
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Some Symmetric Lightweight Cryptographic Designs

Ågren, Martin

2012

Link to publication

Citation for published version (APA):
Ågren, M. (2012). On Some Symmetric Lightweight Cryptographic Designs. [Doctoral Thesis (monograph),
Department of Electrical and Information Technology].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/69a88ee7-0525-49dd-8327-fc6fe87933e3

O
n

 So
m

e Sym
m

etric Lig
h

tw
eig

h
t C

ryp
to

g
rap

h
ic D

esig
n

s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2012.

On Some Symmetric Lightweight
Cryptographic Designs

Martin Ågren

Series of licentiate and doctoral dissertations
Department of Electrical and Information Technology

ISSN 1654-790X
No. 46

ISBN 978-91-7473-391-4

http://www.eit.lth.se

M
artin

 Å
g

ren

Doctoral dissertation

On Some Symmetric
Lightweight

Cryptographic
Designs

Martin Ågren

Doctoral Dissertation
Information Theory

Lund, November 2012

Martin Ågren
Department of Electrical and Information Technology
Lund University
P.O. Box 118, 221 00 Lund, Sweden

Series of licentiate and doctoral dissertations
ISSN 1654-790X; No. 46
ISBN 978-91-7473-391-4

c© 2012 Martin Ågren

Typeset in Palatino and Helvetica using LATEX 2ε.
Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.

So it has come to this.

Abstract

This dissertation presents cryptanalysis of several symmetric lightweight
primitives, both stream ciphers and block ciphers. Further, some as-
pects of authentication in combination with a keystream generator is

investigated, and a new member of the Grain family of stream ciphers, Grain-
128a, with built-in support for authentication is presented.

The first contribution is an investigation of how authentication can be pro-
vided at a low additional cost, assuming a synchronous stream cipher is al-
ready implemented and used for encryption.

These findings are then used when presenting the latest addition to the
Grain family of stream ciphers, Grain-128a. It uses a 128-bit key and a 96-bit
initialization vector to generate keystream, and to possibly also authenticate
the plaintext.

Next, the stream cipher BEAN, superficially similar to Grain, but notably
using a weak output function and two feedback with carry shift registers (FC-
SRs) rather than linear and (non-FCSR) nonlinear feedback shift registers, is
cryptanalyzed. An efficient distinguisher and a state-recovery attack is given.
It is shown how knowledge of the state can be used to recover the key in a
straightforward way.

The remainder of this dissertation then focuses on block ciphers. First, a
related-key attack on KTANTAN is presented. The attack notably uses only
a few related keys, runs in less than half a minute on a current computer,
and directly contradicts the designers’ claims. It is discussed why this is, and
what can be learned from this.

Next, PRINTcipher is subjected to linear cryptanalysis. Several weak key
classes are identified and it is shown how several observations of the same
statistical property can be made for each plaintext–ciphertext pair.

Finally, the invariant subspace property, first observed for certain key classes
in PRINTcipher, is investigated. In particular, its connection to large linear
biases is studied through an eigenvector which arises inside the cipher and
leads to trail clustering in the linear hull which, under reasonable assump-
tions, causes a significant number of large linear biases. Simulations on sev-
eral versions of PRINTcipher are compared to the theoretical findings.

Contents

Contents vii

Preface xv

Acknowledgments xvii

1 Introduction 1
1.1 No Keys, Public Keys, and Symmetric Keys 2

1.2 Dissertation Outline . 4

2 Symmetric Cryptography 7
2.1 Notation . 7

2.2 What Constitutes an Attack . 8

2.3 Security Notions . 9
2.3.1 Unconditional Security 9
2.3.2 Provable Security . 9
2.3.3 Empirical Security . 10

2.4 Stream Ciphers . 10

2.5 Block Ciphers . 11
2.5.1 Block Cipher Modes of Operation 11

2.6 Authentication . 12
2.6.1 Universal Hash Functions 13

2.7 Boolean Functions . 13

2.8 Sboxes . 14

2.9 Binary Registers . 14
2.9.1 Linear Feedback Shift Registers (LFSRs) 15
2.9.2 Nonlinear Feedback Shift Registers (NFSRs) 18
2.9.3 Feedback with Carry Shift Registers (FCSRs) 19

2.10 The Combiner . 21

2.11 The Filter Generator . 22

2.12 The Grain Family of Stream Ciphers 22

2.13 Key-Alternating Block Ciphers 23

3 Tools for Cryptanalysis 25
3.1 Transforms . 25

3.1.1 The (Discrete) Fourier Transform 25
3.1.2 The Walsh Transform . 27
3.1.3 The Vectorial Walsh Transform 27

3.2 Matrix Theory . 28
3.2.1 Toeplitz Matrices . 28
3.2.2 Eigenvectors and Similar Matrices 28
3.2.3 Asymptotic Behavior of Matrix Powers 30

3.3 A Brief Introduction to Coding 31
3.3.1 Random Coding . 31
3.3.2 Linear Codes . 32

3.4 Hypothesis Testing . 32
3.4.1 Keeping α and β Similar 34
3.4.2 Fixing α . 35

4 Techniques for Cryptanalysis 37
4.1 Attack Settings . 37

4.1.1 Known-Ciphertext Attacks 37
4.1.2 Known-Plaintext Attacks 37
4.1.3 Chosen-Plaintext Attacks 38
4.1.4 Chosen-Ciphertext Attacks 38
4.1.5 Related-Key Attacks . 38
4.1.6 Distinguishing Attacks 39

4.2 Generic Attacks . 40

4.3 Attack Requirements . 40

4.4 Analysis of Boolean Functions 41

4.5 Analysis of Vectorial Functions 43

4.6 Linear Distinguishing Attacks 45

4.7 Correlation Attacks . 46

4.8 Fast Correlation Attacks . 47

4.9 Meet-in-the-Middle Attacks . 47

4.10 (Truncated) Differential Cryptanalysis 48
4.10.1 Truncated Differentials 48
4.10.2 Truncated Related-Key Differentials 49

4.11 Linear Cryptanalysis . 49

4.12 Insertion and Substitution Attacks on Authentication Schemes 52

5 MACs Revisited and a New Lightweight Family of Uni-
versal Hash Functions 53
5.1 Universal Hash Function Preliminaries 54

5.2 The Generalized Toeplitz Construction—a Basis for New Con-
structions . 54
5.2.1 Proving Theorem 5.1 . 56
5.2.2 Interpreting the Above to Find an Attack 58

5.3 Proving Lemmas 5.3–5.5 . 59

5.4 Using Authentication Together With a Stream Cipher 61

5.5 An Overview of Previous Constructions 61
5.5.1 GCM: GMAC . 63
5.5.2 UMTS: UIA2 . 63
5.5.3 LH and UH . 64
5.5.4 Cryptographic CRC . 65
5.5.5 An LFSR-Based Toeplitz Construction 65

5.6 A New Class of Constructions 66
5.6.1 A New Class of Toeplitz-Based Constructions 67
5.6.2 On the Problem of Finding the Bias 69
5.6.3 Structured Functions f 69
5.6.4 A Coding Theory Approach 70
5.6.5 Numerical Results on Smaller Instances 70
5.6.6 Weak Keys and Key Reuse 72

5.7 An Example of a Specific Construction and an Attack 72

5.8 Conclusion . 75

6 Grain-128a: A New Stream Cipher with Optional Authen-
tication 77
6.1 Design Details . 78

6.1.1 Key and IV Initialization 79
6.1.2 Modes of Operation . 79
6.1.3 Keystream Generation . 80
6.1.4 Authentication . 80

6.2 Throughput Rate . 81

6.3 Security Evaluation . 82
6.3.1 Linear Approximations 82
6.3.2 Algebraic Attacks . 83
6.3.3 Time–Memory–Data Trade-Off Attack 83
6.3.4 Fault Attacks . 84
6.3.5 Side-Channel Attacks . 84
6.3.6 Weak Key–IV Pairs . 84
6.3.7 The Authentication . 85

6.4 Design Choices . 86
6.4.1 Size of the LFSR and the NFSR 86
6.4.2 Speed Acceleration . 86
6.4.3 The Boolean Function f 86
6.4.4 The Boolean Function g 87
6.4.5 The Preoutput Function 87
6.4.6 Authentication Mechanism 87
6.4.7 Two Modes of Operation 88
6.4.8 Support for Variable Tag Sizes 88
6.4.9 Authentication Initialization 89

6.5 Differences From Grain-128 . 89
6.5.1 IV Space Partitioning . 89
6.5.2 The Function g . 90
6.5.3 IV Initialization . 90
6.5.4 Authentication . 91
6.5.5 Throughput Rate . 91
6.5.6 A Tap in the Preoutput Function h 91

6.6 Hardware Complexity . 92
6.6.1 Different Tag Sizes . 92
6.6.2 The Increase of Hardware From Grain-128 92

6.7 The Grain Family of Stream Ciphers 93

6.8 Test Vectors . 94

6.9 Conclusion . 94

7 Cryptanalysis of the Stream Cipher BEAN 97
7.1 BEAN Specification . 98

7.1.1 Keystream Generation . 99
7.1.2 BEAN Initialization . 101

7.2 A Distinguishing Attack on BEAN 102

7.3 A Standard Brute Force Key Recovery 104

7.4 An Improved Key-Recovery Attack 104

7.5 A Time–Data Trade-Off . 106
7.5.1 Guessing S . 106
7.5.2 Finding B Given S . 109
7.5.3 A General Conclusion . 110
7.5.4 Recovering the Key . 110

7.6 Protecting Against the Attacks 113
7.6.1 Improving the Attack . 114

7.7 Conclusion . 114

8 Related-Key Attacks on KTANTAN 115
8.1 KTANTAN . 116

8.1.1 On Bit Ordering and Test Vectors 119

8.2 A Previous Result on KTANTAN 119
8.2.1 Reformulating the Attack 120

8.3 Related-Key Attacks on KTANTAN32 122
8.3.1 Truncated Differentials and Attack Requirements 122
8.3.2 On the Bad Mixing of k32 122
8.3.3 The General Attack Idea 123
8.3.4 A First Approach: Finding 28 Bits of the Key 124
8.3.5 Making it Faster . 124
8.3.6 Using Triplets with One Ciphertext and Two Plaintexts 125

8.3.7 Going in Both Directions: a Practical-Time Key-Recovery 127
8.3.8 Minimizing the Data Requirements 127
8.3.9 Possible Improvements 128

8.4 Summarized Attacks on All Versions of KTANTAN 129

8.5 Comparison to Specification Claims 129

8.6 Conclusion . 130

9 Linear Cryptanalysis of Round-Reduced PRINTCIPHER 133
9.1 PRINTcipher . 134

9.1.1 Existing Work on PRINTcipher 135

9.2 On the Importance of Finding Many Samples 137

9.3 Some Initial Observations . 138
9.3.1 The Permutation πb and the Sbox 138

9.4 A Key Bit Distinguisher . 139
9.4.1 A Detailed Example . 139
9.4.2 More Linear Trails on One Round of PRINTcipher . . . 140

9.5 Guessing Key Bits for Partial Encryption and Decryption . . . 141
9.5.1 Experimental Results . 143
9.5.2 Analyzing the Time Requirement 143
9.5.3 A Possible Implementation Improvement 144
9.5.4 Reaching the Limit: 28 Rounds 145
9.5.5 More Attacks on 27/28 Rounds 146
9.5.6 On False Positives . 147

9.6 On More Rounds of PRINTcipher: Mirroring Trails 147
9.6.1 Using Mirroring Trails to Distinguish on 24-Round Trails 149
9.6.2 Samples are Independent (Enough) 149
9.6.3 Partial Encryption and Decryption for 29 Rounds 151

9.7 Conclusion . 153

10 Invariant Subspaces and Linear Correlations 155
10.1 Understanding the Large Correlations 158

10.2 Equivalence Between Eigenvectors and Invariant Subspaces . . 164

10.3 Experimental Results on PRINTcipher 166
10.3.1 The Bias Distibution Over Xor Keys 166
10.3.2 Experimental Results on PRINTcipher-48 167

10.3.3 Experimental Results on PRINTcipher-12 168

10.4 A Technical, PRINTcipher-Specific Proof of Lemma 10.3 . . . 169

10.5 Conclusion . 174

Concluding Remarks 177

Acronyms 179

References 181

Preface

This dissertation contains a general introduction into the field of symmet-
ric cryptography and summarizes some of the research performed by
the author at the Department of Electrical and Information Technology

at Lund University. It builds on several publications, listed below together
with a brief description of the work related to each publication. The first
two publications listed below are largely similar and correspond to Chap-
ter 5, while the subsequent publications correspond to, in sequence, one of
Chapters 6–10.

• M. Ågren, M. Hell, and T. Johansson, »On hardware-oriented message
authentication,« IET Information Security, to appear.

The author of this dissertation performed most of the analysis and wrote
most of the paper.

• M. Ågren, M. Hell, and T. Johansson, »On hardware-oriented message
authentication with applications towards RFID,« in Proceedings of the 2011
Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applica-
tions, LightSec 2011, pp. 26–33.

The author of this dissertation performed most of the analysis and wrote
most of the paper.

• M. Ågren, M. Hell, T. Johansson, and W. Meier, »Grain-128a: A new
version of Grain-128 with optional authentication,« International Journal of
Wireless and Mobile Computing, vol. 5, no. 1, pp. 48–59, 2011.

The author of this dissertation performed most of the work and wrote
most of the paper.

xv

• M. Ågren and M. Hell, »Cryptanalysis of the stream cipher BEAN,« in
Proceedings of the 4th International Conference on Security of Information and
Networks, SIN 2011, 2011, pp. 21–28.

The author of this dissertation performed most of the analysis and wrote
most of the paper.

• M. Ågren, »Some instant- and practical-time related-key attacks on KTAN-
TAN32/48/64,« in Selected Areas in Cryptography—SAC 2011, ser. Lecture
Notes in Computer Science, A. Miri and S. Vaudenay, Eds., vol. 7118.
Springer-Verlag, 2012, pp. 213–229.

The author of this dissertation is the sole author of the paper.

• M. Ågren and T. Johansson, »Linear cryptanalysis of PRINTcipher —
trails and samples everywhere,« in Progress in Cryptology—INDOCRYPT
2011, ser. Lecture Notes in Computer Science, D. J. Bernstein and S. Chat-
terjee, Eds., vol. 7107. Springer-Verlag, 2011, pp. 114–133.

The author of this dissertation performed most of the analysis and wrote
most of the paper.

• M. A. Abdelraheem, M. Ågren, P. Beelen, and G. Leander, »On the
distribution of linear biases: Three instructive examples,« in Advances
in Cryptology—CRYPTO 2012, ser. Lecture Notes in Computer Science,
R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer-Verlag, 2012,
pp. 50–67.

The author of this dissertation performed most of the analysis regarding
the PRINTcipher example and wrote most of Section 5.

Research presented in the following publications is not included in this
dissertation, although coauthored by its author.

• M. Ågren, T. Johansson, and M. Hell, »Improving the rainbow attack by
reusing colours,« in Cryptology and Network Security—CANS 2009, ser. Lec-
ture Notes in Computer Science J. A. Garay, A. Miyaji, and A. Otsuka,
Eds., vol. 5888, Springer-Verlag, 2009, pp. 362–378.

• M. Ågren, M. Hell, T. Johansson, and C. Löndahl, »Improved message
passing techniques in fast correlation attacks on stream ciphers,« in 7th
International Symposium on Turbo Codes & Iterative Information Processing, to
appear.

The research work included in this dissertation was supported in part by the
Swedish Foundation for Strategic Research (SSF) through its Strategic Center
for High Speed Wireless Communication at Lund.

xvi

Acknowledgments

This dissertation would not have come about without the guidance of my
supervisor, Thomas Johansson, who has an immense knowledge, many
good ideas and the ability to delicately notify me of when my own

ideas are not so good. My assistant supervisor, Martin Hell, has been partic-
ularly good at coming up with simple answers to my half-baked and overly-
complicated questions. My office neighbor and good friend Paul Stankovski
also deserves many thanks for a cheerful attitude at all times and for kind
help in reviewing draft manuscripts.

Florian Hug has made my life easier by providing the LATEX template used
for typesetting this dissertation, but also better by being such a good friend.
All other people at the department, including the Wednesday fika group and
the Friday lunch gang, have certainly contributed to the nice environment in
which I have spent the last four years. I also want to thank the DTU people for
being so friendly to me while I visited them, and in particular Gregor Leander
who somehow kept my research on the right track.

The work presented in this dissertation would have been nowhere near
even being begun without my parents, Evy and Kenneth, who gave me what
I—with bias, but still—consider the best upbringing possible, and who have
played a large part in the fact that I have been so lucky so far. They always
make me feel welcome in their home and were kind enough to let me setup
a writer’s cabin where the introductory part of this dissertation was writ-
ten. That environment is also intimately connected to my brother Mikael,
my grandmother Sonja, and my uncles Arne and Göran, who deserve much
credit for always being around.

Of all the things that have happened to me in Lund/Malmö since I moved
here nine years ago, what really stands out as important is getting to know my

xvii

best friends Julia and Jonas. At the time of writing this, it is not decided where
I will go next, or if I will stay here, but whatever happens I am determined to
keep my best friends close.

Many more—most of them unknowingly—have provided a piece of the
puzzle that has been crucial in leading to this particular outcome of an im-
mense collection of random events. It is my hope that the work presented
here can somehow be beneficial to others, much like the work of others has
been so valuable to me.

The Author
Kruseböke, October 2012

xviii

1
Introduction

Cryptology is a both old and young field of research. It seems plausible
that only a short time after the art of writing was invented, so was that
of secret writing. Historically, and perhaps still to the layman, cryptol-

ogy is commonly connected with warfare, espionage and the like. However,
with the advent of the information society and the digital revolution, cryp-
tology is more and more relevant also in the peaceful and friendly lives of
»ordinary« people.

The academic research field has grown considerably since the seminal 1976
paper by Diffie and Hellman [DH76], who simplified the issue of key man-
agement that was hampering the use of encryption between large numbers
of users (e.g., all the web servers and web clients of today), and provided a
starting point for the academic cryptologic research community. When what
is today the National Institute of Standards and Technology (NIST) wanted
to develop the Digital Encryption Standard (DES) in the seventies, the pro-
cess was closed in the sense that the exact rationale behind the final design
was not publicly known. During the process of selecting the next-generation
Advanced Encryption Standard (AES), however, the scientific community was
invited to contribute to a larger extent. Several international researchers sub-
mitted their designs and eventually Rijndael by Belgian researchers Daemen
and Rijmen was selected to be used for the AES [DR02].

The field of cryptology is commonly divided into two subfields that are
not completely disjoint. Cryptography is related to the design of cryptographic
algorithms and protocols. Cryptanalysis, on the other hand, is everything re-
lated to breaking these constructions, or trying to understand how, why and
precisely under what circumstances they are secure. A common approach in
cryptology is Kerckhoffs’ principle, which states that a cryptosystem should be

1

2 Introduction

secure even if everything about the system, except the key, is public knowl-
edge. That is, the algorithm itself should not have to be secret, only its input.

A trend in our society is that not only a few, large machines are in need
of cryptographic solutions, but that a larger number of increasingly smaller
devices have a need for such technology. Mobile phones and banking devices
are standard everyday examples, but even more common, and smaller, are
the RFID tags that replace more and more bar codes for tracking shipping
pallets and even individual consumer items. The general idea is that while
bar codes must be read optically, i.e., using a reading device that is aimed
more or less directly at a specific area on the (packaged) goods, RFID chips
employ radio waves, meaning they can register goods (chips) that pass by the
reader much more »approximately.« This assures faster processing, but also
invites completely new attack scenarios, especially when the RFID chips are
used in more creative ways, e.g., for bus passes or building access control.

A crucial point to make is that these products are rarely directly targeting
a cryptographic need. More likely, they allow people, businesses and goods
to communicate easier, faster or more frequent. It is therefore not obvious
that the producer will prioritize cryptographic solutions. In other words, the
cryptographic part only has a limited budget in terms of, e.g., development
cost, unit production cost, and battery power consumption. For this reason,
the standard, general-purpose solutions, e.g., AES, are often considered out
of the option when developing such technology. Lately, the academic commu-
nity have produced several interesting new algorithms that target this niche,
often denoted lightweight cryptography.

1.1 NO KEYS, PUBLIC KEYS, AND SYMMETRIC KEYS

Several different classes of cryptographic primitives can be identified. They
are useful in different scenarios and can be combined into larger systems and
solutions.

A (cryptographic) hash function maps variable-length preimages to fixed-length
hash values. A hash function takes no key as input, but notably it should be
computationally hard to find a preimage with any given hash, to change any
preimage without changing the hash, and to find two distinct preimages that
yield the same hash value. Still, it should be computationally easy to derive
the hash value for any given preimage. Very recently, NIST completed a pro-
cess similar to the AES process to select the next hash standard, SHA-3. The
winner is Keccak by Bertoni et al. Hash functions are useful building blocks
in several cryptographic settings, but are not considered in this dissertation.

Above, the public-key concept that simplified key management was briefly
mentioned. Intuitively, perhaps, the key should be kept secret: the sender

1.1. No Keys, Public Keys, and Symmetric Keys 3

and the receiver both share a secret key, which they have somehow agreed on.
This setting is often referred to as symmetric cryptography.

An obvious problem of symmetric keys is that they must somehow be dis-
tributed: it might not be feasible to preshare keys with everyone you might
one day be interested in communicating with. While this can be avoided by
trusting a third party to do the key communication if both parties already
share keys with the third party, it does introduce the third party and the issue
of trust.

In public-key cryptography, two slightly different keys are used. To encrypt
a plaintext, a public key is enough, but to then decrypt the ciphertext, a corre-
sponding private key is required. Public-key constructions are typically based
on some mathematical problem, such as factoring, which is assumed to be a
hard problem in a computational sense. To consider the example of factoring,
the private key can consist of two large prime numbers and the correspond-
ing public key of their product. Acquiring the private key from the public is
possible in theory, but all known algorithms for factoring will require huge
resources (e.g., time) to complete.

It could be suspected that once public-key cryptography arrived on the
international scene, all symmetric algorithms would be moot. This is not so.
Public-key cryptography is inherently slow and keys are large. Therefore, it
is common that a one-time, random key is used with a symmetric algorithm
to encrypt the plaintext. The one-time key, which is comparably small, is then
encrypted using the public-key algorithm. Thus, public-key cryptography
augments symmetric cryptography rather than replaces it.

There are traditionally two classes of symmetric encryption algorithms:
block ciphers and stream ciphers. Block ciphers encrypt one block of plaintext
at the time, typically 32–256 bits. During decryption, a similar block-by-block
approach is used.

Stream ciphers, on the other hand, look at the plaintext as a stream of bits.
Typically, a stream cipher produces a pseudorandom stream of bits which it
uses to mask the plaintext. During the encryption, the same pseudorandom
sequence is produced and »unmasked« from the ciphertext.

In cryptanalysis, several different attack settings are common, ranging from
ciphertext-only attacks through chosen-plaintext attacks to related-key attacks.
Broadly speaking, with each relaxation of the attack setting, the attack be-
comes more powerful (e.g., fast) and less practical. Several standard tech-
niques have been developed, such as linear distinguishers on stream ciphers
and differential or linear attacks on block ciphers.

Many cryptographic primitives have been proposed over the years, and
new designs are published as cryptanalysis enhances the understanding of
how to design safer and more efficient primitives. New European Schemes
for Signatures, Integrity and Encryption (NESSIE), a European project which

4 Introduction

aimed to recommend several algorithms, such as block ciphers and public-
key encryption schemes, notably did not select any stream ciphers due to
all submitted algorithms being successfully cryptanalyzed. This spurred the
eSTREAM project, which decided on two portfolios of promising stream ci-
phers. One of these aimed at hardware attractive constructions, and consists
of Grain, Trivium, and MICKEY. A fourth cipher, FCSR-H, was included in
the initial portfolio, but removed due to subsequent cryptanalysis.

Another area of interest to cryptographers, besides secrecy, is authentica-
tion: verifying that a (possibly encrypted) message has not been altered and
that it was indeed sent by the supposed sender.

1.2 DISSERTATION OUTLINE

This dissertation will focus on symmetric lightweight cryptography. Several
cryptanalytic results and some new designs will be presented. The remainder
of this dissertation is organized as follows.

In Chapter 2 the notation used in this dissertation will be introduced. Var-
ious security notations will be discussed, and some common security goals
will be presented. Then, several classes of cryptographic primitives will be
introduced, followed by various building blocks commonly used and some
more or less specific designs, such as the nonlinear combiner and the Grain
family of stream ciphers.

In Chapter 3, several useful tools will be introduced, such as various trans-
forms and some matrix theory.

Several of those tools will then be used in Chapter 4, which covers attack
settings and describes various standard attack strategies.

Chapter 5 and onwards constitute the contributions of this dissertation, and
can be broadly described as focusing on authentication, stream ciphers, and
block ciphers, in that order.

Chapter 5 describes a particular way of authenticating using a class of
structured matrices. A previous security result in this area is revisited and
tweaked. Some insights are used to argue why the security proof can be ex-
pected to be far from tight. A new class of authenticating mechanism, which
might be suitable for lightweight applications, is introduced and exemplified.

Chapter 6 describes a new member of the Grain family of stream ciphers,
Grain-128a. It is a new version of the stream cipher Grain-128, which has
been affected by recent cryptanalysis. Several design choices of Grain-128
have been revisited. The new cipher is also equipped with an authenticating
building block, the use of which is optional meaning that devices without any
need for authentication can save on gates by not implementing the authenti-
cation.

1.2. Dissertation Outline 5

Chapter 7 presents cryptanalysis of the stream cipher BEAN, which has
been suggested as a lightweight stream cipher. It is shown how to distinguish
BEAN keystreams from truly random sequences, and how to speed up a brute
force search for the key. It is also shown how the state, and from this the key,
can be recovered using a time–data trade-off; this is exemplified by a trade-off
which uses short keystream sequences but impractical time.

The dissertation then focuses exclusively on block ciphers. Chapter 8 de-
scribes a related-key attack on KTANTAN, where it is shown how the key can
be recovered using practical time and memory constraints, but an arguably
unrealistic attack setting. The findings are compared to the designers’ claims
and it is suggested how similar problems can be avoided in future designs.

Chapter 9 presents an investigation of the behavior of PRINTcipher with
respect to linear cryptanalysis. In particular, it is shown how a single plaintext–
ciphertext pair allows the attacker to make several statistical observations and
increase the attack success probability.

Chapter 10 again relates to PRINTcipher, which is known to have invari-
ant subspaces and behave badly in terms of linear cryptanalysis. The relation
between invariant subspaces and linear biases, in any block cipher, is investi-
gated from the particular viewpoint of eigenvectors arising in the block cipher.
The analysis is augmented by some experimental results on PRINTcipher and
some smaller-state versions of it. Further, one of the main results, the exis-
tence of a particular eigenvector, is investigated in detail for PRINTcipher, to
explain at a lower level why it arises.

2
Symmetric Cryptography

This chapter begins with an introduction to the general notation used in
this dissertation. It is discussed what exactly constitutes a cryptanalytic
attack, or how one might define »security.« After this, various crypto-

graphic primitives are introduced, such as block and stream ciphers, Sboxes
and binary registers, and the filter generator.

2.1 NOTATION

For a nonnegative integer j, the integers j div 2 ≥ 0 and j mod 2 ∈ {0, 1} are
uniquely defined such that 2 · (j div 2) + (j mod 2) = j.

Vectors will be written as v. In particular, p, c, and k will be used to denote
plaintext, ciphertext, and key, respectively. The length of a vector, i.e., the
number of elements in it, will be denoted |v|. In particular, it will be assumed
that |c| = |p|.1 For any finite set S, |S| is the number of elements in S.

Vectors will be distinguished using superscripts, e.g., v0 and v1. The in-
dividual elements of a vector will be indexed using subscripts from 0, as
in v = (v0, v1, . . . , vn−1). Concatenation of two vectors, not necessarily of
equal length, is denoted by ||, e.g., the concatenation of v0 = (v0

0, v0
1) and

v1 = (v1
0, v1

1) is v0||v1 = (v0
0, v0

1, v1
0, v1

1). The concatenation v||(a), where a is a
scalar, can be written as v||a; similarly a||v = (a)||v.

Fn
2 denotes the set of n-bit vectors. For two elements v0, v1 ∈ Fn

2 , addition
is defined elementwise modulo 2, i.e., v+ = v0 + v1 ∈ Fn

2 is defined through

1Especially in the context of block ciphers (cf. Section 2.5), the ciphertext might not
have the exact same bitlength as the message, but in all aspects of encryption, this
dissertation ignores the concept of padding altogether.

7

8 Symmetric Cryptography

v+i = v0
i + v1

i mod 2, 0 ≤ i < n. Further, 〈v0, v1〉 denotes the canonical inner
product of two binary vectors, i.e.,

〈v0, v1〉 =
n−1

∑
i=0

v0
i v1

i mod 2 =
∣∣∣{i : v0

i = v1
i = 1

}∣∣∣ mod 2.

For v = (v0, v1, . . . , vn−1) ∈ Fn
2 , define v � 1 = (v1, v2, . . . , vn−1, 0). The

vector v = (v0, v1, . . . , vn−1) ∈ Fn
2 may be interpreted as an integer

(v) =
n−1

∑
i=0

vi2i,

e.g., the vector v = (1, 0, 1, 0) (with v0 to the left) corresponds to the integer
(v) = 5. If v is of length divisible by four, it can be written in hexadeci-
mal where each group of four bits is represented by a hexadecimal digit 0–f,
where in hexadecimal, the leftmost bit is the most significant bit, e.g., 1d rep-
resents (0, 0, 0, 1, 1, 1, 0, 1). The function ⊕v: Fn

2 → Fn
2 is defined for v ∈ Fn

2 as
⊕v(x) = x + v. The n-bit vector consisting of only zeros is denoted 0n.

For a subspace U ⊂ Fn
2 , i.e., v0 + v1 ∈ U for all v0, v1 ∈ U, denote by U⊥

the orthogonal subspace, U⊥ = {x ∈ Fn
2 : 〈x, v〉 = 0, ∀v ∈ U}. It holds that

|U| ·
∣∣U⊥∣∣ = 2n. For U ⊂ Fn

2 and x ∈ Fn
2 , write U + x = {u + x | u ∈ U}. For

a function F: Fn
2 → Fn

2 and a set V ⊆ Fn
2 , write F(V) = {F(x) | x ∈ V}.

The Hamming weight of a binary vector v is the number of ones in the vector
and is denoted wH (v). The Hamming distance between two vectors, v0 and v1,
is denoted dH

(
v0, v1) and is the number of positions where v0 and v1 differ.

It follows that dH

(
v0, v1) = wH

(
v0 + v1).

For a nonnegative real number x, dxe denotes the ceiling function, i.e., dxe
is the smallest integer dxe ≥ x. Similarly, bxc is the largest integer bxc ≤ x.

PrS [s = s′] denotes the probability that s = s′, where s ∈ S and S is a finite
set of vectors. It holds that ∑S PrS [s] = 1. Almost always, S = Fn

2 so this
will not be given explicitly. If no other distribution is specified, the uniform
distribution will be assumed, i.e., PrS [s = s′] = 1

|S| , ∀s′ ∈ S.

2.2 WHAT CONSTITUTES AN ATTACK

Cryptanalysis, as already pointed out, relates to analyzing cryptographic prim-
itives. A large part of cryptanalysis is that of looking at cryptographic primi-
tives, or classes of cryptographic primitives, and trying to attack or break them.
It is not clear exactly how to define an attack (break), but one attempt might
look like the following.

»Any algorithm which uses some data originating from a cryptographic
primitive or its implementation to learn something supposedly secret can be
called an attack.«

2.3. Security Notions 9

Here, »something supposedly secret« is a rather vague term, which can
refer to information about a key, plaintext, preimage, or state, e.g., the whole
key, some bits of the key, or some information about which keys are more or
less probable than others, or even impossible.

Similarly, »some data originating from . . . « could be a ciphertext or a hash
value, but also side-channel information such as power consumption (possibly
as a function of time), the time required to perform one particular operation
(e.g., the encryption of some plaintext), or similar data related to an (execution
of an) implementation of the primitive.

Notably, this definition does not mention how long time the attack is al-
lowed to run, or how much memory it is allowed to use. In the next section,
three different approaches to this will be given: one which allows the algo-
rithm infinite resources, and two which limits them.

2.3 SECURITY NOTIONS

At its core, cryptography is about constructing a primitive which is simple
to understand, easy to implement, and efficient, but still secure. Similar to
above, it is not obvious how to define what it means for a primitive to be
»secure.« At least three viewpoints can be offered:

2.3.1 UNCONDITIONAL SECURITY

This viewpoint comes from the line of information theory and the work by
Shannon in the 1940s and 1950s. A system is said to be unconditionally se-
cure if an adversary cannot break it, even with access to infinite computa-
tional resources. It is important to note that whether or not a cryptosys-
tem is unconditionally secure might depend on the attack setting. Shan-
non considered perfect secrecy, which can be defined as the property that
Pr [p = p′ | c = c′] = Pr [p = p′] for all plaintexts p′ and ciphertexts c′, i.e.,
the ciphertext leaks no information about the plaintext. Shannon essentially
showed that perfect secrecy can only be achieved if the number of keys is
equal to or greater than the number of plaintexts, i.e., if the keys and plain-
texts are bitstrings, the keys must be at least as long as the plaintexts, which
tends to make such schemes impractical.

2.3.2 PROVABLE SECURITY

A primitive is said to be provably secure if breaking it, when used in some spe-
cific scenario, implies the ability to break some mathematical problem which
is normally assumed to be »hard,« e.g., factoring a large number into prime
factors.

10 Symmetric Cryptography

2.3.3 EMPIRICAL SECURITY

With symmetric primitives, it is often more reasonable to try to assess what an
attacker is able to do in practical terms. It is clear that if an attacker’s aim is to
find the |k|-bit key k, they can make 2|k| guesses for the key. If it is possible to
somehow validate guesses, e.g., because some plaintexts and ciphertexts are
available, an exhaustive search (brute force) can be applied, searching through
all elements in the finite search space until the correct element (e.g., key) is
found. If all keys are equiprobable, on average 2|k|−1 must be tried.

A system provides n bits of security if the most efficient attack on it requires
computational effort comparable to an exhaustive search over n bits.

It is rarely known how to prove a particular primitive computationally se-
cure. Instead, it is argued that if the algorithm has »attracted attention but
not been broken,« i.e., several (skilled) researchers have spent a lot of time on
it and perhaps gained several insights but, crucially, not found any flaws that
allow better attacks than brute force, then there is »confidence« in the algo-
rithm. Typically, however, it can not be ruled out that future bright ideas will
provide a break. Thus, attacks tend to get better and better, and the primitives
weaker and weaker. Cryptographers therefore often embed a security margin
into their ciphers, i.e., they show (or argue) that even a »reduced« version of
the algorithm is secure against known attack approaches.

In the remainder of this chapter, some general classes of cryptographic
primitives will be outlined, followed by various common building blocks
and some design strategies for combining the building blocks into primitives.
More on attacks, e.g., settings, requirements, and practicality, can be found in
Chapter 4.

2.4 STREAM CIPHERS

At least two general classes of stream ciphers can be identified: self-syn-
chronizing and synchronous; this dissertation will only treat the synchronous
stream ciphers.

The idea behind a stream cipher is that the comparably small random key
is expanded into a keystream, which is used to mask the plaintext. That is,
c = p + z, where z is the keystream.

If z was a uniformly random sequence, used only once, this scheme would
provide perfect secrecy. That scheme, called the one-time pad (OTP), is in
most cases completely out of the question as it requires that a key of the
same size as the plaintext has been agreed on beforehand. The one-time pad
has however been used in espionage, diplomatic traffic, and together with
quantum key distribution.

The intuition behind a stream cipher, then, is to use a keystream generator

2.5. Block Ciphers 11

φ: F
|k|
2 → F

|z|
2 to produce a keystream, which is in some sense close to ran-

dom, or random-looking. However, it won’t be random, and the keystream-
generator will only be able to produce 2|k| distinct keystreams where the
length of the keystream is typically |z| � |k|.

If a key is reused with a stream cipher as above, the exact same keystream
will be produced. This is not ideal, since an outside observer would be able
to learn, e.g., the parity c1 + c2 = p1 + z + p2 + z = p1 + p2 of two differ-
ent plaintexts. Because of this, most modern stream ciphers use a so-called
initialization vector (IV). The key k is kept secret and constant, and a public
IV v is used to produce distinct keystreams through the keystream generator,
which is now written as φ: F

|k|
2 ×F

|v|
2 → F

|z|
2 .

IVs can be used sequentially, or agreed upon through some protocol, but
the basic idea is that the security of the cipher does not depend on the se-
crecy of the IV. It can be communicated in the open, or selected according to
some public rule—as long as the key remains secret, the stream cipher should
provide secure encryption.

A stream cipher with IV normally requires an initialization phase where the
key and the IV is loaded into the state, and the state is updated, without pro-
ducing output, to mix the key and the IV. The goal is that when the keystream
generator begins generating keystream, the state should be mixed so much
that a change in the IV yields an entirely different keystream.

2.5 BLOCK CIPHERS

As the name suggests, a block cipher F: F
|p|
2 × F

|k|
2 → F

|p|
2 acts on a block

p of plaintext of a certain size. AES acts on blocks of 128 bits, while several
of the lightweight block ciphers use smaller blocksizes such as 64 [BKL+07],
48 [KLPR10], or 32 [DDK09].

For a fixed key, the block cipher must be invertible, i.e., Fk defined through
Fk(p) = F(p, k) must be a permutation.

2.5.1 BLOCK CIPHER MODES OF OPERATION

In this section, it is briefly outlined how a block cipher acting on blocks of n
bits can be used to encrypt a longer plaintext p. For simplicity, assume that
|p| = j · n. A first attempt might be to partition the plaintext into blocks of size
n, i.e., p0||p1|| . . . ||pj−1 = p. By encrypting each block in turn, the ciphertext
is c = c0||c1|| . . . ||cj−1, where ci = Fk(pi). This is referred to as electronic
codebook (ECB) mode and has at least one fundamental flaw: two ciphertext
blocks will be the same if and only if the corresponding plaintext blocks are
the same, meaning there is information leakage.

12 Symmetric Cryptography

A mode of operation which avoids this issue is cipher block chaining (CBC),
where ci = Fk(pi + ci−1) and c−1 = v is an IV.

A block cipher can also be used to construct a keystream generator, through
what is referred to as counter mode (CTR): the keystream z = z0||z1|| . . . ||zj−1

is derived through zi = Fk(v||bi), where (bi) = i and v is an IV.

2.6 AUTHENTICATION

If an attacker changes a few bits in block cipher encrypted data, at least the
corresponding block(s) is (are) altered in a completely unpredictable way. The
attacker has no way of predicting, on a bit-level, what changes will be made
to the plaintext after decryption.

With stream cipher encrypted data, however, the corresponding change in
the plaintext is easy to predict: if the ciphertext c corresponds to the plaintext
p, then applying the difference a to produce c′ = c + a yields the plaintext
p′ = p + a after decryption.

Thus, an attacker who is able to alter the ciphertext and knows (roughly)
what the plaintext is, may be able to predictably change it. As an example,
if the ciphertext is of length |c| = 1, i.e., the plaintext is just a bit 1/0 cor-
responding to, e.g., »buy«/»sell« or »yes«/»no«, the attacker would be able
to change the plaintext after decryption, although they would not know from
what and to what.

In a slightly more advanced example, if the plaintext contains an amount
of money, the attacker might be able to alter this amount, perhaps without
knowing the exact original or new amount. The attack strategy would be to
change a few bits at a position in the ciphertext which is assumed to represent
the amount of money. If the encoding scheme is known, the original amount
is known, and the position in the plaintext is known (e.g., due to boilerplate
templates being used), this attack could be very precise.

For this reason, stream ciphers are often coupled with some sort of au-
thentication. A message authentication code (MAC) [GMS74] is a family of
functions which map messages to tags using keys. The sender produces a tag
t = f (kMAC, m) for a message m (plaintext or ciphertext) using a key kMAC and
attaches it to the message. The receiver, who shares the key kMAC, can pro-
duce the tag for the received message and immediately decide whether the
message can be regarded as authentic.

An active adversary tries to modify a transmitted message and its tag, hop-
ing to get this accepted at the receiver side. The designer wants the probability
that the attacker succeeds to be some very small value. Attacks on authenti-
cation schemes are covered more in Section 4.12.

There are many ways to provide message authentication, e.g., using certain

2.7. Boolean Functions 13

block cipher modes of operation such as CBC-MAC [Int99], iterating a hash
function as in HMAC [BCK], or using constructions based on universal hash-
ing [WC81] [Sti92]. This dissertation focuses on the last approach, which is
the usual choice when encryption is done through a stream cipher. Typical
examples would be the Galois counter mode (GCM) [MV04] and the 3GPP
Integrity Algorithm UIA2 [ETS09] found in third generation mobile phone
standards, Universal Mobile Telecommunications System (UMTS) and Long
Term Evolution (LTE).

2.6.1 UNIVERSAL HASH FUNCTIONS

Consider a family (set) H = {hi} of hash functions hi: A→ B.
There are several ways of constructing MACs from universal hash functions

(or equivalently authentication codes [Sim92]).
H is ε-almost xor universal (ε-AXU) if ∀x, x′ ∈ A, x 6= x′, y ∈ B,∣∣{h ∈ H : h(x) + h(x′) = y

}∣∣ ≤ ε · |H| .

When constructing a MAC using an ε-AXU family, one part of the key is used
to select a function h ∈ H and the output of this function is xored with a
second part of the key, used as a one-time pad, chosen randomly from B.

2.7 BOOLEAN FUNCTIONS

A function f : Fn
2 → F2 is called a Boolean function. The function f evaluated

in the point x = (x0, x1, . . . , xn−1) will be written f (x) = f (x0, x1, . . . , xn−1). A
Boolean function f is called balanced if Pr [f (x) = 0] = 1/2 on uniform input.

With x, v ∈ Fn
2 , let

xv = ∏
0≤j<n: vj=1

xj,

i.e., xv is the product of precisely those variables xj where vj = 1. A Boolean
function can be represented as a polynomial over F2, called the algebraic normal
form (ANF),

f (x) = ∑
v∈Fn

2

avxv,

where the coefficients av ∈ F2. The algebraic degree,

deg(f) = max
v∈Fn

2 : av=1
(wH (v)),

is the number of variables in the highest order term with nonzero coefficient.
A Boolean function f is said to be affine if deg(f) = 1, and if further a0 = 0,

14 Symmetric Cryptography

f is said to be linear. The nonlinearity of an n-variable Boolean function is the
minimum distance from the set A(n) of all n-variable affine functions,

nl(f) = min
g∈A(n)

|{x ∈ Fn
2 : f (x) 6= g(x)}| .

The correlation immunity of a Boolean function is a measure of to which
degree its output is correlated to a subset of its inputs. A function is said to
be mth order correlation immune if there is no statistical dependence between
f (x) and any set of m or fewer variables in x.

If an mth order correlation immune function is balanced, it is called m-
resilient.

2.8 SBOXES

An n × m Sbox is formally a function S: Fn
2 → Fm

2 . While this covers both
m = 1, i.e., Boolean functions, and n = m = 128, which could represent an
entire block cipher, the term Sbox is used to denote a particular building block
commonly used in block ciphers, but also sometimes in stream ciphers.

Typical Sbox sizes are 8 × 8 as found in AES, to 4 × 4 as used in, e.g.,
PRESENT, or even 3× 3 as in PRINTcipher (cf. Chapter 9). The S in Sbox
is for substitution, and Sboxes of size n× n should be permutations in order
to yield uniformly distributed output when the input is uniform. DES uses
Sboxes of size 6× 4. These Sboxes can clearly not be permutations, but they
do maintain equiprobable outputs given uniform input.

By writing the Sbox as S: Fn
2 → F2 ×F2 × . . .×F2, i.e.,

y = S(x) = (f0(x), f1(x), . . . , fm−1(x)),

each bit yi of the output can be considered as the output of a Boolean function
of the input, yi = fi(x).

Designing cryptographically strong Sboxes is about ensuring that each indi-
vidual function fi behaves well, e.g., in terms of nonlinearity, but also that the
Sbox behaves well in a larger sense. Sboxes are usually chosen with good re-
sistance against differential and linear cryptanalysis, which will be described
in Sections 4.10 and 4.11.

2.9 BINARY REGISTERS

Some of the building blocks described here can be defined over larger charac-
teristics, but only the binary versions are presented in this section.

2.9. Binary Registers 15

A binary register is an n-bit state, which is updated somehow in order to
create state transitions. Denoting the initial state by s0, the ith state, si, i > 0,
is defined as si = f (si−1), where f : Fn

2 → Fn
2 is the state update function.

As there is only a finite number of possible states, it is clear that there will
be at least one cycle. That is, for some i ≥ 0 and some t > 0, si = si+t will
occur. The minimal such t is called the period, and such a state is said to be
strictly periodic. Then, for i′ > i, si′ = si′+t. Note that, depending on the state
update function, a state si might have (at least) two different preimages si−1

solving si = f (si−1), and that once a cycle has been entered, it is repeated
over and over again, assuming i is allowed to increase indefinitely. A cycle
and a tail that leads into it may be thought of as looking like the letter ρ (rho).

One particular design criteria for a binary register might be that the cycles
should be long. Ideally, there would be a single cycle of length 2n.

All of the registers described below can be defined using either Fibonacci
or Galois architecture.

The update function of a Fibonacci register is defined through

si = (si−1
1 , si−1

2 , . . . , si−1
n−1, si

n−1)

and si
n−1 = fn−1(si−1). That is, most of the state is simply shifted, one bit

leaves the register, and one new bit is calculated as a function fn−1 of the
previous state. It is preferable that si−1

0 is used in the function fn−1, i.e., that
the bit which leaves the register influences the new bit. Further, if it is used
only linearly, the state will be uniquely invertible.

Consider the sequence u = (u0, u1, . . . , un−1, un, un+1, . . . , uN−1) created by
a Fibonacci register, where u0 = (u0, u1, . . . , un−1) is the initial state of the
register, un is the first bit created through the feedback, un+1 the second, etc.
In this way, it becomes natural to consider the N-bit sequence u created from
the n-bit initial state. The states will be denoted by ui = (ui, ui+1, . . . , ui+n−1).
At time i, the bit ui may be thought of as the output of the register.

2.9.1 LINEAR FEEDBACK SHIFT REGISTERS (LFSRS)

The linear feedback shift register (LFSR) is a useful primitive as it is straight-
forward to analyze from the point of cycles and periods.

LFSRS IN FIBONACCI MODE

An LFSR in Fibonacci mode is defined through

ui+n =
n−1

∑
j=0

djui+j, dj ∈ F2.

16 Symmetric Cryptography

ui ui+1 ui+n−1. . .

d0 d1 dn−1

. . .

Figure 2.1: An LFSR in Fibonacci architecture.

That is, some particular bits of the state at time i are combined linearly to
produce ui+n, see Figure 2.1. It is clear that the all-zero state is a fixed point
in the state transition.

Which bits from the state to use in the feedback is determined by the con-
stants dj. By defining dn = 1 and the feedback polynomial

g(x) =
n

∑
j=0

djxn−j,

it is possible to relate properties of the sequence u and the polynomial g(x).
First, say that a feedback polynomial of degree n is reducible (irreducible) if

it can (not) be written as a product g(x) = g0(x)g1(x) of two polynomials
gi with coefficients in F2 and degrees 1 ≤ deg(gi) < n. Further, say that an
irreducible feedback polynomial of degree n is primitive if the smallest positive
integer j such that g(x) divides xj − 1 is j = 2n − 1.

Proposition 2.1 The nonzero states of an n-bit Fibonacci LFSR will consti-
tute a cycle of length 2n− 1 if and only if the feedback polynomial is of degree
n and primitive.

For large n, the risk of hitting the all-zero state when the LFSR is initialized
at random can be considered practically zero. Since explicit primitive poly-
nomials are known for very large n, it is practically possible to create LFSRs
with expected period

1
2n · 1 +

2n − 1
2n · (2n − 1) ≈ 2n.

Assume that a primitive feedback polynomial is used. With N = 2n − 1,
the N-bit sequence u will contain 2n−1 ones and 2n−1 − 1 zeros. Further, all
windows of size n of the sequence (taking them cyclically, there are 2n− 1 such
windows) will be pairwise different; all possible n-bit strings except for the

2.9. Binary Registers 17

Table 2.1: The number L2 (n) of irreducible polynomials of degree n
for some small values of n.

n 4 5 6 7 8 9 10
L2 (n) 3 6 9 18 30 56 99

all-zero string will appear precisely once. This appears close to optimal from
the perspective of random-like behavior. However, the register is inherently
linear. It is defined by a linear recursion, and every bit in the sequence u can
be written as a sum of at most n bits of the initial state. Given any n bits of the
output stream, the initial state can be reconstructed. Thus, an LFSR by itself
is not enough to define, e.g., a stream cipher.

The number of irreducible polynomials of degree n, L2 (n), is related to the
so-called Möbius transform, and is given by

L2 (n) = ∑
d: d|n

µ
(n

d

)
2d,

where d|n means that d divides n, and the Möbius function µ(m) is given by

µ(m) = µ
(

pa0
0 pa1

1 . . . p
aj−1
j−1

)
=


1, j = 0,
0, ∃i : ai > 1,
(−1)j, ai = 1, ∀i,

where pi are the j distinct prime numbers factoring m [Sim70]. Some example
values of L2 (n) are given in Table 2.1.

LFSRS IN GALOIS MODE

An LFSR in Galois mode is defined through

si = (si−1
1 , si−1

2 , . . . , si−1
n−1, 0) + si−1

0 (d′0, d′1, . . . , d′n−2, d′n−1),

and is related to a finite field (Galois field) as follows.
A finite field containing 2n elements is denoted F2n and is defined by an

irreducible polynomial g(x) of degree n.2 The elements of the field are all
polynomials with coefficients in F2 and degree < n. Addition and multipli-
cation of two elements is defined modulo g(x). With every vector v ∈ Fn

2 one
can associate an element v(x) ∈ F2n in a natural way:

v = (v0, v1, . . . , vn−1)⇐⇒ v(x) = vn−1x0 + vn−2x1 + . . . + v0xn−1.

2Strictly speaking, there is only one finite field containing 2n elements, up to
isomorphism.

18 Symmetric Cryptography

The multiplication w(x) of the two elements x and v(x) in the finite field is

w(x) = x ·
(

n−1

∑
i=0

vn−1−ixi

)
mod g(x) =

n−1

∑
i=0

vn−1−ixi+1

︸ ︷︷ ︸
w′′(x)

mod g(x).

If v0 = 0, the reduction modulo g(x) is trivial and w = v� 1.
If, on the other hand, v0 = 1, the reduction is slightly more involved. Write

g(x) = xn + g′(x), deg(g′) < n, and w′′(x) = xn + w′(x), deg(w′) < n.
Calculating w′′(x) mod g(x) can be done by finding polynomials q(x) and
r(x), deg(r) < n, such that w′′(x) = q(x) · g(x) + r(x). Observe that with
q(x) = 1,

r(x) = w′′(x) + g(x) = w′(x) + g′(x),

and deg(r) < n. That is, w = (v� 1) + g′.
All in all,

w(x) = x · v(x)

can be calculated through

w = (v� 1) + v0 · g′.

Note in particular how this compares to the definition of a Galois LFSR above
with feedback polynomial

g(x) =
n

∑
j=0

d′jx
n−j,

where d′n = 1. Further, this shows how to calculate u(x) · v(x) for any ele-
ments u(x), v(x) ∈ F2n , see Figure 2.2. The upper register is cleared, the mid-
dle register is filled with v(x), and the lower register is filled with u(x). The
upper register is updated with the contents of the middle one precisely when
the output of the lower register is 1. Ignoring the scaling in the figure, the
feedback polynomial of the LFSR might be, e.g., g(x) = 1+ x + x2 + x7 + x128.

2.9.2 NONLINEAR FEEDBACK SHIFT REGISTERS (NFSRS)

In a nonlinear feedback shift register (NFSR) in Fibonacci mode, the feedback
function ui+n = f (ui) is a nonlinear Boolean function of the state. Unlike the
theory regarding feedback polynomials for LFSRs, there is no general under-
standing of how NFSRs behave in terms of (e.g.,) cycles. That is, for random
functions f nothing can be said about how many cycles have a particular
period.

2.9. Binary Registers 19

. . .

Figure 2.2: A rough hardware implementation of multiplication be-
tween two elements in a finite field using a Galois LFSR.

Thus, if an NFSR constitutes the state of, e.g., a stream cipher, there is
some probability of the state (and thus, e.g., the keystream) exhibiting short
cycles. Even for comparably small n, e.g., n = 80, investigating the period
distribution by brute force is out of the question.

2.9.3 FEEDBACK WITH CARRY SHIFT REGISTERS (FCSRS)

A feedback with carry shift register (FCSR) is a particular kind of NFSR, where
the theory allows precise derivation of the period. An FCSR is defined by an
odd number q and computes the 2-adic expansion of the rational number h/q,
where h represents the initial state. The 2-adic expansion of h/q, very briefly,
is a sequence u such that

h/q =
∞

∑
j=0

uj2j,

where the power series does not converge in the usual sense.
FCSRs were proposed by Klapper and Goresky [KG94] and their crypto-

graphic properties were thoroughly examined and determined by the same
authors in [KG97]. The aim of this section is to give some understanding of
FCSRs, but the treatment will be brief as only small parts of the theory pre-
sented here will be used in this dissertation. A general Fibonacci FCSR is
given in Figure 2.3.

The state consists of two parts: one main register

ui = (ui+0, ui+1, . . . , ui+n−1)

and one integer memory mi, initialized as m0 = 0. The feedback rule is given
by d = (d0, d1, . . . , dn−1) ∈ Fn

2 .

20 Symmetric Cryptography

ui ui+1 ui+n−1. . .

dn−1 dn−2 d0

+ . . . + +

mod 2 div 2

mσi

Figure 2.3: An FCSR in Fibonacci architecture.

In each update of the FCSR, the sum

σi = mi−1 +
n−1

∑
j=0

ui+jdn−j−1

is computed and the state is updated through

mi = σi div 2, (2.1)

ui+n = σi mod 2. (2.2)

The FCSR automaton is completely determined by q = 1 − 2(d) < 0, the
connection integer. The size of the main register is given by n = blog(|q|+ 1)c,
i.e., the bit length of d. The state of the FCSR is associated with the integer hi
through

hi = mi2n −
n−1

∑
k=0

k

∑
j=0

dj−1ui+k−j2
k,

where d−1 = −1. The output of the FCSR is then the 2-adic expansion of hi/q
and it can be shown [KG97] that the output is strictly periodic if and only if
0 ≤ hi ≤ |q|. If the state at time i corresponds to the integer hi, then the state
hi+1 at time i + 1 corresponds to the integer

hi+1 = 2−1hi mod q.

Thus the ith output of the FCSR is given by (2−ih0 mod q) mod 2 where h0
corresponds to the initial state. Now, if q is odd, 0 < hi < |q|, and q and hi
are coprime, then the period of the output sequence equals ordq(2). Thus,
the optimal choice of q is a negative prime with 2 being a primitive root. The
FCSR automaton will then produce a maximum length sequence.

The following result [ABM08] will be useful in this dissertation.

2.11. The Filter Generator 21

Proposition 2.2 Using any FCSR of length n and starting in any state, it
takes at most n + 4 FCSR updates to reach a strictly periodic state.

Let Ty denote the nonempty set of register taps used when computing σi,
i.e., j ∈ Ty if and only if dj = 1. Note that

∣∣Ty
∣∣ = wH (d). It was shown

in [KG97], that if the memory is initialized with any nonnegative memory m,
the memory will decrease exponentially until it reaches

0 ≤ m ≤
∣∣Ty
∣∣ ,

where it will then stay. A slightly stronger formulation is possible if the mem-
ory is initialized using, e.g., m = 0 as in this dissertation:

Proposition 2.3 If 0 ≤ mi <
∣∣Ty
∣∣, then 0 ≤ mi+1 <

∣∣Ty
∣∣.

Proof. The smallest possible value mi+1 is created with mi = 0 and all taps
contributing a 0, yielding mi+1 = 0 div 2 = 0. On the other extreme, the
largest possible value mi+1 is created with mi =

∣∣Ty
∣∣ − 1 and all taps con-

tributing a 1, yielding mi+1 = (
∣∣Ty
∣∣− 1 +

∣∣Ty
∣∣) div 2 <

∣∣Ty
∣∣. �

Due to this, the carry can be realized using dlog
∣∣Ty
∣∣e bits. Thus, an FCSR

of length n implicitly has a state which consists of in total n + dlog
∣∣Ty
∣∣e bits.

2.10 THE COMBINER

The (nonlinear) combiner is a general approach to constructing a keystream
generator from a set of LFSRs. In its purest form, it is mostly of historic
interest; Braeken and Lano [BL05] have shown that it is very difficult to design
a safe and efficient combiner (cf. Section 4.6).

The general idea is to use m LFSRs of lengths nj, initialized by the secret key
of size |k| = ∑m−1

j=0 nj, and combine their outputs through a Boolean function
f : Fn

2 → F2 which uses as input one bit from each register,

zi = f (u0
i , u1

i , . . . , um−1
i).

The lengths nj of the LFSRs should preferably be selected coprime, i.e.,

gcd(nj, nj′) = 1

for all j, j′ such that j 6= j′.

22 Symmetric Cryptography

2.11 THE FILTER GENERATOR

The filter generator is essentially a combiner with m = 1, i.e., a single LFSR is
used and the sequence u is »filtered« through a Boolean function f . Braeken
and Lano [BL05] have shown that it appears to be possible to construct secure
and efficient filter generators (cf. Section 4.6).

The filter generator models in a sense the simplest possible keystream gen-
erator and has been thoroughly analyzed in the context of fast correlation
attacks (cf. Section 4.8).

2.12 THE GRAIN FAMILY OF STREAM CIPHERS

In this section, the Grain family of stream ciphers is briefly introduced. The
purpose of this is two-fold: it is given as an example of synchronous stream
ciphers, but also because some familiarity with the Grain family will be useful
in Chapters 5 and 6.

Grain is notable for its extremely small hardware representation. During
the initial phase of the eSTREAM project, the original version, Grain v0, was
strengthened after some observations by Berbain et al. [BGM06]. The final
version is known as Grain v1 [HJM06].

Like the other portfolio ciphers, Grain v1 is modern in the sense that it
allows for public IVs, yet they only use 80-bit keys. Recognizing the emerg-
ing need for 128-bit keys, Hell et al. [HJMM06] proposed Grain-128 support-
ing 128-bit keys and 96-bit IVs. The design is akin to that of 80-bit Grain,
but notably, the nonlinear parts of the cipher have smaller degrees than their
counterparts in Grain v1.

The general idea of Grain with key size |k| is to use an NFSR and an LFSR,
each of size |k|, and an output function which uses state material from both
registers. The LFSR feeds into the NFSR. The NFSR is loaded with the key,
and the LFSR is loaded with the IV, padded with a constant. After key-and-
IV-loading, but before keystream generation, the state is initialized in 2 · |k|
state updates where the suppressed output is fed back to the LFSR. After
initialization, keystream generation begins.

Implementations of any keystream generator matching the above descrip-
tion can be made faster by implementing the state update and output function
several times in parallel. One particular feature of the Grain ciphers is that
newly produced bits in the registers are not used for several clockings. This
means that no recursion is necessary to implement the parallel functions.

2.13. Key-Alternating Block Ciphers 23

k

k0
F′0

k1
F′1

kR−2
F′R−2

kR−1
F′R−1

kR

Key scheduling

p c

Figure 2.4: A key-alternating block cipher.

2.13 KEY-ALTERNATING BLOCK CIPHERS

A typical approach to designing a block cipher is to load the plaintext into a
state, which is then updated several times using a round function. To facilitate
implementation, the round function is typically either the same in all rounds,
or is only altered to some small extent, e.g., by the use of round constants.
Between each round function application, key material is added to the state.
The idea is that repeated application of the relatively simple round function
will mix the key and plaintext material to produce a ciphertext which is in
some sense a very complicated function of the inputs.

This is called a key-alternating block cipher, see Figure 2.4. AES is a key-
alternating block cipher, as are all the block ciphers which will be studied in
this dissertation. While the design of round functions is fairly straightforward,
the design of key schedules, i.e., the possibly nonlinear rules that derive the
round keys from the master key k, is more ad hoc with no clear consensus
on what is »enough« and what is »not enough« [AÅBL12], e.g., in terms of
nonlinearity. Indeed, all results on block ciphers in this dissertation relate to
properties of the key schedules.

This dissertation will denote by R the number of rounds in the block cipher,
while r will be used to index the rounds. In several designs, either k0 or kR
is zero. It is then natural to combine the round function F′r and the round
key kr+1 or kr into Fr. With 0 ≤ r1 ≤ r2 ≤ R, define Fr1,r2(s, k) as the partial
encryption that applies rounds r1, r1 + 1, . . . , r2 − 1 to the state s using key k.
Similarly, F−1

r1,r2
(s, k) applies the decryption of rounds r2 − 1, . . . , r1 + 1, r1 to

the state s using key k. The full block cipher can then be decomposed as, e.g.,

c = F(p, k) = F0,R(p, k) = Fr,R(F0,r(p, k), k)

for any r ∈ {0, 1, . . . , R}.
One type of key-alternating block cipher is the substitution–permutation net-

work (SPN), where the round function consists of a nonlinear state update
using Sboxes and a linear state update. The simplest type of linear state up-
date is a bit permutation as in, e.g., PRESENT [BKL+07], while AES uses a
linear layer where each input bit affects several output bits.

3
Tools for Cryptanalysis

S ome useful tools are briefly introduced in this chapter, namely various
transforms of Boolean and vectorial functions, matrix theory, coding
theory, and hypothesis testing, all of which will be used in the sequel.

3.1 TRANSFORMS

The Fourier transform, and its inverse transform, is a common tool in physics
and engineering. It deals with time-continuous systems and provides a map-
ping between the time and frequency domains.

It is possible to define discrete counterparts that turn out to be very useful
in several cryptographic settings, and two such transforms will be used in this
dissertation. They will be referred to as the discrete Fourier transform and the
Walsh transform, respectively. The discrete Fourier transform will be referred
to simply as the Fourier transform as no confusion with the time-continuous
version should occur in this dissertation as a result of this slight naming sim-
plification. A compact and content-rich introduction to these transforms by
Carlet can be found in [Car10a] [Car10b]. Several names appear in the liter-
ature for these transforms; this dissertation uses the same naming as Carlet,
but another notation.

3.1.1 THE (DISCRETE) FOURIER TRANSFORM

The Fourier transform of the Boolean function f (x) = f (x0, x1, . . . , xn−1) is a
real-valued function over Fn

2 which is defined as

F (f)(ω) = ∑
x∈Fn

2

f (x)(−1)〈ω,x〉, ω ∈ Fn
2 . (3.1)

25

26 Tools for Cryptanalysis

If there is a nonzero bit in x ∈ Fn
2 , then two ω ∈ Fn

2 which differ in precisely
this bit will give distinct values of 〈ω, x〉. This leads to the following, which
will be very useful in this dissertation.

Proposition 3.1 〈ω, x〉 is a balanced function of ω for x 6= 0, and constantly
0 for x = 0. Consequently,

∑
ω∈Fn

2

(−1)〈ω,x〉 =

{
2n, x = 0,
0, x 6= 0.

Proposition 3.2 The Boolean function f can be recovered from its Fourier
transform F (f) through

f (x) = 2−n ∑
ω∈Fn

2

F (f)(ω)(−1)〈ω,x〉.

Proof.

∑
ω∈Fn

2

F (f)(ω)(−1)〈ω,x〉 = ∑
ω∈Fn

2

 ∑
y∈Fn

2

f (y)(−1)〈ω,y〉

 (−1)〈ω,x〉

= ∑
ω∈Fn

2

∑
y∈Fn

2

f (y)(−1)〈ω,y+x〉

= ∑
y∈Fn

2

f (y) ∑
ω∈Fn

2

(−1)〈ω,y+x〉

= 2n f (x),

where the last step follows from Proposition 3.1. �

A naive algorithm for calculating F (f) would require time 22n: for each ω,
sum over all x. However, with ωn−1 = (ω0, ω1, . . . , ωn−2) and ωn−1 ∈ F2,

F (f)(ω) = F (f)(ωn−1||ωn−1)

= ∑
x∈Fn−1

2

(
f (x||0)(−1)〈ω

n−1,x〉 + f (x||1)(−1)〈ω
n−1,x〉(−1)ωn−1

)
= ∑

x∈Fn−1
2

f (x||0)(−1)〈ω
n−1,x〉 + (−1)ωn−1 ∑

x∈Fn−1
2

f (x||1)(−1)〈ω
n−1,x〉.

That is, the two Fourier coefficients F (f)(ωn−1||0) and F (f)(ωn−1||1) are
related and large parts of the calculations can be shared. From a generalized
version of this observation, a recursive »butterfly« algorithm can be derived,
which calculates F (f) using time O (n2n) and memory O (n2n).

Finally, define L1(f) = 2−n ∑ω |F (f)(ω)|. The following holds [KM93].

Proposition 3.3 With f (x) = f0(x) f1(x), L1(f) ≤ L1(f0)L1(f1).

3.2. Matrix Theory 27

3.1.2 THE WALSH TRANSFORM

The Walsh transform of the Boolean function f (x) = f (x0, x1, . . . , xn−1) is
defined as

f̂ (ω) = ∑
x∈Fn

2

(−1) f (x)+〈ω,x〉, ω ∈ Fn
2 . (3.2)

Given the similarity with the Fourier transform (the Walsh transform is in-
deed nothing else than the »Fourier transform« applied to the sign function
(−1) f (x) rather than f (x) itself), the following can be readily derived (cf.
Proposition 3.2):

Proposition 3.4 The Boolean function f can be recovered from its Walsh
transform f̂ through

(−1) f (x) = 2−n ∑
ω∈Fn

2

f̂ (ω)(−1)〈ω,x〉.

Also, it should not be surprising that a similar butterfly algorithm exists for
relatively fast calculation of the Walsh transform.

The following will be useful in Chapter 10 [Car10a, page 275].

Proposition 3.5 (the Poisson summation formula) Consider a Boolean func-
tion f : Fn

2 → F2 and a subspace U of Fn
2 . For every x ∈ Fn

2 ,

∑
α∈U⊥

(−1)〈α,x〉 f̂ (α) =
∣∣∣U⊥∣∣∣ ∑

y∈U+x
(−1) f (y).

3.1.3 THE VECTORIAL WALSH TRANSFORM

Consider the function F: Fn
2 → Fm

2 , and for β ∈ Fm
2 the component function

〈β, F〉, where 〈0, F〉 = 0 is treated as a valid component function. The vectorial
Walsh transform F̂ of the function F is the mapping which maps an ordered
pair (α, β) ∈ Fn

2 ×Fm
2 to the value at α of the Walsh transform of 〈β, F〉, i.e.,

F̂(α, β) = ∑
x∈Fn

2

(−1)〈β,F(x)〉+〈α,x〉.

The following will be useful (cf. Proposition 3.4):

Proposition 3.6 The vectorial function F can be recovered from its Walsh
transform F̂ through

(−1)〈β,F(x)〉 = 2−n ∑
α∈Fn

2

F̂(α, β)(−1)〈α,x〉.

28 Tools for Cryptanalysis

3.2 MATRIX THEORY

Consider an |I| × |J| matrix M = (mi,j)i∈I,j∈J containing |I| × |J| elements mi,j
in |I| rows and |J| columns. Denote by MT the complex-conjugated transpose
of M, and by I the identity matrix of some square size which should be clear
from the context. The m× n matrix product M = M1M0 of two matrices M1
and M0 of sizes m× k and k× n, respectively, is defined through

mi,j =
k−1

∑
l=0

m1
i,lm

0
l,j.

In the sequel, indices may be given using vectors rather than integers. This
should be interpreted as mα,β = m(α),(β).

A square matrix M is said to be normal if MT M = MMT and unitary if
MT M = MMT = I. If a matrix is unitary and all elements are real-valued,
it is said to be orthogonal. The rank of a matrix is the number of linearly
independent rows.

3.2.1 TOEPLITZ MATRICES

A Toeplitz matrix is a matrix where each descending diagonal from right to left
is constant. That is, a Toeplitz matrix M is of the form

M =


m0 m1 . . . m|J|−1
m1 m2 . . . m|J|
m2 m3 . . . m|J|+1
...

...
. . .

...
m|I|−1 m|I| . . . m|J|+|I|−2

 .

and is determined by the |I|+ |J| − 1 elements of the top row and right col-
umn.

Toeplitz matrices are usually defined using constant left-to-right diagonals,
but the definition presented here will be easier to work with in Chapter 5.

3.2.2 EIGENVECTORS AND SIMILAR MATRICES

A nonzero vector v, with |v| = |I|, is a (left) eigenvector of M with eigenvalue
λ if vM = λv. Similarly, a nonzero vector vT, with |v| = |J|, is a (right)
eigenvector of M with eigenvalue λ if MvT = λvT. A vector is said to be
normalized if vvT = 1. Clearly, all eigenvectors can be normalized if wanted.

Consider from now on quadratic matrices M. To each m×m matrix M, one
can associate a polynomial det(M) of degree m, known as the determinant of
M. Further, the characteristic polynomial of M is the polynomial det(M− λI),

3.2. Matrix Theory 29

and its roots are the m (not necessarily distinct) eigenvalues λi. The algebraic
multiplicity of an eigenvalue is the multiplicity of the corresponding root of the
characteristic polynomial. The number of linearly independent eigenvectors
with a particular eigenvalue is referred to as the geometric multiplicity of the
eigenvalue. These multiplicities are not necessarily the same, but the algebraic
multiplicity is never less than the geometric multiplicity.

Two matrices M and L are similar if M = P−1LP for some invertible matrix
P. Several different similarities are common. As an example, every quadratic
matrix M is similar to a Jordan matrix, i.e., a matrix with the pattern

J =


J0 0 . . . 0
0 J1 . . . 0
...

...
. . .

...
0 0 . . . Js−1

 ,

where J0, J1, . . . , Js−1 are Jordan blocks,

Ji =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
.

...
0 0 . . . λ 1
0 0 . . . 0 λ

 ,

where the size of Ji is related to the algebraic and geometric multiplicity of
the eigenvalues of the matrix M and in particular, if the algebraic multiplicity
of an eigenvalue λ is 1, then the corresponding Ji = (λ) is of size 1× 1.

All normal matrices are diagonalizable, i.e., they are similar to a diagonal
matrix, and can be written as M = UTDU, where

U =


v0

v1

...
vm−1


is a unitary matrix with its rows taken as the normalized left eigenvectors of
M, and D is a diagonal matrix containing the corresponding eigenvalues, i.e.,

D =


λ0 0 . . . 0
0 λ1 . . . 0
...

...
. . .

...
0 0 . . . λm−1

 .

30 Tools for Cryptanalysis

It follows that all eigenvalues of a unitary matrix lie on the unit circle, |λi| = 1.
Further, one can bound the eigenvalues of a submatrix of a unitary matrix.1

Proposition 3.7 Consider any unitary matrix M = (mi,j)i∈I,j∈J . For any
subsets I′ ⊆ I, J′ ⊆ J, define the submatrix A = (mi,j)i∈I′ ,j∈J′ . Then the
eigenvalues λi of A lie on the unit disk, i.e., they satisfy |λi| ≤ 1.

3.2.3 ASYMPTOTIC BEHAVIOR OF MATRIX POWERS

The following result by Oldenburger [Old40] relates the eigenvectors and
eigenvalues of M and the asymptotic behavior of MR.2

Proposition 3.8 Consider an m × m matrix M with left eigenvectors vi,
0 ≤ i < m and corresponding eigenvalues λi, i.e.,

vi M = λivi, 0 ≤ i < m.

Then the sequence MR converges if and only if |λi| < 1 for all i, except
possibly λi = 1 for one or more i, but then the algebraic and geometric mul-
tiplicities of the eigenvalue 1 must be the same.

A proof given by Friedberg and Insel [FI92] might be more accessible than
that in the original paper by Oldenburger. By making some further assump-
tions, the limit can be derived explicitly and the proof becomes rather straight-
forward.

Proposition 3.9 Consider the same setting as in Proposition 3.8. Further
assume that the matrix M is unitary. Assume that all eigenvectors are nor-
malized and that all eigenvalues λi fulfill either |λi| < 1 or λi = 1. Then

MR → ∑
i: λi=1

viT
vi, R→ ∞.

Proof. Since M is unitary, it is diagonalizable, M = UTDU, where the rows of
U are the eigenvectors vi, and UUT = I. It follows that

MR = UTDRU = ∑
i

viT
λR

i vi.

Finally, λR
i = 1 for i such that λi = 1 and λR

i → 0, R→ ∞, otherwise. �

1The proposition can be shown using the induced Euclidean norm; vector and matrix
norms are not considered in this dissertation.

2Which particular norm is used to define the asymptotics is not of interest as only
matrices of finite sizes are considered, in which case all matrix norms are equivalent.

3.3. A Brief Introduction to Coding 31

For diagonalizable (but not necessarily unitary) matrices M, the above tech-
nique, together with unitary equivalence, not covered here, can be used to show
that MR does indeed converge. For matrices that are not diagonalizable,
something more involved has to be done, e.g., looking at unitary equivalence
with upper triangular matrices [FI92] or the Jordan form [Old40].

The work presented in this dissertation makes use of a particular formu-
lation, which is possible if the limit MR exists by Proposition 3.8 and the
eigenvalue 1 has algebraic multiplicity 1. This follows from, e.g., the Jordan
form of the matrix M, similar to Proposition 3.9.

Proposition 3.10 Consider the same setting as in Proposition 3.8. Assume
that all eigenvectors are normalized and that λ0 = 1 and |λi| < 1, 0 < i < m.
Then

MR → v0T
v0, R→ ∞.

3.3 A BRIEF INTRODUCTION TO CODING

Error control coding, or channel coding, is commonly used when information
should reliably be transferred over a noisy channel, and has several connec-
tions to cryptography, including Shannon, who developed several fundamen-
tal results regarding what is theoretically (not) achievable in coding.

Assume that the goal is to transmit a k-bit message a over a noisy channel,
e.g., a binary symmetric channel (BSC) which flips each transmitted bit with
probability pBSC 6= 0. This is accomplished by adding redundancy: the k-bit
message a is mapped to an n-bit codeword x = φ(a) ∈ B ⊂ Fn

2 , |B| = 2k. The
channel may introduce noise, i.e., the receiver observes y which is possibly
different from x, but by exploiting the added redundancy, a »best guess«
codeword ŷ can be recovered, suggesting an information sequence x̂, where
hopefully x̂ = x.

Shannon defined the rate k
n and the channel capacity C, which for the BSC

would depend on pBSC, and showed that for fixed k
n < C, arbitrarily small bit

error rates are possible if n → ∞. Conversely, for k
n > C, arbitrarily small bit

error rates are not possible.

3.3.1 RANDOM CODING

Shannon used random coding arguments to show the result outlined above.
That is, they considered randomly chosen mappings φ. For such a random
code it is not necessarily possible to implement a practical encoder and de-
coder. Various codes have been proposed and some, in particular turbo codes
and low-density parity-check (LDPC) codes, seem both practical and able to
operate with very low bit error rates at rates very close to the channel capacity.

32 Tools for Cryptanalysis

3.3.2 LINEAR CODES

A linear code has the property that every sum of codewords is a codeword. It
can be specified through its k× n generator matrix G, so that the information
sequence a ∈ Fk

2 is mapped to the codeword x ∈ Fn
2 through

x = aG.

The possibility of error correction is related to the minimum distance of the
code,

dmin = min
a,a′∈Fk

2,
a 6=a′

dH

(
aG, a′G

)
,

since if dmin is smaller, fewer errors are needed to make an erroneous decod-
ing possible. Due to the linearity,

dmin = min
a∈Fk

2,
a 6=0

wH (aG) .

That is, the minimum distance is precisely the weight of the nonzero code-
word with the lowest weight. Computing this characteristic of the code is
generally difficult. The problem of finding the minimum distance dmin of a
(binary) linear code is NP-hard and the corresponding decision problem is
NP-complete [Var97]. Some algorithms for finding minimum-weight code-
words are Stern’s algorithm [Ste89]—with implementation aspects covered
by, e.g., Canteaut and Chabaud [CC98] and Bernstein et al. [BLP08]—and one
algorithm by May et al. [MMT11] and Johansson and Löndahl [JL11], inde-
pendently.

3.4 HYPOTHESIS TESTING

Example 3.1 Consider the independent and identically distributed (iid)
random binary variables Xi, 0 ≤ i < n drawn according to either the proba-
bility distribution P0 for which

PrP0 [X = 0] =
1
2
+ ε,

PrP0 [X = 1] =
1
2
− ε,

ε 6= 0, or from the probability distribution P1 for which

PrP1 [X = 0] =
1
2

,

PrP1 [X = 1] =
1
2

.

3.4. Hypothesis Testing 33

Assume that n corresponding samples are available, i.e., x0, x1, . . . , xn−1 have
been observed. For large enough n, it should be possible to distinguish be-
tween the two distributions, i.e., given samples x0, x1, . . . , xn−1, it should be
possible to tell, with small probability of error, which of the two distributions

P0 and P1 the samples belong to, i.e., give b̂ ∈ {0, 1} such that Pr
[
b = b̂

]
is

significantly larger than one half.
It is straightforward to compute s = ∑n−1

i=0 xi, where 0 ≤ s ≤ n. Now, if the

distribution used is P0, one expects s = n
(

1
2 − ε

)
, while if the distribution

is P1, one expects s = n
2 . One might define a threshold θ = n

(
1
2 −

ε
2

)
and

(for ε > 0) construct a decision rule such as »when s ≤ θ, say b̂ = 0.« When
making a decision in this way, two types of errors are possible: false positives
(b = 1, b̂ = 0) and false negatives (b = 0, b̂ = 1). �

The above is a relatively simple example of hypothesis testing, as it is binary
both in the sense that the random variables are binary, and in that it is known
which two distributions are possible.

In the remainder of this section, this problem will be treated more formally.
In particular it will be derived, approximately, how large n must be in order
to guarantee small error probabilities. First, consider the setting with two
known distributions, P0 and P1.

Lemma 3.11 (Neyman-Pearson) Let X0, X1, . . . , Xn−1 be drawn iid accord-
ing to the probability distribution Pb, b ∈ {0, 1}. Consider the decision prob-
lem corresponding to the hypotheses Pb = P0 vs. Pb = P1. For T ≥ 0 define a
region

An(T) =
{

PrP0 [x0, x1, . . . , xn−1]

PrP1 [x0, x1, . . . , xn−1]
> T

}
.

Let α = PrP0 [Ac
n(T)] and β = PrP1 [An(T)] be the error probabilities cor-

responding to the decision region An(T), where Ac
n(T) is the complement of

An(T). Let Bn be any other decision region with associated error probabilities
α′ and β′. If α′ ≤ α, then β′ ≥ β.

Now define the relative entropy between two probability distributions over
the same domain (also known as Kullback-Leibler distance or information
divergence) as

D
(
PrP0 [x] ||PrP1 [x]

)
= ∑

x∈P0

PrP0 [x] log
PrP0 [x]
PrP1 [x]

,

and write D (P0||P1) = D
(
PrP0 [x] ||PrP1 [x]

)
for convenience.

34 Tools for Cryptanalysis

Assume that a set of iid data has been observed from the distribution Pb
with b ∈ {0, 1} and consider the null hypothesis H0 and the alternate hypothesis
H1, where the hypothesis Hb̂ is the hypothesis that b = b̂. A decision rule

determines a b̂ for each x. Define α = Pr
[
b = 0, b̂ = 1

]
(false negative prob-

ability) and β = Pr
[
b = 1, b̂ = 0

]
(false positive probability). Unfortunately,

α and β can not be computed exactly, so the performance of the test is not
known in general, but some asymptotic expressions for the error probabilities
are available.

First, write 1
2 + ε = 1

2 (1 + 2ε), and use the Taylor approximation

ln(1 + x) ≈ x− x2

2

to write

ln
(

1
2
+ ε

)
= ln(1 + 2ε)− ln 2 ≈ 2ε− 2ε2 − ln 2.

In this way, approximate

D (P0||P1) =

(
1
2
+ ε

)
log

1
2 + ε

1
2

+

(
1
2
− ε

)
log

1
2 − ε

1
2

=
1

ln 2

((
1
2
+ ε

)
ln (1 + 2ε) +

(
1
2
− ε

)
ln (1− 2ε)

)
≈ 1 +

1
2 ln 2

(
(1 + 2ε)(2ε− 2ε2) + (1− 2ε)(−2ε− 2ε2)

)
=

4ε2

2 ln 2
=

2ε2

ln 2
. (3.3)

3.4.1 KEEPING α AND β SIMILAR

Define the probability of error pe = 1
2 (α + β), assuming that it is equally

probable that the samples come from P0 or P1. Define S = ∑n−1
i=0 Xi and

assume that n is large. Then the central limit theorem suggests that S is
normally distributed and the expected value and standard deviation of S are

µb =

{
n
(

1
2 − ε

)
, b = 0,

n
2 , b = 1,

and

σb =

{
1
2

√
n (1− 4ε2), b = 0,√

n
2 , b = 1,

respectively.

3.4. Hypothesis Testing 35

Assume that the decision is made based on a threshold

θ =
n
2
− ε

2
=

1
2
(n− ε)

(cf. Example 3.1). The probability function of the standard normal distribu-
tion, with expected value µ and standard deviation σ, is

Φµ
σ(t) =

1
σ
√

2π

∫ t

−∞
e−

1
2 (

u−µ
σ)

2

du,

so α = 1−Φµ0
σ0 (θ) and β = Φµ1

σ1 (θ), i.e.,

α =
1

σ0
√

2π

∫ +∞

1
2 (1−ε)

e−
1
2

(
u−µ0

σ0

)2

du

and

β =
1

σ1
√

2π

∫ 1
2 (1−ε)

−∞
e−

1
2

(
u−µ1

σ1

)2

du.

Assume that ε is small so that the distributions are close. With

n =
ln 2 · d
4 · ε2 ≈

d
2D (P0||P1)

(cf. Equation 3.3), it follows that pe ≈ Φ0
1

(
−
√

d
2

)
by Theorem 6 in [BJV04]. As

an example, with d = 1, pe ≈ .35.

3.4.2 FIXING α

The relative entropy D (P0||P1) from above is related to the asymptotic behav-
ior of α and β through what is commonly referred to as Stein’s lemma. That
is, by fixing α, β decreases with increasing n and

log β

n
→ −D (P0||P1) , n→ ∞.

From this,
β ≈ 2−nD(P0||P1),

for large enough n.
Now study a slightly more general situation than above: assume that 2L

different sequences have been observed—2L − 1 correspond to P1 and 1 corre-
sponds to P0. The aim is to identify which sequence corresponds to P0. Fixing
α, one can expect the number of false positives to be approximately(

2L − 1
)

2−nD(P0||P1),

36 Tools for Cryptanalysis

and setting this to 1 yields

n ≈ L
D (P0||P1)

.

By Equation 3.3,

n ≈ L ln 2
2ε2 ,

and in particular when L = 1,

n ≈ 1
ε2 ,

which is a common rule of thumb in cryptanalysis: when trying to distinguish
between two distributions as above, one (asymptotically) needs approximately
ε−2 samples.

4
Techniques for Cryptanalysis

In this chapter, several techniques are presented which can be used in
cryptanalysis. These range from general to specific, including, e.g., anal-
ysis of Boolean functions and truncated related-key differential crypt-

analysis of block ciphers.

4.1 ATTACK SETTINGS

The aim of this section is to go through some attack settings, i.e., what infor-
mation the attacker is assumed to have access to.

4.1.1 KNOWN-CIPHERTEXT ATTACKS

One example of an attack on, e.g., a block cipher would be the following:
given a ciphertext c, the attack finds the corresponding plaintext p and key k.
This would compromise the particular message targeted, but also all past and
future communication that uses the same key.

Since 2|p|+|k| > 2|c|, there are several key–plaintext pairs that yield the given
ciphertext (assuming uniform distributions). Thus, the attacker will need to
look at more than one ciphertext to uniquely identify the key and plaintext.

A ciphertext-only attack would have to use some information about the
source, e.g., that the plaintexts consist of eight-bit blocks representing 7-bit
ASCII codes so that some bits are known to be 0.

4.1.2 KNOWN-PLAINTEXT ATTACKS

By giving the attacker access to more and more information, their task is
in some sense made easier, but also less realistic. A scenario that is still very

37

38 Techniques for Cryptanalysis

realistic is the known-plaintext attack: given a plaintext and the corresponding
ciphertext, the attacker learns the key. If |k| > |c|, several keys map the
plaintext to the ciphertext, and the attack will need to observe more than one
plaintext–ciphertext pair to uniquely identify the key.

4.1.3 CHOSEN-PLAINTEXT ATTACKS

Slightly more involved is an attack that not only knows the plaintexts, but
chooses them. The chosen-plaintext attack makes some suitable choice of plain-
texts (typically a set of plaintexts with some particular relation between them)
and (somehow) acquires the encryption of them.

Even more involved is the adaptive chosen-plaintext attack, where some
plaintexts are chosen depending on the ciphertexts obtained for the previously
chosen plaintexts.

With each such modification, the attack scenario gets less and less practical,
but typically, the attack requirements (time, data, memory) get more practical
or at least less impractical. At any rate, such attacks, although perhaps entirely
academical in their nature, provide some knowledge about the cryptographic
primitive.

For stream ciphers, known-plaintext attacks translate to known-keystream
attacks. Chosen-plaintext attacks do not apply, although chosen-IV attacks
would be a close relative.

4.1.4 CHOSEN-CIPHERTEXT ATTACKS

In the chosen-ciphertext attack, the attack is able to request both encryp-
tions and encryptions. Typically, after requesting ciphertexts corresponding to
some chosen plaintexts, the attack proceeds by similarly requesting plaintexts
corresponding to some chosen ciphertexts.

4.1.5 RELATED-KEY ATTACKS

Another kind of attack is the related-key attack [Knu93] [Bih94], where the
attacker is able to (somehow) access not only the encryption c of p under the
key k, but also the encryption c′ of p′ under the key k′. The plaintexts p,
p′ might be the same, but the keys k, k′ are not. They are instead assumed
to be related through some function f , i.e., k′ = f (k). It can be argued that
the attack is more realistic or plausible if the relation between the keys is in a
sense »simple.« As an example, k′ = k + ∆ for a constant ∆ might be more
realistic than k′ = f (k) for some heavily involved and nonlinear function f .

In particular, it might be possible to construct an efficient related-key, related-
IV attack on, e.g., Grain by defining f as f (k, v) = φ−1

i (φi(k, v) + ∆), where
φi(k, v) represents the initialization. However, the relation f depends on the
secret key and the chances of ever knowingly acquiring data that fits the set-

4.1. Attack Settings 39

ting of the attack would be marginal. Also, it is not instantly clear what
knowledge such an attack would provide about the cipher. (A related tongue-
in-cheek paper [Rij10] by Rijmen is recommended.)

Whether a related-key attack can be carried out in practice could depend
on how the primitive is used: if the key is burnt into the device, they seem
theoretical; if some protocol surrounds the primitive, it might be possible to,
perhaps probabilistically, apply the wanted relation f to data that is passed to
the primitive.

In the end, related-key attacks are most useful as theoretical tools that im-
prove the knowledge of the cipher. The recent cryptanalysis of AES [BKR11],
although marginal, can be traced to entirely impractical related-subkey attacks
which helped build an understanding of helpful ingredients in the attack.

4.1.6 DISTINGUISHING ATTACKS

Distinguishing attacks in essence try to identify some nonrandom property in
the cryptographic primitive. They are commonly applied to stream ciphers,
but may also be used with block ciphers run in counter mode or even in what
is called known-key cryptanalysis [KR07]. A distinguisher is a decision rule,
which takes a sequence of bits or blocks as input and decides whether it is
most likely to have been generated by the cipher or if it looks random. Thus,
it will output either CIPHER or RANDOM. Exactly how the distinguisher
(algorithm) is constructed will depend on the cryptographic primitive. If the
distinguisher is able to produce the correct output more than half of the time
it is considered successful, i.e., as a cryptanalytic result.

Whether the distinguisher is also practically useful is of course another
thing. Distinguishers sometimes require huge amounts of data and/or time.
If the required amount of time is more than 2|k|, it would be faster to brute
force the key: if a key is found, the distinguisher outputs CIPHER; otherwise
RANDOM. The NESSIE project considered all distinguishing attacks faster
than brute force as valid attacks, prohibiting use of the stream cipher. This
raised some concern [RH02] and the eSTREAM project took a more relaxed
view, not ruling out primitives only due to distinguishers with huge time
requirements [HJB08].

If a distinguisher can be found for a cipher, or a building block of the
cipher, it can possibly be used to derive a key-recovery attack on the cipher.
Englund and Johansson [EJ05] give a distinguisher for one of the two registers
in the stream cipher LILI-128 [SDGM01] and guess the content of the other
register. Using the distinguisher, one can distinguish between correct guesses
and wrong guesses. Similar work [HJ07] [EHJ07] has been performed on the
Pomaranch stream cipher [JHK05].

Another example of distinguishers relates to a scenario where a large data

40 Techniques for Cryptanalysis

object (an image, a video, etc.) is transferred on the stream cipher-encrypted
channel. If the attacker can observe the ciphertext c and knows a priori that
one of two possible plaintexts p1, p2 is transferred, they can determine the two
possible keystreams, z1 = c + p1 and z2 = c + p2. Using the distinguisher
they are able to determine which looks more like the »typical« keystream.
They then know, probabilistically, which of the two plaintexts was transferred.

4.2 GENERIC ATTACKS

All attacks need to be pitted against the corresponding generic attack to de-
termine whether they are attacks at all and to what extend they »beat« the
generic attack. For example, the generic known-plaintext attack is the brute
force attack: the key is found in time at most 2|k|, and expected 2|k|−1, by
exhaustively trying all keys. Here, the time has to be understood as 2|k| calls
to the cryptographic primitive. Also, it should be noted that with |k| > |c|,
a unique key can not be identified by a single trial encryption, so the time
requirement will be 2|k| + 2|k|−|c| + 2|k|−2·|c| + . . . + 2|k|−j·|c|, for some modest
integer j. For all practical purposes, this can be considered as 2|k|.

Any attack which manages to »beat« 2|k| is indeed an attack. If, on the
other hand, an »attack« performs, e.g., 2

2
3 |k| steps, where each step can be

roughly compared to 2
2
3 |k| calls to the cryptographic primitive, it is not an

attack. It should be noted that accurately comparing the steps of the attack
to »calls to the cryptographic primitive« for a fair comparison is not always
straightforward.

4.3 ATTACK REQUIREMENTS

At least three requirements characterize an attack:

• time requirement,

• memory requirement, and

• data requirement.

It might also be useful to discuss run-time memory requirement, where an
attacker is not able to use long-term storage for precomputed values, but is
able to use short-term memory during the attack. Another example of an
interesting attack characteristics is the precomputation time, which relates to
the one-time computation required to, e.g., construct a look-up table or derive
some special structures regarding a primitive.

4.4. Analysis of Boolean Functions 41

As an example, the brute force attack requires time 2|k|, and small or negli-
gible memory and data. The table-lookup attack, on the other hand, requires
negligible time to find the key in a precomputed table of size 2|k|. The pre-
computation time is 2|k|. Time–memory trade-offs [Hel80] [Oec03] [BBS06] can
be used to balance between these two extremes.

Data requirements describe how much data the attacker needs to be able
to perform the attack. The data requirement for an attack on a stream ci-
pher might be, e.g., the length required of one keystream, or the combined
lengths of several different keystreams for different IVs and/or keys. If an
attack uses some statistical property found in plaintext–ciphertext pairs, or
in keystreams, the amount of data required depends on the »strength« of the
exploited statistics (cf. Section 3.4).

4.4 ANALYSIS OF BOOLEAN FUNCTIONS

The Walsh transform, defined in Subsection 3.1.2, can be used to describe
many properties of a Boolean function, as defined in Section 2.7.

Note that f̂ (0) = ∑x∈Fn
2
(−1) f (x), so f is balanced if and only if f̂ (0) = 0.

Now, write

f̂ (ω) = |{x ∈ Fn
2 : f (x) = 〈x, ω〉}| − |{x ∈ Fn

2 : f (x) 6= 〈x, ω〉}| (4.1)

and

Pr [f (x) = 〈ω, x〉] =
∣∣{x ∈ Fn

2 : f (x) = 〈x, ω〉
}∣∣

2n .

From this follows that

Pr [f (x) = 〈ω, x〉] = 1
2
+

f̂ (ω)

2n+1 .

That is,

Pr [f (x) = 〈ω, x〉] = 1
2
+ ε f (ω),

where

ε f (ω) =
f̂ (ω)

2n+1

is referred to as the bias of the linear approximation

f (x) = 〈ω, x〉.

Recall that the nonlinearity nl(f) of f is a measure of to what extent it looks
like an affine function. It can be seen that

nl(f) = 2n−1 − 1
2

max
ω∈Fn

2

∣∣∣ f̂ (ω)
∣∣∣ .

42 Techniques for Cryptanalysis

Assume that maxω∈Fn
2

∣∣∣ f̂ (ω)
∣∣∣ is achieved for ω = ωmax. Then 〈ωmax, x〉 is

a best linear approximation of f and produces output that is correlated to the
output of the function f as

Pr [f (x) = 〈ωmax, x〉] = 1
2
+ ε f (ωmax), ε f (ωmax) =

1
2
± nl(f)

2n .

In cryptanalysis, it is common that nonlinear building blocks, e.g., Boolean
functions, are approximated by linear blocks and some added noise. The
nonlinearity nl(f) is then a measure of how good the best approximation is.
However, linear approximations other than the best could be more favorable to
consider due to the cipher’s internal structure. Typically, approximations with
as few terms as possible might allow an attack that is much more successful
than one that uses the best approximation.

Recall that if the least number of terms in a linear approximation with
nonzero bias is m + 1, then f is mth order correlation immune. Thus, a
Boolean function is mth order correlation immune if and only if f̂ (ω) = 0,
for all 1 ≤ wH (ω) ≤ m.

Finally, define the correlation c f (ω) = 2ε f (ω) of a linear approximation
f (x) = 〈ω, x〉 as this will be useful in the sequel.

Example 4.1 Let f (x0, x1, x2) = 1 + x0 + x1 + x2 + x0x1. Then

(f (0, 0, 0), f (1, 0, 0), . . . , f (1, 1, 1)) = (1, 0, 0, 0, 0, 1, 1, 1).

It is straightforward to derive

f̂ (0) = (−1)1 +(−1)0 +(−1)0 +(−1)0 +(−1)0 +(−1)1 +(−1)1 +(−1)1 = 0,

so f is balanced. Similarly,

f̂ (1, 0, 0) = (−1)1+0 + (−1)0+1 + (−1)0+0 + (−1)0+1

+ (−1)0+0 + (−1)1+1 + (−1)1+0 + (−1)1+1 = 0,

so f (x) = 〈(1, 0, 0), x〉 is a linear approximation with bias 0. However,

f̂ (0, 0, 1) = (−1)1+0 + (−1)0+0 + (−1)0+0 + (−1)0+0

+ (−1)0+1 + (−1)1+1 + (−1)1+1 + (−1)1+1 = 4,

so f (x) = 〈(0, 0, 1), x〉 is a linear approximation with bias f̂ (0,0,1)
24 = 2−2. The

complete Walsh spectrum is

(f̂ (0, 0, 0), f̂ (1, 0, 0), . . . , f̂ (1, 1, 1)) = (0, 0, 0, 0, 4,−4,−4,−4), (4.2)

so nl(f) = 22 − 4
2 = 2 and there are four best linear approximations with∣∣∣ε f (ω)

∣∣∣ = 2−2 and four unbiased ones. �

4.5. Analysis of Vectorial Functions 43

4.5 ANALYSIS OF VECTORIAL FUNCTIONS

The above analysis and notation can be extended to functions F: Fn
2 → Fm

2 , to
study linear approximations

〈β, F(x)〉 = 〈α, x〉,

where α ∈ Fn
2 is referred to as the input mask and β ∈ Fm

2 as the output mask.
Similar to above, the bias is defined through

Pr [〈β, F(x)〉 = 〈α, x〉] = 1
2
+ εF(α, β),

and the correlation cF(α, β) = 2εF(α, β). Then

εF(α, β) =
cF(α, β)

2
=

F̂(α, β)

2n+1 .

From Proposition 3.1 follows that F̂(0, 0) = 2n, while F̂(α, 0) = 0 for α 6= 0.
Further, if F is a permutation, F̂(0, β) = 0 for β 6= 0.

Define the 2m × 2n correlation matrix CF = (cF(α, β))α∈Fn
2 ,β∈Fm

2
originally

introduced by Daemen et al. [DGV95]. This should be understood as the
matrix where the element at column (α) and row (β) is cF(α, β).

Example 4.2 Consider the function F: 23 → 23 such that

F(0, 0, 0) = (1, 0, 0), F(0, 0, 1) = (1, 1, 1),

F(1, 0, 0) = (0, 1, 0), F(1, 0, 1) = (1, 1, 0),

F(0, 1, 0) = (0, 0, 0), F(0, 1, 1) = (0, 0, 1),

F(1, 1, 0) = (1, 0, 1), F(1, 1, 1) = (0, 1, 1).

All the nontrivial 〈α, x〉 and 〈β, F(x)〉 are given in Table 4.1, from which the
correlation matrix can be derived: for each choice of α, β, compare the two
corresponding columns. The value at each position in the matrix (not consid-
ering the scaling factor) is the number of agreeing bits in the columns minus
the number of disagreeing bits (cf. Equation 4.1). The correlation matrix is

2−3



0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0
1 0 0 −4 −4 0 0 4 −4
2 0 4 −4 0 4 0 0 4
3 0 4 0 −4 −4 0 −4 0
4 0 0 4 −4 4 4 0 0
5 0 0 0 0 4 −4 −4 −4
6 0 4 0 4 0 4 0 −4
7 0 −4 −4 0 0 4 −4 0


, (4.3)

44 Techniques for Cryptanalysis

(α) (β)
x 1 2 3 4 5 6 7 F(x) 1 2 3 4 5 6 7

(0, 0, 0) 0 0 0 0 0 0 0 (1, 0, 0) 1 0 1 0 1 0 1
(1, 0, 0) 1 0 1 0 1 0 1 (0, 1, 0) 0 1 1 0 0 1 1
(0, 1, 0) 0 1 1 0 0 1 1 (0, 0, 0) 0 0 0 0 0 0 0
(1, 1, 0) 1 1 0 0 1 1 0 (1, 0, 1) 1 0 1 1 0 1 0
(0, 0, 1) 0 0 0 1 1 1 1 (1, 1, 1) 1 1 0 1 0 0 1
(1, 0, 1) 1 0 1 1 0 1 0 (1, 1, 0) 1 1 0 0 1 1 0
(0, 1, 1) 0 1 1 1 1 0 0 (0, 0, 1) 0 0 0 1 1 1 1
(1, 1, 1) 1 1 0 1 0 0 1 (0, 1, 1) 0 1 1 1 1 0 0

Table 4.1: All values of 〈α, x〉 and 〈β, F(x)〉 for α, β 6= 0, where F is
the function in Example 4.3.

where column indices (α) and row indices (β) have been written out.
Observe that for the component function f ′(x) = 〈(1, 0, 1), F(x)〉,

(f ′(0, 0, 0), f ′(1, 0, 0), . . . , f ′(1, 1, 1)) = (1, 0, 0, 0, 0, 1, 1, 1),

so f ′ is precisely the Boolean function f from Example 4.1. Thus, the cor-
relation matrix row corresponding to (β) = 5 is the Walsh transform of the
function f , up to scaling (cf. Equation 4.2). �

Proposition 4.1 Let the correlation matrix C of size 2n × 2n correspond to
the invertible function F: Fn

2 → Fn
2 . Then the following statements hold.

1. CT is the correlation matrix of the function F−1.

2. The identity matrix I of size 2n × 2n is the correlation matrix of the
identity function id: Fn

2 → Fn
2 , id(x) = x.

3. CTC = CCT = I, i.e., C is an orthogonal matrix.

4. All eigenvalues λi of C lie on the unit circle, |λi| = 1.

Proposition 4.2 Consider F0: Fn
2 → Fk

2, F1: Fk
2 → Fm

2 , the composite func-
tion

F = F1 ◦ F0,

i.e., F(x) = F1(F0(x)), and the corresponding correlation matrices C0, C1, and
C. Then

C = C1C0.

4.6. Linear Distinguishing Attacks 45

Proof. It is clear that the two matrices C and C1C0 are of the same dimension
2m × 2n. The element at column (α) and row (β) in C1C0 is

c10(α, β) = ∑
j∈Fk

2

cF1(j, β)cF0(α, j)

= ∑
j∈Fk

2

2−k ∑
y∈Fk

2

(−1)〈β,F1(y)〉+〈j,y〉

2−n ∑
x∈Fn

2

(−1)〈j,F0(x)〉+〈α,x〉


= 2−k−n ∑

x,y
(−1)〈β,F1(y)〉+〈α,x〉∑

j
(−1)〈j,y+F0(x)〉.

By Proposition 3.1,

c10(α, β) = 2−k−n ∑
x∈Fn

2

(−1)〈β,F1(F0(x))〉+〈α,x〉2k

= 2−n ∑
x∈Fn

2

(−1)〈β,F(x)〉+〈α,x〉,

which is precisely the correlation cF(α, β). �

The following follows from Proposition 3.1.

Proposition 4.3 For ⊕v, i.e., ⊕v(x) = x + v, the correlation matrix C⊕v is a
diagonal matrix where the diagonal elements are c⊕v(α, α) = (−1)v(α) .

The following follows from

cF(α, β) = Pr [〈α, x〉+ 〈β, F(x)〉 = 0]− Pr [〈α, x〉+ 〈β, F(x)〉 = 1] .

Proposition 4.4 Assume that α = α0 + α1, and that β = β0 + β1. Consider
a vectorial function F such that 〈α0, x〉+ 〈β0, F(x)〉 and 〈α1, x〉+ 〈β1, F(x)〉 are
statistically independent. Then

cF(α, β) = cF(α
0, β0) · cF(α

1, β1).

4.6 LINEAR DISTINGUISHING ATTACKS

A typical distinguisher on a stream cipher is constructed by finding some bias
in the keystream. In the simplest case, some biased linear sum of keystream
bits is identified [HJ11]. If

Pr

[
∑

i
dizi = 0

]
=

1
2
+ ε,

46 Techniques for Cryptanalysis

and the bias is time-invariant, so that one can ensure d0 = 1 and write

Pr

[
∑

i
dizt+i = 0

]
=

1
2
+ ε, t ≥ 0,

the distinguisher requires about ε−2 samples to succeed, assuming indepen-
dence (cf. Section 3.4). Since each sample is constructed from a window of
length m = maxi: di=1 i + 1, the keystream must be of length at least ε−2 + m
for the distinguishing attack to succeed.

Braeken and Lano [BL05] considered distinguishing attacks on combiners
and filter generators (cf. Sections 2.10 and 2.11). They found that combiners
with a state of 256 bits need to use Boolean functions taking more than 36 bits
of input and be optimally chosen. Such functions appear to be very hard to
find. For filter generators, the number of input bits is at least 30, but they note
that this assumes that the attacker is able to access very long keystreams. By
limiting the keystreams to 240 bits, they find that secure filter generators can
be constructed using Boolean functions on 14 bits.

4.7 CORRELATION ATTACKS

Siegenthaler showed how the combiner could be attacked in the ciphertext-
only setting; in this section, a known-plaintext, i.e., known-keystream, setting
is assumed.

The attack focuses on the output function f : if some correlation can be
identified between one of the input bits uj

i and the output zi, the key can
be found faster than brute force, which requires that the combiner is run at
most ∏m

j=1 2nj times.
As the key is precisely the initial state of the combiner, which in turn is

precisely the initial state of all the LFSRs, the idea is to obtain LFSR initial
states individually. By Kerckhoffs’ principle, only the initial states are un-
known to the attacker, i.e., the structure of the combiner is known, including
the configurations of the LFSRs and the output function f .

Assume that there is a correlation with the jth LFSR, i.e.,

Pr
[
zi = uj

i

]
=

1
2
+ ε, ε 6= 0,

and that the attacker has observed n bits of keystream, z. The attacker searches
through the space of initial states for the jth LFSR, i.e., tries all v0 ∈ F

nj
2 . For

each initial state, the sequence v is produced simply by clocking the LFSR. The
attacker can easily check in how many positions the keystream agrees with
each such sequence, i.e., they can calculate the numbers Nv0 = n− dH (z, v).

4.9. Meet-in-the-Middle Attacks 47

For a wrong guess, the attacker expects Nv0 ≈ n
2 , but for the correct guess,

they expect Nv0 ≈ n
2 + εn.

Once the initial state of the jth LFSR has been obtained, the attacker can try
to recover other LFSR initial states in the same way. Thus, if some correlation
can be found for each individual LFSR, the complete key will be recovered in
at most ∑m

j=1 2nj LFSR sequence generations.
Once some of the inputs to f are known, it might be possible to obtain

better correlations for the other registers, e.g., when the jth LFSR has been
recovered, the attacker knows when each of the two functions

f0(x) = f (x0, . . . , xj−1, 0, xj+1, . . . , xm−1)

and
f1(x) = f (x0, . . . , xj−1, 1, xj+1, . . . , xm−1)

is being used to produce the keystream, and might be able to derive stronger
correlations for these two functions than for f . As a special case of this, it
might also happen that the knowledge of u0

j reduces the search space for u0
j′ ,

j′ 6= j.
It was the correlation attack that led Siegenthaler to define the notion of

correlation immunity (cf. page 14). From it follows that a correlation attack
on a combiner with an mth order correlation immune output function will
have to consider (at least) m + 1 LFSRs simultaneously.

4.8 FAST CORRELATION ATTACKS

The attack cost of the correlation attack is exponential in the size of the small-
est LFSR with a correlation. Thus, one straightforward countermeasure is to
select large LFSR sizes ni.

For implementation purposes, it is tempting to design such a large LFSR
so that it uses a small number t of taps. Meier and Staffelbach considered
keystream-correlated LFSRs with large L and small t, and showed how they
could recover the (initial) state of the LFSR. Their attack is called the fast cor-
relation attack and the underlying idea is to exploit the parity check equations
that can be produced from the characteristic polynomial of the LFSR.

4.9 MEET-IN-THE-MIDDLE ATTACKS

The meet-in-the-middle attack [DH77] was first described by Diffie and Hell-
man. Assume that an R-round block cipher F0,R can be split as F0,R = Fr,R ◦ F0,r
so that F0,r depends only on j key bits and Fr,R depends only on |k| − j key
bits, i.e., no key bit is used in both F0,r and Fr,R. Then an exhaustive search,

48 Techniques for Cryptanalysis

using the plaintext–ciphertext pair p, c, can be performed by computing the
2j possible values of F0,r(p) and the 2|k|−j possible values of F−1

r,R (c), and find-
ing collisions between these two lists. This attack requires, e.g., time about
max(2j, 2|k|−j) and memory about min(2j, 2|k|−j).

Diffie and Hellman originally considered this attack in the context of DES,
which uses keys of 56 bits. A naive approach to doubling the key size to the
much more secure 112 bits would be to apply two DES encryptions in turn,
using a key k = k0||k1. The meet-in-the-middle reasoning above suggested
that such a scheme would not provide 112 bits of security. Due to this, Triple
DES [NIS12], also known as 3DES, has been recommended by NIST for either
a 168-bit key k = k0||k1||k2, or a 112-bit key where k0 = k2 to prevent the
meet-in-the-middle attack.

4.10 (TRUNCATED) DIFFERENTIAL CRYPTANALYSIS

Differential cryptanalysis was publicly introduced by Biham and Shamir [BS93]
in 1990. The idea is to study how a difference in the state propagates through
the state during the encryption.

Assume that the attacker has found a differential on R− 1 rounds of a key-
alternating block cipher which always holds, i.e., for some ∆p, the state R− 1
rounds into encryption, s = F0,R−1(p), exhibits a difference ∆s:

p0 + p1 = ∆p ⇒ F0,R−1(p0) + F0,R−1(p1) = ∆s

for all p0 and all keys. Assume that the attacker has access to c0 and c1 corre-
sponding to known (or chosen) plaintexts p0 and p1 such that p0 + p1 = ∆p.
The attacker guesses the last round key kR and performs partial decryp-
tions of the two ciphertexts c0 and c1: s0 = F−1

R−1,R(c
0), s1 = F−1

R−1,R(c
1). If

s0 + s1 = ∆s, the key guess is viable, but if s0 + s1 6= ∆s, the guess is wrong.
In this way, the attacker can reduce the number of possible round keys from
2|p| to some number m, where hopefully m� 2|p|.

The above is heavily simplified, but enough for this dissertation: most dif-
ferentials used in cryptanalysis do not hold with probability 1, but with prob-
ability 1

2 + ε for some − 1
2 < ε < 1

2 , or even probability 0, in which case the
attack strategy is slightly different [Knu98]. Further, one might hope to guess
less than the entire last round key, or parts of several of the last round keys to
attack a differential on R− j rounds, where j > 1.

4.10.1 TRUNCATED DIFFERENTIALS

Knudsen [Knu95] extended the technique to truncated differentials, where
one does not study the entire state, but only, e.g., a few bits or only care about
whether some larger word is zero or nonzero.

4.11. Linear Cryptanalysis 49

4.10.2 TRUNCATED RELATED-KEY DIFFERENTIALS

In this dissertation, truncated differentials will be considered in the related-
key setting. In [BR10], a differential is denoted by (∆p, ∆k) → ∆s, where
a difference in the plaintext and key gives a difference in the state some
number of rounds into the encryption. This dissertation adopts and extends
this notation. To denote truncated differentials, i.e., differentials where one
only studies the differences in certain bit positions, a mask and a value will
be used and written in hexadecimal using [mask : value]. As an example,
[00010a00:00010800] denotes a differential in a 32-bit state concerning three
bits: in two bits, there is bit-inequality, while in one bit, there is bit-equality.
For the other bits, the difference is not known or not interesting. In pseudo-C
code, such a mask-value pair could be used to identify a match by

if ((s0^s1)&mask) == 0) { ... }.
In this dissertation, ∆k always involves only a single bit, so this bit will

be mentioned specifically, e.g., as in (0, k32) → [08075080 : 00000080], where
the two related keys differ precisely in k32, and there is no difference in the
plaintext. In fact, in this dissertation, only ∆p = 0 is used. However, by
always writing (∆p, ∆k), it will be very clear that related-key differentials are
used to give related-key attacks.

4.11 LINEAR CRYPTANALYSIS

Linear cryptanalysis originally appeared around the same time as differential
cryptanalysis, and also primarily applies to block ciphers. The first linear
cryptanalysis was by Matsui [Mat94b] on DES (see also the work by Tardy-
Corfdir and Gilbert [TCG92]). Similar to above, the attacker guesses some
round key material in the first and/or last rounds of the cipher and tries to
observe some statistical behavior »inside« the cipher. In this case, the attacker
uses linear approximations as introduced in Section 4.5, i.e.,

〈β, F(x)〉 = 〈α, x〉,

for some α, β ∈ F
|p|
2 .

Consider for simplicity the full block cipher F, i.e., keep the first and/or
last few rounds removed earlier. The idea is to use a relatively large bias
εF(α, β) so that it can be observed using about ε−2

F (α, β) samples (cf. Sec-
tion 3.4), where one sample might refer to one plaintext–ciphertext pair, and
it is assumed that all plaintext–ciphertext pairs are statistically independent.

Split F as F = FR−1 ◦ FR−2 ◦ . . . ◦ F0 and assume that cFr (α
r, βr) have been

identified as the correlations for some input and output masks αr, βr for the
functions Fr, 0 ≤ r < R. Further, assume that α = α0, β = βR−1, and

50 Techniques for Cryptanalysis

αr+1 = βr, 0 ≤ r < R − 1, so that the input and output masks are chained
from α through β. Then, assuming independence,

cF(α, β) =
R−1

∏
r=0

cFr (α
r, βr) (4.4)

through what is commonly referred to as the piling-up lemma.
It is clear that independence does not hold in general, but since it might

be straightforward to derive all possible correlations cFr (α
r, βr) using the vec-

torial Walsh transform on the nonlinear building blocks of the round func-
tions, e.g., a relatively small Sbox, while it is less practical to investigate the
full cipher at once, this simple analysis suggests one way of finding linear
characteristics with large biases. For each round, derive a set of best linear
approximations. Then chain them together and hope that the true correlation
cF(α, β) does not differ too much from the value suggested by the piling-up
lemma.

In the sequel, it is useful to distinguish between a linear approximation (or
linear characteristic) and a linear trail. The basic concept of a linear trail has
already been introduced above: it represents one particular way of reaching
〈β, F(x)〉 from 〈α, x〉. More formally, a trail θ from α to β for an R-round block
cipher F is a vector

θ = θ0||θ1|| . . . ||θR−1||θR,

collecting θ0 = α, θR = β and R − 1 intermediate state masks. It is no re-
striction to assume that all θr 6= 0. By defining the correlation of a trail as

Cθ =
R−1

∏
r=0

cFr (θ
r, θr+1) (4.5)

(cf. Equation 4.4), it can be seen, e.g., using correlation matrices, that

cF(α, β) = ∑
θ: θ0=α,θR=β

Cθ. (4.6)

In order to consider key-alternating block ciphers as introduced in Sec-
tion 2.13, i.e.,

F = ⊕kR ◦ F′R−1 ◦ ⊕kR−1 ◦ F′R−2 ◦ . . . ◦ ⊕k2 ◦ F′1 ◦ ⊕k1 ◦ F′0 ◦ ⊕k0 ,

cf. Figure 4.1, it is helpful to consider the expanded key

E(k) = k0||k1|| . . . ||kR−1||kR.

4.12. Insertion and Substitution Attacks on Authentication Schemes 51

k

k0
F′0

θ0

k1
F′1

θ1

kR−2
F′R−2

θR−2

kR−1
F′R−1

θR−1

kR

Key scheduling

x F(x)

θR

Figure 4.1: A key-alternating block cipher with a trail, cf. Figure 2.4.

As a trail through the cipher F is followed, key bits are collected, each time
keeping or flipping the sign of the correlation depending on the key (cf. Propo-
sition 4.3). That is,

Cθ = (−1)〈θ,E(k)〉∏
r

cF′r (θ
r, θr+1) = (−1)〈θ,E(k)〉C0

θ,

where
C0

θ = ∏
r

cF′r (θ
r, θr+1)

is the correlation of the trail θ when the xor key is the all-zero key (cf. Equa-
tion 4.5). Combining this with Equation 4.6 yields

cF(α, β) = ∑
θ: θ0=α,θR=β

(−1)〈θ,E(k)〉C0
θ, (4.7)

which is commonly referred to as the linear hull equation, and states that the
correlation of a linear approximation is the sum of the correlations of the
linear trails, where each term in the sum gets its sign depending on the key.
That is, the exact value of the correlation depends on the particular key used,
suggesting that while the correlation of a linear approximation might be small
(large) on average, for some weak (strong) keys the key-dependent sum might
add up to something relatively large (small). Linear hulls have been studied
since [Nyb95]. See [Lea11] for a more detailed discussion.

The wide trail design strategy [DR01] is one particular way of trying to
achieve resistance against linear cryptanalysis in an SPN: the linear layer is
chosen so that all trails involve a »large« number wH (θ) of bits of the pro-
gressing state. In particular, if the linear layer is a bit permutation, the cipher
does not follow the wide trail design strategy.

Finally, note that cryptanalysis based on zero-bias approximations has been
proposed [BR11], but that this dissertation exclusively considers large corre-
lations as good for attackers and bad for designers.

52 Techniques for Cryptanalysis

4.12 INSERTION AND SUBSTITUTION ATTACKS ON AUTHENTICATION
SCHEMES

Recall the setting outlined in Section 2.6 and consider a message m and a tag
t = f (kMAC, m) produced from the message m and the key kMAC.

Traditionally, two attack success probabilities are of interest: that of in-
sertion (impersonation) attacks and that of substitution attacks. It has been
shown that the substitution attack is always the more powerful attack [JKS94].

In the insertion attack, the attacker inserts data on the channel, i.e., submits
(m, t) to the receiver. The message–tag pair will be accepted with probability
at most

PI = max
(m,t)

Pr [(m, t) is valid] ,

i.e.,
PI = max

(m,t)
Pr [f (kMAC, m) = t] .

In a substitution attack, the attacker observes a valid message–tag pair (m, t)
on the channel and replaces it with (m′, t′), m′ 6= m. This will succeed with
probability at most

PS = max
(m,t),(m′ ,t′),

m 6=m′

Pr
[
(m′, t′) is valid | (m, t) is valid

]
,

i.e.,
PS = max

(m,t),(m′ ,t′),
m 6=m′

Pr
[

f (kMAC, m′) = t′ | f (kMAC, m) = t)
]

.

Note that this definition is information-theoretical: it deals with a computa-
tionally unbounded attacker who can derive the full set of keys that map m
to t and then choose a pair (m′, t′) that matches the largest fraction of those
keys.

Ideally, PI = PS = 2−|t|, so that an attacker’s best strategy is to guess tags
uniformly at random.

5
MACs Revisited and a

New Lightweight Family of
Universal Hash Functions

A new type of MAC construction is proposed, based on the framework
of universal hash functions, Toeplitz matrices and ε-biased sample
spaces. Some new theoretical results in this area are derived. In

particular, some results by Krawczyk [Kra95] are corrected and extended. The
new construction seems interesting to implement in hardware, compared to
previous universal hash function based constructions. This class also seems
promising with respect to security. The aforementioned results by Krawczyk
gives a bound for the security of the construction and we demonstrate how
this bound can be expected to be far from tight.

The hardware-attractive new constructions come at the price of not being
able to prove the exact substitution probability. Instead, the expected proba-
bility is examined both through theoretical methods as well as through simu-
lation. The arguments point at a sufficiently low substitution probability for
the proposed constructions.

This chapter is organized as follows. In Section 5.1 we give some basic def-
initions. Section 5.2 then derives the theoretical background for the new con-
structions, generalizing some previous results related to the use of Toeplitz
matrices for authentication. Section 5.3 proves some lemmas used in Sec-
tion 5.2. In Section 5.4, we setup the particular problem we study, namely
authentication used with a keystream generator, and in Section 5.5, we go
through existing constructions and see how they fit the setting. In Section 5.6
we then give a new class of constructions and discuss its properties. Sec-
tion 5.7 studies a specific instance, while Section 5.8 concludes the chapter.

53

54 MACs Revisited and a New Lightweight Family of Universal Hash Functions

5.1 UNIVERSAL HASH FUNCTION PRELIMINARIES

Authentication using an AXU hash function is done as follows. Split the key
as kMAC = kA||kB, where kB is of the same size as the tag and is referred to
as the OTP. Assume that H = {hi} is ε-AXU. Then if the tag is generated as
t = hkA(m) + kB, we have PS ≤ ε. For the next message, we assume that kMAC

has received a new value.
Let S be a distribution on binary sequences s = (s0, s1, . . . , sn−1) of length

n. Then, S passes the linear test α ∈ Fn
2 with bias ε if∣∣∣∣ |{s ∈ S : 〈α, s〉 = 0}|

|S| − 1
2

∣∣∣∣ ≤ ε.

S is an ε-biased distribution if it passes all linear tests α 6= 0 with bias ε.
We consider S as a set of n-bit vectors, each one taken with the same prob-

ability 1/|S|. To recapitulate the above, s = (s0, s1, . . . , sn−1) ∈ S is a random
variable and so is 〈α, s〉 ∈ F2 for any α 6= 0. If all such binary random vari-
ables are deviating at most ε from the uniform binary distribution, we refer
to S as an ε-biased distribution. Clearly, selecting S as all 2n binary vectors
would give us a 0-biased distribution. The idea is to make S smaller but still
keep ε small.

5.2 THE GENERALIZED TOEPLITZ CONSTRUCTION—A BASIS FOR NEW
CONSTRUCTIONS

Assume that k = (k0, k1, . . . , kw+L−2) is a sequence of key bits chosen uni-
formly random from Fw+L−1

2 and define from it the Toeplitz matrix

Tk =


k0 k1 . . . kw−1
k1 k2 . . . kw
k2 k3 . . . kw+1
...

...
. . .

...
kL−1 kL . . . kw+L−2

 .

Let t = (t0, . . . , tw−1) be a bitvector of length w and m = (m0, . . . , mL−1) a
bitvector of length L. The tag is calculated as

t = mTk.

An algorithmic interpretation is that we initialize t ← 0. Introduce a win-
dow of size w to form

K0 = (k0, . . . , kw−1), K1 = (k1, . . . , kw), . . . , KL−1 = (kL−1, . . . , kw+L−2).

5.2. The Generalized Toeplitz Construction—a Basis for New Constructions 55

For each bit mi, if it is zero we do nothing and if it is one we update t ← t⊕Ki.
Note how we can use a register K to maintain a state which we shift and
accumulate into the tag t. It is a simple step to show that PS = 2−w.

The Toeplitz matrix above uses w + L− 1 key bits k0, k1, . . . , kw+L−2, chosen
uniformly at random, which is much too costly. The next step is to remove the
requirement for genuine randomness and instead use some bitstream genera-
tor to decrease the key size.

Use kA to select a sequence s ∈ S from the ε-biased distribution, and asso-
ciate with it the Toeplitz matrix

Ts =


s0 s1 . . . sw−1
s1 s2 . . . sw
s2 s3 . . . sw+1
...

...
. . .

...
sL−1 sL . . . sw+L−2

 .

Then use the xor value kB and hkA(m) = hs(m) = mTs to calculate the tag as

t = hkA(m) + kB = hs(m) + kB = mTs + kB.

The following theorem [Kra95], inspired by [AGHP90] [NN93] [Kra94], re-
lates the security of the construction to the nonrandomness of the sequence.

Theorem 5.1 A family of hash functions defined by a Toeplitz construction
as above, where the bits s0, s1, . . . , sw+L−2 determine the Toeplitz matrix, is
(2−w + 2ε)-almost xor universal over equal-length strings if the distribution
of the bit sequences s is ε-biased.

The theorem can actually be improved by changing the coefficient in front
of ε from 2 to 2(1− 2−w), but for large w this change is negligible. See Sub-
section 5.2.1 for a discussion on the proof of this theorem.

One might want to extend the security to messages of variable length (cf.
Theorem 2 in [Sar08]):

Theorem 5.2 Let A = FL
2 , A′ = F0

2 ∪ F1
2 ∪ F2

2 ∪ . . . ∪ FL−1
2 , and B = Fw

2 .
Assume that H = {hi | i ∈ I} is a set of hash functions hi: A → B. Define
H′ = {h′i | i ∈ I} by h′i: A′ → B, h′i(m) = hi(m||1||0L−|m|−1). If H is the
(2−w + 2ε)-AXU construction in Theorem 5.1, then H′ is (2−w + 2ε)-AXU.

The crucial property of the functions hi ∈ H is that appending zeros to the
message does not change the tag. This property also allows h′i to be calculated
without invoking hi on the zero-padded message.

56 MACs Revisited and a New Lightweight Family of Universal Hash Functions

5.2.1 PROVING THEOREM 5.1

For some a of length n− w + 1, let the w× n matrix A be constructed as

A =


α0

α1

...
αw−1

 ,

with
αi = 0w−i−1a0i,

i.e., the rows of A are zero-padded shifted versions of a. This matrix has full
rank w if a 6= 0, which will be assumed from now on. Define

R = {γA | γ ∈ Fw
2 },

which is the set of all 2w linear combinations of the rows of A,

R>0 = {γA | γ ∈ Fw
2 , γ 6= 0} = R\{0},

which is the set of all 2w − 1 nontrivial linear combinations of the rows of A,
and

R>1 = {γA | γ ∈ Fw
2 , wH (γ) > 1},

which is the set of all 2w − w − 1 linear combinations of the rows of A that
use at least two rows.

The proof of Theorem 5.1, as carried out in [Kra95], starts with noting that
the success probability of replacing an (n− w + 1)-bit message and w-bit tag
(m, t) with (m + a, t + b) is precisely the probability that aTs = b, with s ∈ S
taken from the ε-biased distribution. This probability, further, is precisely the
probability that AsT = bT. From above, A has full rank w since a 6= 0.

The proof uses Fourier analysis and an indicator function

fα,β(s) =

{
1, 〈α, s〉 = β,
0, 〈α, s〉 6= β,

i.e.,
fα,β(s) = 〈α, s〉+ β + 1.

A lemma then claims that L1(fα,β) = 1 for all vectors α and bits β. The proof of
this result is not included in [Kra95], but is stated to be quite straightforward.
There are two different common ways of defining the Fourier transform of
a Boolean function—this dissertation refers to them as the Fourier transform

5.2. The Generalized Toeplitz Construction—a Basis for New Constructions 57

and the Walsh transform—and there is some confusion in [Kra95]: it can be
seen that the result is not correct. It can however be corrected by requiring
(α, β) 6= (0, 1), which is not a problem in this setting, where α 6= 0 follows
from a 6= 0:

Lemma 5.3 L1(fα,β) = 1 for all (α, β) 6= (0, 1).

More interestingly, we can strengthen Lemma 12 in [Kra95] from an in-
equality to an equality. That is, we can study the matrix–vector version of the
indicator function,

fA,b(s) =

{
1, AsT = bT,
0, AsT 6= bT,

and find the following.

Lemma 5.4 L1(fA,b) = 1 for all A of full rank.

The proof uses some valuable information on the Fourier coefficients, and
since we will use these insights later, we formalize them.

Lemma 5.5 For ω ∈ R, write ω = γA for some (unique) γ ∈ Fw
2 . Then

F (fA,b)(ω) = (−1)〈γ,b〉2n−w.

For ω /∈ R, F (fA,b)(ω) = 0.
That is, F (fA,b)(ω) = ±2n−w for the 2w values of ω ∈ R that are linear

combinations of rows in the full-rank matrix A and zero for all other ω. The
sign is positive precisely when the corresponding linear combination of bits
in b is zero.

We prove these lemmas in Section 5.3. Theorem 5.1 now follows by the
arguments in [Kra95], but we continue towards a modified, and arguably
more detailed, proof here for completeness and some further insights.

First, let µ(s) be the distribution of sequences of length n and assume that
there are 2l distinct sequences, each occurring with probability 2−l . Define εω

as the bias ε for the linear test ω, but with the sign kept. That is,

|{s ∈ S : 〈ω, s〉 = 0}| = 2l−1 + εω2l .

We get

F (µ)(ω) = ∑
s∈Fn

2

µ(s)(−1)〈ω,s〉 = ∑
s∈S

2−l(−1)〈ω,s〉

= 2−l
[
(2l−1 + εω2l)(+1) + (2l−1 − εω2l)(−1)

]
= 2εω

for all ω 6= 0 (see also [KM93, pages 14–15]).
The following can be found in the proofs of Theorem 5 in [Kra95] and

Lemma 4.5 in [KM93]:

58 MACs Revisited and a New Lightweight Family of Universal Hash Functions

Lemma 5.6

∣∣PrS
[
AsT = bT

]
− 2−w∣∣ = 2−n

∣∣∣∣∣ ∑
ω 6=0
F (µ)(ω)F (fA,b)(ω)

∣∣∣∣∣
Proof (Theorem 5.1). By Lemma 5.5, F (fA,b)(ω) = ±2n−w for precisely 2w − 1
values of ω 6= 0 and 0 for all other ω 6= 0. Since |εω| ≤ ε for all ω 6= 0, we get

∣∣PrS
[
AsT = bT

]
− 2−w∣∣ = 2−n

∣∣∣∣∣ ∑
ω 6=0

2εωF (fA,b)(ω)

∣∣∣∣∣ = 2 · 2−n

∣∣∣∣∣ ∑
ω∈R>0

εω2n−w

∣∣∣∣∣
= 2 · 2−w

∣∣∣∣∣ ∑
ω∈R>0

εω

∣∣∣∣∣ ≤ 2 · 2−w(2w − 1)ε < 2ε.

�

5.2.2 INTERPRETING THE ABOVE TO FIND AN ATTACK

The above might suggest how to find a possible attack: For each ω 6= 0,
find εω. Then choose F (f) nonzero for the 2w values of ω that have the
largest absolute values for εω. By also matching signs, we can get all products
εωF (f)(ω) ≥ 0 (or ≤) and arrive at

∣∣PrS
[
AsT = bT

]
− 2−w∣∣ = 2

∣∣∣∣∣ ∑
ω 6=0

εωF (f)(ω)

∣∣∣∣∣ = 2 ∑
ω 6=0
|εω| 2−w.

Having selected F (f), we can invert and acquire f . But this is probably not a
realizable attack. There are (2n−1

2w)2w−1 such transforms but only

(2n−w − 1)2w < 2n

valid functions fA,b. Thus, it is highly unlikely that we have found a transform
F (f) that can be inverted into fA,b on our form, giving a, b. It would be
interesting to see if it would be possible to devise an (efficient) algorithm
for choosing large values of F (f) with matching signs and end up with the
coefficients of a valid function.

A more practical insight gained from the above is that a good attack strategy
might be to replace (m, t) with (m + a, t + b), where a is chosen as the linear
test with the largest bias, i.e., |εa| = maxω(|εω|). This will succeed with
probability

PrS
[
AsT = bT

]
≤ 2−w + 2 · 2−w

∣∣∣∣∣ ∑
ω∈R>0

εω

∣∣∣∣∣ .

5.3. Proving Lemmas 5.3–5.5 59

By noting that the linear tests a and a||0 have the same biases (the tests are
formally applied to vectors of different lengths), it can be seen that εa = εαw−1 .

Thus, the sum over ω will contain εαw−1 = εa, which can be expected to give
a »large« contribution. Further, by assuming that εαi = εαw−1 , i = 0, . . . , w− 2,
one arrives at

PrS
[
AsT = bT

]
≤ 2−w + 2 · 2−w

∣∣∣∣∣ ∑
ω∈R>0

εω

∣∣∣∣∣
≤ 2−w + 2 · 2−w · w · εa +

∣∣∣∣∣ ∑
ω∈R>1

εω

∣∣∣∣∣ . (5.1)

In Section 5.7, we will study this probability closer for a specific design.

5.3 PROVING LEMMAS 5.3–5.5

Proof (Lemma 5.3). Assume α = 0 and β = 0. Then fα,β(ω) = 1 for all ω, so

F (fα,β)(ω) = ∑
x∈Fn

2

fα,β(x)(−1)〈ω,x〉 = ∑
x∈Fn

2

(−1)〈ω,x〉.

By Proposition 3.1,

F (fα,β)(ω) =

{
2n, x = 0,
0, x 6= 0,

so L1(fα,β) = 2−n ∑ω

∣∣F (fα,β)(ω)
∣∣ = 1.

For the remainder of the proof, assume that α 6= 0. We have

F (fα,β)(ω) = ∑
x∈Fn

2

fα,β(x)(−1)〈ω,x〉 = ∑
x: fα,β(x)=1

(−1)〈ω,x〉.

By Proposition 3.1, 〈α, x〉 is a balanced function, so fα,β(x) is a balanced
function. That is, there are precisely 2n−1 different x for which fα,β(x) = 1.
We see that

F (fα,β)(0) = ∑
x: fα,β(x)=1

(−1)〈0,x〉 = 2n−1,

and similarly

F (fα,β)(α) = ∑
x: fα,β(x)=1

(−1)〈α,x〉 = ∑
x: fα,β(x)=1

(−1)β = 2n−1(−1)β.

Assume that ω 6= 0, α. It remains to show that F (fα,β)(ω) = 0. It will
then follow that L1(fα,β) = 2−n ∑ω

∣∣F (fα,β)(ω)
∣∣ = 1. Note that due to ω 6= 0,

60 MACs Revisited and a New Lightweight Family of Universal Hash Functions

〈ω, x〉 and 〈α, x〉 are balanced, and that since ω 6= α, they are independent.
Thus,

F (fα,β)(ω) = ∑
x∈Fn

2

fα,β(x)(−1)〈ω,x〉

= 2n (Pr [〈α, x〉 = β, 〈ω, x〉 = 0]

−Pr [〈α, x〉 = β, 〈ω, x〉 = 1])

= 2n (Pr [〈α, x〉 = β] Pr [〈ω, x〉 = 0]

−Pr [〈α, x〉 = β] Pr [〈ω, x〉 = 1])

= 2n
(

1
2
· 1

2
− 1

2
· 1

2

)
= 0.

�

Lemma 5.4 follows directly from Lemma 5.5, so we focus on the latter. Let
us find F (fA,b)(ω) for all ω. Similar to the proof of Lemma 5.3, we should
consider precisely those vectors x ∈ S for which fA,b(x) = 1. For these x it
holds that 〈αi, x〉 = bi, i = 0, 1, . . . , w− 1.

Let ω = γA = ∑ γiα
i be a linear combination of the rows in A. Then

F (fA,b)(ω) = ∑
x: fA,b(x)=1

(−1)〈ω,x〉 = ∑
x: fA,b(x)=1

(−1)〈∑ γiα
i ,x〉

= ∑
x: fA,b(x)=1

(−1)∑ γi〈αi ,x〉 = ∑
x: fA,b(x)=1

(−1)∑ γibi

= ∑
x: fA,b(x)=1

(−1)〈γ,b〉 = |{x : fA,b(x) = 1}| (−1)〈γ,b〉.

Further,

|{x : fA,b(x) = 1}| = 2nPr
[
〈αi, x〉 = βi, ∀i

]
= 2n ∏

i
Pr
[
〈αi, x〉 = βi

]
= 2n(2−1)w,

due to independence, so F (fA,b)(ω) = 2n−w(−1)〈γ,b〉.
A is of full rank w so all linear combinations γA will be distinct. Thus, we

have 2w values of ω for which F (fA,b)(ω) = ±2n−w. If all other F (fA,b)(ω)
are zero, we are done. Note that we can already claim that L1(fA,b) ≥ 1 and
that it is enough to show that L1(fA,b) = 1. By using the fact that

fA,b(x) = ∏ fαi ,bi
(x),

5.5. An Overview of Previous Constructions 61

together with Proposition 3.3 and Lemma 5.3, we get

1 ≤ L1(fA,b) = L1(∏ fαi ,bi
) ≤∏ L1(fαi ,bi

) = 1.

Thus, we have »sandwiched« L1(fA,b), and must have L1(fA,b) = 1. �

5.4 USING AUTHENTICATION TOGETHER WITH A STREAM CIPHER

We are interested in a mechanism combining encryption and authentication
in some packet-based communication system. We assume that the encryption
is performed using a modern stream cipher, using a secret key k and a public
initial value (IV). The stream cipher would either be a dedicated one, or a
suitable mode of operation for a block cipher. The key kMAC used to produce
the MAC is derived from k by using keystream before encryption starts. In
the analysis below, kMAC is assumed to be chosen uniformly at random.

To appreciate why all of kMAC is extracted before encryption, consider a first
approach that, after initializing the stream cipher, extracts whatever random-
ness the MAC construction needs to get started (kA above). It encrypts the
message as usual and feeds the data into the authentication box. Finally, once
the entire message has been processed, it extracts some additional random-
ness from the keystream to finalize the authentication tag (kB above). How-
ever, using bits from the »end« of the keystream in this manner is not a very
good idea if the message can have variable size: with a slightly shorter mes-
sage, the key material previously used for encryption, would now be used for
authentication. The security implications would be disastrous—it is crucial
that the sender and receiver use the same one-time pad. This has been noted
independently in [FGRV10].

Our solution is to extract all the key bits in kMAC needed for the authentica-
tion before encrypting. This either means that we need to store some of these
key bits somewhere until we need them, or we use a construction that solves
this in another way, e.g., putting them in a processing state. The message is
processed bit by bit and does not need to be stored. Summarizing this, we
present an overview of this approach in Figure 5.1. In the remainder of this
chapter, we will focus on the dashed rectangle in Figure 5.1 which inputs a
key and a message and outputs a tag.

5.5 AN OVERVIEW OF PREVIOUS CONSTRUCTIONS

In this section, we will go through previous constructions of universal hash
function-based MACs. We will ignore the process of deriving kMAC. We con-
sider the hardware cost for the MAC generation part, as marked in Figure 5.1.
For some constructions, we have sketched a hardware implementation and

62 MACs Revisited and a New Lightweight Family of Universal Hash Functions

Key

IV

Message

Keystream
generator

z0z1 . . . zn−1 . . . zn+i . . .

MAC

mi ciCiphertext

kMAC

tTag

Figure 5.1: The setting we consider in this chapter. The first n output
bits from a keystream generator, initialized with a key and
IV, form kMAC which is used to initialize the authentica-
tion mechanism. The rest of the keystream bits are used
to encrypt the message bits mi, i = 0, 1, The end result
is a sequence of ciphertext bits ci and the authentication
tag t.

Table 5.1: The gate counts used for different functions.

Function Gate count
Flip flop 8
NAND2 1
XOR2 2.5

will mention the gate count obtained. The gate counts required for the ANDs,
XORs, flip flops, etc. can be given as estimates at best. The exact cost of any
implementation will depend on many parameters, such as the exact type of
hardware used, the latest-and-greatest optimizations and tricks, and so on.
Nonetheless, an estimate using some established measurements is highly use-
ful in quickly assessing the feasibility of an algorithm.

We have used hardware cost figures found in several other papers, e.g.,
[HJM06]; they are found in Table 5.1. It should be noted that this hardware
analysis is »simple:« it essentially counts the number of w-bit registers used
and the number of gates used to process the contents of those registers.

Several different MAC algorithms have been considered; the MAC genera-
tion in GCM, the UIA2 algorithm in UMTS, the LH and UH constructions by
Sarkar, Krawczyk’s CRC construction, and the LFSR-based Toeplitz construc-
tion.

The last three constructions are all ε-AXU. Notably, they only update what
will be the output using xor. Thus, the OTP can be added at the beginning
just as well as at the end. We note that this allows us to save one register.

5.5. An Overview of Previous Constructions 63

5.5.1 GCM: GMAC

In GMAC [MV04], the tag size is bounded as w ≥ 128, although we will
consider smaller w below. We have kMAC = kA||kB as above. Ignoring what
the specification calls »additional authenticated data«, the L-bit message m is
split into w-bit blocks mi, 0 ≤ i < n (mn−1 zero-padded if necessary). Set
mn = 0w/2||L, where (L) = L and |L| = w/2. As in Subsection 2.9.1, map the
vectors kA and mi to elements kA(x) and mi(x) in some fixed representation
of F2w . Let

GHASH(kA, m, mn) =
n

∑
i=0

mi(x) · kA(x)n+1−i

be the internal keyed hash where all calculations are performed in the finite
field. The resulting element in the finite field can then be mapped to a w-
bit vector in a natural way. Then GHASH is nmax2−w-AXU where nmax is the
maximum allowed message block count and w the length of the output. Thus,
the tag is produced as GHASH(kA, m, mn) + kB.

An implementation would consist of five w-bit registers as in Figure 5.2
where the next message block is loaded in parallel with processing the current
one. The final xoring of random bits cannot be performed ahead of time,
which means that a special register is needed for keeping this value until the
very end of the process.

A rough calculation of the hardware cost gives 5w flip flops, w ANDs, 2w
XORs and a small number of multiplexers, e.g., 1500 gates for w = 32. To save
on one register, the message buffer could be removed at the cost of lowering
the speed to half.

5.5.2 UMTS: UIA2

In UIA2, used in UMTS, there are large similarities with GCM, but also some
differences [ETS09]; we ignore the differing block sizes in the original specifi-
cations, and the difference in length-encoding. Further, kA needs to select two
random values k1(x), k2(x) ∈ F22w . Then the tag is calculated as

t = truncw(GHASH(k1, m, mn) · k2(x)) + kB.

Note in particular the truncation by half the bits after the multiplication by
k2(x). The use of k2 cannot be moved to before the processing of the message,
meaning that it must be stored somewhere during the entire process. Com-
bined with the use of registers of size 2w, the gate count is more than doubled
compared to GMAC.

While GHASH is a nmax2−2w-AXU hash family, the final multiplication and
truncation is 2−w-AXU. This makes UIA2 (nmax2−2w + 2−w)-AXU. Comparing
GMAC and UIA2, it seems one protects longer messages better at the cost of

64 MACs Revisited and a New Lightweight Family of Universal Hash Functions

Message material

kA

Message buffer

kB

mi

. . .

Figure 5.2: A rough hardware implementation of GHASH.

some additional postprocessing which unfortunately is costly in the setting
considered here.

5.5.3 LH AND UH

Sarkar [Sar08] writes about a construction which they claim can be imple-
mented very efficiently using a word-oriented LFSR. Furthermore, they sug-
gest an application using a stream cipher to generate keystream, some of
which is used for encryption and some of which is used for authentication.

Example 5.1 This is a simplified version of an example in [Sar08] where
we avoid word-oriented LFRSs and simply use binary LFSRs. We use a full-
period LFSR of length w and a w-bit tag accumulator and start by loading key
material into the shift register. For each bit to authenticate, we either xor the
accumulator with shift register content or we don’t, depending on whether
the authenticated bit is 1 or 0, respectively. At each step, we also clock the
LFSR. After authenticating w bits, we load new key material and proceed in
the same fashion. �

It should be noted that the keystream consumption will be very large and,
in fact, the authentication will use just as much keystream as the encryp-

5.5. An Overview of Previous Constructions 65

kB

Shift register

Feedback »polynomial«

. . .

mi

Figure 5.3: A rough hardware implementation of the CRC construc-
tion.

tion. Further, the same amount of key material usage can be achieved by the
Toeplitz approach from Section 5.2, with the notable exception that it loads
key bits one by one, instead of in large chunks every now and then.

5.5.4 CRYPTOGRAPHIC CRC

Krawczyk [Kra94] suggests using a CRC with a secret irreducible polynomial
g(x) and treating the message m as a polynomial m(x) to calculate

h(x) = m(x) · xn mod g(x).

Considering the polynomial h(x) as a bit-vector h, the construction is AXU,
so t = h + kB.

An implementation is outlined in Figure 5.3. The top register contains the
OTP, added during finalization. Message bits are shifted into the middle regis-
ter. When the bit shifted out of the middle register is a one, the contents of the
lower register is added to the middle one and the leftmost bit in the middle
register is flipped (this represents the »+1« in the feedback polynomial).

A rough hardware implementation yields 3w flip flops, w ANDs, w XORs
and a small number of multiplexers, e.g., 900 gates for w = 32. One problem
is that the feedback polynomial must be chosen randomly, yet it has to be
irreducible. This is a major drawback.

5.5.5 AN LFSR-BASED TOEPLITZ CONSTRUCTION

Krawczyk also suggests using the Toeplitz construction in Section 5.2 and
producing the sequence through an LFSR with a secret irreducible feedback
polynomial and a secret initial state. The sequence it produces is ε-biased

66 MACs Revisited and a New Lightweight Family of Universal Hash Functions

Accumulator

Shift register

Feedback »polynomial«

. . .

. . .
mi

Figure 5.4: A rough hardware implementation of the LFSR-based
construction.

with ε = Lmax
2w [AGHP90] [NN93], where Lmax is the maximum allowed mes-

sage length, and the construction is 2−w + 2ε-AXU (cf. Theorem 5.1). In fact,
from [Kra94], it is known to be 2ε-AXU.

A rough hardware implementation is outlined in Figure 5.4. It requires 3w
flip flops, 2w ANDs, 2w XORs, and some multiplexers, e.g., 1000 gates for
w = 32.

Note the similarities with Example 5.1 above. In that construction, a higher
security was maintained at the price of constantly refilling the state of the
LFSR. The price then was keystream consumption; here, one needs to ran-
domly choose the irreducible polynomial.

5.6 A NEW CLASS OF CONSTRUCTIONS

Some algorithms in the overview above require keystream slightly longer than
the message, which does not work well in the setting considered here. Others
use costly multiplications in F2l , where l can be the tag size w. Only three reg-
isters are required for Krawczyk’s CRC and LFSR-based constructions which
are very implementation efficient, but where the key needs to select an irre-
ducible polynomial. This is very costly to implement, either using a lookup
table of known polynomials, or by testing whether generated polynomials are
irreducible or not.

To conclude, the above analysis of existing universal hash function con-
structions has found that either 1) they consume too much keystream, 2) their
hardware implementation is fairly resource consuming, or 3) we need »special
randomness,« i.e., random irreducible polynomials.

In the remainder of this chapter, we will present and study a new construc-

5.6. A New Class of Constructions 67

tion, which creates an ε-biased stream, which is accumulated into a register.
This allows the final one-time pad to be added before the actual accumulation,
i.e., before we process the message, thus removing the need to buffer kB in a
separate register.

5.6.1 A NEW CLASS OF TOEPLITZ-BASED CONSTRUCTIONS

Any state-machine generating a sequence that is internally stored in a shift
register is suitable to be used with such an accumulator. One could, e.g.,
use the keystream from the stream cipher Trivium [DP08]. The keystream is
not directly stored internally, but quite close, as the output is formed as the
xor of a few internal bits. To ensure parallelism in Trivium, such a stored
bit is never used within 64 register shifts after having been calculated. Since
the keystream is generated through a simple xor of six bits, this means that
xoring six 64-bit sections of the internal state, one has a logical register which
can be accumulated as previously into a 64-bit tag. Theorem 5.1 then relates
the security of this construction to the bias of Trivium’s keystream. Finding
any large bias would mean a strong distinguishing attack on Trivium, so we
can be satisfied from a security point of view.

However, we consider it overkill to use a mechanism as strong and ex-
pensive as Trivium. We want a more hardware-efficient construction which
might not be secure enough to be a keystream generator in a stream cipher,
but which still generates an ε-biased distribution, where ε is small. This is
sufficient for a good protection against a substitution attack.

We propose the following construction idea, aiming for three registers, and
note the similarities with Grain (cf. Section 2.12).

We create the sequence s using an NFSR of size w, which is fed by an LFSR
of size v. |kA| = w + v and |kB| = w, so |kMAC| = 2w + v. An implementation
is outlined in Figure 5.5.

Formalizing this construction, we denote by si, i = 0, 1, . . . the bitstream
used in the Toeplitz construction. This bitstream is the output of the NFSR,
and the initial state of the NFSR is (s0, s1, . . . , sw−1). The LFSR has initial state
(l0, l1, . . . , lv−1) and generates an LFSR sequence li+v = ∑v−1

j=0 djli+j, for i ≥ 0.
The initial state of the two shift registers is chosen as

(s0, s1, . . . , sw−1, l0, l1, . . . , lv−1) = kA.

Finally, the NFSR sequence is obtained as

si = f (si−w, . . . , si−1) + li−w,

for i ≥ w, where f is some nonlinear function. We refer to the two shift
registers as the generator.

68 MACs Revisited and a New Lightweight Family of Universal Hash Functions

Accumulator

NFSR LFSR

. . .

. . .

mi

Figure 5.5: A rough hardware implementation of the suggested con-
struction. The top register is the accumulator, where the
contents of the left register is added if and only if the mes-
sage bit is a one. The contents of the NFSR and LFSR are
updated with each clock cycle.

We only allow the construction to authenticate messages of at most L bits,
where the security parameter L will be studied later. It is strongly advisable to
let f (si−w, . . . , si−1) depend linearly on si−w, and this will be assumed below.
This ensures that the state is invertible, so that there is no loss of entropy, i.e.,
at each time instance, 2w+v different states of the generator are possible.

Let us briefly examine the hardware cost of this construction. Assume that
both registers are of size w, i.e., the initial states are determined by 2w bits. An
implementation as outlined in Figure 5.5 requires three registers of length w
and some minor combinatorics. We need 3w flip flops, 2w XORs, 3w/2 ANDs,
and a small number of multiplexers, where the feedback functions have been
estimated at w XORs and w/2 ANDs.1 As an example, we need 1000 gates
with w = 32. This compares well with the approaches above, keeping in
mind that the CRC and LFSR-based constructions require random irreducible
polynomials. We note that the 32-bit version of the block cipher KATAN can
be implemented using around 800 gates [DDK09], although in that paper, flip
flops are only 6.25 gates. Further, using KTANTAN and CBC-MAC in the
setting considered here (Figure 5.1) would require some message buffering,
which would increase the overall gate count of the authentication.

In order to quantify the security of this construction, we turn to Theo-
rem 5.1 and consider the sequence s leaving the generator. If this sequence
is random-looking enough in our sense, i.e., ε is low, the construction is se-

1The number of ANDs could, e.g., correspond to pairwise multiplication of all NFSR
bits. The number of XORs could, e.g., correspond to adding those pairwise products
and using half the LFSR bits in the feedback. We consider these approximations to
be on the high side.

5.6. A New Class of Constructions 69

cure enough. Thus, it is irrelevant whether the construction could be used
as a keystream generator (it can’t, since observing (s0, s1, . . . , sw+v−1), we can
easily reconstruct the entire initial state), or whether it suits any other cryp-
tographic applications. We intend to use it as a MAC, and all that matters is
that it is an efficient construction which is secure in this very application.

5.6.2 ON THE PROBLEM OF FINDING THE BIAS

In order to use Theorem 5.1, we need to find (a bound on) the bias ε. Finding
the actual value of the bias is difficult, but we can at least argue around it. If
there is a linear approximation f ′ of the function f with bias ε′, i.e., for some
α′ ∈ Fw

2 ,
f ′(x) = 〈α′, x〉,∣∣∣∣ |{x ∈ F2w : f ′(x) = f (x)}|
2w − 1

2

∣∣∣∣ = ε′,

we can use a linear test α, chosen by keeping the taps of the LFSR in mind,
to achieve ε = 2j−1(ε′)c, where j − 1 is the number of taps in the LFSR or,
equivalently, j is the weight of the LFSR polynomial. This means that if
we have the bias ε′ for the best linear approximation of f , and can rewrite
the LFSR into an up-to-L-degree, weight-3 multiple of the feedback polyno-
mial [MS89] [PK95] [Gol96] [Wag02], there is a linear test with a bias of 22(ε′)3.
With L ≤ 2v/2, we should expect there to be no weight-3 multiple of the LFSR
polynomial of degree L [Gol96].

5.6.3 STRUCTURED FUNCTIONS f

The above does not promise that the bias of the best linear approximation
f ′(x) will lead to the bias of the best linear test α.

Denote the entire initial state by

(r0, . . . , rw−1, rw, . . . , rw+v−1) = (s0, . . . , sw−1, l0, . . . , lv−1).

Each bit si, i ≥ 0 can be described as a function of the initial state: si = fi(r). If
the feedback function is highly irregular, we would expect the expressions for
the different functions fi to be highly different. Finding a linear combination
of fi’s with a high bias seems difficult.

In Section 5.7, it will be seen that a structured feedback function f (x) allows
a very efficient choice of α.

For these reasons, it might be preferable to avoid structured feedback func-
tions. One could, e.g., place the bits used nonlinearly at distances that com-
pose a full difference set.

70 MACs Revisited and a New Lightweight Family of Universal Hash Functions

5.6.4 A CODING THEORY APPROACH

For each possible initial state, output L bits from the generator. Let the se-
quences form the columns of a matrix. We have now constructed the genera-
tor matrix of a code and the problem of finding the bias has been transferred
into that of finding a codeword (i.e., a linear combination of rows) with a very
high or low weight (high bias). By adding an all-one row to the matrix, this
problem reduces to that of finding a low-weight codeword.

Recall from Subsection 3.3.2 that computing this characteristic of the code
is generally difficult, which suggests that so is finding a linear test with high
bias in this case. The algorithms mentioned in Subsection 3.3.2 can be used
on smaller instances, but will not be successful in finding minimum-weight
codewords if the initial state is too large. As an example, from [BLP08] it
seems as if already with w + v ' 211, this will not be feasible.

We note that a random code argument, cf. Subsection 3.3.1, can be used
to derive an expected value of the bias, by deriving the expected minimal
distance of a random linear code of suitable parameters. This would only
give the expected bias and would not promise anything about a particular
instance of the construction.

5.6.5 NUMERICAL RESULTS ON SMALLER INSTANCES

As exhaustively searching for the bias is out of the question for any prac-
tical tag size, we have instead carried out experiments on smaller instances
of our construction. We have done as follows. For each sequence length
L ∈ {1, 2, . . . , Lmax} we have studied each α ∈ FL

2 , α 6= 0. For each such α in
turn, we have evaluated the bias of 〈s, α〉 over all s generated by all possible
keys kA. That is, the bias has been calculated by brute forcing over all initial
states α and all linear tests s. With larger values of L there is a tendency for
growing bias. See Figure 5.6 for the results.

We have used w = v and tags of two different sizes w: 4 and 6 bits. The
linear feedback polynomials have been chosen as x4 + x + 1, and x6 + x + 1,
respectively (both primitive). The nonlinear feedbacks have been created by

f (s) = s0 + s1s3 + s2s3,

and
f (s) = s0 + s2s4s5 + s3s4s5 + s1s2s4s5 + s2s3s4s5 + s1s2s3s4s5,

respectively. With the tags of size four, the construction gave rise to a cycle set
that contains some smaller cycles.

To judge the quality of the obtained biases, we have compared to the LFSR-
based Toeplitz construction described in Subsection 5.5.5. Since there are not
2w irreducible polynomials of degree w (for w > 1), one does not need w bits

5.6. A New Class of Constructions 71

10 20 30 40

2−4

2−3

2−2

2−1

Sequence length L

Bi
as

ε

Krawczyk’s LFSR, w′ = 6

w = v = 4

8-bit seed PRNG

(a) Biases for w = v = 4.

10 20 30 40

2−6

2−5

2−4

2−3

2−2

Sequence length L

Bi
as

ε

Krawczyk’s LFSR, w′ = 8

w = v = 6

12-bit seed PRNG

(b) Biases for w = v = 6.

Figure 5.6: The bias as it develops for growing sequence lengths.
Two different tag sizes w have been studied for the pro-
posed construction (solid lines; v = w). It appears as if it
achieves smaller biases than the LFSR construction (dot-
ted lines; w′ > w), but larger than a pseudorandom num-
ber generator (dashed lines). For small L, biases ε = 0 can
be observed; these are not included in the figures. The
PRNG has very small (nonzero) bias for small L; these
have also been removed.

to describe the connection polynomial used with the LFSR-based construc-
tion. Put differently, using a fixed number 2w of random bits, the LFSR-based
construction can use a state of size w′ > w, where 2w = log(L2 (w′)) + w′. In
order to not discriminate against the LFSR-based construction, we may round
w′ upwards, i.e., choosing the smallest integer w′ such that

2w ≤ log(L2
(
w′
)
) + w′.

As an example, with 2w = 12 bits of key used for the proposed construc-
tion, the same number of key bits can be used with the LFSR-based construc-
tion and a tag size of 8: dlog(30)e = 5 bits are enough to enumerate the
irreducible feedback polynomials (see Table 2.1), and the key is of total size
log(30) + 8 ≈ 12.9 ≥ 12. (With a tag size of 7, log(18) + 7 ≈ 11.2.)

We can, e.g., note that the bias of our proposed construction is below that of
the LFSR construction on equal-length strings. Do keep in mind that we allow
the LFSR construction to use slightly larger registers in order to compare for
a fixed amount of randomness. The gate count is thus a factor approximately
8−6

6 ≈ 33% larger than in our construction. (This completely ignores the issue
of mapping the random key to an irreducible polynomial.)

72 MACs Revisited and a New Lightweight Family of Universal Hash Functions

As an additional comparison, we have derived the bias for a pseudorandom
number generator (PRNG), using the key as seed.2 We have tested several
nonlinear feedback functions and can conclude that with higher nonlinearity,
the bias is small. We do not repeat all results here as the figure would appear
quite busy. This intuitive relation between nonlinearity and bias can be helpful
during the design of larger constructions.

5.6.6 WEAK KEYS AND KEY REUSE

If (l0, l1, . . . , lv−1) = 0, the LFSR will be stuck in the all-zero state and the
generator will only pass through 2w different states, cf. Subsection 6.3.6. This
will only happen with probability 2−v.

No security promises can be made if the key and IV used to initialize the
stream cipher with is reused, which would also endanger the encryption.
If key–IV reuse is avoided with the stream cipher, kMAC will still be reused
with probability 2−w−v < 2−w, so any attack that requires such kMAC reuse to
happen is unlikely to succeed.

Several attacks are possible if kMAC is reused. For example, any message
consisting of only zeros reveals the one time pad kB. Knowing the one time
pad, the one-bit message (1) reveals the initial state of the NFSR. Finally, the
message 0w||1 allows us to easily reconstruct the initial LFSR state if v ≤ w.
Thus, three chosen messages are enough to get a full key recovery (or, for the
stream cipher, the first 2w + v bits in the keystream). With variable-length
messages, one would also have to consider the length padding scheme used,
but it is straightforward to generalize the attack outlined here.

The fact that this attack is outside the security model does not, as Hand-
schuh and Preneel point out [HP08], make it uninteresting. On the contrary,
it highlights the necessity of always using fresh keys for the authentication,
i.e., a fresh IV for the stream cipher.

5.7 AN EXAMPLE OF A SPECIFIC CONSTRUCTION AND AN ATTACK

We define a specific 32-bit construction and analyze it. We use w = v = 32,
the invertible nonlinear feedback function

f (si−w, . . . , si−1) = si−w +
w/2−1

∑
j=1

si−w+2j−1si−w+2j,

and the linear feedback specified by li = li−32 + li−31 + li−29 + li−1 (see Fig-
ure 5.5).

2We have used the GNU Scientific Library’s implementation of the Tausworthe pseu-
dorandom number generator (gsl_rng_taus2).

5.7. An Example of a Specific Construction and an Attack 73

Observe that the NFSR bits are calculated as si = si−32 + Si−31 + li−32 for
i > 31, where

Si =
w/2−1

∑
j=0

si−w+2j−1si−w+2j.

and that there is thus a lot of structure in the feedback function, cf. Subsec-
tion 5.6.3. By exploiting the fact that Si + Si+2 = sisi+1 + si+w−2si+w−1, and
that certain linear combinations of LFSR bits disappear, we can find that

s0 + s1 + s2 + s5 + s31 + s32 + s33 + s34

+ s32 + s33 + s34 + s37 + s63 + s64 + s65 + s66

+ s1s2 + s2s3 + s4s5 + s31s32 + s33s34 + s34s35 + s62s63 + s63s64 = 0,

i.e.,

s0 + s1 + s2 + s5 + s31 ++s37 + s63 + s64 + s65 + s66

+ s1s2 + s2s3 + s4s5 + s31s32 + s33s34 + s34s35 + s62s63 + s63s64 = 0. (5.2)

Reducing the number of multiplications by observing common factors, we get

s0 + s1 + s2 + s5 + s31 + s37 + s63 + s64 + s65 + s66

+ s2(s1 + s3) + s4s5 + s31s32 + s34(s33 + s35) + s63(s62 + s64) = 0. (5.3)

There are five bit multiplications, and by replacing, e.g., s4s5 by s5, we get
a sum of bits with a bias of 2−6, assuming independence. There are some
choices to make, but one can e.g., try to choose canceling bits and obtain a
linear sum of bits 0, 1, 34, 37, 64, 65, 66, i.e.,

Pr [s0 + s1 + s34 + s37 + s64 + s65 + s66 = 0] =
1
2
+ 2−6.

This bias has been confirmed by simulations.
We construct an attack from a 67-bit vector

a = (1, 1)||032||(1, 0, 0, 1)||026||(1, 1, 1), (5.4)

which is 1 precisely in these bits. The details of Theorem 5.1, as analyzed in
Subsection 5.2.2, suggest that we choose to replace m by m + a and t with
t + b, where b = 0.

The sum of various εω runs over precisely those nonzero ω that are linear
combinations of shifted versions of α0 = 0 . . . 0a. Since at any time instance,
the generator can be in any of the 2w+v possible states, shifted linear tests,

74 MACs Revisited and a New Lightweight Family of Universal Hash Functions

e.g., α0 and α1, have the same bias, so εαi = εa, i = 0, 1, . . . , w− 1. It is then
known from Equation 5.1 that

Pr [the attack succeeds] ≤ 2−w + 2 · 2−w · w · εa +

∣∣∣∣∣ ∑
ω∈R>1

εω

∣∣∣∣∣ . (5.5)

Using εa = 2−6 and assuming that εω = 0, ω ∈ R>1, yields

Pr [the attack succeeds] ≤ 2−32 + 2 · 2−32 · 32 · 2−6 = 2−32 + 2−32 = 2−31.

Thus, we need to consider the other terms as well, and (as an attacker) hope
that they add up to something significant.

From the fact that several of the biases are equal, we conclude that

∑
ω∈R>1

εω = (w− 1) · εα0+α1

+ (w− 2) · εα0+α2

+ . . .

+ 1 · εα0+αw−1

+ . . .

+ 1 · εα0+...+αw−1 .

All terms in the sum represent linear tests ω ∈ R>1, whose biases are not
necessarily large. We have used a computer to bound the biases for these
linear combinations ω, not by summing the shifted approximations αj, but by
summing the shifted exact expressions from Equation 5.2 and then approx-
imating, for each sum getting the best linear approximation. This assumes
that no linear test ω is a good linear approximation for some other nonlinear
relation in the bits of s. That is, while

α0 + α1 =030||(0, 1, 1)||031||(0, 1, 0, 0, 1)||025||(0, 1, 1, 1)

+030||(1, 1, 0)||031||(1, 0, 0, 1, 0)||025||(1, 1, 1, 0)

=030||(1, 0, 1)||031||(1, 1, 0, 1, 1)||025||(1, 0, 0, 1),

corresponding to the linear approximation

s30 + s32 + s64 + s65 + s67 + s68 + s94 + s97 = 0, (5.6)

can be found by simulations to have a bias of εα0+α1 ≈ 2−9, it is much faster
to consider the nonlinear terms from Equation 5.2, which add up to

s32s33 + s33s34 + s35s36 + s62s63 + s64s65 + s65s66 + s93s94 + s94s95

+ s31s32 + s32s33 + s34s35 + s61s62 + s63s64 + s64s65 + s92s93 + s93s94

= s31s32 + s34(s33 + s35) + s35s36 + s62(s61 + s63)

+ s63s64 + s65s66 + s92s93 + s94s95.

5.8. Conclusion 75

Since there are 8 bit multiplications, the best linear approximation has bias
2−9, assuming independence, so the bound is εα0+α1 ≤ 2−9.

To be very specific, the sum of the shifted versions of Equation 5.2 is

s31 + s32 + s33 + s36 + s62 ++s68 + s94 + s95 + s96 + s97

+ s32s33 + s33s34 + s35s36 + s62s63 + s64s65 + s65s66 + s93s94 + s94s95

+ s30 + s31 + s32 + s35 + s61 ++s67 + s93 + s94 + s95 + s96

+ s31s32 + s32s33 + s34s35 + s61s62 + s63s64 + s64s65 + s92s93 + s93s94

= s30 + s33 + s35 + s36 + s61 + s62 ++s67 + s68 + s93 + s97

+ s31s32 + s33s34 + s34s35 + s35s36 + s61s62

+ s62s63 + s63s64 + s65s66 + s92s93 + s94s95 = 0.

From this, one can construct a best linear approximation with bias 2−9, but
also the linear approximation in Equation 5.6, which has bias ≤ 2−9. Inde-
pendence is assumed when deriving this bound, but simulations have shown
the bias to be very close to 2−9 which makes the assumption reasonable.

In this way, one can bound ∑ εω and obtain

Pr [the attack succeeds] < 2−32 + 2−27.

This bound applies to all choices of a with εa = 2−6 based on Equation 5.3.
Running the attack, using a from Equation 5.4 on 242 random keys, this prob-
ability was found experimentally as 3407 · 2−42 ≈ 2−30.3.

There might be other values of a that give a higher success probability (for
some b), but it should be kept in mind that this attack is constructed directly
from a linear test that exploits the structure of the construction.

5.8 CONCLUSION

We have proposed a new type of MAC construction, which appears interest-
ing from a hardware perspective. The substitution probability is expected to
be low, as it is bounded by the bias of the output stream and we demonstrate
how this bound can be expected to be far from tight.

This class of constructions appears very promising and it would be interest-
ing to find hardware-efficient designs where we can derive the bias explicitly,
so that we can get a better understanding of the largest possible success prob-
ability for the substitution attack.

6
Grain-128a: A New Stream Cipher

with Optional Authentication

This chapter presents a new version of Grain-128, namely Grain-128a,
originally proposed in [ÅHJM11]. The new stream cipher has native
support for authentication, and is expected to be comparable to the old

version in hardware performance. Any differences between the algorithms
presented in this chapter and [ÅHJM11] are unintentional, and [ÅHJM11] is
the canonical version.

The authentication supports variable tag sizes w up to 32 bits, and varying
w 6= 0 does not affect the keystream generated by Grain-128a. With w = 0,
i.e., no authentication, the keystream is different compared to using w 6= 0 as
the construction can then be more efficient.

Grain-128a uses slightly different nonlinear functions in order to strengthen
it against the known attacks and observations on Grain-128. Existing imple-
mentations of Grain-128 can be reused to a very large extent as the changes,
summarized in Section 6.5, are modest. This also allows us to have a high
confidence in Grain-128a, as the cryptanalysis carries over from Grain-128.

The details of the design are specified in Section 6.1. The throughput is
discussed in Section 6.2, and a security analysis is performed in Section 6.3.
The design choices are motivated theoretically in Section 6.4, and Section 6.5
details the differences to Grain-128. The hardware performance is discussed
in Section 6.6. Section 6.7 makes recommendations regarding the various
members of the Grain family of stream ciphers. Section 6.8 contains several
test vectors, before Section 6.9 concludes the chapter.

77

78 Grain-128a: A New Stream Cipher with Optional Authentication

6.1 DESIGN DETAILS

Grain-128a consists of a mechanism that produces a preoutput stream, and
two different modes of operation: with or without authentication. Figure 6.1
depicts an overview of the building blocks of the preoutput generator, which
is constructed using three main building blocks, namely an LFSR, an NFSR
and a preoutput value calculator. We denote by si, si+1, . . . , si+127 the contents
of the LFSR. Similarly, the content of the NFSR is denoted by bi, bi+1, . . . , bi+127.
Together, the 256 memory elements in the two shift registers represent the
state of the preoutput generator.

The primitive feedback polynomial of the LFSR, denoted f (x), is defined
as

f (x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

To remove any possible ambiguity we also give the corresponding update
function of the LFSR as

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

The nonlinear feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60

+ x61x125 + x63x67 + x69x101

+ x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40.

To once more remove any possible ambiguity we also give the rule for updat-
ing the NFSR.

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+ bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+ bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+ bi+68bi+84 + bi+88bi+92bi+93bi+95

+ bi+22bi+24bi+25 + bi+70bi+78bi+82.

Note that the update rule contains the bit si which is output from the LFSR
and masks the input to the NFSR, while it was left out in the feedback poly-
nomial.

Nine state variables are taken as input to a Boolean function, h(x): two bits
come from the NFSR and seven from the LFSR. This function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

6.1. Design Details 79

NFSR LFSR

g

24 5 6

f

2 7
h

7

Figure 6.1: An overview of the preoutput generator.

where the variables x0, . . . , x8 correspond to, respectively, the state variables
bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+94. The preoutput value
yi is defined as

yi = h(x) + si+93 + ∑
j∈A

bi+j,

where A = {2, 15, 36, 45, 64, 73, 89}. How the preoutput bits are used for
keystream generation and possibly authentication depends on the mode of
operation and is detailed in Subsections 6.1.2–6.1.4.

6.1.1 KEY AND IV INITIALIZATION

Before keystream is generated and authentication is performed, the cipher
must be initialized with the key and the IV. Denote the bits of the key as
ki, 0 ≤ i ≤ 127 and the IV bits vi, 0 ≤ i ≤ 95. Initialization of the key and
IV is done as follows. The 128 NFSR elements are loaded with the key bits,
bi = ki, 0 ≤ i ≤ 127, and the first 96 LFSR elements are loaded with the IV
bits, si = vi, 0 ≤ i ≤ 95. The last 32 bits of the LFSR are filled with ones and
a zero, si = 1, 96 ≤ i ≤ 126, s127 = 0. Then, the cipher is clocked 256 times
without producing any keystream. Instead the preoutput value is fed back
and xored with the input, both to the LFSR and to the NFSR, see Figure 6.2.

6.1.2 MODES OF OPERATION

Grain-128a supports two different modes of operation: with and without au-
thentication. Authentication is mandatory when v0 = 1, and forbidden when
v0 = 0 (see Subsection 6.4.7 for security details). Exactly how this is enforced
is up to the application—if an implementation that does not support authen-
tication is loaded with v0 = 1, it may, e.g., emit some error indicator, force a
protocol termination, or in some other way refuse to continue. An application

80 Grain-128a: A New Stream Cipher with Optional Authentication

NFSR LFSR

g f

h

Figure 6.2: The key initialization.

that never (always) uses authentication may choose not to transmit the value
of v0 as it is already uniquely determined as 0 (1).

With v0 = 0, it is still possible and allowed to use some other, separate
authentication algorithm. What is forbidden is using Grain-128a with authen-
tication when v0 = 0.

6.1.3 KEYSTREAM GENERATION

With v0 = 1, the output function is defined as

zi = y64+2i,

meaning that we use every second bit as output of the cipher after ignoring
the first 64 bits. Those 64 initial bits and the other half will be used for
authentication, see Subsection 6.1.4.

With v0 = 0, the output function is defined as simply

zi = yi,

meaning all preoutput bits are used directly as keystream. This mode of
operation is the same as in Grain-128.

6.1.4 AUTHENTICATION

Assume that we have a plaintext of length L defined by the bits p0, . . . , pL−1.
Set pL = 1. Note that pL = 1 is the padding, which is crucial for the security
of the authentication as it ensures that p and p||0 (of lengths L and L + 1,
respectively) have different tags with very high probability.

In order to provide authentication, two registers of size 32 are used. They
are called the accumulator and the shift register. The content of the ac-
cumulator at time i is denoted by ai

0, . . . , ai
31, and the content of the shift

register at time i is denoted by ri, . . . , ri+31. The accumulator is initialized

6.2. Throughput Rate 81

Accumulator

Shift register

. . .
mi

y64+2i+1

Figure 6.3: An overview of the authentication as it is clocking in
plaintext and preoutput bits.

through a0
j = yj, 0 ≤ j ≤ 31, and the shift register is initialized through

ri = y32+i, 0 ≤ i ≤ 31. The shift register is updated as ri+32 = y64+2i+1. The
accumulator is updated as ai+1

j = ai
j + piri+j for 0 ≤ j ≤ 31 and 0 ≤ i ≤ L.

The final content of the accumulator, aL+1
0 , . . . , aL+1

31 , is the 32-bit tag to be
used for authentication, i.e., ti = aL+1

i , 0 ≤ i ≤ 31. See Figure 6.3 for a
graphical representation of the authentication mechanism.

To guarantee an implementation-independent use of shorter tags, we define
w-bit tags through t(w)

i = t32−w+i, 0 ≤ i ≤ w− 1. This amounts to using the
rightmost part of the tag in Figure 6.3. Clearly, the tag size w must be fixed by
an implementation, or negotiated in some secure way which is not detailed
here.

6.2 THROUGHPUT RATE

All shift registers are regularly clocked so the cipher will output one bit every
clock, or every second clock when using authentication. This regular clocking
is an advantage, both in terms of performance and resistance to side-channel
attacks, compared to using irregular clocking or decimation.

An important feature of the Grain family of stream ciphers is that the speed
can be increased at the expense of more hardware. This requires the feedback
functions, f and g, and the preoutput value calculation to be implemented
several times. To aid this, the last 31 bits of the shift registers in the preoutput
generator, si, bi, 97 ≤ i ≤ 127 are not used in the respective feedback func-
tion or to calculate the preoutput value. This allows the speed to be easily
multiplied by up to 32 if a sufficient amount of hardware is available.

An overview of the implementation when the speed is doubled can be seen
in Figure 6.4. The shift registers also need to be implemented such that each
bit is shifted j steps instead of just one when the speed is increased by a
factor of j. The possibilities to increase the speed is limited to powers of

82 Grain-128a: A New Stream Cipher with Optional Authentication

NFSR LFSR

Figure 6.4: The cipher when the speed is doubled.

two as j needs to divide, e.g., the initialization count, which is 256, and the
authentication initialization, which is another 64 basic clockings. Since the
preoutput and feedback functions are small, it is quite feasible to increase the
throughput in this way. By increasing the speed by a factor of 32, the cipher
will output 32 bits/clock, or 16 bits/clock when using authentication.

For more discussion about the hardware implementation of Grain-128a, we
refer to Section 6.6.

6.3 SECURITY EVALUATION

Excellent hardware performance is of little use if the cipher is not secure. We
outline several possible cryptanalytic attacks, and build upon these insights
to decide on the different functions and parameters used in Grain-128a.

In the following, we will consider the preoutput stream yi, as the keystream
zi is just as good from a security point of view (but half the length), and the
authentication will rely on the security of the preoutput stream.

6.3.1 LINEAR APPROXIMATIONS

Golić [Gol94] realized that in any stream cipher, one can always find some
linear combination of the output bits that has a nonzero bias. In this section,
we consider the general Grain design, ignoring specifics such as the exact
choices of f , g, and h. The function f is of course restricted to being a primitive
polynomial, as it is the feedback function of the LFSR. Updating the NFSR is
similarly made through g, and the output is created using h. To simplify
notation in this section, we denote by h the entire preoutput function, i.e., h
includes the bits added linearly in the preoutput function.

Maximov [Max06] studied this general structure and introduced g′ and h′

6.3. Security Evaluation 83

as linear approximations for g and h with biases εg and εh, respectively, i.e.,

Pr
[
g′(x) = g(x)

]
= 1/2 + εg,

Pr
[
h′(x) = h(x)

]
= 1/2 + εh.

Then, a time invariant linear combination of the keystream bits and LFSR bits
exists, and the bias of this equation is

ε = 2(η(h
′)+η(g′)−1) · εη(h′)

g · εη(g′)
h , (6.1)

where η(f ′) is the number of the NFSR state variables used in the function f ′.
The LFSR taps have not been accounted for, and this bias can not be readily
used in any attack. However, by summing shifted versions of this function, so
that the LFSR contributions add up to zero, a practical attack can be mounted,
at least if the bias ε of the new linear equation is large. Finding a low weight
parity check equation [MS89] [PK95] [Gol96] [Wag02] for the LFSR improves
this ε at the expense of requiring longer keystream, and the precomputation of
finding such a parity check equation. Maximov also showed that the strength
of Grain against correlation attacks is based on the difficulty of the general
decoding problem (GDP), which is well-known to be a hard problem. Various
time–memory trade-off approaches to the GDP have been discussed in the
literature, e.g., [JJ99] [JJ00] [CJS00] [MFI02] [CJM02].

As one can always find a biased linear approximation a′ for any function
a, one can never eliminate the biased nature of Grain’s output. It thus comes
down to choosing particular functions g and h such that this bias is extremely
small, so that the resulting attack will be a less promising choice than a simple
brute force.

6.3.2 ALGEBRAIC ATTACKS

The individual bits in the preoutput stream can be expressed as functions of
the state immediately after initialization. Thus, with access to a stream of such
bits, an attacker can attempt to solve the corresponding system of equations.
If Grain-128a did not contain the NFSR, i.e., it was a basic filter generator,
such algebraic attacks could be very successful. However, Grain-128a does use
an NFSR, which introduces much more nonlinearity, together with h [CM03].
Solving equations for the initial 256 bit state is not possible due to the nonlin-
ear update of the NFSR and the NFSR state bits used nonlinearly in h [BGJ08].

6.3.3 TIME–MEMORY–DATA TRADE-OFF ATTACK

A generic attack that can be applied to a large class of cryptographic primi-
tives, and on stream ciphers in particular, is the time–memory–data trade-off
attack. The cost requirement is 2n/2 where n is the size of the state [BS00]. As

84 Grain-128a: A New Stream Cipher with Optional Authentication

the state in Grain-128a is of size 256, the expected time requirement of such
an attack is 2128, which does not compare favorably to brute force.

6.3.4 FAULT ATTACKS

Fault attacks were introduced by Hoch and Shamir [HS04] and have been
efficient against many known stream cipher constructions. Whether they are
practical is not so clear: one scenario in a fault attack is to allow the adversary
to introduce some bit flipping faults to one of the shift registers. We note that
faults in the NFSR should be harder to trace than faults in the LFSR, and the
strongest assumption possible is therefore that the adversary can introduce
a single fault in a location of the LFSR that they can somehow determine.
When the fault propagates to position bi+95, the difference has spread to the
NFSR-related output, and is soon introducing nonlinearities. Until that point
in time, the difference observed in the output is coming only from inputs of h
from the LFSR. Allowing the adversary to reset Grain-128a many times, each
time introducing a new fault, might enable them to acquire information about
some subset of LFSR bits. Slightly more realistic assumptions on the ability to
introduce a known number of faults makes it more difficult to deduce LFSR
bits from the differences in output.

6.3.5 SIDE-CHANNEL ATTACKS

Any attacker that can observe some signal that is emitted from the implemen-
tation of a cryptographic primitive—most often power consumption or some
function thereof—and that is dependent on the inner calculations, may be able
to deduce the numbers, bits, etc. used in these calculations and thus, e.g., the
key or the plaintext.

We note that the authentication mechanism performs work on two vastly
different levels of power consumption. Viewing a power diagram of a naive
implementation that processes one plaintext bit every clocking, it should be
easy to tell apart ones from zeros.

Just as with any other cryptographic primitive, care must be taken to pro-
tect an implementation of Grain-128a against side-channel attacks such as
differential power analysis [KJJ99] [FGKV07] [MD12].

6.3.6 WEAK KEY–IV PAIRS

Zhang and Wang [ZW09] have shown that there are 296 weak key–IV pairs
in Grain-128, each leading to an all-zero LFSR after the initialization phase,
cf. Subsection 5.6.6. They have also demonstrated how to distinguish such
keystream, and how to recover the initial state.

We note that the IV is normally assumed to be public, and that the prob-

6.3. Security Evaluation 85

ability of using a weak key–IV pair is 2−128. Any attacker guessing this to
happen and then launching a rather expensive attack, is much better off just
guessing a key.

6.3.7 THE AUTHENTICATION

By Theorem 5.1, an attacker who replaces (p, t) with (p + a, t + b) has a suc-
cess probability bounded by 2−32 + 2ε, where ε measures the randomness in
the sequence of bits used for authentication (i.e., a subsequence of the pre-
output sequence). Note that an equivalent attack approach is to replace (c, t)
with (c + a, t + b) (cf. Section 2.6).

From Equation 6.1 in Subsection 6.3.1 and specific values of εg, εh given
later, we know that ε� 2−32 in our case, when we exploit the structure of the
preoutput generator. It is therefore not unreasonable to claim that the success
probability of this substitution attack is bounded by approximately 2−32, and
that the best attack is to basically guess the tag. The attack probability is sim-
ilarly bounded by approximately 2−w for w-bit tags. As a second argument
supporting a negligible bias, we note that if there exists a larger bias, it would
give a very strong distinguisher on the preoutput generator. No distinguisher
is known on Grain-128 despite extensive research by the cryptographic com-
munity and it containing less nonlinearity than the preoutput generator of
Grain-128a.

From the work by Handschuh and Preneel [HP08] (cf. Subsection 5.6.6) it
is also clear that avoiding reuse of the key–IV pair is crucial to the security of
the authentication, just as it is for the encryption. An attacker who is able to
tweak a plaintext–tag pair and have it accepted (this happens with probability
2−w) will be able to perform subsequent forgeries with probability 1 if the
key–IV pair is reused.

The authentication mechanism is very similar to that in the 3GPP algorithm
128-EIA3 [ETS11a], which uses the stream cipher ZUC [ETS11b]. However, in
128-EIA3, two entirely different instances of ZUC are used. The IVs are similar
or even equal, but two different keys are utilized: one for encryption and one
for authentication. As encryption and authentication are performed simulta-
neously, one needs to utilize two implementations of ZUC or an expensive
buffering. We consider our approach superior from a hardware point of view
as the authentication and encryption share the preoutput stream of a single
instance of Grain-128a.

Note that a draft version of 128-EIA3 was broken by Fuhr et al. [FGRV10].
This attack does not apply to Grain-128a as it avoids the exploited problem
through the technique mentioned independently by [FGRV10] and in Sec-
tion 5.4. Thus, Grain-128a extracts the one time pad, used to finalize the
MAC, from the beginning of the preoutput stream rather than the end. In a

86 Grain-128a: A New Stream Cipher with Optional Authentication

later publication, Fuhr et al. [FGRV12] note that the updated 128-EIA3 con-
tains some subtle weaknesses as the »one time pad« is still not taken from
the beginning of the preoutput stream. These unwanted properties are not
present in Grain-128a.

Fuhr et al. [FGRV10] also wonder whether the use of the IV affects the se-
curity of the authentication negatively—it does not; if the constant key, vari-
able IV used with the authentication mechanism in Grain-128a was a problem,
there would exist a strong distinguisher on the preoutput stream when Grain-
128a is used as any other modern stream cipher: constant key, variable IV. In
particular, there would be a distinguisher on Grain-128a when used without
authentication, i.e., when used precisely as Grain-128.

6.4 DESIGN CHOICES

From the above, it is apparent that it is crucial to select design parameters
with great care. This section contains the details regarding the choices for the
parameters and functions used in Grain-128a.

6.4.1 SIZE OF THE LFSR AND THE NFSR

The size of the key in Grain-128a is 128 bits. Considering the simple and
generic time–memory–data trade-off attack, the size of the internal state must
be at least twice that of the key. Thus, we decide on an internal state consisting
of 256 bits. Dividing these equally between the NFSR and the LFSR is an
apparent choice.

6.4.2 SPEED ACCELERATION

As outlined previously, Grain-128a can be made significantly faster by imple-
menting the functions f , g, and h several times. For a simple implementation
of this speed acceleration up to a factor 32, these functions should be chosen
not to use variables taken from the 31 rightmost taps of the registers, as seen
in Figure 6.1.

6.4.3 THE BOOLEAN FUNCTION f

As f should be the generating polynomial for the LFSR, and we want the
period to be maximal, we need f to be primitive. It is well-known that poly-
nomials of low weight can be exploited in various correlation attacks [CT00].
This implies that we should use many taps of the LFSR, but on the other hand,
it is undesirable to use a very large number of taps, due to the hardware cost.

6.4. Design Choices 87

6.4.4 THE BOOLEAN FUNCTION g

The purpose of this function is to create nonlinear relations between state
bits, and we need to avoid the attack described in Subsection 6.3.1. The best
linear approximation of g is of considerable interest, and for it to contain many
terms, we need the resiliency of the function g to be high. We also need a high
nonlinearity in order to obtain a small bias. To construct g, we thus use two
functions—one with high nonlinearity and a linear one with high resiliency.
The function

b(x) = x0x1 + x2x3 + x4x5 + x6x7 + x8x9 + x10x11

+ x12x13 + x14x15x16 + x17x18x19 + x20x21x22x23,

collecting the nonlinear terms, has nonlinearity 8356352. In order to strengthen
the resiliency, 5 linear terms are added to the function. As a result, g is bal-
anced, has nonlinearity 25 · 8356352 = 267403264 and resiliency 4. The set of
best linear approximations is the set of linear functions where at least all the
linear terms of g are present, and the monomials of degree at least three are
approximated by 0. This set is of size 214 and all the functions in it have bias
εg = 63 · 2−15 < 2−9.

6.4.5 THE PREOUTPUT FUNCTION

In order to make it certain that both registers affect the preoutput in each
time step, terms from both registers are added linearly to the function h,
which also uses bits from both registers. The nonlinearity of h is 240 and
adding 8 variables linearly yields a total nonlinearity of 28 · 240 = 61440. The
best linear approximation has bias εh = 2−5, and there are in total 28 linear
approximations of h with that bias.

6.4.6 AUTHENTICATION MECHANISM

From Chapter 5 it appears as if there is a choice to make between

1. the number of gates used in a construction (typically w-bit registers),

2. security (substitution attack success probability), and

3. keystream requirement (using a lot of keystream vs. processing an ini-
tial seed).

Since Grain-128a aims to be cost-efficient in hardware yet very secure, the
third parameter, keystream consumption during authentication, has been al-
lowed to become high. Indeed, more preoutput bits are used for authentica-
tion than for encryption.

88 Grain-128a: A New Stream Cipher with Optional Authentication

There is, however, a very natural explanation for this under the assumption
that whoever is about to implement the authentication mechanism in Grain-
128a has already implemented its encryption mechanism. As mentioned in
Section 6.2, it is quite cheap to double the rate of Grain-128a. Thus, the cost of
upgrading from Grain-128a without any authentication to also using authen-
tication amounts to the authentication mechanism itself and some additional
gates in order to double the rate.

Note that we could have created two keystreams from the NFSR and LFSR—
one for encryption and one for authentication. This would in a sense allow us
to double the throughput, but could have disastrous drawbacks if we are not
very careful.

6.4.7 TWO MODES OF OPERATION

Grain-128a without authentication is able to produce keystream at twice the
rate of Grain-128a with authentication, which is of course very valuable. It is
crucial that these two modes of operations are not allowed to use the same
preoutput stream, i.e., the same key–IV pair.

For a short while, assume there was no such restriction. Consider now
a known plaintext on a version without authentication. This would give the
attacker the entire preoutput stream. If the receiver could be tricked into using
32-bit tags, the attacker could not only spoof an encryption (which is of course
trivial with known keystream), but also the corresponding authenticating tag,
thus elevating the supposed security of the scheme while still breaking it. (An
attacker able to shorten the tags is of course very powerful, but that increasing
the tag size from 0 to 32 could be a security problem is not at all obvious.)

Regarding which particular IV bit to use for this partitioning, the obvious
candidates were v0 and v95, of which we chose the former. We also considered
introducing another bit, separate from the IV, so that the LFSR is loaded with
a 96-bit IV, one bit signaling use of authentication, and 31 constant bits.

6.4.8 SUPPORT FOR VARIABLE TAG SIZES

We have selected 32 bits as an upper tag size, as any application using Grain-
128a is supposedly operating under some resource constraints and using, e.g.,
64 bits seems superfluous. Also, support for 64 bit tags would mean more
clockings before keystream generation begins when using shorter tags.

Note that a different approach could have been taken to allowing variable
tag sizes: when initializing the authentication mechanism, only use the min-
imal amount of preoutput bits, i.e., do not discard any preoutput bits. Us-
ing a certain key and IV, different tag sizes would naturally lead to different
keystreams, but more worryingly, knowledge of a short tag for a plaintext
would give knowledge about longer tags, meaning an attacker (similar to

6.5. Differences From Grain-128 89

above) who could make the receiver consider a longer tag of length w would
be able to have it accepted with probability significantly greater than 2−w.

Considering this, we have decided to predetermine which preoutput bits
are used for what purpose. This does mean that applications with smaller
tags will see a small overhead, but the overall confidence in the algorithm will
be greater.

6.4.9 AUTHENTICATION INITIALIZATION

We load the accumulator with the first 32 preoutput bits, and the shift register
with the next 32. An alternative would have been to alternately load one bit
into each register, i.e., ri = y2i, a0

i = y2i+1 for 0 ≤ i ≤ 31. This would
have meant that for shorter w, a chunk of preoutput bits would have been
discarded, and another chunk (the »end« before keystream generation begins)
used to initialize the authentication mechanism. This could be interpreted as
a prolonged initialization of Grain-128a.

Our specification instead uses two separate chunks to load the accumulator
and the register. With w < 32, this means that the discarded preoutput bits
are found in two separate blocks. We note, however, that this allows the
accumulator to be loaded through the accumulating mechanism: one can load
the first chunk of preoutput bits into the register and then »accumulate« it
onto a zeroed accumulator.

Cryptanalytically, we note that the alternative approach would have al-
lowed an attacker to access the xor of the two supposedly »weakest« pre-
output bits: r0 + a0

0 = y0 + y1.
Instead, the attacker can only learn these bits masked with bits that are

produced later, being even more initialized: r0 + a0
0 = y0 + y32. This is not to

imply that we do not trust the preoutput bits to be properly initialized—we
only note that some bits are even more initialized, and it seems favorable to
mix less and more initialized ones.

6.5 DIFFERENCES FROM GRAIN-128

A number of changes have been made compared to Grain-128. In this section,
we list and motivate each of these differences.

6.5.1 IV SPACE PARTITIONING

Authentication is either mandatory or forbidden depending on the bit v0. This
partitioning of the IV space has been introduced due to security reasons as
outlined above in order to allow Grain-128a without authentication to double
the throughput.

90 Grain-128a: A New Stream Cipher with Optional Authentication

6.5.2 THE FUNCTION g

We have added three monomials: two of degree three and one of degree
four. This is in response to the results by Aumasson et al. [ADH+09] and
Stankovski [Sta10]. Both these results relate to trying to find a set of IV
bits which take all possible values, while the remaining key and IV bits are
fixed. As an example, with a set of 40 IV bits, one requests the first bit of
the 240 keystreams corresponding to the 240 different IVs. The first bit in the
keystream is a function of the key and IV bits, and by processing these 240

»first bits«, one might be able to find some information on the secret key, at
least if the function describing this bit is not complicated enough. It is natural
to study instead the bits that are discarded during the initialization, as it is
supposedly easier to find any information in them, and it should be possible
to get an idea of whether the initialization is strong enough. More details are
available in the papers.

Stankovski defines a nonrandomness threshold and claims that there is
nonrandomness throughout the full 256 rounds of initialization of Grain-
128. This implies that the key and IV material is not properly mixed before
keystream generation starts, and highlights that the initialization used too few
clockings and/or too little nonlinearity.

We tried Stankovski’s algorithm on variants of Grain-128a, analyzing the
initialization, where we used several different candidate polynomials gi(x).
We finally settled on one that had very good behavior in terms of passing the
nonrandomness tests of [Sta10]. The results are shown in Figure 6.5. While
this does not prove that Grain-128a mixes key and IV variables enough, it
shows that the new design is less susceptible to this problem.

The upper curve is Stankovski’s result on Grain-128, where they start from
the optimal bitset of size 6, using only IV bits, and continuously add two
bits according to their greedy algorithm in order to find good bitsets (cubes)
where many initialization »output« bits xor to zero. Finally they reach a bitset
of size 40 such that all initialization output bits xor to zero. The same strategy
does not work as well on the initialization of Grain-128a. The curve starts
lower and does not rise. We have launched an even more computationally
demanding strategy of adding three bits rather than two in each step, but the
curve resulting from that experiment shows the same nongrowing tendency
and has been excluded to avoid cluttering the figure.

6.5.3 IV INITIALIZATION

Setting s127 = 0 during IV initialization is a direct response to the observation
by Küçük [Küç06], who pointed out that by simply using sixteen ones, ffff,
to pad the IV register, there was a high probability that two very similar key–
IV pairs would produce keystreams that were shifted variants of each other.

6.5. Differences From Grain-128 91

bitset size

number of rounds

5 10 15 20 25 30 35 40

50

100

150

200

256

Figure 6.5: Stankovski’s algorithm applied to Grain-128 (upper
curve) and Grain-128a (lower curve).

As a consequence of this change, the padding constant is instead fffe, and
the previously known attacks on Grain-128 [Küç06] [DKP08] [LJSH08] are not
applicable on Grain-128a.

6.5.4 AUTHENTICATION

We add optional authentication to Grain-128a. Without authentication, the
mode of operation of Grain-128a is the same as in Grain-128: preoutput is
used as-is for keystream.

6.5.5 THROUGHPUT RATE

With authentication, the throughput rate is lower than in Grain-128, but it is
quite easy to double it in response. Without authentication, there is no change
in throughput rate.

6.5.6 A TAP IN THE PREOUTPUT FUNCTION h

Dinur and Shamir [DS11] used techniques similar in spirit to Stankovski’s in
what they dub a dynamic cube attack. For a fraction 2−10 of all keys, they
are able to break the full key of Grain-128 by requesting, and storing, the
first bit of keystreams corresponding to 259 chosen IVs. By nulling state bits,
they are able to significantly simplify the equations that need to be solved in

92 Grain-128a: A New Stream Cipher with Optional Authentication

order to find the key bits. More recently, Dinur et al. [DGP+11] improved this
attack, both in terms of time complexity and the number of keys that could
be attacked.

Both attacks exploit partly the low degree of g, and partly the choice of
x4 = bi+95 and x8 = si+95 used to calculate the preoutput value in Grain-128.
These bits are multiplied together, but are very similar during the initialization
phase when the suppressed preoutput bit is fed back to the registers. To
mitigate this weakness, Grain-128a uses x4 = bi+95 and x8 = si+94 to calculate
the preoutput value.

6.6 HARDWARE COMPLEXITY

Grain-128a can be constructed using flip flops, XORs, etc., and like in Chap-
ter 5, this can be used to estimate the gate counts required for an implemen-
tation. The list of the gate counts that have been used in deriving hardware
numbers are found in Table 5.1.

Table 6.1 gives the gate counts for the larger building blocks of Grain-128a,
as well as the total gate count for the entire Grain-128a. Basic combinatorics,
e.g., the multiplexers needed to select between, e.g., initialization of the pre-
output generator, initialization of the authentication, and keystream genera-
tion, have not been included. The few extra XORs needed during initialization
have also been left out.

6.6.1 DIFFERENT TAG SIZES

It is possible to make the authentication mechanism consume less hardware
resources, at the cost of increasing the success probability of the attack. The
intuitive approach to producing a shorter tag is to simply chop the original
one, discarding some bits. As Grain-128a aims for large flexibility and effi-
ciency, the construction allows to not calculate these bits in the first place.

Note that care must be taken to discard the correct preoutput bits as to not
affect the calculations of the remaining part of the authentication tag as well
as the encryption keystream.

6.6.2 THE INCREASE OF HARDWARE FROM GRAIN-128

Let us compare the hardware cost of an implementation that produces one bit
per clock to that of Grain-128. This is the smallest possible Grain-128, and the
increase in this cost should give us an idea of the cost of the extra flexibility
and security added in Grain-128a.

Grain-128 required 2133 gates to implement the basic design, producing
one bit of keystream per clocking. Grain-128a without authentication requires
2145.5 gates, according to Table 6.1, meaning the increased hardware is neg-

6.8. Test Vectors 93

Table 6.1: The estimated gate count in an actual implementation.
The total given for the w-bit MAC only relates to the au-
thentication mechanism itself, not the preoutput genera-
tor needed to actually run it. The cost of the »accumulat-
ing logic« of the authentication mechanism is the same for
speeds 1x and 2x—one implementation makes use of this
logic every second clocking, and the other on each one.

Building block Speed increase
1x 2x 4x 8x 16x 32x

LFSR 1024 1024 1024 1024 1024 1024
NFSR 1024 1024 1024 1024 1024 1024

f 12.5 25 50 100 200 400
g 49.5 99 198 396 792 1584

Preoutput function 35.5 71 142 284 568 1136
Accumulator 8w 8w 8w 8w 8w 8w
Shift register 8w 8w 8w 8w 8w 8w

Accumulating logic 3.5w 3.5w 7w 14w 28w 56w
Total (only enc.) 2145.5 2243 2438 2828 3608 5168

Total (only w-bit MAC) 19.5w 19.5w 23w 30w 44w 72w
Total (enc. + 32-bit MAC) 2769.5 2867 3174 3788 5016 7472

ligible. Looking instead at the version that authenticates and produces one
bit of keystream (two bits of preoutput) per clocking, the number of gates is
2867. This is a mere 34 per cent increase. Note that while Grain-128 initialized
in 256 clockings, authenticating Grain-128a in 2x mode generates keystream
after only (256 + 64)/2 = 160 clockings.

6.7 THE GRAIN FAMILY OF STREAM CIPHERS

As by the publication of [ÅHJM11], Grain-128 is no longer recommended. The
designers instead recommend Grain-128a for 128 bits security. While the 80-
bit version, Grain v1, suffers from the deficiency addressed in Subsection 6.5.3,
the practical impact is marginal. Grain v1 is still recommended for 80 bits
security.

94 Grain-128a: A New Stream Cipher with Optional Authentication

Table 6.2: Test vectors for Grain-128a used without authentication.

Test vector I Test vector II
Key 0000000000000000 0123456789abcdef

0000000000000000 123456789abcdef0

IV 0000000000000000 0123456789abcdef

00000000 12345678

Keystream c0207f221660650b f88720c13f46e6a4

6a952ae26586136f 3c07eeed89161a4d

a0904140c8621cfe d73bd6b8be8b6b11

8660c0dec0969e94 6879714ebb630e0a

36f4ace92cf1ebb7 4c12f0399412982c

6.8 TEST VECTORS

Test vectors for Grain-128a without authentication are given in Table 6.2. Test
vectors for Grain-128a with authentication are given in Table 6.3. While each
key–IV is used to authenticate five different plaintexts, this is solely for the
purpose of giving several test vectors.

Plaintext 0, p0, is the plaintext of length 0. Plaintexts 1 and 2 are both of
length 1: p1 = p2 + 1 = 0. These three plaintexts are supposedly helpful in
verifying the initialization and basic functioning of the MAC algorithm.

Plaintext 3 is of length 20 and its hexadecimal representation is p3 = 12340.
Plaintext 4 is 41 bits long and can, using slightly abused notation, be repre-
sented as p4 = 123456789e8. To avoid any confusion we also give the bit
representation of p4: 00010010001101000101011001111000100111101.

The test vectors named »macstream« are the sequences shifted into the reg-
ister, i.e., the preoutput bits y65, y67,

The 16-bit tag for p4 authenticated using the key and IV in the rightmost
column is t(16) = b196.

6.9 CONCLUSION

A new stream cipher, Grain-128a, has been presented. The design is a new
member in the family of Grain stream ciphers. The size of the key is 128
bits and the size of the IV is 96 bits. The design parameters have been cho-
sen based on theoretical arguments for various possible attacks, and in light
of known observations on older members of the family. Grain-128a is very
well-suited for hardware environments, and the speed of the cipher can be

6.9. Conclusion 95

Table 6.3: Test vectors for Grain-128a used with authentication.

Test vector I Test vector II
Key 0000000000000000 0123456789abcdef

0000000000000000 123456789abcdef0

IV 8000000000000000 8123456789abcdef

00000000 12345678

Preoutput 564b362219bd90e3 7f2acdb7adfb701f

stream 01f259cf52bf5da9 8d2083b3c32b43f1

deb1845be6993abd 962b3dcabf679378

2d3c77c4acb90e42 db3536bfc25bed48

2640fbd6e8ae642a 3008e6bcb395a156

Accumulator 564b3622 7f2acdb7

Shift register 19bd90e3 adfb701f

Keystream 0d2b1f2ebc83da7e a49d971c976bf596

6658ee3150f9ef47 b45f93e242ded8c1

Macstream 1cdbc7f1e52da547 3015919d61787b5c

36fa252828de82a0 d7678db840a6571e

Tag(p0) 4ff6a6c1 d2d1bda8

Tag(p1) 653017e4 24dc2d89

Tag(p2) 7c8d8707 89275d96

Tag(p3) 522ab34f 379d2899

Tag(p4) 4b7821c9 9226b196

increased very easily at the expense of extra hardware. Grain-128a is slightly
more expensive in hardware than Grain-128, but offers better security and the
possibility of adding authentication. To the best of our knowledge, there is no
128-bit cipher offering the same level of security as Grain-128a and a smaller
gate count in hardware.

7
Cryptanalysis of the

Stream Cipher BEAN

B EAN [KOJL09] is a stream cipher that has some superficial similarities
with Grain (cf. Section 2.12): the NFSR and the LFSR are replaced by

two FCSRs. There is a sound motivation behind this idea since the
LFSR in Grain is used to provide large period and to guarantee random-like
properties while the NFSR is used to provide nonlinearity. An FCSR combines
both these properties, while still being efficient in hardware. Thus, BEAN has
two shift register components, both providing nonlinearity, large period and
random-looking sequences.

There have been several FCSR-based stream ciphers proposed in the liter-
ature. One notable design is F-FCSR-H [AB04] [ABL06] which was selected
for the final portfolio in the eSTREAM project. The hardware performance is
good and the design is very simple in that it only uses a linear filter together
with one FCSR. The performance of, and interest in, the F-FCSR-H stream
cipher made it evident that FCSRs are attractive building blocks for stream
ciphers, even though F-FCSR-H was later cryptanalyzed in [HJ08]. The attack
on F-FCSR-H in [HJ08] took advantage of the fact that 8 keystream bits were
produced in each clocking of the register. As BEAN produces 2 keystream bits
in 3 FCSR updates, that attack is not applicable to BEAN. Further, the attack
in [HJ08] used an observation on the behavior of FCSRs in Galois architecture,
while BEAN uses Fibonacci FCSRs. Although a relation between states in the
two architectures can be found in [FMS08], this will not be used here.

In this chapter two attacks are presented on the BEAN stream cipher. While
the design idea can be well-motivated, as described above, the design of the
output function allows for attacks. First, a distinguishing attack is presented
based on the low correlation immunity order of the output function. This
attack is very efficient as it can distinguish the keystream of BEAN from a

97

98 Cryptanalysis of the Stream Cipher BEAN

random sequence using only about 218 keystream bits, or 32 KiB1. Second, a
key recovery attack is given that is based on information leakage in the out-
put function. By guessing a carefully chosen subset of the state bits, a portion
of the keystream can be used to verify the guess, resulting in a divide-and-
conquer attack on the state. A trade-off between the computational resources
and keystream required is presented. As an example, the state can be recov-
ered using 6 KiB of keystream and 273 computations, each computation being
as complex as testing one key.

With these attacks as background, the specific design choices made in the
BEAN stream cipher are discussed and some ideas on how the cipher can be
improved in the future are presented. The results in this chapter can thus be
seen as a foundation for studying the security of BEAN-like stream ciphers.

While the BEAN specification [KOJL09] is sometimes ambiguous, for exam-
ple as to whether the FCSRs are really FCSRs or merely LFSRs, the reference
implementation can be used to clarify such uncertainties. In this chapter,
we use a very conservative approach and always make the more reasonable,
secure interpretation in these cases. It is known that constructing a decent
stream cipher using only LFSRs and an output function (i.e., a nonlinear com-
biner) is practically impossible (cf. Section 4.6). Indeed, if BEAN is imple-
mented with LFSRs instead of FCSRs, independent work [PL11] has shown
that it is susceptible to algebraic attacks. Similarly, correlation attacks would
be a natural approach to attack such weakened versions. We will deal exclu-
sively with the stronger version of BEAN that results from always making the
sane choice in case of ambiguities.

This chapter is organized as follows. Section 7.1 describes the stream cipher
BEAN, before Section 7.2 gives a distinguishing attack. Section 7.3 outlines the
standard brute force attack to establish an attack cost to compare subsequent
findings to. Section 7.4 then describes how to find the key slightly faster than
brute force, and Section 7.5 introduces a time–data trade-off that needs more
keystream but is significantly faster. Section 7.6 outlines what needs to be
reconsidered in the BEAN design, before Section 7.7 concludes the chapter.

7.1 BEAN SPECIFICATION

BEAN is very similar to Grain in that it consists of two shift registers and
one output function, taking input from both registers. The size of the secret
key is 80 bits. While Grain uses one LFSR and one NFSR, BEAN instead has
two FCSRs, both implemented in Fibonacci architecture. These are denoted
FCSR-I and FCSR-II, see Figure 7.1. An overview of the design of BEAN is

1A byte (B) is 8 bits, and a KiB (»kibibyte«) is precisely 210 B. Similarly, a MiB
(»mebibyte«) is 220 B, while a GiB (»gibibyte«) is 230 B. [Int08]

7.1. BEAN Specification 99

b

s

FCSR-I

FCSR-II

+ + + + + +

div2mod2

mb

ms

++++

div2mod2

f f

db
17db

28db
41db

56db
66db

79

ds
78 ds

3 ds
2 ds

1

z2i z2i+1

Figure 7.1: An overview of BEAN. Non-zero di’s are named next to
the corresponding taps.

given in the design document [KOJL09]. In order to avoid any ambiguity
or misinterpretation of the specification, the implementation provided by the
designers has been studied to establish the specification below.

7.1.1 KEYSTREAM GENERATION

Both FCSRs are 80 bits in size, i.e., the same as the key size. The state of
FCSR-I at time instance i is denoted by Bi and correspondingly the state of
FCSR-II at time instance i by Si. Thus,

Bi = (bi, mi
b) = (bi, . . . , bi+79, mi

b),

Si = (si, mi
s) = (si, . . . , si+79, mi

s).

FCSR-I is updated according to

σi
b = bi+62 + bi+51 + bi+38 + bi+23 + bi+13 + bi + mi

b,

bi+80 = σi
b mod 2,

mi+1
b = σi

b div 2.

Similarly, FCSR-II is updated as

σi
s = si+78 + si+77 + si+76 + si+1 + mi

s,

si+80 = σi
s mod 2,

mi+1
s = σi

s div 2.

100 Cryptanalysis of the Stream Cipher BEAN

Table 7.1: The Boolean function f used in BEAN. The input x is split
as x = xr||xc, |xr| = 2, |xc| = 4. The output f (x) is then
found at row (xr) and column (xc).

(xc)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(xr)

0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1
2 0 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0
3 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0

That is, the sets of tap positions are given by

Tb = {17, 28, 41, 56, 66, 79},
Ts = {1, 2, 3, 78}.

Thus, mb and ms are realized using 3 and 2 bits, respectively (cf. Proposi-
tion 2.3).

A Boolean function f (x0, x1, . . . , x5) is used to produce the keystream. This
is given as a 6-to-4-bit Sbox in the original description [KOJL09] but as only
one bit from each word is taken as output, it is easier to analyze it if it is
considered as a 6-to-1 Boolean function. The keystream bits z0, z1, . . . are then
given by

z2i = f (bi+23, bi+73, s2i+5, s2i+9, s2i+29, bi+51), (7.1)

z2i+1 = f (bi+23, bi+73, s2i+6, s2i+10, s2i+30, s2i+68). (7.2)

The keystream generation algorithm is given in Algorithm 7.1.
The algebraic normal form of f is

f (x) =x0 + x3 + x0x1 + x0x2 + x0x3 + x0x4 + x1x4 + x1x5+

x2x3 + x2x4 + x2x5 + x3x5 + x4x5 + x0x1x4+

x0x1x5 + x0x2x3 + x0x2x5 + x0x3x4 + x0x4x5+

x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

x2x3x4 + x2x3x5 + x3x4x5 + x0x1x2x4 + x0x1x2x5+

x0x1x3x4 + x0x1x3x5 + x0x1x4x5 + x0x2x3x4+

x0x2x3x5 + x0x2x4x5 + x0x3x4x5+

x0x1x2x3x5 + x0x1x3x4x5.

The input x to the Boolean function f is split as x = xr||xc, where |xr| = 2
and |xc| = 4. Referring to Table 7.1, the output f (x) is then found at row (xr)

7.2. A Distinguishing Attack on BEAN 101

Algorithm 7.1. BEAN keystream generation

Input: initialized FCSR-I and FCSR-II and keystream length n
Output: n bits of keystream

1. Set i = 0.

2. Output an even-numbered keystream bit.

3. Set i← i + 1.

4. Exit if i = n.

5. Update FCSR-II.

6. Output an odd-numbered keystream bit.

7. Set i← i + 1.

8. Exit if i = n.

9. Update FCSR-I and FCSR-II.

10. Go to step 2.

and column (xc). In the sequel, we will refer to the function f and its input
by referring to »rows« and »columns.« This approach arises naturally as the
row is always selected by B, while the column is (almost) exclusively selected
by S.

7.1.2 BEAN INITIALIZATION

BEAN is initialized by loading the key k = (k0, k1, . . . , k79) into the registers
as

bi = ki+81, i = −81, . . . ,−2,

si = ki+81, i = −81, . . . ,−2.

The carries are set to m−81
s = m−81

b = 0. Then, both FCSRs are initialized by
updating them 81 times. After initialization, the registers contain b0, b1, . . . , b79
and s0, s1, . . . , s79 respectively and keystream is ready to be produced accord-
ing to Algorithm 7.1.

Observe that the FCSRs are initialized at time »−81.« This is only a matter
of notational convenience.

102 Cryptanalysis of the Stream Cipher BEAN

7.2 A DISTINGUISHING ATTACK ON BEAN

In this section we give a very efficient distinguishing attack on BEAN. The
designers performed several statistical tests, provided by NIST [NIS10], on
BEAN. The keystream showed no deviation from random behavior when the
tests were applied to sequences of about 223 bits. However, these tests are
generic and do not take the internal structure of the stream cipher into ac-
count. Taking the structure into account, we show that with as few as 218

keystream bits, a deviation from random can be observed.
Recall the Boolean output function given in Table 7.1. Analyzing the Boolean

function and its Walsh transform, the following properties can be found.

Balanced Yes
Algebraic Degree 5
Resiliency 0
Nonlinearity 22
Best Linear `1(f): 1 + x0 + x3 + x4,
Approximations `2(f): x1 + x2 + x4 + x5

Using `1(f) one can, e.g., write

Pr [z2i = bi+23 ⊕ s2i+9 ⊕ s2i+29] =
1
2
− 5 · 2−5. (7.3)

The common approach in a linear distinguishing attack is then to find a re-
lation in the bi and si variables that sum to zero, leaving only an expression
involving keystream bits, see, e.g., [CHJ02] [HJB08]. However, the FCSRs are
nonlinearly updated and it is very difficult to find such a relation unless the
full period is considered. As the period is large, this attack is not applicable
to BEAN. However, as the resiliency of the Boolean function is 0, there are
biased linear approximations of weight 1. Studying the Walsh transform of
the Boolean function, it can be found that

Pr [f (x) = x2 + 1] =
1
2
+ 2−5, (7.4)

and similarly,

Pr [f (x) = x4 + 1] =
1
2
+ 2−5. (7.5)

From Equations 7.1 and 7.4,

Pr [z2i+24 = s2i+29 ⊕ 1] =
1
2
+ 2−5,

and in the same way

Pr [z2i = s2i+29 ⊕ 1] =
1
2
+ 2−5.

7.3. A Standard Brute Force Key Recovery 103

29 212 215 218 221 224

0

0.1

0.2

0.3

0.4

0.5

Keystream length l

Pr
ob

ab
ili

ty

False negative

False positive

Figure 7.2: Using the distinguisher on longer keystreams results in
smaller probabilities of false positives. Each trial was con-
ducted over 215 different keys.

Combining the last two equations and assuming independence yields

Pr [z2i = z2i+24] =
1
2
+ 2−9.

The same holds for z2i+1 = z2i+25, so

Pr [zi + zi+24 = 0] =
1
2
+ 2−9.

Thus, the distinguishing attack requires only about ε−2 = 218 keystream
bits to succeed. Observe that the samples, e.g., z0 + z24 and z24 + z48, are
clearly dependent. However, the small time and data requirements allow for
a thorough simulation of the attack. Figure 7.2 shows how the error proba-
bilities depend on the keystream length l when the distinguisher is applied
to equally many BEAN keystreams and pseudorandom bitstreams. The dis-

tinguisher uses a threshold θ = n
(

1
2 −

ε
2

)
, where n = l − 24 is the number

of samples constructed from the keystream. (The differing false positive and
negative probabilities for very small keystream lengths is due to the low »res-
olution:« we try to distinguish between distributions centered around, e.g.,
500 and (approximately) 498 using a threshold (approximately) 499.)

104 Cryptanalysis of the Stream Cipher BEAN

7.3 A STANDARD BRUTE FORCE KEY RECOVERY

In the remainder of the chapter, several known-plaintext key-recovery attacks
will be derived.

Before giving the details of the attacks, the cost of the generic attack must
be known. Due to this, a reasonable measure will be presented on the time
(computations) spent in a brute force approach to find the secret key behind
a given keystream.

We consider the initialization to consist of 80 clockings, because this is eas-
ier to work with than 81. This simplification has virtually no effect on any of
the measurements in this chapter.

From the specification in Section 7.1, it can be seen that one specific key
bit never affects the contents of S as d79 = 0: k0 is thrown out of the state in
the very first update without influencing the feedback. Furthermore, S never
affects B. These properties will we used in the »trivial« brute force attack; they
are not necessarily flaws in and of themselves, and any attacker attempting a
standard brute force would probably use this property: to test two keys that
only differ in k0, B must be initialized twice, but S only once.

Thus, during a standard brute force attack on BEAN, one expects to per-
form 279 · 80 + 278 · 80 = 280 · 60 FCSR updates. This will be the reference
point in this chapter. When it is claimed that an attack requires time, e.g., 279,
it requires 279 · 60 FCSR updates (and some additional work that is negligible
in comparison).

The remainder of this chapter will use a slightly modified definition of si:

si = (si+1, . . . , si+79).

We redefine Si correspondingly. The new FCSR produces the same sequence
except for k0 (which never reaches the output function), but the state is one
bit smaller.

7.4 AN IMPROVED KEY-RECOVERY ATTACK

In this section, structural flaws are presented and put together into a key
recovery faster than brute force, i.e., cheaper than 280 · 60 FCSR updates. The
fundamental observation is that the 79-bit key for S can be brute forced before
taking care of B. To see this, assume a guess for Sj, meaning that this FCSR
can be tracked for all future time. One can then observe the keystream and
try to find contradictions.

Example 7.1 Without loss of generality, consider 2i = 0. Let

(s5, s6, s9, s10, s29, s30, s68) = (1, 0, 0, 0, 0, 0, 0).

7.4. An Improved Key-Recovery Attack 105

Table 7.2: Integer representations of nine-bit vectors of state and out-
put that cannot appear in BEAN.

9 13 24 34 41 45 55
56 66 87 94 136 156 157

163 168 170 178 188 189 192
195 207 210 256 259 263 267
271 274 277 282 329 333 344
380 385 386 394 400 406 407
414 415 456 476 477 480 493

This means that the column for z0 is (1, 0, 0, ·), where the last bit is unknown,
while z1 comes from column (0, 0, 0, 0). If z1 = 1 is observed, the row is
(1, 0). If also z0 = 1 is observed, the row cannot be (1, 0), meaning there is a
contradiction. �

To summarize this example, by looking at nine bits, one can conclude
whether or not they pose a contradiction. We have implemented this. By
using a small lookup table of 29 bits, we only need to perform 12 FCSR up-
dates on average before rejecting a bad guess. Table 7.2 lists the impossible
state–output combinations that can be used to reject guesses of S.

For every vector v = (s2i+5, s2i+6, s2i+9, s2i+10, s2i+29, s2i+30, s2i+68, z2i, z2i+1),
Table 7.2 contains (v) if and only if those bits pose a contradiction. As an
example, for v = (1, 0, 0, 0, 0, 0, 0, 1, 1), which corresponds to the specific nu-
merical values studied in Example 7.1, (v) = 385.

The following summarizes the above as it is a central discovery relating to
BEAN and will be used later in the chapter.

Claim 7.1 Given keystream and a guess for Sj, the expected number of
FCSR updates needed before rejecting this guess is 20. The additional work is
negligible, as it only amounts to a small number of table lookups.

In Claim 7.1 the expected cost of the verification has been exaggerated.
This is because the number 20 is easier to work with, but can also be seen as
a buffer for implementation overhead.

There is obviously one guess which will never be rejected, no matter how
many times the FCSR is updated: the correct guess. Thus, an implementation
may use a maximum number slim of FCSR updates, after which the correct
state is assumed to have been found. During simulations, no incorrect guess
required more than 400 FCSR updates. From this, it seems reasonable that,
e.g., slim = 210 will give a very low probability of false positives.

The strategy of the attack is now clear: guess the 79 bits of the key used
in s. Each guess is expected to be cheap to verify according to Claim 7.1,

106 Cryptanalysis of the Stream Cipher BEAN

and once 79 bits of the key are found, the remaining key bit is trivial to brute
force through B with additive and negligible cost. The cost of the attack is
278 · (80 + 20) ≈ 278.7 · 60 FCSR updates. This attack takes less than half the
time of a brute force and requires no significant amount of memory.

7.5 A TIME–DATA TRADE-OFF

The major cost of the above key recovery lies in the guess of key for S: this
requires 279 initializations of S and some clockings in order to determine
whether the state is correct or not. One observation is that rather than initial-
izing the FCSR 279 times, it might be faster to recover the state in the middle
of operation and then (only once, for the correct guess) revert the state back
to the key. This will be done below.

For this approach to improve the above attack, guesses must be correct with
some probability better than 2−79.

This requires making informed guesses from the keystream. Note that
guessing S in the middle of operation does not allow the attacker to assume
ms = 0, so these two bits have to be recovered as well. Thus, it appears as
if 81 bits must be guessed. All in all, a 164-bit state must be recovered faster
than 279. To succeed with this, several observations will we presented below.

7.5.1 GUESSING S

In Subsection 7.5.2, it will be seen that it is straightforward to recover B once
S is known, and Subsection 7.5.4 shows how to revert the state to find the key.
This section is dedicated to what turns out to be the most expensive part of
the attack, namely recovering S.

Given a guess of s, there are four possibilities for the two bits of ms. One
can then use Claim 7.1 to reject three or four guesses. However, assume that
the carry ms and the leftmost bit of s have been guessed. There are in total
eight such guesses. But as the new state is calculated using

σi
s = si+78 + si+77 + si+76 + si+1 + mi

s,

fixing (si+76, si+77, si+78), one can only produce |Ts|+ 1 = 5 distinct S in the
next time step. Thus, rather than guessing 79 bits and guessing the carry 4
times, one can guess 78 bits and then the carry (rather, the rest of the infor-
mation) 5 times. As an example of this, note that (si+1, mi

s) = (1, 1) produces
the same new state as (si+1, mi

s) = (0, 2), where we have moved the 1 from
si+1 into the carry.

The above can be generalized as the following lemma. Its precise formula-
tion is specific to the special nature of S, where si+0 is included in neither the

7.5. A Time–Data Trade-Off 107

update rule nor the redefined state, but it can be easily stated for the more
common type of FCSR.

Lemma 7.1 Let S be an FCSR of length n using taps Ts and with state Si =
(si+1, . . . , si+n−1, mi

s). Let l0 = max Ts = n− 2 and l1 = max Ts\{l0}. For each
j, 0 < j ≤ l0 − l1 and each state (si+1, . . . , si+j, si+j+1, . . . , si+n−1, mi

s), there is

an equivalent state (0, . . . , 0, si+j+1, . . . , si+n−1, mi
s + ∑

j−1
l=0 2lsi+1+l). The states

are equivalent in the sense that they produce the same future state

(si+j+1, . . . , si+j+n−1, mi+j
s).

Thus, having guessed the bits (si+j+1, . . . , si+n−1), one can assume that
si+1 = . . . = si+j = 0. It then remains to find the carry mi

s ∈ {0, . . . , 2 + 2j}
where the set of possible mi

s has been extended.
This lemma is highly applicable to S in BEAN as the first two taps are

l0 − l1 = 78− 3 = 75 bits apart. This means one can guess (si+76, . . . , si+79),
assume (si+1, . . . , si+75) = 0 and then recover the equivalent carry at cost
3 + 275 ≈ 275. In total, this attack would require work 24(3 + 275) ≈ 279.
Obviously, the gain of applying this trick to yet another bit quickly becomes
unimpressive. Certainly, one can also claim that 254(3 + 225) ≈ 279, so the
marginal gain of applying this to 75 rather than 25 bits is negligible. Further,
any bits that have been set to zero in this way cannot be tapped for the output
function. This suggests that using Lemma 7.1 to move a large number of bits
into mi

s in this way, requires a large number of FCSR updates.
Four sets of bit indices are used in the recovery of S, partitioning the 79-bit

state of s2i+26:

A = {2i + 30 + 2j | j = 0, 1, . . . , 18}, |A| = 19,

B = {2i + 68 + 2j | j = 0, 1, . . . , 18}, |B| = 19,

C = {2i + 31 + 2j | j = 0, 1, . . . , 36}, |C| = 37,

D = {2i + 26, . . . , 2i + 29}, |D| = 4.

The general idea is to brute force bits of B ∪ C. Due to the linear approxi-
mation

Pr [f (·) = x4 + x5] =
38
64

,

which yields

Pr [s2i+30 + s2i+68 = z2i] =
38
64

, (7.6)

the bits indexed by A can be correctly guessed with probability(
38
64

)19
≈ 2−14.3,

108 Cryptanalysis of the Stream Cipher BEAN

Table 7.3: The bits s2i+l , l ∈ {30, 31, . . . , 104} that affect keystream
bits (z2(i+j), z2(i+j)+1), j ≥ 0. Bits are only listed the first
time they appear.

j l j l j l
0 31, 32, 35, 36, 55, 56, 94 8 51, 52, 71, 72 16 87, 88
1 33, 34, 37, 38, 57, 58, 96 9 30, 53, 54, 73, 74 17 89, 90
2 39, 40, 59, 60, 98 10 75, 76 18 91, 92
3 41, 42, 61, 62, 100 11 77, 78 19 93
4 43, 44, 63, 64, 102 12 79, 80 20 95
5 45, 46, 65, 66, 104 13 81, 82 21 97
6 47, 48, 67, 68, 103 14 83, 84 22 99
7 49, 50, 69, 70, 101 15 85, 86

when the bits indexed by B are correctly guessed. Simulations over 235 differ-
ent states has given this probability as approximately 2−14.4.

All bits indexed by D = {2i + 26, . . . , 2i + 29} will be assumed to be zero,
and m2i+25

s is guessed 3 + 24 times.
The above together with Claim 7.1 suggest that the entire S2i+25 can be

recovered using an expected 214.5256(3+ 24) · 20 number of FCSR updates and
data ≈ 214.5 · 2 which is approximately 6 KiB. (The factor 2 shows up because
the attack strategy is applied to windows of s beginning with even-numbered
bits.)

It is not obvious that Claim 7.1 holds in this attack. The properties of f
used to derive it »conflict« with Equation 7.6. The attack strategy is to guess
states that are more likely than uniformly random guesses, and so it is more
rare that impossible state-keystream combinations are obtained than in the
uniform case. However, simulations suggest that on average 16 FCSR updates
are required to reject a bad guess, so Claim 7.1 can be used also with these
biased guesses.

From an implementation perspective, it should be noted that there is a
possibility of early aborts; from simulations, a biased guess of

(s2(i+j)+5, s2(i+j)+6, s2(i+j)+9, s2(i+j)+10, s2(i+j)+29, s2(i+j)+30, s2(i+j)+68),

j = 0, 1, . . . , 5, can be rejected with probability .05. This can be used six times,
for j = 0, 1, . . . , 5 without clocking the FCSR, i.e., without introducing any
memory guess. Thus, having guessed a state, it only happens with probability
approximately .956 ≈ .75 that the memory be guessed. Table 7.3 lists when
state bits begin to affect the output.

The complete algorithm for recovering S is given as Algorithm 7.2. When
a state equivalent to the true state S2i+27 has been found, by Lemma 7.1, the

7.5. A Time–Data Trade-Off 109

Algorithm 7.2. Recover S

Input: keystream
Output: corresponding FCSR state S2i+30 for some i

1. Set i = 0.

2. Assume sj = 0, j ∈ D.

3. Guess the bits indexed by B ∪ C.

4. For each guess of the bits indexed by A using Equation 7.6 {
For each ms ∈ {0, 1, . . . , 2 + 24} {

If no contradiction found between current guess and keystream {
Load the guess.
Clock three times.
Return as recovered FCSR state S2i+30.

}
}

}

5. Increase i by one and go to step 2.

true S2i+30 can be produced by clocking three times.
A similar early-abort strategy as used above can be used after the memory

has been introduced. If, for a particular guess of s, each of the 19 memory
guesses ms are rejected in rms clocks, 0 ≤ ms < 3 + 24, the state guess must
have been wrong in at least one of the bits affecting the output within maxl rl
clocks. Simulations suggest that such an algorithm would be at most 10%
faster than the one described here.

7.5.2 FINDING B GIVEN S

Assume that the correct S has been recovered, so that this FCSR can be tracked
for all future time. The next part of the attack is to recover B. The strategy
is to first derive about 20 bits somewhere in a window of eighty bits of b. A
concluding brute force will require guessing about 80 + 3− 20 = 63 bits, so
that the total cost is negligible compared to the previous parts of the attack.

Note that for z2i+1, it is known precisely which column is used in f . There
are 10 unbalanced columns in Table 7.1, and with probability 1

4 , such a column
uniquely identifies a row, i.e., two bits of b. Thus two bits of b can be recovered
with probability

10
16
· 1

4
=

5
32

.

110 Cryptanalysis of the Stream Cipher BEAN

More likely, with probability 6
16 , one bit of b is learned, either as bj, or as a

parity bit bj0 + bj1 . While nonlinear equations can also be derived, those are
ignored here.

This part has been implemented. We have found that with probability .5,
at least 20 bits can be recovered. Similarly, with probability .022, at least 30
bits can be recovered. With bad luck, only some small number of bits from b
can be recovered—one can then fast-forward in S and z and make another try.
Within just a few trials, enough bits can be found to make the total recovery
cost of B negligible.

7.5.3 A GENERAL CONCLUSION

If j > 2, then (3 + 2j) 20
60 < 2j−1. Therefore, assume that Lemma 7.1 is be-

ing used on j > 2 bits. If one is able to guess b of the remaining bits with
probability 2−l , an attack can be constructed that requires 2l+1 data and time

2l279−j−b(3 + 2j)
20
60

< 278+l−b,

assuming Claim 7.1 holds.
A particular time–data trade-off, using time 257.50 and data 259.94, has re-

cently been found by Wang et al. [WHJÅ12].

7.5.4 RECOVERING THE KEY

We will show how one can recover the key from the state. This is mostly of
interest for stream ciphers with IV. Nonetheless, the key-recovery presented
here provides some understanding of the security of the general construction.

The obvious approach is to reverse the cipher from the recovered state. By
reversing both FCSRs to their respective states n + 4 = 84 clockings after key
loading, one knows from Proposition 2.2 that these particular states, B3 and
S3, were visited by the BEAN FCSRs shortly after initialization finished.

One can then revert B3 all the way back to B−81. The state then reached
was not necessarily the state that the FCSR was put into at key loading. The
state after reversion is on the cycle, while the state being sought for could be
on some tail leading into it. A first approach is to use Lemma 7.1 to make the
carry 0, which it was at key loading. The state of b reached in this way will
be referred to as the key stub k̂.

It is straightforward to test if the key stub is the correct key. When loaded
with it, the two registers reach B3 and S3, respectively. In simulations, k̂ = k
with large probability; in 217 runs, k̂ 6= k only 34 ≈ 25 times. In such an
unlikely event, k̂ can still be used as the basis for a brute force through the
register, creating key candidates. By changing more and more bits, from left
to right, eventually the correct key will be found.

7.5. A Time–Data Trade-Off 111

Algorithm 7.3. Time–data trade-off attack

Input: keystream
Output: corresponding key

1. Recover S using Algorithm 7.2.

2. Derive bits from B, using S and z.

3. If less than 20 bits found, {
Fast-forward a few clocks and go to step 2.

}

4. Brute force the rest of B.

5. Revert registers to B3 and S3.

6. Revert FCSR-I to i = −81.

7. Ensure m−81
b = 0 using Lemma 7.1.

8. Set k̂ = b.

9. If k̂ does not yield B3 {
Alter k̂ until k̂ yields B3.

}

10. Return k̂.

While the worst case scenario is that the entire key must be brute forced,
simulations have shown that in those 34 cases from above, at most 3 key
candidates had to be tried. Proposition 2.2 really describes the worst case be-
havior [ABM08]. From these simulations, it appears as if the expected number
of key candidates that need to be tried is practically 1, and there appears to
be only some very small probability that this part of the attack becomes non-
marginal.

Summarizing, the complete attack is outlined in Algorithm 7.3. In order to
completely formalize the attack, several indices and variables are required. To
not clutter the algorithm, only the broad picture is given.

Example 7.2 The following is the output from an implementation of the
attack. Notably, the attack is given |B ∪ C| = 56 bits of s at each time instance,
so that it only needs to guess |A| = 19 bits correctly and verify them while re-
covering the carry. Further, once some reasonable number of linear equations
in bits of b have been derived, the attack is given the full content of B, since
the concluding brute force would take time, e.g., 250.

112 Cryptanalysis of the Stream Cipher BEAN

Recovered s after producing 9668 keystream bits (1.2 KiB).

Will try to find linear equations in B-bits.

b_08 = 1 b_23 = 1 b_25 = 1 b_36 = 1

b_55 = 1 b_58 = 1 b_67 = 1 b_72 = 0

b_73 = 1 b_75 = 0

b_01 + b_51 = 1 b_10 + b_60 = 1

b_24 + b_74 = 1

13 bits recovered. Fast-forward 80 keystream bits and retry.

b_01 = 1 b_05 = 1 b_18 = 1 b_24 = 1

b_26 = 1 b_29 = 0 b_51 = 1 b_55 = 0

b_60 = 1 b_62 = 0 b_65 = 0 b_67 = 0

b_68 = 1 b_73 = 1 b_74 = 1 b_76 = 1

b_77 = 0

b_03 + b_53 = 1 b_04 + b_54 = 1

b_13 + b_63 = 1 b_19 + b_69 = 0

b_25 + b_75 = 0

22 bits of B recovered.

Brute-force the remaining 83-22=61 bits...

B found. State completely recovered.

Reverting FCSRs to 84 updates after key-loading.

Reverting FCSRs to 0 updates after key-loading.

B: 1111111111111111111010001100010111110110

1001010011011001011011100101110110100101 mem: 3

S: 111111111111111111010001100010111110110

1001010011011001011011100101110110100101 mem: 1

Moving memory to state to bring memory to 0.

B: 0100000000000000000110001100010111110110

1001010011011001011011100101110110100101 mem: 0

S: 000000000000000000110001100010111110110

1001010011011001011011100101110110100101 mem: 0

Concentrating on B from now on.

Use current B as key stub.

Evaluate key stub by clocking 84 times.

Key stub was not correct key.

Need to flip more and more bits.

Found key after 2 adjustments.

Recovered key: 1000000000000000000110001100010111110110

1001010011011001011011100101110110100101

True key: 1000000000000000000110001100010111110110

1001010011011001011011100101110110100101

7.6. Protecting Against the Attacks 113

�

A few further observations are illustrated in Example 7.2.

• S is recovered using the linear approximation in Equation 7.6. When
looking for linear equations in b, the properties of f that are used tend
to »conflict« with Equation 7.6, so that a relatively small number of
equations can be derived from the same window of keystream.

• All cases encountered during the simulations where the key stub was
incorrect are similar to above. The key contains a large number of zeros
in the left part, which after clocking forwards and backwards turns into
a sequence of ones. After forcing the memory to 0, (k̂) = (k) + 1.

• When b 6= k, 79 bits of the key can often be found in s.

7.6 PROTECTING AGAINST THE ATTACKS

The first approach to strengthening BEAN should be to select a better output
function f . Resiliency at least one would have excluded the very straightfor-
ward distinguisher presented in Section 7.2. Furthermore, with resiliency at
least two, it would not have been possible to involve only two bits of s in each
guess as in Equation 7.6.

It might also be necessary to let f depend on more than six variables. A
third factor to consider might be suitability for hardware implementation. For
more on this, see the paper by Wang et al. [WHJÅ12].

One notable difference between BEAN and the various incarnations of
Grain is that the latter use a feed-forward from the NFSR to the LFSR. One
idea might thus be to strengthen BEAN by adding a feed-forward from S to
B. However, this does not protect from any of the attacks in this chapter as
they first derive S completely before turning to B. Also, doing this would
alter the behavior of B from well-known to unknown.

Any future design should include an IV, that can be transmitted in the clear
and significantly simplifies key management. This approach is taken in most
modern stream ciphers. Initialization could perhaps be done similarly to the
Grain ciphers, with suppressed output being fed into both registers.

Also, one should probably reselect the feedback taps as there are some
unfortunate properties of the current choices:

• One initial state bit of S is completely disregarded as 79 /∈ Ts.

• The taps in S are clustered, as opposed to spread out somewhat evenly
(cf. B).

114 Cryptanalysis of the Stream Cipher BEAN

• The connection integers q are not optimal. As indicated in Subsec-
tion 2.9.3, q should ideally have certain number theoretic properties.

While only the first of these features was exploited in this chapter, a serious
redesign should address these potential weaknesses.

7.6.1 IMPROVING THE ATTACK

The approach taken in this chapter for deriving, e.g., s is not necessarily op-
timal. One can easily make assumptions on some bits of s, increasing the
probability of guessing correctly. By assuming some specific configuration of
d bits, which should occur with probability 2−d, one can make more advanced
guesswork recovering the remaining bits with probability 2−e, where e should
be »small.« The data requirement would then be 2d+e, and the time require-
ment might be lower than what we have presented in this chapter. One such
attack is presented by Wang et al. [WHJÅ12]. Note that to find the »optimal«
attack, one might need to consider several properties of f and bits that reoc-
cur in the equations, and build decision trees that allow the implementation
to adapt its behavior to the guesses already made.

7.7 CONCLUSION

It has been seen that the nonlinear function in BEAN, combined with other
properties of the construction, allows for an efficient distinguisher and a
key-recovery faster than brute force. It was also seen how access to more
keystream allows for a faster key recovery. Already at a very modest 6 KiB, the
80-bit key is recovered in time 273. While the distinguisher requires slightly
more data, and thus is information theoretically inferior to the distinguisher
inherent in the key-recovery attack, it has a practical time requirement, mak-
ing it interesting in its own right.

8
Related-Key Attacks on KTANTAN

K TANTAN is a hardware-oriented block cipher designed by De Can-
nière, Dunkelman and Knežević. It is part of the KATAN family of six

block ciphers [DDK09]. There are three variants KTANTANn where
n ∈ {32, 48, 64}. All ciphers consist of 254 very simple, hardware-efficient
rounds. Each round key consists of two bits.

The only difference between KATAN and KTANTAN is the key schedule.
The goal with KTANTAN is to allow an implementation to use a burnt-in
key, which rules out loading the key into a register and applying some state
updates to it in order to produce round keys. Instead, round keys are chosen
as two bits of the key, selected according to a fixed schedule. This schedule is
the same for all three variants.

Aiming for a lightweight cipher, the designers of KTANTAN did not pro-
vide the key schedule as a large table of how to select the key bits. Rather,
a small state machine generates numbers between 0 and 79. In this way, key
bits can hopefully be selected in an irregular fashion. As shown by Bogdanov
and Rechberger [BR10], the sequence in which the key bits are used has some
unwanted properties.

We will revisit the result of Bogdanov and Rechberger. We adjust the pre-
sentation slightly, before using their observation to launch a related-key at-
tack. Bogdanov and Rechberger noted this as a possible direction of research,
but did not look into it further.

Like most other related-key attacks, the ones presented in this chapter are
quite academic in their nature. They can still be considered a good measure-
ment of the security of the cipher, which should appear as an ideal permu-
tation, and several notable properties make the attacks in this chapter very
interesting:

115

116 Related-Key Attacks on KTANTAN

1. They only require flipping one bit in the key and in several cases, it is
enough for the attacker to use only one triplet: one plaintext and two
ciphertexts.

2. They can find a large number of key bits in time equivalent to just a
few encryptions. For KTANTAN32, the entire key can be found in half
a minute on a current CPU.

3. They never fail. All the properties exploited in this chapter have proba-
bility one, meaning the correct (partial) key will always be found.

4. They directly contradict the designers’ claims. We will discuss why this
is, and what can be learned from this.

The remainder of this chapter is organized as follows. In Section 8.1 we de-
scribe the cipher KTANTAN, and Section 8.2 discusses the result by Bogdanov
and Rechberger [BR10]. Section 8.3 develops our attacks on KTANTAN32,
while we summarize our results on all versions of KTANTAN in Section 8.4.
In Section 8.5 we compare our results to the designers’ original claims on
related-key security before concluding the chapter in Section 8.6.

8.1 KTANTAN

The n-bit plaintext p is loaded into the state of the cipher, which consists of
two shift registers, L0 and L1, see Figure 8.1. For KTANTAN32, these are of
lengths |L0| = 19 and |L1| = 13. The other variants use longer registers.

Each round uses two key bits, kr
0 = kir0

and kr
1 = kir1

, r = 0, 1, . . . , 253, which
are selected from the 80-bit master key using indices ir0, ir1 ∈ {0, 1, . . . , 79}.
The key schedule is provided in Table 8.1 and is the same for all versions of
KTANTAN.

Table 8.1: The key schedule of KTANTAN. In each round, two key
bits are added to the state.

r ir0 ir1 r ir0 ir1 r ir0 ir1 r ir0 ir1
0 63 31 1 31 63 2 31 63 3 15 47
4 14 14 5 60 76 6 40 40 7 49 17
8 35 67 9 54 22 10 45 77 11 58 26
12 37 69 13 74 10 14 69 69 15 74 10
16 53 21 17 43 43 18 71 7 19 63 79
20 30 62 21 45 45 22 11 11 23 54 70
24 28 60 25 41 41 26 3 19 27 38 70
28 60 28 29 25 73 30 34 34 31 5 21

8.1. KTANTAN 117

32 26 74 33 20 52 34 9 41 35 2 18
36 20 68 37 24 56 38 1 33 39 2 2
40 52 68 41 24 56 42 17 49 43 3 35
44 6 6 45 76 76 46 72 8 47 49 17
48 19 51 49 23 55 50 15 63 51 14 46
52 12 28 53 24 72 54 16 48 55 1 49
56 2 34 57 4 20 58 40 72 59 48 16
60 17 65 61 18 50 62 5 53 63 10 58
64 4 36 65 8 8 66 64 64 67 64 0
68 65 1 69 51 19 70 23 55 71 47 47
72 15 15 73 78 78 74 76 12 75 73 9
76 67 3 77 55 23 78 47 47 79 63 31
80 47 79 81 62 30 82 29 77 83 26 58
84 5 37 85 10 26 86 36 68 87 56 24
88 33 65 89 50 18 90 21 69 91 42 42
92 5 5 93 58 74 94 20 52 95 25 57
96 3 51 97 6 38 98 12 12 99 56 72
100 16 48 101 33 33 102 3 3 103 70 70
104 60 28 105 41 41 106 67 3 107 71 71
108 78 14 109 77 13 110 59 27 111 39 39
112 79 15 113 79 79 114 62 30 115 45 45
116 59 27 117 23 71 118 46 46 119 13 29
120 42 74 121 52 20 122 41 73 123 66 2
124 53 69 125 42 42 126 53 21 127 27 75
128 38 38 129 13 13 130 74 74 131 52 20
132 25 57 133 35 35 134 7 7 135 62 78
136 44 44 137 73 9 138 51 67 139 22 54
140 29 61 141 11 43 142 6 22 143 44 76
144 72 8 145 65 65 146 50 18 147 37 37
148 75 11 149 55 71 150 46 46 151 77 13
152 75 75 153 70 6 154 61 29 155 27 59
156 39 39 157 15 31 158 46 78 159 76 12
160 57 73 161 34 34 162 69 5 163 59 75
164 38 38 165 61 29 166 43 75 167 70 6
168 77 77 169 58 26 170 21 53 171 43 43
172 7 23 173 30 78 174 44 44 175 9 25
176 18 66 177 36 36 178 9 9 179 50 66
180 36 36 181 57 25 182 19 67 183 22 54
184 13 45 185 10 10 186 68 68 187 56 24
188 17 49 189 19 51 190 7 39 191 14 30

118 Related-Key Attacks on KTANTAN

Table 8.2: Parameter values for KTANTANn, n ∈ {32, 48, 64}.

n |L0| |L1| x0 x1 x2 x3 y0 y1 y2 y3 y4

32 19 13 5 4 7 9 11 6 8 10 15
48 29 19 6 3 11 12 9 7 15 13 22
64 39 25 9 4 13 15 13 5 17 24 29

192 28 76 193 40 40 194 1 1 195 66 66
196 68 4 197 57 25 198 35 35 199 55 23
200 31 79 201 30 62 202 13 61 203 10 42
204 4 4 205 72 72 206 48 16 207 33 33
208 51 19 209 39 71 210 78 14 211 61 77
212 26 58 213 21 53 214 11 59 215 6 54
216 12 44 217 8 24 218 32 64 219 64 0
220 49 65 221 18 50 222 37 37 223 11 27
224 22 70 225 28 60 226 9 57 227 2 50
228 4 52 229 8 40 230 0 0 231 48 64
232 32 32 233 65 1 234 67 67 235 54 22
236 29 61 237 27 59 238 7 55 239 14 62
240 12 60 241 8 56 242 0 32 243 0 16
244 16 64 245 32 32 246 1 17 247 34 66
248 68 4 249 73 73 250 66 2 251 69 5
252 75 11 253 71 7

The contents of the registers are shifted, and the new bit in each register
(L0/L1) is created from five or six bits from the other register (L1/L0), through
some simple functions of degree two. For all versions of KTANTAN, the
update is specified by

L0
|L0|−1 ← f r

0(L1, k) = L1
0 + L1

x0
+ (L1

x1
· L1

x2
) + (L1

x3
· IRr) + kr

0,

L1
|L1|−1 ← f r

1(L0, k) = L0
0 + L0

y0
+ (L0

y1
· L0

y2
) + (L0

y3
· L0

y4
) + kr

1.

The indices xi and yi are given by Table 8.2.
There is a round constant IRr, 0 or 1, which decides whether a certain bit

from L1 is included in the update of L0 or not. It is taken from a sequence with
long period in order to rule out slide attacks [BW99] and similar approaches.

For KTANTAN32, one state update is performed per round. In KTAN-
TAN48 and KTANTAN64, there are two resp. three updates per round using
the same key bits and round constant. This larger amount of state updates
means the state mixing is faster, making our attacks slightly more expensive

8.2. A Previous Result on KTANTAN 119

L0

L1

f r
0(L1)

f r
1(L0)

IRr

kr
1

kr
0

3113

12 0

Figure 8.1: An overview of KTANTAN32. In each clocking, one shift
is made and two key bits, kr

0 and kr
1, are added to the state.

IRr is a round constant which decides whether or not L1
3

is used in the state update or not. Indices denote how bits
in the plaintext/ciphertext are identified. L0 is shifted to
the left and L1 to the right.

on the larger versions of KTANTAN. We use KTANTAN32 to describe our
attacks but also give the characteristics for the attacks on KTANTAN48/64.

Note how the key bits are added linearly to the state. Only after three
clockings will they start to propagate nonlinearly. This gives a very slow
diffusion, which we will be able to use in our attacks.

8.1.1 ON BIT ORDERING AND TEST VECTORS

Test vectors for KTANTAN can be produced by the reference code given by the
designers. As an example, the all-ones key and the all-zeros plaintext produce
the ciphertext 22ea3988. Unfortunately, this does not highlight the bit order in
the plaintext and, more importantly in this chapter, the key. By editing the ref-
erence code slightly, one can find that the key 7fffffffffffffffffff and the
plaintext 00000001 produce the ciphertext 8b4f0824. The work described in
this chapter has been performed on an implementation of KTANTAN which
matches this test vector.

8.2 A PREVIOUS RESULT ON KTANTAN

Bogdanov and Rechberger [BR10] note that some key bits are not used until
very late during encryption, while some others are never used after some rel-
atively small number of rounds, see Table 8.3. Given a plaintext–ciphertext

120 Related-Key Attacks on KTANTAN

Table 8.3: The nine most extreme key bits in both directions during
encryption. Six bits do not appear before round 111, while
six others are not used after round 131.

Key bit Used first in round Key bit Used last in round
k13 109 k38 164
k27 110 k46 158
k59 110 k15 157
k39 111 k20 131
k66 123 k74 130
k75 127 k41 122
k44 136 k3 106
k61 140 k47 80
k32 218 k63 79

pair, this results in a guess-and-determine attack, where the »determine« part
is a meet-in-the-middle. Guess 68 key bits. Of the twelve remaining key bits,
six are not used in the first part of the cipher, which means there are only
212−6 = 26 different states after calculating F0,111 from the plaintext. Similarly,
there are 26 possible states after calculating F−1

132,254 from the ciphertext. By
checking the 212 combinations for matches, one can find the key. In KTAN-
TAN32, one can use eight bits in the midcipher state to judge equality, so false
positives should appear with rate 2−8. Some additional plaintext–ciphertext
pairs will help rule out the false positives, but they are needed anyway since
|k| > |c| (cf. Subsection 4.1.2).

Bogdanov and Rechberger dub this a 3-subset meet-in-the-middle attack.
By defining

A f = {3, 20, 41, 47, 63, 74},
Ab = {32, 39, 44, 61, 66, 75},

their attack can be formulated as in Algorithm 8.1. They also give similar
attacks for KTANTAN48 and KTANTAN64.

8.2.1 REFORMULATING THE ATTACK

Step 4 is not trivial as the computations that need to be carried out in order to
check for matches are similar to calculating the round functions themselves.
Further, while the original authors choose to only use eight bits for matching,
we have found that one can use twelve bits, given by the mask 2a03cd44. This
slightly lowers the time required for the attack as one can expect fewer false
positives. Summing up, we prefer to view the attack as in Algorithm 8.2.

8.2. A Previous Result on KTANTAN 121

Algorithm 8.1. 3-subset meet-in-the-middle attack on KTANTAN, take I

Input: a few KTANTAN32 plaintext–ciphertext pairs
Output: the secret key k

1. Guess the 68 key bits indexed by {0, 1, . . . , 79}\(A f ∪Ab).

2. Compute 26 partial encryptions s0
0, . . . , s0

63 using F0,111 for each choice of
bit assignments for bits indexed by A f .

3. Compute 26 partial decryptions s1
0, . . . , s1

63 using F−1
132,254 for each choice of

bit assignments for bits indexed by Ab.

4. For the 212 combinations, use eight state bits to check whether they match.
Alarms will be raised with probability 2−8, so we expect 24 alarms.

5. Use some additional plaintext–ciphertext pairs to rule out false alarms, by
simple trial encryptions.

6. Return the key found or go to step 1.

Algorithm 8.2. 3-subset meet-in-the-middle attack on KTANTAN, take II

Input: a few KTANTAN32 plaintext–ciphertext pairs
Output: the secret key k

1. Guess the 68 key bits indexed by {0, 1, . . . , 79}\(A f ∪Ab).

2. Compute 26 partial encryptions s0
0, . . . , s0

63 using F0,127 for each choice of
bit assignments for bits indexed by A f .

3. Compute 26 partial decryptions s1
0, . . . , s1

63 using F−1
127,254 for each choice of

bit assignments for bits indexed by Ab.

4. For the 212 combinations, check twelve state bits for equality through
if (((s0

i ^s1
j)&0x2a03cd44) == 0) { ... }.

Alarms will be raised with probability 2−12, so we expect one alarm.

5. Use some additional plaintext–ciphertext pairs to rule out false alarms, by
simple trial encryptions.

6. Return the key found or go to step 1.

122 Related-Key Attacks on KTANTAN

An implementation improvement is to only calculate those 12 bits that we
actually need. We have then reached something similar to the original for-
mulation of the attack, with the notable difference that the computations cor-
responding to F111,127 and F−1

127,132 are not performed an unnecessarily large
number of times.

We can split at any round between and including 123 and 127, and still get
twelve known (but different) bit positions to look at. We opted for 127 as it
makes both halves equally expensive to calculate.

8.3 RELATED-KEY ATTACKS ON KTANTAN32

We first outline some preliminaries, including how attack time and data re-
quirements will be derived. We then further study how k32 enters the key
schedule very late. After this, we formulate our attack idea and derive vari-
ous attacks that find some parts of the key.

8.3.1 TRUNCATED DIFFERENTIALS AND ATTACK REQUIREMENTS

We only use differentials with probability one, which means there are only
false positives and no false negatives. The false positives can be ruled out by
repeated filtering. As a result, all attacks given in this chapter have proba-
bility one of succeeding. When we give data requirements, these will be the
expected number of samples needed to obtain a unique solution. Similarly,
time requirements will account for the work needed to rule out false alarms.
We assume that an alarm is raised with probability 2−b for a differential that
involves b bits.

As above, we will always need some extra material in order to find a unique
key.

8.3.2 ON THE BAD MIXING OF k32

Key bit 32 is particularly weak as it appears for the first time in round 218
of 254. We have thus studied this bit closer. It is worth noting that if the
cipher had used 253 rounds rather than 254, one ciphertext bit would have
been linear in k32. That is, there is a probability-one, 253-round differential
(0, k32) → [00040000 : 00040000]. The single bit involved is state bit 13 in
Figure 8.1, i.e., the leftmost bit in L0. This bit is shifted out of the state in
the very last round, so such a probability-one differential is not available on
the full KTANTAN. However, there are some high-probability truncated dif-
ferentials on the full KTANTAN as given in Table 8.4. We do not exploit these
differentials in this chapter, but note that they indicate a nonrandom behavior
of the cipher.

8.3. Related-Key Attacks on KTANTAN32 123

Table 8.4: Probabilistic truncated differentials on the full KTAN-
TAN32.

Differential Probability
(0, k32)→ [00020000 : 00020000] .687 = .5 + .187
(0, k32)→ [40000000 : 00000000] .640 = .5 + .140
(0, k32)→ [40020000 : 00020000] .453 = .25 + .203

8.3.3 THE GENERAL ATTACK IDEA

We will present several related-key attacks that recover some or all key bits.
The general outline of our attacks can be formulated as follows: We group key
bit indices into disjoint subsets A0, . . . ,Al−1 of sizes ai = |Ai|, i = 0, . . . , l− 1.
These subsets do not necessarily need to collectively contain all 80 key bits.
Define a = ∑i ai.

We attack these subsets one after another, i.e., when attempting to find the
correct bit assignments for Aj, we assume that we already know the correct
bit assignments for bits indexed by Ai, i = 0, . . . , j− 1. We then follow this
simple outline:

1. Guess the bit assignments for bits indexed by Aj.

2. If the (truncated) differential matches, we have a candidate subkey.

3. If the (truncated) differential does not match, we discard the candidate
subkey.

In the first step, we can make 2aj guesses for the subkey. Note that the last
step can be performed without risk, since all our differentials have probability
one. Due to this, we can immediately discard many of the guesses.

The second step of the attack can, however, give false positives. As already
noted, we assume that a false alarm is raised with probability 2−b for a dif-
ferential that involves b bits. To discard the false alarms, we can recheck the
differential on more material, so we expect to need ai/b triplets.

After finding the key bits specified by ∪iAi, we can conclude by a brute
force for the remaining 80− a key bits. A simple calculation of the time re-
quired would yield 2a0 + . . . + 2al−1 + 280−a. However, the different operations
represented by these terms have different costs as they require different num-
bers of (inverse) round function evaluations. All time requirements in this
chapter will be normalized to KTANTAN calls, and also incorporate the ex-
pected increase of calculations due to false positives. We will denote this time
measurement T and it will, depending on context, refer to the time required
to recover either the full key or only some part of it.

124 Related-Key Attacks on KTANTAN

8.3.4 A FIRST APPROACH: FINDING 28 BITS OF THE KEY

Assume that we have a known plaintext p, and two ciphertexts c0, c1, where
the difference is that k32 has been flipped in the unknown key between the
calculations of the two ciphertexts. During the calculations of these two ci-
phertexts, the first 218 states followed the same development. Only after k32
entered could the calculations diverge to produce different ciphertexts.

Bogdanov and Rechberger give the probability-1 differential (0, k32) → 0
for 218 rounds. We note that this differential can be easily extended to 222
rounds, still with probability 1: (0, k32) → 00000008. The flipped bit in ∆s is
the linear appearance of k32.

We will use »triplets« consisting of one plaintext and two ciphertexts to
exploit these differentials. A first attempt to use such a plaintext–ciphertexts
triplet in an attack could be as follows. We note that there are 42 key bits used
when decrypting into round 222, indexed by

{0, 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 16, 17, 22, 27, 28, 29, 32, 34, 37, 40, 48,

50, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75}.

We guess these bits and put the guess in k (nonguessed bits can be given
any value). Denote by k′ the key which differs from k only by k′32 6= k32.
Calculate s0 = F−1

222,254(c
0, k) and s1 = F−1

222,254(c
1, k′). For a correct guess, both

ciphertexts will decrypt into the same state s0 = s1.
However, several of the key bits, e.g., k37, only appear linearly, and if the

other 41 key bits are correct, s0 = s1 no matter how k37 is guessed. It turns
out that only 28 bits can be recovered, indexed by

A0 = {0, 1, 2, 4, 5, 7, 8, 11, 12, 14, 16, 17, 22, 27, 29,

32, 34, 55, 56, 60, 62, 64, 66, 68, 69, 71, 73, 75}.

As a consequence, only 28 bits need to be guessed. For each guess, two
partial decryptions of 32 out of 254 rounds are performed. The total number
of round function calls is expected to be 228 · 2 · 32 = 234, which corresponds
to 234/254 ≈ 226.01 full KTANTAN evaluations. Thus the total time required
for finding 28 bits is T ≈ 226. All time requirements in the remainder of the
chapter will be calculated in this way.

By using brute-force for the remaining key bits, the entire key can be found
in time T ≈ 226 + 262 ≈ 262.

8.3.5 MAKING IT FASTER

Rather than guessing 28 bits at once, we note that we can apply a divide-
and-conquer approach to these bits, determining a few bits at a time. This

8.3. Related-Key Attacks on KTANTAN32 125

will significantly improve the time required for the attack. Due to the slow
diffusion, we cannot find any truncated differential on 247 rounds or more for
our purposes, but for 246 rounds, there is (0, k32) → [80050800 : 00000800].
This differential can be used to find three bits indexed by A0 = {11, 66, 71}, in
time T ≈ 2−0.9. (That this work is performed in time less than one unit results
from the fact that we only perform a small number of round calculations,
compared to the full 254 rounds that are calculated in one time unit.)

We now know the three bits indexed by A0 and attempt to find more bits.
There is no useful 245-round differential, but the 244-round truncated differ-
ential (0, k32) → [20054200 : 00000200] can be used to obtain one additional
key bit, indexed by A1 = {2}, with T ≈ 2−0.5.

Continuing with such small chunks, we can find the 28 bits with

T ≈ 2−0.9 + 2−0.5 + . . . ≈ 23.0.

All differentials involved are listed in Table 8.5. PCC means that the differ-
ential is of type (∆p, ∆k) → ∆s, where s is the state some rounds into the
encryption. Similarly, CPP means a differential (∆c, ∆k) → ∆s, extending
some rounds into the decryption. (The ’Rnds’ column then denote the round
into which we decrypt, not the number of decryption rounds.) The ’#Bits’
column counts how many key bits that need to be guessed. We also give the
reduced number of guessed key bits in Aj when we have already acquired a
part of the key, ∪i<jAi, by using the differentials found earlier in the table.

8.3.6 USING TRIPLETS WITH ONE CIPHERTEXT AND TWO PLAINTEXTS

The key bit k32 appeared very late in the encryption, and we exploited this
above. Similarly, k63 is only used in the first 80 rounds, meaning that during
decryption it shows similar properties. With triplets consisting of one cipher-
text and two plaintexts, corresponding to a secret key with a flipped k63, we
can launch an attack similar to that above, with a truncated differential in-
volving a single bit. With

A0 = {7, 10, 11, 14, 15, 17, 19, 21, 22, 25, 26, 28, 30, 31, 34, 35, 37, 38, 40, 41,

43, 45, 47, 49, 52, 53, 54, 58, 60, 62, 63, 67, 68, 69, 70, 71, 74, 76, 77, 79},

using F0,43, we guess and obtain 40 bits, using 40 triplets and T ≈ 239.44.
We can then exploit k63 for more subsets A1, . . . ,A15 and partial encryptions
F0,45, . . . , F0,71, finding in total 65 bits of the key still with T ≈ 239.44. Conclud-
ing with a brute force for the remaining bits, we can find the entire key in
T ≈ 239.44 + 215 ≈ 239.44. All subsets, truncated differentials, etc. can be found
in Table 8.6.

126 Related-Key Attacks on KTANTAN

Table 8.5: The differentials used on KTANTAN32 in Subsections 8.3.5
and 8.3.7.

Type Rnds #Bits Aj Differential
PCC 246 3 {11, 66, 71} (0, k32)→ [80050800 : 00000800]
PCC 244 4/1 {2} (0, k32)→ [20054200 : 00000200]
PCC 243 7/3 {5, 7, 73} (0, k32)→ [1006a100 : 00000100]
PCC 242 8/1 {4} (0, k32)→ [08075080 : 00000080]
PCC 241 11/3 {32, 68, 75} (0, k32)→ [8407a840 : 00000040]
PCC 239 14/3 {1, 34, 69} (0, k32)→ [a107ea10 : 80000010]
PCC 238 15/1 {0} (0, k32)→ [d087f508 : 40000008]
PCC 237 17/2 {8, 16} (0, k32)→ [e847fa84 : 20040004]
PCC 236 19/2 {12, 17} (0, k32)→ [f427fd42 : 10020002]
PCC 234 20/1 {64} (0, k32)→ [bd0fff50 : 04008000]
PCC 233 21/1 {27} (0, k32)→ [de87ffa8 : 02004000]
PCC 232 22/1 {29} (0, k32)→ [ef47ffd4 : 01002000]
PCC 231 24/2 {14, 62} (0, k32)→ [f7a7ffea : 00801000]
PCC 230 25/1 {60} (0, k32)→ [fbd7fff5 : 00400800]
PCC 229 27/2 {22, 56} (0, k32)→ [fdeffffa : 00200400]
PCC 222 28/1 {55} (0, k32)→ [ffffffff : 00000008]
CPP 43 40/29 A16 (see below) (0, k63)→ [00000001 : 00000001]
CPP 45 45/4 {3, 9, 18, 33} (0, k63)→ [00000005 : 00000004]
CPP 46 49/2 {20, 24} (0, k63)→ [0000000b : 00000008]
CPP 51 52/1 {6} (0, k63)→ [0000017f : 00000108]
CPP 55 54/1 {51} (0, k63)→ [000017ff : 00001080]
CPP 57 57/1 {72} (0, k63)→ [00085fff : 00084200]
CPP 58 58/1 {46} (0, k63)→ [0010bfff : 00108400]
CPP 60 59/1 {23} (0, k63)→ [0042ffff : 00421000]
CPP 61 60/1 {48} (0, k63)→ [008dffff : 00842000]
CPP 67 62/1 {65} (0, k63)→ [237fffff : 21080000]
CPP 68 64/1 {50} (0, k63)→ [46ffffff : 42100000]
CPP 71 65/1 {36} (0, k63)→ [37ffffff : 10800000]
CPP 83 68/1 {78} (0, k3)→ [00000155 : 00000040]
CPP 98 70/1 {42} (0, k41)→ [000017ff : 00001080]
CPP 102 71/1 {57} (0, k41)→ [00217fff : 00210800]
CPP 115 72/1 {59} (0, k74)→ [046955ff : 04214008]
CPP 116 73/1 {13} (0, k74)→ [08daabff : 08428010]
CPP 118 75/1 {39} (0, k74)→ [237aafff : 210a0040]
PCC 172 70/2 {44, 61} (0, k61)→ [00050000 : 00040000]

A16 = {10, 15, 19, 21, 25, 26, 28, 30, 31, 35, 37, 38, 40, 41,
43, 45, 47, 49, 52, 53, 54, 58, 63, 67, 70, 74, 76, 77, 79}

8.3. Related-Key Attacks on KTANTAN32 127

8.3.7 GOING IN BOTH DIRECTIONS: A PRACTICAL-TIME KEY-RECOVERY

We will now describe a full key-recovery attack with very low time require-
ment. First, we go backwards in time T ≈ 23.0 to find 28 bits as outlined
above. Then, we go forwards using k63. Here, it should be noted that of the
40 bits we needed to guess above, we have learned 11 while using k32, so we
only need to guess 29 bits, indexed by

A16 = {10, 15, 19, 21, 25, 26, 28, 30, 31, 35, 37, 38, 40, 41,

43, 45, 47, 49, 52, 53, 54, 58, 63, 67, 70, 74, 76, 77, 79}.

We have T ≈ 228.44. Finally, we brute force the remaining 80− 28− 29 = 23
bits. The total time required for finding the entire 80-bit key is given by
T ≈ 23.0 + 228.44 + 223 ≈ 228.47.

A similar attack has been implemented, and requires less than five minutes
to recover the complete key using a single thread on a 2 Xeon E5520 (2.26
Ghz, quadcore) system. Utilizing the possibility of running eight threads in
parallel, the attack runs in 35 seconds. The implementation uses the more
naive approaches for finding the first 28 bits, as this is easier to implement
and leads to a total time of about T ≈ 228.71, which represents a negligible
change from the attack described in this section.

We can use k63 for finding more key bits, and also exploit several different
key bits. Doing so, there is no need for a concluding brute force, and the
entire key is recovered in T ≈ 228.44. The truncated differentials involved can
be found in Table 8.5.

In Table 8.5, note especially the differential on a single state bit involving
29 unknown key bits. This gives a large data requirement in order to rule out
false positives, and the time required for this step dominates all other parts of
the full key recovery attack. Any time improvements we make in other partial
key recoveries will only be minor compared to this dominating term.

This leads to the interesting observation that if k32 had been stronger, i.e.,
appeared earlier in the key schedule, we might have been able to find more key
bits at a higher cost (> 23) using it. This would then have lowered the data
and time requirements for utilizing k63 which would have made the entire
cipher less secure. Of course, had both key bits been stronger, the attack
would instead have become more expensive.

8.3.8 MINIMIZING THE DATA REQUIREMENTS

We have tried to minimize the data requirements by using differentials involv-
ing a larger number of bits than above. For the forward direction, we can use
the 62-round differential (0, k63) → [011bffff : 01084000]. It requires guess-
ing 41 bits and the false-alarm probability is 2−21. The total time required for

128 Related-Key Attacks on KTANTAN

Table 8.6: The differentials used on KTANTAN32 in Subsection 8.3.6.

Type Rnds #Bits Aj Differential
CPP 43 40 A0 (see below) (0, k63)→ [00000001 : 00000001]
CPP 45 45/5 {3, 5, 9, 18, 33} (0, k63)→ [00000005 : 00000004]
CPP 46 49/4 {2, 20, 24, 73} (0, k63)→ [0000000b : 00000008]
CPP 47 51/2 {1, 56} (0, k63)→ [00000017 : 00000010]
CPP 51 52/1 {6} (0, k63)→ [0000017f : 00000108]
CPP 53 53/1 {8} (0, k63)→ [000005ff : 00000420]
CPP 55 54/1 {51} (0, k63)→ [000017ff : 00001080]
CPP 56 55/1 {55} (0, k63)→ [00002fff : 00002100]
CPP 57 57/2 {12, 72} (0, k63)→ [00085fff : 00084200]
CPP 58 58/1 {46} (0, k63)→ [0010bfff : 00108400]
CPP 60 59/1 {23} (0, k63)→ [0042ffff : 00421000]
CPP 61 60/1 {48} (0, k63)→ [008dffff : 00842000]
CPP 65 61/1 {16} (0, k63)→ [08dfffff : 08420000]
CPP 67 62/1 {65} (0, k63)→ [237fffff : 21080000]
CPP 68 64/2 {4, 50} (0, k63)→ [46ffffff : 42100000]
CPP 71 65/1 {36} (0, k63)→ [37ffffff : 10800000]

A0 = {7, 10, 11, 14, 15, 17, 19, 21, 22, 25, 26, 28, 30, 31,
34, 35, 37, 38, 40, 41, 43, 45, 47, 49, 52, 53, 54,
58, 60, 62, 63, 67, 68, 69, 70, 71, 74, 76, 77, 79}

obtaining the full key then becomes T ≈ 239.97. The data requirement is one
and two triplets, respectively, in the backward and forward directions.

8.3.9 POSSIBLE IMPROVEMENTS

We have used a greedy approach for finding the differentials used in the
attacks above. As an example, on F0,248, there is the truncated differential
(0, k32) → [00021000 : 00001000], but due to the slow diffusion we cannot
find any key bits using it with probability one. This forces us to use the
differential (0, k32) → [80050800 : 00000800] on F0,247, where three key bits
affect the differential so all three bits need to be guessed. We could truncate
this truncated differential further to only involve a single bit, possibly allow-
ing us to only guess a single key bit. In this way, we could perhaps partition
the 28 bits that can be recovered using k32 into 28 subsets A0, . . . ,A27, and
reach a very small attack time. We have not investigated this optimization as
the time requirements are already impressive enough.

Note that for the key recovery attack on KTANTAN32 the attack time is
dominated by exploiting k63 to find the 29-bit subkey defined by A16 (see
Table 8.5). For this, we already use a one-bit truncated differential so this

8.5. Comparison to Specification Claims 129

Table 8.7: Characteristics for some attacks on KTANTAN32.

80 bits 80 bits 28 bits 3 bits

Low time
Time 228.44 228.47 23.02 2−0.90

Data 1/29, 1, 1, 1/1 1/29 1 1

Low data
Time 239.44 239.97 as above as above
Data −/1 1/2 as above as above

cannot be improved by the technique outlined above.

8.4 SUMMARIZED ATTACKS ON ALL VERSIONS OF KTANTAN

We summarize our results on KTANTAN32 in Table 8.7. Requirements have
been optimized in both dimensions: using a small amount of related-key data,
and using low time requirements. Differentials and other details are found in
Tables 8.5 and 8.6.

Similar attacks can be realized on KTANTAN48 and KTANTAN64. The
corresponding requirements are found in Tables 8.8 and 8.9, respectively, and
the differentials in Tables 8.10 and 8.11, respectively.

We give full key-recovery attacks, but also some partial-key recoveries with
extremely low time requirements, similar to the 23.0 attack on KTANTAN32
for 28 bits. We also give costs on finding the smallest possible set of key bits.

Generally, the first step is performed in the backwards direction, exploiting
k32. Following this, we switch to the forward direction and k63. For more ad-
vanced attacks, we can use more key bits in the forward direction: k3, k41, k74.
We may then end using more backward calculations on k61. Attacks that re-
quire less data are completed through a brute force. Slashes indicate shift of
direction, commas separate needed triplets for different flipped key bits.

8.5 COMPARISON TO SPECIFICATION CLAIMS

In the specification of KTANTAN, the designers state the design goal that »no
related-key key-recovery or slide attack with time [requirement] smaller than
280 exists on the entire cipher« [DDK09]. They also claim to have searched for
related-key differentials on KTANTAN. However, it appears the approach has
been randomized over the huge space of differences in plaintext and key,

(∆p, ∆k) ∈ Fn
2 ×F80

2 .

With hindsight, the designers should have made sure to try differentials where
we flip only some small number of plaintext or key bits. This strategy would

130 Related-Key Attacks on KTANTAN

Table 8.8: Characteristics for some attacks on KTANTAN48.

80 bits 36 bits 3 bits

Low time
Time 231.77 24.73 20.01

Data 3/32 3 3

Low data
Time 237.34 231.66 as above
Data 1/1 1 as above

Table 8.9: Characteristics for some attacks on KTANTAN64.

80 bits 38 bits 13 bits

Low time
Time 232.28 210.75 210.71

Data 13/17 13 13

Low data
Time 236.54 230.53 as above
Data 1/1 1 as above

have been a good choice due to the bitwise nature of the key schedule coupled
with the slow diffusion of the state. If all key bits had been investigated
individually, using round-reduced versions, it would have become apparent,
e.g., that k32 could not affect encryptions before round 218, that one state
bit in KTANTAN32 only contained this key bit linearly until the very last
round, and that there are some highly biased truncated differentials on the
full KTANTAN32.

8.6 CONCLUSION

We have presented several weaknesses related to the key schedule of KTAN-
TAN. We first noted how the exceptionally weak key bit k32 allowed for a
nonrandomness result on KTANTAN32.

As the main result, we then derived several related-key attacks allowing for
(partial) key recovery on all versions of KTANTAN. Our implementation of
one of the attacks verifies the general attack idea and the specific results.

Finally, note that none of these attacks are directly applicable to KATAN.
The slow diffusion, which allowed for, e.g., the 23.0-attack on 28 bits, is present
also in KATAN, but one needs a weak key bit in order to exploit this.

For the design of future primitives with a bitwise key schedule as in KTAN-
TAN, we encourage designers to carefully study how individual key bits are
used, either by specifically ensuring that they are used both early and late in
the key schedule, or by investigating all differentials of modest weight.

8.6. Conclusion 131

Table 8.10: The differentials used on KTANTAN48.

Type Rnds #Bits Aj Differential
PCC 246 3/3 {7, 11, 73} (0, k32)→ [000000010000

: 000000000000]
PCC 242 7/4 {2, 4, 32, 71} (0, k32)→ [000000010100

: 000000000000]
PCC 241 11/4 {5, 64, 66, 75} (0, k32)→ [00000001c040

: 000000000000]
PCC 240 18/7 A3 (see below) (0, k32)→ [000c00007010

: 000000000000]
PCC 239 19/1 {17} (0, k32)→ [700011c04000

: 000000000000]
PCC 238 20/1 {56} (0, k32)→ [1c001c701000

: 000000000000]
PCC 237 23/3 {12, 14, 60} (0, k32)→ [0c7001f1c400

: 000400000000]
PCC 236 24/1 {62} (0, k32)→ [071c01fc7100

: 000100000000]
PCC 235 25/1 {55} (0, k32)→ [1c701ff1c040

: 000040000000]
PCC 234 26/1 {27} (0, k32)→ [871c1ffc7010

: 000010000000]
PCC 233 30/4 {29, 54, 61, 67} (0, k32)→ [e1c71fff1c04

: 000004010000]
PCC 232 32/2 {22, 65} (0, k32)→ [f871dfffc701

: 00000100c000]
PCC 230 33/1 {48} (0, k32)→ [cf871ffffc70

: 000000100c00]
PCC 229 34/1 {59} (0, k32)→ [f3e1dfffff1c

: 000000040300]
PCC 225 36/2 {40, 52} (0, k32)→ [fff3ffffffff

: 000000003000]
CPP 54 53/32 A15 (see below) (0, k63)→ [000000000002

: 000000000000]
CPP 55 54/1 {6} (0, k63)→ [000000000009

: 000000000000]
CPP 57 57/3 {23, 46, 51} (0, k63)→ [00000000009f

: 00000000000c]
A3 = {0, 1, 8, 16, 34, 68, 69},

A15 = {3, 9, 10, 15, 18, 19, 20, 21, 24, 25, 26, 28, 30, 31, 33, 35,
37, 38, 41, 43, 45, 47, 49, 53, 58, 63, 70, 72, 74, 76, 77, 79}

132 Related-Key Attacks on KTANTAN

Table 8.11: The differentials used on KTANTAN64.

Type Rnds #Bits Aj Differential
PCC 241 13/13 A0 (see below) (0, k32)→ [0000000000000400

: 0000000000000000]
PCC 237 21/8 A1 (see below) (0, k32)→ [0000000704000000

: 0000000000000000]
PCC 236 27/6 A2 (see below) (0, k32)→ [00c000007e800000

: 0000000000000000]
PCC 235 29/2 {29, 61} (0, k32)→ [f800007fc0100000

: 0000000e00000000]
PCC 234 30/1 {22} (0, k32)→ [3f00007ff8020000

: 00000001c0000000]
PCC 233 32/2 {54, 67} (0, k32)→ [c7e0007fff004000

: 0000000038000000]
PCC 232 33/1 {65} (0, k32)→ [78fc007fffe00800

: 0000000007000000]
PCC 228 34/1 {48} (0, k32)→ [f8c78ffffffffe00

: 0000070038000000]
PCC 226 36/2 {40, 50} (0, k32)→ [ffe31e7ffffffff8

: 0000000000e00000]
PCC 225 38/2 {9, 52} (0, k32)→ [fffc63ffffffffff

: 00000000001c0000]
CPP 58 55/33 A10 (see below) (0, k63)→ [0000000000000003

: 0000000000000001]
CPP 59 59/2 {46, 51} (0, k63)→ [000000000000001f

: 000000000000000e]
CPP 69 65/1 {36} (0, k63)→ [00000407ffffffff

: 0000040380000000]
A0 = {2, 4, 5, 7, 11, 17, 32, 64, 66, 69, 71, 73, 75},

A1 = {1, 16, 34, 55, 56, 60, 62, 68},
A2 = {0, 8, 12, 14, 27, 59},

A10 = {3, 6, 10, 15, 18, 19, 20, 21, 23, 24, 25, 26, 28, 30, 31, 33,
35, 37, 38, 41, 43, 45, 47, 49, 53, 58, 63, 70, 72, 74, 76, 77, 79}

9
Linear Cryptanalysis of

Round-Reduced PRINTCIPHER

O ne of the most recent lightweight cryptographic designs to appear is
PRINTcipher [KLPR10]. It is designed by Knudsen et al. and is quite
similar to the well-studied PRESENT. All rounds use the same key

and differ only by a round counter. The linear layer is partly key-dependent
and as a result, 48-bit PRINTcipher uses keys of 80 bits, while 96-bit PRINT-
cipher uses 160-bit keys. We will focus exclusively on PRINTcipher-48 in this
chapter, noting that very similar results can be derived for PRINTcipher-96.

Our first observation relates to the key-dependent bit permutation. We
show how there exist several linear trails in PRINTcipher that are biased
for some keys but unbiased for most keys, allowing us to distinguish be-
tween classes of keys. In order to attack several rounds of PRINTcipher, we
need to find many samples. Our second observation uses the identical round-
structure, including identical keys, to obtain several samples per plaintext–
ciphertext pair. By guessing key bits to do partial encrypting and decrypting,
we eventually reach 29 rounds of 48.

Two recent attacks are similar to our work in that they identify classes of
weak keys. As a fundamental idea behind PRINTcipher is that the key is
burnt into the device, it is straightforward to protect against these attacks by
avoiding the weak keys. Avoiding the 252 keys attacked in [LAAZ11] the size
of the key space shrinks from 280 to 280 − 252 ≈ 280 so the entropy is still 80
bits in a practical sense. Similarly, to protect against the attack in [KDH12] the
number of keys needs to be lowered to approximately 279.8 so there is a loss
of one fifth of a bit. In this independent work, we find several classes that are
very probable (e.g., probability one half), and even avoiding only the largest
classes leads to a key space of size approximately 278, meaning two bits of the
key entropy are effectively lost. This makes our observations very interesting

133

134 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

+k+

+RCr
π15
S

π14
S

π13
S

π12
S

π11
S

π10
S

π9
S

π8
S

π7
S

π6
S

π5
S

π4
S

π3
S

π2
S

π1
S

π0
S

Figure 9.1: One round of PRINTcipher.

compared to the previously mentioned results.
This chapter is organized as follows: Section 9.1 describes PRINTcipher.

Section 9.2 discusses the importance of finding many samples. Some initial,
basic observations are given in Section 9.3, before Section 9.4 gives our fun-
damental observation: a key bit distinguisher on 23 rounds of PRINTcipher.
Section 9.5 then derives attacks on 27 and 28 rounds of PRINTcipher, and
shows that several classes of weak keys exist, making the attack very gen-
eral. In Section 9.6, we show how one can find many samples, and use this
to provide an attack on 29-round PRINTcipher. Section 9.7 concludes this
chapter.

9.1 PRINTCIPHER

We focus on PRINTcipher-48, which uses blocks of 48 bits and 80-bit keys.
The 48-bit plaintext is loaded into the state, where we denote the 48 bit

positions using indices 0 ≤ i < 48 as usual, but also write (bi/3c , i mod 3),
e.g., the bit position 14 may be given as (4, 2). Thus, the leftmost bit is (0, 0)
while (15, 2) is the rightmost bit.

There are 48 rounds where each round uses a distinct round constant RCr,
r = 0, 1, . . . , 47 (see Table 9.1), a 48-bit xor key k+ (the same in all rounds) and
a 32-bit permutation key kπ (the same in all rounds). Each round consists
of key addition, linear layer (bit permutation), round constant addition, key-
dependent bit permutation and an Sbox, see Figure 9.1. The Sbox is given in
Table 9.2 and takes input (x0, x1, x2) to produce output (y0, y1, y2).

We denote the plaintext p = (p0, . . . , p47) and the state after r rounds of
encryption (0 < r ≤ 48) by cr = (cr

0, . . . , cr
47). For possibly round-reduced

versions of PRINTcipher, we have c = cR, with R = 48 for the original
PRINTcipher.

The key k = k+||kπ = (k+0 , . . . , k+47)||(kπ
0 , . . . , kπ

31) is split into an xor key k+

9.1. PRINTcipher 135

Table 9.1: The six-bit round constants RCr, given through the hex-
adecimal representation of (0, 0)||RCr.

r 0 1 2 3 4 5 6 7 8 9 10 11
RCr 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C

r 12 13 14 15 16 17 18 19 20 21 22 23
RCr 39 33 27 0E 1D 3A 35 2B 16 2C 18 30

r 24 25 26 27 28 29 30 31 32 33 34 35
RCr 21 02 05 0B 17 2E 1C 38 31 23 06 0D

r 36 37 38 39 40 41 42 43 44 45 46 47
RCr 1B 36 2D 1A 34 29 12 24 08 11 22 04

Table 9.2: The PRINTcipher Sbox mapping input x = (x0, x1, x2) to
output y = S(x) = (y0, y1, y2).

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0)
S(x) (0, 0, 0) (1, 1, 1) (0, 1, 1) (1, 0, 1)

x (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)
S(x) (0, 0, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0)

(48 bits) and a permutation key kπ (32 bits).
The linear layer is a bit permutation Π, given by Table 9.3 and seen in

Figure 9.1.
Further, a bit permutation πb is applied to each disjoint triplet of bits in the

state of PRINTcipher. The new positions of bits (b, 0), (b, 1), and (b, 2) are
(b, πb(0)), (b, πb(1)), and (b, πb(2)), respectively, where (πb(0), πb(1), πb(2))
are determined by the two key bits (kπ

2b, kπ
2b+1). Note that πb with an integer

argument is an integer describing the behavior of πb with a vector argument.
This mapping is given in Table 9.4. Note in particular how one of the permu-
tations is trivial while the others fix one bit while switching the two remaining
bits. Thus, the two permutations that shift the three-bit word cyclically have
been excluded from PRINTcipher and can not be selected by the key.

9.1.1 EXISTING WORK ON PRINTCIPHER

Abdelraheem et al. have given a differential attack on 22-round PRINTci-
pher [ALZ11]. Using the entire code book, they study the single-bit differ-
entials in order to learn how the bits are permuted through the entire cipher,
i.e., R rounds. Finding the Rth root of this permutation then gives them the
single-round permutation π ◦Π and thus kπ .

We note that it is straightforward to invert the last Sbox upon retrieving a

136 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.3: The linear layer Π in PRINTcipher. Bits at positions ’In’
are moved to positions ’Out’.

In Out In Out In Out In Out
(0, 0) (0, 0) (4, 0) (12, 0) (8, 0) (8, 1) (12, 0) (4, 2)
(0, 1) (1, 0) (4, 1) (13, 0) (8, 1) (9, 1) (12, 1) (5, 2)
(0, 2) (2, 0) (4, 2) (14, 0) (8, 2) (10, 1) (12, 2) (6, 2)
(1, 0) (3, 0) (5, 0) (15, 0) (9, 0) (11, 1) (13, 0) (7, 2)
(1, 1) (4, 0) (5, 1) (0, 1) (9, 1) (12, 1) (13, 1) (8, 2)
(1, 2) (5, 0) (5, 2) (1, 1) (9, 2) (13, 1) (13, 2) (9, 2)
(2, 0) (6, 0) (6, 0) (2, 1) (10, 0) (14, 1) (14, 0) (10, 2)
(2, 1) (7, 0) (6, 1) (3, 1) (10, 1) (15, 1) (14, 1) (11, 2)
(2, 2) (8, 0) (6, 2) (4, 1) (10, 2) (0, 2) (14, 2) (12, 2)
(3, 0) (9, 0) (7, 0) (5, 1) (11, 0) (1, 2) (15, 0) (13, 2)
(3, 1) (10, 0) (7, 1) (6, 1) (11, 1) (2, 2) (15, 1) (14, 2)
(3, 2) (11, 0) (7, 2) (7, 1) (11, 2) (3, 2) (15, 2) (15, 2)

Table 9.4: The key-dependent bit permutation. The bits at po-
sitions (b, 0), (b, 1), and (b, 2) are moved to positions
(b, πb(0)), (b, πb(1)), and (b, πb(2)), respectively where
(πb(0), πb(1), πb(2)) are determined by (kπ

2b, kπ
2b+1).

(kπ
2b, kπ

2b+1) (πb(0), πb(1), πb(2))
(0, 0) (0, 1, 2)
(0, 1) (1, 0, 2)
(1, 0) (0, 2, 1)
(1, 1) (2, 1, 0)

ciphertext (it is present only to make hardware implementations smaller as it
does not require any special logic for the last round as in, e.g., AES). Thus, an
attacker can extend the 22-round attack to 23 rounds at a very low cost. The
Sbox only has to be inverted if the three bits in its output are the only bits that
have a difference.

Leander et al. [LAAZ11] showed how an »invariant subspace attack« al-
lowed for a class of 252 keys to be distinguished regardless of the number
of rounds, so in particular for the full PRINTcipher. This will be covered
more in Chapter 10. Karakoç et al. [KDH12] combined differential and linear
cryptanalysis to reach 29 rounds on 4.54% and 31 rounds on .036% of the keys.

9.2. On the Importance of Finding Many Samples 137

9.2 ON THE IMPORTANCE OF FINDING MANY SAMPLES

In this chapter, we will exclusively deal with single-bit trails such as

Pr [p0 = c0] =
1
2
+ ε,

possibly involving the xor of one bit of key,

Pr [p0 = c0 + 〈γ, k〉] = 1
2
+ ε,

although it is no doubt possible to find many more trails by using multiple-bit
trails. The reason we do this is that the single-bit trails appear very naturally
in PRINTcipher.

An attacker will try to find relations with as large bias as possible. The
single-bit characteristics used have correlation ±2−1, and assuming indepen-
dence, the piling-up lemma gives that linear trails over r′ rounds of PRINTci-
pher have correlation 2−r′ , i.e., bias 2−r′−1.

Recall from Section 3.4 that trying to distinguish a bias ε requires about ε−2

samples, e.g., p0 + c0. Thus, we will need to obtain 22r′+2 samples to use an
approximation over r′ rounds.

One can only obtain 248 distinct plaintext–ciphertext pairs on PRINTcipher,
which seems to indicate that only 248 samples can be found and that only 23-
round trails can be used, i.e., less than half the number of rounds. If we
want to use a trail on (23 + s) rounds, we need to obtain 22(23+s)+2 = 248+2s

samples, i.e., 22s samples per plaintext–ciphertext pair.
In this chapter, we will note how some particular features of PRINTcipher

allow us to find trails where we can access several samples per plaintext–
ciphertext pair. We also see how these samples are independent (enough) to
make them usable in a cryptanalytic setting.

We will only consider iterated trails, i.e., trails beginning and ending at
a common bit position. This is for simplicity: iterated trails can be used to
trivially create trails on larger numbers of rounds. One can also see that by
using iterated trails, the number of distinct πb involved in the trail is kept to
a minimum, which keeps the involved number of key bits decently small.

A sample sj = pj
0 + cj

0 (say) is a bit obtained by comparing a plaintext
bit to a ciphertext bit, and the attacker will compute S = ∑j sj. Kaliski and
Robshaw [KR94] noted that if one can find several linear approximations that
involve the exact same key bits, i.e., the same bitmask γ, so that one can
get several counts Si = ∑j si

j, one can use a weighted sum of these counts

Si—this measurement has the same expected value but a smaller variance.
In particular, when the bias is the same for all linear approximations, the

138 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.5: The Sbox evaluated for all possible permutations of the
input.

(x0, x1, x2) S(x0, x1, x2) S(x1, x0, x2) S(x0, x2, x1) S(x2, x1, x0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(1, 0, 0) (1, 1, 1) (0, 1, 1) (1, 1, 1) (0, 0, 1)
(0, 1, 0) (0, 1, 1) (1, 1, 1) (0, 0, 1) (0, 1, 1)
(1, 1, 0) (1, 0, 1) (1, 0, 1) (1, 0, 0) (1, 1, 0)
(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 1, 1) (1, 1, 1)
(1, 0, 1) (1, 0, 0) (1, 1, 0) (1, 0, 1) (1, 0, 0)
(0, 1, 1) (1, 1, 0) (1, 0, 0) (1, 1, 0) (1, 0, 1)
(1, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)

weighted sum is simply the average, which up to a multiplicative constant is
the same as ∑i,j si

j, i.e., the overall number of samples that are 1. It is then

natural to think of the different si
j (with varying i and j) as different samples

from the same underlying distribution.

9.3 SOME INITIAL OBSERVATIONS

The correlation matrix for the Sbox is

CS = 2−3

8 0 0 0 0 0 0 0
0 4 0 4 0 4 0 −4
0 0 4 4 0 0 −4 4
0 4 4 0 0 −4 4 0
0 0 0 0 −4 4 4 4
0 −4 0 4 4 0 4 0
0 0 4 −4 4 4 0 0
0 4 −4 0 4 0 0 4




, (9.1)

where the single-bit biased linear approximations have been grayed. Through
the remainder of this chapter, we will focus on them:

Pr [y0 = x0] = Pr [y1 = x1] = Pr [y2 = x2 + 1] =
1
2
+ 2−2.

They are conveniently all from xi to yi, which is not strictly necessary but
simplifies the presentation of the subsequent observations and attacks.

9.3.1 THE PERMUTATION πb AND THE SBOX

With (y0, y1, y2) = S(x0, x1, x2) and (y′0, y′1, y′2) = S(x0, x2, x1), one can quite
easily see that we always have y0 = y′0, see Table 9.5. This means that if we

9.4. A Key Bit Distinguisher 139

are only interested in tap 0 out of the Sbox, it does not matter whether x1, x2
are swapped or not before entering the Sbox.

As a consequence, if we

• know three bits that enter S ◦ πb,

• want to know y0 out of the Sbox, and

• need to guess the permutation πb, i.e., (kπ
2b, kπ

2b+1),

then we only need to make three guesses on πb.
The same property shows up on y2 also, but not on y1, see Table 9.5. We will

use this observation to reduce the amount of guesswork we need to perform
during partial encryption. We will use the notation π3

b to mark that we only
guess a ternary digit, a trit, for πb due to these properties.

Similarly, when we guess for a partial decryption, we often do not need
to guess the whole permutation πb, i.e., two bits, but only how it permutes
one particular bit. Keeping the notation from Section 9.1, we will write πb(i),
0 ≤ i ≤ 2, to indicate that we guess how xi is permuted by πb.

9.4 A KEY BIT DISTINGUISHER

We will use a variant of linear cryptanalysis. We study single-bit trails that
are biased for certain classes of keys and nonbiased for other keys. As a very
nondetailed example, consider a trail from the leftmost bit to the leftmost bit.
It is readily apparent from Figure 9.1 that such a trail exists and that it is
iterated (although it is of course not obvious from the figure that it is biased).
We claim that we can distinguish individual bits of kπ using this trail. It is
biased for half the keys and nonbiased for the other half. Thus, if we can
distinguish between these two distributions (i.e., if the bias is large enough
and we have sufficiently many samples) we can determine the value of this
key bit.

9.4.1 A DETAILED EXAMPLE

We now describe how to distinguish between two distributions. One where
kπ

1 is zero, and one where it is one. This allows for a partial-key recovery, i.e.,
learning one bit of the key, faster than brute force.

Note that Π(0, 0) = (0, 0), and that for two of four keys, π0(0) = 0. This
happens precisely when kπ

1 = 0 (see Table 9.6).
Thus, with kπ

1 = 0, (π ◦Π)(0, 0) = (0, 0). The probability that this bit then
passes the Sbox unaltered is 3

4 , so after a single round of encryption, we have

Pr
[
c1

0 = p0 + k+0
]
=

1
2
+ 2−2.

140 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.6: How the individual bits (0, 1, 2) are moved by the key-
dependent permutation πb, and for which keys (kπ

2b, kπ
2b+1)

it happens.

Bit Move (kπ
2b, kπ

2b+1) Bit Move (kπ
2b, kπ

2b+1) Bit Move (kπ
2b, kπ

2b+1)

0→ 0 (0, 0),(1, 0) 1→ 0 (0, 1) 2→ 0 (1, 1)
0→ 1 (0, 1) 1→ 1 (0, 0),(1, 1) 2→ 1 (1, 0)
0→ 2 (1, 1) 1→ 2 (1, 0) 2→ 2 (0, 0),(0, 1)

For two rounds, we have

Pr
[
c2

0 = p0

]
=

1
2
+ 2−3,

assuming independence, as the xor key bits cancel. Generalizing to any even
number of rounds, we have

Pr
[
cR

0 = p0

]
=

1
2
+ 2−R−1.

For PRINTcipher on 22 rounds, we would need almost the entire code
book, 246 plaintext–ciphertext pairs.

We can also use the full code book, of size 248, to attack 23 rounds. We then
have an odd number of rounds, and the key bit k+0 shows up, so we utilize
the relation

Pr
[
cR

0 = p0 + k+0
]
=

1
2
+ 2−R−1, (9.2)

with R = 23. Things then get slightly more tricky, as we can learn more about
the key but would need to distinguish between three distributions:

1. cR
0 = p0 with probability 1

2 , implying kπ
1 = 1.

2. cR
0 = p0 with high probability, implying kπ

1 = 0 and k+0 = 0.

3. cR
0 = p0 with low probability, implying kπ

1 = 0 and k+0 = 1.

9.4.2 MORE LINEAR TRAILS ON ONE ROUND OF PRINTCIPHER

There are in total four iterated single-bit, single-round trails, and we list them
in Table 9.7. Some constants arise as the Sbox flips bit 2 with probability 3

4
rather than preserves it, and as bits of RCr enter. We define IR = R mod 2.

9.5. Guessing Key Bits for Partial Encryption and Decryption 141

Table 9.7: The iterated single-round trails on PRINTcipher, ex-
tended to several rounds. All trails have bias 2−R−1.

Trail Requirement

cR
47 = p47 + k+47 IR + dR kπ

30 = 0
cR

24 = p24 + k+24 IR (kπ
16, kπ

17) = (0, 1)
cR

23 = p23 + k+23 IR + IR (kπ
14, kπ

15) = (1, 0)
cR

0 = p0 + k+0 IR kπ
1 = 0

dR =
(

R + 1 + ∑0≤r<R RCr
)

mod 2

Table 9.8: The bits and trits required for encryption, decryption, and
both, when encrypting/decrypting two rounds to access
the bits at position (0, 0).

Encryption k+5 , k+10, k+16, k+21, k+26, k+32, k+37, k+42, π5, π3
10

Decryption k+1 , k+2 , π1(0), π2(0)
Both k+0

9.5 GUESSING KEY BITS FOR PARTIAL ENCRYPTION AND DECRYP-
TION

The above observation can be used as-is to mount an attack on 23-round
PRINTcipher, recovering up to three bits of the key, but it is straightforward
to derive an even more powerful attack on 27 rounds of PRINTcipher: if a
guessed partial key is correct, we should observe the bias, while if the guess
is bad, the behavior should be (more) random.

First, we assume that kπ
1 = 0, meaning our attack only works for a fraction

2−1 of the keys. Then, we aim to decrypt two rounds at the end and encrypt
two rounds at the top of PRINTcipher. Thus, we need to guess the bits
and trits listed in Table 9.8. There are in total N = 213 · 33 ≈ 217.8 guesses.
See Figure 9.2 for an overview of the partial calculations.

Due to the property observed in Subsection 9.3.1, we do not need to guess
kπ

0 . We have assumed kπ
1 = 0 to fix π0(0) = 0 and this is enough to predict

tap 0 out of the Sbox. It does not matter whether π0 is trivial or swaps bits 1
and 2.

We call the plaintext (resp. ciphertext) bits that affect the partial encryption
(resp. decryption) necessary to derive the state bits we are interested in active.
There are nine active bits in the plaintext and nine in the ciphertext. For a
plaintext–ciphertext pair (p, c) we can collect these bits into an eighteen-bit
word w = (p0, p5, . . . , c8).

142 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

23 rounds

Figure 9.2: Performing two rounds of partial encryption and decryp-
tion to access the bits at position (0, 0).

We describe the attack. Acquire all 248 plaintext–ciphertext pairs (pj, cj).
Categorize them according to the active bits, i.e., for each possible word w,
count how often it appears. Denote these counters Rw. This is the data collec-
tion part of the attack.

We then begin analyzing the data. For each plaintext–ciphertext pair and
for each guess of key material, denoted by ki, 0 ≤ i < N, we will calculate two
rounds of encryption and decryption, p̂j = F0,2(pj, ki), ĉj = F−1

25,27(c
j, ki), and

count how often ĉj
0 = p̂j

0 + k+0
i. This is done using N counters Si. An efficient

way of doing this [Mat94a] is to use the counters Rw. For each word w and
each key guess ki, we perform the partial calculations p̂i,w = F0,2(pw, ki),
ĉi,w = F−1

25,27(c
w, ki). Here, pw (cw) is some plaintext (ciphertext) with the

correct active bits as determined by w. If ĉi,w
0 = p̂i,w

0 + k+0
i, we add Rw to Si.

By sorting all Si, we can get a ranking of the different guesses. We choose
the most likely guess, brute force all nonguessed bits and hopefully recover

9.5. Guessing Key Bits for Partial Encryption and Decryption 143

the key. If recovery fails, we choose the second most likely guess, etc. The
exact number of bits that need to be brute forced will be different for different
guesses. Where we guessed a trit, e.g., π1(0), we will have recovered one or
two bits of (kπ

2 , kπ
3). As long as the correct guess is ranked on the upper half

of the sorted list of counters, the entire key will be found faster than what can
be expected from a brute force (279 due to one guessed bit).

The counters Rw are used for saving time [Mat94a]. Several other improve-
ments can be made, also from [Mat94a]. We should not make 218 · N partial
encryptions and decryptions. First, the plaintext and ciphertext operations
can be separated completely, so that we only need to make 29 · N + 29 · N en-
cryptions/decryptions. Second, since the overlap in encryption and decryp-
tion with respect to the guessed bits is very small, we only need to perform
29 · Ne + 29 · Nd encryptions/decryptions where Ne (Nd) is the number of
key guesses that actually affect the encryption (decryption). Third, doing two
complete PRINTcipher rounds in both directions is unnecessary as we only
need to perform partial rounds calculations, i.e., use some small number of
Sboxes.

9.5.1 EXPERIMENTAL RESULTS

We have implemented this attack on 7+ 4 = 11 rather than 23+ 4 = 27 rounds
of PRINTcipher. This means that we guess the same bits and perform the
same partial encryptions, but that the bias is larger so that it is feasible for us
to perform many attacks in order to gather statistics.

It turns out that the attack does indeed give an advantage. Attacking 220

different weak keys, the median ranking of the key is approximately 212.2 out
of N = 213 · 33, i.e., the median time required for identifying the entire key is
approximately 273.5.

9.5.2 ANALYZING THE TIME REQUIREMENT

The attack consists of data collection and data analysis. The latter in turn
consists of 1) deriving two sets of counters, Ne for encryption and Nd for
decryption, and 2) combining these to find N counters. If the number of active
bits in the plaintext (ciphertext) is denoted ae (ad) and the number of active
Sboxes in encryption (decryption) is denoted Ae (Ad), the time requirements
are given by

Tcollect = ε−2,

Tcount =
2ae Ne Ae + 2ad NdAd

16 · R ,

Tcombine = 2ae+ad N.

144 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.9: The bits and trits required for encryption, decryption, and
both, when encrypting/decrypting two/three rounds to
access the bits at position (0, 0). Note the overlap in π5.

Encryption k+10, k+16, k+21, k+26, k+32, k+37, k+42, π5, π3
10

Decryption
k+1 , k+2 , k+3 , k+4 , k+6 , k+7 , k+8 , π1(0), π2(0),
π3(0), π4(0), π5(0), π6(0), π7(0), π8(0)

Both k+5 , k+0

The first two measurements are normalized to R-round PRINTcipher evalua-
tions, while the last describes the number of simple bit and integer operations
needed to calculate the counters Si.

For the specific attack detailed above, we have Ne = 211 · 3 and Nd = 23 · 32.
Since (ae, ad, Ae, Ad) = (9, 9, 4, 4), the requirements are

Tcollect = 22·24 = 248,

Tcount =
29 · 211 · 3 · 4 + 29 · 23 · 32 · 4

16 · 27
≈ 215,

Tcombine = 29+9 · N = 218 · 213 · 33 ≈ 236.

This suggests that the most time consuming part is the data collection where
we need to generate and look at 248 plaintext–ciphertext pairs.

9.5.3 A POSSIBLE IMPLEMENTATION IMPROVEMENT

Consider a key with (k+5 , k+37, kπ
10, kπ

11) = (0, 0, 0, 0). Then

c1
16 = 〈(0, 1, 0), S(p5, p21 + k+21, p37)〉

(cf. Figure 9.2). If, on the other hand, (k+5 , k+37, kπ
10, kπ

11) = (1, 1, 1, 1), we have

c1
16 = 〈(0, 1, 0), S(p37 + 1, p21 + k+21, p5 + 1)〉.

A straightforward calculation shows that these two values of c16 are always
the same. This was observed in [KLPR10]. Thus, these two configurations
of (k+5 , k+37, kπ

10, kπ
11) always yield the exact same value of c2

0 (cf. Figure 9.2).
Further, as these key bits are not involved in the guessed decryption, it is not
possible to distinguish between two such key candidates. There are several
such pairs, and some groups of four keys that are equivalent in this sense.
This property allows Ne, Nd, and Tcount to be reduced to approximately half.
(Once key candidates have been ranked, it is not enough to consider only one
of such »equivalent« keys.) This property is not considered in the sequel.

9.5. Guessing Key Bits for Partial Encryption and Decryption 145

23 rounds

Figure 9.3: Performing two/three rounds of partial encryp-
tion/decryption to access the bits at position (0, 0).

9.5.4 REACHING THE LIMIT: 28 ROUNDS

We note that in the attacks on 27 rounds, guessing and encrypting is more
expensive than guessing and decrypting. During decryption, we first invert S,
and then only need to control one bit in some πb. On the other hand, during
encryption, we need to fully control the permutation, so that we can calculate
all three bits that go into the Sbox. This leads to more expensive guesswork on
πb and especially on k+. Thus, the natural approach for extending the attack
by one round is to add another round in the partial decryption, see Figure 9.3.

In Table 9.9, we list the bits and trits involved in partially decrypting and
encrypting from 28 rounds to 23. The attack requires N = 218 · 38 ≈ 230.7

146 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.10: The bits and trits required for encryption, decryption, and
both, when encrypting/decrypting two/three rounds to
access the bits at position (3, 1)/(11, 2).

Encryption k+1 , k+3 , k+6 , k+17, k+19, k+22, k+38, k+43, π3
1, π6,

Decryption
k+9 , k+10, k+28, k+29, k+30, k+31, k+32, k+34, kπ

23, π0(2),
π1(2), π2(2), π3(2), π9(1), π12(1), π13(1), π15(1)

Both k+11, k+27, k+33, k+35

guesses, partitioned as Ne = 211 · 3 and Nd = 29 · 38. Counting active bits and
Sboxes gives (ae, ad, Ae, Ad) = (9, 27, 4, 13), so we have

Tcollect = 22·24 = 248,

Tcount =
29 · 211 · 3 · 4 + 227 · 29 · 38 · 13

16 · 28
≈ 244,

Tcombine = 29+27 · N = 236 · 218 · 38 ≈ 267.

Attacking 28 rounds seems to be the best we can do. Using a single trail,
we have not been able to go beyond 28 rounds while keeping the attack costs
below exhaustive search.

9.5.5 MORE ATTACKS ON 27/28 ROUNDS

We can use basically any trail on 23 rounds to create attacks on 27/28 rounds.
The trail on bit (0, 0) is nice as the partial encryptions and decryptions involve
few bits of k+ and kπ , due to Sbox reuse. Most other trails involve more
guesswork. As an example, with (kπ

6 , kπ
7 , kπ

21, kπ
22, kπ

28) = (1, 0, 0, 0, kπ
29),

Pr
[
c25

35 = c2
10 + k+35 + 1

]
=

1
2
+ 2−24.

Using this, we can build an attack on 28 rounds. Here, N = 227 · 36 ≈ 236.5,
Ne = 214 · 3, Nd = 213 · 37 and (ae, ad, Ae, Ad) = (9, 27, 4, 13). The time re-
quirements are

Tcollect = 22·24 = 248,

Tcount =
29 · 214 · 3 · 4 + 227 · 213 · 37 · 13

16 · 28
≈ 246,

Tcombine = 29+27 · N = 236 · 227 · 36 ≈ 273.

The bits and trits guessed are listed in Table 9.10.

9.6. On More Rounds of PRINTcipher: Mirroring Trails 147

9.5.6 ON FALSE POSITIVES

By piling the single-round trail on the leftmost bit, we see that, e.g.,

Pr
[
c10

0 = p0

]
=

1
2
+ 2−11

when kπ
1 = 0. This clearly assumes independence, i.e., in terms of the linear

hull (cf. Equation 4.7), it is assumed that the correlations of all other trails add
up to zero. This assumption being wrong might cause false negatives and
false positives to occur.

As another source of false positives, we note that there are several other
ways of obtaining this bias.

All in all, there are 102 different trails, only using single-bit round charac-
teristics, from (0, 0) to (0, 0) over ten rounds, each corresponding to a different
class of keys. This means that a biased distribution can be explained by any
of these trails, and thus by any of these classes. Due to this, an attacker will
prefer to use short, iterated trails involving few bits of kπ .

9.6 ON MORE ROUNDS OF PRINTCIPHER: MIRRORING TRAILS

We generalize our observation slightly and give an example two-round trail:
with (kπ

8 , kπ
9 , kπ

25) = (1, 1, 0),

Pr
[
c2

36 = p36 + k+36 + k+12

]
=

1
2
+ 2−3.

Note in particular how there is a mirroring trail,

Pr
[
c2

12 = p12 + k+36 + k+12

]
=

1
2
+ 2−3,

see Figure 9.4. The mirroring trail depends on the exact same key configu-
ration and allows us to collect two samples with every plaintext–ciphertext
pair. We show in Subsection 9.6.2 that this works, i.e., the samples can be
considered to be independent.

We do not give all the two-round trails on PRINTcipher, as they will not
be used in the sequel. We only note that due to the structure of PRINTcipher,
every Sbox is used precisely once so far in this chapter—either in one trail on
one round (Sboxes 0, 7, 8, 15), or in two mirroring trails on two rounds.

As a particular four-round trail that we will use later, we give

Pr
[
c4

10 = p10 + k+10 + k+30 + k+43 + k+35 + 1
]
=

1
2
+ 2−5, (9.3)

which is activated by (kπ
6 , kπ

7 , kπ
21, kπ

22, kπ
28) = (1, 0, 0, 0, kπ

29), see Figure 9.5.

148 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

+k+

+RCr
π15
S

π14
S

π13
S

π12
S

π11
S

π10
S

π9
S

π8
S

π7
S

π6
S

π5
S

π4
S

π3
S

π2
S

π1
S

π0
S

+k+

+RCr+1
π15
S

π14
S

π13
S

π12
S

π11
S

π10
S

π9
S

π8
S

π7
S

π6
S

π5
S

π4
S

π3
S

π2
S

π1
S

π0
S

Figure 9.4: Two mirroring trails on two rounds of PRINTcipher.
Both trails are activated by (kπ

8 , kπ
9 , kπ

25) = (1, 1, 0).

Figure 9.5: Four mirroring trails over four rounds of PRINTcipher.

9.6. On More Rounds of PRINTcipher: Mirroring Trails 149

Table 9.11: The iterated trails on eight rounds (R = 8) composed
from four-round iterated trails, depending only on five
bits of kπ . All trails have bias 2−R−1, and the constants
eR

j arise from the round constants RCr. The trails are eas-
ily extended to, e.g., 24 rounds (R = 24), in which case
only the constants need to be rechecked.

Trail Sboxes Trail Sboxes

cR
10 = p10 + eR

10 10, 14, 11, 3, . . . cR
4 = p4 4, 12, 5, 1, . . .

cR
30 = p30 + eR

30 14, 11, 3, 10, . . . cR
12 = p12 12, 5, 1, 4, . . .

cR
35 = p35 + eR

35 3, 10, 14, 11, . . . cR
17 = p17 1, 4, 12, 5, . . .

cR
43 = p43 + eR

43 11, 3, 10, 14, . . . cR
37 = p37 5, 1, 4, 12, . . .

(kπ
6 , kπ

7 , kπ
21, kπ

22, kπ
28) (kπ

2 , kπ
9 , kπ

10, kπ
24, kπ

25)
= (1, 0, 0, 0, kπ

29) = (kπ
3 , 0, 0, 0, 1)

Trail Sboxes Trail Sboxes

cR
24 = p24 8, 9, 13, 8, . . . cR

7 = p7 7, 7, 6, 2, . . .
cR

25 = p25 9, 13, 8, 8, . . . cR
18 = p18 2, 7, 7, 6, 6, . . .

cR
29 = p29 13, 8, 8, 9, . . . cR

22 = p22 6, 2, 7, 7, . . .
cR

40 = p40 8, 8, 9, 13, . . . cR
23 = p23 7, 6, 2, 7, . . .

(kπ
16, kπ

17, kπ
18, kπ

19, kπ
26) (kπ

4 , kπ
12, kπ

13, kπ
14, kπ

15)
= (1, 1, 1, 0, kπ

27) = (kπ
5 , 0, 1, 1, 1)

Constants (R = 8) Constants (R = 24)
(e8

10, e8
30, e8

35, e8
43) = (1, 1, 1, 1) (e24

10, e24
30, e24

35, e24
43) = (1, 1, 0, 1)

9.6.1 USING MIRRORING TRAILS TO DISTINGUISH ON 24-ROUND TRAILS

We will now construct 24-round trails with bias 2−25. By using trails that allow
four samples per plaintext–ciphertext pair, we can get in total 250 samples,
allowing us to distinguish the distribution.

The best iterated trails on 24 rounds are given in Table 9.11. They are
best in the sense that they use a small number of key bits (5), yet allow four
mirroring trails each, so that we can get the required number of samples. They
are constructed from iterated four-round trails, that we have piled in order to
cancel the bits that appear from k+ (cf. Subsection 9.4.1).

9.6.2 SAMPLES ARE INDEPENDENT (ENOUGH)

The connection between the bias ε and the required number of samples ε−2

relies on the independence of the samples, and it is not obvious that the sam-
ples we get are independent. Most cryptanalysis simply assumes that the

150 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.12: The attack in Subsection 9.6.2 was carried out on 220 dif-
ferent keys using various numbers of plaintext–ciphertext
pairs and samples per pair. »TPR« for »true positive ra-
tio« shows how frequently a key belonging to the class
was correctly identified. Similarly, »TNR« for »true neg-
ative ratio« shows how often a key not belonging to the
class was correctly excluded.

Trail Pairs Samples/pair TPR TNR

c8
10 = p10 + 1 218 1 .83 .83

c8
30 = p30 + 1 218 1 .83 .86

c8
35 = p35 + 1 218 1 .83 .85

c8
43 = p43 + 1 218 1 .82 .84

All four 216 22 .83 .86
All four 218 22 .96 .98

samples are independent, or at least independent enough for the attacks to
still be possible. Verifying the independence through simulation is common,
at least on a smaller number of rounds or reduced-size versions of the algo-
rithm (»PRINTcipher-12,« cf. Chapter 10), where it is practically possible.

We need to be a little bit more wary than usual as we obtain several sam-
ples from the same plaintext–ciphertext pair—the calculations behind the four
samples have affected each other, and it is not impossible that samples ob-
tained from the same plaintext–ciphertext pair are so dependent that they do
not contribute (much) more than one sample would. If this is the case, we
would not be able to exploit any bias smaller than (about) 2−23.

Thus, we have performed the following on eight-round PRINTcipher. We
use 218 plaintext–ciphertext pairs to derive 218 samples on bit (14, 1), and from
this we guess whether the key is in the upper-left class from Table 9.11 or not

by comparing the number of samples that are 1 to a threshold θ = 218
(

1
2 + ε

2

)
,

where ε = 2−9. This gives false positives/negatives with certain probabilities
over 220 different keys, see Table 9.12. Similar probabilities are observed for
the three mirroring trails, when used one on one.

If we instead use only 216 plaintext–ciphertext pairs, but obtain 22 samples
from each pair, we are able to carry out the attack with seemingly unchanged
success. The probabilities of false positives/negatives are 0.02/0.50.

On the other hand, using 218 plaintext–ciphertext pairs, but 22 samples per
pair, the distinguisher achieves much better rates of false positives/negatives.

9.6. On More Rounds of PRINTcipher: Mirroring Trails 151

9.6.3 PARTIAL ENCRYPTION AND DECRYPTION FOR 29 ROUNDS

As in Section 9.5, we aim to guess key bits for partial encryptions and decryp-
tions. Previously, we were able to add five rounds in this way to construct
a 28-round attack using a 23-round trail. Now, using the 24-round trails, we
reach 29 rounds. Again, we use the upper-left key class in Table 9.11.

The key observation is that we can divide all of the work, so that we deal
with the four trails somewhat independently. Numbering the trails, in any
order, as j = 0, 1, 2, 3, we will have time requirements

Tcollect
j = ε−2,

Tcount
j =

2ae j
Ne

j Aj
e + 2ad

j
Nd

j Aj
d

16 · R ,

Tcombine
j = 2ae j+ad

j
N,

for producing the four different lists of counters Sj
i . In order to combine all

counters Sj
i into N counters Si we need to perform N rather simple operations.

Note that we have made related, but not identical, guesses on the permuta-
tions, e.g., by guessing π1(2) and π1(0) for different trails. Some care must
be taken here, but it does not affect the cost of this step, which remains at
Tfinalize = N quite simple operations.

An overview is given in Figure 9.6 and specific guesses are listed in Ta-
ble 9.13. For all j, we have (ae

j, ad
j, Aj

e, Aj
d) = (9, 27, 4, 13). The total attack

requirements are

Tcollect = 22·24 = 248,

Tcount = ∑
j

Tcount
j ≈ 250,

Tcombine = ∑
j

Tcombine
j ≈ 276,

Tfinalize = N = 262 · 33 ≈ 267.

Although brute force costs 275, as we assume five bits of the key, we claim
that 276 simple operations compare favorably to 275 evaluations of 29-round
PRINTcipher.

Note that several of the 250 samples are completely unaffected by certain
guessed key bits and trits. While this allowed for the division of work that
kept the attack time below brute force, it also makes it less clear whether this
attack is successful. However, some of the key material guessed for the various
trails is related, so one might intuitively expect the attack to give some advan-

152 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

24 rounds

Figure 9.6: Performing two/three rounds of partial encryp-
tion/decryption to access the bits at positions (3, 1),
(10, 0), (11, 2), and (14, 1).

tage over brute force. It might be possible, and favorable, to average the
results, e.g., by performing majority voting using several of the highest ranked
key guesses.

Let us briefly comment on the possibility of using 25-round trails with bias
2−26: if we can get 16 samples per plaintext–ciphertext pair, we have the nec-
essary 252 samples. As we need to involve all πb, we would put restrictions on
at least 16 bits of the key. This puts the brute force cost at 264 or lower, which
seems to be too low for the attack to be meaningful. Another obstacle for this
attack is that the mirroring trails are not completely identical, as different bits
of k+ will appear.

9.7. Conclusion 153

Table 9.13: The key material guessed in the attack on 29-round
PRINTcipher by encrypting/decrypting two/three
rounds. Sequences of xor key bits are given using »–.«

Pos. N j Key Material

(3, 1) 231 · 36

Enc. k+38, k+35, k+33, k+27, k+22, k+19, k+17, k+11, π6, π3
1

Dec.
k+47–k+44, k+42, k+32–k+30, k+10, k+2 –k+0 ,
π15, π13(2), π12(2), π3

4, π2(0), π1(0), π0

Both k+43, k+6 , k+3 , k+1

(10, 0) 223 · 39

Enc. k+46, k+40, k+26, k+24, k+19, k+14, k+10, k+8 , k+3 , kπ
29, π3

8

Dec.
k+44, k+43, k+38–k+36, k+34–k+31, π15(1), π12(2),
kπ

20, π6(2), π5(2), π4(2), π2(2), π1(2), π0(2)
Both k+42, k+35, k+30

(11, 2) 221 · 36

Enc. k+46, k+43, k+41, k+25, k+19, k+14, k+3 , kπ
29

Dec.
k+34–k+31, k+29, k+28, k+10, π15(1), π13(1), π12(1),
kπ

23, π2(2), π1(2), π0(2)
Both k+35, k+30, k+27, k+11, k+9 , π3

9 ⇔ π9(0)

(14, 1) 229 · 37

Enc.
k+47, k+46, k+42, k+36, k+31, k+30, k+26, k+20, k+15, k+14,
π15, kπ

29, π3
4

Dec.
k+43, k+35–k+33, k+11, k+9 –k+5 , k+3 , kπ

23, π9(0), π8(0),
π7(0), π6(0), π5(0), π4(0), π2(0), π1(0)

Both k+10, k+4 , π4

All
k+47–k+40, k+38–k+24, k+22, k+20, k+19, k+17, k+15, k+14,

262 · 33 k+11–k+0 , π15, kπ
29, π13, π12, kπ

23, kπ
20, π3

9 ⇔ π9(0),
π3

8 ⇔ π8(0), π7(0), π6, π5, π4, π2, π1, π0

9.7 CONCLUSION

Table 9.14 summarizes the attacks on 27–29 rounds of PRINTcipher outlined
in this chapter. Additional attacks are available for several more key classes.

We note some particular observations that all arise from the structure of
PRINTcipher and the use of the exact same round key throughout the cipher:

• When there is a nondecomposable, iterated r′-round trail there are in
fact r′ mirroring trails, allowing r′ samples per plaintext–ciphertext pair.

• When we guess for a partial encryption/decryption, there is overlap
between the bits that activate the trail and those we need for encryp-
tion/decryption.

154 Linear Cryptanalysis of Round-Reduced PRINTCIPHER

Table 9.14: A summary of the explicit attacks on 27-, 28- and 29-
round PRINTcipher presented in this chapter. The
length of the trail(s) used is denoted r′, and R indicates
that R-round PRINTcipher is attacked. Two rounds
are partially encrypted and two or three are partially de-
crypted. Tcount and Tcombine are rounded to the nearest
integer power of two.

Trail r′ R Key fraction Tcollect Tcount Tcombine

c25
0 = c2

0 + k+0 23 27 2−1 248 215 236

c25
0 = c2

0 + k+0 23 28 2−1 248 244 267

c25
35 = c2

10 + k+35 + 1 23 28 2−5 248 246 273

c26
43 = c2

43 and more 24 29 2−5 248 250 276

We have presented linear cryptanalysis on 29 rounds of PRINTcipher. We
have used weak key classes which means that we need to carry out several
attacks in parallel in order to have a high probability of success. However, we
have seen that there are many large key classes and in particular, a number
of them only depend on one or two bits of the key. This means our results
in a sense invalidate more keys than previous results on PRINTcipher. The
exception is the differential attack which worked on all keys but only reached
23 rounds.

We have exclusively studied PRINTcipher-48, but our observations are
without doubt applicable to PRINTcipher-96 as well, where it seems rea-
sonable that our techniques could be used to reach around 52–55 rounds.

As a direction for future research, we note that by inverting the (S ◦ πb) of
the last round where πb is (partly) assumed, the number of active bits could
be reduced. The technique would apply to all attacks in this chapter, but the
full gain of this remains to be determined.

The mirroring trails that arise in PRINTcipher are very interesting, and
allowed us to add one round to the attacks, albeit for a smaller class of keys.
It would be very interesting to see if this mirroring property could lead to
more observations on PRINTcipher.

10
Invariant Subspaces and

Linear Correlations

Leander et al. [LAAZ11] have shown that by fixing certain key bits, PRINT-
cipher acquires a peculiar property. Denote by Fr the one-round
PRINTcipher mapping of round r for a fixed key, and let F denote

the full PRINTcipher mapping, i.e., F = F47 ◦ F46 ◦ . . . ◦ F0. Partially fix the
permutation key and xor key as in Figure 10.1. Then the following holds for
the progression of the state over one round Fr of PRINTcipher, regardless of
the value of the round constant:

Start 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

Key xoring 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***

Lin. layer 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***

RC 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***

Perm. layer 00* *11 *** *** 00* *11 *** *** 00* *11 *** *** 00* *11 *** ***

Sbox layer 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

That is, with

V = {(00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***)},

Fr(v) ∈ V for all v ∈ V. Since the round function is a permutation, Fr(V) = V.
(The elements of V are 48-bit vectors: commas have been removed to save
space, * denotes any bit value, and spaces have been used to group bits in
triplets to improve readability.)

By writing the subspace U, its orthogonal subspace U⊥ and the constant d,

U = {(00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***)},
U⊥ = {(**0 0** 000 000 **0 0** 000 000 **0 0** 000 000 **0 0** 000 000)},

d = (000 010 000 000 000 010 000 000 000 010 000 000 000 010 000 000),

155

156 Invariant Subspaces and Linear Correlations

+RCr

SSSSSSSSSSSSSSSS

01 11 01 11 01 11 01 11

Figure 10.1: One round of PRINTcipher-48 with partly fixed per-
mutation key and xor key. Only the bits that matter for
the invariant subspace property are shown.

the invariant subspace1 property can be expressed as

Fr(U + d) = U + d.

Since this property is not affected by the round constants, the full cipher F
has the same property, regardless of the number of rounds,

F(U + d) = U + d.

Leander et al. showed that for a fraction 2−28 of all keys, PRINTcipher

has such an invariant subspace. These keys are called weak keys and can be
grouped into four different classes, depending on which bits are fixed. The
particular class of weak keys considered here consists of all keys such that

k+ ∈ {(01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** ***)},
kπ ∈ {(0* 11 ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **)}. (10.1)

The immediate consequence of this property is a distinguisher: encrypt 5
distinct plaintexts pi ∈ U + d, i = 0, 1, . . . , 4. If F(pi) ∈ U + d, i = 0, 1, . . . , 4,
then output »key matches Equation 10.1,« otherwise output »key does not
match Equation 10.1.« This distinguisher produces no false negatives, but
false positives with probability approximately (2−16)5 = 2−80, assuming a
uniform distribution of F(pi) for nonweak keys and independent behavior of
F(pi) and F(pj) for i 6= j.

Further, there exist strongly biased linear relations for any number of rounds.
More precisely, Leander et al. give the following results, where Proposition 10.1
is PRINTcipher-specific and follows from Proposition 10.2.

1U + d is a coset of the subspace U, but Leander et al. chose to dub this property as
the invariant subspace, rather than coset, as it was expected that the arguably more
correct term would be less understood by the community. [Lea12]

157

Proposition 10.1 (Corollary 2 in [LAAZ11]) In PRINTcipher, for a weak
key and for any round R ≤ 48 there exists at least one linear approximation
for F with correlation at least 2−16 − 2−32.

Proposition 10.2 (Corollary 1 in [LAAZ11]) Consider a subspace U and a
constant d. If F(U + d) = U + d, there exists at least one linear approximation
for F with correlation at least

∣∣U⊥∣∣−1 −
∣∣U⊥∣∣−2

.

In this chapter, we will try to say more about linear biases in the case of
invariant subspaces. We will consider input and output masks α, β ∈ U⊥, i.e.,
in the case of PRINTcipher, linear approximations which involve only those
plaintext and ciphertext bits that are fixed in the invariant subspace. As a
preliminary outlook, note that

Pr [〈α, x〉 = 〈β, F(x)〉 | x ∈ U + d] ∈ {0, 1},

and that if
Pr [〈α, x〉 = 〈β, F(x)〉 | x /∈ U + d] =

1
2

,

then

Pr [〈α, x〉 = 〈β, F(x)〉] =Pr [〈α, x〉 = 〈β, F(x)〉 | x ∈ U + d] · Pr [x ∈ U + d]

+Pr [〈α, x〉 = 〈β, F(x)〉 | x /∈ U + d] · Pr [x /∈ U + d]

=

(
1
2
± 1

2

)
·
∣∣∣U⊥∣∣∣−1

+
1
2
·
(

1−
∣∣∣U⊥∣∣∣−1

)
=

∣∣U⊥∣∣−1

2
±
∣∣U⊥∣∣−1

2
+

1
2
−
∣∣U⊥∣∣−1

2

=
1
2
±
∣∣U⊥∣∣−1

2
. (10.2)

This can be loosely interpreted as »if F behaves well on all other plaintexts,

then the correlation is approximately ±
∣∣U⊥∣∣−1

for all linear approximations
with α, β ∈ U + d,« and should be compared to Proposition 10.2. This out-
look gives a loose explanation for the large correlations based on the different
behavior of different plaintexts.

This chapter will present work that goes beyond this simple analysis by
looking into what happens in the linear hull, showing that a round function
with an invariant subspace yields a submatrix B with a particular eigenvector
with eigenvalue 1. This is crucial as this implies that this submatrix B, when
taken to the Rth power, does not converge to the all-zero matrix. In particu-
lar, if this is the only eigenvector which is 1 in absolute terms, BR converges
to a nonzero constant (cf. Proposition 3.10). This means that with repeated

158 Invariant Subspaces and Linear Correlations

use of the round function, or possibly variants of it, trails with all intermedi-
ate masks determined by the invariant subspace cluster significantly for any
number of rounds. In particular, this follows from the invariant subspace
property, not, e.g., the single-bit linear characteristics in the round function of
PRINTcipher (cf. Chapter 9), making the analysis applicable to block ciphers
that, e.g., have been designed according to the wide-trail strategy.

Interestingly, in a restricted sense to be discussed below, the reciprocal state-
ment holds as well. That is, if the cipher does not exhibit invariant subspaces,
then no submatrices (of a certain type) have eigenvectors (of a certain type)
with eigenvalue 1. Thus by avoiding invariant subspaces, one also ensures
that trail clustering for any number of rounds is less likely.

10.1 UNDERSTANDING THE LARGE CORRELATIONS

The following small example will be helpful to illustrate some details in this
chapter.

Example 4.3 (Cont’d) Note that with F as on page 43,

F({(1, 0, 1), (1, 1, 0)}) = {(1, 0, 1), (1, 1, 0)}.

That is, with

V = {x ∈ F3
2 : x0 = 1, x1 + x2 = 1} = {(1, 0, 1), (1, 1, 0)},

F(V) = V. To write V as a coset of a subspace of F3
2, consider

U = {(0, 0, 0), (0, 1, 1)}

and d = (1, 0, 1). Clearly, U is a subspace, and

U + d = {(1, 0, 1), (1, 1, 0)} = V.

�

We will consider an R-round block cipher F = FR−1 ◦ FR−2 ◦ . . . ◦ F0, con-
structed from round functions Fr. Observe that the round key is moved into
the round function Fr.

Recall from Section 4.5 that the correlation matrix Cr = (cFr (α, β))αβ collects
all correlation coefficients for the rth round function. For reasons that will
soon be clear, we are interested in the submatrix Ar = (ar

αβ)α,β∈U⊥ constructed
through ar

αβ = cFr (α, β).
From Proposition 4.2, we know that CR−1CR−2 . . . C0 is the correlation ma-

trix of the entire cipher F. Similarly, the matrix AR−1 AR−2 . . . A0 describes the

10.1. Understanding the Large Correlations 159

contribution to the linear hull from following trails with intermediate masks
in U⊥. More specifically, with

ci
F(α, β) = ∑

θ: θ0=α,θR=β,
θr∈U⊥ , ∀r

(−1)〈θ,E(k)〉C0
θ,

and
co

F(α, β) = ∑
θ: θ0=α,θR=β,
∃r: θr /∈U⊥

(−1)〈θ,E(k)〉C0
θ,

we can write Equation 4.7 as

cF(α, β) = ci
F(α, β) + co

F(α, β), (10.3)

where ci
F(α, β) corresponds to element (α, β) of AR−1 AR−2 . . . A0. That is,

ci
F(α, β) is the contribution from all trails which stay »inside« U⊥, while

co
F(α, β) is the contribution from all other trails, i.e., those that go »outside«

for at least one round.
It is important to note that if all Ar are equal, e.g., because any round

constants do not affect the particular elements of Cr extracted as Ar, then we
can write Ar = A, ∀r, and AR−1 AR−2 . . . A0 = AR. Then something more
can be said from Equation 10.3: if elements of AR have a »large« magnitude,
then the corresponding elements of CR are approximately the same, unless
the contributions from trails that go outside U⊥ are also »large« and, e.g.,
cancel the contributions that go on the inside. For this reason, it is interesting
to consider the asymptotic behavior of AR. Note that by Proposition 3.7, we
already know that the eigenvalues of A are on the unit disk.

Lemma 10.3 Consider an invertible vectorial Boolean function F, a sub-
space U, the orthogonal subspace U⊥ and a vector d. Define A = (aαβ)α,β∈U⊥ ,

aαβ = cF(α, β) and v = (vα)α∈U⊥ , vα = (−1)〈d,α〉. If F(U + d) = U + d, then
vA = v.

Example 4.3 (Cont’d) On page 43, the correlation matrix for F was found
to be

2−3

8 0 0 0 0 0 0 0
0 0 −4 −4 0 0 4 −4
0 4 −4 0 4 0 0 4
0 4 0 −4 −4 0 −4 0
0 0 4 −4 4 4 0 0
0 0 0 0 4 −4 −4 −4
0 4 0 4 0 4 0 −4
0 −4 −4 0 0 4 −4 0




, (10.4)

160 Invariant Subspaces and Linear Correlations

where rows and columns corresponding to

α, β ∈ U⊥ = {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)}

have been grayed. Consider the submatrix

A =
1
2


2 0 0 0
0 0 1 −1
0 1 0 −1
0 −1 −1 0

 ,

and the vector

v =
(
(−1)〈d,(0,0,0)〉, (−1)〈d,(1,0,0)〉, (−1)〈d,(0,1,1)〉, (−1)〈d,(1,1,1)〉

)
= (1,−1,−1, 1) .

Indeed,

(1,−1,−1, 1)
1
2


2 0 0 0
0 0 1 −1
0 1 0 −1
0 −1 −1 0

 = (1,−1,−1, 1) .

�

Proof (Lemma 10.3). We want to show that for every α ∈ U⊥, we have

(vA)α = vα.

With scaling, we have

2n(vA)α = 2n ∑
β∈U⊥

vβaαβ = 2n ∑
β∈U⊥

vβ2−n F̂(α, β)

= ∑
β∈U⊥

(−1)〈d,β〉∑
x
(−1)〈β,F(x)〉+〈α,x〉

= ∑
x
(−1)〈α,x〉 ∑

β∈U⊥
(−1)〈β,F(x)+d〉.

Similar to Proposition 3.1,

∑
y∈U⊥

(−1)〈a,y〉 =

{ ∣∣U⊥∣∣ , a ∈ U,
0, a /∈ U.

10.1. Understanding the Large Correlations 161

Applying this to the above and using the invariant subspace property, we get

2n(vA)α = ∑
x: F(x)∈U+d

(−1)〈α,x〉
∣∣∣U⊥∣∣∣

= ∑
x∈U+d

(−1)〈α,x〉
∣∣∣U⊥∣∣∣

= ∑
x∈U

(−1)〈α,x+d〉
∣∣∣U⊥∣∣∣

= (−1)〈α,d〉 ∑
x∈U

(−1)〈α,x〉
∣∣∣U⊥∣∣∣ .

Since x ∈ U and α ∈ U⊥ it holds that 〈α, x〉 = 0, so

2n(vA)α =
∣∣∣U⊥∣∣∣ |U| (−1)〈α,d〉 = 2nvα.

Thus, v is an eigenvector of A with eigenvalue 1. �

In any correlation matrix representing a permutation, the first row and col-
umn are all-zero except for c(0, 0) = 1. Thus, the submatrix B = (aαβ)α,β∈U⊥∗
can be extracted without losing any information, where

U⊥∗ = U⊥\{0}.

This is preferable as U⊥∗ will be slightly more convenient to work with. Sim-
ilarly, from v, extract u = (vα)α∈U⊥∗

. From the block-diagonal structure of A
with cF(0, 0) = 1, it follows that vA = v if and only if uB = u. It is also clear
that (0||u)A = 0||u, and (1, 0, 0, . . . , 0)A = (1, 0, 0, . . . , 0).

Now, in the case where there are only those two (linearly independent)
eigenvectors to A with eigenvalue 1, the sequence AR will converge (cf. Propo-
sition 3.10). This motivates the following definition.

Definition 10.1
If the algebraic multiplicity of the eigenvalue 1 of A is two and A has no other
eigenvalue of absolute value 1, we say that A (or the corresponding cipher)
has a stable symmetry.

Theorem 10.4 If A has a stable symmetry then

BR → D =
1∣∣U⊥∣∣− 1

uTu, R→ ∞,

and

AR =

(
1 0
0 BR

)
→
(

1 0
0 D

)
, R→ ∞.

162 Invariant Subspaces and Linear Correlations

Example 4.3 (Cont’d) The four eigenvectors of A can be chosen as

v0 = (1, 0, 0, 0) ,

v1 = (0,−1,−1, 1) ,

v2 = (0, 1, 0, 1) ,

v3 = (0, 0, 1, 1) ,

with corresponding eigenvalues λ0 = λ1 = 1 and λ2 = λ3 = − 1
2 , so A has a

stable symmetry. With u = (1, 1,−1),

uTu =

 1 1 −1
1 1 −1
−1 −1 1

 .

Further,

B =
1
2

 0 1 −1
1 0 −1
−1 −1 0

 =
1

21 · 3

 0 3 −3
3 0 −3
−3 −3 0

 ,

and

B2 =
1
4

 2 1 −1
1 2 −1
−1 −1 2

 =
1

22 · 3

 6 3 −3
3 6 −3
−3 −3 6

 .

In fact, it is possible to show that

BR =
1

2R · 3

 dR eR −eR
eR dR −eR
−eR −eR dR

 , R ≥ 0,

with
dR = 2R + 2(−1)R mod 2,

and
eR = 2R − (−1)R mod 2.

From this follows that

BR → 1
3

 1 1 −1
1 1 −1
−1 −1 1

 , R→ ∞,

as predicted by Theorem 10.4. Thus,

AR → 1
3


3 0 0 0
0 1 1 −1
0 1 1 −1
0 −1 −1 1

 , R→ ∞.

�

10.2. Equivalence Between Eigenvectors and Invariant Subspaces 163

Proof (Theorem 10.4). If A has a stable symmetry, then B has an eigenvector 1
with algebraic and geometric multiplicity 1, and there are no other eigenval-
ues with |λi| = 1. By Proposition 3.7, there are no eigenvalues with |λi| > 1.
The eigenvector corresponding to the eigenvalue 1 is u, and since

uuT = ∑
α∈U⊥∗

(−1)〈d,α〉(−1)〈d,α〉 = ∑
α∈U⊥∗

1 =
∣∣∣U⊥∗ ∣∣∣ = ∣∣∣U⊥∣∣∣− 1,

it can be normalized as lu, where l = (
∣∣U⊥∣∣ − 1)−1/2. By Proposition 3.10,

BR → (luT)(lu) = l2uTu, R→ ∞. �

From Theorem 10.4 and the structure of uTu follows, that for a cipher
with a stable symmetry, with α, β ∈ U⊥∗ , and for large enough values of

R, ci
F(α, β) ≈ ±

∣∣U⊥∣∣−1
. Thus, if co

F(α, β) is negligible, the correlation is

cF(α, β) ≈ ±
∣∣U⊥∣∣−1

and the bias is εF(α, β) ≈ ±|U
⊥|−1

2 (cf. Equations 10.2
and 10.3). In particular, if

∣∣U⊥∣∣ is »small,« e.g.,
∣∣U⊥∣∣ < 2n/2, then the correla-

tion is »large,« e.g., |cF(α, β)| ' 2−n/2.
Observe that for every permutation φ, there exists a j > 0 such that

φj = φ ◦ φ ◦ . . . ◦ φ︸ ︷︷ ︸
j times φ

≡ id,

where id is the identity function which maps every x to x itself. By Proposi-
tion 4.1, the correlation matrix of the identify function is the identity matrix,
so Cφj = Cj

φ = I. Thus, even if there is a stable symmetry so that ci
φj(α, β) are

known asymptotically by Theorem 10.4, the correlation coefficients cφj(α, β)

have very little similarity with ci
φj(α, β), and thus the values co

φj(α, β) are not

negligible. This shows that the asymptotic behavior of AR does not guarantee
large correlations, even with a stable symmetry.

Example 4.3 (Cont’d) F ◦ F ◦ F ◦ F ◦ F ◦ F = id, so C6 = I. From above,

A6 =
1

64 · 3


64 · 3 0 0 0

0 66 63 −63
0 63 66 −63
0 −63 −63 66

 ≈ 1
3


3 0 0 0
0 1 1 −1
0 1 1 −1
0 −1 −1 1

 ,

but

(C6)α,β∈U⊥ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

so for R = 6, the structure from AR is not apparent in (a submatrix of) CR. �

164 Invariant Subspaces and Linear Correlations

10.2 EQUIVALENCE BETWEEN EIGENVECTORS AND INVARIANT SUB-
SPACES

It is possible to strengthen Lemma 10.3 into an equivalence.

Theorem 10.5 Consider an invertible vectorial Boolean function F, a sub-
space U, the orthogonal subspace U⊥ and a vector d. Define A = (aαβ)α,β∈U⊥ ,

aαβ = cF(α, β), and v = (vα)α∈U⊥ , vα = (−1)〈d,α〉. Then vA = v if and only if
F(U + d) = U + d.

The »if« part follows from Lemma 10.3, so it only remains to prove the
»only if« part. For this, we need the inverse transform,

(−1)〈β,F(x)〉 = 2−n ∑
α

(−1)〈α,x〉 F̂(α, β).

We first show a general lemma.

Lemma 10.6 Consider a Boolean function f : Fn
2 → F2 and its Fourier trans-

form f̂ . Let U be a subspace of Fn
2 and let b ∈ {0, 1}. If, for d ∈ Fn

2 ,

2−n ∑
α∈U⊥

(−1)〈ω,d〉 f̂ (ω) = (−1)b,

or, equivalently,

∑
ω∈U⊥

(−1)〈ω,d〉c f (ω) = (−1)b,

then f (d) = b and f (x) is constant for x ∈ U + d, f (U + d) = {b}.

Proof. By Proposition 3.5,

(−1)b =

∣∣U⊥∣∣
2n ∑

x∈U+d
(−1) f (x) =

1
|U| ∑

x∈U+d
(−1) f (x).

Since (−1) f (x) ∈ {−1,+1}, f (x) must be constant for x ∈ U + d. Further,

∑
x∈U+d

(−1) f (x) = (−1) f (d) |U| .

Thus, (−1)b = (−1) f (d), so f (d) = b. �

What this lemma says is that if the calculation of f (x) from { f̂ (α)}α∈Fn
2

ap-

pears to be possible using only a subset { f̂ (α)}α∈U⊥ of the Fourier coefficients,
then it is (the subset is not just any subset but selected by a subspace).

10.2. Equivalence Between Eigenvectors and Invariant Subspaces 165

Example 4.3 (Cont’d) For the component function f (x) = 〈(0, 1, 1), F(x)〉,

(f (0, 0, 0), f (1, 0, 0), . . . , f (1, 1, 1) = (0, 1, 0, 1, 0, 1, 1, 0)

(cf. Table 4.1). By Equation 10.4, the Walsh spectrum is (0, 4, 0, 4, 0, 4, 0,−4).
Consider as before the subspace U = {(0, 0, 0), (0, 1, 1)} and the orthogonal
subspace U⊥ = {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)}. Note that cF(0, 0, 0) = 0,
cF(1, 0, 0) = 1

2 , cF(0, 1, 1) = 0, and cF(1, 1, 1) = − 1
2 . For x = (1, 0, 1),

∑
α∈U⊥

(−1)〈α,x〉c f (α) =

(
(−1)0 · 0 + (−1)1 · 1

2
+ (−1)1 · 0 + (−1)2 ·

(
−1

2

))
=

(
−1

2
− 1

2

)
= (−1)1,

so f (x) = 1 can be concluded from only those four Walsh coefficients. Further,
f (1, 0, 1) = f (1, 1, 0) = 1, so, as predicted by Lemma 10.6, f (y) is indeed
constant for y ∈ U + x = {(1, 0, 1), (1, 1, 0)}.

On the other hand, for x = (0, 1, 1),

∑
α∈U⊥

(−1)〈α,x〉c f (α) =

(
(−1)0 · 0 + (−1)0 · 1

2
+ (−1)0 · 0 + (−1)0 · (−1

2
)

)
=

(
1
2
− 1

2

)
= 0 /∈ {−1, 1},

so the partial Walsh spectrum over U⊥ is not sufficient to calculate f (x). Fur-
ther, f (y) is not constant for y ∈ U + x = {(0, 1, 1), (0, 0, 0)} as we have
f (0, 1, 1) 6= f (0, 0, 0). �

Proof (Theorem 10.5). As already noted, the »if« part follows from Lemma 10.3.
Assume that vA = v. Consider α ∈ U⊥ and write aα = (cF(α, β))β∈U⊥ for the
corresponding column of A. Note that for x ∈ U + d, we have 〈α, x〉 = 〈α, d〉.
Summing over β ∈ U⊥ yields

2−n ∑
β∈U⊥

(−1)〈β,d〉 F̂(α, β) = ∑
β∈U⊥

vβcF(β, α) = v · aα = 1 · vα = (−1)〈d,α〉,

and by Lemma 10.6, we can conclude that 〈α, F(x)〉 = 〈α, d〉 = 〈α, x〉 for all
x ∈ U + d. Since this holds for all α ∈ U⊥, F(x) ∈ U + d for all x ∈ U + d.
Since F is a permutation, F(U + d) = U + d. �

166 Invariant Subspaces and Linear Correlations

+RCr

SSSSSSSS

01 11 01 11

(a) PRINTcipher-24.

+RCr

SSSS

01 11

(b) PRINTcipher-12.

Figure 10.2: One round of PRINTcipher-24 resp. PRINTcipher-
12 with partly fixed permutation key and xor key. Only
the bits that matter for the invariant subspace property
are shown.

10.3 EXPERIMENTAL RESULTS ON PRINTCIPHER

In this section, we investigate to what extent PRINTcipher behaves as ex-
pected from the above general results. Smaller-state versions of PRINTcipher

are not formally defined but are easy to extrapolate from the specification of
PRINTcipher, and are shown in Figure 10.2. We use the same round con-
stants as in the first rounds of PRINTcipher-48. When using a fixed weak
permutation key and sometimes also a fixed weak xor key, they are always
chosen as the keys with the lowest Hamming weight. This should not be
understood as the all-zero key, but the unique key in the class of weak keys
where all variable key bits are chosen as zero.

10.3.1 THE BIAS DISTIBUTION OVER XOR KEYS

PRINTcipher-24 is shown in Figure 10.2a. We study the class of weak keys
consisting of keys such that

k+ ∈ {(01* *11 *** *** 01* *11 *** ***)},
kπ ∈ {(10 01 ** ** 0* 11 ** **)}.

Fix the permutation key and consider the characteristic from the leftmost
plaintext bit to the leftmost ciphertext bit,

α = β = (100 000 000 000 000 000 000 000) ∈ U⊥,

(cf. Chapter 9). As we run through all xor keys (weak and nonweak), we can
derive the distribution of the correlation cF(α, β) of this characteristic. That is,

10.3. Experimental Results on PRINTcipher 167

0 2−8.0

Correlation

Fr
eq

ue
nc

y

(a) All xor keys.

2−8.0

Correlation

Fr
eq

ue
nc

y

(b) The weak xor keys.

Figure 10.3: The distribution of PRINTcipher-24 biases for a fixed
permutation key. In Figure 10.3b, the experimentally ob-
served mean m is indicated. The standard deviation σ is
approximately 2−12.0. Ticks have been placed at m + jσ,
j ∈ {−3, . . . , 3}.

for each xor key, we derive the correlation cF(α, β) explicitly by going through
all 224 plaintext–ciphertext pairs.

Figure 10.3a shows the correlation distribution. At first glance, it appears
to consist of a single bell-shape nicely centered around 0, but there is also a
small bump to the right. This is another bell-shape, representing precisely
the weak keys, and in Figure 10.3b, we provide a magnified view of this
part of the distribution. This experiment shows that all nonweak keys are
distributed around approximately zero, while all weak keys are distributed
around approximately 2−8. From Chapter 9, we might expect 2−24 rather
than 0, but the amount of data available is not enough to distinguish between
these two values.

10.3.2 EXPERIMENTAL RESULTS ON PRINTCIPHER-48

We have implemented PRINTcipher-48 for a fixed key from the class of weak
keys given by Equation 10.1. By exhaustively going through all plaintext–
ciphertext pairs for all α, β ∈ U⊥, we could then derive A, which allowed us to
verify that vA = v. We have also derived the correlations for 16 characteristics
with α, β ∈ U⊥, see Table 10.1. We expect correlations

(−1)〈d,α〉(−1)〈d,β〉
(

216 − 1
)−1

= (−1)〈d,α+β〉
(

216 − 1
)−1

,

and all 16 correlations are indeed very close to ±2−16 with the correct sign.
Certainly, these are only 24 of almost 232 correlation values, but this gives

168 Invariant Subspaces and Linear Correlations

Table 10.1: Input and output masks and the correlations experimen-
tally observed over all plaintext–ciphertext pairs for a
fixed weak key of PRINTcipher-48.

α β Expected sign cF(α, β)

800000000000 800000000000 + +2−16.000

400000000000 000800000000 + +2−15.996

040000000000 000000000040 + +2−16.004

000080000000 000000000800 − −2−15.996

000440000000 000040080000 − −2−15.997

800040800000 080000000800 − −2−16.007

040000400000 000000000400 + +2−15.997

000000880000 400080000040 + +2−15.994

000080040000 040000400000 − −2−16.003

800000840000 000040880000 − −2−15.990

000000080800 800400000000 − −2−16.005

080800000400 000800000000 − −2−16.011

000000000080 000040040000 − −2−16.013

000840000080 400800800000 − −2−15.987

400000000040 0c0000800000 − −2−15.996

4c0480440c40 cc0480440c80 − −2−16.002

some circumstantial support to the idea that PRINTcipher-48 has a stable
symmetry, that B48 ≈ D, and that ci

F(α, β) is the main contribution to cF(α, β).

10.3.3 EXPERIMENTAL RESULTS ON PRINTCIPHER-12

On PRINTcipher-12, for a fixed key, we can derive B analogously to above.
The class of weak keys considered consists of keys such that

k+ ∈ {(01* *11 *** ***)},
kπ ∈ {(0* 11 ** **)}.

Here the stable symmetry can then be confirmed by deriving the eigenvalues
numerically for all possible matrices B. Also, the convergence can be observed
experimentally. Figure 10.4a shows Bn for a fixed nonweak key

k+
n = (000 000 000 000),

kπ
n = (00 11 00 00),

10.4. A Technical, PRINTcipher-Specific Proof of Lemma 10.3 169

−0.5

−0.25

0

0.25

0.5

(a) Bn

−0.5

−0.25

0

0.25

0.5

(b) Bw

−1

−0.5

0

0.5

1

·10−3

(c) B12
n

−6.7

6.7
·10−2

(d) B12
w

Figure 10.4: The matrices B and B12 for two different keys.

while Figure 10.4b shows Bw for a fixed weak key

k+
w = (010 011 000 000),

kπ
w = (00 11 00 00).

In particular, kπ
w = kπ

n , so the matrices Bn and Bw only differ by the signs of
some nonzero elements. Figure 10.4c shows B12

n and Figure 10.4d shows B12
w .

The matrices clearly differ both in terms of magnitude and structure.

10.4 A TECHNICAL, PRINTCIPHER-SPECIFIC PROOF OF LEMMA 10.3

We consider PRINTcipher with a weak key from the class given by Equa-
tion 10.1 and want to show the eigenvector property, vA = v. If one only
wants to understand why this property arises in the general case, the proof
given on page 160 is sufficient and simpler. However, in this section, we will

170 Invariant Subspaces and Linear Correlations

Table 10.2: LAT for the Sbox in PRINTcipher. All nontrivial
nonzero values have the same magnitude.

4 · cF(α, β)
Input mask, (α)

0 1 2 3 4 5 6 7

Output mask, (β)

0 4 0 0 0 0 0 0 0
1 0 2 0 2 0 2 0 -2
2 0 0 2 2 0 0 -2 2
3 0 2 2 0 0 -2 2 0
4 0 0 0 0 -2 2 2 2
5 0 -2 0 2 2 0 2 0
6 0 0 2 -2 2 2 0 0
7 0 2 -2 0 2 0 0 2

take a careful look at what happens inside PRINTcipher, how the individ-
ual bits interact with each other and how everything adds up. We present
things from the bottom up, first looking at individual bits and Sboxes, and
then gradually moving to larger structures until we reach the entire matrix A.
To simplify, we fix the permutation key as in Figure 10.1.

Table 10.2 presents the scaled correlation matrix of the PRINTcipher Sbox
from Equation 9.1. This will be referred to as the linear approximation table
(LAT). As all interesting nonzero elements are the same in absolute terms, we
will from now on give elements simply as »+« or »-.« It will be clear below
that this is possible without loss of information when we know how many
these nonzero elements are, or their absolute value.

Throughout this section, α, β ∈ U⊥ will be assumed. Denote the ith Sbox
as Si, 0 ≤ i < 16, but include in it the partial permutation key and partial xor
key. The elements of A depend only on the eight Sboxes indexed by

S = {0, 1, 4, 5, 8, 9, 12, 13},

which can be partitioned into Seven = {0, 4, 8, 12} and Sodd = {1, 5, 9, 13}. We
further write S inner

even = {4, 8} and Souter
even = {0, 12}. By collecting the indices of

nonzero bits of d in Bd = {j : dj = 1} = {4, 16, 28, 40},

vα = (−1)〈d,α〉 = ∏
j∈Bd

(−1)αj .

Denote by aα = (cF(α, β))β∈U⊥ a column of A.
We note that we care about precisely two input and output bits for each

Sbox. It turns out that among the eight Sboxes, there are only three distinct
Sboxes. Three different partial LATs are given in Table 10.3. The following is
straightforward to derive from Figure 10.1 and Table 10.2.

10.4. A Technical, PRINTcipher-Specific Proof of Lemma 10.3 171

Table 10.3: Partial LATs for the different Sboxes appearing in the in-
variant subspace in PRINTcipher.

(a) Sboxes indexed by Sodd.

(α)
2 4 6

(β)
2 - -
4 + +
6 - -

(b) Sboxes indexed by Souter
even .

(α)
1 2 3

(β)
1 + -
2 - -
3 + -

(c) Sboxes indexed by S inner
even .

(α)
1 2 3

(β)
1 - -
2 + -
3 - +

Proposition 10.7 With a weak (partial) permutation key and xor key, the
Sboxes indexed by Sodd use the partial LAT in Table 10.3a. The Sboxes in-
dexed by Souter

even use the partial LAT in Table 10.3b, while those indexed by
S inner

even use the partial LAT in Table 10.3c.

An active Sbox is an Sbox with a nonzero input mask. For any input mask,
the Sboxes that contribute to the biased output masks are precisely the active
Sboxes.

Lemma 10.8 ∑β

∣∣aα,β
∣∣ = 1. More precisely, there are 2j nonzero elements

of aα, each being ±2−j, where j is the number of Sboxes that are activated by
the input mask α.

Proof. This is certainly true for j = 0. Further, it can be seen from the par-
tial LATs that each nonzero input mask yields precisely two different output
masks with nonzero correlation. Thus, there will arise precisely 2j output
masks with nonzero cF(α, β). In particular, with j = 1, there are 2 nonzero
correlations, and they are ±2−1. For j > 1, α and β can be written as
α = α0 + α1 + . . . + αj−1 and β = β0 + β1 + . . . + βj−1, where each αl acti-
vates precisely one Sbox, and βl is the corresponding part of the output mask.
By Proposition 4.4 it then follows that each nonzero cF(α, β) is ±2−j. �

Proving vA = v amounts to showing that vaα = vα, ∀α. It is clear that
va0 = 1 = v0, so we focus on nonzero α. Recall that vaα = ∑β∈U⊥ vβcF(α, β).

172 Invariant Subspaces and Linear Correlations

We know from Lemma 10.8 that aα sums absolutely to 1. Since vα ∈ {−1, 1},
vaα is the sum of the (nonzero) elements of aα with or without a change of
sign. Thus, to prove vA = v, we need to show that vaα ∈ {−1, 1}, i.e., the
elements of aα are always added constructively, and that the sum is vα (as
opposed to −vα).

Lemma 10.9 Let Si, i ∈ S , be the only active Sbox for the input mask α.
Then vaα = vα.

Proof. We know from Lemma 10.8 that there are two nonzero cF(α, β). Fur-
ther, there are at most two nonzero bits αa0 and αa1 where the precise values
of a0 and a1 are known (and depend on i). Thus, we can write α = (αa0 , αa1),
or α = αa0 αa1 , for short. Similarly, vβb0

βb1
is the vβ where β is nonzero only in

one or two of the bits indexed by b0 and b1. We have

vaα = ∑
β∈U⊥

vβcF(α, β) = v10cF(α, 10) + v01cF(α, 01) + v11cF(α, 11).

From the characterization of the Sboxes, it is sufficient to show the lemma
for each of the three types of Sboxes. Since their LATs all have their nonzero
elements in the same pattern, we have

vaα =


v10cF(10, 10) + v11cF(10, 11), α = 10,
v01cF(01, 01) + v11cF(01, 11), α = 01,
v10cF(11, 10) + v01cF(11, 01), α = 11,

for all i ∈ S . In the following, it might be useful to refer to Figure 10.5, where
bits indexed by Bd (one per Sbox) have been drawn thicker. Recall that they
affect the signs of the elements vα and vβ.

First, consider i ∈ Sodd:

vaα =


v10cF(10, 10) + v11cF(10, 11) = (− · −) + (− · −) = +, α = 10,
v01cF(01, 01) + v11cF(01, 11) = (+ ·+) + (− · −) = +, α = 01,
v10cF(11, 10) + v01cF(11, 01) = (− · −) + (+ ·+) = +, α = 11.

We see that the two nonzero elements add up constructively and that we
always get vaα = +1. But we also have vα = (−1)0 = 1.

Second, consider i ∈ S inner
even :

vaα =


v10cF(10, 10) + v11cF(10, 11) = (+ · −) + (+ · −) = −, α = 10,
v01cF(01, 01) + v11cF(01, 11) = (+ ·+) + (+ ·+) = +, α = 01,
v10cF(11, 10) + v01cF(11, 01) = (+ · −) + (+ · −) = −, α = 11.

10.4. A Technical, PRINTcipher-Specific Proof of Lemma 10.3 173

S

(a) Sboxes indexed by Sodd.

S

(b) Sboxes indexed by Souter
even .

S

(c) Sboxes indexed by S inner
even .

Figure 10.5: A schematic overview of the different Sboxes appearing
in the invariant subspace in PRINTcipher. Marked bits
are those considered in the partial LATs. Thicker bits are
those that are indexed by Bd, i.e., that affect vα or vβ.

We see that the two nonzero elements add up constructively and that we
always get vaα = (−1)αa0 . But we also have vα = (−1)αa0 .

Third, consider i ∈ Souter
even :

vaα =


v10cF(10, 10) + v11cF(10, 11) = (+ ·+) + (+ ·+) = +, α = 10,
v01cF(01, 01) + v11cF(01, 11) = (+ · −) + (+ · −) = −, α = 01,
v10cF(11, 10) + v01cF(11, 01) = (+ · −) + (+ · −) = −, α = 11.

We see that the two nonzero elements add up constructively and that we
always get vaα = (−1)αa1 . But we also have vα = (−1)αa1 . �

Thus, on our way to proving that vA = v, i.e., vaα = vα for α ∈ U⊥, we
have seen that vaα = vα when α only activates one Sbox. It remains to show
that vaα = vα when more than one Sbox of S is activated. This follows from
the following by induction:

Lemma 10.10 Assume that with α0, vaα0 = vα0 , where α0 activates j ≥ 1
Sboxes. From α1, activating precisely one Sbox Si not activated by α0, define
α = α0 + α1. Then vaα = vα.

Proof sketch. There are two nonzero elements in aα1 . Write them as cF(α
1, β1

0)

and cF(α
1, β1

1), where β1
0 6= β1

1.

174 Invariant Subspaces and Linear Correlations

Each nonzero element (»old element«) in aα0 yields two nonzero elements
(»new elements«) in aα. By Proposition 4.4, the sign of such a new element
differs from that of the old precisely when cF(α

1, β1
b) < 0; we say that the sign

changes. There are essentially two cases to consider: i ∈ Sodd and i ∈ Seven.
Assume that i ∈ Sodd. Then the sign changes precisely when β1

b ∈ {2, 6}.
This corresponds to a bit of β used in calculating vβ. This means that the new
element changes sign precisely when the corresponding element in α changes
sign.

Assume that i ∈ Seven. Then the sign changes for some certain values
of α, depending on i. The sign change corresponds to a bit of α used in
calculating vα. This means that the new element changes sign precisely when
the corresponding element in v changes sign.

Thus, the sign changes always cancel (i ∈ Sodd) or match (i ∈ Seven), so we
have vaα = vα. �

We offer the following recapitulation and interpretation: The LAT of the
entire PRINTcipher round is constructed from several smaller LATs for the
different Sboxes. There are in fact only three distinct partial LATs, when we
account for the partial permutation and xor keys. At this stage, we can see
how each column of the partial correlation matrix adds up to one, absolutely.

We depend on each row of Table 10.3a containing a constant sign, which
»matches« a particular bit of the input mask. Similarly, each column of Ta-
bles 10.3b and 10.3c contain a constant sign: two columns contain minuses
and one, precisely the one corresponding to the bit used in the rule for v,
contains pluses.

For the resulting big LAT (A), all columns can be added up to ±1 by using
a very simple rule (v) for choosing the signs. In particular, v is an eigenvector.

10.5 CONCLUSION

We have seen how the large biases that follow from the invariant subspace
property in a block cipher can be explained in terms of an eigenvector with
eigenvalue 1 which arises in the correlation matrix of the round function. A
loose summary could be that »linear approximations with input and output
masks chosen according to the invariant subspace will cause trail clustering
inside the invariant subspace—assuming that the linear hull behaves well out-
side the invariant subspace, the linear approximations will have large biases.«

Further, by Theorem 10.5 the invariant subspace is a necessary and suffi-
cient condition for this kind of trail clustering. However, it should be noted
that the theorem does not make any predictions about the eigenvalue 1, other
than that it will show up when there is an invariant subspace. Also, Theo-

10.5. Conclusion 175

rem 10.5 does not rule out that the rest of the linear hull cancels the effect of
the trail clustering, yielding small correlations cF(α, β) = ci

F(α, β) + co
F(α, β).

More to the point, Theorem 10.5 does not guarantee »good behavior« in the
absence of invariant subspaces. It does however make »bad behavior« slightly
less likely in a certain sense. Choosing a function F at random, there is some
a priori probability distribution for eigenvectors and -values. If one can show
that there are no invariant subspaces, the a posteriori probabilities are known
to be 0 for the eigenvectors considered in Theorem 10.5 with eigenvalues 1.

It is worth noting that the eigenvalue 1 by itself is not a sign of trail clus-
tering: if the eigenvector v is »irregular« (possibly containing complex-valued
elements), the limit vTv can certainly have (possibly complex-valued) elements
that are all close to 0. The eigenvectors considered in Theorem 10.5, however,
have a certain structure, which carries over into the limit matrix and yields
elements which are plus or minus a relatively large value.

It would be interesting to see future work try to identify (a) tighter link(s)
between »bad behavior« of the function F from a randomness perspective
(here: an invariant subspace) and »bad behavior« of the linear hull (here: trail
clustering which may or may not be canceled by the rest of the linear hull).

Concluding Remarks

In this dissertation, some new designs in the area of symmetric lightweight
cryptography have been proposed, and various cryptanalytic results have
been presented. A new class of hardware-attractive universal hash func-

tions has been proposed. Grain-128a, the newest member of the Grain family
of stream ciphers has been presented. Various cryptanalytic results have been
proposed on the stream cipher BEAN and the block ciphers KTANTAN and
PRINTcipher. The relation between linear correlations and invariant sub-
spaces, first observed in PRINTcipher, has been analyzed.

While most of the attacks in this dissertation require at least one of a re-
duced number of rounds, an impractical time complexity, and an unrealistic
attack setting, they have advanced the understanding of the specific primitives
cryptanalyzed. Hopefully, they have also increased the knowledge about the
design strategies used in these primitives regarding, e.g., FCSR combiners in
keystream generators or key schedules in block ciphers.

It remains to be seen how far the lightweight trend can go as measured in,
e.g., the number of gates used for a hardware implementation. If and when a
successor or alternative to AES will be standardized, it would be interesting
to see to what extent the cryptanalysis of lightweight designs, which often
balance on the edge of insecurity, has advanced the knowledge of what can
be included in, and excluded from, a robust, long-term secure primitive.

177

Acronyms

ε-AXU ε-almost xor universal

AES Advanced Encryption
Standard

ANF algebraic normal form

BSC binary symmetric channel

CBC cipher block chaining

CTR counter mode

DES Digital Encryption
Standard

ECB electronic codebook

FCSR feedback with carry shift
register

GCM Galois counter mode

iid independent and
identically distributed

IV initialization vector

LAT linear approximation table

LDPC low-density parity-check

LFSR linear feedback shift
register

LTE Long Term Evolution

MAC message authentication
code

NESSIE New European Schemes
for Signatures, Integrity
and Encryption

NFSR nonlinear feedback shift
register

NIST National Institute of
Standards and Technology

OTP one-time pad

PRNG pseudorandom number
generator

SPN substitution–permutation
network

UMTS Universal Mobile
Telecommunications
System

179

References

[AÅBL12] M. A. Abdelraheem, M. Ågren, P. Beelen, and G. Leander,
»On the distribution of linear biases: Three instructive examples,«
in Advances in Cryptology—CRYPTO 2012, ser. Lecture Notes in
Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol.
7417. Springer-Verlag, 2012, pp. 50–67.

[AB04] F. Arnault and T. Berger, »Design of new pseudo random gen-
erators based on filtered FCSR automaton,« October 2004, the
State of the Art of Stream Ciphers, Workshop Record, SASC 2004,
Brugge, Belgium.

[ABL06] F. Arnault, T. Berger, and C. Lauradoux, »Update on F-FCSR
stream cipher,« eSTREAM, ECRYPT Stream Cipher Project, Re-
port 2006/025, 2006, http://www.ecrypt.eu.org/stream.

[ABM08] F. Arnault, T. Berger, and M. Minier, »Some results on FCSR
automata with applications to the security of FCSR-based pseu-
dorandom generators,« IEEE Transactions on Information Theory,
vol. 54, no. 2, pp. 836–840, February 2008.

[ADH+09] J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir,
»Efficient FPGA implementations of high-dimensional cube
testers on the stream cipher Grain-128,« in Workshop on Special
Purpose Hardware for Attacking Cryptographic Systems (SHARCS’09),
2009.

181

http://www.ecrypt.eu.org/stream

182 References

[AGHP90] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, »Simple
construction of almost k-wise independent random variables,«
Annual IEEE Symposium on Foundations of Computer Science, pp.
544–553, 1990.

[ÅHJM11] M. Ågren, M. Hell, T. Johansson, and W. Meier, »Grain-128a:
A new version of Grain-128 with optional authentication,« Inter-
national Journal of Wireless and Mobile Computing, vol. 5, no. 1, pp.
48–59, 2011.

[ALZ11] M. A. Abdelraheem, G. Leander, and E. Zenner, »Differential
cryptanalysis of round-reduced PRINTcipher: Computing roots
of permutation,« in Fast Software Encryption—FSE 2011, ser. Lec-
ture Notes in Computer Science, A. Joux, Ed., vol. 6733. Springer-
Verlag, 2011, pp. 1–17.

[BBS06] E. Barkan, E. Biham, and A. Shamir, »Rigorous bounds
on cryptanalytic time/memory tradeoffs,« in Advances in
Cryptology—CRYPTO 2006, ser. Lecture Notes in Computer Sci-
ence, C. Dwork, Ed., vol. 4117. Springer-Verlag, 2006, pp. 1–21.

[BCK] M. Bellare, R. Canetti, and H. Krawczyk, »Keying hash func-
tions for message authentication,« in Advances in Cryptology—
CRYPTO’96, ser. Lecture Notes in Computer Science, N. Koblitz,
Ed., vol. 1109. Springer-Verlag, pp. 1–15.

[BGJ08] C. Berbain, H. Gilbert, and A. Joux, »Algebraic and correla-
tion attacks against linearly filtered non linear feedback shift reg-
isters,« in Selected Areas in Cryptography—SAC 2008, ser. Lecture
Notes in Computer Science, R. Avanzi, L. Keliher, and F. Sica,
Eds., vol. 5381. Springer-Verlag, 2008, pp. 184–198.

[BGM06] C. Berbain, H. Gilbert, and A. Maximov, »Cryptanalysis of
Grain,« in Fast Software Encryption—FSE 2006, ser. Lecture Notes
in Computer Science, M. Robshaw, Ed., vol. 4047. Springer-
Verlag, 2006, pp. 15–29.

[Bih94] E. Biham, »New types of cryptanalytic attacks using related
keys,« Journal of Cryptology, vol. 7, no. 4, pp. 229–246, 1994.

[BJV04] T. Baignères, P. Junod, and S. Vaudenay, »How far can we
go beyond linear cryptanalysis?« in Advances in Cryptology—
ASIACRYPT 2004, ser. Lecture Notes in Computer Science, P. J.
Lee, Ed., vol. 3329. Springer-Verlag, 2004, pp. 432–450.

183

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe,
»PRESENT: An ultra-lightweight block cipher,« in Cryptographic
Hardware and Embedded Systems—CHES 2007, ser. Lecture Notes
in Computer Science, P. Paillier and I. Verbauwhede, Eds., vol.
4727. Springer-Verlag, 2007, pp. 450–466.

[BKR11] A. Bogdanov, D. Khovratovich, and C. Rechberger, »Bi-
clique cryptanalysis of the full AES,« in Advances in Cryptology—
ASIACRYPT 2011, ser. Lecture Notes in Computer Science, D. H.
Lee and X. Wang, Eds., vol. 7073. Springer-Verlag, 2011, pp. 344–
371.

[BL05] A. Braeken and J. Lano, »On the (im)possibility of practical
and secure nonlinear filters and combiners.« in Selected Areas in
Cryptography—SAC 2005, ser. Lecture Notes in Computer Science,
B. Preneel and S. Tavares, Eds., vol. 3897. Springer-Verlag, 2005,
pp. 159–174.

[BLP08] D. J. Bernstein, T. Lange, and C. Peters, »Attacking and defend-
ing the McEliece cryptosystem,« in Post-Quantum Cryptography—
PQCrypto 2008, ser. Lecture Notes in Computer Science, J. Buch-
mann and J. Ding, Eds., vol. 5299. Springer-Verlag, 2008, pp.
31–46.

[BR10] A. Bogdanov and C. Rechberger, »A 3-subset meet-in-the-
middle attack: cryptanalysis of the lightweight block cipher
KTANTAN,« in Selected Areas in Cryptography—SAC 2010, ser. Lec-
ture Notes in Computer Science, A. Biryukov, G. Gong, and D. R.
Stinson, Eds., vol. 6544. Springer-Verlag, 2010, pp. 229–240.

[BR11] A. Bogdanov and V. Rijmen, »Linear hulls with correlation zero
and linear cryptanalysis of block ciphers,« Cryptology ePrint
Archive, Report 2011/123, 2011, http://eprint.iacr.org/2011/123.

[BS93] E. Biham and A. Shamir, Differential Cryptanalysis of the Data En-
cryption Standard. Springer-Verlag, 1993.

[BS00] A. Biryukov and A. Shamir, »Cryptanalytic time/memory/data
tradeoffs for stream ciphers,« in Advances in Cryptology—
ASIACRYPT 2000, ser. Lecture Notes in Computer Science,
T. Okamoto, Ed., vol. 1976. Springer-Verlag, 2000, pp. 1–13.

http://eprint.iacr.org/2011/123

184 References

[BW99] A. Biryukov and D. Wagner, »Slide attacks,« in Fast Software
Encryption—FSE’99, ser. Lecture Notes in Computer Science, L. R.
Knudsen, Ed., vol. 1636. Springer-Verlag, 1999, pp. 245–259.

[Car10a] C. Carlet, »Boolean functions for cryptography and error-
correcting codes,« in Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, Y. Crama and P. L. Hammer,
Eds. Cambridge University Press, 2010, pp. 257–397.

[Car10b] C. Carlet, »Vectorial boolean functions for cryptography,« in
Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, Y. Crama and P. L. Hammer, Eds. Cambridge Uni-
versity Press, 2010, pp. 398–469.

[CC98] A. Canteaut and F. Chabaud, »A new algorithm for find-
ing minimum-weight words in a linear code: Application to
McEliece’s cryptosystem and to narrow-sense BCH codes of
length 511,« IEEE Transactions on Information Theory, vol. 44, no. 1,
pp. 367–378, January 1998.

[CHJ02] D. Coppersmith, S. Halevi, and C. Jutla, »Cryptanalysis of
stream ciphers with linear masking,« in Advances in Cryptology—
CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung,
Ed., vol. 2442. Springer-Verlag, 2002, pp. 515–532.

[CJM02] P. Chose, A. Joux, and M. Mitton, »Fast correlation attacks:
An algorithmic point of view,« in Advances in Cryptology—
EUROCRYPT 2002, ser. Lecture Notes in Computer Science,
L. Knudsen, Ed., vol. 2332. Springer-Verlag, 2002, pp. 209–221.

[CJS00] V. Chepyzhov, T. Johansson, and B. Smeets, »A simple algorithm
for fast correlation attacks on stream ciphers,« in Fast Software
Encryption—FSE 2000, ser. Lecture Notes in Computer Science,
B. Schneier, Ed., vol. 1978. Springer-Verlag, 2000, pp. 181–195.

[CM03] N. Courtois and W. Meier, »Algebraic attacks on stream ciphers
with linear feedback,« in Advances in Cryptology—EUROCRYPT
2003, ser. Lecture Notes in Computer Science, E. Biham, Ed., vol.
2656. Springer-Verlag, 2003, pp. 345–359.

[CT00] A. Canteaut and M. Trabbia, »Improved fast correlation attacks
using parity-check equations of weight 4 and 5,« in Advances in
Cryptology—EUROCRYPT 2000, ser. Lecture Notes in Computer
Science, B. Preneel, Ed., vol. 1807. Springer-Verlag, 2000, pp. 573–
588.

185

[DDK09] C. De Cannière, O. Dunkelman, and M. Knežević, »KATAN
and KTANTAN — a family of small and efficient hardware-
oriented block ciphers,« in Cryptographic Hardware and Embedded
Systems—CHES 2009, ser. Lecture Notes in Computer Science,
C. Clavier and K. Gaj, Eds., vol. 5747. Springer-Verlag, 2009,
pp. 272–288.

[DGP+11] I. Dinur, T. Güneysu, C. Paar, A. Shamir, and R. Zimmermann,
»An experimentally verified attack on full Grain-128 using dedi-
cated reconfigurable hardware,« Cryptology ePrint Archive, Re-
port 2011/282, 2011, http://eprint.iacr.org/2011/282.

[DGV95] J. Daemen, R. Govaerts, and J. Vandewalle, »Correlation ma-
trices,« in Fast Software Encryption—FSE’94, ser. Lecture Notes in
Computer Science, B. Preneel, Ed., vol. 1008. Springer-Verlag,
1995, pp. 275–285.

[DH76] W. Diffie and M. E. Hellman, »New directions in cryptography,«
IEEE Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
November 1976.

[DH77] W. Diffie and M. E. Hellman, »Exhaustive cryptanalysis of the
NBS data encryption standard,« Computer, vol. 10, no. 6, pp. 74–
84, 1977.

[DKP08] C. De Cannière, Ö. Küçük, and B. Preneel, »Analysis of
Grain’s initialization algorithm,« in Progress in Cryptology—
AFRICACRYPT 2008, ser. Lecture Notes in Computer Science,
S. Vaudenay, Ed., vol. 5023. Springer-Verlag, 2008, pp. 276–289.

[DP08] C. De Cannière and B. Preneel, »Trivium,« in New Stream Ci-
pher Designs, ser. Lecture Notes in Computer Science, M. Robshaw

and O. Billet, Eds., vol. 4986. Springer-Verlag, 2008, pp. 244–266.

[DR01] J. Daemen and V. Rijmen, »The wide trail design strategy,« in
Cryptography and Coding 2001, ser. Lecture Notes in Computer Sci-
ence, B. Honary, Ed., vol. 2260. Springer-Verlag, 2001, pp. 222–
238.

[DR02] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Springer-Verlag, 2002.

[DS11] I. Dinur and A. Shamir, »Breaking Grain-128 with dynamic cube
attacks,« in Fast Software Encryption—FSE 2011, ser. Lecture Notes
in Computer Science, A. Joux, Ed., vol. 6733. Springer-Verlag,
2011, pp. 167–187.

http://eprint.iacr.org/2011/282

186 References

[EHJ07] H. Englund, M. Hell, and T. Johansson, »Two general at-
tacks on Pomaranch-like keystream generators,« in Fast Software
Encryption—FSE 2007, ser. Lecture Notes in Computer Science,
A. Biryukov, Ed., vol. 4593. Springer-Verlag, 2007, pp. 274–289.

[EJ05] H. Englund and T. Johansson, »A new simple technique to
attack filter generators and related ciphers,« in Selected Areas in
Cryptography—SAC 2004, ser. Lecture Notes in Computer Science,
H. Handschuh and M. A. Hasan, Eds., vol. 3357. Springer-
Verlag, 2005, pp. 39–53.

[ETS09] ETSI/SAGE, »Specification of the 3GPP confidentiality and in-
tegrity algorithms UEA2 & UIA2. Document 1: UEA2 and UIA2
specification,« 2009.

[ETS11a] ETSI/SAGE, »Specification of the 3GPP confidentiality and in-
tegrity algorithms 128-EEA3 & 128-EIA3. Document 1: 128-EEA3
and 128-EIA3 specification,« 2011.

[ETS11b] ETSI/SAGE, »Specification of the 3GPP confidentiality and in-
tegrity algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC spec-
ification,« 2011.

[FGKV07] W. Fischer, B. M. Gammel, O. Kniffler, and J. Velten, »Differ-
ential power analysis of stream ciphers,« in Topics in Cryptology—
CT-RSA 2007, ser. Lecture Notes in Computer Science, M. Abe,
Ed., vol. 4377. Springer-Verlag, 2007, pp. 257–270.

[FGRV10] T. Fuhr, H. Gilbert, J.-R. Reinhard, and M. Videau, »A forgery
attack on the candidate LTE integrity algorithm 128-EIA3 (up-
dated version),« Cryptology ePrint Archive, Report 2010/618,
2010, http://eprint.iacr.org/2010/618.

[FGRV12] T. Fuhr, H. Gilbert, J.-R. Reinhard, and M. Videau, »Analysis of
the initial and modified versions of the candidate 3GPP integrity
algorithm 128-EIA3,« in Selected Areas in Cryptography—SAC 2011,
ser. Lecture Notes in Computer Science, A. Miri and S. Vaude-
nay, Eds., vol. 7118. Springer-Verlag, 2012, pp. 230–242.

[FI92] S. H. Friedberg and A. J. Insel, »Convergence of matrix pow-
ers,« International Journal of Mathematical Education in Science and
Technology, vol. 23, no. 5, pp. 765–769, 1992.

http://eprint.iacr.org/2010/618

187

[FMS08] S. Fischer, W. Meier, and D. Stegemann, »Equivalent represen-
tations of the F-FCSR keystream generator,« February 2008, the
State of the Art of Stream Ciphers, Workshop Record, SASC 2008,
Lausanne, Switzerland.

[GMS74] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, »Codes
which detect deception,« Bell Systems Technical Journal, vol. 53,
no. 3, pp. 405–424, 1974.

[Gol94] J. D. Golić, »Intrinsic statistical weakness of keystream gener-
ators,« in Advances in Cryptology—ASIACRYPT’94, ser. Lecture
Notes in Computer Science, J. Pieprzyk and R. Safavi-Naini,
Eds., vol. 917. Springer-Verlag, 1994, pp. 91–103.

[Gol96] J. D. Golić, »Computation of low-weight parity-check polynomi-
als,« Electronic Letters, vol. 32, no. 21, pp. 1981–1982, October 1996.

[Hel80] M. E. Hellman, »A cryptanalytic time–memory trade-off,« IEEE
Transactions on Information Theory, vol. 26, no. 4, pp. 401–406, July
1980.

[HJ07] M. Hell and T. Johansson, »On the problem of finding linear
approximations and cryptanalysis of Pomaranch version 2,« in Se-
lected Areas in Cryptography—SAC 2006, ser. Lecture Notes in Com-
puter Science, E. Biham, Ed., vol. 4356. Springer-Verlag, 2007, pp.
220–234.

[HJ08] M. Hell and T. Johansson, »Breaking the F-FCSR-H stream ci-
pher in real time,« in Advances in Cryptology—ASIACRYPT 2008,
ser. Lecture Notes in Computer Science, J. Pieprzyk, Ed., vol. 5350.
Springer-Verlag, 2008, pp. 557–569.

[HJ11] M. Hell and T. Johansson, »Linear attacks on stream ciphers,« in
Advanced Linear Cryptanalysis of Block and Stream Ciphers, P. Junod

and A. Canteaut, Eds. IOS Press, 2011, pp. 55–85.

[HJB08] M. Hell, T. Johansson, and L. Brynielsson, »An overview of
distinguishing attacks on stream ciphers,« Cryptography and Com-
munications, vol. 1, no. 1, pp. 71–94, 2008.

[HJM06] M. Hell, T. Johansson, and W. Meier, »Grain: A stream cipher
for constrained environments.« International Journal of Wireless and
Mobile Computing, vol. 2, no. 1, pp. 86–93, 2006.

188 References

[HJMM06] M. Hell, T. Johansson, A. Maximov, and W. Meier, »A stream
cipher proposal: Grain-128,« in International Symposium on Infor-
mation Theory—ISIT 2006. IEEE, 2006.

[HP08] H. Handschuh and B. Preneel, »Key-recovery attacks on uni-
versal hash function based MAC algorithms,« in Advances in
Cryptology—CRYPTO 2008, ser. Lecture Notes in Computer Sci-
ence, D. Wagner, Ed., vol. 5157. Springer-Verlag, 2008, pp. 144–
161.

[HS04] J. Hoch and A. Shamir, »Fault analysis of stream ciphers.« in
Cryptographic Hardware and Embedded Systems—CHES 2004, ser.
Lecture Notes in Computer Science, M. Joye and J.-J. Quisquater,
Eds., vol. 3156. Springer-Verlag, 2004, pp. 240–253.

[Int99] International Organization for Standardization (ISO),
»ISO/IEC 9797-1, information technology – security techniques –
message authentication codes (MACs) – part 1: Mechanisms using
a block cipher,« 1999.

[Int08] International Electrotechnical Commission (IEC), »IEC
80000-13:2008, quantities and units – part 13: Information science
and technology,« 2008.

[JHK05] C. Jansen, T. Helleseth, and A. Kholosha, »Cascade jump con-
trolled sequence generator (CJCSG),« eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/022, 2005, http://www.ecrypt.eu.org/
stream.

[JJ99] T. Johansson and F. Jönsson, »Fast correlation attacks based on
turbo code techniques,« in Advances in Cryptology—CRYPTO’99,
ser. Lecture Notes in Computer Science, M. Wiener, Ed., vol. 1666.
Springer-Verlag, 1999, pp. 181–197.

[JJ00] T. Johansson and F. Jönsson, »Fast correlation attacks through
reconstruction of linear polynomials,« in Advances in Cryptology—
CRYPTO 2000, ser. Lecture Notes in Computer Science, M. Bel-
lare, Ed., vol. 1880. Springer-Verlag, 2000, pp. 300–315.

[JKS94] T. Johansson, G. Kabatianskii, and B. Smeets, »On the rela-
tion between A-codes and codes correcting independent errors,«
in Advances in Cryptology—EUROCRYPT’93, ser. Lecture Notes in
Computer Science, T. Helleseth, Ed., vol. 765. Springer-Verlag,
1994, pp. 1–11.

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

189

[JL11] T. Johansson and C. Löndahl, »An improvement of Stern’s al-
gorithm,« Department of Electrical and Information Technology,
Lund University, Tech. Rep., 2011, https://lup.lub.lu.se/record/
2204753.

[KDH12] F. Karakoç, H. Demirci, and A. E. Harmanci, »Combined
differential and linear cryptanalysis of reduced-round PRINTci-
pher,« in Selected Areas in Cryptography—SAC 2011, ser. Lecture
Notes in Computer Science, A. Miri and S. Vaudenay, Eds., vol.
7118. Springer-Verlag, 2012, pp. 169–184.

[KG94] A. Klapper and M. Goresky, »2-adic shift registers,« in Fast Soft-
ware Encryption—FSE’93, ser. Lecture Notes in Computer Science,
R. Anderson, Ed., vol. 809. Springer-Verlag, 1994, pp. 174–178.

[KG97] A. Klapper and M. Goresky, »Feedback shift registers, 2-adic
span, and combiners with memory,« Journal of Cryptology, vol. 10,
no. 2, pp. 111–147, 1997.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun, »Differential power analysis,« in
Advances in Cryptology—CRYPTO’99, ser. Lecture Notes in Com-
puter Science, M. Wiener, Ed., vol. 1666. Springer-Verlag, 1999,
pp. 388–397.

[KLPR10] L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw,
»PRINTcipher: A block cipher for IC-printing,« in Cryptographic
Hardware and Embedded Systems—CHES 2010, ser. Lecture Notes in
Computer Science, S. Mangard and F.-X. Standaert, Eds., vol.
6225. Springer-Verlag, 2010, pp. 16–32.

[KM93] E. Kushilevitz and Y. Mansour, »Learning decision trees using
the fourier spectrum,« SIAM Journal on Computing, vol. 22, no. 6,
pp. 1331–1348, 1993.

[Knu93] L. R. Knudsen, »Cryptanalysis of LOKI 91,« in Advances in
Cryptology—AUSCRYPT’92, ser. Lecture Notes in Computer Sci-
ence, J. Seberry and Z. Y, Eds., vol. 718. Springer-Verlag, 1993,
pp. 196–208.

[Knu95] L. R. Knudsen, »Truncated and higher order differentials,« in Fast
Software Encryption—FSE’94, ser. Lecture Notes in Computer Sci-
ence, B. Preneel, Ed., vol. 1008. Springer-Verlag, 1995, pp. 196–
211.

https://lup.lub.lu.se/record/2204753
https://lup.lub.lu.se/record/2204753

190 References

[Knu98] L. R. Knudsen, »DEAL – a 128-bit block cipher,« Department of
Informatics, University of Bergen, Tech. Rep. 151, 1998, http://
www2.mat.dtu.dk/people/Lars.R.Knudsen/papers/deal.pdf.

[KOJL09] N. Kumar, S. Ojha, K. Jain, and S. Lal, »BEAN: A lightweight
stream cipher,« in Proceedings of the 2nd International Conference on
Security of Information and Networks, SIN 2009. ACM, 2009, pp. 168–
171.

[KR94] B. S. Kaliski and M. J. B. Robshaw, »Linear cryptanalysis
using multiple approximations,« in Advances in Cryptology—
CRYPTO’94, ser. Lecture Notes in Computer Science, Y. Desmedt,
Ed., vol. 839. Springer-Verlag, 1994, pp. 26–39.

[KR07] L. R. Knudsen and V. Rijmen, »Known-key distinguishers for
some block ciphers,« in Advances in Cryptology—ASIACRYPT 2007,
ser. Lecture Notes in Computer Science, K. Kurosawa, Ed., vol.
4833. Springer-Verlag, 2007, pp. 315–324.

[Kra94] H. Krawczyk, »LFSR-based hashing and authentication,« in Ad-
vances in Cryptology—CRYPTO’94, ser. Lecture Notes in Computer
Science, Y. Desmedt, Ed., vol. 839. Springer-Verlag, 1994, pp. 129–
139.

[Kra95] H. Krawczyk, »New hash functions for message authentication,«
in Advances in Cryptology—EUROCRYPT’95, ser. Lecture Notes in
Computer Science, L. C. Guillou and J.-J. Quisquater, Eds., vol.
921. Springer-Verlag, 1995, pp. 301–310.

[Küç06] Ö. Küçük, »Slide resynchronization attack on the initialization
of Grain 1.0,« eSTREAM, ECRYPT Stream Cipher Project, Report
2006/044, 2006, http://www.ecrypt.eu.org/stream.

[LAAZ11] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zen-
ner, »A cryptanalysis of PRINTcipher: The invariant subspace at-
tack,« in Advances in Cryptology—CRYPTO 2011, ser. Lecture Notes
in Computer Science, P. Rogaway, Ed., vol. 6841. Springer-Verlag,
2011, pp. 206–221.

[Lea11] G. Leander, »On linear hulls, statistical saturation attacks,
PRESENT and a cryptanalysis of PUFFIN,« in Advances in
Cryptology—EUROCRYPT 2011, ser. Lecture Notes in Computer
Science, K. G. Paterson, Ed., vol. 6632. Springer-Verlag, 2011, pp.
303–322.

[Lea12] G. Leander, personal communication, 2012.

http://www2.mat.dtu.dk/people/Lars.R.Knudsen/papers/deal.pdf
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/papers/deal.pdf
http://www.ecrypt.eu.org/stream

191

[LJSH08] Y. Lee, K. Jeong, J. Sung, and S. Hong, »Related-key chosen IV
attacks on Grain-v1 and Grain-128,« in 13th Australasian Conference
on Information Security and Privacy—ACISP 2008, ser. Lecture Notes
in Computer Science, Y. Mu, W. Susilo, and J. Seberry, Eds., vol.
5107. Springer-Verlag, 2008, pp. 321–335.

[Mat94a] M. Matsui, »The first experimental cryptanalysis of the Data En-
cryption Standard,« in Advances in Cryptology—CRYPTO’94, ser.
Lecture Notes in Computer Science, Y. Desmedt, Ed., vol. 839.
Springer-Verlag, 1994, pp. 1–11.

[Mat94b] M. Matsui, »Linear cryptanalysis method for DES cipher,« in Ad-
vances in Cryptology—EUROCRYPT’93, ser. Lecture Notes in Com-
puter Science, T. Helleseth, Ed., vol. 765. Springer-Verlag, 1994,
pp. 386–397.

[Max06] A. Maximov, »Cryptanalysis of the “Grain” family of stream ci-
phers,« in ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS’06), 2006, pp. 283–288.

[MD12] S. S. Mansouri and E. Dubrova, »An architectural countermea-
sure against power analysis attacks for FSR-based stream ciphers,«
in Constructive Side-Channel Analysis and Secure Design—COSADE
2012, ser. Lecture Notes in Computer Science, W. Schindler and

S. A. Huss, Eds., vol. 7275. Springer-Verlag, 2012, pp. 54–68.

[MFI02] M. Mihaljević, M. Fossorier, and H. Imai, »Fast correlation at-
tack algorithm with list decoding and an application,« in Fast Soft-
ware Encryption—FSE 2001, ser. Lecture Notes in Computer Sci-
ence, M. Matsui, Ed., vol. 2355. Springer-Verlag, 2002, pp. 196–
210.

[MMT11] A. May, A. Meurer, and E. Tomae, »Decoding random lin-
ear codes in Õ

(
20.054n),« in Advances in Cryptology—ASIACRYPT

2011, ser. Lecture Notes in Computer Science, D. H. Lee and

X. Wang, Eds., vol. 7073. Springer-Verlag, 2011, pp. 107–124.

[MS89] W. Meier and O. Staffelbach, »Fast correlation attacks on cer-
tain stream ciphers,« Journal of Cryptology, vol. 1, no. 3, pp. 159–
176, 1989.

192 References

[MV04] D. A. McGrew and J. Viega, »The security and performance of
the Galois/Counter Mode (GCM) of operation,« in Progress in
Cryptology—INDOCRYPT 2004, ser. Lecture Notes in Computer
Science, A. Canteaut and K. Viswanathan, Eds., vol. 3348.
Springer-Verlag, 2004, pp. 343–355.

[NIS10] NIST, »A statistical test suite for random and pseudorandom
number generators for cryptographic applications,« NIST Special
Publication 800-22b, 2010.

[NIS12] NIST, »Recommendation for the Triple Data Encryption Algo-
rithm (TDEA) block cipher (revised January 2012),« NIST Special
Publication 800-67 Revision 1, 2012.

[NN93] J. Naor and M. Naor, »Small-bias probability spaces: Effi-
cient constructions and applications,« SIAM Journal on Computing,
vol. 22, no. 4, pp. 838–856, 1993.

[Nyb95] K. Nyberg, »Linear approximation of block ciphers,« in Advances
in Cryptology—EUROCRYPT’94, ser. Lecture Notes in Computer
Science, A. D. Santis, Ed., vol. 950. Springer-Verlag, 1995, pp.
439–444.

[Oec03] P. Oechslin, »Making a faster cryptanalytic time-memory trade-
off,« in Advances in Cryptology—CRYPTO 2003, ser. Lecture Notes
in Computer Science, D. Boneh, Ed. Springer-Verlag, 2003, vol.
2729, pp. 617–630.

[Old40] R. Oldenburger, »Infinite powers of matrices and characteristic
roots,« Duke Mathematical Journal, vol. 6, no. 2, pp. 357–361, 1940.

[PK95] W. Penzhorn and G. Kühn, »Computation of low-weight parity
checks for correlation attacks on stream ciphers,« in Cryptography
and Coding – 5th IMA Conference, ser. Lecture Notes in Computer
Science, C. Boyd, Ed., vol. 1025. Springer-Verlag, 1995, pp. 74–83.

[PL11] N. R. Pillai and Y. K. Lather, »Algebraic attack on BEAN a
lightweight stream cipher,« 2011, unpublished manuscript.

[RH02] G. Rose and P. Hawkes, »On the applicability of distinguishing
attacks against stream ciphers,« Cryptology ePrint Archive, Re-
port 2002/142, 2002, http://eprint.iacr.org/2002/142.

[Rij10] V. Rijmen, »Practical-titled attack on AES-128 using chosen-text
relations,« Cryptology ePrint Archive, Report 2010/337, 2010,
http://eprint.iacr.org/2010/337.

http://eprint.iacr.org/2002/142
http://eprint.iacr.org/2010/337

193

[Sar08] P. Sarkar, »A new universal hash function and other crypto-
graphic algorithms suitable for resource constrained devices,«
Cryptology ePrint Archive, Report 2008/216, 2008, http://eprint.
iacr.org/2008/216.

[SDGM01] L. R. Simpson, E. Dawson, J. D. Golić, and W. L. Millan,
»LILI keystream generator,« in Selected Areas in Cryptography—
SAC 2000, ser. Lecture Notes in Computer Science, D. R. Stin-
son and S. Tavares, Eds., vol. 2012. Springer-Verlag, 2001, pp.
248–261.

[Sim70] G. J. Simmons, »The number of irreducible polynomials of degree
n over GF(p),« The American Mathematical Monthly, vol. 77, no. 7,
pp. 743–745, 1970.

[Sim92] G. J. Simmons, »A survey of information authentication,« in Con-
temporary Cryptology, The Science of Information Integrity, G. J. Sim-
mons, Ed. IEEE Press, 1992, pp. 379–419.

[Sta10] P. Stankovski, »Greedy distinguishers and nonrandomness de-
tectors,« in Progress in Cryptology—INDOCRYPT 2010, ser. Lecture
Notes in Computer Science, G. Gong and K. C. Gupta, Eds., vol.
6498. Springer-Verlag, 2010, pp. 210–226.

[Ste89] J. Stern, »A method for finding codewords of small weight,« in
Coding Theory and Applications 1988, ser. Lecture Notes in Com-
puter Science, G. Cohen and J. Wolfmann, Eds., vol. 388.
Springer-Verlag, 1989, pp. 106–113.

[Sti92] D. R. Stinson, »Universal hashing and authentication codes,« in
Advances in Cryptology—CRYPTO’91, ser. Lecture Notes in Com-
puter Science, J. Feigenbaum, Ed., vol. 576. Springer-Verlag, 1992,
pp. 74–85.

[TCG92] A. Tardy-Corfdir and H. Gilbert, »A known-plaintext attack of
FEAL-4 and FEAL-6,« in Advances in Cryptology—CRYPTO’91, ser.
Lecture Notes in Computer Science, J. Feigenbaum, Ed., vol. 576.
Springer-Verlag, 1992, pp. 172–182.

[Var97] A. Vardy, »The intractability of computing the minimum distance
of a code,« IEEE Transactions on Information Theory, vol. 43, no. 6,
pp. 1757–1766, November 1997.

[Wag02] D. Wagner, »A generalized birthday problem,« in Advances in
Cryptology—CRYPTO 2002, ser. Lecture Notes in Computer Sci-
ence, M. Yung, Ed., vol. 2442. Springer-Verlag, 2002, pp. 288–303.

http://eprint.iacr.org/2008/216
http://eprint.iacr.org/2008/216

194 References

[WC81] M. N. Wegman and J. L. Carter, »New hash functions and their
use in authentication and set equality,« Journal of Computer and
System Sciences, vol. 22, pp. 265–279, 1981.

[WHJÅ12] H. Wang, M. Hell, T. Johansson, and M. Ågren, »Improved key
recovery attack on the BEAN stream cipher,« 2012, submitted.

[ZW09] H. Zhang and X. Wang, »Cryptanalysis of stream cipher Grain
family,« Cryptology ePrint Archive, Report 2009/109, 2009, http:
//eprint.iacr.org/2009/109.

http://eprint.iacr.org/2009/109
http://eprint.iacr.org/2009/109

