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Abstract

After a brief introduction of the basic properties of group rings, some famous theorems
on traces of idempotent elements of group rings will be presented. Next we consider some
famous conjectures stated by Irving Kaplansky, among them the zero-divisor conjecture.
The conjecture asserts that if a group ring is constructed from a field (or an integral
domain) and a torsion-free group, then it does not contain any non-trivial zero-divisors.
Here we show how a confirmation of the conjecture for certain fields implies its validity for
other fields.



i




Acknowledgements

The author wants to sincerely thank Johan Oinert for his help with the choice of the topic,
for the work and time he put in as the supervisor of this thesis, and finally for all the
mathematical discussions, which concerned not only the material covered here.

111



v




Introduction

The study of group rings for their own sake began relatively recently, but nevertheless
group rings appear implicitly even in foundational works on group theory. Arthur Cayley
mentioned the group ring CS; already in the arguably first paper on the subject of group
theory, published in 1854. Group rings also appeared in Theodor Molien’s work on complex
algebras, which dates back to 1892. The contemporary definition of a group ring, for an
arbitrary group and arbitrary ring, appeared a bit later. The definition had to wait, for it
was not before the 1920s that the modern definition of a ring appeared. The definition of
a group ring followed soon after.

Finite-dimensional complex group rings appear naturally in the study of representations
of finite groups, and it is in the context of representation theory that they were first
extensively studied. The study of arbitrary group rings for their own sake followed soon
thereafter. The first monograph on the subject, entitled "The algebraic structure of group
rings’, was written by Donald S. Passman and published in 1977.

Much of the development of theory of group rings was stimulated by the abundant
amount of seemingly unapproachable problems. One such problem is to determine sufficient
conditions for a group ring to be semisimple. In the case of a finite group, this question is
answered by Maschke’s famous result. Rickart showed in 1950 that if K = C, then KG is
semisimple regardless of the structure of G. The interesting case nowadays is the case of
K=Q.

Another interesting problem in the theory of group rings is the isomorphism problem.
If R is a fixed ring, does RG = RH imply that G = H? This is certainly not always the
case, for if GG is finite and R = C, then the group ring CG is isomorphic to a direct product
of full matrix rings, and in particular for two non-isomorphic abelian groups G, H of order
n, we have CG = C" = CH. The problem for R = Z has been exceedingly difficult, and
it was conjectured that the implication holds. In the end it was shown that the integral
group ring does not determine the group. In 2001, Martin Hertweck published a paper in
which he showed that a certain couple of two non-isomorphic groups of order 22° - 972 have
integral group rings which are isomorphic.

In the present text we shall present three conjectures related to zero-divisors, idempo-
tents and units in group rings. All of these are concerned with non-existence problem, and
the hypothesis imposed on the group ring RG is that the group G is torsion-free and R is
a field. We will investigate how these conjectures are related to another and how the field
K plays a role.
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In Chapter 1 we define what a group ring is and go through some rudimentary facts
about them, with focus on those facts which are useful in what comes next. We work
with idempotents in Chapter 2. Large part of the chapter take up by a detailed proof of
Kaplansky’s theorem on traces of idempotent elements in complex group rings. Chapter
3 is concerned with zero-divisors, and in particular the zero-divisor conjecture. We show
that we can slightly strengthen the assumptions in the statement of the original conjecture.
In the brief final part, Chapter 4, we mention two conjectures related to units in group
rings, and we show how Kaplansky applied his trace theorem to prove a special case of one
of the conjectures.
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Chapter 1

Basics

1.1 Definitions

The main objects of study here will be group rings. A group ring RG is a construction
which involves a group GG and a ring R. We will always assume that the ring R is associative
and has a multiplicative identity element. The group ring is a ring and the underlying set
consists of formal sums

Zagg (ay € R,g € Q)

geG

for which all but finitely many coefficients a, are zero. We define the addition of two
elements of RG point-wise

D9+ D bag =D (a5 +by)g.
geG geG geG
and the multiplication we define by

(Z agg) ( Z bgg) = Z Cq95

geG geqG geqG

Cqg = g aghg—1p,.

heG

where

If this multiplication seems strange, it will surely help to notice that this is exactly what
we would get by requiring that (a,g)(bnh) = (azbn)gh and that the multiplication map
RG x RG — RG is additive in both arguments. The above definitions make RG into an
associative and unital ring. The multiplicative identity element is 1 - 15, where 1 € R
is the unit of R and 15 € G is the identity element of the group. In general, RG is not
commutative. It is commutative if and only if both R and G are commutative.

We can also define an action of the ring R on RG by

r- Zagg = Z(mg)g (r € R).

geG geG

1



Chapter 1. Basics 2

This definition makes RG into a left R-module. The group ring is then a free R-module
with basis consisting (of copies) of elements of G, and it is of rank |G|. It will often be the
case that the ring R is a field, and we will often denote a field by the letter K. In that
case, K G is a vector space over K, with a canonical basis consisting of the elements of G.
If G is finite, then KG is a finite-dimensional K-algebra, and hence structure theorems
apply, but we will often work without assumption on finiteness of GG. In the literature,
when R = K is a field, the ring K G is often referred to as the group algebra KG.

The group ring RG is a ring extension of R, for we have a ring embedding R — RG
given by r — r-15. Note that if R is commutative, then the image of R in RG is contained
in the center of RG, and then RG is (by definition) an R-algebra. The mapping g +— 1g-g
is a group embedding of G in the group of units of RG, and therefore we can also regard
G as a subset of RG.

We will now consider some examples of group rings.

Example 1.1. Take K to be a field, G = {1g,9,¢% ...,9" '} the cyclic group of order
n, and form the group ring KG. The ring Klz] of polynomials in one indeterminate
x is a principal ideal domain, and assignment x — ¢ gives us a ring homomorphism
¢ : K[z] — KG which is obviously surjective. The polynomial z™ — 1 is clearly contained
in the kernel of ¢, and conversely if p(z) is any polynomial in the kernel, then the expression
p(z) = q(z)(x™—1)+7r(z), with deg(r) < n shows that ker ¢ is the principal ideal generated
by 2™ — 1. Hence KG = K|z]/(z" — 1).

Example 1.2. Continuing the previous example, if in particular K is an algebraically
closed field, then the polynomial 2™ — 1 factors completely into irreducible factors

" —1l=(r—7)(@—72).. (=)

If moreover n is a prime number and K = C, then the roots of unity vy, 7s,...,7, are all
distinct. If M; is the maximal ideal of C[z] generated by the polynomial z — v; then we
have, by the Chinese remainder theorem,

CG = C[z]/ [ M; = || Cla]/M; = C

i=1 i=1
and so C(G is in this case isomorphic, as a ring, to the direct product of n copies of C.

Example 1.3. By the Wedderburn-Artin structure theorem for finite-dimensional alge-
bras, any group ring over a field K is isomorphic, as a K-algebra, to a direct product of
finitely many full matrix rings over some finite-dimensional division algebras D;:

KG = f[ M,. (D).

=1

In particular, if K is algebraically closed, then D; = K. The previous example is a special
case of this.
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Example 1.4. If R = C and G = Z, then it is not hard to see that CZ = Clz, ], the
ring of formal sums ), a,2" where only finitely many coefficients a,, € C are non-zero.
Example 1.5. The group algebra K G is one of the central objects of study in the repre-
sentation theory of finite groups. Any linear group representation p : G — GL(V'), where
V' is a vector space over a field K, corresponds to a KG-module structure on V', and vice
versa.

RG can be identified with the finitely supported R-valued functions on G. If a =
> gec Ggg is an element of RG, then we can interpret it as a function a : G — R specified
by a(g) = ay. The corresponding addition operation would then be point-wise:

(a+b)(g) =alg) +b(g9) (a,b€ RG,g€QqG).

Multiplication in the group ring then corresponds to the convolution of functions:

(axb)(g) = Za(gh_l)b(h) (a,b € RG,g € G). (1.1)
heG

It is sometimes convenient to think of a group ring in this way. When this viewpoint is
particularly practical, we will denote the elements of RG by letters f, g (thinking of them
as functions) and elements of G denoted by letters like x, y (thinking of them as points).

For a function f € RG, the support of f, denoted Supp(f), consists of the finite subset
of points « € G for which f(z) # 0. The support group of f is the smallest subgroup of
G containing Supp(f). The element f can be seen as a function on its finitely generated
support group H to the finitely generated subring R; (generated by the image of f). It is
not hard to see that f € R1H C RG.

Finally, if R = C, we define a self-map * on CG by
a= Zagg —> Z:a_ggf1 =a".
geG geG

This map is an anti-isomorphism of rings which is conjugate-linear. It is also its own
inverse, so it is an involution.

1.2 Homomorphisms of group rings

This section presents some standard and useful results concerning maps between group
rings. Most of the results of this section will be used implicitly in the sequel. The below
two propositions show how ring homomorphisms of the ring R and group homomorphisms
of the group G induce homomorphisms of the corresponding group rings.
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Proposition 1.6. Let ¢ : S — R be a ring homomorphism. Then ¢ extends uniquely to a
homomorphism of group rings ¢ : SG — RG that is given by

$< Z agg) = Z P(ag)g-

geG geqG
If ¢ is injective, then so is ¢ and then SG can be interpreted as a subring of RG.

Proposition 1.7. Let ¢ : H — G be a group homomorphism. Then i extends uniquely
to a homomorphism of group rings b : RH — RG that is given by

D agg) =" aguly).

geG geG
If 1 is injective, then so is ¢ and then RH can be interpreted as a subring of RG.

We see in particular that if H is a subgroup of GG, then RH is naturally embedded in
RG, and similarly if S is a subring of R, then SG is embedded in RG. This allows for
very easy shifting of questions about group rings to smaller or bigger group rings. Many
questions about group rings can be answered more easily by going down from G to a finitely
generated support subgroup.

Now let R be a commutative ring. Then, as pointed out before, RG is an R-algebra.
The below proposition exhibits a universal mapping property of the group ring. The
notation U(A) stands for the group of invertible elements of A.

Proposition 1.8. Let R be a commutative ring, G a group and A an R-algebra. If ¢ : G —
U(A) is a group homomorphism, then ¢ induces uniquely an R-algebra homomorphism

¢ : RG — A such that ¢(g) = ¢(g) for g € G.

Proof. The map clearly must be defined by

E(Z agg) = Z agp(g).

geG geG

The multiplicativity of ¢ follows from multiplicativity of ¢. The rest of the verifications
are also straight-forward. O

Since RG is an R-module, we consider also the projections of RG onto the submodules
RH, where H is a subgroup of G. We have a projection map ny : RG — RH which maps
the basis elements g € G\ H to 0. More explicitly, if a = dec agzg, then

mg(a) = Z ayg-

geH

The proposition below is especially important in the sequel.



5 1.3. Group rings as functions spaces

Proposition 1.9. Let H be a subgroup of the group G and let R be a ring. The projection
map Ty : RG — RH is an R-module homomorphism with the property that if a € RG and
be RH, then

7TH<(Zb) = WH(a)b

and

g (ba) = brry(a).
Proof. R-linearity of 7y is obvious, so we only prove the other property. Write
a=d+my(a)

where @' = a — my(a). Then the support of o’ is disjoint from H. If ¢ ¢ H and h € H,
then gh ¢ H must hold by the fact that H is closed under multiplication. It follows that
the support of a’b is disjoint from H. Hence

mg(ab) = my[ry(a)b] = my(a)b

where the last equality is true because 7y is the identity map on RH and, clearly, 7y (a)b
is an element in RH. The case of ba is treated in the same way. O

1.3 Group rings as functions spaces

The purpose of this section is to develop some tools which enable one to study group rings
using analytic methods. These methods will be applied in the upcoming chapter to obtain
a proof of Kaplansky’s theorem on traces of idempotents, and later to prove for certain
group rings a property called direct-finiteness.

If the ring R happens to be a normed algebra, real or complex, then it is particularly
useful to identify the group ring with a ring of functions. The existence of a norm on
R lets us define a larger ring containing RG, and this larger ring has been shown useful
in the study of RG itself. When R = C, for example, one can allow f to have infinite
support, but instead require that || f|l; = > . |f(x)| is finite. This set of functions forms
an algebra under point-wise addition and function convolution as multiplication. We will
denote it by L'(G). Clearly CG C L'(G) as C-algebras. Of course, the notions of support
and support groups still make sense for L'(G). The inherited norm || - ||; makes CG into
a normed algebra.

Some important theorems concerning complex group rings, and in particular Kaplan-
sky’s theorem on traces which we will discuss later, have been proven using tools of func-
tional and complex analysis. Some of the analytic tools could be applied because a complex
group ring can be considered as a subalgebra of the bounded linear operators on a certain
Hilbert space. We will define this Hilbert space, exhibit the embedding of CG in its space
of bounded linear operators and prove properties of the embedding.
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Let G be a group. We introduce the Hilbert space L?(G) of formal sums a = > gec @99
with a, € C and for which 37 . |a,[* is finite. We define addition, scalar multiplication
and an inner product in the standard way. Hence, if a,b € L*(G), ¢ € C then

a+b = (Z aq,g) + (Z byg) = Z(ag +by)g

geG geqG geqG
c-a = Z(C%)g
geG
(a,b) = (2%97 Zbyg) = Z ag@
geG geG geG

One can verify that the above definitions make L?(G) into a Hilbert space.

It is easy to see that CG is embedded in L?(G) in the sense of vector spaces, and in
particular CG inherits the above defined inner product. The norm corresponding to this
inner product is

lall3 = (a,a) = Y lay* (1.2)

geG

It is also easy to see that the completion of CG under this norm is L*(G). Furthermore,
we will now see that we can regard CG as subalgebra of the algebra of bounded linear
operators on L*(G).

Proposition 1.10. Let H = L*(G) and B(H) be the algebra of bounded linear operators
on H. There is a C-algebra monomorphism I : CG — B(H) such that for g € G, I(g)
acts by left translation on the basis G of H.

Proof. For h € G, denote by Ij, the left translation operator on L?(G) = H. That is, if

€T = Z.ng S LQ(G)7

geG

then

Li(z) = z4(hg).

geG

Clearly, I, is a linear, bounded (with norm equal to 1) and invertible operator on H. The
assignment h — I}, is easily seen to be a group homomorphism from G to its image in B(H),
and hence by Proposition 1.8 it extends to a C-algebra homomorphism from CG to B(H).
Denote by I, the image of a € CG in B(H) under the map I. We have 1 € CG C L*(G),
and for such a we have I,(1) = a, since I, is just multiplication by a. Hence no non-zero
element of CG maps to the zero operator on H, and therefore I is injective. n

The above embedding is continuous with respect to the norm || - ||; on CG and operator
norm | - || on B(H). To see this, remember that ||I,|| = 1 because I, is just a shift. Then,
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ifa=73,cqa09 € CG we get

(@) = 1 agg)ll < Y laglly]l = llall-

geG geqG
Also note that since
[l = sup  [[La(2)][2 = [[La(1)]]2 = [a]]2,
||z||=1,2€eH

for the three norms on CG we have the inequalities
lallz < o]l < llaf]s.

For an element a =) _, a,9 € CG we have earlier defined an involution

a* = Za_gg_l.

geG

geCG

Recall that if H is a Hilbert space with an inner product (-,-) and A is a bounded linear
operator, then the adjoint operator A* is the unique bounded linear operator on H for
which we have

(Az,y) = (z, A"y)

for all z,y € H. The map A — A* is an involution on B(H). Of course, in finite-
dimensional case every linear operator A on H corresponds to a matrix, and A* corresponds
to the conjugate transpose of the matrix corresponding to A.

With this definition of involution on B(H) we can prove an important property of the
above embedding. In the next lemma we keep denoting the embedding discussed above by
1. Explicitly, for a € CG we have

I(a) =1, = Zagl(g) = Zaglg.
geG geG

Lemma 1.11. Fora € CG we have I(a*) = I(a)*, and so I commutes with taking adjoints.
In particular, the image of CG under I in B(H) is closed under taking adjoints.

Proof. Tt is clear that if ¢ € CG, then g* = g~!. Also, one easily verifies from the definition
of an adjoint operator that I = I,-1. Therefore, if a =} _,a,9 € CG, we have

geG
1@ =1( Y ame) =S gl = (Y al) = 1),
geG geG geG

]

Proposition 1.12. The closure, with respect to the operator norm, of the subalgebra I(CG)
in B(H) is closed under taking adjoints of its elements.
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Proof. This result follows from the lemma. Let U = I[(CG). If a € U, fix a sequence of
elements I(a,) € I(CG) converging to a. Then

la® = I(ap)ll = lla” = I(an)"|| = [[(a = I(an))*]| = lla = I(a)]

and so |la* — I(a,)*|| approaches zero as n gets big, so a* € U since U is closed. O

We have established that the subalgebra U = I(CG in B(H) is a closed subalgebra
which contains the adjoints of its elements. Such a subalgebra is usually called a C*-algebra.
Also note that if GG is finite, then the above proposition implies that CG is isomorphic, as
a x-algebra (an isomorphism of algebras with involution) to a subalgebra of the algebra
of complex matrices of size |G| x |G|. The above result does not depend on C, so any
group ring of a finite group over an arbitrary field is isomorphic to a subring of a matrix
ring. But in the case of complex numbers and finite dimension, any subspace of B(H) is
closed, and so the image of CG under [ is a norm-closed subspace of B(H). This implies
that CG is then a finite-dimensional C*-algebra, with a norm induced by the embedding
CG — B(H) = M(C).

1.4 The augumentation ideal and the center

We will briefly discuss a certain proper non-trivial ideal that exists in every group ring
over a non-trivial group. We also characterize the center of a group ring. This result will
be applied in Chapter 3.

1.4.1 The augumentation ideal

For groups of order at least 2, group rings are never simple rings, in the sense that they
always contain proper non-zero ideals. They always contain what is called the augumen-
tation ideal. To exhibit the augumentation ideal, we apply Proposition 1.7 to the group
homomorphism G — {e}, the group with one element. The group ring of R over the one
element group is easily seen to be isomorphic to R. From the result above we obtain a ring
homomorphism € : RG — R that takes an element of RG to the sum of its coefficients.
This map is the augumentation map. The kernel of the augumentation map,

kere = {Zagg ‘Zagz()}

geG geG

is what we call the augumentation ideal, and denote it by w(RG). If R is a field, then the
augumentation ideal of RG is clearly maximal, as it is the kernel of a ring homomorphism
into a field.
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1.4.2 The center

The center of a ring is the set of elements commuting (under multiplication) with every
other element of the ring. In our case, the center is easy to characterize.

Proposition 1.13. An element a = deG agg9 € RG is in the center of RG if and only if
the coefficients a, are contained in the center of R and ag = a,-14, for all v,g € G.

Proof. First assume that a is central. If g € Supp(a) and x € G, then
x'gr € Supp(x~'ax) = Supp(a)

by centrality of a. From this we deduce that g € Supp(a) implies that the entire conjugacy
class of g in G is contained in Supp(a). Moreover, we see that for every pair of conjugate
elements h, g we have a, = a4. Finally, for any r € R we have ar = ra and this implies
centrality (in R) of the coefficients of a.

Conversely, assume that a has the indicated properties. It is clear that that ra = ar
for r € R. Denote by g the sum in RG of all conjugates of g € G. Such elements obviously
have the property that x=1gx = § for all € G. The hypothesis implies that

a:agl.9~1+...+agk_g~k

for some g1, . .., g, € G with finite conjugacy classes. It follows that x lax = aforallz € G
and hence a commutes with the linear combinations ) _. .z, so with all of RG. [

This result implies that if R is commutative, then the center of KG is a free R-module,
with a basis consisting of elements on the form g as defined in the proof of the proposition.
It also implies that a central element a € RG must have a support consisting of elements
g € G of finite conjugacy classes. We will return to this observation in Chapter 3, where
we will show that if K is a field and G is torsion-free, then a central element a € KG
cannot be a zero-divisor.
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Chapter 2

Idempotents

The focus of this chapter is on idempotent elements of group rings. We will discuss some
classical results. One of them is Kaplansky’s theorem on the trace of idempotent elements,
one of several results in the theory of group rings which so far only has been proven using
methods of analysis. We will also discuss a famous theorem by Zalesskii.

2.1 Idempotents and related conjectures

An idempotent e is an element which equals its own square. That is, it satisfies the equation
e? = e. If e is an idempotent, then so are all of its conjugates z~'ex, where v € R is a unit.
Also, ¢ = 1 — e will be an idempotent, with the additional property that ee’ = e¢’e = 0.
The elements 0,1 € R are idempotents which exist in every (unital) ring. A non-trivial
idempotent is one which is different from 0 and 1.

In the ring of square matrices, any diagonal matrix with entries restricted to 0 and
1 is an idempotent, and so is any matrix similar to such a matrix. More generally, if
M = N & L is an R-module, then the projections my, 7, are idempotent elements of
Hompg(M). Conversely, if ¢ € Hompg(M) is an idempotent, then it is a matter of verification
that we have an R-module decomposition M = ker ¢ & im ¢. Idempotent elements are
used throughout ring theory to construct similar decompositions, and so this is one way
to motivate their study.

The existence of a non-trivial idempotent e € R implies the existence of zero-divisors,
since e(1 — e) = 0. Therefore, the existence of non-trivial idempotents in R is a property
stronger than the existence of non-trivial zero-divisors. It is strictly stronger, because there
are rings, say Z/4Z, with non-trivial zero-divisors but no non-trivial idempotents.

2.1.1 The idempotent conjecture for group rings

We can ask what properties idempotent elements of RG possess, or we can ask what
conditions guarantee the non-existence of non-trivial idempotents in a group ring RG.
We show below that a certain important functional takes idempotent elements to rational

11
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numbers between 0 and 1, for any field K of characteristic 0. As for the non-existence
question, R clearly cannot contain idempotent elements. Also G must be torsion-free, for
otherwise it certainly contains a finite subgroup H, and the element

1
a:mZh

heH

is an idempotent (to verify this, one can use the fact that Hh = H for all h € H).

Conjecture. Let K be a field and G a torsion-free group. Then KG contains no non-
trivial tdempotent.

The conjecture has been confirmed in some special cases. For example, in [4] Formanek
uses a variant of the trace functional, discussed below, to prove the conjecture for Noethe-
rian groups (that is, groups satisfying the ascending chain condition on subgroups) in the
case when the field K is of characteristic 0.

Along the way to another result, we will show in the coming chapter that RG is an
integral domain whenever R is an integral domain and G is torsion-free and abelian, so it
will follow then that in this case RG cannot contain non-trivial idempotent.

2.1.2 The Kadison-Kaplansky conjecture

The idempotent conjecture for the complex group ring CG is a special case of another
conjecture. We have seen earlier that the natural left translation action of G on H = L*(G)
induces an algebra homomorphism of CG into B(H), and that the closure of the image
of this embedding is a C*-algebra. This C*-algebra is called the reduced C*-algebra
C*(G).

Conjecture (Kadison-Kaplansky). Let G be a torsion-free group. The reduced C*-
algebra C*(G) contains no non-trivial idempotent.

An affirmative solution to this conjecture of course implies an affirmative solution to
the idempotent conjecture for group rings, since CG C C}(G). It will follow from (Propo-
sition 2.4) below that C}(G) contains a non-trivial idempotent if and only if it contains
a non-trivial self-adjoint idempotent (an element z of CG is self-adjoint if it satisfies the
equation z* = z), and so the conjecture above can be re-phrased accordingly. It is (most
likely) not known yet if the existence of a non-trivial idempotent in CG, G torsion-free,
implies the existence of a self-adjoint idempotent in CG.

2.2 The trace map

In the remaining sections we deal only with group rings over fields. The field will be
denoted by K. In this section we introduce the trace map, which is a linear functional on
K G and which has been the subject of extensive study. As an application of this map and
the analytic approach to complex group rings, we will prove in the next section a famous
theorem of Kaplansky on the trace of idempotents.



13 2.2. The trace map

2.2.1 Definition
We define a linear functional tr on K'G, which we call the trace and which takes
a= Z aq9 € KG
geG

to a1, the coefficient of the group identity element 1 € G,
tra = ay. (2.1)
If a,b € KG, then we have the easily verifiable property
trab = trba (2.2)

The above property is also enjoyed by the familiar matrix trace map, and actually there
are more similarities. Regard KG = V as a K-vector space. We have seen before that
KG acts on V' by left multiplication, and this action is K-linear. Every element of KG
therefore defines a K-linear map on V', and we obtain in this way the reqular representation
of KG, a K-algebra monomorphism from K'G to Homg (V'), the algebra of linear maps on
V. If G is a finite group, then V is finite-dimensional and we have the identification

H?(m(V) =~ M, (K),

where M, (K) is the algebra of n x n matrices with entries from K.

Proposition 2.1. Let G be a finite group and 7 : KG — M,(K) the homomorphism
discussed above. Then
|G| tra = traceT(a),

where trace is the usual functional taking a matriz to the sum of the elements on the main
diagonal.

Proof. Let a basis for V' consist of the elements of G. If
0= Y g
geG

then we have, by linearity of the maps,

n
trace 7(a) = Z aq trace 7(g).
geG

Since G = gG, we see that each 7(g) is a permutation matrix. Since left action of g on G
leaves nothing fixed if g # 1 and leaves everything fixed if ¢ = 1, clearly trace 7(g) = 0 for
all g # 1, and trace (1) =n = |G|. O
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Remark. The proposition can be applied to easily deduce that 0 < tre < 1 whenever
e € KG is a non-trivial idempotent, |G| is finite and char K = 0. The matrix E = 7(e) is
idempotent and so satisfies £ — E = 0, hence is diagonalizable with eigenvalues restricted
to 0,1 and F is neither the identity matrix nor the zero matrix (because e is non-trivial).
Therefore, trace E' = trace 7(e) is an integer k between 1 and n — 1 = |G| — 1, so the result
follows from the above proven equation. As a bonus we get that tre is a rational number,
and that it is restricted to the values k/n, for k = 1,...,n — 1. For arbitrary groups it
is also true that tre lies in the prime subfield of K, regardless of characteristic. If the
characteristic is 0, then 0 < tre < 1 when e # 0, 1. These two facts are special cases of the
two famous theorems by Kaplansky and Zalesskii that were mentioned in the introduction
of this chapter and which we present below.

Proposition 2.2. Fora,b,c € C(G) we have
(i) (a,b) = trab*

(if) traa® = a3

(i)

(iv)

Proof. The first one requires just a verification, and the second follows from the first by
setting b = a. The last last two follow from the first one. For example, to prove (iii) we
proceed as follows:

(a,bc) = (ac*,b)
(a,cb) = (c*a,b)

(a,bc) = tra(bc)* = trac*d* = (ac*,b).

2.2.2 Kaplansky’s theorem

The development in this section follows [7]. The theorem which we want to prove in this
section is the following,

Theorem (Kaplansky). Let e € CG be an idempotent, e # 0,1. Then 0 < tre < 1.

The important conclusion here is that the trace map is faithful in the sense that a
non-zero idempotent maps to a non-zero element of K. Kaplansky’s initial motivation was
to apply the above result to deduce direct finiteness for the group ring KG where K has
characteristic 0. Direct finiteness of a ring is the property that whenever a,b € R are such
that ab = 1, then we also have that ba = 1. That is, one-sided invertible elements are
invertible. This fact follows almost immediately from Kaplansky’s theorem after it has
been appropriately generalized to include the cases where K is any field of characteristic
0. The result is especially interesting because this (seemingly) purely algebraic statement
has so far only been proven using analytic theory, and this is the proof presented here.
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From before we know that there is an embedding [ : CG — B(H), the space of
bounded linear operators on the Hilbert space H = L?(G). We will drop the notation I(a)
and simply consider CG as a subalgebra of B(H). We have proven in the first chapter that
the norm-closure U = CG in B(H) is closed under taking adjoints. The below statement,
true in particular for U, is a well-known fact and a proof of it can be found in virtually
any book on functional analysis or the theory of C*-algebras.

Proposition 2.3. Let B(H) be the algebra of bounded linear operators on a Hilbert space
H. If U is a norm-closed subspace of B(H) that is also closed under taking adjoints, then
for any element x € U we have that 1 + xx* is invertible in U.

We have earlier defined an involution map * : CG — CG. More generally, a map
*: R — R of aring R is called an involution if it is an anti-isomorphism of R and is its
own inverse. An element x is called self-adjoint if x = z* and z is also an idempotent
then it is called a projection. For a projection we have the equalities

The two results below are due to Kaplansky [6].

Proposition 2.4. Let R be a unital ring with involution such that for any x € R, the
element 1 + xx* 1s invertible in R. For every idempotent f € R, we can find a projection

e € B such that fR = eR.
Remark. The notation fR denotes the right principal ideal generated by f.

Proof. Consider the self-adjoint element

=1+ (=) =)

and let t = z71. Then, of course, t is also self-adjoint. One can verify that the elements z
and f commute, for indeed

2f=f1f=/fz
Hence it follows that ¢, being the inverse of z, also commutes with f. Since t is self-adjoint,

it also commutes with f*. From these properties it is seen readily that e = ff*t € fR is
self-adjoint. It is also an idempotent, for

& = [ftff't=ffffe=zfft=ff=fft=e
Hence e is a projection. Since
ef =frtf =1 NHt=rfz=r
we get that f € eR, and since e = ff*t € fR, we get the equality eR = fR. O

Proposition 2.5. Let R be a unital ring and e, f € R two idempotents such that eR = fR.
Then e and f are similar, i.e. there exists an invertible element s € R such that s~ fs = e.
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Proof. 1t follows from the hypothesis that ef = f and fe = e. Indeed, since f € eR, we
have that f = ea for some a € R. Hence

ef = e(ea) = e*a = ea = f.

Similarly we can show that fe = e. The element x = f — e has the properties zf = 0,
fr =z and 2* = 0. From the last property we get (1—x)(1+z) = 1. Now weset s =1—x
and get

sfs=(+a)fl—a)=(f+af)(l—2)=fl—2)=f—fo=f -z =c.
O

It follows from the above two results that any idempotent in CG = U C B(H) is similar
to a projection. This is the crucial observation that leads to the proof of Kaplansky’s
theorem. Indeed, if both the projection p and the idempotent e that it is similar to would
be elements of CG, then by trace properties found in Proposition 2.2, we get

tre=trs 'ps=trpss' =trp=trpp* = ||p|3 >0,

assuming that we’re dealing with non-zero e,p. Since tr is linear and 1 — e is also an
idempotent, the result would follow. The problem is that the interesting case is when the
group ring CG is a proper subset of U, and so p is not necessarily an element of CG. A
way around this is to extend the trace map to U and prove that the properties that we
have used above are preserved in the extension.

Using that tr is linear on CG, it will extend (uniquely) to U if we can show that it is
bounded (with respect to the operator norm on U), with the extension being bounded and
linear. Let || -||2 denote the standard 2-norm on H = L?(G) and || - || the induced operator
norm on B(H). We have already seen in the first chapter that ||a|| > ||a||2 for a € CG. Of
course we have ||al|a > |tr(a)|, which yields

lall = llallz = | tral,
and in particular shows that tr is bounded on CG, with respect to the operator norm.
Hence tr can be extended to the operator norm closure of CG, which is by definition U.
We now verify that some of the properties of tr which hold for CG still hold for its extension
to U. The extension of tr to U will also be denoted by tr.
Proposition 2.6. For the extended map tr : U — C and a,b € U we have
(i) tr(ab) = tr(ba)

(ii) tr(aa*) > 0 with equality if and only if a = 0.
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Proof. Of course the corresponding properties hold for elements of the group ring CG, and
this is a dense subset of U. Choose sequences {a,}>° , {b,}22, in CG converging to a and
b respectively. By continuity of multiplication a,b, converges to ab, b,a, converges to ba
and by continuity of tr we get

tr(ab) = lim tr(a,b,) = lim tr(b,a,) = tr(ba)
n—oo n—o0
which proves (i).

By exactly the same argument, picking a sequence in CG converging to a we show
easily by using the corresponding property for CG that tr(aa*) > 0 for any a € U, which
proves half of (ii).

Now assume that tr(aa*) = 0. Let again {a,}>, be a sequence with a,, € CG, and
which converges to a. Then, since the involution is an isometry with respect to the operator
norm, a), converges to a and so a,a;, converges to aa*. Now, if || - |2 denotes the 2-norm
on CG, then using part (ii) of Proposition 2.2 we get that

0= tr(aa’) = lim tr(a,a}) = lim o,

Since a is a continuous operator on L*(G) and CG C L*(G) is || - ||o-dense, it will suffice
to show that a is the zero operator on CG. But since a is linear, it will further suffice to
show that a is zero on G C L*(G). For all n > 1, we have

la(g)]l2 (@ = an)(@)ll2 + llan(9) ]2
la = anllllgll2 + [langll2

= lla = anll + llan]l2-

By convergence of ||a — a,|| to 0 and of ||a,||2 to 0 we get that ||a(g)||2 = 0, so the second
half of (ii) is proven. O

With the above properties of the trace extension at hand, the proof of Kaplansky’s
theorem is basically just the repetition of what has already been explained above.

Theorem 2.7. (Kaplansky) Let e € CG be an idempotent, e # 0,1. Then 0 < tre < 1.

Proof. With the setup CG C U C B(H) as before, e is an idempotent in a norm-closed
subalgebra of B(H) and this subalgebra is closed under taking adjoints. By the results
above we can find an invertible element s such that e = s~ !ps, with p = pp* and p # 0, 1.
Then we compute

tre = tr s’lps = trpss’1 =trp=trpp* > 0.

Since 1 — e is also a non-zero idempotent, we get 1 — tre = tr(1 —e) > 0. [l

This theorem can be generalized to the case where K is any field of characteristic 0.
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Corollary 2.8. Let e # 0,1 be an idempotent in KG, where K is a field of characteristic
0. Then tre is algebraic over Q and any embedding of Q(tre) in the complex numbers is
contained in the reals, with tre lying strictly between 0 and 1.

Proof. Let e = > a;g; with g1 = 1 € G. In chapter 3 we will show that the field
F = Q(ay,...,a,) can be embedded in C (see Proposition 3.20 there). Let ¢ be this
embedding. Certainly e € FG = ¢(F)G C CG, and so ¢(e) has trace strictly between 0
and 1 by the previous theorem. This means that 0 < ¢(tre) < 1, since tr¢(e) = ¢(tre).
This proves half of the claim. Observe though that if tr e was transcendental, then by the
proof of Proposition 3.20 we could have picked ¢ : F' — C taking tr e to any transcendental
in C. In particular one outside of the real interval (0, 1), which would lead to a contradiction
to Kaplansky’s theorem above. O

If the image of v in C lies in the reals, for any embedding Q() in C, then = is said to
be totally real algebraic. Such a vy must necessarily be algebraic over Q. The converse is
not true. Adjoining to Q any root of the irreducible polynomial 23 — 2 € Q[z] produces
isomorphic fields, and so 2'/3 is not totally real algebraic, for its conjugates lie outside the
reals. The theorem says that the traces of idempotent elements of group rings over fields
of characteristic 0 can be interpreted as totally real algebraic numbers between 0 and 1.
A deep theorem by Zalesskii asserts that traces of idempotents always lie in the prime
subfield of K, regardless of the characteristic. This result is discussed below.

2.2.3 Zalesskii’s theorem
The presentation in this section follows [9]. We treat the following result.
Theorem 2.9. Let e € KG be an idempotent. Then tre lies in the prime subfield of K.

The special case of the theorem, for fields of prime characteristic, is proven by elemen-
tary and a very ingenious method. The general case follows from a technical result which
shows existence of certain homomorphisms of rings. We will discuss the proof in the case of
positive characteristic and indicate how the general case follows. The crucial observation
is that the nice formula

(a+b)P =ad’ + 07

which holds in commutative algebras of characteristic p > 0 can be generalized to the case
of non-commutative ones. Recall that the commutator subspace [A, A] of an algebra A
is the linear span of commutators zy — yx with y,x € A. In the case that A = KG, we
have

tr(zy — yo) = tr(ay) — tr(ya) = O,
so [KG, KG| is contained in the kernel of tr.

Lemma 2.10. Let ay,as, ..., ax be elements of an algebra A over a field K of characteristic
p > 0. Then if ¢ = p™, with n a positive integer, then

(a1 +as+...+ap)? =af+al...+a] mod [A, Al
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Proof. After expanding the left-hand side the expression can be identified with a sum of
all words on the alphabet ai,as,...,ar which are of length exactly ¢q. Hence, if S denotes
this set of words, then we have

(a1+a2+...—0—ak)q:Zw.
wes

Note that the cyclic group Z/qZ admits an action on S by right translation. For example,
(1 + QZ) . b1b2 e bnflbn = bnblbg Ce bnfl.

Observe also that if w’ € S is contained in the orbit O(w) of w € S under this action, then
the difference w — w’ is contained in the commutator [A, A]. Indeed, we can then write
w = af and W' = Ba for some «a, f € A. We deduce that

Z W =|0(w)lw mod [A, A]

w'€0(w)

where |O(w)| denotes the number of elements in the orbit of w. The group acting on the
set S has order ¢ = p”, and therefore an orbit under its action either contains a single
element, or a number of elements which is divisible by p. Hence by the above expression,
for any non-trivial orbit O(w), the sum of its elements vanishes modulo [A, A]. If the orbit
is trivial, then it is easy to see that it must consist of a word on the form a;a; . ..a; = a.

The claim now follows after summing over all the orbits. O

Theorem 2.11 (Zalesskii, positive characteristic). Let e € KG be an idempotent,
where K s a field of characteristic p > 0. Then tre is contained in the prime subfield of
K.

Proof. Write

e:Z%x:b—l—Zaxm,

zeG x€EP

where P is the set of elements in G of order which is a power of p. Setting ¢ = p”, for
some n > 0, it follows from the lemma that

e=el =0+ Zagxq mod [KG, KG].
zeP

Taking n large enough in ¢ = p", we can ensure that 2?7 = 1 for all z in the expression
above. We apply the lemma to b?, where

b= Z%ZE-

¢ P

Note that since none of the elements of GG in the support of b has an order which is a power
of p, we get
b= ale’ mod [KG,KG]
¢ P
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and none of z? equals 1g, and hence tr(b?) = 0. The linearity of tr and the fact that
tr[KG, KG] = {0} now implies

tre =tre? = Zag = (Zax)q.

reP zeP

The last equality holds because the arithmetic is now carried out in a field of characteristic
p > 0. Note that the choice of n was arbitrary, as long as it was sufficiently big. Hence we
can also set ¢’ = gp = p"*!. Then

tre =tre®? = Zagp = (Zam)qp = (tre)?.
zeP zeP

We see that the element tre solves the equation 27 — x = 0 in K. Any such solution
lies in the prime subfield, so the proof is complete. n

The general case of Zalesskii’s theorem is a consequence of the following result, found
in [9, Corollary 2.2.9] The lemma is non-trivial and can be established using methods of
commutative algebra and algebraic number theory.

Lemma 2.12. Let K be a field of characteristic zero and xg, x4, . .., x, elements of K with
xo & Q. Then there exists a prime p, a valuation ring R of K containing xg, 1, ...,2x, and
a ring homomorphism ¢ from R to the algebraic closure of GF (p) such that ¢(zo) € GF (p).
The kernel of ¢ is the maximal ideal M of R.

The above result is applied extensively in proofs of many theorems concerning group
rings. Taking advantage of it leads in a straight-forward way to completion of the proof of
Zalesskii’s theorem.

Theorem 2.13 (Zalesskii). Let e € KG be an idempotent, where K is a field. Then tre
s contained in the prime subfield of K.

Proof. Since we have already proved the case when the characteristic of K is positive, we
may assume that K has characteristic 0. Let zo = tre,zq,...,x, € K be all the coefficients
of the support of an idempotent e € KG. If o # Q, then let R, ¢, p be as in Lemma 2.12.
Since the coefficients of e are contained in R, we have that e € RG C KG. Moreover, if
M =ker ¢ and F' = R/M is the residue field, then the natural map R — F' induces a ring
homomorphism RG — F'G, where F has characteristic p > 0. As any ring homomorphism,
it maps idempotents to idempotents, and by the assumption, the image of xy = tre lies
outside the prime subfield of F'. This contradicts the result established for idempotents in
group rings over fields of characteristic p > 0. Therefore tre € Q. O

Kaplansky’s and Zalesskii’s theorems are some of the most general results concerning
traces of idempotents in group rings.



Chapter 3
Zero-divisors in group rings

This chapter presents an interesting question regarding group rings, namely the question
of what conditions on the ring R and group GG guarantee non-existence of non-trivial zero-
divisors in the group ring RG. We present a long-standing conjecture, which claims that
when G is a torsion-free group, then for an arbitrary field (or integral domain) K, the
group ring K'G contains no non-trivial zero-divisor. In section 2, we briefly discuss a very
simple case of the conjecture, when G is assumed to be a unique product group. Next,
by following work of B. H. Neumann [8] on FCC-groups and using the results of section
2, we are able to confirm that for arbitrary field K and a torsion-free group G the group
ring K'G contains no non-trivial central zero-divisor. In the last section we study systems
of polynomial equations that arise when considering zero-divisors in group rings. We show
how the zero-divisor conjecture for certain fields implies an answer to the conjecture for
other fields.

3.1 The zero-divisor conjecture

Non-zero elements z,y of a ring R are non-trivial zero-divisors if zy = 0 = yz. To be
more precise, if xy = 0 holds, but yz # 0, then x is a left zero-divisor and y a right zero-
divisor. Matrix rings provide many simple examples of zero-divisors, and also examples
where AB =0 but BA # 0.

If RG is a group ring and R contains a zero-divisor, then clearly so does RG, because
R C RG. Also, if G contains a non-identity element g of finite order |g| = n > 2, then
zero-divisors always exist in RG. We simply take elements

a=1-—g

and
b=1+g+...+g" "

Then it is easy to verify that ab = ba = 0.
We can ask ourselves what properties are possessed by zero-divisors in RG, or we
could ask when a group ring RG lacks non-trivial zero-divisors. In the second case, by

21
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the observations above, clearly R must be free of zero-divisors and G' must be torsion-free.
Since no pair of a field K and a torsion-free group G such that K'G contained a zero-divisor
had been found, Irving Kaplansky famously conjectured the following.

Conjecture (Kaplansky). Let K be a field and G a torsion-free group. Then KG con-
tains no non-trivial zero-divisor.

Over the years some partial results have been obtained. The conjecture has been
confirmed for some classes of groups. Perhaps the most interesting result is due to Brown,
Farkas and Snider from 1976, which confirms the conjecture for the class of torsion-free
polycyclic-by-finite groups and fields of characteristic 0. A polycyclic group is a solvable
group with cyclic factors. That is, G is polycyclic if and only if we have a chain of subgroups

{e} =Gy<G14...4G, 1 <G, =G

where for i = 0,1,...,n — 1 we have that G;,1/G; is a cyclic group. A polycyclic-by-finite
group is a group G having a normal subgroup H of finite index which is polycyclic. In full
generality, the conjecture is still open today. Attempts to confirm the conjecture for fixed
fields K were also unsuccessful, and the situation here is just as hopeless. The conjecture
has not been confirmed for any kind of field K, and indeed, it seems that the simplest
imaginable case K = [Fy is still out of reach.

3.2 The case of abelian and unique product groups

The special case of the zero-divisor conjecture when G is torsion-free abelian is particularly
easy to handle, and it can be used to prove some further results. As noted before, if H
is a subgroup of G, then we have the inclusion RH C RG. If we are given an equation
ab = 0 with a,b € RG non-zero, then taking H to be the subgroup of G' generated by the
supports of a,b, we can construct the group ring RH. We have a,b € RH and H finitely
generated. This shows that questions about non-existence of zero-divisors in group rings
can be reduced to finitely generated groups. This observation leads to a quick proof of the
zero-divisor conjecture for the special case when G is a torsion-free abelian group.

Proposition 3.1. Let R be an integral domain and G a torsion-free abelian group. Then
RG is an integral domain.

Proof. By the remarks preceding the proposition we have already reduced the problem
to the case where G = Z", for this is how finitely generated torsion-free abelian groups
look. Also, R can be replaced by its field of fractions. Consider the field of rational
functions R(zy,xs,...,2,). The elements of G are n-tuples of integers. Map such an
n-tuple (ay,as,...,a,) to the rational function x{'z5*...z% . Certainly this is a group
homomorphism, and so by Proposition 1.8 it extends to a ring homomorphism from RG.
By construction the extended homomorphism is injective. Hence RG is contained in a field

and this proves the assertion. O
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As an application of the above proposition, we show that the size of the support of
a zero-divisor in K G, when G is torsion-free, must be at least 3. We have seen that if
a € RG is a zero-divisor, then it is a zero-divisor in a group ring RH constructed from a
finitely generated group H. As a matter of fact, a is a zero-divisor even in the group ring
over its support group. This follows from the following observation.

Proposition 3.2. [9] Let a € RH C RG, where H is a subgroup of G. Then a is a left
(right) zero-divisor in RH if and only if it is a left (right) zero-divisor in RG.

Proof. The "only if” statement is trivial, because RH C RG. Conversely, assume that
ab = 0 where b € RG. We can assume that the support of b intersects H, because abg = 0
for any g € GG, and so we can shift the support of the element . Then by Proposition 1.9,

0= WH(ab) = (Z?TH(b),
and we are done, since 7y (b) # 0. O

As said before, the above result actually implies that a left zero-divisor in a group ring
over a torsion-free group must necessarily have a support of size 3 or greater. Otherwise,
if a = rh + sg and ab = 0, with b non-zero, then it is easy to see that we can multiply the
equation ab = 0 from the left by a suitable element to obtain the equation a’b = 0, where o’
is on form 1+ (r~ts)gh™!. The support group H of a’ is infinite cyclic, generated by gh™!.
In particular, H is free abelian, and the above result tells us that o’ is a left zero-divisor
there. This contradicts the claim in Proposition 3.1.

A torsion-free abelian group is a special case of a unique product group, or a up-
group. A group G is a up-group if for any two finite subsets A, B of G there exists at
least one element ab € AB = {xy : x € A,y € B} which is represented uniquely in this
way as a product of an element of A and an element of B. More precisely, if ab = a't/
with ' € A,/ € B, then a = d/,b = V. It is easy to see that a finitely generated torsion-
free abelian group is a up-group, just by linearly ordering its elements in some way. For
example, let n = (ny,na,...,ng),m = (my,ma,...,my) € Z*. Then define n > m if and
only if n; > m; for the smallest integer i for which n; # m;. This is a linear ordering on Z*
and it is trivial to see that m,n,l € Z* and n > m implies n + [ > m + . Therefore, given
two finite sets A, B C Z* we simply choose a,b to be the maximal elements of A and B
respectively, and conclude that a + b is uniquely represented in this way in A+ B (additive
notation). If G is an arbitrary torsion-free abelian group, then two finite sets A, B generate
a finitely-generated torsion-free subgroup of (G, and consequently G is a up-group.

Only torsion-free groups can be up-groups. This follows easily by noting that if g € G
has order n > 2, then each element of AB, with A = B = {1,g,...,¢" '}, can be repre-
sented in n different ways as products of elements in A and B. Of course, up-groups satisfy
the zero-divisor conjecture. For if a,b are non-zero elements of KG, then the hypothesis
on GG ensures that from the two finite subsets A = Supp(a), B = Supp(b) we obtain an
element zy € Supp(ab) and therefore ab # 0. If all torsion-free groups were indeed up-
groups, then the zero-divisor conjecture would be true. Unfortunately, Promislow found
in 1988 examples of torsion-free group without the unique product property [10].
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3.3 FCC-groups and central zero-divisors

In this section we use group-theoretic arguments to show that if G is a torsion-free group,
then the group ring KG does not contain non-trivial central zero-divisors. The theorem
will follow from results of the previous section and the fact that the support group of a
central element of K'G, with G torsion-free, is an abelian group. The development in this
section roughly follows [8]. Some similar ideas are also found in [9, section 4.1].

A group with the property that for every element x € G, the set
¢ ={gxg: g€ G}

of conjugates of z is finite will be called a finite conjugacy class group, or simply an
FCC-group. Equivalently, a group is an FCC-group if for each x € G we have that the
index [G : Cg(z)] (the number of cosets of Ci(x) in G) is finite, where

Co(r) ={g9 € G: 29 = g}

is the centralizer of x in G. The motivation for studying such groups is that the support
groups of central elements of KG are FCC-groups.

Lemma 3.3. Let G be a finitely generated group, with generators gi,go,...,Gn. If for
each g; the index |G : Cg(gi)] is finite, then the index |G : Z(G)| is finite. In particular,
(G : Cal(g)] is finite for each g € G and so G is an FCC-group.

Proof. The center Z(G) of G is clearly the intersection of the finitely many subgroups
Cy(gi),i = 1,...,n. Recall the fact that if H, K are subgroups of G of finite index in
G, then H N K is also of finite index in G. It then follows by induction that Z(G) is a
subgroup of finite index in G. If g € G is arbitrary, then we have

G2 Cal9)llCaly) : 2(G)] = [G = Z(G)],
and this yields finiteness of [G : Cs(g)]. O

Remark. Here is an example that shows the necessity of the assumption that G is finitely
generated. Let G be a countable product of the symmetry group of an equilateral triangle,

G253XS3X53...

and let H be the subgroup of G such that z = (x1,2s,...) € H if and only if the z, are
all eventually the identity element e. If z,, = e for all n > N, then [H : Cy(z)] < 6, yet
H is infinite and has trivial center, so [H : Z(H)] = oo.

Proposition 3.4. Let a € KG be central and let H be the support group of a. Then H is
an FCC-group.
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Proof. From Proposition 1.13 we know that for a central element a = ) gec 4g9 We have
ag = ap-1gp, for all h,g € G. In particular, the elements of the support of a have finite
conjugacy classes in GG, and so also in H. The result now follows from Lemma 3.3. O]

We will need the following well-known result due to Schur. Recall that the commu-
tator subgroup G’ of G is the smallest subgroup containing all elements of the form
g th~tgh, for pairs g, h € G.

Lemma 3.5 (Schur). Let G be a group and Z(G) be its center. If |G : Z(G)] is finite,
then the commutator subgroup G' of G is also finite.

It follows from this lemma and the above results that the commutator subgroup G’ of
a finitely generated FCC group is finite.

The set T'(G) of elements of G which have finite order is the torsion subset of G. The
torsion subset of an abelian group forms a subgroup, but this is not the case for a general
non-abelian group.

Proposition 3.6. Let G be a finitely generated FCC-group, T(G) the torsion subset of G.
Then T(G) is a finite normal subgroup of G.

Proof. As concluded above, G’ is finite, and therefore we have the containment G' C T'(G).
Of course, G/G’ is abelian. Since it is also finitely generated, by a basic abelian group
structure theorem we have that T(G/G’) is a finite subgroup of G/G’. The projection
m: G — G/G" clearly maps T'(G) into T(G/G"). Conversely, if a + G’ € T(G/G"), then
for some integer n > 1 we have that a" € G’ C T(G), and hence a € T(G). It follows
that the inverse image of T'(G/G’) under 7 is T(G), and so by the standard fact that a

homomorphic pre-image of a normal subgroup is normal, T'(G) is a normal subgroup of G.
The finiteness of T'(G) follows from the equation |T(G/G")| = |T(G)|/|G'|. O

The result we are after now follows easily.

Corollary 3.7. Let G be a finitely generated FCC-group, T(Q) its torsion subgroup. Then
G/T(G) is a finitely generated torsion-free abelian group.

Proof. By Schur’s lemma, we get G' C T'(G), so clearly G/T(G) is abelian. Since G is
finitely generated, so is G/T(G). Since G/T(G) is certainly torsion-free, basic structure
theorems imply that G/T(G) is free abelian. O

Remark. It follows from the above corollary that an arbitrary (not necessarily finitely
generated) FCC-group G that is torsion-free must be abelian. This we see by taking
g,h € G and considering the subgroup generated by g, h.

The main result of this section now follows easily.

Theorem 3.8. Let G be a torsion-free group and K any field. Then KG contains no
non-trivial central zero-divisor.
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Proof. Let a be any non-zero central element of KG and let H be the support group of a.
Then we know that H is free abelian by Corollary 3.7, and so we know that K H contains
no zero-divisors, by Proposition 3.1. By Proposition 3.2, we know that if a is a zero-divisor

in KG, then it is also a zero-divisor in K H. This implies that a is not a zero-divisor in
KG. O]

The above result on the non-existence of central non-trivial zero-divisors in K G, where
G is torsion-free, generalizes easily to the case of rings graded by a torsion-free group G in
which homogeneous elements are not zero-divisors. We digress to briefly discuss this.

Definition 3.9. Let GG be a group. A ring R is G-graded if R, as a group, can be expressed
as a direct sum of subgroups indexed by G:

R=ER,
geG

and for v € Ry, y € Ry, we have that xy € Rg,.

An element x € R, is a homogeneous element of degree g. It is easy to see that if
H is a subgroup of G, and R is a G-graded ring, then

Ry =R,
heH

is a subring of R. Just as in the case of group rings, we have a projection map 7y : R — Ry

given by
a= Z ag +— Z ap.

geCG heH

Each element a of R is a finite sum of homogeneous elements a, € RR,, and the support of
an element of a G-graded ring is defined naturally as the finite subset of g € G for which

ay # 0.
Lemma 3.10. Let H be a subgroup of a group G. If R is a G-graded ring

R=ER,

geG

Ry =@ R,

heH

and

18 the subring graded by H, then we have
g (ab) = 7y (a)b

and
’/TH(ba) = bﬂH(a)

whenever a € R, b € Ry.
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Proof. The proof is essentially the same as in the case of the group ring, Proposition 1.9.
We write a = a’ + mg(a) and note that for any homogeneous element x € Ry the support
of a’x is disjoint from H. It follows that a’b has support disjoint from H, and then the
desired conclusion is obvious. O]

Now we specialize to the case of G-graded rings in which homogeneous elements are
not zero-divisors and where the subgroups R, all contain non-zero elements. This type of
G-graded ring is a generalization of the group ring RG when R is an integral domain.

Corollary 3.11. Let R be a G-graded ring in which homogeneous elements are not zero-
divisors and for which R, # {0}, for all g € G. Let H be a subgroup of G. An element
a € Ry is a zero-divisor in Ry if and only if it is a zero-divisor in R.

Proof. Suppose ab = 0 with a,b € R non-zero. Multiply from the right by a suitable
homogeneous element to produce ab’ = 0 and such that &’ is non-zero and has a support
which intersects H non-trivially. This can be done by picking g € Supp(b), and multiplying
by an element z € Rj-1j,, h € H. Now

ma(ab’) =ary(V) =0
and 7y (b') € Ry is non-zero. O

Lemma 3.12. Let R be a G-graded ring in which homogeneous elements are not zero-
dwisors and for which R, # {0} for all g € G. Then the support group of a central
element of R is an FCC-group.

Proof. Let a = ZgEG ay be a non-zero central element of R and let 0 # x € R; be
homogeneous. By the non-vanishing property we have that a,x # 0,za, # 0 for all
g € Supp(a) and so Supp(za) = Supp(azx) = Supp(a)h = hSupp(a). It follows that
Supp(a) is closed under conjugation by elements of GG. Since the support is a finite set, it
follows that each element of the support of a has only finitely many conjugates. It then
follows as before that the support group of a is an FCC-group. n

Lemma 3.13. Let G be a unique product group and R a G-graded ring in which non-zero
homogeneous elements are not zero-divisors. Then R contains no non-trivial zero-divisor.

Proof. Let a,b be two non-zero elements of R and gh be an element of G that is uniquely
expressed as a product of an element of Supp(a) and an element of Supp(b). By the
non-vanishing property, a,b, # 0 and so ab # 0. ]

Proposition 3.14. Let G be a torsion-free group and R a G-graded ring in which homo-
geneous elements are not zero-divisors and for which R, # {0}, for all ¢ € G. Then R
contains no non-trivial central zero-divisor.

Proof. A central element a € R is an element of the subring Ry, where H is the support
group of a. Since H is free abelian by Lemma 3.12 and Corollary 3.7, Ry contains no
non-trivial zero-divisors, by Lemma 3.13. Hence a is not a zero-divisor in R, by Corollary
3.11. m
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3.4 Zero-divisors and systems of polynomial equations

In this section we show how the non-existence of zero-divisors in K G for some particular
field K implies the non-existence of zero-divisors in group rings constructed from another
field. We do this by considering the coefficients of two general elements a,b € KG as inde-
terminate and showing how the assumption of ab = 0 leads us naturally to the construction
of systems of polynomial equations and an inequation. We show that CG contains no non-
trivial zero-divisors if and only if ZG contains no non-trivial zero-divisors. By using the
same idea, we show also how the special case of the zero-divisor conjecture for K being an
arbitrary finite field implies the general case.

3.4.1 The field of complex numbers and the ring of algebraic
integers

We start by showing that if group ring CG contains no non-trivial zero-divisors if and only
if the group ring ZG contains no non-trivial zero-divisors, where by Z we mean the integral
closure of Z in C. This will apply without any assumptions on G, so in particular it will
apply when G is torsion-free.

Assume that a,b € KG are two arbitrary elements. By the definition of multiplication
in a group ring, the coefficients of ab are polynomials in the coefficients of a and b.

Example 3.15. Let G = Z/3Z = {1,9,¢*} and assume that we are looking for zero-
divisors in CG. Let

a:xa'1+ya'g+za'92
and

b=y 14+uy-g+2- g

be two general elements of CG. A brief computation yields that
ab= (xaxb + Yv2a + yazb) 14 (xayb + TpYa + Zazb) g+ (ﬁazb + YaYp + mbzz) : 92‘

If we consider x4, Ya, Za, Tp, Yp, 2p as variables, and if the product ab is supposed to equal
zero, then each of the three coefficients of ab must be zero. We obtain in this way a system
of polynomial equations.

Assume again that a,b € CG, and that we have ab = 0. As in the example above, we
obtain from the (non-zero) coefficients of a and b a solution

s =(81,82,...,8,) € C"

to a system of polynomial equations, where n is the size of the union of supports of a and
b, the first few s; are the coefficients of a and the last few s; are coefficients of b. Note also
that 0 € C" is a common zero of these polynomials, and actually many other points are
too. Some of these correspond to cases when a or b are zero.
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In the example above, the polynomials are integral. It is easy to see from the definition
of multiplication in CG that in general the polynomials in the system are integral (coef-

ficients are, indeed, all equal to 1), and hence lie in Z[z1,...,z,]. Since the coefficients
of the supports of a and b are non-zero, we also have that none of the coordinates of the
solution s € C" is zero, and we could express this as R(s1,...,s,) = [[_; s; # 0. This

puts us precisely in a setting of the famous (strong form of) Nullstellensatz.

Theorem 3.16 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field, and
Py, ..., P, R finitely many polynomials in K[xq,...,x,]. If the system

P(xy,...,x,) =...=P.(21,...2,) =0,
R(zy,...,z,) #0,
has no solution in K", then R is contained in the radical ideal generated by Py, ..., P,,
i.e., there exist Qy,...,Q, € Klz1,...,x,] and an integer m > 0 such that

Q1P1+...+QT.PT:Rm.

We will apply the Nullstellensatz to prove that if there are no non-trivial zero-divisors
in the group ring QG, then there are none in CG. By Q we mean the algebraic closure of
the field of rational numbers. We have Q C C and Q is an algebraically closed field.

Proposition 3.17. The group ring QG contains no non-trivial zero-divisor if and only if
CG contains no non-trivial zero-divisor.

Proof. Of course, since Q C C, one of the implications is obvious. To obtain the other
implication, we will argue that if CG contains non-trivial zero-divisors, then QG also
contains non-trivial zero-divisors. The proof will be constructive. So let us assume that

k
a = E SiGi,
i=1

n

b= Z SiJi

i=k+1

are non-zero elements of CG, and that ab = 0. We can of course assume that the coefficients
$1,...,8, are non-zero. As indicated in the example above, the coefficients of ab are
polynomials in the coefficients sq, ..., s, of a and $g41,...,s, of b. As explained above, we
have a finite number of integral polynomials

Pl,...,PT,REZ[SCl,...,wn]
and a solution s = (sq,...,s,) € C" to the system of equations

Pi(s) = Py(s)=...= P,(s) =0,
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and an inequation
R(s) = H s; # 0.
i=1

Since Pi,. .., P, R are integral polynomials, this system makes sense over Q too. Seeking a
contradiction, assume that the system has no solution in Q". Then we can apply Hilbert’s
Nullstellensatz, and obtain polynomials

Ql,...,QTE@[ZEh...,(L’n]

such that
OP+...+Q.P.=R™

But evaluating this at s, we obtain
0= (R(s))™ # 0,

a contradiction. Therefore, we must have a point

n

t=(ty,...,tn) €Q
for which
and
R(t) # 0.
Now let @', ¥’ be the elements of QG with supports equal to a and b respectively, and with
coefficients obtained from ¢t = (¢1,...,t,). More precisely, we let
k
a = Z ligi

i=1

and

i=k+1
By construction, the coefficients of the product a’d’ are equal precisely to P;(t) = 0. The
equation

R(t):ﬁtﬁéo

means that neither a’ or ' is equal to zero. Hence a'b’ = 0, and we have obtained zero-
divisors in QG. O

Remark. Note that we did not really use any intrinsic properties of the fields Q except for
the containment Q C C and the property that the former is an algebraically closed field.
In particular, this argument is independent of the characteristic of the fields involved. We
will use this more general result in the forthcoming sections (see Lemma 3.27 below).
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Remark. The supports of the elements a’, ', constructed in the course of the proof of the
proposition equal, the supports of a and b, respectively. This is because [[;, ¢; # 0 which
means that none of the ¢; is zero.

Showing that Q contains no non-trivial zero-divisor if ZG does not requires only an
elementary argument. It is shown by clearing denominators of coefficients of possible zero-
divisors in QG, because Q is the field of fractions of Z. In general, if K is the field of
fractions of an integral domain D, then DG contains a non-trivial zero-divisor if and only
if KG contains a non-trivial zero-divisor.

Proposition 3.18. Q is the field of fractions of 7. Moreover, for any a € Q there exists
an integer n such that na € 7Z.

Proof. Tt suffices to prove the second claim. If ¢ € Q then we have an equation
A"+ @™ 4+ a4 =0,

where the ¢;’s are rational. There certainly exists an integer n such that nc; € Z for all i,
for example, the product of the denominators of the ¢;. Multiply the equation above by
n™ to obtain

(na)™ + cp_1n(na)™ '+ ...+ cn™ H(na) + cen™ =0,
which shows that na € Z. O
We arrive at the following proposition.
Proposition 3.19. Let G be a group. The following assertions are equivalent:
(i) CG contains no non-trivial zero-divisor;
(ii) QG contains no non-trivial zero-divisor;

(iii) ZG contains no non-trivial zero-divisor.

3.4.2 Fields of characteristic zero

It is well-known that the validity of the zero-divisor conjecture in the case of C also implies
its validity for any field of characteristic 0. This is a consequence of the below observation,
which is often useful, and which we already used in the proof of the corollary to Kaplansky’s
theorem in Chapter 2.

Proposition 3.20. Let F' be a countable field of characteristic 0. Then there exists an
embedding of F' into the field of complex numbers C.



Chapter 3. Zero-divisors in group rings 32

Proof. Since we certainly can embed the prime subfield of F' into C, we can use an elemen-
tary argument involving Zorn’s lemma to obtain a pair (K, o) of a subfield K of F' and a
field embedding ¢ : K — C that is maximal in the sense that if K C K’ and ¢/ : K/ — C
is an embedding which coincides with o on K, then K = K’ and 0 = ¢’.

Let K be a field that is maximal in the above sense. If K C F, then take some a € F\ K.
We must consider two cases. If a is algebraic over K, then it has a corresponding minimal
polynomial p(x) € Klz], and the degree of p(z) must be at least 2 by the assumption
that a € F'\ K. The embedding ¢ : K — C induces naturally an isomorphism of rings
K[z] 2 o(K)[z] and so the isomorphic image of p(x) must be irreducible of degree at least
2. Since o(K) C C and C is algebraically closed, we have a corresponding root b € C\o(K).
Then we easily obtain an extension isomorphism K (a) = ¢(K)(b) by mapping a to b. This
contradicts the maximality of the pair (K, o).

On the other hand if a is transcendental over K, then noting that since K is countable,
o(K) has a countable algebraic closure in C, and so there are plenty of elements in C which
are transcendental over o(K'). Take any such element and extend the isomorphism o by
mapping a to any element of C which is transcendental over o(K). This again contradicts
the maximality of (K, o). We conclude that K = F. O

Corollary 3.21. Assume that the complex group ring CG contains no non-trivial zero-
divisor. Then for any field K of characteristic 0 the group ring KG contains no non-trivial
zero-divisor.

Proof. For any non-zero a,b € KG we can construct a finitely generated subfield

F = Q(Supp(a), Supp(b))

of K such that a,b € FG C KG. Since F is countable, the proposition implies that we
have an embedding ¢ : F' — C. This induces a ring embedding of ¢(F')G into CG. Since
FG = ¢(F)G C CG, we must have ab # 0, and therefore KG contains no non-trivial
zero-divisor. O]

It would be interesting to know if the case of K = C also implies the conjecture for
fields of positive characteristic, and hence if the zero-divisor conjecture can be solved by
considering C alone. Currently there is nothing that indicates that this should be the case,
and indeed for many classes of groups G, the non-existence of non-trivial zero-divisor has
only been established for fields of characteristic 0.

3.4.3 Reduction to finite fields

Next we show that if the zero-divisor conjecture holds for all finite fields, then it holds
for all fields. Hence we show that if for all finite fields K the group ring KG contains no
non-trivial zero-divisors, then non-trivial zero-divisor conjecture holds in general, for all
fields. In essence, this is a consequence of the Nullstellensatz and the fact that fields which
are finitely generated Z-algebras are always finite fields. For the proof we need a couple of
well-known results from commutative algebra.
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Proposition 3.22. Let A, B,C be commutative rings with identity, with A being Noethe-
rian and
ACBCC.

If C is a finitely generated as an A-algebra and C' is finitely generated as a B-module, then
B is finitely generated as an A-algebra.

Proposition 3.23 (Zariski’s lemma). Let A be a field and K a finitely generated A-
algebra which is a field. Then K is a finite algebraic extension of A.

Proofs of the above two statements can be found in many textbooks on commutative
algebra, for example in [1]. The below lemma below is listed as an exercise in [1].

Lemma 3.24. Let F be a field that s finitely generated as a ring. Then F s a finite field.

Remark. By a finitely generated ring R we mean a ring which is finitely generated over
some quotient ring of Z.

Proof. First we show that the characteristic of F' must be prime. Otherwise it is zero, and
with that assumption we will reach a contradiction. Indeed, we then have the inclusions

ZQQQF:Z[xl,xQ,...,xn]

where xq,xs,...,x, are the finitely many generators of F' over Z. In particular, F' is a
finitely generated QQ-algebra, so it is a finite algebraic extension of Q by Zariski’s lemma.
Therefore, it is a finite-dimensional vector space over Q. Since Z is certainly Noetherian,
we apply the first of the above two propositions to conclude that Q is a finitely generated
Z-algebra. But this certainly cannot be the case, for then only finitely many primes could
be found among factors of the denominators of rational numbers. It follows that F' must

have characteristic p > 0, and so F' = F,[x1, xa,...,%,]. Applying Zariski’s lemma again,
to F, € F, we get that F' is a finite-dimensional vector space over F,, and therefore
finite. O

Proposition 3.25. If the zero-divisor conjecture holds for all finite fields, then it holds for
the field of complexr numbers C.

Proof. Take any two non-zero elements a,b € CG. We will show that ab # 0. Let R be the
subring of C generated over Z by the coefficients of a and b and by the inverses of these
coefficients. Then a, b are elements of RG. Take any maximal ideal M of R and construct
the quotient ring R/M. Since R is a finitely generated ring, R/M is a finitely generated
field, and so it is a finite field by Lemma 3.24. Let 7 : RG — (R/M)G be the group ring
homomorphism induced by the natural projection map. Since the coefficients of both «a
and b are units in R, they are not contained in M, and so m(a) and 7(b) are non-zero in
(R/M)G. They satisfy 0 # 7(a)m(b) = m(ab). It therefore follows that ab # 0, and so CG

contains no non-trivial zero-divisor. O]

The following result is now an immediate consequence of Corollary 3.21.
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Corollary 3.26. If the zero-divisor conjecture holds for all finite fields, then it holds for
all fields of characteristic 0.

We have hence shown that the validity of the conjecture for all finite fields implies the
validity of the conjecture for all fields of characteristic 0. What is left to do is to show
that if a non-trivial zero-divisor exists in an group ring K G, where K is an infinite field of
characteristic p > 0, then there also exists a zero-divisor in a group ring F'G where F' is a
finite field. This follows again from the Nullstellensatz.

Lemma 3.27. Let K be a field of characteristic p > 0 and a,b non-zero elements of KG
for which we have ab = 0. Then there exists a finite field F of characteristic p > 0 and
elements a',b' of FG for which we have a't’ = 0.

Proof. Let S C K be the finite set which is the union of coefficients of a and b. Let (2
be the algebraic closure of F,, the prime subfield of the field K. Let L be some field
containing both 2 and S. For example, take L to be the algebraic closure of K. We have
a,b € LG, ab =0 in LG, and so LG contains non-trivial zero-divisors. Arguing exactly
as we did in the proof of Proposition 3.17, this gives us a system of polynomial equations
and an inequation, with coefficients in F,. If no non-zero point of 2" was a solution to
this system of polynomial equations, then again we reach a contradiction exactly in the
same way as we did in the proof of the aforementioned proposition. Hence there exists a
solution ¢t = (t1,ts,...,t,) € Q" such that ¢; # 0 for all i. Again, repeating the argument
of Proposition 3.17, we construct from the coordinates of ¢ a pair of non-zero elements
a', b € QG such that o'’ = 0. Since the coefficients of o' and V' are algebraic over F,,, we
can construct a finite field ' by adjoining the coefficients of @',V to F,. Then a/,0’ € FG
and a'b’ = 0, so the proof is complete. O

Using Corollary 3.26, Lemma 3.27 and Corollary 3.21, we arrive at the following result.
Theorem 3.28. Let G be a group. The following two assertions are equivalent:
(i) For any field K, the group ring KG contains no non-trivial zero-divisor;
(ii) For any finite field K, the group ring KG contains no non-trivial zero-divisor.
In particular, this holds for G torsion-free.

While this result might be slightly amusing, it surely brings us nowhere closer to a
proof of Kaplansky’s zero-divisor conjecture. This is partly because the ’harder’ of the
cases seems to be when the characteristic is indeed prime, as evidenced by works of For-
manek, Farkas and Snider, which settle related questions for characteristic 0, but not for
characteristic p > 0. It would be far more interesting to show that the case of K = C
implies results for fields of non-zero characteristic.

One could also claim that, in some sense, the main difficulty of the problem lies in
the complexity of the class of torsion-free groups. Any partial results so far obtained
have dealt with a subclass of torsion-free groups. For example, the polycyclic-by-finite
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ones or supersolvable ones. In both cases the additional hypotheses imply some finiteness
conditions on the groups in question. By playing around with the coefficient rings we are
avoiding the main difficulty, which has to be handled sooner or later.
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Chapter 4

Unit and direct-finiteness conjectures

In this last brief chapter we introduce the last of the three famous conjectures concerning
elements in group rings. We show that, perhaps a little surprisingly, it implies the other
two. We briefly discuss the question of direct-finiteness of group rings and how Kaplansky’s
trace theorem settles this question for the case of characteristic 0.

4.1 Units and the unit conjecture

Clearly G C RG consists of units, and if » € R is a unit, then rg € RG is a unit for each
g € G. Such units of RG we call trivial. Are there any others? Again, in the case when
R is a field and G is torsion-free, no examples of non-trivial units are known to exist. If
K = C, then the slightly larger ring L'(G) contains plenty of units. This is because L'(G)
is a Banach algebra, and so any element at small distance from 1 is invertible.

Conjecture. Let K be a field and G a torsion-free group. Then KG contains no non-
trivial unit.

This third conjecture is actually the strongest of the three conjectures presented in this
paper, the other two being the ones regarding zero-divisors and idempotent elements. This
follows from a theorem of Connell [3], which asserts that if G is torsion-free, then KG is a
prime ring.

Lemma 4.1. [3] Let G be a torsion-free group and K a field. Then KG is a prime ring,
i.e., if A, B are two non-zero ideals of KG, then AB # {0}.

Proposition 4.2. [9] Let G be a torsion-free group. If KG contains non-trivial zero-
divisors, then it contains non-trivial units.

Proof. By the above result of Connell’s, we know that KG is a prime ring. If ab = 0
in KG, with a,b # 0, then consider the principal ideals A and B, generated by a and b
respectively. Then A is the set of finite sums of elements on the form rar’, for r,r’ € KG,
and similarly for B. Since BA # {0}, a product of at least one pair of such sums from

37
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B and from A is non-zero. In particular, an element on the form rbr'ar” r, 7', v" € KG
must be non-zero, and hence br’a must be non-zero. Then the element ¢ = br’a has square
zero, for ¢ = br'(ab)ra = 0 and hence 1 — ¢, 1 + ¢ are inverses of each other. One sees
that ¢ must have an element in its support which is different from 1 € G, for otherwise it
could not possibly square to zero. Hence it follows that 1 — ¢, 1 4+ ¢ are non-trivial units in

KG. [l

It is true that global invertibility of an element a € RG is equivalent to local invertibility
of a for each subgroup H of G such that RH contains a. Therefore, like in the case of
zero-divisors, invertibility of an element can be studied on the level of its support group.

Proposition 4.3. [9] Let H be a subgroup of G. Then a € RH is (left/right) invertible in
RH if and only if it is (left/right) invertible in RG.

Proof. One direction is obvious. Now let b € RG be such that ab = ba = 1. By Proposi-
tion 1.9, we see that
1 =7my(ab) = amy(b).

Similarly we have 7y (b)a = 1. O

Remark. As was the case with the corresponding result for zero-divisors, it also follows
easily from the above result that no (left/right) invertible element of KG, G torsion-free,
could have a support of size 2. If the claim would be false, then there is no loss of generality
in assuming that a hypothetical unit a is on form a = 1 + rg. By the proposition this is a
unit in the group ring K H, where H is the support group of a. Then H is infinite cyclic
generated by g. But in that case KH = K|z,x ™!, with a corresponding to the element
1+ rz. One can fairly easily check that such an element could not possibly be invertible
in K[x,z7']. This is a contradiction.

4.2 Direct-finiteness of group rings

Another very interesting conjecture related to invertibility is the question of direct finiteness
of KG. A ring R is directly finite if whenever a,b € R are such that ab = 1, then we also
have that ba = 1. All rings are not directly finite, as evidenced by the left and right shift
operators on the space of sequences (ag, aj, as, . ..).

Conjecture. Let K be a field and G a group. Then KG is directly finite.

Playing around with the equations one sees that ab = 1 implies (ba — 1)b = 0, and
so if a ring lacks non-trivial zero-divisors, then it is directly finite. Therefore, the direct
finiteness conjecture is implied by both the zero-divisor conjecture and the unit conjecture.
The case of fields of characteristic 0 has been settled by Kaplansky, using traces, and we
show this below. The case of fields of positive characteristic is open up until today, and
even the seemingly simpler case when K = [Fy has not yet been settled. We remark that
the case of G being finite is trivial, regardless of characteristic.
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Proposition 4.4. Let A be a finite-dimensional unital algebra over a field K. Then A is
directly finite.

Proof. Because every element of A acts on A by left (or right) multiplication and does so
faithfully, we get an injective ring homomorphism of A into the ring of linear transforma-
tions on the vector space A, and hence into a matrix ring. Now the claim follows from the
basic fact that M N = 1 implies NM = 1 for matrices. n

Remark. A slight generalization of the above is possible, for we can replace a finite-
dimensional algebra by any left-Noetherian ring. To see this, note that the equation ab =
1 induces a left(!) R-module homomorphism S : R — R given by = + xb. By the
assumption, this map is surjective, for S(xa) = x. But since R is left-Noetherian, S is
also injective. To see this, note that ker(S) C ker(S?) C ... forms an ascending chain
of left ideals of R, which must stabilize at some n > 1. Now take some z € ker(S). By
surjectivity, we find y € R such that S™(y) = z, which implies S"™(y) = S(x) = 0. Hence
y € ker(S™!) = ker(S™), and so x = S™(y) = 0, so ker(S) contains only the zero element.
It follows that for all non-zero = € R, we have xb # 0. But then ab =1 = bab = b =
(ba —1)b =0 and so ba — 1 = 0.

Kaplansky’s theorem on trace of idempotents is enough to prove that KG is directly
finite if the characteristic of K is zero.

Theorem 4.5. Let K be a field of characteristic 0. Then KG is directly finite.

Proof. Let ab = 1. Then ba is easily seen to be an idempotent. But
1 = tr(ab) = tr(ba)

so ba is an idempotent of trace 1. If F' is the subfield of K generated over Q by the
coefficients of the support of ba, then K can be embedded into C. Consequently F'G
embeds into CG and as an element of CG, ba still has trace 1, and so ba = 1 in CG by
Kaplansky’s theorem. Since the embedding respects units, ba = 1 in F'G, and hence in

KG. [l

Hence a statement of algebraic nature has been settled using Kaplansky’s theorem, a
results so far only proven by methods of analysis. Another interesting example of such
beneficial interaction between algebra and analysis can be found in the proof of Jacobson
semisiplicity of the complex group ring CG, found in [9]. In that work, Passman presents
the result, which was initially obtained by Rickart, and its proof relies on elementary
complex analysis.
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