers will not change much, since the CPUs
re already fully utilized. But, as the 2nd-tier passes less load to
atabases, the power consumption of the 3rd-tier will decrease.

. Conclusion and future work

In this paper, we present a general optimization framework
or minimizing delay with a given power budget. We  also pro-
ide a versatile power model that takes both CPU and disk into
onsideration. Based on the power model, we apply our opti-
ization framework to two very different types of applications:
adoop, and enterprise web  servers. For each application, we only
eed to plug its specific delay constraints into the framework,
nd derive a closed form optimization solution. The computational
omplexities for both cases are linear. The experiment results show
hat our solution can curb the power consumption very well in
ynamic environments, simultaneously reducing both power con-
umption and delay. In our work, we consider only computational
nd I/O workloads. In order to handle all types of workload, we
till need to conduct a more comprehensive study on other com-
onents, such as GPU, memory, and NIC, which is a subject of future
ork.
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