Subsurface geological setting in the Skagerrak area – suitability for storage of carbon dioxide

David Weibull
Examensarbeten i geologi vid Lunds universitet, kandidatarbete, nr 319
(15 hp/ECTS credits)
Subsurface geological setting in the Skagerrak area — suitability for storage of carbon dioxide

Bachelor’s thesis
David Weibull

Department of Geology
Lund University
2012
Contents

1 Introduction ... 5
2 Methods .. 5
3 Background ... 5
4 CCS .. 6
 4.1 Introduction .. 6
 4.2 Geological storage in deep saline aquifers .. 6
 4.2.1 Applications ... 6
 4.2.2 Geological prerequisites .. 6
 4.2.3 Geometry ... 7
 4.2.4 Trapping mechanisms .. 7
 4.2.4.1 Structural and stratigraphic trapping .. 7
 4.2.4.2 Residual trapping .. 7
 4.2.4.3 Solubility trapping ... 7
 4.2.4.4 Mineral trapping .. 7
 4.3 CO₂ storage in Scandinavia ... 8
5 The Skagerrak .. 8
 5.1 Geological setting of the Skagerrak area .. 8
 5.2 Geological history of the Skagerrak area .. 9
6 Results and discussion ... 10
 6.1 Storage potential in the Skagerrak .. 10
 6.2 Assessment and further screening of storage options .. 11
 6.2.1 Rotliegend sandstone .. 11
 6.2.2 Triassic—Jurassic sequences .. 11
 6.2.3 Zechstein halite domes .. 12
 6.3 Evaluation of storage options ... 12
 6.3.1 Storage potential .. 12
 6.3.2 Model results .. 13
 6.3.3 Safety aspects ... 14
 6.3.4 Cost ... 14
7 Conclusions .. 14
8 Acknowledgements ... 15
9 References ... 15
10 Appendix ... 17
 10.1 Comprehensive geological setting and history of the southern margin of the Fennoscandian Shield .. 18
 10.1.1 Precambrian ... 18
 10.1.2 Palaeozoic .. 18
 10.1.2.1 Cambrian – Silurian ... 18
 10.1.2.2 Devonian – Middle Carboniferous ... 18
 10.1.2.3 Late Carboniferous – Permian .. 18
 10.1.3 Mesozoic ... 19
 10.1.3.1 Norian – Rhaetian ... 19
 10.1.3.2 Rhaetian – Hettangian ... 20
 10.1.3.3 Hettangian – Late Sinemurian ... 20
 10.1.3.4 Middle Jurassic – Early Cretaceous ... 20
 10.1.3.5 Late Cretaceous – Early Cenozoic ... 20
 10.1.4 Quaternary .. 21

Cover Picture: Sand and mudstones constituting a heterolite facies of Rhaetian, (Late Triassic), age in Kulla Gunnarstorps, Sweden (Calner 2011).
Abstract: As a part of a global attempt to mitigate impending climate change owing to increasing atmospheric CO\textsubscript{2} levels unconventional methods which may reduce CO\textsubscript{2} emissions are extensively researched. Carbon Capture and Storage, (CCS) is considered to be a promising method for this purpose. As a consequence, worldwide prospection of geological sites in which CO\textsubscript{2} may be stored is currently underway. This thesis will based on information from literature give a general introduction to CCS and thereafter present the geology in Skagerrak and thereafter evaluate the possibility for CO\textsubscript{2} storage in deep geological formations in the above mentioned area. A CCS infrastructure in the Skagerrak area could potentially be supplied with 14 MtCO\textsubscript{2}, if storage of such volumes is possible it would greatly help the Scandinavian countries fulfill the climate goals regarding CO\textsubscript{2} emission reductions. The Skagerrak area is characterized by thick sedimentary sequences of Cambrian – Cretaceous age of which the Paleozoic sequences are severely faulted following Variscan orogeny related tectonism. Gently sloping undeformed sandstones and mudstones of Late Triassic – Middle Jurassic age inherit properties which are well suited for CO\textsubscript{2} storage. Results from models show that an injection of in total 250 MtCO\textsubscript{2} over 25 years is possible to attain without leakage in the Skagerrak Graben. Further studies are required to confirm that this area is suitable for storage of CO\textsubscript{2}.
Regionalgeologi i Skagerrakområdet – lämplighet för koldioxidlagring

DAVID WEIBULL

Nyckelord: CCS, koldioxidlagring, Skagerrak, geologi.

David Weibull, Geologiska institutionen, Lunds Universitet, Sölvegatan 12, 223 62 Lund, Sverige. E-post: david.weibull@gmail.com
1 Introduction

As a result of the global approach to reduce atmospheric CO$_2$ in an attempt to reduce global warming, interest in the Carbon Capture and Storage, (CCS) technique has increased. A global search for finding sites which are suitable for CO$_2$ storage has initiated a re-evaluation of the geological feasibility for CO$_2$ storage in Sweden which was published by Erlström et al. (2011). In this publication the Skagerrak is mentioned as an area that has a potential to include suitable sites for geological storage of CO$_2$ in deep saline aquifers, however, more research is required in order to evaluate the area.

This bachelor thesis in Geology at Lund University corresponds to 15 points. The work presented here is the result of a literature study, which reviews numerous older and recent publications on the subject. A report from an EU Interreg IV project constitutes an important part of the presentation given below.

1.1 Aim and scope of this study

The main aim of this study is to gather, compile and evaluate the necessary conditions and thoughts concerning CO$_2$ storage in the Skagerrak area. Based on this information and the conclusions drawn from it I will try to determine if the CCS technique is feasible in the Skagerrak, primarily based on the geological premises. The scope of this study includes but is not limited to:

- What is CCS? Why is CCS necessary? Why is geology essential for CCS?
- What is the current status of CCS, in the World, in Scandinavia?
- The tectonic evolution of the Skagerrak, what geological features are interesting from a CCS point of view?
- Evaluating the potential for CCS in the Skagerrak.

2 Methods

2.1 Literature study

The list of publications that provide important details when writing this literature-based study was surprisingly quite large. Publications such as the IPCC special report on carbon dioxide capture and storage from 2007 and books by Shackley & Gough (2006) and Wilson & Gerard (2007) provided much of the core information about CCS.

Information about the more regional aspects of this paper was to a large extent based on different projects related to CCS. There are a number of ongoing and completed European projects which are often co-funded by governments, the EU and the industry. These projects have resulted in reports providing more elaborate information about all the aspects connected to CCS. A brief description of projects which have been significant for this study follows.

GESTCO, (European potential for Geological Storage of CO$_2$ from Fossil Fuel Combustion), lead by the GEUS, (Geological survey of Denmark and Greenland) and partially funded by the European Union have assessed the potential for CO$_2$ storage in Europe and its effectiveness in reducing CO$_2$ emissions from the industry until its completion in 2003.

EU GeoCapacity was a project which until 2008 investigated CO$_2$ emissions, infrastructure, potential storage sites and possible matching options of these parameters within the EU followed by economical evaluations.

CCS –Skagerrak/Kattegat was a Norwegian – Swedish project which published the Carbon Capture and Storage in the Skagerrak/Kattegat region Final report, marking the completion of this project in early 2012. This project was an Interreg IV project, which included partners of the Chalmers technical and Gothenburgh universities, the Energy Department of Västra Götaland in Sweden and some private companies and municipalities. The goal was to investigate the possibility of a multinational CCS infrastructure and collective solutions regarding capture transport and storage of CO$_2$ in the Kattegat/Skagerrak area. Much of the discussing and concluding chapters in this thesis are based on data from this project report.

3 Background

An extensive emission of carbon dioxide, which can be attributed primarily to the combustion of fossil fuels has induced a steady increase of CO$_2$ in the atmosphere during the past 100 years (Pachauri et al. 2008). Annual emissions of CO$_2$ during the period 1995 – 2004 were more than double the annual emissions between 1970 – 1994 (0,92 GtCO$_2$ compared to 0,42 GtCO$_2$ per year, respectively (Pachauri et al. 2008). Anthropogenic emission of CO$_2$ is responsible for an increase in atmospheric CO$_2$ concentrations of pre-industrial values of 280 ppm to the 379 ppm of 2005 (IPCC, 2007). What effects this sudden change has on the climate, the ecology and many other parameters is currently widely debated; however, scientific consensus regarding the likelihood of substantial changes in climate has solidified as of late according to (Wilson & Gerard 2007).

Since the implementation of the Kyoto protocol a plethora of efforts to reduce global CO$_2$ emissions have been made. The EU and the UN climate panel, the Intergovernmental Panel on Climate Change (IPCC) have established climate goals which are intended to cause a “Stabilization of greenhouse gas ... concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system” i.e. atmospheric CO$_2$ levels of 450 ppm by 2050 which would limit global warming to a maximum of 2°C compared to pre-industrial temperatures (IPCC, 2007a).

The climate goals have led to an agreement amongst the member states of the EU to reduce CO$_2$
emissions by at least 50% of 1990’s levels by 2050; furthermore, 30% of the total energy production in the EU is scheduled to be renewable by 2020 (European commission, 2009).

The process of phasing over to using less carbon-intensive fuels, renewable energy sources and increasing efficiency in energy use are all core processes to reach climate goals. Moreover, the desire for this transition to take place is further catalyzed by steeped oil prices and the presence of an emission trading system (IPCC, 2007). Despite this, in order to reach the climate goals additional options to mitigate CO₂ emissions need to be researched and evaluated. The search for unconventional ways to reduce CO₂ emissions has resulted in the development of numerous different technologies which may be viable for this purpose, of which Carbon Capture and Storage is considered one of the most promising (IPCC, 2007).

4 CCS

4.1 Introduction

CCS is a fairly new technique developed in the 1990’s which could possibly offer significant reductions in CO₂ emissions with viability regarding both technological and commercial aspects (Shackley & Gough, 2006; Wilson & Gerard, 2007). The method enables large point sources of CO₂ such as energy plants to be equipped with a system that allows chemical or physical absorption of CO₂ from combustion gases (Shackley & Gough, 2006). The captured CO₂ is then available for transport and subsequent storage. Out of several proposed storage options such as biological-, direct ocean- and geological storage, the latter is currently considered the most promising means of storage. In the case of geological storage, the captured CO₂ is transported in pipelines to a storage site where it is injected into a geological formation in which it is then locked up indefinitely (Shackley & Gough, 2006).

Geological storage of CO₂ is considered especially interesting due to the sheer storage capacity, which albeit previous overestimation and greatly varying figures depending on author is estimated by the IPCC to be on the order of 2000 GtCO₂. It is estimated that storage in geological formations initially would amount to a few GtCO₂/year which puts the former figure into context (Erlström, 2011; IPCC, 2007). Shackley & Gough (2006) state that the amount of point sources of CO₂ emissions which can be covered by CCS systems worldwide could equate to an estimated 20 – 40% reduction of CO₂ emissions from fossil fuel combustion.

Shackley & Gough (2006) mention that the transport and storage parts of CCS most likely has a cap regarding cost, which means that as soon as a transport and storage infrastructure, as in pipelines and injection wells, is established, there is little or no additional cost per volume of CO₂ that is stored. The capture part includes more maintenance and larger initial investments, such as large reconstructions and an increased energy usage of 10 – 40%, and therefore accounts for the majority of the total cost of a CCS establishment. The safety of geological storage of CO₂ is not fully evaluated but assuming good site selection and evaluation and consistent monitoring it is most likely a very safe method (IPCC, 2007). Conclusively geological storage of CO₂ might, provided extensive further research, be a safe, relatively cheap and widely used means of reducing atmospheric CO₂ emissions.

4.2 Geological storage in deep saline aquifers

4.2.1 Applications

Currently there are only a few CCS operations in the world that inject >1 MtCO₂ per year, there are however many projects of varying size in the planning stage (Shackley & Gough, 2006). The purpose of many of the current and planned CCS operations is related to a process called Enhanced Hydrocarbon Recovery, (EHR) which allows extraction of otherwise unavailable gas or oil (IPCC, 2007). Another application of CCS is used in gas production on the Norwegian shelf, the extracted methane contains between 5 – 10% unwanted CO₂ which is separated from the methane and reinjected into the bedrock, in this case, this process prevents emission of approximately 1 MtCO₂ annually (IPCC, 2007).

4.2.2 Geological prerequisites

There are a number of different geological formations in which CO₂ can be stored, including deep saline aquifers, salt domes and depleted oil or gas fields (IPCC, 2007). Deep saline aquifers which occur in large sedimentary basins are thought to have a large potential for CO₂ storage. These sedimentary basins are filled with “fossilized groundwater” containing up to 20% dissolved salts which renders the water unsuitable for agricultural use and human consumption (IPCC, 2007). To efficiently store CO₂ it must be transformed into a supercritical state in which it inhibits properties similar to water. The transition takes place as gaseous CO₂ is subjected to 7.38 MPa of pressure combined with temperatures surpassing 31.1 °C (Erlström, 2011). A general rule of thumb is that the required pressure and temperature conditions are present at depths exceeding 800 m below the bedrock surface (Fang et al. 2010), hence the term geological storage in deep aquifers.

Geological storage of CO₂ in deep aquifer requires formations with structural features and physical properties that are more or less analogous to those in which hydrocarbon deposits are found. The necessary stratigraphic sequence has to be composed of two components, i.e. a trap and a seal, (Figure 1a). The trap or reservoir rock is the formation in which supercritical CO₂ is injected, the CO₂ mixes with saline formation water and rises towards the top of the formation as in Figure 1. To allow storage of large amounts of supercritical CO₂ which quickly mi-
grates away from the injection well the trap should optimally possess the following properties according to Erlström (2011) and IPCC (2007):

- Large spatial distribution
- Thickness of >10 m
- High porosity and permeability
- Low level of diagenesis
- Homogenous lithology, e.g. mature sandstone.
- Located at 800 – 2500 m depth

The seal or cap rock which overlies the trap prevents vertical migration of CO₂ (Figure 1a and b). The trap is preferably composed of fine-grained clastic deposits such as claystone, mudstone or shale. The following properties are the most important for the seal cap rock unit (Erlström, 2011; Fang et al. 2010).

- Preferably >100 m thick
- No faults or fractures
- Low porosity and vertical permeability
- Homogenous lithology, e.g. a claystone without sand lenses
- Preferably semi-plastic which allows self-healing of faults or fractures

4.2.3 Geometry
Depending on the geometry of the formation the premises for CO₂ storage vary. The supercritical CO₂ is 30 – 50% lighter than the formation water and migrates towards the top of the formation. Similar to hydrocarbon deposits, anticlinal structural traps are excellent for holding the lighter CO₂ (Erlström, 2011). Apart from anticlinal traps, sloping open aquifers have recently been proposed as sites with large potential for CO₂ storage (Fang et al. 2010). In these aquifers the CO₂ will migrate primarily horizontally as opposed to vertically in anticlinal traps and as the horizontal permeability often exceeds the vertical permeability this may allow storage of larger volumes of CO₂. Fault and stratigraphic traps are also often mentioned as potential candidates in the literature (Fang et al. 2010).

4.2.4 Trapping mechanisms
CO₂ is contained in the aquifer by four trapping mechanisms which operate on separate timescales (Fang et al. 2010). These are briefly described below and illustrated in Figure 2 (Fang et al. 2010).

4.2.4.1 Structural and stratigraphic trapping
The lighter CO₂ rises, displaces formation water and accumulates in the top of the aquifer just below the cap rock. This process is fairly rapid.

4.2.4.2 Residual trapping
As the CO₂ plume migrates upwards a large portion of the CO₂ is capillary trapped as the capillary forces exceed the rising capacity of the CO₂.

4.2.4.3 Solubility trapping
With time injected CO₂ will dissolve in the formation water. Predictions indicate that as much as 20 – 30% of the injected CO₂ is expected to be dissolved in the formation water after approximately 100 years. The CO₂ saturated formation water, holding up to 60 kg of CO₂ per m³ of H₂O, slowly sinks due to the increasing density.

4.2.4.4 Mineral trapping
The dissolution of CO₂ in formation water forms bicarbonate-ions (CO₃²⁻), ions which may react with preexisting minerals to form calcium-, ferrous- and magnesium carbonates. These reactions are slow and a noticeable effect is unlikely to be observed within 100’s of years.

4.2.4.5 Additional trapping mechanisms
Reduction in the density of the injection solution and the surrounding formation water causes the CO₂ to "bubble" and rise. The released gas forms an impermeable cap on the top of the injection zone and prevents the CO₂ from escaping into the overlying cap rock or through the injection well. In addition to trapping mechanisms, chemical reactions within the formation rock may also reduce the risk of leakage. This is illustrated in Figure 2 (Fang et al. 2011).

Figure 1: Generalized outline of homogenous (a) and heterogeneous (b) deep saline aquifers. Modified from Erlström, 2011

Figure 2: The figure shows what trapping mechanisms and how much influence each trapping mechanism has over 10 Ky. The larger portion of CO₂ trapped, the smaller is the risk of leakage. Modified after Erlström et al. (2011).
4.3 CO₂ storage in Scandinavia
The chapter below is based on Erlström (2011) and Bjørnsen et al. (2012). Despite the geological and industrial differences between Sweden and the rest of Europe there is a significant interest for CCS in Sweden. CCS is supported both by the abundant heavy industry and by the government in Sweden which considers CCS to be a technique that is required to fulfill the EU climate goals.

As a consequence of this endorsement, the Swedish geological survey (SGU) was assigned to update, re-evaluate and present the potential for geological storage of CO₂ in Sweden. The potential for geological storage in Sweden is quite limited and restricted to the Cambrian sandstones in the southern Kattegat. It is concluded that the potential for CCS operation would most likely promote future industrial establishments in proximity to a CCS infrastructure in the Skagerrak area, estimated area of interest is within the dotted circle in Figure 3 (Bjørnsen et al. 2012).

The presence of suitable formations for CO₂ storage has been studied and evaluated by the Geological Survey of Denmark and Greenland (GEUS). Their assessment in combination with results from the CO2STORE project indicate relatively good possibilities for finding suitable storage sites in the Skagerrak area (Christiensen and Larsen, 2003). Based on the provided information, the Skagerrak area seems to be a place which is well suited for a multinational CCS project. It is however of great importance that the geology of the area is carefully evaluated.

5 The Skagerrak
5.1 Geological setting of the Skagerrak area
The Skagerrak is a relatively deep sea located in between the North Sea and the Kattegat (Figure 3) (Larsson & Stevens 2008). The Skagerrak is situated upon the Skagerrak/Kattegat platform (SKP) which is bounded to the North and East by the Precambrian Fennoscandian Shield (Figure 4) (Bjørnsen et al. 2012). The gently westwards down sloping Fennoscandian Shield, (Figure 7), is overlapped by a sedimentary rock cover varying from very thick (Cambrian – Silurian) sequences to Triassic – Jurassic sand- and mudstones with thicknesses of 100’s of meters. These formations are overlapped by thinner Jurassic, Cretaceous and Tertiary sequences, and ultimately by 50 – 100 meters of Quaternary deposits (Ro et al. 1990b; Lie et al. 1993; Rise et al. 2008a). The sedimentary outcrops become successively younger further away from the Swedish – Norwegian shoreline, (Figure 4) , additionally the average sediment thickness increases to the SW, with maximum sediment thickness of nearly 9 km at the Fjerritsleve Fault (FF) (Ro et al. 1990b).

Figure 3: Tectonic map of southern Scandinavia. Several geological features are highlighted, including the Danish Basin, the Sorgenfrei-Tornquist Zone, the Skagerrak Graben and the Oslo Graben, not noted with STZ, SG and OG respectively. The Fjerritsleve Fault, (FF) delimits the Fjerritsleve Fault Zone from the Danish Basin, the FFZ can be considered a continuation of the STZ). Modified from Thybo (1997).
Several large scale tectonic structures are present in the Skagerrak (Liboriussen et al. 1987). The Late Palaeozoic Oslo Rift constitutes two structural elements, the Oslo Graben, (OG) and further SW, the Skagerrak Graben (SG) of the same age (Figure 3 and 4). The Skagerrak Graben is demarcated by two parallel NW – SE trending faults, (A and B in Figure 4) (Ro et al. 1990b). The Sorgenfrei-Tornquist Zone (STZ) (Figure 3), a complex tectonic zone which began to form in Early Palaeozoic time is the continuation of the Trans-European Suture Zone (TESZ). The STZ trends in a NW – SE fashion and separates the stable Fennoscandian Shield from the less stable Danish basin (Liboriussen et al. 1987).

Despite rigorous exploration and studies of the adjacent North Sea, including thousands of boreholes and seismic lines produced during hydrocarbon exploration, the subsurface geology of Skagerrak has remained largely unexplored due to the lack of hydrocarbon deposits. Interpretations of seismic data from the Skagerrak are presented by several authors eg. (Ro et al. 1990a; Ro et al.; 1990b, Thybo, 1997). However, information from wells is limited to a single one in Skagen and a few in the western Skagerrak, marked as black crosses on Figure 3 (Thybo, 1997) and have been presented and interpreted by Nielsen (2003).

5.2 Geological history of the Skagerrak area

Knowledge about the tectonic evolution of an area which may be defined for storage of CO$_2$ is most essential. Fault patterns, fracturing, basin evolution and tectonic setting strongly affect the risk assessment regarding storage longevity and containment of the injected CO$_2$. A comprehensive geological setting and geological history of the southern margin of the Fennoscandian Shield is therefore presented in the appendix. This next chapter will however only briefly present the main tectonic events and the features which are significant for CO$_2$ storage in this area. During the Palaeozoic, thick sedimentary sequences of Cambrian, Ordovician and Silurian age accumulated in the Oslo rift, the Skagerrak and adjacent areas. Of these sequences, the majority is Silurian sediments, often several km thick, (Figure 7), which were deposited in more or less pronounced foreland basins which formed during the Caledonian orogeny (Ro et al. 1990a). Due to persisting tectonic activity following the Caledonian orogeny, the Skagerrak area was uplifted during the Late Silurian and much of the Palaeozoic sequences were removed by erosion, the erosive surface is clearly visible in Figure 6 (Liboriussen et al. 1987).

In Late Carboniferous time, (320-300 Ma), large parts of NW Europe was subject to a large scale tectonic event, the Variscan orogeny which as a consequence of the collision of Euramerica and Gondwana, formed the supercontinent Pangea (Thybo, 1997). This event reactivated the STZ by dextral wrench tectonics which furthermore induced SW – NE sinistral oblique or normal faulting which formed the Skagerrak Graben and further north the Oslo Graben. A simplified model of the tectonic regime in the Skagerrak area during Early – Middle Permian is presented in Figure 5.

The deep Skagerrak graben and the sediments which subsequently accumulated within it is depicted in Figure 6 and 7, it is one of the main structural elements which may allow CO$_2$ storage in this area (Bjørnsen et al. 2012). Following the Late Permian subsidence, sandstones belonging to the lithostra-

Figure 4: The distribution of sedimentary facies of varying ages in the Skagerrak area. Note how the relative age of the sediment decreases away from the Fennoscandian Shield. Note the faults marked A & B which delimitates the Skagerrak Graben. Modified from (Ro et al. 1990b)

Figure 5: Early – Middle Permian tectonic regime in the Skagerrak area. Dextral strike slip fault along the STZ. Sinistral oblique- or normal faulting along the Skagerrak Graben, normal faulting due to relative extension demarcates the Oslo Graben. Modified from Fannavoll (1994).
The Rotliegend sandstones are partly composed of erosional volcaniclastic material derived from Variscan orogeny related massive plutonic rock extrusions and might also be suitable for CO₂ storage (Heeremans, 2004; Michelsen & Nielsen, 1993).

During the Mesozoic, primarily Early Triassic until Early Cretaceous, thick sedimentary sequences dominated by sandstones and mudstones were deposited in the Skagerrak area. Sandstones belonging to the Skagerrak, Gassum and Haldager Sand formations were deposited and interlayered by very thick mudstones of the Fjerritslev and the Flyvbjerg & Børglum formations, effectively forming a trap and seal type of sequence which might be suitable for CO₂ storage (Heeremans, 2004). These sequences and their approximate distribution are described by the red, green and yellow areas in Figure 4 and 6. The Mesozoic sequences are deformed due to salt tectonics in the SW parts of Skagerrak (Figure 7 and 9). Movements of the thick Zechstein halite deposits of Late Permian age have formed anticlinal structural traps which may be used for CO₂ storage (Bjørnsen et al. 2012). Cenozoic sequences are more or less absent in the Skagerrak area due to Late Mesozoic uplift of the Fennoscandian Shield (Nielsen, 2003). Quaternary muds mainly of Weichselian age cover the Mesozoic sedimentary sequences, (Figure 12) (Longva et al. 2008; Rise et al. 2008b).

6 Results and discussion

6.1 Storage potential in the Skagerrak

Since this thesis mainly focuses on the geological issues related to the multi-disciplinary CO₂ storage research area, it will suffice to say that the other aspects regarding capture, transport, legal issues and so on concerning CO₂ storage in the Skagerrak are only briefly discussed or not discussed at all in this thesis. In depth information about the mentioned areas as well as other significant matters are presented in their full extent in (Bjørnsen et al. 2012).

Of the many different ways in which CO₂ can be stored in geological media only a few of these methods are available in the Skagerrak region. A primary screening of potential options in the Skagerrak and surrounding areas was compiled by Bjørnsen et al. (2012) and is briefly summarized below.

- Permian sandstones of the Rotliegend unit along the STZ and northern Jylland.
- Triassic and Jurassic sandstones of the Skagerrak, Gassum, Haldager sand and Frederikshavn formations present in eg. the SG and the STZ.
- Rhaetian – Hettangian salt diapirism

6.2 Assessment and further screening of storage options

6.2.1 Rotliegend sandstone

The Rotliegend sandstone unit was believed to be able to act as a trap formation in which CO₂ could be
Figure 8: Stratigraphic cross section from the SW located Ringkøbing–Fyn High throughout Danish Basin and to the Skagerrak–Kattegat platform presenting rough distribution of Triassic, Jurassic and lowest Cretaceous sedimentary rock. The major formations are presented along with the depositional environment, lithology as well as relative age. Note the numerous hiati and relatively less sediment thickness in the SKP compared to the STZ and the Danish Basin due to the limited accommodation space as a result of relatively low subsidence rates (Modified from Nielsen, L. H.).

Figure 9: Seismic model showing the depth to the top of the Gassum Fm in the Skagerrak and adjacent North Sea. The locations of the evaluated areas Model 1, 2 and Hansthol are delimited by red lines. Note the unmistakable NE tilt in the Skagerrak and the evident uplifted domal structures due to salt diapirism at the Hansthol structure and further west. Modified from Bjørnsen et al. (2012).
stored. The overlying Zechstein halites as well as the Middle Triassic marl- and claystones are most likely impermeable and could therefore act as a seal. Aggre- gative, the two formations could enable geological CO₂ storage similar to that described in Figure 1 A (Bjørnsen et al. 2012). This possibility has however been dismissed due to three main reasons as follows.

- A large content of volcanlastic material in the sandstone as much of the sediment was an erosional product of the contemporary evolving plateau lavas.
- Excessive burial of the sandstone
- Excessive thermal conditions accompanied with the Late Carboniferous – Early Permian rifting and coeval massive igneous activity

All of the above mentioned points contribute to increased cementation of the sandstone with reduced porosity and permeability as a result (Bjørnsen et al. 2012). Moreover, as is mentioned in the geological prerequisites chapter, the optimal burial depth is between 800 – 2500 m while the Rotliegend sandstones are located at depths often exceeding 5 km (Figure 7). Due to these circumstances, this option is deemed unsuitable for CO₂ storage (Bjørnsen et al. 2012).

6.2.2 Triassic—Jurassic sequences

Considering the large abundance of Mesozoic sandstones eg. the Skagerrak, Gassum and Haldager sand formations which may act as reservoir rocks and the thick vast mudstones of the Fjerritslev and Børglum & Flyvberg formations which could behave as seals suggest that the prospects of finding suitable plays are good (Figure 8). The Mesozoic plays have not undergone any significant tectonics and is compared to the Palaeozoic formations (Figures 6 and 7) more likely to be well preserved and structurally intact which furthermore reduces the possibility of CO₂ leakage through the seal.

If leakage should occur through the thick mudstones of the Fjerritslev Fm and the Flyvbjerg & Børglum formations it is likely that the up to 200 m thick quaternary sequence composed of mud (Bjørnsen et al. 2012), (Figure 12 A and B), will prevent further vertical migration. Quaternary pre- postglacial muds of similar thickness compose a seal in the newly discovered Peon shallow gas field which houses an estimated 15 – 30 billion m³ of methane gas, hence it can be considered a very effective seal (Bjørnsen et al. 2012, Statoil.com, 2012).

The Mesozoic sequence is tilted (Figure 7 and 9) due to onshore uplift and offshore subsidence, partly due to differences in postglacial rebound magnitudes. This property opens up for the possibility CO₂ storage in sloping aquifers as suggested by Fang et al. (2010). Cretaceous inversion tectonics, which is significant in the North Sea and Western Europe, is partly responsible for the presence of hydrocarbon bearing aquifers in these areas (Kockel, 2003). The Skagerrak area however inhibits very little of this structural feature and thus largely lacks anticlinal aquifers with the exception being anticlinal structures related to halite tectonics in the westernmost Skagerrak.

6.2.3 Zechstein halite domes

The Permian Zechstein halites have due to the viscous low density properties of deeply buried salts given rise to large scale salt tectonics (Figure 7 and 9) in the westernmost Skagerrak and bordering Norwegian Danish Basin (Hospers et al. 1988). These salt movements have resulted in large domal structures which caused superimposing Mesozoic strata to attain an anticlinal form while retaining both the trap and the seal features. These features could prove to be excellent structural traps in which CO₂ can be stored.

Based on these premises one can conclude that the most promising sites for CO₂ storage in the Skagerrak area are the sloping Mesozoic plays in the Skagerrak Graben area and the anticlinal Mesozoic successions in the western Skagerrak. Similarly the screening of potential storage sites in the report by Bjørnsen et al. (2012) suggested three potential storage sites for CO₂ located in the above mentioned areas which are delineated in Figure 9.

6.3 Evaluation of storage options

To be able to evaluate the possibility for CO₂ storage in the sites presented in Figure 9 a number of properties of each site must be investigated and evaluated, these involve:

- Potential of CO₂ storage based on injectivity and storage capacity.
- Safety aspects such as adequate sealing, geological stability and basin pressure.
- Cost, mainly based on the amount of drilling injection and exploration wells needed.

Following this evaluation a summarizing chapter will try to rank the sites based their properties.

Table 1: Various sets of data from the Gassum Fm showing eg. consistently high porosity values. The temperatures are above the required 31.1 °C and the pressure most likely surpasses the 7.38 MPa needed for gaseous CO₂ to transcend into supercritical form (Bjørnsen et al. 2012).

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth [m]</th>
<th>Porosity [%]</th>
<th>Permeability [mD]</th>
<th>Temperature [°C]</th>
<th>Salinity [ppm NaCl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1x</td>
<td>2,100</td>
<td>20.4</td>
<td>90</td>
<td>71</td>
<td>175,000</td>
</tr>
<tr>
<td>K-1x</td>
<td>2,000</td>
<td>23.7</td>
<td>220</td>
<td>68</td>
<td>175,000</td>
</tr>
<tr>
<td>J-1x</td>
<td>1,800</td>
<td>20.3</td>
<td>85</td>
<td>62</td>
<td>106,000</td>
</tr>
<tr>
<td>Felicit-1</td>
<td>1,600</td>
<td>-</td>
<td>-</td>
<td>56</td>
<td>150,000</td>
</tr>
<tr>
<td>Børglum-1</td>
<td>1,450</td>
<td>28.6</td>
<td>650</td>
<td>51</td>
<td>140,000</td>
</tr>
<tr>
<td>Thisted-1</td>
<td>800</td>
<td>27</td>
<td>470</td>
<td>32</td>
<td>96,000</td>
</tr>
<tr>
<td>Møn-1</td>
<td>2,800</td>
<td>21.8</td>
<td>130</td>
<td>92</td>
<td>240,000</td>
</tr>
<tr>
<td>Inez-1</td>
<td>1,700</td>
<td>22.7</td>
<td>170</td>
<td>60</td>
<td>150,000</td>
</tr>
<tr>
<td>Sabby-1</td>
<td>1,100</td>
<td>23.4</td>
<td>200</td>
<td>41</td>
<td>110,000</td>
</tr>
<tr>
<td>Tern-1</td>
<td>1,200</td>
<td>17.7</td>
<td>44</td>
<td>44</td>
<td>120,000</td>
</tr>
<tr>
<td>Romle-1</td>
<td>2,700</td>
<td>15.3</td>
<td>15</td>
<td>100</td>
<td>106,000</td>
</tr>
<tr>
<td>Vibian-1</td>
<td>1,900</td>
<td>24.1</td>
<td>240</td>
<td>65</td>
<td>170,000</td>
</tr>
</tbody>
</table>
6.3.1 Storage potential

The storage potential of a saline aquifer, as in the case of the Gassum and Haldager Sand formations, is mostly controlled by the storage capacity and the injectivity of the formation (Cinar et al. 2009). The storage capacity determines the amount of CO$_2$ that can be stored in a formation and is largely dependent on the volume, porosity and the volumetric and microscopic displacement efficiencies of the formation (Cinar et al. 2009). According to Fang et al. (2010) and Bachu et al. (2007) the evaluation of storage capacity of a saline aquifer is very difficult due to different trapping mechanisms acting on separate time scales. However, momentarily it can be achieved by numerical modeling which has been done in the report by Bjørnsen et al. (2012). Modeling of the potential storage volumes of an aquifer might also be obstructed by the presence of aquifer heterogeneities, faults, geochemical parameters and temperature (Erlström, 2011).

While the storage capacity is largely a volumetric unit of measurement, the injectivity is a parameter which quantifies the possibility of introducing a fluid to a formation, (in this case supercritical CO$_2$), and at which rate the fluid can be injected. The injectivity is determined mainly by the permeability and the fracture characteristics of the formation, especially in the exact proximity of the site of injection (Fang et al. 2010; Cinar et al. 2009).

Geological reservoir models for the selected sites presented by Bjørnsen et al. (2012) are based mostly on the parameters mentioned above. However, as exact measurements many parameters are hard to measure in situ they are based on e.g. formulas as in the case of permeability data which were derived from empirical porosity data from the Gassum, Haldager Sand, and the Skagerrak formations (Bjørnsen et al. 2012). The temperature data were based on a model which assumed a surface temperature of 8°C and a temperature gradient of 30°C/km. Porosity data and the permeability formula used in the models were determined from well logs and core samples which were supplied along with other reservoir parameters, such as reservoir water salinity data, by the GEUS (Bjørnsen et al. 2012). All of the above mentioned parameters regarding the Gassum Fm are supplied in Table 1 below.

According to Erlström (2011) the needed porosity for CO$_2$ storage to be suitable varies between a minimum of 10 – 15% with optimal conditions being between 20 – 30% porosity. The mean porosity in the Gassum Fm according to data from 12 wells located in adjacent areas is 22.5% which can be considered excellent (Bjørnsen et al. 2012). The relationship between porosity and permeability derived by GEUS suggests permeabilities between 15 and 650 mD with a mean of 210 mD (Bjørnsen et al. 2012). Erlström (2011) suggests that sandstones with permeability values close to or exceeding 100 mD are suitable for CO$_2$ storage, it is therefore likely that injectivity will be sufficiently high to allow for CO$_2$ storage in the Gassum Fm. The calculated temperatures and pressures at this depth in the Gassum Fm are almost certain to exceed the needed 31.1 °C and 7.38 MPa needed for the CO$_2$ to be in a supercritical state. The mean temperature in the data compiled by (Bjørnsen et al. 2012) is 61°C and the pressure is calculated to exceed 7.38 MPa is present on the order of 800 m of depth, compared to the planned injection depth of 2000 m (Bjørnsen et al. 2012). The thickness of the Gassum Fm in the Skagerrak Graben varies between 50 – 300 m but the average seems to be about 125 m (Bjørnsen et al. 2012). Erlström (2011) recommends a minimum thickness of 20 m for the trap, depending on author this value varies, eg. Fang et al. (2010) and IPCC (2007) proposes that a reservoir rock thickness of >10 m is sufficient. The seal integrity needs to be preserved to prevent leakage and the cap rock needs to be thick enough to withstand a large increase in reservoir pressure following injection of CO$_2$. Since the injectivity of a
reservoir is highly individual, the increase in reservoir pressure is likewise specific for each site. This poses a demand to develop scenarios and model on how much pressure the seal can withstand before fracturing which is directly related to both the former parameters and of course the thickness of the cap rock. Erlström (2011) proposes a >100 m thickness of the caprock to eliminate leakage. This thickness is most certainly reached by the Fjerritslev Fm, and most likely also by the Flyvberg- and Børglum formations as well as the uppermost 100 – 200 m of Quaternary till and muds (Bjørnsen et al. 2012). Furthermore, the Mesozoic formations are sloping, open aquifers of model 1 and 2 (Figure 9), which means that formation pressure will not increase at the same rate as in a closed aquifer, such as the Hanstholm structure and thus more CO₂ may be injected.

There are a number of reasons to why the Gassum Fm is ranked over the Haldager sand Fm regarding CO₂ storage potential. Primarily, the relatively shallow top surface of the Gassum Fm in the NE Skagerrak (Figure 9) means that the Haldager Sand Fm is located even closer to the surface, which could possibly result in insufficient pressure and temperature which prevents CO₂ from going into supercritical state. Moreover the sealing capacities of the formations overlying the Gassum Fm are superior to those of the Haldager Sand Fm, especially since the latter lacks the thick Fjerritslev Fm seal. Lastly, the thickness of the Gassum Fm averages about 125 m thick in the Skagerrak Graben, compared to the Haldager Sand Fm which often is very thin, (0 – 30 m) in the same location.

Conclusively the formation of choice for storage of CO₂ in the Skagerrak is the Gassum Fm, in which Bjørnsen et al. (2012) made three separate models for as many sites which are shown in Figure 9. Full information regarding model parameters and relationships are not presented in their full extent in Bjørnsen et al. (2012). A separate technical report will later supply all details and the matter will therefore not be discussed further in this thesis besides what has already been presented earlier in this chapter.

6.3.2 Model results
If no other reference is mentioned, all of the information below is based on the Carbon Capture and Storage in the Skagerrak/Kattegat region Final report by Bjørnsen et al. (2012).

The three models presented by Bjørnsen et al. (2012), (Figure 9) include two dipping traps represented by Model 1 and 2 and the anticlinal Hanstholm structure. Models 1 and 2 represent open or semi-closed boundary conditions to the NW and N respectively, the Hanstholm structure however is a closed reservoir. All three models assumed a total of 250 MtCO₂ injected over a period of 25 years and simulated the following CO₂ plume migration over 4000 years while taking the main trapping mechanisms into account. In all models three wells were used respectively in which 3.33 MtCO₂ was injected annually, equivalent to 10 MtCO₂/yr. The injection depth in was slightly larger in model 1, 2410 m, compared to 1708 m in model 2, as a natural consequence of the mentioned tilted nature of the Gassum Fm (Bjørnsen et al. 2012). The results from models 1 and 2 are shown in Figure 10 which show the injection points located down-flank of the dipping formation to control plume migration.

The CO₂ plume, distinguishable from the elevated CO₂ saturation in the formation water, has migrated to the open boundary of the formation after 4000 years in model 1. After 4000 years about 74.5% of the injected CO₂ has been capillary bound, about 18% has been dissolved in formation water and the remainder of the injected CO₂ has escaped from the trap. Model 2 shows more promising results as migration has been spatially limited and after 4000 years all injected CO₂ has been either capillary bound, (76%), or dissolved in formation water, (24%), hence all injected CO₂ is immobile after 4000 years according to these model simulations. Injection into the Hanstholm structure was performed at depths of 1000 – 1200 m. The CO₂ plume migrated as expected towards the top of the structural trap where 12.5% was dissolved in formation water with the remainder being capillary or structurally trapped after 4000 years.

6.3.3 Safety aspects
There are substantial physical, geomechanical and geochemical uncertainties regarding CO₂ storage in the Skagerrak that need to be addressed and investigated prior to an actual project launch. Some of these uncertainties are raised in the report by Bjørnsen et al. (2012) which summarized include:

- Increasing reservoir pressure following injection of CO₂ eventually exceeding fracture pressure.
- The exact geometries of the trap and seal formations and potential lateral migration of CO₂ between the two.
- Leakage through undetected fractures and faults in the seal and furthermore leakage through injection wells.
- Exact CO₂ plume migration pathways.

The uncertainties regarding rapidly increasing reservoir pressure were assessed in the report. The main pressure component that is discussed is the bottom hole pressure (BHP) which is directly related to the injectivity which in turn relates to the permeability and thus porosity of the reservoir rock. The event of the BHP rising and exceeding a certain pressure level may result in fractures in the seal. To avoid fracturing of the seal during injection and thus subsequent leakage of CO₂ a safe pressure increase must be estimated. The safe pressure is mainly determined by the relation between the hydrostatic and the lithostatic pressure as in the the pressure exerted by the formation fluids and
the pressure applied by the overlying bedrock. At greater depths the difference between the two increases which allows a higher BHP before fracturing takes place. In this case the safe pressure increase is assumed to be around 75% of the lithostatic pressure. The model derived BHP in model 1 and 2 suggests increases of around 80 bars at the start of injection which later increases up to just over 90 bars (Bjørnsen et al. 2012). In the case of the BHP rising excessively, several actions can be taken to reduce it, for instance a certain amount of the CO$_2$ can be injected in the overlying Haldager Sand Fm which will reduce the BHP in the Gassum Fm. The CO$_2$ injection can also be distributed over a higher number of wells, as the BHP increase is very local.

The modelled BHP in the Hanstholm structure structure exceeds 160 bar which is considered to be too high, as a consequence, even though the structure is voluminous enough to allow storage of some 250 MtCO$_2$ it does seem to be unsuitable due to mentioned BHP issues. The difference in BHP between the Hanstholm structure and the dipping formations in models 1 and 2 most likely can be attributed to the open – semi closed reservoir characteristics of the latter as opposed to the closed reservoir of the former.

It is stated in the report that a more detailed characterisation of the trap, the seal and the overlying sediments are required to identify important parameters regarding storage capacity and safety.. One might suggest that one of the key steps which may allow further progress is to recover a number of cores from the Skagerrak Graben area which, as mentioned earlier, has never been done before.

6.3.4 Cost

It is hard to estimate the cost of CO$_2$ storage in the Skagerrak Graben, however the main component is the actual drilling and construction of the wells. The actual cost is strongly influenced by the reservoir properties porosity and permeability, favourable properties will result in the need for fewer wells and allow increased storage volumes and thus lower costs, thus the cost is highly variable and needs extensive exploration and evaluation. Secondary lower costs are monitoring during and after the injection process, exploration wells and decommissioning.

7 Conclusions

To be able to fulfill the various climate goals regarding atmospheric CO$_2$ it is necessary to look into all possible ways in which CO$_2$ emissions can be reduced by cost efficient means CO$_2$ storage in deep aquifers is currently undergone heavily investigations over the entire globe and is thought to be feasible option which is implementable in a large amount of different areas. CO$_2$ storage in the Skagerrak and adjacent areas has been evaluated in the report by Bjørnsen et al. (2012) which come to the conclusion that the Mesozoic sandstones in the Skagerrak Graben could be used to store at least 250 MtCO$_2$ over 25 years. This figure corresponds to a storage of 10 MtCO$_2$ annually, which is equivalent to approximately 70% of the >0.3 MtCO$_2$/year point source emissions within the dotted circle in figure 3 (Bjørnsen et al. 2012). Further site studies and models especially focused on formation pressure and CO$_2$ migration pathways will be needed to exactly determine the storage potential of this site. The most promising approach is considered to be injection of CO$_2$ in down dipping open shoreface sandstones of Hettangian – Sinemurian age of the Gassum Fm which is covered by thick mudstones of the Fjerritslev Fm of Early Jurassic age and muds of Quaternary age. The CO$_2$ is according to models expected to be well contained within the formation over a course of 4000 years after which the CO$_2$ is immobile. However the availability of data is sparse and comprehensive further studies of the lithology and structural elements in the area are needed to fully evaluate the possibilities for CO$_2$ storage in the Skagerrak.

8 Acknowledgements

I would like to thank my supervisor Mikael Calner for a well performed supervision of my progress during this time, helpful comments and suggestions. Many thanks to my fellow bachelor classmates for their support, Elin Hultin Eriksson for all her help and support. Thanks to Peder Weibull and Anton Hansson for proofreading and Martin Qvarnström for his expertise.

9 References

Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020. Official Journal of the European Union 52, 136 – 148.

Internet references
Statoil.com, 2009: Closer look at Peon
10 Appendix

Figure 11: Profile of quaternary successions in the Norwegian channel interpreted from seismic profiles. Pre Late Weichselian sediment is lacking except for on the ‘Arendal Terrace’ to the left in profile A. Weichselian sedimentary cover is present as sequences E, D and Holocene post glacial muds are present as A and B. Modified from (Rise et al.)

Figure 12: Weichselian deglaciation history between approximately 17 – 13 Ka BP. Modified from Rise et al. (2008b).
10.1 Comprehensive geological setting and history of the southern margin of the Fennoscandian Shield

10.1.1 Precambrian

Since the Latest and most significant Precambrian deformation, the Sweconorwegian orogeny (1200 – 950 Ma) the Baltic shield was left with a N – S oriented fault system, the Sweconorwegian deformation front (Thybo, 1997) by large, although, the northern Skagerrak region exhibits a typically NE – SW trending fracture direction (Lindh, 1980; Ro et al. 1990b). (Berthelsen, 1978) as cited in (Ro et al. 1990b) imply that the Precambrian Sorgenfrei-Tornquist Zone, with its northwestern continuation, the Fjerritslev Fault Zone (FF), (Figure 3) was a relatively unstable transition zone between the stable Fennoscandian Shield and the deep sedimentary basins of the NW Europe. Lateral movement amongst the STZ and FF was comparatively small and was most likely caused by crustal thinning (Liboriussen et al. 1987). The extensional tectonics, likely accompanied with the presence of a foreland basin related to the Sweconorwegian mountain range gave rise to the Precambrian sedimentary basin predecessor to the Oslo Rift, at around 650 Ma (Ro et al. 1990b, Liboriussen et al. 1987, Ro et al. 1990a).

10.1.2 Palaeozoic

10.1.2.1 Cambrian – Silurian

The Fennoscandian Shield, denounced the Sub-Cambrian peneplain, was during Early Palaeozoic a shallow continental shelf environment. A Cambrian – lower Ordovician eustatic sea level rise gave rise to a thin widespread sedimentary cover (Ro et al. 1990a). The Caledonian orogeny, initiated during the Middle – Late Ordovician slightly reactivated the STZ and formed a series of horsts and Graben structures along the fault zone, eg. the Fjerritslev through (Ro et al. 1990a). The crustal loading applied marginal to the Baltic plate, eg. south of the Ringköping Fyn High (illustrated as a dotted area in southern Denmark on Figure 3) due to the Caledonian orogeny caused development of pronounced foreland basins in the Oslo Rift and less such in the Skagerrak and adjacent areas (Michelsen & Nielsen, 1993).

The formation of foreland basins in the Skagerrak, Kattegat and present Oslo Graben areas was followed by periodically rapid sediment deposition in the predecessor to the Oslo Rift which is indicated by thick Cambrian – Silurian sediment (Ro et al. 1990a). Meanwhile the Skagerrak, the Kattegat and the STZ along with neighboring areas subsequently evolved into sedimentary basins (Liboriussen et al. 1987). Thick sequences of Cambrian, Ordovician and Silurian sedimentary marine deposits were deposited in these areas. Around 2 km of these sediments are preserved in the Skagerrak and locally in the STZ up to 6 km of sediment is preserved, indicating that these basins were major depocenters (Ro et al. 1990a). According to Michelsen & Nielsen (1993), sedimentation was catalyzed by Late Silurian rapid subsidence in the Skagerrak Kattegat regions and the present day Oslo Graben. The undeformed Early Palaeozoic sediment present in the Skagerrak, Kattegat and present day Oslo Graben regions supports the theory that the above mentioned regions area were likely a stray of rapidly subsiding foreland basin corresponding to the Caledonian orogeny which induced deposition of massive upper Silurian shales, especially in the present day Oslo Graben (Michelsen & Nielsen, 1993; Liboriussen et al. 1987).

During Late Silurian time most of Denmark was subject to uplift originating from persisting tectonic activity related to the Caledonian orogeny. This event along with probable infill of the foreland basins resulted in widespread profound erosion of the Palaeozoic sedimentary bedrock (Liboriussen et al. 1987). The belief that most of the implicated regions were situated above the sea level as a consequence of uplift is further supported by data from (Ro et al. 1990b), showing that upper silurian marine sediment followed by Late silurian continental-, and according to Heeremans (2004) deltaic sediment is present in the Oslo Graben, indicating large scale Late Silurian uplift and regional relative regression. Furthermore Devonian sediments are accordingly not apparent in Denmark or within the present day Oslo Rift.

10.1.2.2 Devonian – Middle Carboniferous

The general tectonic situation in the Devonian – Middle Carboniferous was most likely a further minor extension along the STZ companied by slow subsidence (Thybo, 1997). The distribution of Early – Middle Carboniferous sediment is most likely very patchy as it according to well data from Michelsen & Nielsen (1993) is missing from large areas of the Kattegat and Skagerrak. Well data from Liboriussen et al. (1987) indicate complete lack of concerning sediment short of a well on the island of Falster, southernmost Denmark, Carboniferous rocks might therefore have covered the Kattegat/Skagerrak region as well as Denmark. The hiatus which connotes the lack of a stratigraphic record of the Devonian – Middle Carboniferous makes reconstruction of the regional tectonic situation difficult.

10.1.2.3 Late Carboniferous – Permian

In Late Carboniferous time, 320-300 Ma, large parts of NW Europe was subject to a large scale tectonic event, the Variscan orogeny which as a consequence of the collision of the Euramerica and the Gondwana formed the supercontinent Pangea (Thybo, 1997). The tectonic setting which originally was characterized by minor extensional movements was altered and a dextral wrench tectonic regime took place along the STZ (Figure 5) (Heeremans, 2004). The Variscan wrench tectonics reactivated the STZ which caused the Palaeozoic basin infill to become transected by a complex and extensive fault and rift system (Liboriussen et
the formation of cauldrons and volcanoes in the central Permian and initiated from the southern regions and plateau lavas continued throughout the Early – Middle Permian and initiated from the southern regions and further propagated northwards and terminating with the formation of cauldrons and volcanoes in the central Oslo Graben (Ro et al. 1990a; Ro et al. 1990b).

While it is certain that the Oslo Rift, in reality the Skagerrak- and Oslo Graben, formed during the Late Carboniferous – Permian tectonic events the exact tectonic movements that were active are not as clear (Fannavol, 1994). Even though the formations are much related it is suggested that the Oslo Graben formed by as a pull apart basin (Ro et al. 1990a) whereas the NW bounding fault, (Fault B, Figure 4), of the Skagerrak Graben, may have formed as a cause of sinistral oblique slip faulting according to Fannavol, S. (1994). One might propose the possibility of a synergic tectonic action, featuring both extensional- and oblique slip faulting events. Regardless of the exact tectonic history, the Late Carboniferous rifting and Graben formation and large scale tilting which in turn allowed preservation of Cambrian – upper Silurian sediments in both the Oslo and the Skagerrak Graben (Figure 6) (Ro et al. 1990a). The main rifting phase was most prominent during Early – Middle Permian times and formed the tilted Graben structures shown in Figure 6 (Heeremans, 2004). The down-tilted grabens are most likely filled with Early – Middle Permian sedimentary rocks (Heeremans, 2004). While post and pre rift sediments are not distinguishable in Figure 6, the more recent sediments are displaced towards the encompassing faults pre rift as the older Palaeozoic strata have been subject to considerably erosion in the central parts of the Graben (Heeremans, 2004).

The domal mid rift feature shown in Figure 6 is probably an effect of a conjugated movement of the two Skagerrak Graben boundary faults A and B. It might also relate to an intrusion of plutonic rock in the central parts of the rift, similarly to the situation in the Oslo Rift (Ro et al. 1990b; Heeremans, 2004). The Late Palaeozoic sediment deposited along the down tilted boundary faults most likely originates partly from the erosion of fault scarps and partly of volcaniclastic material, a syn- post depositional erosional product from the contemporaneous massive plutonic rock extrusions in the region (Heeremans, 2004).

This lithostratigraphic unit is known as the Rotliegend, it is present in the form of thick widespread volcaniclastic sediment in adjacent areas, eg. 650 m of upper Carboniferous – Early Permian reworked volcaniclastic sediments within the STZ (Heeremans, 2004) and 1500 m of similar sediment in northern Jylland (Michelsen & Nielsen, 1993).

Towards the Middle – Late Permian thermal relaxation and subsequent subsidence, perhaps enhanced by a second active tectonic mechanism according to Van Wees et al. (2000) began to set in further west towards the north sea (Heeremans, 2004). The relative transgression allowed deposition of clastic and volcaniclastic sediment belonging to the Rotliegend unit over wide areas of northern Europe (Heeremans, 2004).

Towards the Late Permian, during a time of tectonic quiescence, evaporates of the Zechstein unit were deposited in the Danish basin and in the North Sea, SW of the FFZ (Figure 7) (Ro et al. 1990a). The Zechstein series consists of up to 1000 m of halites along with sulphate and carbonate banks in the Danish basin and thins out towards the STZ zone. The Zechstein series is more or less absent in the Skagerrak (Liboriussen et al. 1987).

10.1.2 Mesozoic
During Early Mesozoic time NW Europe was subject to an Early Triassic rifting phase involving reactivation along the STZ under an extensional regime (Liboriussen et al. 1987). Ro et al. (1990b) suggests however that there was no or very slight reactivation of the Skagerrak Oslo Graben faults. The crustal extension induced a rapid subsidence along the FFZ, (Figure 3) which allowed accumulation of some 6000 m of Triassic – Jurassic sediment on the sloping Precambrian shield, (Figure 7) (Liboriussen et al. 1987). This hypothesis is in agreement with the findings of (Michelsen & Nielsen, 1993) who emphasize the difference in sediment thickness between the relatively thin sequences resting on the Skagerrak – Kattegat platform to the massive Triassic sandstones located along the STZ and the NW-ward continuation the FFZ (Figure 7 and 8). Michelsen & Nielsen (1993) considers that the divergence in sediment thickness stems from greater subsidence rates and subsequent sedimentation in the STZ and the FFZ compared to the Skagerrak. The rapid subsidence is attributed primarily to thermal cooling and local faulting (Nielsen, 2003).

Both Crustal extension and coincidentally subsidence rates decreased in the northern Denmark during the Late Triassic, however according to Liboriussen et al. (1987) the tectonic regime established in the Late Triassic with relative tectonic quiescence and only minor extension remained throughout the Jurassic and Early Cretaceous (Liboriussen et al. 1987).

10.1.2.1 Norian – Rhaetian
The thick Late Triassic sandstone sequences are very well mapped, especially in the North Sea due to their hydrocarbon bearing tendencies. Essentially the same transgressive features as well as major unconformities are present in both the North Sea and the Skagerrak – STZ region and the events are considered to be synchronous (Liboriussen et al. 1987). The depositional regime is however considered to be slightly different as the deep water conditions in the North sea never quite were present in the Skagerrak – Kattegat –
10.1.2.3 Hettangian
The Skagerrak – Kattegat, STZ and the Danish basin region were in Late Triassic time on the contrary constituted by a shallow epiric sea according to Nielsen (2003) where deposition of marine sediments started following a Norian (Late Triassic) transgression.

The Norian – Rhaetian transgression led to the accumulation of 50 – 200 meters of claystones, marls and carbonates in the Southern and central parts of the Danish basin, visible as a blue layer belonging to the Vinding Formation (Fm) in Figure 8 (Nielsen, 2003). The depositional regime in the northern parts of the Danish basin as well as the Skagerrak and the FFZ was at the same time dominated by alluvial sedimentation of arkosic sandstones interbedded with lacustrine claystones, together forming the Skagerrak formation which reaches a maximum thickness of about 1000 m at the FFZ (Figure 8) (Nielsen, 2003).

10.1.2.4 Middle Jurassic – Early Cretaceous
The roughly Middle Jurassic Haldager sand Fm, supposedly deposited in a braided fluvial and deltaic environment according to eg. (Berthelsen, 1978) ero- sionally overlays the Fjerritslev Fm and is composed of paralic and shallow marine coarse – fine grained as well as pebbly sand- and mudstones on the SKP and in the STZ where the maximum thickness is 150 m which as usual thins out towards the NE, (Figures 4, 7 and 8) (Nielsen, 2003). The Haldager sand Fm is not quite as thick as the Gassum Fm in the Skagerrak but usually is on the order of 30-70 m thick (Bjørnsen et al. 2012)

Transgressive mudstones and sandstones with a spatial distribution similar to the Haldager sand Fm were deposited as the Flyvberg Formation (Figure 8), during Oxfordian time, (Late Jurassic) (Nielsen, 2003). The Flyvberg Fm was Later overlayered by Kimmeridgian – Ryazanian, (Late Jurassic) marine mudstones belonging to the Børglum formation, (Figure 8) during an expansive and deepening phase of the basin (Nielsen, 2003). Similarly to the Fjerritslev Fm, the mostly marine Flyvberg- and Børglum formations are also associated by shoreface and respective paralic sandstones along the N – NE basin margins as seen in Figure 8. The clastic sediments related to the Børglum Fm Later transforms into the Fredrikshavn formation as seen in Figure 8 (Nielsen, 2003). These formations equate to the yellow parts of Figure 6.

10.1.2.5 Late Cretaceous – Early Cenozoic
During the Late cretaceous sea level was high (Nielsen, 2003) due to regional transgression, and tropical climate reigned which allowed accumulation of chalk deposits in in the areas west of the STZ as seen in Figure 4 (Liboriussen et al. 1987). Late cretaceous – Early Cenozoic inversion events which stemmed from the alpine orogeny were greatest in the SW eg. The North Sea, the Danish basin and less pronounced in the Skagerrak hence this inversion is only scarcely
manifested by the lack of chalk deposits above the FFZ in Figure 7 (Rasmussen, 2009; Ro et al. 1990a). The compressional tectonic regime remained more or less pronounced until Early Oligocene, (Middle Tertiary) and reactivated the former fault zones with a dextral movement (Rasmussen, 2009). As a consequence of the inversion tectonics and possibly the presence of a mantle plume in the North Sea area, the Fennoscandian Shield is believed to have been uplifted and subjected to erosion followed by high sediment influx to SW areas up until Early Miocene (Rasmussen, 2009). This may explain the spatial distribution of the sediment shown in Figure 4 in which Late Cretaceous – Tertiary sediments are located farther away from the present coastline due to erosion of older sediment and shoreline displaced to the SW due to uplift (Rasmussen, 2009).

By reason of the above mentioned, Cenozoic sediments are largely absent or limited to thin successions in the SW of the Skagerrak area (Nielsen, 2003). Cenozoic successions are however present in the North Sea with greatly varying thickness due to varying depocenter locations (Nielsen, 2003).

10.1.4 Quaternary
The most prominent Quaternary feature in the Skagerrak is the upwards 800 m deep Norwegian channel off the S-SW coast of Norway (Longva et al. 2008). The Norwegian channel has episodically during the Quaternary been a transport route for large scale ice streams followed by severe glacial erosion which removed most pre-Weichselian glacial deposits as well as substantial amounts of Mesozoic sedimentary bedrock (Rise et al. 2008b). The channel has subsequently been infilled partly with Weichselian glacial till but mainly syn- and post depositional glacial sediment as it has been a sediment trap of fine grained sediment coming from both the North Sea and the adjacent glaciated areas (Longva et al. 2008; Rise et al. 2008b). The till visible in Figure 11 was partly eroded or reworked as the ice sheet retreated towards the NE (Figure 12 A and B) and is now present as a 25 – 50 m thick layer directly on the Mesozoic erosional surface (Figure 11 A and B), with the thinner regions located in the eastern areas due to severe erosion (Rise et al. 2008b). Following the retreating ice sheet, unit E (Figure 11 A) accumulated as a result of proximal glaciofluvial streams transporting sediment from the ice flanks to the deepest parts of the Norwegian channel, namely at the section in Figure 11 A) (Rise et al. 2008b). Melt-water from the Inactive melting ice observable in Figure 12 B produced the fan-like glaciofluvial sediments of unit D in Figure 9 B (Rise et al. 2008b).

When the ice margin reached the Norwegian southern coast, roughly where it is situated in Figure 12 C, it remained there for several thousand years (Rise et al. 2008b). The depositional regime during the following 13 Ka is characterized by the establishment of a cyclonic ocean circulation in the Skagerrak in-
Tidigare skrifter i serien
"Examensarbeten i Geologi vid Lunds Universitet":

270. McGimpsey, Ian, 2010: Petrology and lithogeochemistry of the host rocks to the Nautanen Cu-Au deposit, Gällivare area, northern Sweden. (45 hp)
271. Ulmius, Jan, 2010: Microspherules from the lowermost Ordovician in Scania, Sweden – affinity and taphonomy. (15 hp)
273. Barth, Kilian, 2011: Late Weichselian glacial and geomorphological reconstruction of South-Western Scania, Sweden. (45 hp)
274. Mashramah, Yaser, 2011: Maturity of kerogen, petroleum generation and the application of fossils and organic matter for paleotemperature measurements. (45 hp)
275. Vang, Ina, 2011: Amphibolites, structures and metamorphism on Flekkerøy, south Norway. (45 hp)
279. Dyck, Brendan, 2011: A key fold structure within a Sveconorwegian eclogite-bearing deformation zone in Halland, southwestern Sweden: geometry and tectonic implications. (45 hp)
280. Hansson, Anton, 2011: Torvstratigrafisk studie av en trädståmshorisont i Viss mosse, centrala Skåne kring 4 000 - 3 000 cal BP med avseende på klimat- och vattenståndsförändringar. (15 hp)
281. Åkesson, Christine, 2011: Vegetationsutvecklingen i nordvästra Europa under Eem och Weichsel, samt en fallstudie av en submorän, organisk avlagring i Bellinga stenbrott, Skåne. (15 hp)
282. Silveira, Eduardo M., 2011: First precise U-Pb ages of mafic dykes from the São Francisco Craton. (45 hp)
283. Holm, Johanna, 2011: Geofysisk utvärdering av grundvattenskydd mellan väg 11 och Vombs vattenverk. (15 hp)
284. Löfgren, Anneli, 2011: Undersökning av geofysiska metoders användbarhet vid kontroll av den omåttade zonen i en infiltrationsdamm vid Vombverket. (15 hp)
286. Thorbergsson, Gunnlaugur, 2011: A sedimentological study on the formation of a hummocky moraine at Törnåkra in Småland, southern Sweden. (45 hp)
287. Lindskog, Anders, 2011: A Russian record of a Middle Ordovician meteorite shower: Extraterrestrial chromit in Volkhovian- Kandun (lower Darriwilian) strata at Lynna River, St. Petersburg region. (45 hp)
289. Cederberg, Julia, 2011: U-Pb baddelyt dateringar av basiska gångar längs Romeleåsen i Skåne och deras påverkan av plastisk deformation i Protoginzonen (15 hp)
290. Ning, Wenching, 2011: Testing the hypothesis of a link between Earth’s magnetic field and climate change: a case study from southern Sweden focusing on the 1st millennium BC. (45 hp)
291. Holm Östergaard, Sören, 2011: Hydrogeology and groundwater regime of the Stanford Aquifer, South Africa. (45 hp)
292. Tebi, Magnus Asiboh, 2011: Metamorphosed and partially molten hydrothermal alteration zones of the Akulleg glacier area, Paamiut gold province, South-West Greenland. (45 hp)
293. Lewerentz, Alexander, 2011: Experimental zircon alteration and baddelyite formation in silica saturated systems: implications for dating hydrothermal events. (45 hp)
Mikael, kartläggning 2012: genom o ch tol inks – O lander, Loggning 2012: a n Jari, H enric, a nalys av obehandlade geokemisk mätningar. (45 hp)

Demirer, Kursad, 2012: U-Pb baddeleyite ages from mafic dyke swarms in Dharwar craton, India – links to an ancient supercontinent. (45 hp)

Samer, Bou Daher, 2012: Lithofacies analysis and heterogeneity study of the subsurface Rhaetian–Pliensbachian sequence in SW Skåne and Denmark. (45 hp)

Riebe, My, 2012: Cosmic ray tracks in chondritic material with focus on silicate mineral inclusions in chromite. (45 hp)

Hjulström, Joakim, 2012: Återfyllning av borrhål i geoenenergisystem: konventioner, metod och material. (15 hp)

Letellier, Mattias, 2012: A practical assessment of frequency electromagnetic inversion in a near surface geological environment. (15 hp)

Lindenbaum, Johan, 2012: Identification of sources of ammonium in groundwater using stable nitrogen and boron isotopes in Nam Du, Hanoi. (45 hp)

Andersson, Josefin, 2012: Karaktärisering av arsenikföroringen i matjordsprofiler kring Klippans Läderfabrik. (45 hp)

L umetzber ger, Mikael, 2012: Hydrogeologisk kartläggning av infiltrationsvattnetransport genom resistivitetsmätningar. (15 hp)

Martin, Ellinor, 2012: Fossil pigments and pigment organelles – colouration in deep time. (15 hp)

Rådman, Johan, 2012: Söllsnyta jordartsmetaller i tungsand vid Hävning på Österlen. (15 hp)

Karlstedt, Filippa, 2012: Jämförande geokemisk studie med portabel XRF av obehandrade och sågade ytor, samt pulver av Karlshamnsdiabas. (15 hp)

Lundberg, Frans, 2012: Den senkambriiska alunskiffern i Västergötland – utbredning, mäktigheter och faciestyper. (15 hp)

Thul in O lander, Henric, 2012: Hydrogeologisk kartering av grundvattenmagasinet Ekenäs-Kvarnhamnen, Jönköpings län. (15 hp)

Demirer, Kursad, 2012: U-Pb baddeleyite ages from mafic dyke swarms in Dharwar craton, India – links to an ancient supercontinent. (45 hp)

Leskelä, Jari, 2012: Loggning och återfyllning av borrhål – Praktiska försök och utveckling av täthetskontroll i fält. (15 hp)

Eriksson, Magnus, 2012: Stratigraphy, facies and depositional history of the Colonus Shale Trough, Skåne, southern Sweden. (45 hp)

Larsson, Amie, 2012: Kartläggnings, beskrivning och analyser av Kalmar läns regionalt viktiga vattenresurser. (15 hp)

Olsson, Håkan, 2012: Prediction of the degree of thermal breakdown of limestone: A case study of the Upper Ordovician Boda Limestone, Siljan district, central Sweden. (45 hp)

Kampmann, Tobias Christoph, 2012: U-Pb geochronology and paleomagnetism of the Westerberg sill, Kaapvaal Craton – support for a coherent Kaapvaal-Pilbara block (Vaalbara). (45 hp)

Eliasson, Isabelle Timms, 2012: Arsenik: förekomst, miljö och hälsoeffekter. (15 hp)

Badawy, Ahmed Salah, 2012: Sequence stratigraphy, palynology and biostratigraphy across the Ordovician-Silurian boundary in the Röstånga-I core, southern Sweden. (45 hp)

Knut, Anna, 2012: Resistivitets- och IP-mätningar på Flishultsdeponin för lokalisering av grundvattenytor. (15 hp)

Nylén, Fredrik, 2012: Föräldring av ballastmaterial med hydrocyclon, ett fungerande alternativ? (15 hp)

Younes, Hani, 2012: Carbon isotope chemostratigraphy of the Late Silurian Lau Event, Gotland, Sweden. (45 hp)

Weibull, David, 2012: Subsurface geological setting in the Skagerrak area – suitability for storage of carbon dioxide. (15 hp)