Effekter av en havsnivåhöjning kring Falsterbohalvön

Fredrik Alström

2013
Institutionen för
Naturgeografi och Ekosystemvetenskap
Lunds Universitet
Sölvegatan 12
223 62 Lund
Fredrik Alström (2013). Effects of a sea level raise around the Falsterbo Peninsula
Master/Bachelor degree thesis nr 272, 30/15 credits in Subject of degree
Department of Physical Geography and Ecosystems Science, Lund University
Fredrik Alström

*Kandidatuppsats i Naturgeografi och Ekosystemvetenskap*

Handledare:

Peter Åberg, Vellinge kommun

Ulrik Mårtensson, Institutionen för Naturgeografi och Ekosystemvetenskap

Lunds Universitet, 2012
Förord

Detta examensarbete inom Naturgeografi och Ekosystemvetenskap omfattar 15 högskolepoäng. Uppsatsen ger en överblick över de naturgeografiska, samhällsgeografiska och ekonomiska konsekvenserna vid en havsnivåhöjning kring Falsterbohalvön.


Fredrik Alström

Lund 2012-05-25
Abstract

There are many signs indicating a climate change, which will affect us globally as well as locally. One of the most obvious effects in Scandinavia is the threatening sea level rise. The sea level rise will affect huge parts of Sweden’s coastal areas.

Especially vulnerable is the Falsterbo peninsula in southwest of Scania, Sweden. The low surroundings already today suffer from short term coastal flooding when the sea rises less than a meter above normal sea level during winter storms. The new federal construction law in Sweden has transferred much more of the responsibility directly to the local authorities. The authorities have to take the expected climate change and its effects into account, and plan for preventive measures already today, when planning new settlements and infrastructure. It’s in the authorities’ interest and responsibility to estimate which areas and in what way they can be affected by the expected increase of sea level caused by the global warming. An important parameter is the economical values that can be endangered by the climate change.

To get an overview of the situation, a digital elevation model using ArcGIS and Safe FME have been constructed. The elevation model is based upon the Swedish National Elevation Database and the new elevation data has been collected using airborne laser scanning. The data has a resolution of two times two meter and the data were then interpolated using ArcGIS to a raster resolution of zero point five times zero point five meters. Based on this digital elevation model several different spatial and economical analyses have been carried out.

In the analysis it has been presumed that we will have a sea level rise of one meter. If this becomes a reality it will have a huge impact on the area of interest. Out of the nature protection areas, more than 40% of the (Natura2000) around the Falsterbo peninsula will be flooded. In the studied area there are great economical values worth protecting, like real estate. Only based on private real estate properties, there is a total value of more than 40 billion SEK, this is excluding infrastructure, public buildings, recreations sights etc. This means that the total economical value is much higher. Skanör and Falsterbo is the most exposed area were only 27% of the populated areas are located higher than two meter above sea level, which is considered as the safe zone if we have one meter of sea level rise in combination with high water level. In the range up to two meter above today sea level there are more than 1,700 real estate properties on the peninsula.

Sea level rise is not a new phenomena and it will not occur suddenly during a short period of time. It is rather a slow rising process during a long time span that will go on during the coming hundred years. Most certain, the sea level rise will even keep on after that. People will slowly adapt to the changed environment, but authorities have to take the future changes into consideration already today when planning new settlements and new infrastructure.
Sammanfattning

Det finns mycket som tyder på att vi har en klimatförändring som kommer att påverka oss såväl globalt som lokalt. En av de mest uppenbara följderna av en klimatförändring för oss i Skandinavien, är den förväntade havsnivåhöjningen, vilken kommer att påverka stora delar av Sveriges kustområden.

Speciellt utsatt är Falsterbohalvön i sydvästra Skåne med sina lågt belägna markområden, som redan idag drabbas av översvämningar vid kortvariga högvattenstånd, framförallt i samband med vinterstormar och lågtryck. Det krävs att kommunerna redan idag tar mer hänsyn till framtida klimatförändringen och dess effekter vid planering av ny bebyggelse och infrastruktur, framförallt sedan den nya plan- och bygglagen började gälla 2011, vilken ålägger kommunerna mer ansvar i planeringsarbetet. Det är därför av stort intresse för lokala beslutsfattare att bedöma vilka områden som kommer att påverkas och på vilket sätt, dessutom att ha kännedom om de ekonomiska värden det handlar om.

För att få en överblick över situationen har jag utgått från en höjddatamodell som jag utvecklade med hjälp av ArcGIS och Safe FME. Höjddatamodellen är baserad på Nationella höjddatabasens nya höjddata som kommer från laserskanning över Vellinge kommunen. Höjddatamätningen har en upplösning på två gånger två meter och dessa data interpolerades till ett 0,5x0,5 meter raster. Utifrån höjddatamodellen har naturgeografiska, samhällsgeografiska och ekonomiska analyser genomförts.


Havsnivåhöjningen är inget fenomen som kommer över en natt, utan är en långsamt process som kommer ske under de närmaste hundra åren och förmodligen även fortsätta efter detta. Boende i studieområdet kommer därför att anpassa sig successivt, men det måste ändå tas i beaktande av myndigheterna redan idag vid planering av ny bebyggelse och infrastruktur.
Innehållsförteckning

1. Inledning .................................................................................................................. 8
   1.1 Syfte.................................................................................................................... 8
2. Bakgrund.................................................................................................................. 9
   2.1 Klimat i förändring ............................................................................................ 9
   2.2 Klimatförändring under den industriella tiden.................................................. 9
   2.3 Klimatförändring i framtiden .......................................................................... 10
   2.4 Havsnivåhöjningen .......................................................................................... 11
   2.5 Lokala påverkningar och regleringar (PBL) .................................................... 12
3. Metod.................................................................................................................... 12
   3.1 Höjddatamodell ............................................................................................... 13
   3.2 Naturgeografisk GIS analys ............................................................................. 15
   3.3 Samhällsgeografisk GIS-analys ....................................................................... 15
   3.4 Ekonomisk GIS analys .................................................................................... 16
4. Resultat................................................................................................................ 17
   4.1 Naturgeografisk analys .................................................................................... 17
   4.2 Samhällsgeografisk analys .............................................................................. 19
   4.3 Ekonomisk analys (SEK) ................................................................................ 24
5. Diskussion............................................................................................................. 28
   5.1 Höjddatamodell ............................................................................................... 28
   5.2 Naturgeografisk och samhällsgeografisk diskussion ....................................... 28
   5.3 Ekonomisk diskussion .................................................................................... 29
6. Slutsats................................................................................................................. 30
7. Referenslista......................................................................................................... 31
8. Program och dator ............................................................................................... 32
1. Inledning

Det finns mycket som tyder på att vi har en klimatförändring som kommer att påverka oss såväl globalt som lokalt. Detta är något som beslutsfattare alltmer måste ta hänsyn till. En av de mest uppenbara följderna av klimatförändringen för oss i Skandinavien är den kommande havsnivåhöjningen, vilken främst beror på vattenexpansion på grund av uppvärmning av världshaven samt avsmältning av de stora inlandsisarna.


Med över 20 000 invånare och några av landets högsta taxeringsvärden på fastigheter finns det ett stort intresse att skydda dessa områden vid en havsnivåhöjning. Det är därför av stor vikt att redan idag få en bild av hur omfattande påverkan kommer att bli, vilka områden som ligger i riskzonen och hur många som drabbas, detta för att på ett tidigt stadium kunna förebygga eller reducera framtida skador.

1.1 Syfte

Syftet är att med ny högupplöst data konstruera en digital höjddatamodell över Falsterbonäset för att genomföra GIS analys över Falsterbohalvön för att kunna bedöma konsekvenserna av en kommande havsnivåhöjning på bebyggelse, natur- och andra ekonomiska värden. Analysen kommer framförallt att behandla naturgeografiska, samhällsgeografiska och ekonomiska parametrar.

För att synliggöra konsekvenserna utgår analyserna från en havsnivåhöjning på en meter.

Avgränsningar

Naturgeografisk analys med GIS
- Ytor, längder, spatialis förhållanden, naturmiljöer, förändringar
Samhällsgeografisk analys med GIS
- Populationsanalyser, bebyggelse och infrastruktur, utbredningsfakta
Ekonomisk analys med GIS
- Ekonomiska värden som påverkas beräknat utifrån taxeringsvärden.
2. Bakgrund

2.1 Klimat i förändring

Det har ständigt pågått en klimatförändring (Holden, 2008) men detta har skett över en mycket lång tidsperiod om inga plötsliga och drastiska yttre påverkningar inträffat, som t.ex. från meteoritnedslag och vulkanutbrott.


Under den senaste interglacialperioden har klimatet varit mycket stabilt och årsmedeltemperaturen på jorden förhållandevis stabil. Detta har varit en starkt bidragande orsak till mänsklighetens utveckling. Om man bortser från mänsklighetens påverkan de senaste hundra åren har även halterna av växthusgaser varit stabil (Bernes, 2007). Trots ett stabilt klimat har vi dock haft mindre temperaturfluktuationer som t.ex. under den postglaciala värmeperioden för fem till åttatusen år sedan. Medeltemperaturen var då 1-2 grader högre än idag vilket medförde att världens glaciärer smälte och att havsnivån steg. Denna värmeperiod medförde att ädellövskog nådde långt norrut i Sverige, trädgränsen i fjällkedjan låg 200 meter högre än idag och att ett flertal sydligare djur- och växtarter som inte trivs i dagens klimat invandrade. Precis som vi haft varmare perioder har vi också haft kallare perioder som medför att glaciärer återbildats och förändrats i storlek. Havsnivåförändringen har i princip avstannat under de senaste 6 000 åren och havsnivåökningen har endast uppgått till cirka fem centimeter per hundra år. De senaste åren har det registrerats en accelererande höjning av havsnivån (Holden, 2008).

2.2 Klimatförändring under den industriella tiden

Jorden har genomgått relativt kraftiga temperaturförändringar före modern tid men aldrig tidigare har förändringstakten varit så snabb som under de senaste 100 åren. Ökningstakten i den globala uppvärmningen idag sammanfaller ganska väl i tiden med den industriella revolutionen och människans storskaliga användning av fossila bränslen. På lite mer än hundra år har den genomsnittliga medeltemperaturen stigit med 0,76 grader Celsius. Enbart de senaste trettio åren svarar för en ökning med 0,5 grader Celsius vilket tyder på att vi står inför en accelererande temperaturökning (Bernes p.36).
Genom att studera borrkärnor från inlandsisarna kan man se förändringar av koncentrationen växthushaser i atmosfären så långt bakåt i tiden som 650 000 år. Det har visat sig att det förekommit stora förändringar i koncentrationen av koldioxid (CO2) och metan (CH4) men aldrig att det varit så höga värden som idag. Koncentrationerna av koldioxid och metan tillsammans med en rad andra växthushaser, som t.ex. vattenånga, absorberar och diffuserar infraröd strålnings som annars hade reflekters tillbaks ut i rymden vilket starkt bidrar till den globala temperaturhöjningen (Holden, 2008).

Människan har släppt ut enorma mängder koldioxid genom förbränning av fossila bränslen och biomassa vilket påverkat den globala kolklykeln. Även utsläpp av metangas har stor påverkan på växthuseffekten, där människan indirekt står för 55% av de globala utsläppen av metangas medan de resterande utsläppen kommer från t.ex. våtmarker, termiter och världshaven (Bernes, 2007).

2.3 Klimatförändring i framtiden

Kortsiktigt kan man förutså att ursläppen kommer att förändras i framtiden, men det är betydligt svårare att förutse utvecklingen en längre tid framåt. Detta för att det är svårt, om inte omöjligt, att förutså de tekniska-, sociala- och ekonomiska förändringar som mänskligheten står inför.


Beskrivning av de fyra olika scenarierna framtagna av FN:s klimatpanel;

**Scenario A1;** Beskriver en snabb ekonomisk tillväxt samtidigt som det sker en befolkningstillväxt fram till år 2050 och därefter en befolkningsminskning. Samtidigt sker en snabb introduktion av ny och mer effektiv teknik. Till detta scenario har även ett antal underscenarier tagits fram för vilka här inte redogörs vidare.

**Scenario A2;** Beskriver att världen utvecklas på ett mer heterogent sätt med tyngdpunkt på självförsörjning. Tillväxtnivåerna har global karaktär och förändras långsamt. Ekonomisk tillväxt och teknisk utveckling är mer fragmenterad. Detta scenario påvisar fortfarande en ökad tillväxt av koldioxid från dagens 380 ppm till 860 ppm fram till år 2100.


(Nakicenovic och Swart R, 2000)
Samtliga fyra scenarier visar på en ökning av koldioxidhalten i atmosfären, vilket därmed kommer att leda till en fortsatt klimatförändring. Årsmedeltemperaturen kommer att öka, hur mycket är dock svårt att modellera. IPCC:s scenarier beskriver en ökning på någonstans mellan 1,1 och ända upp till 6,4 grader Celsius beroende på vilken modell och scenario som används. En ökning på bara någon grad kan få avsevärd konsekvenser för miljön och människan. En medeltemperaturökning på mer än 6 grader Celsius skulle kunna få omvända konsekvenser. Framförallt skulle extremerna klimat- och vådermässigt bli mer frekventa och betydligt mer omfattande jämfört med idag. Det skulle bli nederbördssvika vintrar och varmare somrar med intensivare och ofta återkommande oväder (Bernes, 2007).

Det finns en tröghetsfaktor i klimatsystemet som utgörs av världshaven. Världshaven reagerar inte lika snabbt på en medeltemperaturökning som atmosfären gör, utan det tar lång tid för medeltemperaturen i haven att förändras. Världshaven är en styrande faktor i vårt klimatsystem och en temperaturökning i haven kan medföra påverkningar på de globala havsströmmarna, som i sin tur skulle kunna ha en avsevärd effekt på klimatet både globalt och regionalt. Vi har under männinskans tid på jorden haft stora temperaturskiftningar, de har dock aldrig varit så höga som de är nu (Bernes, 2007).

2.4 Havsnivåhöjningen


2.5 Lokala påverkningar och regleringar (PBL)
Sverige är ett land med lång kuststräcka och framförallt en väl exploaterad kuststräcka. En havsnivåhöjning skulle komma att påverka oss på flera sätt. I den senaste revideringen av plan och bygglagen tvingas numera kommunerna att ta hänsyn till klimatförändringen vid samhällsplanering.

"2 kap. 3 § Planläggning enligt denna lag ska med hänsyn till natur- och kulturvärden, miljö- och klimataspekter samt mellankommunala och regionala förhållanden främja
1. en ändamålsenlig struktur och en estetiskt tilltalande utformning av bebyggelse, grönområden och kommunikationsleder,
2. en från social synpunkt god livs miljö som är tillgänglig och användbar för alla samhällsgrupper,
3. en långsiktigt god hushållning med mark, vatten, energi och råvaror samt goda miljöförhållanden i övrigt, och
4. en god ekonomisk tillväxt och en effektiv konkurrens.”
Plan- och bygglag (2010:900)

"2 kap. 5 § Vid planläggning och i ärenden om bygglov eller förhandsbesked enligt denna lag ska bebyggelse och byggnadsverk lokaliseras till mark som är lämpad för ändamålet med hänsyn till
1. människors hälsa och säkerhet,
2. jord, berg- och vattenförhållandena,
3. möjligheterna att ordna trafik, vattenförsörjning, avlopp, avfallshantering, elektronisk kommunikation samt samhällsservice i övrigt,
4. möjligheterna att förebygga vatten- och luftföroringar samt bullerstörningar, och
5. risken för olyckor, översvämning och erosion.”
Plan- och bygglag (2010:900)

Det nya regelverket i plan- och bygglagen tvingar kustnära kommuner att ta hänsyn till en eventuell havsnivåhöjning både vid nyexploatering och även vid planering för befintlig bebyggelse.


3. Metod
3.1 Höjddatamodell
Höjddatamodellen är baserad på laserdata som har erhållits från nationella höjddatabasen. Under 2010 gjordes en flygning över kommunen där höjddata inmättes med laserskanning. Mätdata har en hög noggrannhet och en hög upplösning (två gånger två meter) och täcker in hela kommunen. Höjddata levererades i [.txt filer] innehållandes koordinat och “z värde” (Höjdvärde). Dessa ombearbetades till [.shp filer] (ArcGIS format, shapefil) i Safe FME. Levererade data bestod av tunga filer som innehöll över 32 miljoner mätvärden. För att kunna bearbeta dessa delades studieområdet in i sektioner varefter varje sektion för sig konverterades i Safe FME till ArcGIS shape format. Slutligen sammanfogades varje sektion till att omfatta hela studieområdet och det nya datalagret matades in i ArcEditor där det interpolerades till ett raster med IDW metoden (inverse distance weighted) med upplösningen 0,5x0,5 meter.

Figur 3.1 visar det visualiserade resultatet av höjddatamodellen.

![Figur 3.1; Höjddatamodell. Ju mörkare färg desto högre höjd över havet.](image)

Höjdnoggrannheten på terrängmodellen har kontrollerats i fält, 41 punkter har slumpvis utvals på hårdgjorda ytor över modellen. Dessa har sedan kontrollmätts med GPS i fält. För att reducera effekten av eventuella störningar vid GPS-mätningen gjordes mätningen två gånger per punkt med 24 timmars mellanrum och därefter togs ett medelvärde av mätresultaten, vilket jämfördes mot den laserdatabaserade höjdmorden.
Vid analysen fanns tre variabler; DTM (Höjddatamodell), GPS1 (Dag 1) och GPS2 (Dag 2). Då DTM-modellen är i RH2000 som är den nya standarden för höjddata medan höjddata hämtat från vår GPS är i RH70 som är den äldre standarden, adderades 75 millimeter, vilket utgör skillnaden mellan det gamla och nya standarden, på all höjddata. Därefter beräknades differensen mellan DTM och GPSx genom att subtrahera DTM med GPSx. Detta gav mig två differenser; ”DIFF 1” och ”DIFF 2” varefter en medeldifferens beräknades. Den totala differensen erhölls genom att summera medeldifferenserna och därefter dividera med antalet mätvärden. Resultatet gav att felmarginalen mellan laserdata och GPS-data låg på cirka 0,75 millimeter.

Utsnitt från beräkningsdokumenten visas i tabell 3.1. Uppenbara fel i GPS-data rensades innan beräkningarna gjordes. Vid vissa mätningar inmättes z=1,0 meter flera gånger i rad, vilket är ett uppenbart fel hos GPS systemet.

\[
(DTM - GPS 1) + (DTM - GPS 2))/\text{Antal} = \text{Total DIFFERENS}
\]

Tabell 3.1 Utsnitt visar beräkningarna som genomfördes i Excel. DTM är Terrängdatamodellen, GPS och GPS 2 är inmätta data från dag 1 respektive dag 2. Differens 1 och 2 är skillnaderna mellan modellen och data inmätt med GPS för dag 1 respektive 2. ”Medel diff” är skillnaden mellan dessa och ”Total diff” är den totala medelskillnaden. Alla värden är i meter.

<table>
<thead>
<tr>
<th>Punkt</th>
<th>DTM</th>
<th>GPS</th>
<th>GPS2</th>
<th>Differens 1</th>
<th>Differens 2</th>
<th>Medel diff</th>
<th>Total diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,784</td>
<td>1,763</td>
<td>1,775</td>
<td>0,021</td>
<td>0,009</td>
<td>0,015</td>
<td>0,00075</td>
</tr>
<tr>
<td>1</td>
<td>2,044197</td>
<td>2,047</td>
<td>-0,002803</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,412368</td>
<td>2,455</td>
<td>2,442</td>
<td>-0,042632</td>
<td>-0,029632</td>
<td>-0,036132</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>1,547882</td>
<td>1,568</td>
<td>1,563</td>
<td>-0,020118</td>
<td>-0,015118</td>
<td>-0,017618</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>2,01408</td>
<td>2,035</td>
<td>2,043</td>
<td>-0,02092</td>
<td>-0,02892</td>
<td>-0,02492</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>3,94351</td>
<td>3,957</td>
<td>3,968</td>
<td>-0,01349</td>
<td>-0,02449</td>
<td>-0,01899</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>2,633625</td>
<td>2,625</td>
<td>2,618</td>
<td>0,008625</td>
<td>0,015625</td>
<td>0,012125</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>2,334542</td>
<td>2,351</td>
<td>2,357</td>
<td>-0,016458</td>
<td>-0,022458</td>
<td>-0,019458</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>1,634229</td>
<td>1,617</td>
<td>1,635</td>
<td>0,017229</td>
<td>-0,000771</td>
<td>0,008229</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>2,278022</td>
<td>2,293</td>
<td>2,304</td>
<td>-0,014978</td>
<td>-0,025978</td>
<td>-0,020478</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>1,635168</td>
<td>1,68</td>
<td>1,671</td>
<td>-0,044832</td>
<td>-0,035832</td>
<td>-0,040332</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>1,67045</td>
<td>1,67</td>
<td>1,67</td>
<td>0,00045</td>
<td>0,00045</td>
<td>0,00045</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3.2 Naturgeografisk GIS analys

Naturgeografisk analys av olika spatiala förhållanden har tagits fram genom att visuellt tolka flygfoto och kartera in kustgränser, sandstränder mm. Detta har gjort det möjligt att senare genomföra diverse rumsliga analyser för att fastställa längder, ytor och andra förhållanden. Vid beräkning av Falsterbonäsets totala yta har yttersta kustlinjen använts, vilket har inneburit att även Måkläppen inkluderats i ytan.

För att genomföra överlagringsanalyser och jämföra mot ”nivå över havet” kördes en rasteranalys med hjälp av ”Raster Calculator” för att få fram tre olika rasterlager; 0,1-1 meter över havet, 1,1-2 samt 2,1-3 meter över havet. Valet av nivåer skedde för att det är de höjd­nivåer som är av intresse att studera effekterna av. 0-1 meter över havet översvämmas redan idag vid högvatten. 1-2 meter över havet kommer att översvämmas vid högvattenflöden om vi får en havsnivåhöjning på 1 meter och 2-3 meter över havet ligger i riskområdet vid extrema väderförhållanden vid en havsnivåhöjning på 1 meter. Lagernivåerna användes som verktyg vid senare analyser.

Analysen över naturskyddsområden och Natura2000-områden är utarbetad genom data för skyddsområdenas utbredning som är hämtat från Länsstyrelsen. För att få fram hur stor del av dessa områden som ligger på fast mark överlagrades mellan lager ”>0,1m” och naturskyddsområdet i fråga. För att få fram hur stor del av varje område som kommer att översvämmas vid en framtidshavsnivåhöjning gjordes en utefter ens blöjning mellan lager ”0,1-1 meter över havet”, ”1,1-2 meter över havet” och området. Detta gav en procent andel landyta av skyddsområdet som hamnar under vatten vid en havsnivåhöjning på en respektive två meter.

3.3 Samhällsgeografisk GIS-analys

Vid beräkning av tätbebyggelse har de yttersta fastighetsgränserna på tre eller fler sammanhängande bebodda fastigheter utgjort yttersta gränsen. Detta har resulterat i fyra sammanhängande områden. Falsterbo/Skanör, Ljunghusen samt västra Höllviken och östra Höllviken vilka delas av Stenbocksväg.

Utifrån dessa områden har ytor som motsvarar tätbebyggelse kunnat räknas fram.

För att beräkna andel bebyggelse över en given höjd­nivå togs tre höjd­nivåer fram med hjälp av ”Raster Calculator”; ”1+ meter”, ”2+ meter” och ”3+ meter”. Därefter konverterades dessa rasterlager till vektorlager och överlagrades mot ”tätbebyggelseytorna”. Resultatet visar hur stora arealer tätbebyggelse som är belägna över en given höjd­nivå varefter en procent andel beräknades.

Information hämtades fastighetsregistret och taxeringskoder för att få information om fastigheterna.

Av intresse är bl.a. att veta hur många fastigheter som befinner sig inom riskzonen och vilken typ av fastighet det rör sig om. En uppdelning gjordes på fastigheter för permanent boende, s.k. ”helårsfastigheter”, respektive fritidsfastigheter. Permanent boende kan anses komma att drabbas hårdest vid en havsnivåhöjning jämfört med ägare till fritidsfastigheter. Taxeringskoderna exporterades från GEOSECMA till ett excel-dokument och länkades sedan in i ArcGIS mot fastighetsgränserna för bebyggelse genom att samkörda dem mot fastighets­numret (FNR). Helårs­fastigheter utgörs av typkod; 120, 220, 222, och 320 medan fritids­fastigheter utgörs av typkod; 221.

Information hämtades fastighetsregistret och taxeringskoder för att få information om fastigheterna.
En analys gjordes för att få fram hur många helårs- respektive fritidsfastigheter det finns har inom studieområdet. Därefter gjordes en överlagringsanalys mot höjdlager för att få fram fastigheterna belägenhet i förhållande till de olika riskzonerna.

3.4 Ekonomisk GIS analys

För att få fram en bild av fördelningen av de ekonomiska värdena inom riskområdet har en överlagring mellan de ekonomiska värdena och höjdnivåerna skett.
4. Resultat

4.1 Naturgeografisk analys

Nedan visas resultaten från den Naturgeografiska analysen vilken främst använts som underlag till de övriga analyserna. Syftet med den Naturgeografiska analysen var också att bidra med exakt data till Vellinge Kommun och SWECO.

Tabell 1: Visar total yta väster om kanalen och hela Falsterbonäset (hela studieområdet).

<table>
<thead>
<tr>
<th>Område</th>
<th>Areal km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total yta väster om kanalen</td>
<td>23,4</td>
</tr>
<tr>
<td>Total yta Falsterbonäset</td>
<td>30,4</td>
</tr>
</tbody>
</table>

Antal kilometer kusträcka som visas i tabell 2 är av intresse för att se längden utsatta områden, kanske mest av intresse är de data som visas i tabell 4 där man kan se antalet kilometer kusträcka i närhet av bebyggelse respektive utmarker. Även antal kilometer sandstrand har räknats fram för att kunna möjliggöra analyser på erosionskänslig områden och dess sträckningar som kan vara i behov av framtida strandfodringar. Figur 2 visar sandstrännernas sträckning.

Tabell 2: Visar antal kilometer kusträcka kring studieområdet samt antal kilometer sandstrand.

<table>
<thead>
<tr>
<th>Kusträcka, strandtyp</th>
<th>Längd km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstrand</td>
<td>16,2</td>
</tr>
<tr>
<td>Annan strandtyp</td>
<td>19,2</td>
</tr>
<tr>
<td><strong>Total kusträcka</strong></td>
<td><strong>35,4</strong></td>
</tr>
</tbody>
</table>

![Sandstränder och dess längder](image)
Tabell 3; Visar övrig grundinformation om ytor inklusive vatten, exklusive vatten, omkrets samt insjövatten.

<table>
<thead>
<tr>
<th>Grundinformation</th>
<th>Areal/ km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yta väster om kanalen, exkl. vatten</td>
<td>23,1 km²</td>
</tr>
<tr>
<td>Yta väster om kanalen, inkl. vatten</td>
<td>23,4 km²</td>
</tr>
<tr>
<td>Omkrets Falsterbonäset, väster om kanalen</td>
<td>89,2 km</td>
</tr>
<tr>
<td>Vattenområden utan direkt kontakt med havet på västra Falsterbonäset</td>
<td>0,3 km²</td>
</tr>
<tr>
<td>Yta Höllviken</td>
<td>5,4 km²</td>
</tr>
<tr>
<td>Total yta Falsterbonäset</td>
<td>30,4 km²</td>
</tr>
</tbody>
</table>

Tabell 4; Längd kuststräckor runt Falsterbonäset. Kuststräcka längs med eller nära bebyggelse samt längs utmarker.

<table>
<thead>
<tr>
<th>Kuststräcka fördelat på områden</th>
<th>Längd/ km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsterbo/Skanör</td>
<td>13,2</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>4,9</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>4,6</td>
</tr>
<tr>
<td>Utmarker</td>
<td>12,7</td>
</tr>
<tr>
<td>Totalt Falsterbonäset</td>
<td>35,4</td>
</tr>
</tbody>
</table>

Figur 4.2; Uppmätta kuststräckor
Naturskyddsområden och Natura2000
De naturskyddsområden som karakteriserar Falsterbonäset kommer att drabbas hårt vid en framtida havsnivåhöjning. Stora delar av dessa områden ligger längs strandzonerna och kommer därmed att försvinna under vattenytan. Enligt beräkningar baserade på den framtagna höjddatamodellen kommer drygt 40 procent av Natura2000 områden i studieområdet att översvämmas.

Figur 4.3 visar Natura2000 områden. Områden som är grönmarkerade kommer inte att översvämmas medan blåmarkerade områden kommer att översvämmas vid en havsnivåhöjning på 1 meter.

4.2 Samhällsgeografisk analys
Den samhällsgeografiska analysen visar bebyggelse, infrastruktur och population inom studieområdet som kommer påverkas.

Ytor tätbebyggelse (inkusive park i bebyggelse)
Som grund för vidare analyser kring havsnivåns påverkan på tätbebyggelse har totala ytorna tätbebyggelse framräknats. Härvid har Höllviken delats upp i Västra Höllviken respektive Östra Höllviken. Västra Höllviken utgörs av området mellan kanalen och Stenbocksväg och Östra Höllviken utgörs av området öster om Stenbocksväg.
Tabell 5; Visar ytor tätbebyggelse, tre eller fler sammanhängande bebodda fastigheter.

<table>
<thead>
<tr>
<th>Tätbebyggelse</th>
<th>Areal km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>5,8</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>3,6</td>
</tr>
<tr>
<td>Västra Höllviken (Mellan)</td>
<td>4,6</td>
</tr>
<tr>
<td>Östra Höllviken (Öster om Stenbocksväg)</td>
<td>1,6</td>
</tr>
<tr>
<td><strong>Total yta tätbebyggelse</strong></td>
<td><strong>15,6</strong></td>
</tr>
</tbody>
</table>

Figur 4.4 visar tätbebyggelsens geografiska utbredning.

Tabell 6 visar den totala populationen åretruntboende i respektive ort. Häruöver tillkommer även många fritidsboende.

Tabell 6; Visar population på Falsterbonäset fördelat på orter

<table>
<thead>
<tr>
<th>Befolkning</th>
<th>Antal personer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsterbo</td>
<td>2 955</td>
</tr>
<tr>
<td>Skanör</td>
<td>3 986</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>2 571</td>
</tr>
<tr>
<td>Höllviken</td>
<td>10 525</td>
</tr>
<tr>
<td><strong>Total Falsterbonäset</strong></td>
<td><strong>20 037</strong></td>
</tr>
</tbody>
</table>
Marknivåer
Marknivåerna är av intresse för att se hur pass stora ytor som ligger inom riskzonen. I tabell 9 kan man utläsa att samtliga orter utom Falsterbo har all sin tätbebyggelse lokalisering högre än en meter över havet. Medan i tabell 8 kan det utläsas att det bara är 27,9% av tätbebyggelsen i Falsterbo som ligger högre än två meter över havet. Det vill säga att 72,1% av tätbebyggelsen i Falsterbo är direkt hotad vid en havsnivåhöjning på en meter. I de övriga orterna så är det bara 3 % -10% av tätbebyggelsen som är direkt hotat.

Om havsnivåhöjningen blir ännu större än en meter som jag antagit, så blir andelen bebyggelse som hotas avsevärt större. I tabell 7 kan utläsas att bara 5,7% av bebyggelsen i Falsterbo är belägen högre än 3 meter över dagens havsnivå, den nivå som idag anses säker att exploatera och bebygga. För Ljunghusen och västra Höllviken är det strax under 60% procent av bebyggelsen som är på säker nivå. Figur 4.5 visar de olika marknivåerna i förhållande till bebyggelse (Svarta polygoner). Mörkblått är redan idag översvämmade ytor, rött är 1-2 m ö.h., gult är 2-3 m ö.h. och grönt är 3+ m ö.h. vilket får anses som en säker nivå för bebyggelse.

Tabell 7: Visar andel areal tätbebyggelse över tre meter i respektive ort

<table>
<thead>
<tr>
<th>Tätbebyggelse belägen &gt; 3 m ö.h.</th>
<th>Andel</th>
<th>Areal km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>5,7 %</td>
<td>0,3</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>56,4 %</td>
<td>2,0</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>57,6 %</td>
<td>2,7</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>83,9 %</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Tabell 8: Visar andel areal tätbebyggelse över två meter i respektive ort

<table>
<thead>
<tr>
<th>Tätbebyggelse belägen &gt; 2 m ö.h.</th>
<th>Andel</th>
<th>Areal km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>27,9 %</td>
<td>1,5</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>97,0 %</td>
<td>3,5</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>95,1 %</td>
<td>4,4</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>91,2 %</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabell 9: Visar andel areal tätbebyggelse över en meter i respektive ort

<table>
<thead>
<tr>
<th>Tätbebyggelse belägen &gt; 1 m ö.h.</th>
<th>Andel</th>
<th>Areal km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>100 %</td>
<td>5,2</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>100 %</td>
<td>3,6</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>100 %</td>
<td>4,6</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>100 %</td>
<td>1,6</td>
</tr>
</tbody>
</table>
Figur 4.5; Höjdområden rött är 1-2 meter, gult 2-3 meter och 3+ meter över havet. Bakgrunden är höjddatamodellen i färgskala ju mörkare desto högre över havet. De svarta polygonerna är bebyggelse.

Utbredningsfakta

Tabell 10; Visar antal helårsfastigheter på respektive ort
(baserat på typerna 120, 220, 222 och 320)

<table>
<thead>
<tr>
<th>Helårsfastigheter</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>2 539</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>874</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>2 377</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>930</td>
</tr>
<tr>
<td><strong>Totalt</strong></td>
<td><strong>6 720</strong></td>
</tr>
</tbody>
</table>

Anm. Här finns en osäkerhet då vissa typer kan innehålla flera fastigheter, exempelvis hyresfastigheter. Osäkerhet kan även råda gällande klassificeringen då en helårsfastighet kan användas som fritidsfastighet och vice versa.
**Tabell 11:** Visar antal fritidsfastigheter på respektive ort
(baserat på typkod 221)

<table>
<thead>
<tr>
<th>Fritidsfastigheter</th>
<th>Antal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>555</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>409</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>825</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>27</td>
</tr>
<tr>
<td><strong>Totalt</strong></td>
<td><strong>1 816</strong></td>
</tr>
</tbody>
</table>

Anm. Osäkerhet kan råda gällande klassificeringen då en helårsfastighet kan användas som fritidsfastighet och vice versa.

**Figur 4.6:** Fördelning fastigheter. Fastigheter redovisas i punktform där röda är helårsfastighet och gröna är fritidsfastighet. Figuren visar fördelningen av fastigheter.

**Fastigheter**

Tabell 12, 13 och 14 visar antal fastigheter och typ av fastigheter, fritids- eller helårsfastigheter inom de olika riskzonerna.

**Tabell 12:** Visar antal helårsfastigheter respektive fritidsfastigheter som ligger tre meter över havet i vardera orten inom studieområdet.

<table>
<thead>
<tr>
<th>Antal Fastigheter +3 m ö.h.</th>
<th>Helårs</th>
<th>Fritid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>117</td>
<td>56</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>535</td>
<td>231</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>1583</td>
<td>532</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>786</td>
<td>20</td>
</tr>
</tbody>
</table>
Som framgår av Tabell 13 finns ytterligare 863 helårsfastigheter i Skanör Falsterbo som ligger mellan 2 och 3 meter och nästan lika många i Västra Höllviken. Riskzonen 2-3 meter skulle kunna komma att påverkas vid onormalt höga flöden i kombination med en havsnivåhöjning. Bara i Falsterbo hade detta påverkat ytterligare mer än 2 300 personer. Ljunghusen och Höllviken ligger ändå relativt säkert till om man bortser från erosionsrisken och underminering av ett förhöjt grundvattenstånd.

Tabell 13: Visar antal helårsfastigheter respektive fritidsfastigheter som ligger mellan två och tre meter över havet i vardera orten inom studieområdet.

<table>
<thead>
<tr>
<th>Antal Fastigheter +2-3 m ö.h.</th>
<th>Helårs</th>
<th>Fritid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>863</td>
<td>247</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>326</td>
<td>158</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>751</td>
<td>265</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>47</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell 14 visar antal fastigheter som ligger direkt i riskzonen och som redan idag kan påverkas vid onormalt höga flöden. Falsterbo är klart mest utsatt med över 1 500 helårsfastigheter och över 250 fritidsfastigheter i den direkta riskzonen. Räknar man med att det bor 2,7 personer per fastighet så är det över 4 000 personer som direkt kan komma att drabbas.

Tabell 14: Visar antal helårsfastigheter respektive fritidsfastigheter som ligger mellan en och två meter över havet i vardera orten inom studieområdet.

<table>
<thead>
<tr>
<th>Antal Fastigheter +1-2 m ö.h.</th>
<th>Helårs</th>
<th>Fritid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>1 559</td>
<td>252</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>97</td>
<td>7</td>
</tr>
</tbody>
</table>

4.3 Ekonomisk analys (SEK)

De ekonomiska värdena är av intresse, då det är information som används som underlag för beslut. I tabell 15, 16, 17 och 18 redovisas markvärden, byggnadsvärden och summan av dessa taxeringsvärden inom tätbebyggelse för respektive ort. Tabell 19 visar det totala ekonomiska värdena för studieområdet baserat på taxeringsvärden. För att få fram ett värde som mer reflekterar marknadsverket adderas schablonmässigt 25% till taxeringsvärdet. Offentliga byggnader såsom skolor, affärsstråk etc. är inte medräknade.
**Falsterbo och Skanör**

Tabell 15; Visar ekonomiska värden inom tätbebyggelse i Falsterbo och Skanör. Byggnadsvärde respektive markvärde samt det totala taxeringsvärdet.

<table>
<thead>
<tr>
<th>Taxeringsvärden Skanör Falsterbo</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markvärde</td>
<td>6 814</td>
</tr>
<tr>
<td>Byggnadsvärde</td>
<td>4 988</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde Skanör Falsterbo</strong></td>
<td><strong>11 802</strong></td>
</tr>
</tbody>
</table>

**Ljunghusen**

Tabell 16; Visar ekonomiska värden inom tätbebyggelse i Ljunghusen. Byggnadsvärde respektive markvärde samt det totala taxeringsvärdet.

<table>
<thead>
<tr>
<th>Taxeringsvärden Ljunghusen</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markvärde</td>
<td>3 594</td>
</tr>
<tr>
<td>Byggnadsvärde</td>
<td>2 215</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde Ljunghusen</strong></td>
<td><strong>5 809</strong></td>
</tr>
</tbody>
</table>

**Västra Höllviken**

Tabell 17; Visar ekonomiska värden inom tätbebyggelse i Västra Höllviken. Byggnadsvärde respektive markvärde samt det totala taxeringsvärdet.

<table>
<thead>
<tr>
<th>Taxeringsvärden Västra Höllviken</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markvärde</td>
<td>5 978</td>
</tr>
<tr>
<td>Byggnadsvärde</td>
<td>4 917</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde Västra Höllviken</strong></td>
<td><strong>10 895</strong></td>
</tr>
</tbody>
</table>

**Östra Höllviken**

Tabell 18; Visar ekonomiska värden inom tätbebyggelse i Östra Höllviken. Byggnadsvärde respektive markvärde samt det totala taxeringsvärdet.

<table>
<thead>
<tr>
<th>Taxeringsvärden Östra Höllviken</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markvärde</td>
<td>1 239</td>
</tr>
<tr>
<td>Byggnadsvärde</td>
<td>1 513</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde Östra Höllviken</strong></td>
<td><strong>2 752</strong></td>
</tr>
</tbody>
</table>

**Totala värden på Falsterbonäset**

Tabell 19; Visar ekonomiska värden inom tätbebyggelse i studieområdet. Byggnadsvärde respektive markvärde samt det totala taxeringsvärdet.

<table>
<thead>
<tr>
<th>Taxeringsvärden Falsterbonäset</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markvärde</td>
<td>17 625</td>
</tr>
<tr>
<td>Byggnadsvärde</td>
<td>13 633</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde Falsterbonäset</strong></td>
<td><strong>31 258</strong></td>
</tr>
</tbody>
</table>
Tabell 20; Visar Totalt bedömt marknadsvärde för fastigheter inom studieområdet. (omräkning har skett av taxeringsvärden enligt schablonen taxeringsvärde/0.75 = marknadsvärde)

<table>
<thead>
<tr>
<th>Marknadsvärden Falsterbonäset</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markvärdet</td>
<td>23 500</td>
</tr>
<tr>
<td>Byggnadsvärde</td>
<td>18 177</td>
</tr>
<tr>
<td><strong>Totalt marknadsvärde Falsterbonäset</strong></td>
<td><strong>41 677</strong></td>
</tr>
</tbody>
</table>

Tabell 21-26 visar de ekonomiska värdena inom de olika höjdnivåerna inom respektive ort samt totalt. Av tabellerna framgår att mer än hälften av de ekonomiska värdena i studieområdet ligger på säker nivå, d.v.s. +3 meter över havet. Fastigheter motsvarande ett värde av cirka 13 miljarder kronor ligger mellan 2-3 meter över havet och kan därmed komma att drabbas av havsnivåhöjningen. Av tabell 26 framgår att fastigheter motsvarande ett värde av cirka 4,5 miljarder svenska kronor ligger direkt i risikområdet och riskerar därmed att påverkas permanent vid en havsnivåhöjning.

Ekononmiska värden 3+ meter över havet (Baserat på taxeringskoder)

Tabell 21; Visar ekonomiska värden inom respektive ort tre meter över havet.

<table>
<thead>
<tr>
<th>Taxeringsvärden &gt; 3 m ö.h.</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>1 992</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>4 887</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>8 378</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>2 621</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde</strong></td>
<td><strong>17 878</strong></td>
</tr>
</tbody>
</table>

Tabell 22; Visar Totalt bedömt marknadsvärde för fastigheter belägna tre meter över havet (omräkning har skett av taxeringsvärden enligt schablonen taxeringsvärde/0.75 = marknadsvärde)

<table>
<thead>
<tr>
<th>Marknadsvärden &gt; 3 m ö.h.</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt marknadsvärde</td>
<td>23 837</td>
</tr>
</tbody>
</table>

Ekononmiska värden 2-3 meter över havet (Baserat på taxeringskoder)

Tabell 23; Visar ekonomiska värden inom respektive ort mellan två och tre meter över havet.

<table>
<thead>
<tr>
<th>Taxeringsvärde 2-3 m ö.h.</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>6 545</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>877</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>2 452</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>131</td>
</tr>
<tr>
<td><strong>Totalt taxeringsvärde</strong></td>
<td><strong>10 005</strong></td>
</tr>
</tbody>
</table>
Tabell 24; Visar Totalt bedömt marknadsvärde för fastigheter belägna två till tre meter över havet (omräkning har skett av taxeringsvärden enligt schablonen taxeringsvärde/0,75 = marknadsvärde)

<table>
<thead>
<tr>
<th>Marknadsvärden +2-3 m ö.h.</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt marknadsvärde</td>
<td>13 340</td>
</tr>
</tbody>
</table>

Ekonomiska värden 1-2 meter över havet (baserat på taxeringskoder)
Tabell 25; Visar ekonomiska värden inom respektive ort mellan en och två meter över havet.

<table>
<thead>
<tr>
<th>Taxeringsvärden 1-2 m ö.h.</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skanör Falsterbo</td>
<td>3 265</td>
</tr>
<tr>
<td>Ljunghusen</td>
<td>45</td>
</tr>
<tr>
<td>Västra Höllviken</td>
<td>65</td>
</tr>
<tr>
<td>Östra Höllviken</td>
<td>-</td>
</tr>
<tr>
<td>Totalt taxeringsvärde</td>
<td>3 375</td>
</tr>
</tbody>
</table>

Tabell 26; Visar Totalt bedömt marknadsvärde för fastigheter belägna en till två meter över havet (omräkning har skett av taxeringsvärden enligt schablonen taxeringsvärde/0,75 = marknadsvärde)

<table>
<thead>
<tr>
<th>Marknadsvärden +1-2 m ö.h.</th>
<th>Mkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt marknadsvärde</td>
<td>4 500</td>
</tr>
</tbody>
</table>
5. Diskussion

5.1 Höjddatamodell

Höjddatamodellen har en hög noggrannhet, framförallt på hårdgjorda ytor. Leverantören av laserdata garanterar en noggrannhet på +/- 0,5 meter men testerna påvisar dock en betydligt högre noggrannhet än så. Valet av interpoleringsmetod kan diskuteras, skillnaden är dock marginell då upplösningen på laserdata är bra. Analysen innehöll drygt 32 miljoner mätpunkter med en upplösning på två gånger två meter. Detta ställde stora krav på hårdvaran när data skulle bearbetas.


5.2 Naturgeografisk och samhällsgeografisk diskussion

Vi har 16 km sandstränder runt Falsterbonäset som vid en havsnivåhöjning kommer att utsättas för ökad erosion och förändrade sandvandringssprocesser. En havsnivåhöjning kan hota såväl ständernas karakter som hela deras existens. Sandstränderna är en av nyckelorsakerna till de höga fastighetsvärdena på Falsterbonäset. Blir det en förändring av sandstränderna, riskerar det med andra ord även att påverka de ekonomiska värdena på Falsterbonäset.


5.3 Ekonomisk diskussion

Skulle det bli en havsnivåhöjning på en meter så finns det marknadsvärden på över 4,5 miljarder kronor som påverkas direkt och värden på ytterligare drygt 13 miljarder som ligger i farozonen. Utöver det tillkommer värden på offentliga byggnader, infrastruktur, naturvärden med mera. Totalt bara inom studieområdet har vi värden, baserat på taxeringsvärdet för helårs- och fritidsfastigheter kan marknadsvärdena för dessa överstiga 40 miljarder kronor. Noterbart är att de mer exklusiva husen, de med högsta taxeringsvärdena, huvudsakligen återfinns i de mer exklusiva strandnära områdena som Skanör och Falsterbo, vilka också är de områden som kommer drabbas hårdast av en havsnivåhöjning.
6. Slutsats

En havsnivåhöjning på en meter får stora konsekvenser för natur, bebyggelse, infrastruktur och inte minst för de boende nere på Falsterbohalvön. Det handlar om ett ekonomiskt värde på mer än 40 miljarder kronor som kommer att påverkas både direkt och indirekt. Mer än 1 700 helårsfastigheter kommer att drabbas.

Om det stämmer att vi får en havsnivåhöjning så måste åtgärder vidtas för att skydda bebyggelse. Havsnivåhöjningen är visserligen inget fenomen som kommer över en natt utan är en långsam process som kommer ske under de närmaste hundr åren och förmodligen även fortsätta efter det. Detta betyder att folk kommer att anpassa sig successivt men havsnivåhöjningen måste ända tas i beaktande vid planering av ny bebyggelse och infrastruktur samt vid förtätning och förändring av befintlig bebyggelse och infrastruktur.

Vid en havsnivåhöjning på en meter;

- Drygt 40 % av Natura2000 områdena kommer att hamna under vatten
- Mer än 2 000 fastigheter ligger i den direkta farozonen (1-2 meter över havet)
- Fastigheter framförallt i Skanör och Falsterbo med ett marknadsvärde på 4,5 miljarder kommer att hamna i den direkta farozonen
- Fastigheter på Falsterbohalvön med ett marknadsvärde över 40 miljarder kommer att påverkas direkt och indirekt
7. Referenslista

5.1 Rapporter


5.2 Kontaktpersoner

Peter Åberg, GIS samordnare och GIS ingenjör Vellinge kommun.

Christina Persson, Vellinge kommun har tillhandahållit befolkningsstatistik som härstammar från 31/12-2010.

5.3 Data ursprung

Vellinge kommun; GIS databas
8. Program och dator

6.1 Mjukvara
ArcGIS Editor 10
Safe FME
Microsoft office 2007; Excel och Word
Adobe CS5; Illustrator och Photoshop

6.2 Dator
Sony Vaio F-series;
   CPU; Intel Core i7 Q720 1,60GHz
   RAM; 6 GB
   GPU; NVIDIA GeForce GT 330M 1024 mb
   OS; Windows 7 Professional 64bit
Institutionen för naturgeografi och ekosystemvetenskap, Lunds Universitet.


The student thesis reports are available at the Geo-Library, Department of Physical Geography and Ecosystem Science, University of Lund, Sölvegatan 12, S-223 62 Lund, Sweden. Report series started 1985. The complete list and electronic versions are also electronic available at the LUP student papers (www.nateko.lu.se/masterthesis) and through the Geo-library (www.geobib.lu.se)

230 Cléber Domingos Arruda (2011) Developing a Pedestrian Route Network Service (PRNS)
231 Nitin Chaudhary (2011) Evaluation of RCA & RCA GUESS and estimation of vegetation-climate feedbacks over India for present climate
233 Zhendong Wu (2012) Dissolved methane dynamics in a subarctic peatland
234 Lars Johansson (2012) Modelling near ground wind speed in urban environments using high-resolution digital surface models and statistical methods
235 Sanna Dufbäck (2012) Lokal dagvattenhantering med grönytefaktorn
238 Adelina Osmani (2012) Forests as carbon sinks - A comparison between the boreal forest and the tropical forest
240 Max van Meeningen (2012) Metanutsläpp från det smältande Arktis
241 Joakim Lindberg (2012) Analys av tillväxt för enskilda träd efter gallring i ett blandbestånd av gran och tall, Sverige
242 Caroline Jonsson (2012) The relationship between climate change and grazing by herbivores: their impact on the carbon cycle in Arctic environments
243 Carolina Emanuelsson and Elna Rasmusson (2012) The effects of soil erosion on nutrient content in smallholding tea lands in Matara district, Sri Lanka
244 John Bengtsson and Eric Torkelsson (2012) The Potential Impact of Changing Vegetation on Thawing Permafrost: Effects of manipulated vegetation on summer ground temperatures and soil moisture in Abisko, Sweden
246 Ulrika Belsing (2012) Arktis och Antarktis föränderliga havsständen
247 Anna Lindstein (2012) Riskområden för erosion och näringsläckage i Segeåns avrinningsområde
248 Bodil Englund (2012) Klimatanpassningsarbete kring stigande havsnivåer i Kalmar läns kustkommuner
Alexandra Dicander (2012) GIS-baserad översvämningskartering i Segeåns avrinningsområde
Johannes Jonsson (2012) Defining phenology events with digital repeat photography
Joel Lilljebjörn (2012) Flygbildsbaserad skyddszonsinventering vid Segeå
Ning Zhang (2012) Automated plane detection and extraction from airborne laser scanning data of dense urban areas
Bawar Tahir (2012) Comparison of the water balance of two forest stands using the BROOK90 model
Christine Walsh (2012) Aerosol light absorption measurement techniques: A comparison of methods from field data and laboratory experimentation
Jole Forsmoo (2012) Desertification in China, causes and preventive actions in modern time
Min Wang (2012) Seasonal and inter-annual variability of soil respiration at Skyttorp, a Swedish boreal forest
Sarah Loudin (2012) The response of European forests to the change in summer temperatures: a comparison between normal and warm years, from 1996 to 2006
Minyi Pan (2012) Uncertainty and Sensitivity Analysis in Soil Strata Model Generation for Ground Settlement Risk Evaluation
Iurii Shendryk (2013) Integration of LiDAR data and satellite imagery for biomass estimation in conifer-dominated forest
Kristian Morin (2013) Mapping moth induced birch forest damage in northern Sweden, with MODIS satellite data
Ylva Persson (2013) Refining fuel loads in LPJ-GUESS-SPITFIRE for wet- dry areas - with an emphasis on Kruger National Park in South Africa
Md. Ahsan Mozaffar (2013) Biogenic volatile organic compound emissions from Willow trees
Lingrui Qi (2013) Urban land expansion model based on SLEUTH, a case study in Dongguan City, China