Numerical methods for solving the
time-dependent Schrodinger equation

Bachelor’s thesis
Anders Persson
Division of Mathematical Physics
Lund University
Supervisor: Claudio Verdozzi
Co-supervisor: Daniel Karlsson

13 december 2012



Abstract

The main purpose of this thesis is to describe different numerical methods for
solving the time-dependent Schrodinger equation. We introduce and describe
two different basis representations (spectral and pseudospectral). These basis
representations are then used in the different methods we take up for discussion.
We consider methods in which the Hamiltonian is constructed in a spectral basis
and a pseudospectral basis. We also describe different methods of approximating
the time-development of the Hamiltonian. Finally some practical examples will
be mentioned.
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1 Introduction

The subject for this bachelor thesis is to describe different numerical methods
for solving the time-dependent Schrédinger equation. A numerical solution of
the Schrodinger equation consists of two parts. The first one is an accurate
discrete spatial representation of the wave function v (z,t). If such a spatial
representation is constructed, we can propagate in time an initial wavefunction.
Since only a few physical problems can be solved analytically it is important to
find numerical methods of solving these equations and also that the methods are
not too demanding when it comes to computer capacity. The formal framework
for quantum mechanics is as known an infinite-dimensional Hilbert space. So
in the numerical calculation we have to truncate this infinite Hilbert space to
some N-dimensional Hilbert space, N arbitrary integer. We can express this
truncation to N basis by a projection operator Py . This operator projects
onto the space which is spanned by the N-dimensional basis. When it comes to
the numerical methods which are used to solve the time-dependent Schrodinger
equation. The most common method is to use a grid representation instead of
orthogonal bases. When the continuous wavefunction is expressed as a discrete
set of time-evolving complex amplitudes at the different grid points we are said
to have a grid representation.

2 The time-dependent Schrodinger equation

The main object of this thesis is to describe different numerical methods in
solving the time-dependent Schrodinger equation

0
ih—¥(x,t) = HY(x,t) (1)
ot
Where H = f%VQ + V is the Hamiltonian operator. We have an evolution

operator U(t,t9) which works in the following way | U(t)) = U(¢,10) | ¥(to))
with U(to,t0) = 1. U is defined by

ih%U(ﬁ, to) = HU(t, to) (2)

or ) .
Ult, to) =1 — %/ HU (Y to)dt! (3)

to

If H is hermitian, then U(t,to) is a unitary operator.

3 Approximation methods

We now look at different methods which we use to solve the time-dependent
Schrédinger equation approximatively. Three approximation cases will be con-
sidered. They are all based on the assumption that we can approximate the
time-dependent Hamiltonian with a time-independent Hamiltonian over an in-
terval. So on the interval (to,to + At) we have H(t) ~ H (o)

The first case we look at is when the Hamiltonian changes slowly on the time



scale which are set by the periodic times, which are associated with the approx-
imate stationary solutions. In this case we use adiabatic approximation. In the
second the Hamiltonians changes very fast. We then use sudden approximation.
To express it in an another way: Say that we denote T as the time during which
the modification of the Hamiltonian is done. We suppose that the Hamiltonian
is to change-over in a step-wise way. The third is when we split up the Hamil-
tonian in a time-independent and time-dependent part. In this case a Dyson
series expansion is used.

3.1 Adiabatic theorem

We have an initial Hamiltonian Hy at tg and a final Hamiltonian H; at t;. We
infer the following expressions T' = t; —tg and s = (t —t9)/T. By H(s) we mean
the Hamiltonians value at the time ¢ = to + sT. H(s) is a continuous function
of s and we have that H(0) = Hy and H(1) = H;. The development of the
system from tg to ¢1 is only dependent on the parameter T', which measures how
fast the passage from Hy to H; is. For convenience we infer U(t,t) = Up(s).
By €1...€; we denote the eigenvalues of H and the projectors which project
onto the associated subspaces is denoted as P;...FP;. All of these quantities
are assumed to be continuous functions of s. The subspaces we mention are the
vector spaces formed by the eigenstates of P(s) connected to the corresponding
eigenvalues. We now state the adiabatic theorem.

Theorem 3.1.1 (Messiah[12])

In the limit when T — oo i.e. in the case of an infinitely slow or adiabatic
passage. If the system is initially in an eigenstate of Hy it will at time ¢; have
passed into the eigenstate of H; , that derives from it by continuity if

1. The eigenvalues remain distinct throughout the whole transition period

0<s<1
j(s) #ex(s),j #k (4)
2. The derivatives %, d;;zj are well-defined and piece-wise continuous in the

whole interval.

The adiabatic theorem states that if (0) is an eigenfunction of H(0) and H (t)
is a slowly varying function of time, then ¥(¢) will evolve in such a way that it
remains an eigenfunction of H(t) for all time.

3.2 Adiabatic approximation

Let us look at a quantum system where we have a discrete structure of levels.
The time-dependent Schrodinger equation is

L0
’LFL&\I/(:L', t) = H(z,t)¥(z,t) (5)
where
g1 Vialt)
H(t) = Voi(t) e



and

and finally V(t) is the off-diagonal couplings. If it is the case that the off-
diagonal couplings are slowly varying, we have that some conclusions can be
made. We continue by defining the unitary transformation which diagonalizes
H(t).

UM OH@BU®) = D() (6)

and infer U0 = ¥'. The time-dependent Schrédinger equation becomes

0 , oV AUt

z’ha(U\If’(t)) = (U (t) 5 T T‘I’ )= H®)U(t)¥'(t) (7)
. LD AU

By this we see that if H(t) is slowly varying. U(t) and U~1(t) will also be slowly
varying. If we ignore the second term on the right side of (8), we have what
is called adiabatic approximation. We note that we get a system of uncoupled
differential equations, which do not demand so much computer capacity.

To give an concrete example. We have a charged-particle linear harmonic oscil-
lator acted upon by a spatially uniform time-dependent electric field E(t). The
Hamiltonian of the system is

9 1

+ —ka® — qE(t)x

H{t)=—5 5513

where m is the mass and ¢ is the charge of the particle and the perturbation
gE(t)x is assumed to be switched on at ¢ = ¢y and switched off at t = ¢; in a
smooth way. This means that the particles at the end of the time-evolution will
be in the ground state. To give a classical example of adiabatic approximation,
let us consider a pendulum that is transported around near the surface of the
earth. The pendulum will behave normally as you climb a mountain with only
the period slowly lengthening as the force of gravity decreases so long as the
time over which the height is changed is long compared to the pendulum period.

3.3 Sudden approximation

As mentioned before the Hamiltonians in this case change very fast. We shall
express it now more formally. Let s consider the Schrédinger equation for the
time-evolution operator

0
ih&U(t, to) = HU(t,to) (9)
This expression can be expressed in the following way

9 H "



where time is expressed as t = sT', where s is a dimensionless parameter and a
time scale T'. We infer the following definition 2 = % In the sudden approxi-
mation we have that if ' — 0 then A€2 will become considerable larger than the
energy scale which is represented by H under the assumption that by adding
or subtracting an arbitrary constant we can change H and in the statevector
introduce an overall phase factor. We have that U(¢,t9) — 1 as T — 0. Which
gives the validity of the sudden approximation. To be more explicit we have
before and after the rapid change

Ult,to) = et t < tg

Ult,tg) = ex 't >t

We have approximated H(t) by an stepfunction. The usefulness of sudden ap-
proximation can be seen in the following way

Ult,to) = Ter JH @A _ poiH [t _ iH (—t0) where T is a time-ordering
operator and t > to. We get a much more simple expression which does not
demand so much computer capacity.

As an example where sudden approximation can be used is for instance when we
have an atom in a constant magnetic field when the direction of the magnetic
field is suddenly reversed. Another example is the charged-particle linear har-
monic oscillator mentioned in the section about adiabatic approximation. We
can use sudden approximation if say at ¢t = 0 the electric field is switched on
suddenly and afterwards it is assumed that it has a constant value Ej.

3.4 Dyson series expansion
We have a Hamiltonian that can be divided in two parts H = Hy + V (t) where
V(¢) is a time-dependent potential and Hy | n) = F,, | n). We say that at t = 0,

the state ket is given by
|a) =) ca(0) | n) (11)

n

We want ¢, (t) for t > 0 to fulfill

| ot = 0i8) = > calt)e En/" | m) (12)

n

We are here in the Schrodinger picture. We now continue in the interaction
picture. We know that

|, to;t)r = ot/ | o tg; t)s (13)

where I stands for the interaction picture and S for the Schrédinger picture.
The time derivate of this expression with H = Hy + V(t) gives

0
Zha |a,t0;t>1:V1 |Oé,t0;t>[ (14)

We continue by performing the following expansion
|astost)r =) calt) | ) (15)
By multiplying by (n | we get the following differential equation

. d TWpmt
ih—cn(t) :;Vnme Cm (t) (16)



where . 5
Whm = Lhm) = —Wmn (17)

and E,,F,, are energy eigenvalues. With some few exceptions exact solutions
for ¢, (t) are not available. So we have to use an approximate solution which is
obtained by perturbation expansion.

en(t) =9 4 D) 462 (18)
where we by c%l) , cg) ... mean amplitudes in the strength parameter of the time-

dependent potential of first order, second order and so on.
Another way is to use the time-evolution operator defined in the interaction
picture as

| Oé,to;t>] == U](t,to) | Oé,to;t0>[ (19)

We have then the following differential equation

. d
ZTLE U](t, to) = V[(t)U] (t, to) (20)
with the initial condition
Ur(to,to) =1 (21)
This can be written as an integral equation
-
Urttsto) =1- 5 [ Vit)Us(t, ot (22)
to

The approximate solution to this equation by the help of iteration is called a
Dyson series.
i [t i [t
Ur(t,to) =1 - ﬁ/ Vi)t =5 | Vit )Ur(t" to)dt"]dt"  (23)
t() t()
i [t i t t
= 1——/ dt'VI(t’)+(—)2/ dt’/ dt" VitV (")
h to F[’ to to
fn=1)

s t t
+...+(%)”/ dt’/ dt”.../ AOVIEW ). V() + .
to to t

0

where the truncated sum of (23) is used in the approximation.

3.5 Magnus expansion

This expansion is an alternative to time-dependent perturbation theory. The
reason why it is used is that we can truncate the Magnus expansion at any
order and despite of this have a unitary expression for the propagator. The
Magnus expansions gives an expression for the propagator for time-dependent
Hamiltonians as the exponential of an infinite sum of operators. We can at
any arbitrary order truncate the infinite sum in the exponent. This gives an
approximation to the propagator. We start with presenting a formal way of
expressing the integral representation for time-dependent Hamiltonians. It has
the following form

.t ’ ’
Wz, 1) = T Jo T /g g (24)



where T is the time-ordering operator which by its definition put in the Taylor
series the operators in their chronological order. We would like to write the
propagator in the following form U (t,0) = eA®), where A(t) = A (t)+Ax(t)+

This is done by the Magnus expansion. So we get the following form of the first

A:s
1 t
A, = — [ dt H(t
1 m/o LH(t)
1

o= A [ /tzdtl[H@l),H(tQ)]
e Y / dts / dts / dis[H (), [H (1), H(t3)]
F{LH (0, H ()], H(t3)]

and so on.
We have that the higher-order terms in the Magnus expansion as seen above
involve sums of integrals.

3.6 Periodic Hamiltonians and Floquet theory

We consider in this section Hamiltonians which are periodic in time. The theory
of the systems in this case is called Floquet theory.
We start our investigation with the time-dependent Schrodinger equation

0

zﬁat\ll(z t) = H(z,t)¥(z,t) (25)

where the Hamiltonian is periodic with period T or in a more formal way H(x,t+
T)= H(z,t).
We infer the following trial form

Uy (2,1) = e Py (2, 1) (26)

If we insert (26) in the time-dependent Schrodinger equation and infer the fol-
lowing definition

Hp(z,t) = (H(z,t) — zﬁa)
where Hp denotes the Floquet Hamiltonian, Hg is hermitian, we get after some
algebra

(27)

HF(:C,t)(I))\(:C,t) :E,\(I))\(:C,t) (28)

Here @) (z,t) is denoted as a Floquet eigenstate. This equation is an eigenvalue
equation in the variables, = and ¢, where the time-independent eigenvalues are
the Floquet energies €. One result worth mentioning is that the Floquet eigen-
states @ (z,t) and the Hamiltonian have equal period T. The general solution
to the time-dependent Schrodinger equation are

U(z,t) = Zake_i“t/h@,\(x,t) (29)
)

and W, (x,t) is a representation of a particular solution to the time-dependent
Schrodinger equation.



We can get another formulation which is based on the terms of basis sets in
space and time if we rewrite ¥y (z,t) in the following way

\If)\(x,t) — e—ia;t/hq)/\(x’t) — e—i(a)\-i-nhw)t/heinwtq)/\(x’t) (30)

We now get a new series of Floquet eigenvalues. These eigenvalues have the
following form ey + nfiw and the eigenfunctions are ®y, (z,t) = e"Widy(x,t).
In the case when n is an integer, ®, (x,t) will be periodic in ¢ if ®(x,t) also is
periodic in ¢ for specific values of w. We have that the physical state ¥ («,t) has
not changed and because of that the Floquet eigenvalues which are associated
with distinct physical states are accordingly defined modulo Aw.

Let us now define a composite Hilbert space in position and time RE@T. The
temporal part is spanned by the complete orthonormal set of Fourier functions
et where —0o < n < 00, n is an integer. With the help of square-integrable
functions in the configuration space we span the spatial part. We have that the
Floquet eigenstates fulfill the following orthonormality condition

({Dyn | Pom)) / dt/ dx @7, (2, 6)Pym (2,1) = 0ku0nm (31)
The Floquet eigenstates forms a complete set in RE T

Z | @in)) ((Prn [= 1 (32)

We stop here and notice that we have a new notation. This notation is called
the double bra-ket notation here used to denote the inner product over x and ¢.
We continue now with the question how to represent the Floquet Hamiltonian in
an arbitrary complete basis. We infer the following expression | an)) =| «) | n),
where | n) are Fourier vectors which fulfills the following equation (t | n) = e™w?
and | &) are eigenstates that solve the following equation

H(z)a(z) = Eqa(z) (33)

We have that H(z,t) and ®,(z,t) are periodic in time and because of that can
we expand them in Fourier series

/ B ()@ (x, t)dr = Z ¢m) ot (34)

m=—0o0

and

/OO o (z)H (z,t)5 Z H(") inwt (35)

- n=-—o00

The expansions above can be inserted into the Schrodinger equations and the
result is the following infinite set of relations for qﬁgg\)

S an | Hp | pm))e5y = exdy (36)
Bm

where we by Hr denote the time-independent Floquet Hamiltonian with the
following matrix elements

(an | Hp | Bm)) = HY™ + nhwdasdom (37)

10



The structure of the matrix is as follows, where n goes between -2 and 2.

A+20I B 0 0 0
B A+wl B 0 0
[Hp] = 0 B A B 0
0 0 B A-uwl B
0 0 0 B A-2ul

where A consists of the matrix elements of the time-averaged Hamiltonian, B
consists of the Fourier component at the frequency w of the coupling between the
basis functions. These basis functions are induced by the periodic Hamiltonian.
The following expression gives the matrix A

1 [T _
Aaﬁ<<a0|H(x,t)|50>>f/0 (| H(z,t) | B)dt = (o | H(x) | B) (38)

where we by H(z) mean the time average of H(x,t).

If H(z,t) = Ho(x) + V(z,t) and V(z) = 0. The time-averaged Hamiltonian is
the system Hy(x). We can choose the basis functions («, ) to be eigenstates of
H(z). In this case A is diagonal.

The following expression gives the matrix B

Boy = (00| HGa.t) | 80) = 7 [ (o | HGt) | et (39

We now turn to the question of diagonalization of the matrix. We have that
the number of eigenvalues of the Floquet matrix is infinite, but the periodicity
gives that if €) is an eigenvalue so is also €\ + nhw = ), for any integer n.
In a similar way, even though the eigenvectors are distinct in R@ T they are
connected by the periodicity relationship

({,n+p | Prmip)) = ({0 | Prm)) (40)

So by a phase factor eP"? the basis functions differ in the bra from the basis
functions in the ket if we combine the basis function with the Flouquet eigen-
value which they are associated with. They are generators for equal dynamics.
So we have that the formally infinite number of eigenvalues and eigenfunctions
which come from the diagonalization of the infinite Floquet matrix can be re-
duced to N distinct eigenvalues and N eigenfunctions, all of them physically
distinct. N is the number of basis functions of H(x), which comes from the
periodicity relations.

So using a complete basis in both position and time gives a representation of the
Hamiltonian that is time independent. This allows the use of all the theorems
and techniques of time-independent Hamiltonians to periodic time-dependent
Hamiltonians.

4 Numerical methods
We come now to the main part of the thesis, where we take up the spatial

part and other topics mentioned in the introduction and some not mentioned.
The spectral and pseudospectral basis, collocation, Gaussian quadrature, the

11



HEG(Harris. Engerholm and Gwinn) method, The DVR(Discrete Variable
Representation) method. In the end of this section we take up for discussion
the Fourier method and the implement of this method, the FGH(Fourier Grid
Hamiltonian) method and the FFT(Fast Fourier Transform) method.

4.1 Spectral basis

With a spectral basis we mean a basis of orthogonal functions. We must truncate
this infinite set of orthogonal functions at some arbitrary finite value V. We
use a projection operator for this purpose.

Let us now look at how the spectral projection operator acts on a wavefunction.
Start with an arbitrary wavefunction ¢(x). Which we express in an orthonormal
basis (¢,,) in the following way

Y(x) = Z an®n(T) (42)

where
[ 6 @en(@rds = s, (43)
and
0, = [ @)z (44)
where m,n=1,...,00

The spectral projection operator Py is defined so that

N
¥(z) = Pny(z) = Z ann () (45)
n=1
where a,, is given in equation(44) forn =1,..., N
We have then
Pyon(x) = 0O,n=N+1,... (46)

4.2 Pseudospectral basis

It is known that an operator is basis independent and can therefore be repre-
sented in other basis then the spectral basis. We will later many times mention
what is called a pseudospectral basis, which is a basis of spatially localized func-
tions. Each of these functions is concentrated at different spatial centers. We
denote these pseudospectral basis functions as (6,). The N pseudospectral basis
functions and the N spectral basis functions span the same Hilbert space and
are connected to each other through a unitary transformation. So we have

Py =31 6a)(n 1= 3 16:)(6; | (47)

12



4.3 Collocation

Collocation or pseudospectral approximation can be described in the following
way. We use a projection operator defined in the following way

N
b(@) = Py(z) = bnon(x) (48)
n=1
where the condition ~
Y(x) = () (49)
at the collocation points (z;), 4 =1,..., N determine b,,. So we have
) N
P(@i) = Py(ws) = bt (@) = ¥(xs) (50)
n=1

where i =1,..., N.
This equation can be used as an interpolation scheme at points which are not
collocation points through the relation

b(x) =Y buda(x) = () (51)

One observation which can be made is that Py in the case of spectral projection
and in the case of collocation projects onto the subspace which we denote as
EN = span(é,...,¢n) of the Hilbert space. The difference between the two
types of projectors is not the subspace which they are projected onto but in
the state in the reduced subspace expressed in terms of the difference between
the coefficients (a,) and (b,). We can express this difference in the state by
the help of geometry. For details see (Tannor[17]). The result is that the
spectral projector is an orthogonal projector and the collocation projector is a
nonorthogonal projector. One question which comes to mind is the following,
if we have a projector which fulfills the collocation conditions. Is it possible for
it to be an orthogonal projector at the same time? We consider first the case
where the following discrete orthogonality relation at the collocation points

N
D (@) b0 (@) A = S (52)
j=1
where m,n =1,...,N and A; is a generally j-dependent weight factor is ful-

filled by the expansion functions ¢, (x). The points z; and weights A; have to
fulfill all the orthogonality relations for 1 < m,n < N .
We have that equation(52) permits for the use of direct inversion of the coeffi-

cients b, in the expression ¥ (z;) = Zivzl bnon(z;) by multiplying from the left
with ¢, (z;)A; and by summing over j, so we have

N

b = Zw(zj>¢2(zj)AJ— (53)

13



with (b,,) chosen in this way the collocation conditions are fulfilled. This ex-
pression is a discrete approximation to

i = / o (2)(z)da (54)

which is the condition for an orthogonal projection. We will call these schemes
satisfying Zjvzl oF(2;)pn(2)Aj = Omn where m,n = 1...N for orthogonal
collocation schemes. If we infer the following definition

D (z5) = /Ajpn(x;) (55)

the discrete orthogonality relations at the collocation points becomes

Z ©7,,(25)Pn(25) = Smn (56)

where 1 < m,n < N.
If we define ®,(z;) = ®;,. The equation (56) becomes in matrix notation

e =1 (57)

Relations of this form is denoted as basis orthogonality relations. The form
gives an indication that ®, the transformation matrix is unitary. So because of
this we have that

PP =1 (58)

Relations of this form are denoted as grid orthogonality relations. This relation
expressed in components becomes

N
> Bale)®(z)) = 6 (59)

for1 <i,j <N
The pseudospectral basis can be derived from orthogonal collocation (for details
see Tannor[17]). The result is the following definition for the pseudospectral
basis functions

N
> bal@) @i (z5) = 6;(x) (60)

The functions denoted as the pseudospectral basis functions (6;(x)) are localized
around different values of ;. They fulfill the following condition called the
modified Kronecker d-function property
5is

0; T;) = 9 61
We can express the pseudospectral basis functions in matrix-vector notation and
get

®g(x) = 0(x) (62)

which shows that we can consider the functions (6;(z)) as an alternative basis
to (¢n) since (6;) and (¢,,) are related through a unitary transformation ®7.

14



This gives that a projection in respective basis projects onto a subspace of the
Hilbert space which is the same in both cases. So the unitary collocation relation
of the following form Zj\]:l OF ()P (z;) = dmn gives that we have a set of
localized basis functions. These functions span the space which is spanned by
the orthogonal functions. The points and weights in equation(59) and the basis
of orthogonal functions (¢, ) determine the localized basis

Let us now consider the completeness and orthogonality of the localized basis
functions (6,,). We multiply the pseudospectral basis functions by ¢, (z) and
then integrate over the domain and get

@7, (z5) = (on | 05) (63)
so the grid orthogonality relation is
N N
D Bl ® () =i = > (0: | $n)(bn | 0;) = (0 | 0;) (64)
n=1 7j=1

which is a description of the different 6 basis functions orthonormality and the
basis orthogonality relation is

2

D (@) ®n () = S = 3 (0m | 0)(0; | 6n) (65)

Jj=1

The orthogonality and completeness of the 6 function is a consequence of the
fact that the transformation matrix is unitary.

Let us now look at the collocation relation. The definition for the pseudospectral
basis functions can be expressed as

Pn () = Z LA CAIAC) (66)

®0(z) = ¢(x) (67)
We can use this relation to express t}[le collocation relation with the help of
Pn(z)) = VA jon(x;) and (xi) = 3,1 bndn(x:) = ¥(2;) and get

N

N N
Plai) =Y badul@) =D (D ba®n(:))0i(2) (68)

i=1 n=1

= Y wlw)bila)V/A; ~ () (69)

1=

—_

We have at the collocation points (z;) the following relation
) N
b)) =Y ()0 () VA = (i) (70)
i=1

If we compare this expression with ¢ (z;) = 22;1 bntn (i) = ¥(x;), we notice
that this expression is a collocation formula with basis functions (6;) instead of

15



(¢n). At the collocation points (x;) are the values of the exact function ()
coeflicients of the basis functions.

We continue by multiplying the collocation relation with 6;(z) and integrate.
Then we have

N

05 19) =D (@) (6; | 09V A = () /A (71)

i=1

The collocation projector has the following expression in the Dirac notation.
} N N
() =Y o(a)bi@) VA =D (o | i)z | ¥) VA (72)
i=1 i=1
We have also (z | ) = (x| Py | ¥) so we can write the collocation projector as

N
Py = Z | 0:) (@ | \/Kz (73)

4.4 Gaussian quadrature

We will now describe the theory of Gaussian quadrature. Let us consider

b N
[ o) @ ~ 3 Wis ) (74)

where the values (W;) are the weights which are given to the function values
f(z;) and w(z) is a positive weight function. We choose (z;) and (W;) so
that if f(z) is a polynomial of degree 2N — 1 or less the sum in equation(74)
gives the integral exactly. We consider now the following set of polynomials
(pn,n =0,..., N — 1) fulfilling the following orthogonality relation

b
[ e @pn @) = 5 (75)

If we choose the points and weights in accordance with an N-point Gaussian
quadrature. The approximation in equation(74) will be an equality for polyno-
mials up to an degree of 2N — 1. So we have

N-1

b
/ W(T)ppm (2)pn (z)dr = Z WiDm (2:)pn (i) = 6mn (76)

i=0
We define the function
Pn(x) = Vw(@)pa(z) (77)
and the matrix ® with the following elements
¢in =V Wipn(wi) (78)
So equation(76) becomes in matrix form

ofp =1 (79)

16



which shows that ® is unitary.
Let us consider f:w(x)pm (x)zpy, (x)dz which is a polynomial of an degree no
higher than 2V — 1, which gives that the Gaussian quadrature has to be exact.

N-1

b
| w@pn@pneids = Y- Wipn(zaipa(z)

i=0

Z i @5 = Xonn (80)

which in matrix notation becomes
X = o'x® (81)

where we have that x is a diagonal matrix with elements z;; and X is an
N x N matrix with elements X,,,,, defined in equation(80). The splitting of the
matrix X in three matrices is unique and we have that ®;, has to fulfill ®;, =
VWipn(x;) and 4; is the i:th Gaussian quadrature node. The splitting of X gives
a procedure for finding Gaussian quadrature points and weights. This procedure
is called the HEG(Harris, Engerholm and Gwinn) algorithm. By using the first
N basis functions can we construct an N x N matrix representation X of the &
operator.

b b
Xom = [ oml@aon(@)ds = [ w@pn()op, o)z (52)

Because of the three-term recursion relation fulfilled by orthogonal polynomials
(see Bau and Trefethen[3]), we have that the matrix X is tridiagonal. X is
thereafter diagonalized by a unitary transformation

U XU = X®' =x (83)

The integration points of equation (80) are the eigenvalues (z;) and this gives
that the eigenvalues (x;) also are Gaussian quadrature points of fab w(z) f(x)dx =
vazl Wi f(z;). From the first row of the matrix U = &7 (first column of ®) we
can get the weights after we have looked at the orthogonal collocation matrix
where the points and weights are based on Gaussian quadrature. We continue
with the corresponding pseudospectral functions. One observation to be made
from

X' = U XU =x

is that the eigenvectors of X are the columns of ® . So the eigenfunctions of
TN are

Z O (x (84)

where ®f . = (¢, | 0;)

This is as seen the definition of a pseudoscalar basis function. So (6;) can be
expressed as a linear combination of delocalized spectral basis functions. So
the localized pseudospectral functions must in this case also be the mentioned
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linear combinations. The Gaussian quadrature pseudospectral functions is of
the following form

0;(x) =Y dn(2) @} (25) = Y vVw(@)pn(x)y/Wipn(z;) (85)

A comparison with the grid orthogonality relation

Z \/Wip"(xi)\/wjpn(%‘) = 0y; (86)

gives
W;

w (@) )20, (x:) = 65 (87)

(

We continue by expressing X,,,, in Dirac notation

We can insert the orthogonal projection operator Py because ¢, and ¢,, are
not affected by this operator. For simplicity and later use we define the operator
as

N = Py Py (89)

The ij:th element of ®X & can be expressed as

Z (Oi | pm)(Dm | TN | Pn)(Pn | 9j>

=(0; | 2N | 0;) = xidi; (90)

which shows that in a basis independent representation, the eigenfunctions of
the projected Z operator, y are the localized pseudospectral functions. The
eigenvalue equation have in the coordinate representation the following form

i:NGl(x) = $191($) (91)

4.5 Representation of the Hamiltonian in the reduced space

Now it comes to the projectors we have mentioned earlier. We have mainly
studied their effect on wavefunctions. We now turn our attention to constructing
the Hamiltonian operator H = T(p) + V(&) by the help of these projectors.
Since it is convenient to evaluate the kinetic energy 7T in a spectral basis and
the potential energy Vy in a pseudospectral basis. Because of this a single
representation has to be chosen for the Hamiltonian. This can be done if the
unitary transformation between the two bases is known. The equivalence of the
projection operators in the two representations gives that the reduced Hilbert
space on which the Hamiltonian is represented is defined in a consistent way.
We will describe the construction of the Hamiltonian in a spectral basis, Py =
Zgzl | &n){¢ | and in a pseudospectral basis, Py = Zf;l | 6;)(6; |
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4.5.1 The HEG method

We start with considering a Hamiltonian of the following form
H =p*/2m +V(2) = T(p) + V(@) (92)

We use spectral projection on the full Hilbert space to get an IN-dimensional
Hilbert space. We express the truncated operators as

Hy = PNT(p)Py + PNV (2)Pn (93)
where N
n=1

From this we have that the matrix elements become

(&n [ T(D) | dm) (95)

and
(On | V(2) | dm) (96)

For simplicity we consider a one-dimensional description. In the spectral repre-
sentation let us consider T' = p?/2m then we have

h2 b 82
Ton = (om | T | 60) = =5 [ 65,(0)550m (@) (97)

so we have an analytic expression which can often be solved analytically. This
is not the case when it comes to the potential energy matrix elements in the
spectral representation.

b
Viun = (6m | V(@) | é0) = / 60 (2)V (2) o ()t (98)

As seen before can we use Gaussian quadrature to get an approximation con-
sisting of a finite sum of the integral of the function f(x). This approximation is
of the form f:w(x)f(z)dz R~ vazl Wi f(z), and by using ¢;(z) = \/w(z)pi(z)
where [ = m,n we see that we have f(z) = pp(2)V(z)pm(z) in the quadrature
formula and we get for the individual matrix elements

Vinn = Z Wipm (x:)V (2:)pn(2:) (99)

i=1

We get the points and weights from the theory of Gaussian quadrature.

We now start describing the HEG method for calculating the potential energy
matrix elements. In the end of the procedure we describe how we can use
these matrix elements to compute eigenvalues and eigenfunctions of the full
Hamiltonian. We start by constructing the NV x N matrix representation Xy
of the & operator with the help of the N basis functions. This matrix has the
following elements

b b
X = [ bnla)son(@de = [ wlapn(eopa(o)ds (100
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The matrix X is tridiagonal, which comes from the form of the three-term
recursion relation fulfilled by orthogonal polynomials. After we have constructed
X, we diagonalize it by the following unitary transformation

UL XnUn = x (101)

where x;; = x;0;;. We continue by computing V(x). Because x is diagonal, we
have that (V(x));; = V(2;)d;;. V(x) is after this transformed to the basis of
orthogonal polynomials, to express it formal

VEEG — UyV(x)UL, (102)

By adding the kinetic and potential parts the approximate Hamiltonian matrix
is constructed
HUEC =Ty + VEEC (103)

and finally we diagonalize the matrix H%EG to solve the time-independent
Schrédinger equation or to propagate the time-dependent Schrodinger equation.
We will now look at the expression VIEG = UNV(X)U}LV from two different
angles. First if we multiply out the matrices and use ®;, = W; P, (x;). We
get

(VEED) o = Z U,V (%54) (U1, = Z Wipm (2:)V () pn(2:) (104)

This expression is the same as the one we get from an N-point Gaussian quadra-
ture approximation to the integral (Vn(&))mn under the condition that the
Gaussian quadrature points are identified with (x;) and that the Gaussian
weights are identified with (W;).

Second consider the following result

VEEC — UyV(x)UL, = V(Xy) (105)

so the important approximation in the HEG method is the following substitu-
tion VN — V(XN)

The matrices with subscript IV are defined in the basis of orthogonal func-
tions. But the approximation in the HEG method can be expressed in a basis-
independent way. To the operator &y = PyZ Py corresponds the matrix Xy.
So the approximation in the HEG method can be expressed as the substitution

PyV(2)Py = V(&) — V(iy) = V(PyiPy) (106)

So we have a basis-independent representation.

4.5.2 The DVR method

The DVR method is a pseudospectral method for calculating matrix elements
of the Hamiltonian. One important thing with the DVR method is that the
pseudospectral basis is connected to the spectral basis through an orthogonal
collocation matrix which is based on Gaussian quadrature points and weights.
We start with the Hamiltonian H = T'(p)+V (Z). We are looking for an orthogo-
nal projection onto =Zx. We express the projector in terms of the pseudospectral
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basis, Px = S, | 6,)(6; |. By looking at Hy = PyT(p)Px + PyV(2)Py in
the pseudospectral basis we have that the matrix elements is of the following
form

(0 | T(p) | 65) (107)

and
(0 | V(2) | 6;) (108)

These basis functions (6;) are localized and fulfill the following orthonormality
relation (0; | 6;) = 6;;. So it s reasonable to do the following substitution

Vig = (0i [ V(2) | ;) = V(2:)di (109)

This substitution is the important step when it comes to pseudospectral meth-
ods. The important approximation in the DVR method is the fact that the
potential energy matrix VPV E is diagonal. As a consequence of this we only
need the value of the potential at the DVR points. Because of this we don’t have
to perform the expensive and in some cases difficult numerical integration over
the basis functions. For the DVR method this substitution represents an ap-
proximation which is identical to the Gaussian quadrature approximation which
was used in the HEG method. We will come back to this later. But we can
see this in because in the DVR method we have that the orthogonal collocation
matrix is based on Gaussian quadrature points and weights. This gives that the
pseudospectral basis functions fulfill the following equation &y | 6;) = x; | 6;).
All this together with that the important approximation in the HEG method
can be expressed as PyV(%)Py — V(Zn) and by using Py = Zfil | 6:)(0; |
the DVR pseudospectral matrix elements become

V(En)iy = > (0 [ V(I 0) Ok | 31000 ]) | 65)
k,l=1
= (0: | V(] Ox)ax(0x |) | 0;)
k=1

N
= (0 | 0V (2k) {0k | 0;) = V(2:)d; (110)
k=1

We consider now how to calculate the kinetic energy matrix in a pseudospectral
basis. We start with calculating the second derivative matrix elements T;; be-
tween two localized basis functions. These basis functions are associated with
the grid points ¢ and j.

(T = (0; | T| 0;)

= > (0 $adbn | T | )b | 0)
= ) 0in(T?)um®!,; = (BT?®),; (111)

where T? and T? respectively are the kinetic energy matrix in pseudospectral
basis and spectral basis and ® are the transformation between the spectral
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and pseudospectral basis. We can also express these second derivative matrix
elements in the following way

N

(T = 300 | 6l | T 1 05) ~ Z@L/Wﬂ% (112)

n=1

This gives how the second derivative matrix between two pseudospectral func-
tions can be calculated approximately.

We now take the DVR method up for discussion. It differs from the HEG method
in that the unitary transformation is taken on the kinetic energy matrix, not on
the potential energy matrix. We now start to describe the DVR method. The
matrix representation X of Z is constructed in a truncated basis consisting
of N orthogonal polynomials. The constructed matrix Xy is tridiagonal. This
matrix is diagonalized by a unitary transformation

UlXnU =x (113)

where (x);; = 2;0;;. We continue by computing V(x). Because x is diagonal,
we have that (V' (x));; = V(x;)d;;. The calculation of the kinetic energy matrix
takes place in the basis of orthogonal polynomials. We denote the matrix as
T?{,. The matrix elements are usually known analytically and the matrix is
diagonal or tridiagonal. If we want to express in the pseudospectral basis the
Hamiltonian Hy = Ty + Vx completely. The transformation U which was
used to transform the matrix Vy to the pseudospectral basis must be used to
transform T}@:

TOVE = (U'T?U),; (114)

By adding the kinetic and potential energies, the DVR Hamiltonian is con-
structed

HEVR = TRVA | VEVE (115)
and finally the DVR Hamiltonian HYV® is diagonalized.
The orthogonal projection of the Hamiltonian onto =y is constructed in the
HEG method by using a spectral basis (¢;) and in the DVR method by using a
pseudospectral basis (6;). In the DVR method the Hamiltonian is constructed
in the pseudospectral basis (6;) . The two bases are connected by an unitary
transformation

UHRVEUT = HEEC (116)

From this follows that they have identical eigenvalues and if we use them to
propagate an initial wavefunction. The dynamics will be the same in both
cases.

We have then that the DVR method and HEG method have the same approxi-
mation of N-point Gaussian quadrature integration, since the HEG method can
be basis-independent. The approximation is independent of the basis and the
numerical results should be identical whether calculated in a spectral basis or in
a pseudospectral basis. So the pseudospectral matrix elements of the potential
in the DVR method can be calculated as

(6| V(@) | /e (2)dz

N
Z 0;(zr) = V(2:)dy (117)
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given that 6;(z)V(z)0;(z) = w(z)f(x) where f(x) is a polynomial of degree
2N —1 or less.

4.6 The Fourier method

The Fourier method is a pseudospectral method where the points are evenly
spaced on a grid. The value of the potential at the grid points gives the po-
tential energy matrix. This matrix is diagonal. The Fourier method has two
implementations: First the Fourier grid Hamiltonian (FGH) method and second
the fast Fourier transform (FFT) method.

But before looking at these two methods, some preliminaries will be discussed.
We start with the orthogonal basis functions in the Fourier method. These
basis functions are of the form ¢ (z)ae®*®. We have also that the projector is
dependent on the choice of the range of x and the range of k, respectively. We
will describe two cases, a continuous basis in k and a discrete basis in k. We
start with the continuous k-basis.

The Hilbert space is restricted to —K < k < K. In the case the coordinate
space range is infinite, we have that the k-normalized basis functions are

eikz
Pr(w) = on

where — K <k< K and —c0o <2 < o0
The basis set which corresponds to the continuous values of k defines the fol-
lowing projection operator

(118)

Pap) = / Lo |k (119)

We now consider the case with an discrete k-basis. We start by making the
assumption that the Hilbert space has finite support. To be more explicit the
Hilbert space spans a finite range of the coordinate space, 0 < x < L. We define
a projection operator which is associated with the range

L
Prli) = / | 2)(z | dx (120)
0
The following condition determines the normalized basis functions

L L
| oo (e)dn =sur = 1 [ et (121)
0 L 0

This is only fulfilled for discrete values of k fulfilling the condition k — k' = "—i’r
or Ak = 27“, where the difference between two neighboring basis functions in &
is denoted as Ak. Thus, the normalized basis functions becomes

eikz
VL

where 0 <z < L and k = kAk where —00 < Kk < 00
The restriction of k to discrete values corresponds to the following projection
operator

Pr(x) = (122)

o0

Po)= > | pe)ps | (123)

KR=—0C
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where p,, = ikAk, since we have that Pr(Z) and P+(p) do not commute. The
product of these operators is not hermitian and because of that the product
is not a projector. But the product P+(p)P.(p) is hermitian because both the
projectors in the product are functions of p. So we can use the projector

P = Pn(p)Pu(p) (124)

to combine the restriction of band-limit —K < k < K and finite support on
0 <z < L. We have used the assumption that 2K/Ak = KL/m = N, N is an
integer.

To the projection operator in (124) there corresponds a normalized basis (¢y;),
so we have

N
P =Pn(p Z ) | (125)

2R ei2ﬂ'mv/L N N
x) = = y ——F+1< k< — —0o < <X 126
bula) = = G . (126)
We have two Fourier pseudospectral schemes corresponding to the continuous
k-basis and the discrete k-basis. In each case the orthogonal collocation matrix
is chosen so that the basis orthogonality relation becomes exact.
We start with the continuous k-basis.

o] i(k—k/)m
/ Gper (2)dr ( )dx_/_ B dr =0(k — k')

Z Or () On () Ax = Z O (w5) P () (127)

j=—o00 j=—o00

We make the following choice: Azr = &, z; = jAr = % The basis orthogo-

nality relation is then fulfilled for

eikx]
Op(z;) = — 128
The grid orthogonality relation becomes
K K ezk(xlfm])
/ By ()7 () :/ Y k=, (129)
K _xk 2K

In the discrete basis we choose the pseudospectral matrix so that the orthogo-
nality relation becomes exact.

L N N
| 6 @n@rds = 80 = 3~ 6 0)0(2)A0 = 3" (o)) Bu(a) (130)
0 j=1 j=1
We make the following choice: Az = % and z; = jAzx = % The basis

orthogonality relation is then fulfilled for
ei?ﬂ'nj/N

(7)) = v

(131)

24



The grid orthogonality relation becomes

N

2 2wkl /N e—iQﬂ'}‘ij/N

+1 K=—F 1

=0y (132)

in the case we have pseudospectral basis functions. The Fourier method have
the following form in the continuous basis and the discrete basis respectively.
The continuous one is

K K etkz o—ikx;
/_K o (2)p)(x)dk = 0;(x) = /_K Eﬁdk (133)

The discrete one is

Y bn@)(a) =0ia) = Y. ©

i2nkx/L e—i27rmvj/L

VN

(134)

_

4.6.1 The FGH method

We consider now the FGH method which is a special case of the DVR method.
The facts which provides the basis for the FGH method is that it is easier to
construct the kinetic energy matrix T in the momentum representation and
the potential energy matrix V in the coordinate representation. We have that
Fourier transforms give us a method of transforming between these two repre-
sentations. In the FGH method the transformation matrix is a Fourier matrix,
which is a difference compared to the DVR method. In the FGH method the
amplitude of the wavefunction on the grid points are used to generate the wave-
functions of the Hamiltonian operator or the eigenfunctions of the Hamiltonian
operator. So the wavefunctions are not given by a linear combination of ba-
sis functions. With the Fourier grid Hamiltonian (FGH) method we evaluate
the matrix elements of the Hamiltonian by using the Fourier pseudospectral
scheme. We begin with the Hamiltonian operator expressed in the coordinate
representation.

(@|H|a') = (x| TP+ V(@) | )

o0 thQ

_ [m<x | By | @)k + V(2)0(x — o)

_ 5_2 oo ik k? efikm’
2m J_ o V21m  /27

In the Fourier pseudospectral scheme we discretize the coordinates x and z’
at N points evenly spaced so that z — [Az and 2/ — jAz. The Hamiltonian
matrix is an IV x N matrix and we say that H;; corresponds to the position [Ax,
jAx . With the help of the DVR method we get the potential energy matrix
elements. So the off-diagonal elements disappear and the diagonal elements are

dk + V(x)d(z — 2') (135)

(z [ V(&) [ 25) — V(z;)di; (136)
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The kinetic energy matrix elements becomes

(@ | 76) | 25) = [ T | Rk | T) | k) | 25)dk
B2 oo iklAw 2671'ij1
“om ) Ve o

The existence of the exponential factor and the integral over k can be seen
as coming from a forward, followed by an inverse Fourier transform. Before
continuing with the FGH method. We take up the procedure with discretization.
Instead of a continuous range of coordinate values x we want to use a grid of
discrete values x;. So we use a uniform discrete grid of « values. There z; = [Ax,
where Az denotes the uniform spacing between the different grid points. So for
the wave function the normalization condition becomes

dk (137)

/ P (2)Y(z)dx = 1. (138)
If we on a regular grid with N values of x discretize the integral in (138) we get

N

Dot (@)(w)Ar = 1, (139)

i=1

The reciprocal grid size in momentum space is determined by the choice of
the spacing in coordinate space and the grid size. The longest wavelength
and as a consequence of that the smallest frequency occurring in the reciprocal
momentum space Ak = 27/ Apaz is determined by the length NAz. This length
is the part of coordinate space which is covered by the grid. The relation Ak =
27 /N Az then gives the grid spacing in momentum space. In the momentum
space grid the middle point is chosen to be £k = 0 and about this point the
grid points are evenly distributed by the relation 2n = (N — 1), where we have
defined an integer n and N is the number of grid points in the spatial grid. N
is an odd integer. The case for IV even is treated similarly. So the bras and kets
of the discretized coordinate space give at the grid points the following value of
the wave function

(@i | ¥) = (@) = ¢s. (140)

The identity operator takes the following form I, = Zfil | z;)Ax(z; | and the
orthogonality condition becomes Axz(x; | x;) = d;;. So we continue now with
the FGH method. First we truncate the range of integration to [— K, K], where
K = 7/Az and the integral is discretized over k where the spacing Ak in k is
Nng' This corresponds to the basis in the Fourier pseudospectral scheme. We

infer the substitution & = kAx and use the relation AkAx = QW” to get

N
R K2 2 ei2mkl/N e—12mkj/N

| ) i)~ 5 D0 = (RARP e A

n:—%-}-l
N
2 2 2wkl /N —i2nkj/N
re s e
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So this equation has the form

(| TG 2= D2 belay) S gnm) = (UITU), (142)
n:—%-}-l

By adding the kinetic and potential energy we have
HEOH =T 4 vEeH (143)

To summarize it the approximation of the FGH matrix is the following substi-
tution

H— HFGH = Pu(ﬁ)Pm(ﬁ)HPﬂ(ﬁ)Pu(ﬁ) (144)

or
H — HFYYH = p(p)H P (p) (145)

depending on the basis chosen.

4.6.2 The FFT method

We consider the FFT method. In this method the operation of H is calculated
as described in the following way. The Hamiltonian operator is H =T + V.
The method is to locally calculate the operators since the potential operator is
local in coordinate space. Its operation is therefore a multiplication of V' (z;)
by 9(z;). The local operation of the kinetic energy operator can be done in
momentum space where it is a multiplication by the kinetic energy discrete
spectrum: T'(k) = % The calculation of the kinetic energy operator starts
with transforming 1 to momentum space by the help of a backward discrete
Fourier transform(DFT) multiplying by T'(k) and after that transform back to
coordinate space by the help of a forward discrete Fourier transform (DFT).
The matrix-vector representation of Hy = (T 4+ V)1 is of the following form

1 1 1 e 1 ., 0 0 ... 0
1 w w? oo wNTd 0 T, 0 ... 0
111 w2 w? coo wNED 0 0 T, ... 0
N
1 wN—1 @2N=1) y(N=1)? 0 0 O - TN'71
1 1 1 1 Y(zo)
1 w™t w2 oo w1 w(g;l)
«| 1 w2 w* oo w2NED % Y(x2)
1w WN-1 g 20V=1 = (N-)? P(en—1)
V(zo) 0 0 0 (o)
0 Vix1) 0 0 Y(x1)
41 0 0 V(za) ... 0 | )
N . . . . . .
0 0 0 0 V(.TN_l) ’lﬂ(mN_l)
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where

w = 2 /N (146)
and ) )
h*(kAk)
T, = —— 14
5o (147)

ﬁ are factored out from the orthogonal collocation matrices, where T}, runs

over [-N/2+1,...,0,...,N/2]. But to be in accordance with the indexing of the
FFT matrix the 1ndex of T is changed to run from [0,... N/2, —N/241,...,—1].
We have now Hi(x,tg). The advancement in time to get ¥(x,t1) can be done
by various methods which will be discussed later. We repeat the procedure to
get ¥(xz,t2) and so on. This ends the description of the FFT method. The
DFT methods discrete sampling in k-space is connected to periodic boundary
conditions in z. That is to the basis which has been mentioned before

einAz ei27mm/L

dr(x) = Vi3 = Vi ,75+1§n§g,foo<z<oo (148)
We use an FFT algorithm where the number of multiplications is %N InN to
implement the DFT. In the case of a straightforward implementation of the
DFT the number of multiplications is N2. When we compare the FFT method
with the FGH method Tannor[17] mentions two main advantages with the FFT
method. The first one is that the FFT algorithm rearranges the elements of the
input vector so we don’t need to construct and store any matrices. The second
advantage is that when we use the FFT algorithm to implement the DF'T, this
method scales semilinearly with the number of points NIn N. In the case of
matrix multiplication the number of points is N2 and in the case of matrix
diagonalization is the number of points N3.

4.7 Phase space

A phase space interpretation can be given to every spectral and pseudospectral
method. When a basis function is chosen, this choice of basis defines for a
subspace of the Hilbert space a projection operator Py = ij:l | &n){(dn | -
The region of the phase space which is spanned by this basis can be represented
by the Wigner transform of the projection operator

P¥ (pa ZM | eta-outat perias o

An interpretation of the projector P is expressed in terms of a region of phase
space. This region is independent of the basis chosen that spans the truncated
subspace. We now continue by studying the phase space in the Fourier method.
First we have between the maximum wave number, K and the sampling number
spacing Az the following relation K = im We infer the following Krange =
kmam — kmin = 2K which gives krqnge = A . In a similar way we get Zrange =

. So we have a correspondence between the grid spacing in coordinate space
and the grid range in momentum space. There is also a correspondence between
the grid range in coordinate space and grid spacing in momentum space. The
product of the range of the grid in momentum and coordinate gives the volume
in phase space which is covered by the Fourier representation. Since we have
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the relations @range = L,Ax = %

of grid points, we have that the phase space volume becomes é—z = Nh. We
can give this result the following interpretation: The number of grid points is
proportional to the volume in phase space and the phase space volume per grid
point is Planck’s constant. So we can use the phase space representation to
analyze the Fourier method efficiency.

and prange = Pkrange, where N is the number

5 Time propagation

When we consider numerical solutions for the time-dependent Schrédinger equa-
tion we must make some approximations about the development of time of the
Hamiltonian. We have up to this point only discussed numerical methods for
executing the operation H1 on a grid of points. We now consider the case of
numerical implementation of the following expression e~*1t/"4). We will now
consider different methods for this implementation.

5.1 The split operator method

In the split operator method we use the ease of treating operators in their
diagonal representations. We start describing the propagator over the time
interval [0, ¢] as a product of propagators over time intervals At where NAt = ¢.
So we have

U(O,t) — e—th/h — e—iHAt/Tz ] He—iHAt/h (150)

where e~ *HA/ is multiplied N times.

The idea is to approximate each of these time propagators over At as a product
of a kinetic and a potential factor.

e—iHALR _ —i(p?/2m+V (@) At/ o —i(TAL/R) —i(VAL/R) | O(AL?) (151)

where T' = p?/2m.

T is diagonal in momentum space and V is diagonal in coordinate space. If
T and V commuted then the product would be exact. So the error should be
proportional to the commutator [T, V]. The truncated error is determined by
the next higher commutator between the potential and the kinetic energy and
will vary with the value of these terms.

By the multiplication of e~*V (@)At/h with 1 (x) we calculate the operation

QI

and in a similar way the operation

efiT(ﬁ)At/h,l/) _ efiﬁzAt/2mh,l/)

is calculated by Ze_iTPP’At/thZTw(ac), where we have that ZT is the trans-
formation between the momentum and coordinate representation and T, is
the diagonal representations of the kinetic energy in momentum space. We
now take up the question about the applications of the split operator method.
In most cases it is implemented in the Fourier basis. We have that in the
Fourier basis Z' is a discrete Fourier transform(DFT) with matrix elements
ZlTj = \/—%e”’lzi/h. These elements can be calculated by the help of an FFT.
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The FFT algorithm provides an accurate unitary transformation between two
finite representations on grids with N points. The split operator method has
the following properties. It is unitary and preserves norm. The split operator
method is unconditionally stable. It is used if the Hamiltonian is written as a
sum of operators that depends on coordinates or momenta, respectively. But
in the case we have operators where coordinates and momenta is entangled, we
can not use the method; To take an example operators of the form e”?*. The
method has been used to treat bound eigenstate determination and wave packet
scattering time-dependent Hamiltonian functions.

5.2 Polynomial methods

In the polynomial methods the propagator is represented as

e My =N " a, Po(H)Y (152)

where P, (H) is a polynomial of the Hamiltonian operator, whose operation on
1) can be evaluated by iteration of H on . Since we know for instance how to
calculate H1) for pseudospectral methods,we can calculate H(H1) and finally
H™y for any n by iteration. So P, (H)w can be calculated for any polynomial
of H. When we have chosen a polynomial sequence, the coefficients a,, are
uniquely determined. We can divide the polynomial methods into one category
that chooses the polynomial in advance (uniform methods) and one category
which does not choose the polynomial in advance (non-uniform methods). As
an example of the first type we can take the Chebyshev method and as an
example of the second type we can take the short iterative Lanczos method.

5.2.1 The Chebyshev method

Consider a scalar function f(x), where z € [—1,1] and f(z) = > anPn(z). If
this is the case the Chebyshev polynomial approximation is optimal, because
the maximum error in the approximation is minimal when compared to every
possible polynomial approximation when it comes to practical use. We will now
look at the expansion of the propagator in terms of Chebyshev polynomials
and consider how the exponential functions are represented in the terms of
the Chebyshev polynomials. For exponential functions the expansion has the
following form

eioT — Z an ()P, (—iz) (153)

where .
an(@) = [ %/i_"g)dx = 2J,() (154)
and

ao(a) = Jo(a) (155)

where the J,(a) are Bessel functions of the first kind (see Andersson and
Béiers[2]). Time reversal symmetry is built into the expansion coefficients.
The Chebyshev recurrence relation is

q)nJrl = 7211“1)” + q)n,1 (156)
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Before we start implementing the expansion in (153) for the propagator, we
have to map the argument —iHt/h onto the domain [—4,4]. So we have

H —I(AEgiq/2 + Enin)

Hnorm =2
AEit]rid

(157)

where we infer AEyiq = Emaz — Emin which is the range of energy supported
by the grid. I is the NV x N identity matrix.

We also infer that Fp,q: = Vinaz +Tmae Which is the maximum energy supported
by the grid and E,,;, = Vinin is the minimum energy which is supported by the
grid. Finally we infer T),q, = h? k2. ge /2m which is the maximum kinetic energy
supported by the grid where kyqnge = m/Az. When we have this mapping, the
wavefunction becomes

p(t) & e Emint/ M) N " g ()0, (—i Hporm ) (0) (158)
where ®,, are the complex Chebyshev polynomials and o = AE%{‘“&
The following recurrence relation generates the polynomials.
¢n+1 = *21.Hnorm¢n + (bnfl (159)
where ¢, = @y (—iHporm)#(0). The recurrence starts with
$o = 1(0) (160)
and
¢1 = —iHporm(0) (161)

We consider the expansion coefficients as a function of n. One thing which is seen
is that when n is larger than a, we have that the Bessel functions J,(«) decay
exponentially. This means that when it comes to practical implementation,
we can choose the maximum order N in such a way that the accuracy of the
computer dominates the accuracy. We have that the Chebyshev propagator
in an effective way in a single time step does the propagation. We can not
automatically obtain the intermediate time results. But because we have that all
the time dependence is in the Bessel function coefficients and none of the spatial
dependences, we know when the calculation of the Chebyshev polynomials is
finished. The information at the intermediate times can be given at a low
cost. One important thing with the Chebyshev propagation method is the fact
that the error is uniformly distributed over the total range of eigenvalues. The
Chebyshev method is not unitary but its accuracy gives that the deviation from
unitary can be employed as a test of accuracy.

5.2.2 The Lanczos method

We begin by defining the Krylov space. The Krylov space is a subspace of the
full Hilbert space. We obtain the Krylov space if we on an initial state act with
a linear operator, say N times. Let us consider the following example.

We have that the linear operator is the Hamiltonian. We denote it as H and
it is hermitian. The vectors u; = H7(0) then span the Krylov space. By the
Lanczos method can we construct a matrix representation of the Hamiltonian.
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This matrix representation can be expressed in a basis which is spanned by
the Krylov space Ky = (¢(0), H(0), H2(0), ..., HN~1)(0)). We diagonalize
the Hamiltonian matrix and we use the diagonal representation to propagate
the initial state inside the Krylov space. Because the operator H is used to
construct the Krylov space, the Krylov space is constructed to include that part
of the Hilbert space in which the wavefunction is in the nearest moments.

We have that the functions which defines the Krylov space, u; = H71)(0) are in
most cases not orthogonal. For practical use it is for most cases more convenient
to use orthogonal functions. In the Lanczos method, when a new Krylov vector
is constructed, it is also orthogonal to all the previous Krylov vectors. To
describe the procedure, we have that the first basis function ¢g is the initial

state | o) = 15(0).

We start our construction by letting H act on | ¢o) and we get

H | ¢o) = ao | ¢o)+ | 1) (162)
where
(¢o | 1) =0 (163)
and
a0 = (¢o | H | ¢o) (164)

We continue by expressing the new state in the following way
| ©1) = (1 = Po)H | ¢o) = H | do) — ao | ¢o) (165)

where Py =| ¢o){¢o | We continue by normalizing | ®1)

1
|60 =5 1), 37 = (@1 | D1) (166)
Next we look at to the matrix element

(1| H | ¢po) = (¢1 | @1) + (¢1 | PoH | ¢o) = Bu (167)

So the next step is to apply H on | ¢1). The new state will have some overlap
with | ¢o) and | ¢1). We redefine the new state | ®2) and by introducing the
projection operator P; =| ¢1){(¢1 | in the following way.

| @2) =(1-P1)(1—-Po)H | ¢1) =(1—-P1—P)H | ¢1) =
H|¢1>—041|¢1>—51|¢0> (168)

We have oy = (¢1 | H | ¢1). The normalized version of | ®2) becomes in the
same way as before

| o) = ﬁi | By), 52 = (B | Bs) (169)
2

We have that (¢1 | H | ¢2) = 82 and (¢o | H | ¢2) = 0.
So the common pattern looks like

1. |‘I)j+1> =H| ¢j> — &y | ¢j> - B; | ¢j—1>
2. a; =(¢; | H| ;)
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3. 1¢5) =5 195),87 = (2 | &)

So for the general expression we have the following form

H | ¢5) = Bjy1 | ¢j1) +aj | ¢5) +Bj | pj—1) (170)

where we have that the coefficients are a; = (¢; | H | ¢;) and §8; = (¢, | H |
bj-1)

Below is the matrix elements of the Hamiltonian in the Lanczos basis. This
matrix is as seen tridiagonal.

(7)) ﬁl 0 e 0

i a1 P2 0O 0

0 B2 az [ 0 0

Hy = . . ) .

: : 0

0 BN_Q anN_2 BN—I

0 ﬂNfl aN_—1

We diagonalize Hx and get
Z'HNZ = Dy (171)

where Dy is a diagonal matrix consisting of the eigenvalues of Hy. The trans-
formation matrix Z is used to express the propagator. It becomes

U(At) = e HNAt/h _ —iZDNZYAt/h _ 7, —iDNAt/R 7} (172)

So the propagated wavefunction is of the following form
Y(AL) = Ze PNAYR 714(0) (173)

The eigenvalues and corresponding eigenvectors of Hy can be calculated by an
accuracy of O(N?).

We have mentioned before that the Krylov space which is spanned by u; =
H71(0) spans the subspace of the Hilbert space where 1(0) in short times will
evolve in. This comes from the fact that it is also the subspace which is spanned
by the Taylor series expansion of the propagator valid at short times. The size
of the Krylov space is important for how long time the evolving wave packet
is confined inside the Krylov space. To put it in other words. The size of
the generated Krylov space gives for how long time we will be able to study
the packet dynamics. One can prove that for a finite Hilbert space ( a N-
level system ) that a Krylov space of size N generates within numerical error,
the exact dynamics. When it comes to practical use there is a choice between
two different approaches. First generating a large Krylov space and use the
generated Krylov space for a long time stop propagation and second generating
a small Krylov space but use the Krylov space for short time steps where the
Krylov space is frequently updated generating a new Krylov space by the help
of the current initial state. This second method is called the short iterative
Lanczos method.

We can summarize the Lanczos method in a more general way. We have this

KI’leV Space Ky = (w(o)an(O)’HQw(o)a7HN_11/J(0)) = (qlana---an)

33



where the vectors ¢; are orthonormal. We express it in matrix form. Let Yy be
the Krylov matrix of the following form

Yiv = [(0) | HY(0) | ... | HY~'4(0)] (174)
Then Yy has a reduced QR factorization (see Bau and Trefethen [3])
Yy =QnRy (175)

where Qy is
Ov =l .. |av] (176)

So the matrices @); of vectors g; which are generated by the Lanczos method
are reduced QR factors of the Krylov matrix

Yj=Q;R; (177)
The corresponding projections are the tridiagonal matrices T

T; = QIHQ, (178)
and by the following formula we have a relation between the successive iterates
HQ; = QjnT; (179)

which we can express as a three-term recurrence at step j.

Hq; = Bj_1qj-1 + ojq; + Biq541 (180)

as long as Y; is of full rank. We have that the characteristic polynomial of T}
is the unique polynomial p/ € PJ that fulfills

| »/ (H)q ||= minimum (181)

The usefulness of the Lanczos algorithm consists of that the multiplication by
H is the only large scale linear operation. To take an example Lanczos iteration
is used to compute eigenvalues of large symmetric matrices.

5.3 The second-order differencing method

The simplest method for time propagation is to expand
eTHAYR — 1 _iHAt/h+ ... (182)

in a Taylor series. But a numerical algorithm which is based on this expansion
is not stable. We have that this instability comes from the fact that the time re-
versal symmetry of the Schrodinger equation is not conserved with this method.
But with the help of a symmetric modification of the expansion can we achieve
stability. So we can formulate the method by using second-order differencing
(SOD) to make an approximation of the time derivative in the Schrédinger
equation. Another formulation is to use the following relation

D(t+ At) —(t — At) = (e A — AR )y(t) (183)
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If we expand the exponential functions in (183) in a Taylor series. We get the
following second-order propagation scheme.

Yt + At) = p(t — At) — 20AtHY(t) /h (184)
so we have in Dirac notation the following expression for the SOD method
| gt + At)— | ¢t — At) = —2iHAt/h | ¢, t) + O((HAL)?). (185)

In the SOD method or MSD2 method to start the propagation we need two
initial conditions. The initialization scheme and the propagation should have
equal accuracy. To describe how the method is used, let us begin with a first-
order scheme for half a time step. Continue by using the SOD method to
propagate another half step. We have now two initial conditions ¢ (t) and ¥ (t +
At) . Another method which is more symmetric when it comes to time reversal
is to first propagate half a step backward to get ¢ (¢t — At) and after that half a
step forward to get ¢ (¢t + At). The propagation continues and we can get the
intermediate results by the following approximation

[(h(t — AL/2) +v(t+ At/2)) +%At/2(Hw(t+At/2) ~HY(t— AL/2))]

(186)
This approximation is accurate up to second order. If it is the case that the
Hamiltonian operator is hermitian, then we have that the SOD propagation
scheme is stable and it preserves norm and energy. We have that the time
reversal symmetry is built into the system. We now mention something about
the error. First we have that the error in the propagation is accumulated in
phase. Second we have that if we propagate N times the error is accumulated
N times. Now the third and final comment. If we look at the scaling of the
numerical effort for a fixed time, we have that the error scales as O(1/N?),
where N is the number of times we call the Hamiltonian operator. In the case
of a constant error we have that the numerical effort scales as O(t3/?).

N~

o) ~

5.4 The Crank-Nicholson method

This method is recommended for solving the time-dependent Schrédinger equa-
tion using finite difference methods. This method is an implicit method. The
Crank-Nicholson method is a special case of an implicit Adams method. Let us
start by considering the equation

du(t)
dt

= f(t,u(t)) (187)

where
u(to) = U (188)

If u solves this equation we get

u(tnir) — ultn) = / " u()t (189)

)) is then replaced by an interpolation polynomial P having the value

[t u(t
= f(t;,U;) at tj forn —g+1<j <n+1. Since we have finite differences

F;
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on a uniform grid (see Schatzman[14]), we get

7

=y [ 1 () (191)

the family of implicit Adams methods is then given by

P(t, + hs) = Z(—l) (_S * 1) (ViF)psr. (190)

If we define

q
Uni1 =Un+h> % (V' F)pi1. (192)
1=0

The recurrence relation for the v is

’YS 7;;—1 *

n+1 2

The case ¢ = 2 corresponds to the Crank-Nicholson method. We consider now

the time-dependent Schrodinger equation. The Hamilton operator is discretized

at L positions. These positions are equidistant with a separation of length Az on

the real axis. By 1; we denote the value of ¢ at the point z; = jAz,j =1,..., L.

We call the discretized Hamiltonian Hp and the Schrodinger equation can be
expressed as

dlﬂg( )

dt
By using time intervals At we discretize time. The upper index to the wave
function v is used to denote time. We have that we can approximate the time
derivative of ¢ at this particular time step with the expression (w""’l Y7/ At
where the error is of the order At, so we get

— Hpuy(0). (193)

It = (1 —iAtHp /R)Y5. (194)
By the help of the expression of the implicit form can we derive the Crank-
Nicholson method. But a much easier way is the following heuristic derivation.
| t +(5t> _ e—iHAt/h | t> — e—iHAt/(Qh)e—iHAt/(Qh) | t> = eiHAt/(Qﬁ) | t 4 At) —
e—iHAt/(Qh) | t>

By using Taylor expansion on the exponential we get

(1+1HAt)|t+At> ( 71HAt)|At>

So we get the followmg expression for the Crank-Nicholson method

|+ Al) = —E—Ewmq | At)
It is stable and unitary and correct up to second order in At. As mentioned
before this is an implicit method, so a matrix inversion must be done at every

time step.
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Figure 1: Comparison of analytic (solid line) and numerically computed (dots
surrounded by circles) FGH method eigenfunctions. Picture taken from C. Clay
Marston and Gabriel G. Balint-Kurti The Fourier grid Hamiltonian method for
bound state eigenvalues and eigenfunctions. J.Chem.Phys.91, 3571,(1989).

6 Examples

As an example comparing some of the methods, we take the Morse potential.
First example (C.Clay Marston and Gabriel G. Balint-Kurti[5]) compares the
bound state eigenvalues and eigenfunctions computed from the diagonalization
of the Hamiltonian constructed by the help of the FGH method with the eigen-
values and eigenfunctions which are the result from the analytical solution to the
Morse curve problem. In the second example (C. Leforstier et. al.[9]) different
time propagation methods are compared. In both examples we are considering
H,. The Morse potential is defined by

V(z) = D(1 — e~a(@=e))2 (195)

The parameters used are those applicable to Hs and for numerical values of these
parameters see (C. Clay Marston and G. Balint-Kurti[5]). The first example
studied has 129 grid points and the vibrational quantum number is v = 15. In
figure(1) the analytic solution is represented by a solid line and the numerically
computed by dots surrounded by circles. In the C. Clay Marston and Balint-
Kurtl[5] paper the wavefunction is superimposed on the scaled Morse potential
curve. The zero of the wave functions is at the bound state energies. The
analytic solution is scaled so that it will coincide with the numerically computed
values when they are at their maximum. The normalization condition ), |
¥; |*= 1 has been used.

In C. Leforstier et. al.[9] four methods are used: The SOD method, The split
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Figure 2: (a) SOD initial scattering state.(b) SPO bound initial state. (¢) SPO
scattering initial state. (d) SIL bound initial state. Picture taken from C.
Leforstier et. al. A comparison of different propagation schemes for the time
dependent Schrodinger equation. J.Comput. Phys94, 59(1991)
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operator method(SPO), the short iterative Lanczos method (SIL) and finally the
Chebyshev method (CH). The methods are not always interchangeable but in
the problem we are considering all four methods are applicable. In this example
a time independent Hamiltonian is used. A grid with N = 256 points and
Az = 0.10 was used. For the generators of the reference wavefunction a time
step of At = 12.0 was chosen. We also have Ngjmes = 7000. For the numerical
values of the parameters see (C. Leforstier et. al. [9]). Two initial states were
used for the calculations. First a scattering event which was simulated by placing
the initial wavefunction in the asymptotic region where we have negative average
momentum. In the simulation a Gaussian wavefunction was used. This allowed
the wavefunction frequency w,, to change by varying the wavefunctions width.
Second a completely bound wave function was simulated. This wavefunction
oscillates in the bound part of the potential. The first series of computations
studied the accumulated error for the different methods. In the figures this error
is shown as a function of time. When it comes to comparison, the fact that the
Chebyshev method has a constant time scaling error must be taken into account.
For the parameters of the scattering state and of the bound state, see (Leforstier
et. al.[9]). In figure 2(a) we have the logarithm of the accumulated overlap
amplitude error as a function of the logarithmic time for the SOD propagation
method. We define the overlap error as 1— | (Yo (t),¥sop(t)) |. The plot
shows four different time steps: At = 0.03, 0.04, 0.08 and 0.12. As a reference
a Chebyshev wavefunction with a uniform error of 10714 was used. A linear
dependence with respect to the accumulated error is observed, which should be
the case with a stepwise integrator. The convergence of the method is shown in
the graph. In figure 2(b), we have the logarithm of the accumulated amplitude
error as a function of the logarithmic time for the SPO method. The error
calculations are analogous to the one in figure 2(a). The initial condition is in
correspondence to a bound state. The behavior of the convergence is as seen
different from the SOD method. We have that the large time step calculations
display an oscillatory behavior with respect to time. This comes from the fact
that the commutation relation shows a non-uniform behavior as a function of
the wavefunctions average position. The source of the error in the SPO method
is that higher order commutators are neglected. As can be seen, the converged
results show a linear accumulation of error with respect to time. In figure 2(c),
we have the overlap phase error for the scattering initial state calculations for
the split operator method. The phase error is defined as the phase of the overlap
(Weu(t),vspo(t)). Four time steps were used At = 0.08, 0.1, 0.2 and 0.3. For
all the four times step a nonlinear dependence is seen. In figure 2(d), we have
the overlap phase error as a function of the logarithmic time for the bound initial
state for the SIL propagation. The four plots show the result for the orders 3,
5, 7 and 9 of the interpolating polynomial over the fixed time step. We can see
that for the polynomials of orders 5,7 and 9 there is a linear dependence which
was expected. But for the polynomial of order 3 there is a accumulation of
the quadratic overlap amplitude error. When higher orders are used the error
saturates quickly. The Chebyshev method has a constant error scaling with
time which should be mentioned for comparison reasons.

The next series of computations in C. Leforstier et. al. [9] evaluated for the
fixed total propagation time is the scaling of error. In figure 3(a), we have the
logarithm of the amplitude error as a function of the logarithm of the number
of FFT calls at a fixed time for the SOD propagation. The four times used
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Figure 3: (a) SOD bound initial state. (b) SPO bound initial state. (c) SPO
bound initial state. (d) SIL bound initial state. Picture taken from C. Leforstier
et. al. A comparison of different propagation schemes for the time dependent
Schrédinger equation. J.Comput. Phys94, 59(1991)

for the bound initial state where 600, 1200, 1800 and 2400 a.u.(a.u. stands
for atomic units). The earliest time is in the leftmost plot. It is seen that
for the linear fits there is an approximate slope of -2 and the accumulation of
the fixed error in time is like t>/2. One thing noted is that the error has a
cubic dependence upon numerical effort. This holds for the initial states, the
amplitude and phase errors. Figure 3(b) is the same as figure 3(a) but for
the split operator propagator phase error. In this case the linear fits also have
a slope of -2. The result was the expected one since this is a second-order
method. That it is a second-order method can also be seen from that there is
a quadratic convergence of the error with respect to numerical effort. In figure
3(c), a comparison between the phase and amplitude error is displayed for the
SPO propagator for 600 and 2400 atomic time units. The lower plots shows
the amplitude error, the upper plots shows the phase error. Figure 3(d) is the
same as figure 3(a) but for the SIL propagator amplitude error. The polynomial
orders used for the result for 2400 atomic time units were 3, 5 and 7. The plot
shows the convergence for the SIL propagation method for these three orders.
It is seen that we have no simple linear relation which fits the data. It is also so
that with numerical effort the error saturates which indicates that we have an
accumulation of the round-off errors in the SIL method. In figures 4(a) and 4(b).
The phase error dependence of the SPO propagator and the SIL propagator as a
function of time is shown and we use a fifth-order interpolating polynomial. As
a function of time for the initial scattering state wave function the width of the
initial wavefunctions denoted as o was 0.15, 0.20, 0.25 and 0.30. The time step
was 0.04 a.u.. The Lanczos phase error is as seen sensitive when it comes to the
choice of initial state. This is not the case when it comes to the split-operator.
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Figure 4: (a) Phase error dependence of the SPO propagator. (b) Phase error
dependence of the SIL propagator. Picture taken from C. Leforstier et. al. A
comparison of different propagation schemes for the time dependent Schrédinger
equation. J.Comput. Phys94, 59(1991)

For the amplitude error the two methods display similar behavior. The phase
error as a function of time for three of the methods with bound initial state
condition is shown in figure 5. The phase error as a function of numerical effort
at a fixed time of 2400 a.u. for the four methods is shown in figure 6. The
bound initial conditions are used and with the help of the number of FFT calls
the numerical effort is measured..

The next example we are going to take up is the scattering of a wavepacket.
The paper I'm referring to is (Ilitaka[8]). The methods he is comparing are the
Crank-Nicholson method, Chebyshev method, MSD2 method or SOD method,
MSD4 method and MSD6 method. MSD4 and MSD6 are extensions of MSD2
(for details see Iitaka[8]). The example we will study is the scattering of a
wavepacket. The object considered is the Hamiltonian of an electron in one
dimension, H = % + V(x) where V() is the static potential. When it comes
to the case of scattering of a wavepacket, there exists no exact solution. So we
use the solution produced by the Chebyshev method instead. The error of the
phase is then not available for the Chebyshev method. The parameters used for
the grid are Az =1 and N = 100. For the scattering potential, we have

V(ZL')* VOZO.Q, $L:45§$i§$R:55
Y710 otherwise

for the parameters of the wavefunction see (Iitaka[8]). As an initial wave func-
tion we have a Gaussian wave packet and the initial auxiliary wavefunctions
at t = At,2At, ..., which we need to start the SOD propagation are created
by using the time evolution operator Taylor expansion. In figure 7(a) and 7(b)
we see the phase error in the scattering of a wave packet as a function of the
dimensionless time E.t. In 7(a) we have a = 0.1 and in 7(b) we have a = 0.01,
where « is the dimensionless time step. In figure 8(a) and (b) we see the norm
eITOT €porm =| (0,1 | ¢,t) — 1| in the scattering of a wavepacket as a function
of the dimensionless time E.t. In 8(a) the dimensionless time step is a = 0.1
and in 8(b) @ = 0.01.
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Figure 5: A comparison of the phase error as a function of time for three
propagators with bound initial state condition. Picture taken from C. Leforstier
et. al. A comparison of different propagation schemes for the time dependent
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Figure 6: Phase error as a function of numerical effort for the four methods
Picture taken from C. Leforstier et. al. A comparison of different propaga-
tion schemes for the time dependent Schrodinger equation. J.Comput. Phys94,
59(1991)
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Solving the time-dependent Schrodinger equation numerically. Phys.Rev. E49,
59(1991)
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Figure 8: Norm error in the scattering of a wavepacket. The dimensionless
time step is (a) @ = 0.1 and (b) o = 0.01. Picture taken from Toshiaki Titaka

Solving the time-dependent Schrédinger equation numerically. Phys.Rev. E49,
59(1991)
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7  Summary

As mentioned several times in this thesis only a few problems concerning time-
dependent Schrodinger equations can be solved analytically. So numerical meth-
ods must be used. We have that the formal framework for quantum mechanics
is an infinite-dimensional Hilbert space. We projected this space onto an N-
dimensional space by the use of projection operators. We described the different
representations of the basis functions, a spectral and a pseudospectral represen-
tation. In other words we studied the spatial part of the problem. We continued
by the temporal part, where we discussed time propagation and the different
methods for this purpose. A comparison between some of the different methods
is summarized in the following way, where we compare stability, norm, energy,
error type, error scaling, Hamiltonian and storage arrays (LeForstier et.al.[9])

SPO SOD Chebyshev Lanczos
Stable Unstable Unstable Stable
Unitary Unitary Not unitary Unitary

Not conserved Conserved Not conserved Conserved
Quadratic Quadratic Exponential High order
No mixed terms No restriction Time independent No restriction
2 3 4 Order+1

When it comes to error type for the different methods the following results
are achieved(LeForstier et. al.[9]). The Lanczos and Chebyshev method: have
arbitrary accuracy and the split-operator method(SPO) has commutator ac-
curacy and finally the SOD method has an error type of (E,/At)3. We now
mention some results considering the different methods. First the Chebyshev
method; this method has no accumulated error and the amplitude and phase
error are approximately of equal size. One negative thing with the Chebyshev
method is that the intermediate wave functions are not available. When it comes
to stepwise functions like the SOD method and Crank-Nicholson method they
produce the wave function at each step. The split-operator method, the SOD
method and the Chebyshev method have been successfully used when it comes
to multidimensional problems and non-Cartesian coordinate choices. Some final
comments can be made: For time-independent Hamiltonian operators would the
Chebyshev method be the best choice, because of its exponential convergence,
flexibility and accuracy. For time-dependent Hamiltonian operators the Lanczos
method is the best choice, because it provides good accuracy and efficiency for
a wide class of potentials.
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8 Appendix

8.1 Orthogonal polynomials

Definition 8.4.1(Schatzman[14])

We call the sequence of polynomials Py, P, ..., P,,... orthogonal relative to
a weight w, which is strictly positive almost everywhere and integrable on an
interval [a, b] if it has the following properties:

(a) For any n, P, is of degree n and the coefficient of its term of degree n is 1.
(b) For any n, P, is orthogonal to P,_1, that is, all the polynomials of degree
strictly less than n. The orthogonal polynomials are ordered from number zero
and the n-th orthogonal polynomial is always of degree n.

We call the normalized polynomials

A P,
P, =
[

(196)
orthonormal to a weight w.

Theorem 8.4.2(Schatzman[14])

For any weight w, which is integrable on the closed bounded interval [a, b], there
exists a sequence of orthogonal polynomials satisfying definition (8.4.1.). If

n—1
P,=X"— Z cin P (197)
1=0
then (X", P)
B G Rl ) 1
Cin . P) (198)

By using these relations we can determine the coefficients of orthogonal poly-
nomials relative to a weight w on an interval [a, b] by quadrature.

Theorem 8.4.3(Schatzman[14])

Let w be a weight which is integrable and strictly positive almost everywhere
on the compact interval [a, b]. Then, for all n > 1, the orthonormal polynomials
P,t1, P, and P, _; are linked by the following recurrence relation:

Poi1=(Apx+ Bp)P, — Cp Py_1, (199)

where the constants A,,, B,, and C,, depend only on the polynomials P, 1, P,
and P,_1.

8.2 Chebyshev polynomials

We define the Chebyshev polynomials of the first kind by the following recur-
rence relation

Th1(x) = 22T, (z) — Trio1 () (200)
where To(x) =1 and Ty (z) = =.

The usual generating function for 7, is

1—tx

T, ()" = — % 201
; () 1— 2w + 2 (201)
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and the exponential generating function is

o0

t" 1
D Tala) gy = 5(e7V 7 g elrve, (202)

n=0

We define the Chebyshev polynomials of the second kind by the following re-
currence relation

Uni1(z) = 22U, (2) — Up—1(2) (203)

where Up(xz) =1 and U;(x) = 2z. To give an example of a generating function
for U,,, we have

> 1
U ()t = —— 204
nz:% () 1— 2w+ 2 (204)

We can also define the Chebyshev polynomials by trigonometric functions. The
Chebyshev polynomials of the first kind becomes

T,(x) = cos(n arccos x) (205)

so Ty, (cos(v)) = cos(nv) forn =1,2,....
The polynomials of the second kind fulfill
i 1
Un(cos(v)) = sin((n + 1)v) (206)

sin(v)

A Chebyshev polynomial of first kind or second kind with degree n has n dif-
ferent simple roots denoted as Chebyshev roots, in the interval [—1,1]. These
roots are also denoted as Chebyshev nodes since these roots are used as nodes in
polynomial interpolation. The Chebyshev roots of T}, are x) = cos(%), for
k=1,...,n. The roots of U, are x}, = cos(nk—fl) ,for k=1,...,n . Both kinds
of Chebyshev polynomials form a sequence of orthogonal polynomials. The
polynomials of the first kind is on the interval (—1,1) orthogonal with respect
to the weight \/1177 So we get:

LT ()T (2) ooz
72dx: m, n=m=0;
-1 Vl-z w/2, n=m#0;

The polynomials of the second kind is on the interval (—1,1) orthogonal with
respect to the weight v/1 — 2. So we get:

/%m@mmmﬁ_ﬁw{gﬂ’n#m

. n=m;

The Chebyshev polynomials of the first kind fulfill the following discrete orthog-
onality condition:

N-1 Oa ’L;éj?

> Ti(xn)Ti(zr) =S N, i=j=0;

k=0 N/2a =] 7é 0;
where zj, = COS(W).
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8.3 Discrete Fourier transforms

The discrete Fourier transform (DFT) is given by

N-1
L —2imnk/N
Ul57) ;0 u(kT)e (207)

where n = 0,1,..., N — 1 and T is the sampling interval and N is the number
of samples. The inverse discrete Fourier transform is given by

N—-1
1 E n TN
n=0

where £k =0,1,..., N —1. The DFT relates N samples of time with N samples
of frequency by the help of the continuous Fourier transform. A fast Fourier
transform (FFT) is an algorithm which computes the discrete Fourier trans-
form and its inverse. We will now give an example to illustrate how the FFT
algorithm works. The description will be an overview. (for a formal treatment
see Brigham([5]). For simplicity and convenience we replace kT by k and n/NT
by n. We have as before the DFT where we infer W = e~®7/N 50 the DFT

becomes
N-1

Un) = > uo(k)Ww"* (209)
k=0
where n = 0,1,..., N — 1. We choose the number of sample points N to be
4 and use the relation Wk = WWnkmod(N) = The FFT algorithm has then the
following expression in matrix form.

U(0) 11 1 1 uo(0)
vy | | 1owt w2 ows uo(1)
U |1 owtowe w2 uo(2)
U(3) 1w w2 Wl uo(3)

The next step is the important one when it comes to the efficiency of the FFT
algorithm. We factorize the matrix above in the following way.

U(0) 1 W° 0 o 10 W° o 1o (0)
ve) | [ 1 w2 oo o 01 0 W° uo(1)
vy | "o o 1 wt 10 W2 o0 uo(2)
U(3) 0o 0 1 W3 01 0 W2 uo(3)

One thing we can notice is that the results in the column vector to the left has
been put in another order. We denote this new matrix as U(n). We continue
by letting

u1(0) 10 wW° o uo(0)

ul(l) o 0 1 0 WO UQ(l)

U1(2) o 1 0 W2 0 ’LLQ(Q)

u1(3) 01 0 w2 uo(3)

and finally we get

U(0) u2(0) 1 WP 0 o0 u1(0)
U(2) w(l) | |1 W2 0 0 up (1)
u) | | w@ | |0 0 1 Wt u1(2)
U(3) u2(3) o 0 1 w3 u1(3)
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For the computation of U(n) by the help of the factorization we have to perform
four complex multiplications and eight complex additions. For the computation
of U(n) we have to perform sixteen complex multiplications and twelve complex
additions. So in this example the number of multiplications are reduced with a
factor of two. The time of computation is determined mainly by the number of
multiplications. This can be said to give a picture of the efficency of the FFT
algorithm. One thing which must be taken care of is to change U(n) so that we
get U(n). This can be done in the following way: we rewrite U(n) by instead of
n use its binary equivalent. By changing in the following way 01 becomes 10 and
10 becomes 01 then U(n) changes to U(n); (for details see Brigham[5]). Since
we have that the difference between the inverse discrete Fourier transform and
the discrete Fourier transform is a 1/N factor and opposite sign in the exponent,
we can use a FFT algorithm for them both. So we get the same result if we
evaluate the discrete Fourier transform from its definition or if we use an FFT
to compute the discrete Fourier transform.

8.4 Morse potential

The Morse potential energy function is of the following form
V(r) = De(1 — e rmre))? (210)

where a = \/k./2D. and D, is the well depth, k. is the force constant at the
minimum of the well, r is the distance between the atoms and r. is the equilib-
rium bond distance. To express the stationary states on the Morse potential or
in other words the solutions ¥(v) and E(v) of the Schrodinger equation:

h? 92
(g S V)W) = B@)U() (211)
we introduce the variables: & = ar;z. = are; A = Q;ZD‘Z 1€y = a%’;E@). The

Schrodinger equation becomes.
(—55 + V(@) ¥Un(z) = €aWn(2) (212)

where V(z) = \?(e™2(z7%e) — 2¢= (=),

49



References

1]

2]

N.I. Akheizer and I.M. Glazman Theory of Linear Operators in Hilbert
Space. Dover 1993

Karl Gustav Andersson and Lars-Christer Béiers Ordindra differentialek-
vationer Studentlitteratur 1989

David Bau IIT and Lloyd N. Trefethen Numerical Linear Algebra. STAM
1997.

B.H. Bransden and C.J. Joachain Quantum Mechnics second edition Pear-
son 2000.

E. Oran Brigham The Fast Fourier Transform Prentice-Hall 1974.

C. Clay Marston and Gabriel G. BalintKurti J. Chem.Phys. 91, 3571(1989).
Avner Friedman Foundations of Modern Analysis Dover 1970.

Toshiaki Titaka Phys. Rev. E 49, 4684(1994).

C. Leforestier et. al. J. Comput. Phys. 94, 59(1991).

J.C. Light, I.P. Hamilton and J.V. Lill J.Chem.Phys 82, 1400(1985).
R.G. Littlejohn et. al. J. Chem. Phys. 116, 8691(2002).

Albert Messiah Quantum Mechanics Dover 1999.

J.J. Sakurai and J. Napolitano Modern Quantum Mechanics second edition
Pearson 1994.

Michelle Schatzman Numerical Analysis: a Mathematical Introduction Ox-
ford University Press 2002.

G.F. Simmons Introduction to Topology and Modern Analysis McGraw-Hill
1963.

H. TalEzer and R. Kosloff J.Chem.Phys.81, 3967(1984)

David J. Tannor Introduction to Quantum Mechanics: a Time-dependent
Perspective University Science Books 2007.

Jos M. Thijssen Computional Physics second edition Cambridge University
Press (2007)

Claudio Verdozzi The Lanczos Method Unpublished.

Simon P. Webb and Sharon Hammes-Schiffer J.Chem.Phys. 113,
5214(2000).

50



	Introduction
	The time-dependent Schrödinger equation
	Approximation methods
	Adiabatic theorem
	Adiabatic approximation
	Sudden approximation
	Dyson series expansion
	Magnus expansion
	Periodic Hamiltonians and Floquet theory

	Numerical methods
	Spectral basis
	Pseudospectral basis
	Collocation
	Gaussian quadrature
	Representation of the Hamiltonian in the reduced space
	The HEG method
	The DVR method

	The Fourier method
	The FGH method
	The FFT method

	Phase space

	Time propagation
	The split operator method
	Polynomial methods
	 The Chebyshev method
	The Lanczos method

	The second-order differencing method
	The Crank-Nicholson method

	Examples
	Summary
	Appendix
	Orthogonal polynomials
	Chebyshev polynomials
	Discrete Fourier transforms
	Morse potential


