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Abstract

A method to estimate Q and QZ′ of antennas from single-frequency current distri-
butions is described. This single-frequency method and the concepts of physical
bounds on antenna parameters and optimum current distributions are applied to
different analysis and design situations of two-dimensional and three-dimensional
radiating structures (i.e., antennas). The situations considered are: antenna op-
timization using a genetic algorithm and the single-frequency Q computation for
single or multi-band operation, antenna placement optimization in a wireless de-
vice using physical bounds, and antenna optimization that includes QZ′ in the
objective function. Antenna performance is compared with physical bounds or
optimum-current performance in the situations studied.

The results presented in this thesis suggest that single-frequency methods
may reduce the time necessary to optimize automatically, e.g., using a computer,
some antenna parameters such as bandwidth. Furthermore, physical bounds and
optimum current distributions are tools that provide valuable information for the
processes of antenna analysis and design.



Populärvetenskaplig sammanfattning

Antenner finns idag nästan överallt: i mobiltelefoner, bärbara datorer, surfplat-
tor, kameror, skrivare, klockor och armbandsur, o.s.v. De används för att överföra
information tr̊adlöst mellan enheter med hjälp av elektromagnetiska v̊agor (som
har egenskapen att utbreda sig, ungefär p̊a samma sätt som v̊agorna rör sig p̊a
en vattenyta när man kastar en liten sten).

Ju mer avancerad teknologin blir, desto h̊ardare krav ställs p̊a antenndesignen.
I det här sammanhanget föresl̊ar denna avhandling en metod som kan användas
för att förbättra antenndesignprocessen. Den här metoden kan användas för
att f̊a antenner som uppfyller kraven snabbare. Den kan ocks̊a användas som
hjälpverktyg för antennkonstruktören som, med hjälp av datorn, designar anten-
ner.

I antenndesign är det ibland viktigt att veta fysikaliska begränsningarna som
gäller för det analyserade problemet. I den här avhandlingen används fysikaliska
begränsningar härledda fr̊an optimala strömsfördelningar för antenndesign och
-analys.
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out at the Department of Electrical and Information Technology, Lund Univer-
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2D two-dimensional

3D three-dimensional

AR antenna region

EFIE electric field integral equation

EM electromagnetic

FBW fractional bandwidth

GA genetic algorithm

MATLABr matrix laboratory; registered trademark of
The MathWorks, Inc.

MoM method of moments

PEC perfect electrical conductor

PIFA planar inverted-F antenna

RLC/RCL resistor-inductor-capacitor
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2 Background 3

1 Motivation

Antennas are vital parts of wireless communication devices. These devices have
various sizes, forms and specifications, such that more or less stringent con-
straints act on the antennas integrated in devices. Antenna analysis and design
tools and methods aim at finding solutions to such constraints. These solutions
have, in their turn, different forms. They may be improvements of the design
process, antennas with improved performance, new analysis and design methods
and tools, etc.

An antenna designer benefits significantly from knowledge of the physical
limitations of the structure designed. Such limitations can be determined using
the concept of optimum antenna current distributions. This concept is applied
to realistic design situations presented in this thesis. The main advantage of the
physical limitations derived from optimum currents is the possibility to study
structures as they are, without making assumptions such as bounding geometry,
electrical size, or symmetries.

Physical limitations customized for specific applications allow assessing some
aspects of antenna design, including feasibility and performance of designs, and
compromises to be made. For example, a designer may stop the design process
if his/her design meets the specifications with 80 % of the maximum achievable
performance. One way to obtain this maximum achievable performance is current
optimization.

One method that appears useful in the process of antenna design is the single
frequency antenna Q and QZ′ estimation. This method is based on the discrete
nature of the analysis performed during the design of practical antennas. The
method can be used in an initial automated antenna design stage, as a tool that
saves the designer’s time, etc. Examples of how this method can be integrated in
the antenna analysis and design process are described in this thesis.

2 Background

2.1 Q-Factor and Stored Energy for Antenna Analysis

The Q-factor is a ubiquitous parameter in electrical engineering, propelled by its
usefulness to other fields [33]. In general, the Q-factor is a measure of losses in
oscillating and resonance phenomena. This is also the accepted interpretation of
the Q-factor for antennas and high-frequency devices, i.e., [21, 61, 75],

Q = ω
average energy stored

energy lost per unit time
, (2.1)

where ω is the angular frequency of the oscillations. Energy is stored in the fields
created by an antenna, and lost due to heating (ohmic losses) and radiation
in (2.1). The surveys of Secs 2.2 and 2.3 present some of the work where the
Q-factor is applied to the study of antennas.



4 Research Overview

The methods and derivations presented in this thesis are applicable, in princi-
ple, to all ranges of frequencies where antennas operate, unless otherwise stated.
One of the fields where these methods appear to be useful is the estimation of
antenna Q. In this context, there are situations where the Q-factor may bring
little information to antenna analysis. An example of such a situation is the
case of electrically large antennas where multiple, closely-spaced resonances exist
in the frequency range of interest. In this case the commonly-accepted inverse
proportionality of the Q-factor to the bandwidth of the antenna, [61, 75], may
not hold [35, 110]. In addition, the Q-factors of some electrically large radiating
structures are small, e.g., Q . 5, which may question the use of Q for antenna
analysis in this range of frequencies. However, many electrically small antennas
can be modeled using the single resonance assumption [35, 110]. In this situation
the Q-factor is commonly accepted as a parameter describing antenna perfor-
mance, i.e., smaller Q-values correspond to wider frequency bands of operation.

Electrically small antennas have been studied throughout the history of elec-
trical engineering: some of the references presented in Secs 2.2 and 2.3 are fo-
cused on small antennas; text books are available on the topic of electrically
small antennas [43, 44, 53, 102]. Solutions have been proposed to problems related
to physical antenna miniaturization that leads to electrically small antennas,
see e.g., [1, 2, 7, 43, 77, 84, 85, 90, 93, 108, 112, 113]. Attempts have been made
to obtain antennas that have performance reaching for the physical limitations
corresponding to the radiating structures, including those presented in [6, 45, 58–
60, 83, 88, 91, 92].

The remainder of this section presents a more detailed overview of the work
in the fields of physical limitations on antenna Q and directivity, Sec. 2.2, and
approaches to compute the electric and magnetic energies stored in the fields
created by a radiating structure, Sec. 2.3. These quantities are frequently used
throughout this thesis.

2.2 Fundamental Limitations on Antenna Q and Directiv-
ity

The necessity to study fundamental limitations on antenna parameters appeared
naturally as radio technology advanced. The first publications in the field of
fundamental limits on antenna parameters date back to the 1940s. A short,
non-exhaustive historical overview of the progress in this field is presented in the
following. This overview is based on the surveys presented in [102] and [86].

Wheeler introduced a simplified circuit model of an antenna in [104]. He used
this model, consisting of a lumped capacitance or inductance and a radiation
resistance, to derive fundamental limitations on the bandwidth and practical
efficiency of small antennas.

Chu derived physical bounds on the gain, Q-factor and G/Q quotient of om-
nidirectional, lossless, electrically small antennas in [16]. He used the concept of
smallest circumscribing sphere to divide the space into an interior region, with
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unknown current distributions, and an exterior region, with known spherical
wave distributions. Spherical wave theory was employed to study the maximum
attainable gain of an antenna. Lumped-element circuit models were developed
for the spherical waves. These models were used to compute the Q-factor of an
electrically small antenna. Physical limitations on the minimum Q-factor and
maximum G/Q ratio were derived using the circuit-based expressions for the Q-
factor. Chu states that he approximates the equivalent circuits of spherical waves
with simple series RLC circuits having the same behavior in the neighborhood
of the operating frequency, except for the first mode (the electric dipole), [16].
A similar approach as Chu’s was taken by Harrington in [46]. Chu’s work was
revisited by Hansen in [42] who reviewed the performance of many practical small
antennas in [43].

Collin and Rothschild, [20], computed the Q-factor of antennas by subtracting
the radiated energy density from the total energy density produced by a radiator.
This subtraction yields the energy density associated with the reactive fields
generated by an antenna, i.e., the stored energy. This stored energy is used to
compute antenna Q for spherical and cylindrical modes excited by sources placed
on the surfaces of a sphere and infinite cylinder, respectively. The results obtained
by these authors are the same as Chu’s. Fante, [25], used the method proposed
by Collin and Rothschild, [20], to study ideal antennas enclosed in imaginary
spheres exciting both TE and TM modes. He found that a new Q-factor, apart
from the Q-factors associated with spherical modes, has to be considered for
describing such situations.

Another derivation of the energy stored in the fields created by a small an-
tenna was proposed by McLean in [67]. This derivation allows the computation
of the Q-factor with deeper physical insight. The author studies the first TM
spherical mode and circular polarization consisting of the first TM and TE modes
(properly weighted). The results obtained in this paper are in agreement with
Chu’s circuit-model based results without approximations, [16], and with those
obtained with the theory derived by Collin and Rothschild, [20]. When the ap-
proximations indicated by Chu are made, the results obtained by McLean differ
slightly from Chu’s.

Prolate spheroidal radiating structures were considered by Foltz and McLean
in [28]. Sten, Koivisto and Hujanen considered prolate and oblate spheroidal
antennas in [87]. These papers appeared as a result of the necessity to study
geometries closer to those of practical radiators. Some researchers had noted
previously that many practical antennas do not occupy efficiently a spherical
volume. Furthermore, it had been observed that such antennas perform rather
far from the fundamental limitations derived for structures enclosed in spheres.
In the former paper, the authors derived a more restrictive limit on the min-
imum Q of prolate spheroidal antennas. They used an equivalent circuit for
the spheroidal functions describing the modes radiated by such antennas. The
latter paper contains a detailed spherical-wave-function description of the fields
radiated by prolate and oblate spheroidal structures. Based on this theory, the
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authors derived approximate expressions for the minimum Q-factor in terms of
the axial ratios of the spheroids.

Thiele, Detweiler and Penno computed the Q-factor of small antennas using
the far field in [97]. They used the concept of visible and invisible space and
integrated the far field in these regions. Based on these integrations and the
properties of the superdirective ratio, the authors derived physical limitations on
the minimum Q that were less optimistic compared to previous bounds.

Geyi derived fundamental limits on the Q-factor of omnidirectional and di-
rectional electrically small antennas in [30]. He used a straightforward approach
based on spherical wave theory.

Thal [94] used an approach similar to Chu’s, [16], to derive stricter limitations
on Q that are more appropriate for realistic antennas. In addition, Thal included
circuit models for the interior of the sphere bounding the antenna in order to
take into account the energy stored in the fields excited inside the radiating
structure. His examples are spherical wire antennas—structures that use more
efficiently a spherical volume bounding the antennas than, e.g., simple dipoles.
In reference [95], Thal studies the relationship between orthogonal mode phases
and antenna gain and Q limitations. He used a time domain analysis of Chu’s
lumped circuit models of radiating structures. In the more recent article [96],
Thal derived circuit models for the first spherical modes based on scattering
properties. He then used these models to express bounds on the Q-factor of
electrically small antennas consisting of spherically arranged conductors.

An approach, entirely different compared to previous work, to derive physical
bounds on the D/Q-ratio of arbitrary shape antennas was proposed by Gustafs-
son, Sohl and Kristensson in [37, 38]. This approach is based on the forward
scattering properties of an antenna, described by the electric and magnetic po-
larizability dyadics of the radiating structure. These dyadics are considered in
the low-frequency limit, i.e., they quantify the electrostatic and magnetostatic
behavior of the antenna. Mathematical properties of the polarizability dyadics
and the optical theorem are used to relate scattering quantities of an antenna to
its electrostatic and magnetostatic properties. These relations are further used to
derive physical bounds on different antenna parameters, including the D/Q-ratio
and gain-bandwidth product.

Yaghjian and Stuart, [109], used surface current equivalent principles to derive
bounds on the Q-factor of electrically small lossless antennas of arbitrary shape
radiating as either electric or magnetic dipoles. This work provides a connection
between the concepts of general source and global electric-current source and the
polarizability dyadics (used by Gustafsson et al., [37, 38]). The derivation uses
direct methods based on electromagnetic field theory in quasi-static conditions.
These bounds are generalized to lossy electric and magnetic dipole antennas by
Yaghjian, Gustafsson and Jonsson in [108].

Vandenbosch, [101], derived physical bounds on the arbitrary-shape, electri-
cally small, antenna Q-factor for the first TE and TM modes. He used a new
derivation of the energy stored in the fields created by an antenna in terms of
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the current density excited in the radiating structure, [100]. A Taylor series ex-
pansion of the current density was used to approximate the Q-factor of small
antennas that radiate as electric and magnetic dipoles.

2.3 Energies in the Fields Created by a Radiating Struc-
ture

The concept of electromagnetic wave energy is present in many of the publications
on antenna Q fundamental limitations (Sec. 2.2). This energy is a key quantity
in the definition (2.1) of the quality factor of antennas. Q-factors obtained using
this energy-based definition have not been observed to have arbitrarily small
values, as is the case for the input-impedance approximation [35, 66, 110].

Chu [16], Harrington [46], Hansen [42], Sten et al. [87], and Thal [94, 96] used
the theory of spherical waves to estimate the electromagnetic propagating and
non-propagating energy of the fields created by a radiating structure. This theory
was combined by some of the authors with electrical network synthesis methods
to obtain equivalent lumped-element circuit models associated with spherical
modes. These models provided a deeper physical insight into the energy concept.

Fundamental electromagnetic theory, e.g., Maxwell’s equations, Poynting the-
orem, etc., combined with spherical TE and TM mode theory was used to com-
pute energies in a radiating system by Collin and Rothschild [20], Fante [25],
McLean [67], and Geyi [30]. In reference [29] Geyi proposes a method to eval-
uate the Q-factor of small antennas based on the Poynting theorem in the time
and frequency domain. Yaghjian et al., [108, 109], approximated the energies in
electrically small dipole antennas in terms of general and global electric-current
sources using quasi-static electromagnetic theory. Vandenbosch, [100], expressed
the energies in the fields created by an antenna in terms of the current density ex-
cited in the radiating structure using fundamental concepts of electromagnetism.
Vandenbosh’s results resemble partially Geyi’s, [29].

3 Antenna Terms and Definitions

The time convention associated with complex quantities appearing throughout
this thesis is ejωt. The value of a time-varying harmonic field E(r, ω) is

E(r, t) = Re{E(r, ω)ejωt}. (3.1)

Electrically small antennas have dimensions such that they can be contained
within a sphere whose diameter is small compared to a wavelength at the fre-
quency of operation [3]. A precise borderline between electrically small and large
antennas is rather hard to draw according to the previous definition. However,
a widely accepted measure of electrical smallness is the radian sphere, [104, 105].
Electrically small antennas can be circumscribed by a sphere with the radius
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k̂

ê

n̂

J(r)

V

∂V

a

Figure 1: Illustration of radiating structure occupying a volume V which has the
bounding surface ∂V with the outward pointing normal vector n̂. The smallest sphere
that can enclose the antenna, i.e., the smallest circumscribing sphere, has the radius a.
The wave and polarization vectors, k̂ and ê, respectively, are sketched for the far field
region.

smaller than the radian length,
ka < 1, (3.2)

where k is the wave number at the frequency of operation, and a is the radius of
the smallest circumscribing sphere, see Fig. 1. The wave number can be expressed
in terms of angular frequency, ω, ordinary frequency, f , and wavelength, λ, as

k =
ω

c0
=

2πf

c0
=

2π

λ
, (3.3)

where c0 is the speed of light in free space.
The Q-factor (quality factor) of a resonant, lossless antenna is, [3],

Q =
ωW

Pr
=
ω(We +Wm)

Pr
, (3.4)

where W , We and Wm are respectively the total, electric and magnetic energies
stored in the fields created by the antenna, and Pr is the power radiated by
the antenna. Equation (3.4) is the lossless case of (2.1). For electrically small
antennas the Q-factor is approximated by, [3, 35, 110],

Q ≈ QZ′ =
ω0|Z ′in,t(ω0)|

2Rin(ω0)
, (3.5)

where ω0 is the angular frequency at the resonance frequency, Z ′in,t is the first
derivative of the input impedance of the antenna, tuned to resonate at ω0, with
respect to angular frequency, and Rin is the input resistance of the antenna. Note
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that (3.4) and (3.5) are valid if the input impedance of the analyzed antenna can
be modeled as a simple resistor-capacitor-inductor (RCL) circuit in the resonance
frequency region [35, 110].

An alternate definition of the Q-factor of lossless antennas, valid both for
resonant and non-resonant antennas, is [110]

Q =
2ωmax{We,Wm}

Pr
. (3.6)

This definition is equivalent to (3.4) for resonant antennas.
The bandwidth of an antenna, in the context of this thesis, represents the

range of frequencies [ω1, ω2] within which the antenna has a reflection coefficient
with the magnitude less than or equal to Γ0 [3]. The bandwidth is used, in
general, as fractional bandwidth, i.e., bandwidth divided by the center frequency
of the band. The fractional bandwidth, B, is related to the Q-factor by, [110],

B = 2
ω2 − ω1

ω2 + ω1
≈ 2

Q

Γ0√
1− Γ 2

0

. (3.7)

This relation is valid when a simple resonance model can be used to describe the
input impedance of the antenna.

The radiation intensity, P (k̂), is the power radiated from an antenna in a

given direction, k̂, per solid angle.
The electric field polarization vector is a unitary vector, ê, that describes

the state of polarization of this field [3]. For example, a linearly polarized field
has |ê × ê∗| = 0 whereas a circularly polarized one has |ê × ê∗| = 1, where the
asterisk, ∗, denotes complex conjugation.

The partial directivity of an antenna is the ratio of that part of the radia-
tion intensity corresponding to a given polarization, ê, to the radiation intensity
averaged over all directions, [3]:

D(k̂, ê) =
4πP (k̂, ê)

Pr
. (3.8)

If the direction is not specified, the direction of maximum radiation intensity is
implied. The gain is equal to the directiviy for a lossless antenna.

4 Electromagnetic Energies and Physical
Bounds

4.1 Stored and Radiated Energy Expressions

Antenna parameters quantify performance of radiating structures. Some of these
parameters, often used in the design process of antennas, are defined in terms of
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energy quantities of the field created by a radiating structure. Such parameters
are the Q-factor, directivity, gain, etc. Expressions that do not involve explicitly
the fields radiated by antennas are given in the following for the stored electric
and magnetic energies, partial radiation intensity, and total radiated power (after
a short review of important energy-related results in electromagnetics). These
expressions are applied throughout this thesis to antenna analysis and design.

Special attention has been given in electromagnetism to the concepts of stored
electric and magnetic energies (in the fields created by an antenna). These ener-
gies appear in definition (3.6). A simple insight into these energies is given by an
RLC circuit where electric and magnetic energy is stored in a capacitor and an
inductor, respectively, and energy is dissipated (modeling radiation) in a resistor.
The estimation of these stored energies has posed some difficulties which cannot
be overcome using the simple circuit-theory insight. Two such difficulties are the
interaction between the radiated and reactive field, which does not allow a simple
separation of radiated and stored fields, and the infinite total energy of the fields
created by a radiator, [20].

Collin and Rothschild, [20], used the energy balance given by the Poynting
theorem and observations pertaining power flow in radiated fields to overcome the
difficulties mentioned above. The energetic balance of an antenna, obtained by
integrating the Poynting vector over a surface S closed around and immediately
surrounding the antenna, is [19]

1

2

∮
S

(E ×H∗) · n̂ dS = Pr + 2jω(Wm −We), (4.1)

where E and H are the electric and magnetic fields, n̂ is the outward-pointing
normal vector to the surface S, Pr is the time-average power flowing across the
surface S, and We and Wm are the time-average reactive (stored) energies in the
electric and magnetic fields, respectively, within the volume enclosed by S. The
balance (4.1) determines the difference between the stored magnetic and electric
energies. This balance is used to calculate the energy density and velocity of
power flow in the far field, i.e., when S →∞. The energy density in the far field
is subtracted from the total energy density in the fields created by an antenna.
The remainder after this subtraction is the energy density of the reactive field,
used to compute the energy stored in the fields created by the antenna.

Other methods to estimate the energies stored in the fields created by an
antenna have been proposed, including spherical-mode equivalent circuit-models,
approximations, etc., see Sec. 2.3. Of particular importance in the scope of
this thesis is Vandenbosch’s approach presented in [100]. The main results of
this approach are concentrated in equations (4.2) and (4.3). A discussion of
Vandenbosch’s results on the topic of stored electric and magnetic energies can
be found in [41].

Consider the situation sketched in Fig. 2. A structure radiating electromag-
netic waves, e.g., an antenna, communications device, mobile phone, etc., occu-
pies a region of space denoted V . This structure is excited by a source inside or
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on the boundary of V , ∂V , such that the current density J(r) exists inside the
volume V . We assume, in this thesis, that the volume V contains only PEC and
vacuum such that J(r) is an electric current. The electric and magnetic energies
stored in the electromagnetic fields created by a radiating structure are expressed
as, respectively, [100]

We =
η0

4ω

∫
V

∫
V

∇1 · J1∇2 · J∗2
cos(kR12)

4πkR12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kR12)

8π
dV1 dV2 (4.2)

and

Wm =
η0

4ω

∫
V

∫
V

k2J1 · J∗2
cos(kR12)

4πkR12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kR12)

8π
dV1 dV2, (4.3)

where η0 is the impedance of free space, Jn = J(rn), n = 1, 2, is the current
density at positions rn in the volume V occupied by the radiating structure (see
Fig. 2), and R12 = |r1 − r2| is the distance between a conceptual source and
observation point (indexed by the subscripts 1 and 2, respectively).

The integral expressions (4.2) and (4.3) are derived by subtracting the radi-
ated field energy density from the total energy density [100]; see also [41]. These
expressions reduce to the stored energies in [13, 30] in the limit of electrically
small radiators, i.e., ka� 1. Note that (4.2) and (4.3) are the result of a double
integration over the domain occupied by a radiating structure. Compared to
other approaches, these integrals do not involve explicitly the field radiated by
the antenna.

The remainder of this section presents expressions for the other energy quan-
tities used in defining the Q-factor and partial directivity of antennas. These
quantities, the partial radiation intensity and total radiated power, can be found
in textbooks on electromagnetic field theory such as [31, 72], expressed in terms
of the current density in an antenna volume.

The radiation intensity in the k̂-direction, with the time convention (3.1),
is [72]

P (k̂) =
η0k

2

32π2
|F (k̂)|2, (4.4)

where F (k̂) is the tangential component of the radiation vector, i.e.,

F (k̂) = −k̂ ×
∫
V

k̂ × J(r)ejkk̂·r dV. (4.5)

Note that r ∈ V in the equation above. The electric field at position r ∈ R3 is

E(r) = −jkη0
e−jkr

4πr
F (r̂) as r →∞, (4.6)
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Electric current density

J(r)

V

(reactive and radiated field)

Near field region Far field region

(radiated field)

S

Figure 2: Radiating structure occupying the volume V where the current density J(r)
is excited. The arrows illustrate, in a simplified manner, the power flow in the near and
far field regions of the structure.

where r̂ = r/r is a unit vector pointing in the direction of r.

The partial radiation intensity in the k̂-direction for the polarization ê, where
ê · k̂ = 0, is

P (k̂, ê) =
η0k

2

32π2
|ê∗ · F (k̂)|2 =

η0k
2

32π2

∣∣∣∣∫
V

ê∗ · J(r)ejkk̂·r dV

∣∣∣∣2 . (4.7)

A quadratic form of the current density J on the surface of a radiating struc-
ture, similar to (4.2) and (4.3), gives the total power radiated by the structure
as, [31, 41, 100],

Pr =
η0

2

∫
V

∫
V

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kR12)

4πkR12
dV1 dV2. (4.8)

One of the main advantages of equations (4.2), (4.3), (4.7) and (4.8) is the
fact that the integration domain is the finite volume occupied by the antenna,
V . Common numerical techniques can be used to treat the singularity of the
integrands in these equations, [52, 73]. Current densities on radiating structures
are commonly computed by electromagnetic solvers. This fact facilitates the
implementation of (4.2), (4.3), (4.7) and (4.8) in electromagnetic solvers for ap-
plications such as antenna optimization.
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4.2 Energy Expressions for Discretized Antennas

The expressions (4.2), (4.3), (4.7), and (4.8) can be evaluated for many situations
in which analytic expressions of the current densities can be derived. However,
some situations of practical importance cannot be studied with these expres-
sions in an analytic manner. Such situations can be treated by applying a dis-
cretization scheme to the integration domain V . The discretization procedure is
presented for the general three-dimensional case of volumetric current densities.
The applications presented in this thesis are implemented for surface formula-
tions of electromagnetic problems solved using the method of moments. This
method is well suited for antenna problems and provides reasonable accuracy
such that it is one of the predominant methods in computational electromagnet-
ics [14, 15, 52, 73, 103]. An illustration of a discretized planar structure is pre-
sented in Fig. 4.

One scheme to discretize an antenna is to divide the domain V into smaller
regions, mesh cells/elements, such that the collection of all these regions, the
mesh, is a “good approximation”1 of V . A set of N vectorial, dimensionless basis
functions ψn is defined on mesh elements in order to approximate the current
density as

J(r) ≈
N∑
n=1

Jnψn(r). (4.9)

Note that, in general, N is not equal to the number of mesh elements. We
introduce

J = (J1, J2, . . . , JN )T (4.10)

to denote an N×1 matrix of complex expansion coefficients with units of volumet-
ric current density— Am−2. Replacing (4.9) in the equations (4.2), (4.3), (4.7),
and (4.8) and rearranging the summations involved we obtain

We ≈
1

4ω

N∑
m=1

N∑
n=1

J∗mXe,mnJn =
1

4ω
JHXeJ, (4.11)

Wm ≈
1

4ω

N∑
m=1

N∑
n=1

J∗mXm,mnJn =
1

4ω
JHXmJ, (4.12)

P (k̂, ê) ≈ 1

2η0

∣∣∣∣∣
N∑
n=1

F ∗nJn

∣∣∣∣∣
2

=
1

2η0

∣∣FHJ
∣∣2 , (4.13)

and

Pr ≈
1

2

N∑
m=1

N∑
n=1

J∗mRr,mnJn =
1

2
JHRrJ, (4.14)

1To qualify as a “good approximation”, a number of application specific requirements have to
be met, including geometric tolerance in representing details, accuracy of the desired results, etc.
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where the superscripts H and T denote Hermitian and ordinary transposition,
respectively. The matrices Xe, Xm and Rr have N ×N elements whereas F has
N × 1 elements. These matrices have the elements, respectively,

Xe,mn = η0

∫
V

∫
V

∇1 ·ψm1∇2 ·ψn2

cos(kR12)

4πkR12

−
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) sin(kR12)

8π
dV1 dV2, (4.15)

Xm,mn = η0

∫
V

∫
V

k2ψm1 ·ψn2

cos(kR12)

4πkR12

−
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) sin(kR12)

8π
dV1 dV2, (4.16)

Rr,mn = η0

∫
V

∫
V

(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) sin(kR12)

4πkR12
dV1 dV2, (4.17)

and

F ∗n =
−jkη0

4π

∫
V

ê∗ ·ψn(r)ejkk̂·r dV, (4.18)

where the explicit r-dependence of the basis functions has been omitted or re-
placed by the subscripts 1, 2 when ambiguity may occur, i.e., ψm1 = ψm(r1),
and ψn2 = ψn(r2). The matrices Xe and Xm are positive semi-definite for
electrically small structures and may become indefinite for larger structures [40].
Note that it is assumed that magnetic materials are not contained in the antenna
volume V .

The total radiation intensity (4.4) has not been approximated in terms of
the discrete expansion coefficients J because, in general, radiating structures are
designed for specific polarizations ê.

Antenna quantities can be expressed using the discrete expressions (4.11)–
(4.14). The Q-factor (3.6) and the directivity (3.8) are expressed as, respectively,

Q ≈ max{JHXeJ,J
HXmJ}

JHRrJ
(4.19)

and

D ≈ 4π

η0

∣∣FHJ
∣∣2

JHRrJ
. (4.20)

The D/Q quotient is expressed, combining (3.8) and (3.6), as

D(r̂, ê)

Q
=

2πP (r̂, ê)

ωmax{We,Wm}
. (4.21)
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Replace (4.11)–(4.13) in (4.21) to obtain the D/Q quotient for discretized struc-
tures:

D(k̂, ê)

Q
=

4π
∣∣FHJ

∣∣2
η0 max{JHXeJ,JHXmJ}

. (4.22)

One of the outcomes of discretization is the possibility to evaluate energy expres-
sions by ordinary matrix operations, e.g., (4.11)–(4.14), (4.19)–(4.22). Com-
mon numerical methods can be employed to evaluate the integrals in (4.15)–
(4.18). Note that matrices are evaluated at a single frequency in (4.19) to calcu-
late Q, which gives information about bandwidth using, e.g., a single resonance
model [35, 110]. A quadratic-form expression in terms of eigencurrents, for the
Q-factor of scatterers, is presented in [47]. In this reference, the author solves an
optimization problem to find the minimum Q of a certain structure. The same
author optimized the Q-factor of antenna arrays in free space using an expression
similar to (4.19) in [48].

4.3 Physical Bounds on Antenna Parameters

There exist electromagnetic quantities, including antenna parameters, which are
convex quantities [11, 36]. This fact allows the formulation of some antenna op-
timization problems as convex problems. Numerical algorithms and tools are
available for solving such optimization problems, see e.g., [11, 26, 32, 63], for an
overview and examples of optimization methods, including methods for convex
problems. The discrete expressions (4.11)–(4.14) are readily suitable for numer-
ical optimization algorithms.

Physical bounds on antenna parameters can be computed by solving appro-
priately formulated optimization problems. Discrete expressions such as (4.11)–
(4.14) play a key role in these problems. One of the most important advantages
of the discrete formulation is the possibility to derive physical limitations for
a structure as it is, without assuming a bounding geometry as, e.g., a sphere,
spheroid, cylinder, etc. This allows the analysis of many practical situations,
including complex geometries not easily approachable using analytic methods,
geometries with interacting fixed regions and regions to optimize, etc.

Optimum current densities on antennas are the solutions of the optimization
problems considered. The performance achieved by these optimum current den-
sities is used to compare the performance of realistic structures. Performance
can either be the convex parameter optimized or a non-convex parameter de-
scribing optimum currents, e.g., D/Q is a convex parameter whereas Q is non-
convex; we can compare the Q of physical structures with the Q of a D/Q-
optimum current density. Even though optimum currents may or may not be
physical, such currents give an upper bound for the performance that a physical
antenna can attain. Physically realizable optimum antenna currents have been
derived throughout the history of antenna theory, usually for specific applica-
tions [10, 23, 62, 65, 78, 99]. Note that the formulations presented in this thesis do
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not include a feed model, e.g., a voltage gap feeding a part of the structure [52].
However, a feeding scheme of all possible feed points can be obtained with an
expression such as the impedance-like, method-of-moments equation (4.35). This
optimum-current feeding scheme may or may not be physically realizable.

In the remainder of this section, examples of optimization problems for-
mulated for obtaining bounds on different antenna parameters are presented,
Sec. 4.3.1–4.3.3. These examples are described in more detail in [36]. In addition,
a procedure to obtain bounds when radiating structures are divided (abstractly)
in fixed regions and regions which can be optimized is presented in Sec. 4.3.4.

4.3.1 Maximum D/Q

Equations (4.21) and (4.22) can be maximized, to obtain bounds on the D/Q
quotient, using different methods. A Lagrangian formulation is used in [40] to
maximize (4.21) under the assumption that We > Wm. Equation (4.22) can be
maximized as a convex problem. This problem can be formulated in different
equivalent ways, of which two are presented in the following.

One approach is to maximize the numerator of (4.22), i.e., |FHJ|2. This
maximization can be replaced by that of Re{FHJ}, [36, 40]. It is also sufficient
to consider real valued quantities ê ·F ≈ FHJ. The convex optimization problem
is

maximizeJ Re{FHJ}
subject to JHXeJ 6 1

JHXmJ 6 1,

(4.23)

where the current matrix J is rescaled such that JHXeJ is dimensionless. Equa-
tion (4.23) yields an upper bound for (4.21) as

D(k̂, ê)

Q
6

4π|FHJo|2

η0 max{JH
o XeJo,JH

o XmJo}
, (4.24)

where Jo is an optimum current in the sense of (4.23).
An alternative formulation to (4.23) is based on the fact that the maximum

of two convex functions is convex, [11]. This fact is used to minimize the energy
stored in the fields generated by an antenna. The convex optimization formula-
tion is, [36],

minimizeJ max{JHXeJ,J
HXmJ}

subject to FHJ = −j.
(4.25)

The bound has the same form, (4.24). The optimization problem (4.25) can be
relaxed to the dual problem, [11],

minimizeJ JH (αXe + (1− α)Xm) J

subject to FHJ = −j,
(4.26)
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over 0 6 α 6 1. The solution of (4.26) for a fixed α is

J =
−j (αXe + (1− α)Xm)

−1
F

FH (αXe + (1− α)Xm)
−1

F
, (4.27)

with appropriate scaling of J such that FHJ is dimensionless.
The upper bound for (4.21) and (4.22) is reached by an optimum current,

Jo, computed with, e.g., a convex optimization formulation such as (4.23), (4.25)
or (4.26), a Lagrangian formulation, etc. This current may or may not be physi-
cally realizable. However, its performance in terms of D/Q gives an upper bound
on the D/Q of a physically realizable current density. The Q-factor (4.19) of such
optimum currents, i.e.,

Q ≈ max{JH
o XeJo,J

H
o XmJo}

JH
o RrJo

, (4.28)

can be used to compare Q-factors of physical structures. This comparison may
show that an antenna has a Q smaller than that of a D/Q-optimum current,
which is not optimum in the sense of Q.

4.3.2 Given Radiation Pattern and Its Minimum Q

A radiated field (4.5) denoted F 0(k̂) is realized by a current density J0 in the
antenna volume V (see Fig. 2), such that

J0(r) =

∫
Ω

F 0(k̂)e−jkk̂·r dΩk̂, (4.29)

where Ωk̂ is a sphere of unit radius and outward-pointing normal vector k̂. A
current density that realizes F 0 can be found by maximizing the projection of a
realized far field, F , on the desired far field, F 0, defined as∫

Ω

F 0(k̂) · F ∗(k̂) dΩk̂ =

∫
V

J∗(r) · J0(r) dV ≈ JHVvolJ0, (4.30)

where J0 is the column vector (4.10) of expansion coefficients corresponding to
J0, and the matrix Vvol has the elements

Vvol,mn =

∫
V

ψm(r) ·ψn(r) dV. (4.31)

The convex optimization problem that yields a current density J that ap-
proximates J0 is, [36],

maximizeJ Re{JH
0 VvolJ}

subject to JHXeJ 6 1

JHXmJ 6 1.

(4.32)
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A lower bound on the Q-factor of an antenna having a far field approximated
by F 0 can be obtained by solving the minimization problem, [36],

minimizeJ max{JHXeJ,J
HXmJ}

subject to

(∫
Ω

|F (k̂)− F 0(k̂)|2 dΩk̂

)1/2

< 4πδ,
(4.33)

where δ is the maximum least-squares deviation of F from F 0. Note that any
norm can be used to quantify the deviation of the realized far field from the
desired far field.

4.3.3 Maximum D/Q for Superdirective Antennas

A superdirective antenna has a directivity greater than directivities of typical
antennas with the same electrical size [5, 43, 57, 65]. Denoting D0 the directivity
of such typical antennas, the convex optimization problem that yields the current
density maximizing the D/Q ratio is, [36],

minimizeJ max{JHXeJ,J
HXmJ}

subject to FHJ = −j

JHRrJ 6
4π

η0D0
.

(4.34)

4.3.4 Embedded Antennas

From the electromagnetic wave generation point of view, many mobile devices
that integrate antennas consist of two spatial domains, as illustrated in Fig. 3.
One of the domains, the “antenna region”, is represented by the space reserved
for a structure fed by the transmitter(s). The other domain, the “ground plane”,
contains all other parts integrated in the device. This domain usually contains
metallic parts that act as ground for the structure in the antenna region. The
structures in both domains contribute, in general, to radiated fields. It is also
observed that the antenna region usually occupies a small fraction of the entire
device.

Situations such as that described in the previous paragraph are not readily
analyzable with the formulations of Sec. 4.3.1–4.3.3. However, a block matrix
decomposition applied to the matrices involved in these formulations allows the
study of antennas embedded in and interacting with other structures, [55, 76].
Consider the situation illustrated in Fig. 3. The current density in the antenna re-
gion can be controlled by, e.g., a feed, optimization to derive physical bounds, etc.
The ground plane current is determined by the current in the antenna region and
the interaction between the two domains. This interaction is described by a sys-
tem of equations that relates the current-density expansion coefficients to other
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Fixed ground plane Antenna

ZAAZGG

ZGA,AG

Figure 3: Schematic illustration of antenna embedded in a wireless terminal. Gray
shading—metallic parts.

quantities used to model the radiating system. One of the simplest ways to
describe such an interaction is the impedance-like equation

ZJ = V, (4.35)

where Z = (Zmn) is a matrix describing the interaction between basis functions p
and q with p, q = 1, 2, . . . , N , and V is an N -element column vector describing the
excitation corresponding to each basis function. The system of equations (4.35)
is usually solved in method of moments (MoM) algorithms based on the electric
field integral equation (EFIE) [48, 52, 73]. The elements of Z do not depend on
the current density flowing in the volume V . These elements depend only on
the electromagnetic properties of the radiating system and its environment. The
excitation vector V models sources feeding the structure. This vector does not
appear in an optimization formulation, as shown in the following.

A block matrix decomposition is applied to (4.35), [55, 76]:(
ZAA ZAG

ZGA ZGG

)(
JA

JG

)
=

(
VA

0

)
. (4.36)

The indexes A and G denote the antenna region and ground plane, respectively.
For example, the elements of ZAA have both basis functions (whose interaction
the elements of ZAA describe) in the antenna region whereas the elements of ZGA

have the first basis function in the ground plane and the second in the antenna
region. The 0-matrix in the right hand side of (4.36) expresses the fact that the
current in the ground plane is controlled by the current in the antenna region, i.e.,{

JA = (ZAA − ZAGZ−1
GGZGA)−1VA

JG = −Z−1
GGZGAJA = TJA

. (4.37)

These relations allow expressing the quadratic forms (4.11)–(4.14) in terms of JA

as, respectively,

JHXeJ = JH
A

(
Xe,AA + THXe,GA + Xe,AGT + THXe,GGT

)
JA, (4.38)
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JHXmJ = JH
A

(
Xm,AA + THXm,GA + Xm,AGT + THXm,GGT

)
JA, (4.39)∣∣FHJ

∣∣2 =
∣∣∣(FA + TTFG

)H
JA

∣∣∣2 , (4.40)

and

JHRrJ = JH
A

(
Rr,AA + THRr,GA + Rr,AGT + THRr,GGT

)
JA, (4.41)

where the Xe, Xm, F and Rr-blocks are defined in the same manner as the Z-
blocks. Note that (4.38)–(4.41) do not contain the feed-model matrix VA. The
sizes of the matrices in parentheses in these equations are determined by the
size of the region that is optimized, discretization scheme, etc. However, these
matrices have the number of rows (and columns, where applicable) smaller than
N , the size of the matrices describing the entire structure.

5 Antenna Analysis and Design Applications

Standard electromagnetic EFIE-based MoM solvers compute most of the quan-
tities needed to estimate (4.15)–(4.17). The integration of this estimation in
an EFIE-based MoM solver is described in Sec. 5.1. The MoM solver used in
this thesis is described in Sec. 5.3. The matrix approximations (4.11)–(4.14) are
readily suitable for global optimization algorithms. The integration of these ex-
pressions in a genetic algorithm optimization with MoM simulation is described
in Secs 5.4 and 5.5.

5.1 Method of Moments

Numerical methods for electromagnetic problems are commonly used in the pro-
cess of antenna analysis and design. Details and examples of such computational
methods can be found in, e.g., [52, 73]. One of the methods used to solve prob-
lems in electromagnetism is the method of moments [48]. This method, applica-
ble in general to a wider class of problems than electromagnetism, transforms a
boundary-value problem involving integral or differential equations into a matrix
problem, e.g., (4.35), [52]. The elements of the matrices involved are computed
based on a discretization scheme applied to the object analyzed and the formu-
lation of the problem, i.e., the equation that is solved. The MoM is particularly
suited for antenna problems because it does not require space to be truncated
around the analyzed structure [52].

Consider the discretization scheme presented in Sec. 4.2. In the remainder of
this thesis expansion coefficients J are surface-currents and integrals are evaluated
on the surface ∂V enclosing the radiating structure (that occupies the volume V ).
An EFIE-based mixed-potential formulation using Galerkin testing computes an
impedance matrix with the elements, [52, 73],

Zmn = jη0

∫
∂V

∫
∂V

(
kψm1 ·ψn2 −

1

k
∇1 ·ψm1∇2 ·ψn2

)
e−jkR12

4πR12
dS1 dS2. (5.1)



5 Antenna Analysis and Design Applications 21

Note that due to the inner product operation performed in the MoM, i.e., one
integration over the surface bounding the radiating structure, the SI unit for Zmn
is Ωm2. Various forms of (5.1) are usually computed by MoM electromagnetic
solvers.

The matrices Xe, Xm and Rr with the elements (4.15)–(4.17) can be derived
in an MoM solver as that introduced above with little computational effort. This
derivation involves splitting the computation of Z in two parts, and performing
a new computation. Express the impedance matrix as

Z = Zm − Ze, (5.2)

where

Ze,mn =
−η0

jk

∫
∂V

∫
∂V

∇1 ·ψm1∇2 ·ψn2

e−jkR12

4πR12
dS1 dS2, (5.3)

and

Zm,mn = jkη0

∫
∂V

∫
∂V

ψm1 ·ψn2

e−jkR12

4πR12
dS1 dS2 (5.4)

and introduce the matrix Zem with the elements

Zem,mn = −η0

∫
∂V

∫
∂V

(
k2ψm1 ·ψn2−∇1 ·ψm1∇2 ·ψn2

)e−jkR12

8π
dS1 dS2. (5.5)

These quantities are used to compute

Xe = Im{Ze − Zem}, (5.6)

Xm = Im{Zm − Zem}, (5.7)

and
Rr = Re{Zm − Ze}. (5.8)

The most computationally demanding part of the above derivation (excluding
the effort for computing (5.3) and (5.4), which depends on the MoM solver im-
plementation) is the integration (5.5). This integral has a non-singular integrand
such that it does not pose difficulties for numerical computation. In fact, the
only difference between (5.5) and (5.3), (5.4) is the singular factor 1/R12.

The EFIE impedance matrix can be expressed alternatively as

Z = Rr + j(Xm −Xe). (5.9)

Based on this equation, we call Rr the radiation resistance matrix, and Xe and
Xm the electric and magnetic reactance matrices, respectively. The radiation
resistance matrix is positive semi-definite [48]. The reactance matrices are pos-
itive semi-definite for electrically small structures. These matrices may become
indefinite for larger structures [36, 40, 41]. The quadratic form

1

2
JHZJ ≈ Pr + 2ωj(Wm −We) (5.10)

resembles the energetic balance (4.1) given by integrating the Poynting vector on
a surface closed around and immediately surrounding a radiating structure.
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5.2 Single Frequency QZ′ Computation

The antenna parameter QZ′ , introduced in [110], can be evaluated from a single-
frequency current density in an EFIE-based MoM solver with little additional
computational effort. The first derivative with respect to wave number of the
impedance matrix elements (5.1) is

k∂Zmn
η0∂k

=

∫
∂V

∫
∂V

j
(
k2ψm1 ·ψn2 +∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4πkR12

+
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4π
dV1 dV2. (5.11)

The element-wise, first-order, wave-number derivative of the impedance matrix,

Z′ =
∂Z

∂k
=

1

k
(Zm + Ze − 2Zem) , (5.12)

with the elements given by (5.11) is used to evaluate QZ′ from the current density
computed at a single frequency. Equation (5.12) is obtained by comparing (5.11)
to (5.3)–(5.5).

The Q-factor of an antenna tuned to resonance, in a single-resonance model,
can be approximated as [35, 110]

QZ′(k0) ≈
k0

∣∣Z ′in,t(k0)
∣∣

2Rin(k0)
, (5.13)

where prime denotes first derivative with respect to wave number, k0 is the
resonance wave number, Zin,t is the input impedance of the antenna tuned to
resonate at k0, and

Zin(k) = Rin(k) + jXin(k) (5.14)

is the input impedance of the antenna without tuning circuitry. Note the change
of variables k = ω/c0, performed in (5.13), compared to (3.5), in order for Zin

to be expressed in terms of the same frequency variable as Z, whose elements
are (5.1). If the single resonance assumption does not hold, the derivative of
the input impedance may approach zero such that QZ′ ≈ 0. In these situations
the Brune, multiple-resonance, input-impedance-approximation procedure [106]
may produce a better approximation of Q than QZ′ . If the antenna is tuned to
resonate at the wave number k0 using a series-connected, ideal, lumped inductor
or capacitor, we have

Zin,t(k) = Zin(k) + jXt(k), (5.15)

where

Xt(k) =


−kXin(k0)

k0
Xin(k0) < 0

−k0Xin(k0)

k
Xin(k0) > 0

. (5.16)
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At the resonance frequency the input impedance has only the real part, i.e.,

Zin,t(k0) = Rin(k0). (5.17)

Replace (5.15) and (5.16) in (5.13) to obtain

QZ′(k0) ≈
∣∣∣∣k0Z

′
in(k0)

2Rin(k0)
+ j
|Xin(k0)|
2Rin(k0)

∣∣∣∣ . (5.18)

In the above equation, Z ′in is traditionally computed using a numerical approx-
imation based on evaluating Zin at two closely spaced frequencies. An single-
frequency alternative to this approach is presented in the following.

We express the input impedance derivative in terms of the input admittance.
The admittance matrix, given by:

J = YV = Z−1V, (5.19)

defines the input admittance (and equivalently impedance) of the antenna using
a voltage gap model of feeding edge elements:

Yin =
VTYV

V 2
in

, (5.20)

where Vin is the voltage applied across the gap. Note that in (4.35) we have, for
the formulation (5.1),

Vf = Vin`f , (5.21)

where a voltage gap is applied along basis function f , and `f is the length of the
edge common to the two rectangles where ψf 6= 0. We consider that the source
is real-valued and frequency independent, i.e., V′ = 0. The input impedance
derivative becomes

Z ′in =

(
1

Yin

)′
= −Y

′
in

Y 2
in

= −
(
VTYV

)′
V 2

inY
2
in

= −VTY′V

I2
in

, (5.22)

where Iin is the current flowing into the antenna input. Consider the following
equation:

0 =
(
Z−1Z

)′
=
(
Z−1

)′
Z + Z−1Z′. (5.23)

Multiplication from the right by Z−1 gives

Y′ = −Z−1Z′Z−1 = −YZ′Y, (5.24)

such that the input impedance derivative is

Z ′in =
JTZ′J

V 2
inY

2
in

=
JTZ′J

I2
in

, (5.25)
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where the fact that Z and Y are symmetric matrices has been used. Re-
place (5.25) in (5.18) to obtain

QZ′(k0) ≈
∣∣∣∣k0J

TZ′J

2RinI2
in

+ j
|Xin|
2Rin

∣∣∣∣ , (5.26)

where all the frequency-dependent quantities are computed for the wave number
k0. The corresponding expression for QZ′ in [12] differs from (5.26) as the former
includes frequency derivatives of the current density and complex conjugates.

The single-frequency QZ′ derivation has been presented for the case of a series
circuit element used for tuning an antenna, as in [110]. An expression similar
to (5.26) can be derived using a parallel tuning susceptance.

5.3 In-House Method of Moments Solver

An in-house method of moments solver computes the matrices (5.1), (5.11),
and (4.15)–(4.18), for the situations of Sec. 6. These are the impedance ma-
trix and its frequency derivative, reactance and radiation resistance matrices,
and far field matrix, respectively. Rectangular mesh elements are used to dis-
cretize the surfaces of the analyzed structures. This choice of discretization allows
the analysis of some antenna applications even though rectangular elements lack
the geometry-conforming flexibility of triangles [73]. Galerkin’s method is em-
ployed, i.e., the same set of functions is used as testing and basis functions [48, 73].
These functions are zero except on the surfaces of two adjacent rectangles, i.e.,
rectangles sharing a common edge, as illustrated in Fig. 4. The amplitudes of
the basis functions increase from 0 to 1, linearly toward the common edge—they
have a “rooftop” profile, [68]. Considering a numbering rule of the two rectangles
supporting a basis function, the direction of this function is perpendicular to the
common edge pointing from the first to the second rectangle.

The integrals in (5.1) and (5.11) are evaluated using the Gaussian quadrature
when the two integration domains are at a great distance from each other. The
singularity extraction technique is applied [48, 73] when the domains are iden-
tical or neighbor mesh elements of 2D structures. In the case of 3D radiating
structures, the variable change described in [56] is employed to integrate the 1/R
singularity. Four points are used in all Gaussian quadratures involved in the
estimation of these integrals (except for the results presented in Sec. 6.2.3 where
six points are used).

There exist situations where the performance of a fabricated antenna may be
reduced compared with the performance of its corresponding simulated model.
Typical reasons for this performance reduction are the nature of the discretiza-
tion scheme, the difficulties in modeling fine geometrical details and fabrication
tolerances, etc. These situations are usually observed when randomness is used
to generate antennas, e.g., using a genetic optimization algorithm, [54, 71]. Two
such situations are covered by the following observations related to rectangular
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Figure 4: Illustration of discretization for a structure using rectangular mesh elements.
Metal areas are depicted in gray shading. The amplitudes of three of the total 6× 3 +
5× 4− 4− 3 basis functions are depicted in blue, pink and green shading. The feeding
edge is marked F . The locations of basis and testing functions when a block matrix
decomposition is applied to the impedance matrix, Z, are illustrated by the positions of
the resulting blocks, ZAA, ZGG, ZGA and ZAG, where the subscripts G and A denote
the ground plane and antenna region, respectively.

mesh elements and rooftop basis functions. The first observation pertains iso-
lated mesh elements (sometimes called “orphan” elements). The mesh elements
marked “1” and “2” in Fig. 5a are examples of isolated elements. None of the
basis and test functions are non-zero on such isolated elements—they do not
support basis functions. This results in the fact that isolated mesh elements do
not affect the MoM solution obtained using solvers with basis functions defined
on pairs of mesh elements [64, 71, 107], e.g., the in-house solver. The second ob-
servation pertains non-isolated mesh elements that share a single vertex—corner
or diagonal connections. An example corner connection is between the elements
marked “1” and “2” in Fig. 5b. Due to the fact that the basis functions are zero
at the element edges opposed the common edge, in the MoM analysis the current
flowing through the corner connection is negligible. However, in a fabricated
sample there may be an electrical connection at the corner such that a current
may flow through that corner. This electrical connection may result in a perfor-
mance alteration mostly due to the finite conductivity of real metals. In order to
avoid such alterations, the fabrication has to ensure that corner conditions from
simulation are reproduced in fabrication, e.g., if a corner model with 0 curvature
radius is used then no electrical connection should exist at corners in a fabricated
model.

The procedure described in Sec. 4.3.4 can be applied to embedded antennas.
The domains where the basis functions are non-zero overlap intrinsically, see
Fig. 4. This fact allows the application of a block matrix decomposition to the
matrices involved in the MoM computation. Consider a borderline between an
antenna region and ground plane, e.g., the thick line in Fig. 4. The antenna
region contains the basis functions that are non-zero on rectangles to the right



26 Research Overview
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Figure 5: Example of isolated mesh elements (marked “1” and “2” in a) and corner
connection (between the non-isolated elements marked “1” and “2” in b) that may
appear in a mesh describing a discretized structure. Metallic regions are depicted in
gray shading.

of the line or on pairs of rectangles lying across the line (one rectangle to the left
and one to the right of the line). The ground plane contains the basis functions
that are non-zero only on rectangles to the left of the line. In addition, the
natural overlapping allows the existence of connections from the ground plane to
the antenna region and back to the ground plane, as depicted in Fig. 4.

5.4 Genetic Algorithms

Optimization algorithms can be used to improve antenna performance, which
is measured in terms of antenna parameters included in the optimization goals.
Global algorithms are one class of methods that perform such optimizations.
Mathematical considerations and examples of global optimization algorithms are
presented in [4, 9, 11, 22, 26, 27, 32, 50, 51, 63, 69, 70, 74, 79, 80, 82, 89, 111].

Some antenna optimization problems have a number of possible solutions that
is prohibitive for applying deterministic optimization methods. Furthermore,
the performance of these solutions is sometimes predictable only by numerical
simulation of each solution. Heuristic methods, e.g., genetic algorithms, random
search, particle swarm optimization, ant colony, etc., yield reasonable solutions
to optimization problems that are prohibitive for deterministic methods, [49, 76,
81, 98].

A genetic algorithm has been chosen to illustrate the use of the discrete ex-
pressions of Sec. 4.2 for antenna optimization. This algorithm is based on Holter’s
implementation distributed with the PB-FDTD package, [98]. Genetic algorithms
feature an acceptably fast convergence to suboptimal solutions and avoid local
extrema, [76]. These algorithms are based on simple genetic principles that mimic
population evolution (of humans, animals, plants). Genetic principles are based
on concepts such as “generation”, “individual”, “population”, “gene”, “chromo-
some”, “breeding”, “offspring”, “crossover”, “mutation”, etc.
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Figure 6: Illustration of a genetic algorithm implementation for antenna optimization.

The commonly accepted principle of genetics is improvement of a population
in steps, as depicted schematically in Fig. 6. Improvement is measured in terms
of fitness which is, e.g., a scalar cost function, FC, defined in terms of antenna
quantities. A population is made of one or more individuals. An individual is
defined by traits which are determined by genes. A collection of genes forms
a chromosome; the traits of an individual are established by one or more chro-
mosomes. All genes in an individual form its genotype. The individuals in a
population compete to breed offspring. The breeding process is affected by the
phenomena of crossover and mutation. The GA implementation used in this
thesis enlarges the population by two offspring at each step. The offspring’s fit-
ness is evaluated and the individuals are ranked according to their fitness. The
two least-fit individuals are removed from the population, which returns to its
original size.

The notions introduced above can be defined in the context of antenna op-
timization. We consider the discretization rule introduced in Sec. 4.2, i.e., a
radiating structure is divided into Ne mesh elements. A possible approach to
defining individuals and populations is to consider each mesh element a gene.
Such a gene can be interpreted in a binary manner: the mesh element may or
may not exist in an individual. An individual is, in this context, an arbitrary
collection of any of the mesh elements. It is understood here that these mesh
elements maintain all their characteristics when defining an individual: position
in the mesh and in space, shape, dimensions, material, etc.

Each of the 2Ne individuals represents a unique radiating structure. A cost
function, FC, determines the “fitness” of each individual (radiating structure).
Examples of such cost functions are the directivity, Q-factor, radiation resistance,
and more complex functions of one or more antenna parameters, including those
presented in Sec. 6. Note that even a small number of mesh elements may result in
a large number of combinations, impossible in general to study individually. For
example, a mesh with 50 elements results in more than 1015 different radiating
structures that need to be studied.

Fitness is evaluated during genetic optimization using an electromagnetic
solver. A method of moments solver is easily integrable into a genetic optimiza-
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tion algorithm, [55]. Following the GA/MoM scheme, [55], the antenna optimiza-
tion process is reduced to a process of matrix row and column search. In addition,
this scheme allows direct integration of the discrete expressions (4.11)–(4.14) into
fitness computations involving quantities such as the Q-factor, directivity, etc.

A mother structure is defined in the GA/MoM scheme, [55], prior to starting
an optimization process. This structure is a radiator having usually a geometry
limiting the space (allocated to the radiator searched by the optimization) and
the structure intended for the radiator (metallic parts, dielectric parts, etc.). The
mother structure is discretized using a rule as that described in Sec. 4.2. The
matrices ZM, (5.1), Xe,M, (4.15), Xm,M, (4.16), Rr,M, (4.17), and FM, (4.18), are
computed for the mother structure.

Discretization rules used for the mother structure and genetic optimization
may be different. However, genetic characteristics should be characterized with
the accuracy needed using the discretization chosen for the mother structure. In
other words, the discrete elements of the mother structure should allow repro-
ducing the finest details of each possible individual. One choice that appears
natural is to use the same discretization rule for the genetic optimization and
mother structure.

During the optimization process, genetic information is translated into matri-
ces describing each individual. These matrices, ZI, Xe,I, Xm,I, Rr,I and FI, are
compiled from rows and columns of corresponding mother matrices. The rows
and columns compiling the individual matrices have the same indexes, i.e., one
set of indexes is used to define all matrices describing an individual. In this way,
the rather involved numerical computations of the individual matrices whose ele-
ments are given by (4.15)–(4.18) are performed only once prior to an optimization
process. Note that, in the case of genetic optimization, the feed concept is used
to determine the current density on each individual using (4.35).

The procedure for embedded antennas, described in Sec. 4.3.4, is well suited
for genetic optimization, [55, 76]. A block matrix decomposition can be applied
to the mother matrices prior to the optimization. The matrices in parentheses
in (4.37)–(4.41) become mother matrices in which the genetic algorithm searches
for the combination of rows and columns that gives the minimum cost function.
The sizes of the matrices manipulated by the genetic algorithm repetitively reduce
even though the preprocessing becomes more computationally demanding.

The genetic algorithm is neither an exhaustive search of the optimum solution
nor an exhaustive evaluation of the characteristics of certain individuals. This
algorithm uses genetic principles to drive an initially random population toward
a suboptimal solution avoiding to some extent local extrema. Genetic principles
allow the appearance of unwanted characteristics of offspring (“malformations”).
Such characteristics may have unpredictable effects on the performance of a fab-
ricated structure, [18, 54, 71, 107]. The GA used in this thesis “purges” unwanted
traits after each offspring generation. It has been observed that purging must be
performed in such a manner that the population can still evolve toward optimum.
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Figure 7: Illustration of a mother structure (a) and an individual derived from it (b).
Gray-shaded rectangles—PEC mesh elements. Basis functions are numbered.

5.5 GA/MoM for Rectangular Regions

As an example consider radiating structures limited to infinitely thin rectangular
sheets of perfect electrical conductor, as the structures depicted in Fig. 7. Such
a region, with the dimensions `×w, is the mother structure for an optimization
algorithm. This mother structure is divided in N` = 3 and Nw = 2 rectangular
mesh elements in the ` and w-directions, respectively. Basis functions are defined
on pairs of adjacent, metallic mesh elements, i.e., on mesh edges shared by two
metallic elements. These edges are numbered 1, 2, . . . , 7 in Fig. 7a. All matrices
relevant for optimization, e.g., ZM, Xe,M, etc., are computed in a preprocessing
stage. These matrices, with the size 7 × 7 (7 × 1 in the case of F), are used in
the MoM computation of parameters corresponding to different individuals.

The same dicretization rule is applied for the genetic algorithm, such that the
mother structure has the genotype

Mother genotype : (1, 1, 1, 1, 1, 1), (5.27)

where the six binary genes correspond to the rectangular mesh elements num-
bered from left to right and top to bottom in Fig. 7a. The individual depicted
in Fig. 7b does not have rectangles 2 and 3 such that its genotype is

An individual genotype : (1, 0, 0, 1, 1, 1). (5.28)

The mother impedance matrix is

ZM =



z11 z12 z13 z14 z15 z16 z17

z21 z22 z23 z24 z25 z26 z27

z31 z32 z33 z34 z35 z36 z37

z41 z42 z43 z44 z45 z46 z47

z51 z52 z53 z54 z55 z56 z57

z61 z62 z63 z64 z65 z66 z67

z71 z72 z73 z74 z75 z76 z77


. (5.29)
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All individual matrices, e.g., ZI, Xe,I, FI, etc., are compiled by rows 3, 6 and 7
(intersected with the same-index columns for square matrices):

ZI =

 z33 z36 z37

z63 z66 z67

z73 z76 z77

 (5.30)

The MoM system of equations (4.35) is written for the individual as

ZIJI = VI, (5.31)

where JI is a three-element column vector of basis-function expansion coefficients,
and VI is a three-element column vector describing the feed of the individual.
The discrete expressions (4.11)–(4.14) are evaluated from matrices compiled using
the same indexes 3, 6 and 7 such that, e.g., the electric energy stored in the fields
created by this individual is

We,I ≈
1

4ω
JH

I Xe,IJI. (5.32)

The genetic optimization algorithm used in this thesis searches for that com-
bination of rows and columns of the mother matrix (5.29) that minimizes the
targeted cost function. Note that genetic algorithm implementations can also
maximize cost functions.

6 Examples and Verifications

The theory presented in Sec. 4 is applied, as described in Sec. 5, to the study
of radiating structures. The agreement between the theoretical results and nu-
merical simulations performed with in-house and commercial tools confirm the
validity of the results of Secs 4 and 5.

The four situations sketched in Fig. 8 are considered, where antennas are made
of an infinitely thin perfect electrical conductor. In the first example, Fig. 8a,
antennas limited to a rectangular region with normalized dimensions `×w = 2×1
are optimized using the GA/MoM procedure presented in Sec. 5.5. The physical
bound on the Q-factor of an electrically small PEC rectangle is computed, [37–
39], and the optimized-antenna Q-factors are compared with this bound. Some
of the optimized antennas are simulated with the commercial electromagnetic
solver ESI-CEM [24] to confirm the results obtained with the in-house MoM
solver described in Sec. 5.3 and single-frequency expressions of Sec. 4. The first
example is presented in Sec. 6.1.

The second example is the analysis of a simplified 2D wireless device model
presented in Sec. 6.2. This model is depicted in Fig. 8b and consists of an
antenna (black in the figure) embedded in a device (black and gray shading in
the figure). Structures are optimized in the antenna region and physical bounds
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Figure 8: Four antenna design situations, labeled a–d, analyzed in Secs 6.1–6.4, re-
spectively. Gray shading—fixed regions, i.e., ground plane. Black and bronze—regions
where structures can be optimized, i.e., antenna region [17].

and optimum currents are derived for the model using the results of Secs 4 and 5.
Some of the optimized structures are simulated using the commercial solver ESI-
CEM [24]. Further integration of optimized structures in communication systems
is considered using the commercial tool BetaMatch [8].

A 3D simplified wireless device model is analyzed in Sec. 6.3. This model is
depicted in Fig. 8c and consists of an antenna embedded in a communications
device. In addition to an analysis similar to that of Sec. 6.2, i.e., second ex-
ample, the optimization for QZ′ is investigated. System integration of antennas
optimized for Q, QZ′ or both is considered for this 3D device model.

The fourth example considers an antenna placement in wireless terminal sit-
uation, Sec. 6.4. The purpose of the analysis is to find the location of an antenna
in a device that could give the best performance in terms of D/Q or Q using
physical bounds and optimum currents, Sec. 4. The model considered is depicted
in Fig. 8d. The limiting geometry is a parallelepiped with the normalized di-
mensions ` × w × h = 2 × 1 × 0.1. The ground plane [17] occupies 90 % of the
area of one largest-area faces of the parallelepiped. The antenna region occupies
10 % of the volume of the parallelepiped and consists of simple arrangements of
rectangular PEC sheets.

6.1 2D Rectangular Regions

We consider a rectangular region with the dimensions `/w = 2. This region is
divided in N` = 64 and Nw = 32 elements in the ` and w-directions, respectively.
This particular choice of discretization results in square mesh elements. The
mother matrices used in the GA/MoM procedure, see Sec. 5.5, have 2N`Nw −
N` −Nw = 4000 rows (and 4000 columns for square matrices). The frequencies
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for the analysis are chosen such that k` ∈ [0.1, 1.3] (ka ∈ [0.06, 0.7], where a is
the radius of the smallest circumscribing sphere). These frequencies correspond
to electrical dimensions usually considered small. A voltage gap model is used
to feed the structures in the GA antenna populations. This gap corresponds to
the basis function oriented in the `-direction that is non-zero on the two mesh
elements closest to the center of the rectangular region. These two elements are
removed from the genotype such that the GA individuals have 2046 genes, at the
most.

The population used in the genetic algorithm has 200 individuals. Eighty
of these individuals are chosen randomly to compete for breeding offspring, i.e.,
tournament selection. Offspring generation is subjected to crossover and muta-
tion. Crossover happens at two random positions in the genotype with probability
0.8. The mutation rate is 0.2 when the population evolves “naturally”; in this sit-
uation a single gene is mutated at a time. The probability of mutation becomes 1
when the population does not improve during 200 steps. In all succeeding steps,
all offspring have up to 10 random genes mutated at a time. If a new individual
with better performance is found, the evolution returns to “natural” conditions,
0.2 single-gene mutation probability. The purpose of this implementation is to
increase the chances of finding better solutions in less steps.

The cost function minimized by the GA is

FC = αQQ+ αR2ω

∣∣∣∣Wm −We

Pr

∣∣∣∣+AN, (6.1)

where αQ and αR are weights that correspond to the Q-factor and resonance,
respectively, and AN is the metallic area normalized to `w. The weights αQ and
αR control the optimization algorithm. Either of these weights is emphasized at
a time to obtain antennas optimized for Q or resonance. These two optimization
criteria have αQ = 4, αR = 1 and αQ = 1, αR = 4, respectively. For illustration
purpose resonance is evaluated from the difference between the stored electric
and magnetic energies (normalized to the radiated energy). These energies are
equal at resonance.

The stop condition of the algorithm is genetic stability of the population dur-
ing 104 steps. This condition can be replaced by the best individual performance
in the current population. When this performance is close enough to physical
bounds or optimum-current performance, [34, 36, 38, 40], the optimization process
can be stopped.

From the symmetry point of view, three groups of structures are considered:
non-symmetric, symmetric in the `-direction and symmetric in the ` and w-
directions, see Fig. 4. These are denoted “None”, “Single”, and respectively
“Double” in Figs. 9 and 9. The corresponding numbers of genes in the genotype
are: 2046, 1023 and 512.

The smallest Q-factor (4.19) of 5 optimized antennas for each symmetry and
optimization criterion is depicted in Fig. 9. The physical bound on the Q-factor
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Figure 9: Left—GA-optimized antenna Q-factors compared with the physical
bound [37, 38] for rectangular regions. The smallest Q-factor obtained in 5 GA runs
for each symmetry (none, single—along `, and double—along ` and w) and optimiza-
tion criterion (Q-factor or resonance) is depicted. Right—deviation of the Q-factors
depicted to the left relative to the physical bound Qmin [37, 38]. The deviations of the
Q-factors (5.13) evaluated from the input impedance computed by ESI-CEM [24] are
included for the antennas having the smallest Q-factor for each frequency, regardless of
optimization criterion or symmetry.

of a rectangular region with the same dimensions is computed using the results
in [37–39]. This bound is derived assuming the structure radiates as a small
electric dipole, i.e., omnidirectional, directivity 1.5 radiation. The relative devi-
ation of the Q-factors from this physical bound is also depicted in Fig. 9. The
antennas with the smallest Q in all GA runs per k`-value have been simulated
with ESI-CEM [24]. These antennas, depicted in Fig. 10, have radiation patterns
resembling that of an electric dipole. The QZ′ -factors (5.13), where Z ′in is ap-
proximated from the input impedance computed by ESI-CEM, are included in
Fig. 9 for comparison.

Some observations can be made even though the number of GA runs is rather
small. Antennas symmetric in the `-direction have the smallest Q-factors. An-
tennas symmetric both in the ` and w-directions have the greatest Q-factors.
Intermediate Q-factors are obtained by antennas that are non-symmetric. The
antennas obtained by the GA have Q-factors that deviate less than 10 % (larger
electrical dimensions) or 30 % (smaller dimensions) relative to the physical bound.
Antennas optimized for resonance have greater Q-factors than those optimized
for Q, significantly greater for some electrical dimensions. This difference be-
tween Q-factors confirms a trade-off between the optimization criteria involved
in the cost function (6.1).

The optimized antennas show common characteristics that depend on their
electrical size. A few such characteristics are given as examples in the following
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k`=0.1 k`=0.3 k`=0.5 k`=0.7 k`=0.9 k`=1.1 k`=1.3

Figure 10: The structures simulated in ESI-CEM, [24], whose Q-factors are the
smallest per k`-value in Fig. 9. The QZ′ -factors (5.13) of these structures are de-
picted with circular marks in Fig. 9. Feeding edges are circled. From left to right—
k` = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3.

considering Fig. 10. The structure with k` = 0.1 has: large metallic regions at
the extremities in the `-direction, little meandering that increases the longest
current path, and w-aligned metallic strips which grow in length toward the
extremities of the structure. The structure with k` = 0.5 is heavily meandered
with many short metallic stubs along the meander; it has less metallic w-aligned
strips. Larger structures are dominated by shorter meandering path and longer
stubs.

6.2 2D Simplified Wireless Device Model

6.2.1 Optimization for Q and Resonance

The rectangular, simplified, wireless-device model with the dimensions `/w = 2
of Fig. 8b is considered. This model consists of an antenna (located within the
black rectangle in the figure, i.e., within the antenna region) embedded in a
rectangular device (black and gray shading). The ground plane, gray shading in
Fig. 8b, is considered fixed. The GA of Sec. 5.5 optimizes structures within the
antenna region. Optimum currents are determined for each considered antenna
design situation using the procedure described in Secs 4.3.1 and 4.3.4.

Two antenna design situations are investigated. In the first situation three
dimensions of the antenna region are imposed while optimizing structures for
minimum Q. These dimensions are 6 %, 15 % and 25 % of the structure area at
one end in the `-direction, as in Fig. 8b. The second situation considers GA
optimization for Q or resonance for two feeding positions on the borderline be-
tween the antenna region and ground plane. The Q-factors of GA-optimized
antennas are compared with the Q-factors of corresponding D/Q-optimum cur-
rent distributions in Fig. 11. Examples of optimized antennas obtained in the
above mentioned situations are depicted in Fig. 12. The two design situations
mentioned above lead to six distinct combinations of antenna region size, opti-
mization target, and feed position. These combinations are: 6 %-antenna region
optimization for Q of structures fed to the side of the rectangular model in the w-
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Figure 11: GA-optimized antenna Q-factors, labeled “Prediction”, compared with
Q-factors (4.28), denoted Qopt to the right, of D/Q-optimum current distributions (see
Sec. 4.3.1). The physical bound onQ for a rectangular, infinitely thin, PEC sheet [37, 38]
is included for illustration. The QZ′ -factors (5.13) of the structures having the Q-
factors “Prediction” are labeled “Simulation” because the former are computed from
ESI-CEM [24] simulation data. Antenna regions extend 6 %, 15 % and 25 % of the
model area, as in Fig. 8b. The cases 6 %, 15 %–1 and 25 % are structures optimized
for minimum Q, fed at the side of the rectangular model in the w-direction. The case
15 %–2 represents structures optimized for resonance fed, at the side. The cases 15 %–3
and 15 %–4 are structures fed at the center of the rectangular model in the w-direction,
optimized for minimum Q and resonance, respectively.

direction, 15 %-antenna region optimization for Q side feed, 15 %-antenna region
optimization for resonance side feed, 15 %-antenna region optimization for Q of
structures fed in the center of the rectangular model in the w-direction, 15 %-
antenna region optimization for resonance center feed, and 25 %-antenna region
optimization for Q side feed. The six combinations correspond to the pairs of
values “Prediction” and “Simulation” for each electrical size in Fig. 11, and to
the rows of example antennas in Fig. 12.

The discretization of the model (antenna region and ground plane, as de-
scribed in Sec. 4.3.4) hasN` = 96 andNw = 48 elements in the ` and w-directions,
respectively. The frequencies are chosen such that the electrical dimensions of
the resulting device are in the range `/λ ∈ [0.1, 0.5]. These frequencies are be-
tween 300 MHz and 1.5 GHz for an ` = 10 cm device. The structures are fed by a
voltage gap such that their far field is mainly linearly polarized in the `-direction.

The procedure described in Sec. 4.3.4 is applied to the initial MoM matri-
ces, e.g., Z, Xe, etc. These initial matrices have 9072 rows (and 9072 columns for
square matrices). The mother matrices that the GA algorithm manipulates, i.e.,
the matrices in parentheses in (4.37)–(4.41), have 570, 1330 and 2280 rows (and
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Figure 12: Antenna regions of the structures whose Q-factors are depicted in Fig. 11.
Each structure has a Q-factor labeled “Prediction” and a QZ′ -factor labeled “Simula-
tion” in Fig. 11. Shaded—part of the ground plane. Feeding edges are circled. The rows
from top to bottom correspond to the columns 6 %, 15 %–1, 15 %–2, 15 %–3, 15 %–4
and 25 % in the legend of Fig. 11.

the same number of columns for square matrices) when the antenna region occu-
pies 6 %, 15 % and 25 % of the structure length. The genetic algorithm used here
has the same parameters as that used in Sec. 6.1. The cost function minimized
by the optimization algorithm is (6.1) with αQ = 10 and αR = 1 when optimizing
for minimum Q, and αQ = 1, αR = 10 when optimizing for resonance.

The GA has been run five times for each frequency and combination of an-
tenna region size, optimization target, and feed position. The antennas with the
minimum Q-factor in the five runs, labeled “Prediction” in Fig. 11, have been
simulated with the commercial electromagnetic solver ESI-CEM [24]. The input
impedance computed by this solver is used to evaluate the QZ′ -factors labeled
“Simulation” in this figure. The single-resonance model [35, 110] was used to
compute the QZ′ (5.13) for `/λ = 0.1, 0.175 and 0.25. The multiple-resonance
Brune synthesis model [106] was employed to evaluate QZ′ when `/λ = 0.325, 0.4
and 0.475.

The convex optimization formulation (4.26) was used to derive the dashed,
dash-dotted and dotted lines in Fig. 11. The directivity vector F is evaluated in
the direction normal to the plane of the rectangular model.

It is observed in Fig. 11 that both the optimization prediction and the simula-
tion Q-values follow closely the Q-factors of optimum current densities for small
electrical dimensions. The relative deviation of these values from corresponding
optimum-current Q is smaller than 20 %. When the electrical sizes of the struc-
tures increase, the values resulted from simulation data deviate from predicted
values. One reason for this deviation is the Q-factor estimation procedure from
the input impedance. Small Q-values are estimated less accurately when multiple
closely spaced resonances are present around the frequency of interest.
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Figure 13: GA-optimized antenna D/Q-ratios (4.22), marks, compared with physical
bounds on D/Q (4.24) for a rectangular wireless device model in which the antenna
may occupy 6 %, 10 % and 25 % of the device at one end, see Fig. 8. The physical
bound on the D/Q-ratio of a rectangular, infinitely-thin, PEC sheet [37–39] is labeled
“100 %”.

Common geometrical features can be observed in Fig. 12. Such features are
metallic strips parallel to the ground plane, meandering, stubs extending from
the meandered path, short circuits to the ground resembling a planar inverted-F
antenna (PIFA) structure, etc.

6.2.2 Optimization for D/Q

The simplified model of Fig. 8b with the dimensions `/w = 2 is used to optimize
structures in the antenna region that maximize the D/Q ratio. A simulation
setup similar to that of Sec. 6.2.1 is used, with a uniform, N` = 96 and Nw = 36-
element mesh. The structures in the antenna region are considered fed on the
borderline with the ground plane, at the side of the model in the w-direction.
The antenna region extends 6 %, 10 % and 25 % of the model surface, at one end
in the `-direction. The GA is run five times for each combination of electrical size
and antenna region extent. The maximum D/Q-value obtained in the five runs
for each frequency is labeled “Prediction” in Fig. 13. The convex optimization
formulation (4.26) is used to derive physical bounds on the D/Q-ratio for the
antenna region sizes considered. These physical bounds (4.24) are depicted with
solid colored lines in Fig. 13. The physical bound on D/Q [37, 38] is included in
this figure for illustration. The antenna regions of the structures whose D/Q-
ratios are marks in Fig. 13 are depicted in Fig. 14.

6.2.3 Optimization for Multiband Operation

The simplified 2D model of Fig. 8b is considered for simultaneous multiband
Q-factor (4.19) optimization by the GA/MoM procedure described in Sec. 5.5.
The parameters of the GA are similar to those used in Sec. 6.2.1. The dimen-
sions of the model are ` × w = 13 × 6.5 cm2, common to hand-held wireless
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Figure 14: Black—ntenna regions of the structures whose D/Q-ratios are depicted as
marks in Fig. 13. Gray shaded—part of the ground plane. Circled—feeding edges.

communication devices. The optimized structures are simulated using the com-
mercial electromagnetic solver ESI-CEM [24]. The input impedance computed
by this solver is used in BetaMatch [8] to design matching networks, using real
component models, appropriate for multiband operation. These networks have
the minimum number of components yielding less than −6 dB throughout the
considered frequency bands.

The model is discretized using a uniform, N` = 120 by Nw = 60-square-
element mesh. The MoM matrices, e.g., Z, Xe, etc., have 14220 rows (and the
same number of columns for square matrices). Three sizes of the antenna region
are considered: 20 %, 15 % and 10 % of the model at one end in the ` direction, as
in Fig. 8b. The matrices manipulated by the GA have 2856, 2142 and 1428 rows
(and the same number of columns for square matrices) respectively for the three
sizes of the antenna region, see Sec. 4.3.4. These matrices are computed for the
center frequencies of the bands 699 – 746, 880 – 960 and 1710 – 1990 MHz. The
electrical size of the model at these center frequencies is k` ≈ 1.97, 2.5 and 5.04
(`/λ ≈ 0.3, 0.4 and 0.8). Three fixed feeding locations are considered for each
antenna region size. These are located on the borderline between the ground
plane and antenna region, to the side of the model in the w-direction, in the
middle and half way between the side and middle, i.e., approximately 0.54 mm,
16.8 mm, and 32 mm from the side in the w-direction, respectively.

The genetic algorithm described in Sec. 5.5 minimizes the objective function

FC = max

{
Q1

16
,
Q2

12
,
Q3

7

}
+ 0.1

(
Q1

16
+
Q2

12
+
Q3

7

)
, (6.2)

where Q1, Q2 and Q3 are the Q-factors of the radiating structures at the center
frequencies of the considered bands, and the normalization values 16, 12 and 7 are
computed with (3.7) for less than −6 dB reflection coefficient magnitude at the
antenna input in all frequency bands [110]. The GA has been run five times for
each of the nine combinations of antenna region size and feed position. The opti-
mized antenna regions of the structures with the smallest objective function (6.2)
per such combination are depicted in Fig. 15. The structures fed half-way be-
tween the side and center of the w-dimension have the smallest objective function
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Figure 15: Antenna regions, black, of structures optimized for simultaneous multiband
minimum Q. Circled—fed mesh edges on the borderline between antenna region and
ground plane, at the side of the model in the w-direction (first row from the top), in the
center (second row), and half way between center and side (third row). Bottom row—
matching networks for the structures on the third row from the top, in SI units. Gray
shaded—part of the ground plane. From left to right columns correspond to antenna
regions extending 20 %, 15 %, and 10 % of the entire device model, at one end in the
`-direction, as depicted in Fig. 8b.

for each antenna region size. The amplitudes of the reflection coefficients at the
input of these half-way fed structures, with and without the matching networks
of Fig. 15, are depicted in Fig. 16. The matching networks yield less than −6.5 dB
reflection coefficient magnitude throughout all frequency bands.

6.3 3D Simplified Wireless Device Model

6.3.1 Optimization for Q

The 3D simplified model of some hand-held wireless devices illustrated in Fig. 8c
is used to optimize structures in the antenna region for minimum Q. This opti-
mization is performed using the GA/MoM procedure described in Sec. 5.5. The
genetic algorithm is similar to that used in Sec. 6.2.1. The stop condition of
this algorithm is a maximum number of 2 105 evolution steps reached or genetic
stability during 2 104 steps, whichever event occurs first. Optimum current den-
sities in the sense of the D/Q-ratio are derived using the convex optimization
formulation (4.25) for polarization along ` and far-field direction `3.

The model illustrated in Fig. 8c consists of three rectangular regions connected
together as in the figure. The first region, a fixed ground plane, has the length
`1 and width w = 7 cm. The second and third rectangular regions, with the
lengths `2 and `3 = 0.7 cm, respectively, and width w, represent the antenna
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Figure 16: Left—magnitude of the reflection coefficient at the input of the structures
with antenna regions depicted in Fig. 15, third row from the top. Right—magnitude
of the reflection coefficient at the input of the matching networks of Fig. 15 terminated
with the corresponding half-way-fed structures of Fig. 15. The curves correspond to
antenna regions extending 10 %, 15 % and 20 % at one end of the structure length as in
Fig. 8b.

region. The lengths `1 and `2 are chosen such that `1 + `2 = ` = 14 cm. The
region with the length `3 extends in a direction perpendicular to the common
plane of the other two regions. Three configurations of the antenna region are
considered, where `2 = 0.7 cm, 1.4 cm and 2.8 cm, i.e., 5 %, 10 % and 20 % of
`, respectively. The model is discretized with a non-uniform mesh, finer in the
antenna region than in the ground plane. In order to have a single mesh, the
first 11.2 cm in the `-direction from the left in Fig. 8c are divided in 40 mesh
elements (and 25 in the w-direction). The remaining 2.8 cm in the `-direction
are divided in 20 mesh elements (and 50 in the w-direction). The bent region
is divided in 5 by 50 mesh elements in the `3 and w directions, respectively.
This particular choice of discretization results in square mesh elements with the
side 1.4 mm in the antenna region and 2.8 mm in the ground plane. A row of
overlapping basis functions in the `-direction at the place of the discontinuity in
the mesh size couples electrically the regions with different discretizations. The
matrices describing the entire model have 4435 rows. The matrices manipulated
repetitively by the GA have 990, 1485 and 2475 rows respectively for `2 = 0.7 cm,
1.4 cm and 2.8 cm. Square matrices have the same number of columns as the
number of rows.

The GA optimization of structures in the antenna region for minimum Q has
been performed for the five frequencies given by `/λ = 0.1, 0.2, 0.3, 0.4, and 0.5.
Five optimized structures have been generated by the GA for each combination
of `2 and frequency. The smallest optimized-structure Q-factor (4.19) of the
five corresponding to each combination of `2 and frequency is labeled “Pred.”
in Fig. 17. The optimized structures with these smallest Q-factors (of which
nine are depicted in Fig. 18) have been simulated using the commercial solver
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Figure 17: Q-factors of antennas optimized using a GA, “Pred.”, compared to corre-
sponding Q-factors (4.28) of D/Q-optimum current densities, “Opt.”, for the bent-end
model illustrated in Fig. 8c with `2 = 0.7 cm, 1.4 cm and 2.8 cm and ` = 14 cm. The in-
put impedance of the GA-optimized structures, computed by ESI-CEM [24], has been
used to calculate the Q-factors “Sim.”. The physical bound on Q for a rectangular,
infinitely thin, 14× 7 cm2, PEC sheet is depicted in solid black line [37, 38].

ESI-CEM, [24]. The input impedance of these structures is used to obtain the
Q-factors labeled “Sim.” in Fig. 17. These Q-factors agree to a large extent with
those obtained using the in-house MoM solver and the discrete expression (4.19)
(less than 6 % deviation relative to the former Q values). The single-resonance
model (5.13), is employed to compute the Q-factor for `/λ = 0.1 and 0.2. The
Q-factors for the other frequencies are computed using the multiple-resonance,
Brune-synthesis model, [106]. The single-frequency QZ′ estimation procedure
described in Sec. 5.2 has been applied to the structures having the smallest Q-
factors mentioned above. The QZ′ (5.26) values in these cases have less than 5 %
difference relative to corresponding QZ′ values computed using (5.13).

The Q-factors obtained in optimization and simulation, as decribed in the
previous paragraph, are compared to Q-factors given by optimum antenna cur-
rent distributions, labeled “Opt.” in Fig. 17. These distributions are obtained
using the convex optimization formulation (4.26) for the D/Q-quotient, [36]. The
matrices involved in these formulations are square with 990, 1485 and 2475 rows
respectively for `2 = 0.7 cm, 1.4 cm and 2.8 cm. These matrices are obtained
using a uniform, 1.4 mm-side square mesh element discretization of the model of
Fig. 8c. The physical bound on the Q-factor of a rectangular PEC region with
the dimensions 14 × 7 cm2 computed using the results in [37, 38] is included for
illustration. It is observed in Fig. 17 that the optimized-structure Q-factors are
close to those achieved by optimum antenna currents (less than 13 % deviation
relative to the optimum-current Q-factors). Note that the current distributions
used to compute the curves labeled “Opt.” in Fig. 17 are optimum in the sense
of D/Q. The Q-factors computed from these distributions may not be optimum
in the sense of the Q-factor. This may result in structures that are on the “wrong
side” of the D/Q-optimum current Q-factor, e.g., below the curves in Fig. 17.
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Figure 18: Example of genetic algorithm optimized structures (gray shading—part of
the ground plane, black—antenna region part coplanar with the ground plane, bronze—
antenna region part normal to the ground plane) with Q-factors depicted in Fig. 17 for
`/λ = 0.1 (left column), 0.3 (middle column) and 0.5 (right column), and `2 = 0.7 cm
(top row), 1.4 cm (middle row), and 2.8 cm (bottom row). Feeding edges are circled.

The D/Q-quotient of such structures is on the “right side” of the physical bound.

6.3.2 Optimization for Q, QZ′ , and Both

The bent-end model with `1 = 12.6 cm and `2 = 1.4 cm, described in Sec. 6.3.1,
is optimized using the GA/MoM procedure of Sec. 5.5 for operation between
700 MHz and 960 MHz. This frequency band is divided in two sub-bands with
the center frequencies fc,1 = 759.5 MHz and fc,2 = 889.5 MHz, The fractional
bandwidths of the two sub-bands are equal, FBW1,2 ≈ 15.8 %. The matrices
Z (5.1), Xe (5.6), Xm (5.7) and Rr (5.8) are computed for the center frequencies.
Two extra impedance matrices are computed for the frequencies 1.001fc,1,2 in
order to evaluate QZ′ at fc,1,2 using (5.13). The cost function minimized by the
genetic algorithm is

FC = αQ,M max

{
Q1

7
+
Q2

7

}
+ αQ,S

(
Q1

7
+
Q2

7

)
+ αQZ′ ,M max {QZ′,1 +QZ′,2}+ αQZ′ ,S (QZ′,1 +QZ′,2) , (6.3)

where the indices 1 and 2 denote the sub-band, Q is the energy-based an-
tenna Q (4.19), QZ′ is the single-resonance, input-impedance-derivative antenna
Q (5.13), and the weights α define the optimization target. The normaliza-
tion of Q by 7 is obtained from (3.7) for −6 dB reflection coefficient magnitude
at the antenna input for the targeted FBW, under the assumption of single-
resonance [110]. The QZ′ values are not normalized because some applications
target as low QZ′ as possible, i.e., little variation of the input impedance in the
operation band.
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Target
αQ, αQZ′ , Q1 Q2 QZ′,1 QZ′,2

M S M S

1 min Q 1 0.1 0 0 4.6 3.7 2.9 0.3
2 min QZ′ 0 0 1 0.1 8.2 8.9 0.01 0.01
3

min Q & QZ′ 1 0.1 1 0.1
8.7 6.8 0.08 0.08

4 6.5 5.5 1.1 1.1

Table 1: Parameters used in the cost function (6.3) to optimize the model of Fig. 8c
for minimum Q (4.19), row 1, for minimum QZ′ (5.13), row 2, and both Q and QZ′ ,
rows 3 and 4. The resulting Q and QZ′ -values are included for the structures of Fig. 19.
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Figure 19: Top row—GA-optimized structures whose Q-factors are listed in Table 1.
Gray shading—part of the ground plane, black—antenna region part coplanar with
the ground plane, bronze—antenna region part normal to the ground plane. Feeding
edges are circled. Middle row—matching networks with component values in SI units
designed for the corresponding structures whose antenna regions are depicted on the
top row. Bottom row—row index in Table 1.

The GA has been run five times for each optimization target whose α-values
are listed in Table 1. The Q-factors of the four GA-optimized structures de-
picted in Fig. 19 (of the total 15 structures) are presented in the same table.
The structures corresponding to rows 1, 2 and 3 have the minimum cost func-
tion. The structure whose Q-factors are listed on row 4 has been optimized
for simultaneous minimum Q and QZ′ , does not have the minimum cost func-
tion, but has minimum Q on both sub-bands (out of the total 5 GA-optimized
structures with this target). The values for QZ′ listed in Table 1 are evaluated
with (5.13). These values agree to a large extent with the same values reevalu-
ated at the center frequencies with (5.26). The four structures of Fig. 19 have
been simulated in ESI-CEM [24]. The magnitudes of the reflection coefficients
at the inputs of these structures are depicted in Fig. 20. Matching networks that
yield less than −6 dB reflection coefficient in the entire band have been designed
using BetaMatch [8]. These networks are depicted in Fig. 19 and the resulting
S11 magnitudes in Fig. 20. Real component models of SMD lumped elements,
including losses, have been used for matching.
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Figure 20: 1, 2, 3, 4—magnitudes of the S11 parameter at the input of the correspond-
ing structures depicted in Fig. 19. 1m, 2m, 3m, 4m—magnitudes of the S11 parameter
at the input of the matching networks of Fig. 19 terminated with the corresponding
structures depicted on the first row in Fig. 19.

6.4 Wireless Terminal Antenna Placement Analysis Using
Optimum Currents

Optimum antenna currents can be employed for evaluation and comparison of the
performance achievable by a device with antennas placed at different locations.
For illustration, we would like to determine the position and shape of the antenna
region that has the smallest Q-factor in the frequency range given by `/λ ∈
[0.05, 0.5]. The nine 3D simplified models of common hand-held wireless terminals
depicted in Fig. 21 are analyzed. One of these models is sketched in Fig. 8d.
These models are limited to a rectangular parallelepiped with the dimensions
`×w×h = 14×7×0.7 cm3. Note that limiting the structures to a parallelepiped
is introduced for illustration purpose and does not restrict the applicability of the
procedure exemplified here. Each model is drawn in Fig. 21 to scale in three side
views from the `, w and h-directions (except for Fig. 21h where an h-side view
and two sections through the symmetry planes are depicted). Gray and black
represent the ground plane and antenna region, respectively. The thickness of
the infinitely thin PEC material is exaggerated.

The ground plane consists of an infinitely thin planar PEC sheet that covers
90 % of the area of one `×w face of the parallelepiped bounding the model. The
remaining 10 % of that face represents the support of the antenna region, which
may be continuous or divided in more sub-regions. Here, a maximum of two
sub-regions have been used. The structures in the antenna regions are limited
to infinitely thin PEC sheets placed on faces of the 3D shape of the antenna
region. This shape is obtained by translating the 10 % of the ` × w-face area
reserved for the antenna region a distance h perpendicularly to the ground plane
(i.e., by extruding the 10 % in the h-direction to the opposed face). The shapes
resulting in the antenna region are made of rectangular parallelepipeds. These
parallelepipeds are covered with PEC sheets on the four largest-area faces (in the
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a b c d e

f g h i

Figure 21: Nine simplified wireless-device models limited to a parallelepiped. Three
side views are depicted for a-g and i, i.e., structures as seen along the length, width
and height. A side view along the height and two sections at the symmetry planes are
depicted for h. Gray shading—ground plane; black—antenna region.

Struct. a b c d e, f g h i
N 7584 8256 7568 7584 8256 8256 10830 7584
NAR 1936 2608 1928 1944 2616 2612 5168 1992

Table 2: Dimensions of MoM matrices for the structures of Fig. 21. N—total number
of basis functions. NAR—number of basis functions in the blocks corresponding to the
antenna region, see Sec. 4.3.4.

case depicted in Fig. 21h there are four openings adjacent to the ground plane
corners in the w×h-plane; these are one mesh-element wide and extend the entire
h-dimension).

The antenna region placement situations introduced above are discretized
using a uniform mesh of 1.75× 1.75 mm2 square elements. The total number of
basis functions, N , resulting for the structures depicted in Fig. 21 are presented
in Table 2 (i.e., the number of rows and columns, where applicable, of Z, Z′,
Xe, Xm, Rr, and F). The same table presents the number of rows, and columns
where applicable, NAR, of the blocks corresponding to the 10 %-`×w-area antenna
region, see Sec. 4.3.4. These blocks are computed for the matrices involved in
the convex optimization formulation (4.26).

The bounds on D/Q using the convex optimization formulation (4.26) for the
simplified models of Fig. 21 are depicted in Fig. 22. Linear polarization along the
length and directivity in the direction of the height of the parallelepiped bounding
the models are considered. The D/Q-optimum current distributions giving the
physical bounds on D/Q of Fig. 22 have the Q-factors (4.28) depicted in the same
figure. The bounds on D/Q and Q computed using the results in [37–39] for a
rectangular, infinitely thin, 14× 7 cm2 PEC sheet are labeled “R” in this figure.
The ring structure depicted in Fig. 21h outperforms all other structures in the
figure in terms of D/Q and Q, except for a frequency region around `/λ ≈ 0.1
where the structure in Fig. 21b has a greater D/Q. We also note that around
`/λ ≈ 0.37 a few of the structures in Fig. 21 reach close to the D/Q bound of a



46 Research Overview

0.1 0.2 0.3 0.4
10−3

0.01

0.1

1

`/λ

D/Q 0.2 0.4 0.6 0.8 1
f/GHz, ` = 14 cm

0.1 0.2 0.3 0.4
1

10

102

`/λ

Q 0.2 0.4 0.6 0.8 1
f/GHz, ` = 14 cm

a b c d
e R

f g h i

Figure 22: Left—physical bounds on D/Q for the structures depicted in Fig. 21
obtained using the convex optimization formulation (4.26) when only the antenna region
(black in Fig. 21) is optimized. Right—Q-factors (4.28) of the D/Q-optimum current
densities giving the curves to the left. The physical bounds on D/Q and Q for a
rectangular PEC surface 14× 7 cm2, [37–39], is depicted in solid black line and labeled
“R”.

rectangular region and the structure in Fig. 21h has a D/Q value greater than
that of a rectangular region. The optimum-current Q-factors do not reach as
close to the physical bound on Q for a rectangular region as the D/Q-values.

7 Contributions of the Author

The work reported in this thesis and papers herein contributes to the field of
antenna theory and design two things, in the author’s view:

It proposes a method to estimate the bandwidth of antennas, using Q or
QZ′ and a resonance model, from a current distribution computed at a
single frequency.

It applies the concepts of physical bounds and optimum currents to planar
and 3D antenna design situations.

Paper I introduces a method to compute antenna Q-factors from single fre-
quency current distributions. Based on a resonance model, the bandwidth of an
antenna can be estimated by simulating the antenna at a single frequency. This
single-frequency method is applied to antenna optimization in two design situa-
tions. These situations are the optimization of antennas limited to rectangular
regions, and the optimization of a part of a rectangular, simplified wireless device
model. In addition to the Q-factor estimation method, in this paper the concept
of optimum antenna currents is applied to the study and design of antennas in
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the two considered situations. The author of this thesis is the main contributor
to Paper I. He has derived antenna quantities needed in the study, implemented
their computation in MATLAB, set up and run simulations, collected results,
and written the paper and drawn the conclusions.

Paper II is an extension of Paper I to a new design situation, antennas that
operate on multiple frequency bands. The author of this thesis is the main
contributor to this paper. He has set up and run simulations, collected results,
and written the paper and drawn the conclusions.

Paper III introduces a method to estimate QZ′ from a single-frequency cur-
rent distribution. This method is verified in all situations illustrated in the pa-
per. In addition to introducing the QZ′ estimation method, Paper III illustrates
the application of the theory presented in Paper I to the study of 3D radiating
structures, optimization for Q, QZ′ and both Q and QZ′ , and antenna-in-device
location optimization using optimum currents and physical bounds. The author
of this thesis is the main contributor to Paper III. He has derived the single-
frequency QZ′ estimation method, implemented its computation in MATLAB,
set up and run simulations, collected results, and written the paper and drawn
the conclusions.

Paper IV presents a study of physical bounds on the antenna D/Q quotient
using an optimization formulation. The author of this thesis has contributed
in the verification of the theory presented in this paper, including the study
related to the negative stored energy. He has designed the spherical and strip
dipole antennas, collected data related to them and written a description of this
verification, included in the paper.

Paper V is a study of the generalized, or all spectrum, absorption efficiency.
The author of this thesis has performed the numerical examples included in the
paper and written the section about them.

8 Conclusions

The single-frequency estimation procedures for antenna parameters described in
Secs 4.2 and 5.2 have potential applications mainly in, but not limited to, au-
tomatic optimization. A significant reduction of time may be achieved in the
optimization process of antenna parameters such as Q-factor and bandwidth for
some radiating structures using these procedures. Single-frequency expressions
such as (4.11)–(4.14), (4.19), or (5.26) can be easily integrated in standard MoM
solvers, as illustrated in Secs 5.1 and 5.2. Such an integration does not add a
significant temporal overhead to the standard computation because most quanti-
ties are already computed by such standard MoM solvers. The single-frequency
derivations presented in this thesis are based on the expressions for the ener-
gies stored in the fields generated by an antenna derived in [100] and evaluated
following the procedure in [36, 40].

Optimum current densities can be used to express physical limitations for



48 Research Overview

structures of arbitrary complexity without assuming a bounding geometry such as
a sphere, cylinder, etc. Such physical bounds, derived as illustrated in Sec. 4.3, can
be applied in the process of antenna design to assess feasibility and performance
of some structures in realistic conditions. The examples presented in this thesis
use the discretized energy expressions (4.11)–(4.14) to derive optimum current
distributions in the sense of D/Q, see Sec. 4.3.1. This derivation is performed by
formulating adequate convex optimization problems as described in more detail
in [11, 36].

9 Future Work

The methods and tools presented in this thesis can be extended to other sit-
uations. Such situations are multiple antenna systems, structures that include
dielectric and/or magnetic materials, losses, automatic antenna-in-device loca-
tion optimization, etc. Other situations are different numerical methods, apart
from MoM, where discrete expressions such as (4.11)–(4.14) may provide new
tools for the antenna engineer.
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Abstract

A method to compute antenna Q using an electromagnetic simulation
at a single frequency is described. This method can easily be integrated
into global optimization algorithms. In this way the optimization time of
some antenna parameters, e.g., bandwidth, may be significantly reduced.
The method is validated by direct comparison with the physical bound of
the analyzed structure. Numerical examples for rectangular antennas and
antennas with a rectangular ground plane illustrate the integration of the
method into a genetic algorithm. The results predicted by optimization
agree very well with those obtained using a commercial electromagnetic
solver. These results suggest that the method can be used to yield antennas
with Q-factors within 20 % of their corresponding physical bound.

1 Introduction

Antenna performance may be improved, when necessary, through global opti-
mization algorithms. Mathematical considerations and examples of such algo-
rithms are presented in [3, 5, 17]. Deterministic approaches are prohibitive for
some antenna optimization problems due to the size and unpredictability of the
solution space studied. However, heuristic methods, e.g., genetic algorithms,
particle swarm optimization, etc., have provided reasonable solutions to such
problems [13, 16, 21–23]. One parameter frequently included in antenna opti-
mization goals is the bandwidth. This parameter is commonly evaluated from
multiple frequency samples of the antenna input impedance. The computation
of these samples accounts in general for the greatest part of the solution time of
an optimization algorithm.

Here, we estimate the Q-factor from the current excited on an antenna com-
puted at a single frequency. Using the results by Vandenbosch [24] and Geyi [4]
we compute the electric and magnetic energies stored in the fields excited by an
antenna and the radiated power. We assume the studied antennas are electri-
cally small, i.e., Q � 1, such that the error in the Q computation is negligible
(equal to ka � 1 [11]). The previously introduced computation is performed
following the procedure in [8, 10], at a single frequency, usually the center of
the intended operating band. Considering the input impedance of antennas de-
scribed by a resonance model [7, 26], the Q-factor can be used as a direct measure
of the bandwidth. This approach for computing the Q-factor is implemented in a
standard Method of Moments (MoM) code [8, 10]. The implementation requires
minor modifications of the code and does not increase the computation time
significantly.

This method is applied to antennas that may take arbitrary shapes within
a rectangular region. A genetic algorithm (GA) with MoM simulation is imple-
mented following the GA/MoM approach described in [16, 21, 23]. Using rectan-
gular mesh elements, a mother impedance matrix is computed prior to launching
the actual optimization. Similar “mother” matrices are computed at the same
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time for the stored electric and magnetic energies and radiated power. This ap-
proach reduces the actual optimization process to finding the rows and columns of
these mother matrices that give optimum performance. A more realistic situation
is also considered that describes typical devices with limited space for antennas.
Such situations resulting in large solution times can be more efficiently handled
by imposing a block matrix decomposition as described in [16, 21]. The results
are verified using the commercial electromagnetic solver Efield1. The agreement
between the Q-factors resulting from optimization and simulation is very good.

Antenna performance is evaluated during optimization as a linear combination
of three parameters. These parameters are the Q-factor, the difference between
the stored electric and magnetic energies, and metallic area (all appropriately
normalized). They have been chosen to illustrate the single frequency antenna
Q computation method. Other important parameters such as losses, radiation
resistance or matching are not considered here. The energy-difference mentioned
above represents the quantitative measure of self-resonance used during opti-
mization. This resonance was compared with the corresponding resonance of the
input impedance obtained from the commercial solver Efield. The optimization-
predicted and impedance self-resonance agree to a large extent, confirming the
validity of the expressions in [4, 10, 11, 24].

Physical bounds can be used to evaluate the optimization solution quality and
stop an optimization process. The performance of the structures considered here
has been compared with the physical bounds for rectangular structures [6, 9, 10],
and structures with a rectangular ground plane [8]. This comparison shows that
the optimized structures perform close to their physical bounds. In addition the
rectangular ground plane results verify the theory presented in [8].

The paper is organized as follows. The method to compute the Q-factor of an-
tennas using a single frequency electromagnetic solution obtained from an MoM
solver is described in Sec. 2. A possible integration of this method in a genetic
rectangular antenna optimization algorithm is presented in Sec. 3.1. Further im-
provements to this algorithm for fixed pattern antennas are described in Sec. 3.2.
The physical bounds used to compare the optimized antenna performance are
described in Sec. 4. Section 5.1 describes the setup for the numerical simulations
performed. Sections 5.2 and 5.3 present numerical results for rectangular anten-
nas and antennas with a rectangular ground plane respectively. The paper ends
with conclusions in Sec. 6.

1www.efieldsolutions.com
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2 Computation of Antenna Q in the Method of
Moments

The quality factor of a lossless antenna is defined as [26]

Q =
2c0kmax{We,Wm}

Prad
, (2.1)

where c0 is the speed of light in free space, k is the wave number, We and Wm are
respectively the electric and magnetic energies stored in the fields excited by the
antenna, and Pr is the power radiated by the antenna. This definition is valid
both for resonant and non-resonant antennas. Equation (2.1) is equivalent to the
definition in [1] for resonant antennas.

A resonance model can be used to describe many antennas, [7, 26]. This
model allows an approximation that relates the input impedance behavior to the
Q-factor of antennas:

QZ′ =
k0|Z ′(k0)|

2R(k0)
, (2.2)

where k0 is the resonance wave number, Z ′ is the first derivative with respect
to the wave number of the input impedance (tuned to resonance), and R is the
radiation resistance. Equation (2.2) requires the input impedance be known at
least for two different frequencies. This multiple frequency requirement is not
necessary for evaluating (2.1). In this case it suffices to know the stored energies
and radiated power at a single frequency. From these single frequency quantities
the bandwidth can be estimated based on its inverse proportionality to the Q-
factor [26].

The stored electric and magnetic energies in (2.1) can be expressed using
the results in [4, 24]. Here we consider, for simplicity, surface currents. The
stored electric and magnetic energies are respectively We = µ0w

(e)/(16πk2) and
Wm = µ0w

(m)/(16πk2), see also [11]. Correspondingly the total radiated power
is Pr = η0p

(rad)/(8πk). In the previous expressions µ0 and η0 are respectively
the free space permeability and impedance, and

w(e) =

∫
∂V

∫
∂V

∇1 · J1∇2 · J∗2
cos(kR12)

R12
− k

2

(
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
)

sin(kR12) dS1 dS2, (2.3)

w(m) =

∫
∂V

∫
∂V

k2J1 · J∗2
cos(kR12)

R12
− k

2

(
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
)

sin(kR12) dS1 dS2, (2.4)

and

p(rad) =

∫
∂V

∫
∂V

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kR12)

R12
dS1 dS2, (2.5)
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where J1 = J(r1), J2 = J(r2) and R12 = |r1 − r2| are short notations for the
surface current density J flowing on the boundary of volume V occupied by the
entire structure and position vector r.

The computation of stored energies and radiated power using (2.3), (2.4), and
(2.5) is straight forward if implemented as an extension of an MoM code. Usual
MoM solutions of the electric field integral equation (EFIE) use a set of local basis
functions to approximate the surface current excited on the analyzed structure
by a certain source [19]. Denoting by ψp the basis functions, this approximation
is

J(r) ≈
N∑
p=1

Jpψp(r). (2.6)

The unknowns of the algorithm with this discretization are the coefficients J =
(J1, J2, . . . , JN )T. These coefficients are determined from the system of equations
ZJ = V where V is a discrete representation of the incident field (e.g., the voltage
gap model) and Z is the normalized impedance matrix computed based on a
mixed potential formulation (equivalent to EFIE [15]) with the elements [19],
normalized to η0/(4πk),

Zpq = j

∫
∂V

∫
∂V

(
k2ψp(r1) ·ψq(r2)−∇1 ·ψp(r1)∇2 ·ψq(r2)

)e−jkR12

R12
dS1 dS2.

(2.7)
With the discretization defined by (2.6) the stored electric energy can be approx-
imated using

w(e) ≈
N∑
p=1

N∑
q=1

J∗pXe,pqJq = JHXeJ. (2.8)

Apart from Xe, two other matrices, Xm and Rrad, are introduced in a similar way
respectively for the approximation of the stored magnetic energy and radiated
power. These matrices have the same dimension as the impedance matrix, N×N ,
and the elements:

Xe,pq =

∫
∂V

∫
∂V

∇1 ·ψp1∇2 ·ψq2
cos(kR12)

R12

− k

2

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)
sin(kR12) dS1 dS2, (2.9)

Xm,pq =

∫
∂V

∫
∂V

k2ψp1 ·ψq2
cos(kR12)

R12

− k

2

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)
sin(kR12) dS1 dS2, (2.10)

and

Rrad,pq =

∫
∂V

∫
∂V

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

) sin(kR12)

R12
dS1 dS2. (2.11)
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With these notations the Q-factor (2.1) becomes

Q ≈ max{JHXeJ,J
HXmJ}

JHRradJ
. (2.12)

Quadratic forms similar to JHRradJ have been used in [14, 20] to express differ-
ent types of power in radiating structures printed on dielectric substrates. These
expressions have been further employed in the optimization of the radiation ef-
ficiency. A similar approach has been followed in the optimization of antenna
arrays in free space [12].

As stated in the previous paragraph, an MoM solver can be extended to
compute (2.9), (2.10) and (2.11). This extension does not significantly increase
the computational complexity of the solver. We compare the original impedance
matrix Z with the newly introduced matrices Xe, Xm and Rrad. This comparison
shows that

Zpq = Rrad,pq + j(Xm,pq −Xe,pq), (2.13)

and the second and third terms of Xe,pq and Xm,pq (correction terms introduced
in [24]) are both equal to

−k
2

∫
∂V

∫
∂V

(
k2ψp1 ·ψq2 −∇1 ·ψp1∇2 ·ψq2

)
sin(kR12) dS1 dS2. (2.14)

Equation (2.13) gives the elements of Rrad directly. The same equation gives
the first terms of Xm,pq and Xe,pq. Little computational effort is required to
separate these terms from the imaginary part of Zpq. The remaining correction
terms (2.14) are non-singular. Their computation can be integrated in the cal-
culation of the impedance matrix (2.7). These correction terms resemble the
imaginary part of Zpq except for the term causing the singularity, R12. This
resemblance can be utilized to reduce the computational overhead required by
the correction term calculation with a standard MoM code.

In addition to the Q-factor computation, the relationship between the energies
stored in the fields can be used as a measure of resonance. These energies are
equal when the antenna is self resonant.

3 Implementation Example

3.1 Rectangular Regions

Infinitely thin lossless, i.e., perfectly electrically conducting (PEC), metallic
structures are considered in the following. These structures may take arbitrary
shapes within a rectangular region with the length ` and width h. In order to
limit the arbitrariness to a finite set of possible solutions, a discretization rule
is established following the approach in [8, 10]. The natural choice is to use the
same discretization as in the MoM solver used to determine the electromagnetic
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Figure 1: Example of discrete arbitrary structure within a rectangular region. The
uniform rectangular grid defines the discretization of the region. Gray-shaded elements
represent metallic patches on which a surface current density J(r) can exist. The
feeding edge is marked F . The “rooftop” amplitude of one of the basis functions is
represented in transparent red shading.

solution. This simplifies the optimization procedure and the MoM algorithm, as
described in the following. Even though triangular mesh elements are more com-
mon, rectangular mesh elements [12, 18] pertain better to the considered regular
shapes and illustration purposes of this study. Using rectangular mesh element
discretization the optimal structures may take arbitrary shapes made of any of
the mesh elements within the rectangular region. An example of such an antenna
is depicted in Fig. 1.

The solution space of the optimization problem is made of all possible com-
binations of discrete elements. There are 2NxNy such combinations, where Nx
and Ny are the number of mesh elements in the x and y directions, respectively.
Usually the number of combinations is large rendering prohibitive to study all
solutions in the solution space.

One class of algorithms that search through an unknown solution space are
heuristic global optimizers, e.g., genetic algorithms, random search, particle
swarm, ant colony, etc. Genetic algorithms have been used in electromagnetic op-
timization with remarkable results, see [13, 21, 23] for a description of the method
and its applications. It is known that genetic algorithms feature an acceptably
fast convergence to suboptimal solutions and avoid local extrema [21]. A genetic
algorithm has been chosen here due to its well known principles, ease of adjust-
ment and availability of sample codes. Other global optimization methods can
be used similarly with the expressions in Sec. 2.

The fundamental principle of genetic optimization is to improve an initial ran-
dom population towards an optimum in stages – generations – using evolutionary
principles. To apply this algorithm to the situations considered here we define
individuals and their fitness. A set of these individuals defines the population
in each generation. Their fitness is a measure of optimality computed using the
solution determined by the MoM solver.

Each individual corresponds to a single solution (combination of discrete mesh
elements). Imposing a rule of numbering the elements of the mesh, the genotype
of each individual is made of NxNy possible genes in a single chromosome. Each
gene determines if an element is metal or not present in a certain individual. A
reasonable encoding for the genetic information is binary, 1 defining a metallic
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Figure 2: Example of simplified phone model with antenna region occupying approx-
imately 15 % of the total length of the device.

and 0 a non present element. At least two genes are eliminated from the genotype
as the edge between them defines the feed of the antenna represented by the
individual. Patterned antennas can also be optimized by removing some of the
genes corresponding to the fixed metallic areas. An example of such patterned
antennas is described in Sec. 3.2 and 5.3.

The fitness of the individuals is given by the optimized parameter/parameters.
Usually a linear combination of parameters is evaluated for each individual. Such
parameters may be the Q-factor, matching, directivity, radiation pattern, metal-
lic area, etc. These antenna parameters are computed here by an MoM solver
with rectangular basis functions. Such basis functions usually decrease the num-
ber of MoM unknowns thus improving the solution time. Furthermore uniform
discretization in both directions makes the basis functions equal (except for a
spatial displacement). This fact is exploited to further improve the solution
time.

The integration of the electromagnetic solver into the optimization algorithm
follows the description in [21, Ch. 9]. The mother impedance matrix (2.7) of
size N = 2NxNy −Nx −Ny is computed once prior to the optimization. During
the optimization the genotype of each individual determines which rows and
columns of (2.7) compile the impedance matrix describing that individual. The
rows and columns with the same indexes compile the matrices corresponding to
Xe, Xm and Rrad for each individual. The impedance matrix is used to compute
the surface current density. This current can be used to compute other relevant
parameters, e.g., Q-factor (2.12), radiation pattern, radiation resistance, etc. The
advantage of this approach is that impedance matrix compilation time is smaller
than computation time with formulation (2.7).

3.2 Antennas Integrated into Devices

From the electromagnetic wave generation point of view, many mobile devices
that integrate antennas can be thought of as consisting of two spatial domains.
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One of the domains is represented by the space reserved for the structure (an-
tenna) fed by the transmitter(s). This domain will be denoted in the following
as the antenna region. The other domain contains all other parts integrated in
the device. This domain usually contains metallic parts that act as ground for
the structure in the antenna region. For this reason the second domain will be
denoted ground plane in the following. In general the structures in both domains
contribute to the radiated fields. It is also observed that the antenna region
usually occupies a small fraction of the entire device.

We consider planar rectangular structures to further simplify the description
of the previous paragraph. The two domains introduced above are defined as in
Fig. 2. The optimization algorithm searches for metallic structures that may take
arbitrary shapes within the antenna region. The other domain is a fixed rectan-
gular metallic ground plane. This ground plane extends a significant part of the
structure (75, 85 and 94 % of the area for the structures in Sec. 5.3). The metal
is considered lossless as in the previous section, i.e., PEC. Such structures can be
studied using the same approach as in Sec. 3.1. However this implementation is
rather inefficient due to the presence of the fixed ground plane. The large extent
of this ground plane in the structure translates into large individual impedance
matrices (i.e., comparable in size with the mother impedance matrix). Such large
matrices may result in an MoM solution time prohibitive for optimization.

It is more computationally efficient to use block matrix decomposition as
described in [16, 21]. The solution of the MoM algorithm can be obtained from
the system of equations(

ZAA ZAG

ZGA ZGG

)(
JA

JG

)
=

(
V
0

)
(3.1)

where the indexes A and G denote the antenna region and the ground plane
respectively, ZAA, ZAG, ZGA and ZGG denote blocks of elements of the mother
impedance matrix (2.7) with pq correspondingly in the domains defined by AA,
AG, GA and GG, JA and JG are the blocks of basis function coefficients that
define the current flowing on the antenna region and ground plane respectively,
and V is the matrix corresponding to the feeding model. The structure is fed
only in the antenna region, thus the 0 in the right hand side. The solution is{

JA = (ZAA − ZAGZ−1
GGZGA)−1V

JG = −Z−1
GGZGAJA = Z′JA

(3.2)

The preprocessing becomes more computationally demanding due to the necessity
to express the inverse of ZGG. However this does not affect the actual optimiza-
tion process because the size of the matrices manipulated during this process
reduces to the size of ZAA using a concept similar to the mother impedance ma-
trix for the right hand sides of (3.2). Using the same approach the evaluation
of the stored energies and radiated power necessary for the evaluation of the
Q-factor (2.12) can be improved:

JHXeJ = JH
A

(
Xe,AA + 2 Re{Xe,AGZ′}+ Z′HXe,GGZ′

)
JA (3.3)
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where Xe,AA, Xe,AG and Xe,GG are the blocks of Xe defined in the same way as
those of Z. It should be noted that the block matrix decomposition is performed
in terms of basis functions, i.e., the matrix elements in (3.1) correspond to basis
functions defined on adjacent mesh elements. The inherent overlapping of the
basis function domains of definition allows the existence of metallic elements sup-
porting basis functions across the border between the ground plane and antenna
region.

4 Physical Bounds

Physical bounds may be used as stopping criterion for an optimization process.
They can also be used to compare the performance of optimized antennas. This
comparison is illustrated in Sec. 5.2 and 5.3 respectively for antennas limited to
rectangular regions and antennas with a fixed rectangular ground plane. These
antennas are obtained through a genetic optimization process stopped by genetic
stability during 50 generations. The Q-factors of these antennas do not deviate
more than 30 % from their physical bound. This suggests that carefully integrated
bounds may be used as stopping criterion in optimization algorithms.

The results in [6, 9, 39] are used to derive the physical bounds for antennas
whose shapes are limited to rectangular regions2. The maximum D/Q ratio is
computed with closed form expressions assuming main radiation direction or-
thogonal to the rectangle. The physical bound for the Q-factor can be derived
further assuming that the antenna has directivity 1.5. The previous assumptions
hold for many electrically small antennas.

Bounds for antennas with a fixed rectangular ground plane, see Fig. 2, are
computed using the procedure described in [8, 10]. This procedure can be applied
to structures with arbitrary shapes. The problem of determining the physical
bound for the D/Q quotient of an antenna is solved using convex optimization [8].
This problem is equivalent to minimizing the energy stored in the fields excited
by the antenna [10]. The current that minimizes this energy is determined by
convex optimization. This current gives the minimum Q-factor of an antenna
and the maximum D/Q quotient achievable by that antenna. It should be noted
that this current may be unphysical thus impossible to excite on real structures.
In this formulation it is assumed that the main radiation direction is orthogonal
to the structure.

The bounds [8, 10] become those in [6, 9] when the antenna region occupies
the entire rectangular region, i.e., when antennas limited by a rectangular region
are solved by convex optimization.

2see also http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq
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5 Results

5.1 Simulation Setup

The genetic algorithm used here is based on Holter’s implementation distributed
with the PB-FDTD package [23]. We use a 200 individual population. Using
tournament selection 80 randomly chosen individuals compete to become one of
two breeding parents. Child generation is subjected to crossover and mutation.
Offspring are generated in pairs and returned to the initial population. Then the
population is decreased by removing the least fit two individuals.

Crossover happens at two random positions in the genotype with probability
0.8. The mutation rate is 0.2 when the population evolves naturally; in this
situation a single gene is mutated at a time. The probability of mutation becomes
1 when the population does not improve during an entire generation. In all
succeeding generations, all offspring will have 10 random genes mutated at a
time. Due to randomness, the actual number of genes that are mutated may
take any value between 1 and 10. If a new individual with better performance
is found, the evolution returns to “natural” conditions, 0.2 single gene mutation
probability. This behavior should increase the chances of finding better solutions
in less generations. Even though the population evolution shows the expected
behavior, a thorough performance study has not been carried out.

The stop condition of the algorithm is genetic stability of the population
during 50 generations. This condition can be replaced by the best individual
performance in the current population. When this performance is close enough
to the physical bounds [6, 8–10] the optimization process can be stopped.

The objective function of the optimization algorithm is a linear combination
of antenna parameters, i.e.,

minimize αQQ+ αR

∣∣∣∣JHXeJ− JHXmJ

JHRradJ

∣∣∣∣+ αAN
AN, (5.1)

where αQ, αR and αAN
are the weights associated with the Q-factor, resonance

and normalized metallic area AN, respectively. For illustrative purpose resonance
is evaluated from the difference between the stored electric and magnetic energies.
This difference is normalized to the radiated power. The area is normalized
to the entire rectangular region area (antenna region area for antennas with a
rectangular ground plane).

The weights introduced in the previous paragraph control the optimization
process. Either αQ or αR is emphasized at a time for obtaining the data presented
in the following. As a result either antennas with minimum Q or resonant are
targeted, respectively. The normalized area weight has been maintained constant,
αAN

= 1. This parameter has been included in order to decrease the metallic
area of the structures and eliminate some isolated mesh elements.

The MoM solver integrated into the genetic algorithm is an EFIE based in-
house simulator. Galerkin testing is used [19] with rooftop basis and testing
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functions. The amplitudes of these functions have linear variation on two adjacent
mesh elements, as exemplified in Fig. 1. Their direction is perpendicular to the
common edge and pointing from the first to the second mesh element (considering
a numbering rule imposed on the elements).

The optimization results are compared with simulation data obtained from the
Efield MoM solver. This solver uses rooftop basis functions defined on triangular
mesh elements. Non-self-resonant antennas have been loaded inductively such
that they achieve resonance at the frequency they were optimized for. This
loading has been used to confirm that tuning does not change the performance
of the optimized antennas.

5.2 Rectangular Regions

The optimization algorithm has been run for rectangular regions with an aspect
ratio of `/h = 2. Such regions can achieve the maximum D/Q ratio when op-
erated optimally, [9, 10]. The antennas inside these regions are considered thin
metallic sheets without losses, i.e., PEC. The frequencies were chosen such that
the electrical dimensions are in the range kl = 0.1 . . . 1.3 (ka ≈ 0.06 . . . 0.7). In
this way some of the electrical dimensions usually considered small have been
studied. The discretization was Nx = 64, Ny = 32 such that the discrete ele-
ments are square. A voltage gap model has been used to feed the antennas. Two
mesh elements have been marked as fixed metallic areas and removed from the
genotype. These elements are the two closest to the center of the rectangular
region such that the voltage drop is applied along the x-direction, see Fig. 1.

From the symmetry point of view, three groups of structures have been con-
sidered: non-symmetric, symmetric with respect to x̂ and symmetric with respect
to x̂ and ŷ, see Fig. 1. These are denoted as “None”, “Single”, and respectively
“Double” in Figs 3 and 4. The corresponding number of genes in the genotype
is: 2046, 1023 and 512.

Two optimization criteria have been imposed. They target to find either
antennas with the optimal Q or antennas as close as possible to a resonance.
The corresponding objective functions have αQ = 4, αR = 1 and αQ = 1, αR = 4
respectively.

The smallest Q-factor of 5 optimized antennas for each symmetry and cri-
terion is depicted in Fig. 3. The physical bound for a rectangular region with
the same dimensions is computed using the results in [6, 9, 10] and included for
comparison. This computation is performed assuming main radiation direction
orthogonal to the rectangle and directivity 1.5. The relative deviation of the
Q-factor from this physical bound is depicted in Fig. 4. The antennas with the
smallest Q in all runs per kl value have been simulated with Efield. Four of these
antennas are depicted in Fig. 5. The resulting Q-factors computed according
to [7, 26] are included in Fig. 4 for comparison. These antennas have radiation
patterns resembling that of an electric dipole. Their directivities are between
1.49 and 1.52 in a direction within 30◦ of the normal of the rectangle.
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Figure 3: Optimized antenna Q-factors compared with the physical bound [6, 9, 10]
for rectangular regions. The best result from 5 runs for each symmetry (none, single
and double) and optimization criterion (Q-factor or resonance) is depicted.
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Figure 4: Deviation of the Q-factors depicted in Fig. 3 relative to the physical bound
Qmin [6, 9, 10]. The deviations of the Q-factors computed from simulation data using
the procedure in [7, 26] are also included.
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Figure 5: Four of the structures simulated in Efield whose Q-factors are depicted in
Fig. 3. Feeding edges are circled.
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Some observations can be made even though the number of runs is rather
small. Antennas symmetric in the `-direction have the smallest Q-factors. An-
tennas symmetric in both ` and h-directions have the greatestQ-factors. Interme-
diate Q-factors are obtained by antennas that are non-symmetric. The genetic
algorithm can find antennas which perform within 10% of the physical bound
when their dimensions are somewhat larger. When the antenna dimensions are
smaller, the optimizer finds antennas about 30% away from the physical bound.
Antennas optimized for resonance have a greater Q than those optimized for Q-
factor, significantly greater for some electrical dimensions. This happens partly
due to the compromise made during the optimization in the disadvantage of the
Q-factor. This compromise modifies the genetic path followed by the antenna
population based on the values involved in the computation of fitness with (5.1).
However, a detailed study of the genetic path has not been carried out.

The optimized antennas show common characteristics that depend on their
electrical size. A few such characteristics are given as examples in the following
considering Fig. 5. The structure with kl = 0.1 has: large metallic regions at
the extremities in the `-direction, little meandering that increases the longest
current path, and metallic strips parallel to the h direction which grow in length
towards the extremities of the structure. The structure with kl = 0.5 is heavily
meandered with many short metallic stubs along the meander; it has less metallic
h-aligned strips. Larger structures are dominated by shorter meandering path
and longer stubs. A statistic study has not been carried out to establish the
distribution of these characteristics among the optimized antennas.

5.3 Simple Phone Model

A simplified model of a mobile telephone as a radiating device is obtained by
considering the device mostly metallic. In a limited region a specially devised
metallic structure is fed by the transmitter. For further simplification the metal
is considered lossless, i.e., PEC, and the entire structure planar, see Fig. 2. It
has been observed that an aspect ratio `/h = 2 describes many mobile devices in
use today. The frequencies have been chosen such that the electrical dimensions
are in the range `/λ = 0.1 . . . 0.5. These frequencies are between 300 MHz and
1.5 GHz for an ` = 10 cm device. The discretization was Nx = 96 and Ny = 48
for the entire structure (antenna region and ground plane). Such structures but
with coarser rectangular element mesh are preliminarily investigated in [2]. The
procedure presented in Sec. 3.2 has been applied to increase the speed of the
optimization process. The structures are fed by a voltage gap such that their far
field is mainly linearly polarized along the ` dimension.

For illustration purpose the optimization procedure has been applied to two
situations. In the first situation different dimensions of the antenna region have
been imposed. The results of antenna optimization for minimum Q are presented
in Fig. 6. The second situation illustrates the method for different optimization
criteria and feeding positions, Fig. 7. Examples of optimized antenna regions
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Figure 6: Optimized antenna Q-factors compared with the physical bound. The
smallest Q-factor of five optimization algorithm runs per frequency and antenna region
size is labeled “Prediction”. The Q-factors computed using the results in [7, 25, 26] from
simulation data for the smallest Q antennas are labeled “Simulation”. The physical
bounds for radiating structures with rectangular ground planes [8] and antenna regions
occupying 6, 15 and 25 % of antenna length (see Fig. 2) are depicted in dashed, dash-dot
and dotted line, respectively. The physical bound for antennas limited to rectangular
regions [6, 9, 10] is depicted in solid line.

obtained in the above mentioned situations are depicted in Fig. 8.
Three cases have been considered for the results in Fig. 6 where approximately

6 %, 15 % and 25 % of the structure length is occupied by the antenna region.
The optimization procedure has been run five times for each set of electrical and
antenna region dimensions considered. The optimization target was antennas
with minimum Q (αQ = 10, αR = 1). The smallest Q obtained in the five
runs is labeled “Prediction”. The antennas having these smallest Q-factors have
been simulated in Efield. Their input impedance is differentiated following the
procedure in [7, 26] to obtain the Q-factors labeled “Simulation”. These antennas
have a main radiation direction within 30 ◦ of the normal of the rectangular
region. The physical bounds [8] corresponding to radiating structures with a
rectangular ground plane, normal main radiation direction and antenna regions
occupying 6 %, 15 % and 25 % of the antenna length are included in Fig. 6. In
addition the physical bound [6, 9, 10] of rectangular radiating structures with
normal main radiation direction and directivity 1.5 is depicted in solid line.

It is observed in Fig. 6 that both the predicted and the simulated Q values
follow closely the physical bounds for small electrical dimensions. The relative
deviation of these values from the corresponding physical bound is smaller than
20 % in these cases. The deviation is greater for smaller antenna regions. When
the electrical sizes of the structures increase, the values resulted from the simu-
lation data deviate from the predicted values. The simulation values are smaller
than the predicted values and bound. This happens due to the Q-factor esti-
mation procedure from the input impedance. Small Q values are estimated less
accurately when multiple closely spaced resonances are present around the fre-
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Figure 7: Deviation of optimized antenna Q-factors relative to the physical bound [8]
for 15 % antenna regions (see Fig. 2). The smallest Q-factor from five optimization
algorithm runs is labeled “Prediction”. The Q-factors computed using the results in [7,
25, 26] from simulation data for the smallest Q antennas are labeled “Simulation”.
Side and center feeding has been considered for structures optimized for Q-factor and
resonance (R).

quency of interest. The single resonance model [7, 26] was used to compute the
Q for the structures with `/λ = 0.1, 0.175 and 0.25. The multiple resonance
Brune synthesis model [25] was used to compute the Q for the structures with
`/λ = 0.325, 0.4 and 0.475.

Four cases have been considered for the results in Fig. 7. They are defined by
all the combinations of two feeding positions and two optimization targets applied
to structures with the antenna region 15 % of the structure length. The two
feeding positions are at the interface between the ground plane and the antenna
region in the center of the h dimension and at the side of the structure. As
optimization targets Q-factor (αQ = 10, αR = 1) and resonance (αQ = 1, αR =
10) have been considered. The optimization algorithm has been run five times
for each case and frequency. The relative deviations of the smallest Q-factors
obtained in the five runs are labeled “Prediction” in the figure. The reference for
these relative deviations is the physical bound [8] for antenna regions occupying
15 % and normal main radiation direction. The antennas with these smallest
Q-factors have been simulated in Efield. Their input impedance gives the Q-
factors labeled “Simulation” using a resonance model [7, 25, 26]. These antennas
have a main radiation direction within 30 ◦ of the normal of the structure. The
observations pertaining to Figs 4 and 6 are also valid for Fig. 7.

6 Conclusions

A method of computing Q-factors of radiating structures from single frequency
simulation data is presented. This computation is based on the electric and mag-
netic energies stored in the fields excited by an antenna [24] evaluated following
the procedure described in [8, 10]. Using this method it is possible to estimate an-
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l/¸=0.1 l/¸=0.25 l/¸=0.4

Figure 8: Example of antenna regions of structures simulated in Efield. Shaded – part
of the ground plane. First three rows from top to bottom: side fed antenna regions
occupying 6 %, 15 %, 25 % of antenna length optimized for Q-factor. Row 4: side fed
15 % antenna regions optimized for resonance. Rows 5 and 6: center fed 15 % antenna
regions optimized for Q-factor and resonance, respectively. Feeding edges are circled.

tenna bandwidth from the current excited on the structure at a single frequency.
This method has been applied to rectangular structures and structures with a
rectangular ground plane describing in a simplified manner some mobile devices
in use today. The resulting antennas perform close to the physical bounds in
terms of their Q-factors for many electrically small dimensions. Simulation data
obtained from the commercial electromagnetic solver Efield agree very well with
the theoretical results.

The method can be integrated very easily in a standard MoM solver. The
temporal overhead added by such an integration is small due to the fact that most
of the quantities needed are computed in standard MoM solvers. Thus using this
method may reduce optimization time for some radiating structures. In addition
it is possible to directly compare realized performance of optimized structures
with their physical bounds [8]. The results presented confirm the validity of
these physical bounds. Sub-optimum solutions resulted from optimization have
“genetic” characteristics that may prove useful for the manual design of other
radiating structures.

The results obtained using this method have been presented in terms of an-
tenna Q-factors. Other important antenna parameters such as radiation resis-
tance, matching and losses are the object of future work. More realistic structures
will be considered there.
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Abstract

A method to compute antenna Q from a single frequency current dis-
tribution is applied to the optimization of multiband radiating structures.
A genetic algorithm produces suboptimal structures in the sense of simul-
taneous multiband minimum Q. These structures model in a simplified
manner common wireless communication devices. The comparison with
the physical bounds for the considered situations shows that the subop-
timal structures perform close to their limitations. Matching networks
are designed using real component models with a commercial tool. These
networks have less than three components and provide less than −6.5 dB
reflection coefficient magnitude in all considered bands. The results show
that the single frequency Q estimation method may be useful for antenna
design.

1 Introduction

A method to compute antenna Q from a single frequency current excited on a
radiating structure is presented in [7, 9], see also [10]. This method is based
on stored electric and magnetic energy [5, 18] and radiated power expressions in
terms of the current. The Q estimation method is applied in a genetic algorithm
and method of moments (GA/MoM) [13, 16] scheme to optimize antenna Q and
resonance at single frequencies in [3].

Here we apply the above introduced method to the multiband Q optimization
of rectangular radiating structures with rectangular ground planes. Such struc-
tures model in a simplified manner common wireless communication terminals.
An improved version of the genetic algorithm produces structures which are less
prone to unpredictable behavior due to genetic characteristics such as isolated
single mesh element metallic patches. The optimized structure input impedance
is computed using the commercial electromagnetic solver ESI-CEM [4]. This re-
sult is used in the software tool BetaMatch [2] to design a matching network for
all considered bands. The results show that the Q estimation method from the
energy stored in excited fields and radiated power may be useful for the design
process of radiating structures.

The comparison with the physical bounds for structures with a rectangular
ground plane [7] shows that the optimized structures perform close to their phys-
ical limitations. Such a comparison can be used to stop an optimization process
or assess the realizability of design specifications.

The paper is organized as follows. The results of the theory presented in [3, 7,
9] are included in Sec. 2. The multiband antenna objective function for optimiza-
tion is introduced in Sec. 3. The setup used for obtaining the results of Sec. 4 is
described in Sec. 4.1. Structures optimized using the GA/MoM scheme and their
performance are presented in Sec. 4.2. The paper ends with conclusions, Sec. 5.
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2 Antenna Q and Stored Energies

The quality factor of a lossless, resonant or nonresonant, antenna is defined as [19]

Q =
2c0kmax{We,Wm}

Prad
, (2.1)

where c0 is the speed of light in free space, k is the wave number, We and Wm

are respectively the electric and magnetic energies stored in the fields excited
by the antenna, and Pr is the power radiated by the antenna. This definition is
equivalent to that in [1] for resonant antennas.

We consider infinitely thin lossless perfectly electrically conducting (PEC)
structures in vacuum on which surface current densities J may be excited. Such
currents are approximated using a set of basis functions ψp as

J(r) ≈
N∑
p=1

Jpψp(r), (2.2)

where r is the position vector and J = (J1, J2, . . . , JN )T is a matrix of complex
expansion coefficients. These coefficients are used to approximate the stored
electric and magnetic energies and radiated power in (2.1) as

We ≈
µ0

4k

N∑
p=1

N∑
q=1

J∗pXe,pqJq =
µ0

4k
JHXeJ, (2.3)

Wm ≈
µ0

4k

N∑
p=1

N∑
q=1

J∗pXm,pqJq =
µ0

4k
JHXmJ, (2.4)

and

Pr ≈
η0

2

N∑
p=1

N∑
q=1

J∗pRr,pqJq =
η0

2
JHRrJ, (2.5)

where µ0 and η0 are the free space permeability and impedance respectively, Xe

and Xm are the electric and magnetic reactance matrices, and Rr is the radiation
resistance matrix. These matrices have been introduced in [7, 9], see also [10].
Quadratic forms similar to those in (2.5) have been employed for antenna array
optimization in free space [11]. Replacing (2.3), (2.4) and (2.5) in (2.1) we obtain:

Q ≈ max{JHXeJ,J
HXmJ}

JHRrJ
. (2.6)

The expansion coefficients in (2.2) can be computed using an electromagnetic
solver, e.g., ESI-CEM [4] or any other commercial solver. An EFIE (Electric Field
Integral Equation) based MoM (Method of Moments) solver is straightforwardly
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customizable for the computation of the matrices Xe, Xm and Rr, [3, 7, 9]. This
customization does not add a significant computational overhead to the original
EFIE impedance matrix, Z, computation [11, 12, 15]. Furthermore the previously
mentioned four matrices are readily suitable for GA/MoM [13] optimization.

3 Multiband Antennas

Many hand-held mobile terminals support communication standards that operate
in different frequency bands. One solution to accommodate this multiband re-
quirement is to use antennas that perform acceptably well in all frequency bands
needed for communication. In addition to multiband antennas matching networks
are usually used to connect antennas to transceiver chains. These matching net-
works improve the intrinsic power transfer capability between transceiver and
antenna and mitigate some effects of the changing communication environment
on antenna performance.

We optimize the structures for minimum Q at the center frequency of each
band of interest. The optimized structures are then simulated using the commer-
cial solver ESI-CEM [4]. The input impedance obtained from the commercial
solver is used in BetaMatch [2] to optimize a matching network for multiband
operation. The results show that the stored energies (2.3) and (2.4) may be useful
for automating part of the design process of mobile terminal antennas.

The GA/MoM procedure [13, 16, 17] is used to obtain suboptimal structures in
the sense of multiband operation. An in-house genetic algorithm [3] searches the
rows and columns of an impedance matrix that minimize the objective function

FC = αM max

{
Qb
QT,b

}
b=1,2,...,Nb

+ αS

Nb∑
b=1

Qb
QT,b

, (3.1)

where Qb is the quality factor (2.6) at the center frequency of band b, QT,b is the
quality factor required for the antenna to meet the specifications in band b, Nb

is the total number of frequency bands where the structure should operate, and
αM and αS are weights associated with the maximum and sum of the normalized
Q-factors for each band. Equation (3.1) is an example as different optimization
criteria lead to different objective functions.

4 Results

4.1 Simulation Setup

Mobile terminals may be modeled, in a simplified manner, as rectangular regions.
We consider, for further simplification, infinitely thin PEC radiating structures
limited to a rectangular region with the length ` = 13 cm and width w = 6.5 cm.
A small, rectangular part of this region, the “antenna region”, is dedicated to
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a structure fed by the transmitter(s), see Fig. 1. The structure in the antenna
region is not necessarily rectangular. Here this structure is obtained through
a process of GA/MoM optimization [13]. The remaining rectangular, usually
larger, part of the region is considered entirely metallic and fixed. This part acts
as a ground plane for the structure in the antenna region, contributing to the
radiation of the structure. We refer to this part as the “ground plane” in the
following.

The “mother” structure [13, 16] for the simplified situation above is a metallic,
rectangular region of the same dimensions ` and w. This structure represents the
maximum extent PEC metal may have in the radiating device. The mother
structure is divided into Nx = 120 by Ny = 60 rectangular mesh elements in
the x̂ and ŷ directions, respectively. Note that in this particular case the mesh
elements are square. This discretization is used both in the MoM impedance
matrix computation and in the genetic optimization.

An in-house EFIE based electromagnetic solver is used to compute the ma-
trices Z, Xe, Xm and Rr for the mother structure. This solver uses Galerkin
testing [15] with rooftop basis and testing functions. These functions are defined
on pairs of adjacent mesh elements, i.e., elements sharing a common edge, [14].
Their amplitudes are linearly increasing towards the common edge. Their di-
rections are perpendicular to the common edge, pointing from the first to the
second mesh element (considering a fixed mesh element numbering rule). The
four matrices mentioned above are square with N = 2NxNy −Nx −Ny = 14220
rows.

Three frequency bands have been chosen to illustrate the Q computation pro-
cedure. These bands are 699 – 746, 880 – 960 and 1710 – 1990 MHz. The electrical
sizes of the structure for the center frequencies are k` ≈ 1.97, 2.5, and 5.04. The
mother matrices Zb, Xe,b, Xm,b and Rr,b are computed using the in-house solver
described above for the center frequency of each band, indexed by b = 1, 2, 3.

A block matrix decomposition [13] is performed on each of the twelve mother
matrices introduced in the previous paragraph. Denote one of these mother ma-
trices X ∈ {Zb,Xe,b,Xm,b,Rr,b}b=1,2,3. Each element of this matrix corresponds
to a pair of basis and test functions. Considering a borderline between a metallic
ground plane and an antenna region (e.g., the line along which F is located in
Fig. 1) we write

X =

(
XAA XAG

XGA XGG

)
.

The elements of X with the corresponding basis and test functions entirely in
the antenna region or across the borderline are grouped into the first block,
XAA. The elements with basis and test functions entirely in the ground plane
are grouped into the block XGG. The last two blocks have basis functions in the
antenna region/across the border (ground plane) and test functions in the ground
plane (antenna region/across the border), XAG (XGA). The natural overlapping
of the rooftop function domains of definition allows the existence of closed loops
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of metal ground–antenna region–ground.
The sizes of the matrices manipulated during optimization reduce using block

matrix decomposition. The EFIE MoM system of equations is written for each
frequency (

ZAA ZAG

ZGA ZGG

)(
JA

JG

)
=

(
V
0

)
, (4.1)

where JA and JG are the blocks of basis function coefficients that define the
current flowing on the antenna region and ground plane respectively, V is a
matrix that models the feeding of the structure, e.g., a voltage gap, and the
frequency band index has been omitted. Considering the structure fed only in
the antenna region the current is{

JA = (ZAA − ZAGZ−1
GGZGA)−1V

JG = −Z−1
GGZGAJA = TJA

(4.2)

The quadratic forms in (2.3), (2.4) and (2.5) take the form

JHXJ = JH
A

(
XAA + 2 Re{XAGT}+ THXGGT

)
JA, (4.3)

where X ∈ {Xe,Xm,Rr}. The block matrix decomposition is applied to the
original mother matrices prior to the optimization procedure. The optimization
algorithm searches the rows and columns of the matrices in parentheses in (4.2)
and (4.3) that minimize the objective function (3.1). These latter matrices may
be considered “mother” matrices for the optimization process. Their size is given
by the size and shape of the antenna region. For example, in the case of a
rectangular antenna region occupying 20% of the entire structure area as in Fig. 1,
the size of the matrices in parentheses is 2856× 2856.

An in-house genetic algorithm [3] is used to optimize the structures. This
algorithm uses a population of 200 individuals out of which 80 are randomly
chosen for tournament selection. The two point crossover probability is 0.8. A
maximum of six genes at once are mutated with a probability of 20% if improve-
ment of the objective function occurs within 100 iterations. After 100 iterations
without improvement up to ten genes at once are mutated with 100% probabil-
ity. The algorithm stops if the objective function does not improve during 50
generations, i.e., 104 iterations.

The genetic algorithm is neither an exhaustive search of the optimum solution
nor an exhaustive evaluation of the characteristics of a suboptimal solution. This
algorithm uses genetic principles to drive an initially random population towards
a suboptimal solution avoiding to some extent local extrema. Genetic principles
allow the appearance of unwanted characteristics of offspring (“malformations”).
For instance there may appear isolated single mesh element metallic patches or
double 90◦ metallic bends diagonally interconnected (i.e., corner connections).
Such characteristics might have unpredictable effects on the manufactured struc-
ture performance. This is why such traits are specially “purged” after each
offspring generation.
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`

w

ŷ Fixed Ground Plane Antenna

x̂

F

ẑ

Figure 1: Example of discretized radiating structure with a fixed rectangular ground
plane. Gray shaded elements represent metallic patches. The feeding edge is marked
F .

The objective function (3.1) minimized by the GA is

FC = max

{
Q1

16
,
Q2

12
,
Q3

7

}
+ 0.1

(
Q1

16
+
Q2

12
+
Q3

7

)
. (4.4)

The values 16, 12 and 7 are computed for less than −6 dB reflection coefficient
magnitude at the antenna input in all frequency bands [19].

The solutions obtained through optimization are simulated using the commer-
cial solver ESI-CEM [4]. The input impedance computed by this solver is used
in BetaMatch [2] to design a matching network. Models of large SMD (surface-
mount devices) have been employed for matching. However not all optimized
structures could be matched in all bands with realistic component models. In
these situations matching with ideal components has been attempted.

The Q-factors of optimized structures are compared to the physical bounds [7,
9] for rectangular structures with a fixed rectangular ground plane. Here we max-
imize the ẑ directivity – antenna Q (D/Q) quotient to derive the physical bound
for the Q-factor. For illustration purpose the Q-factors are also compared to the
physical bound [6, 8] for structures limited to rectangular regions. This latter
bound is derived assuming the structures electrically small, ka � 1, radiating
as an electric dipole with directivity approximately 1.5. Such comparisons with
physical bounds may be used as stopping criteria for optimization algorithms ap-
plied to electrically small structures. For electrically large structures the physical
bounds on Q [6–9] are less useful as the Q is very small and the antennas do not
radiate mainly in the ẑ direction.

4.2 Simple Phone Model

The structures optimized for multiband operation are exemplified in Fig. 1. Three
sizes of the antenna region have been imposed: 20, 15 and 10% of the entire struc-
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Figure 2: Example of antenna regions of structures optimized for multiband minimum
Q. Rectangular regions 130×65 mm2 with fixed rectangular ground planes and antenna
regions extending 20% (top row), 15% (middle row), and 10% (bottom row) of the entire
structure area as depicted in Fig. 1. Fixed feeding edges are circled. Part of the ground
plane is shaded.

ture area at one end in the ` direction. The feed has been placed at three fixed
positions, all on the borderline between the ground plane and antenna region.
These positions are the side, middle, and half way between side and middle in
the w direction, i.e., y ≈ 0.54, 16.8, and 32 mm, respectively. The optimization
algorithm has been run five times for each of the nine resulting combinations
of antenna region size and feed position. The optimized antenna regions of the
structures with the smallest objective function (4.4) per combination of antenna
region size and feed position are depicted in Fig. 2.

The Q-factors (2.6) of the optimized structures depicted in Fig. 2 middle
column are compared to the physical bounds [6–9] in Fig. 3 for electrical dimen-
sions commonly accepted as small. These structures have the smallest objective
function (3.1) compared to structures with the same size but different feeding po-
sitions. Simple matching networks are designed for the structures in Fig. 2 middle
column using real component models in BetaMatch [2]. These networks, depicted
in Fig. 4, allow matching to less than −6.5 dB reflection coefficient magnitude
throughout all frequency bands.

5 Conclusions

A method of computing antenna Q from a single frequency current distribu-
tion [7, 9, 18] is used in a GA/MoM [13] scheme to optimize rectangular radiating
structures for simultaneous multiple band minimum Q. A significant part of
these structures is a fixed metallic ground plane such that these structures model
in a simplified manner common wireless communication devices. The optimized
antenna Q-factors have been compared to the physical bounds corresponding to
the analyzed situations. This comparison shows that the suboptimal solutions
perform close to the physical bounds. The optimized structures have been simu-
lated in the commercial solver ESI-CEM [4]. The resulting input impedance data
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0.6 0.7 0.8 f/GHz, ` = 13 cm

Figure 3: The Q-factors (2.6) of the structures with antenna regions depicted in Fig. 2
middle column (top row “+”, middle row “◦”, and bottom row “×”) compared to the
physical bounds [7, 9] for rectangular structures with antenna regions 20 %, 15 %, and
respectively 10 % of the entire structure as in Fig. 1. The physical bound for structures
limited to entire rectangular regions [8] is depicted in solid line (100 %). The frequency
scale for an ` = 13 cm structure is included.

3.3 p
3.3 n

10 n

3.3 p
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Figure 4: Matching networks for the structures with antenna regions depicted in Fig. 2
middle column, in SI units. From left to right the networks correspond to antenna
regions extending 10%, 15% and respectively 20%.

has been used in BetaMatch [2] to design matching networks for the structures.
These networks, designed with real component models, have less than three com-
ponents and yield better than −6.5 dB matching in all considered bands.

The results presented in this paper suggest that the single frequency energy
expressions (2.3), (2.4) and (2.5) may be useful for the design of antennas. The
physical bounds described in [7, 9, 10] can be used to assess the feasibility of some
designs.
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Abstract

A method to estimate QZ′ of antennas from a single frequency current
distribution is introduced. Three-dimensional (3D) antennas are studied
using this single-frequency method and previous results on single-frequency
Q-factor estimation and current optimization. Physical bounds on the
D/Q-ratio are derived using the concept of optimum antenna current dis-
tribution in the studied situations. These bounds are used for an antenna
placement analysis applied to a wireless device model. Furthermore, the
performance of antennas optimized using a genetic algorithm is compared
with physical bounds customized for each analyzed situation. A combi-
nation of antenna Q and QZ′ is used as optimization objective for a 3D
radiating structure.

1 Introduction

Antenna Q can be computed from a single frequency current distribution on a
radiating structure using the method presented in [12] and [10]; see also [13]. This
method is based on expressing the electric and magnetic energies stored in the
fields created, and the power radiated by an antenna in terms of the current [25].
The Q-factor estimation method is applied in a genetic algorithm and method of
moments (GA/MoM), [17, 23], optimization procedure in [5, 6]. The concept of
optimum antenna current distribution, [10], is used to assess the performance of
GA-optimized radiating structures in [5, 6]. An ant colony optimization method
generates antennas whose performance is compared with physical bounds in [24].
“Corner connections,” a typical characteristic of metallic-patch-based genetically
optimized antennas, can be avoided using methods such as random geometry
refinement, [20], patch overlapping, [16], faulty-gene purging, [6], etc.

Here we extend the single-frequency Q-factor estimation concept to QZ′ , a
parameter introduced in [28]. A 3D structure is used to show that this param-
eter can have small values, e.g., QZ′ � 1 although Q > 1. The energy-based
single-frequency antenna Q estimation method is applied to the single-band Q-
factor optimization of 3D radiating structures with rectangular ground planes.
These structures represent simplified models of common wireless communication
terminals, more realistic compared to the planar models analyzed in [5, 6]. A
GA/MoM, [17, 23], procedure optimizes antennas of such 3D structures for mini-
mum Q-factor. This procedure uses an in-house MoM solver with variable change
for integrating 1/R singularities [18]. The commercial electromagnetic solver ESI-
CEM [7] is used to compute the input impedance of the optimized structures.
A single resonance, [9, 28], or multiple resonance Brune synthesis model, [27], is
employed to evaluate the Q-factor of the structures from their input impedance.
The Q-factors obtained using the in-house and commercial solver agree to a large
extent.

Optimum current densities, [10], in the sense of their D/Q ratio, are derived
for the 3D structures studied in this paper. The D/Q ratio of an optimum
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antenna current, realizable or not, gives the physical bound on D/Q for a real
structure, i.e., having a physical current density. The Q-factors of genetically
optimized antennas are compared with Q-factors of optimum currents. The same
conditions, e.g., geometry, optimization region, dimensions, etc., are used both
in genetic optimization and current optimization. In this way the bounds are
customized for the analyzed situation. Customized bounds and optimum currents
are used in an antenna placement in wireless device study. The objective of this
study is to determine the antenna location that maximizes the performance of
the device, measured as D/Q-ratio or Q-factor.

The paper is organized as follows. A summary of the theory presented
in [5, 10, 12] on the use of stored energies for antenna analysis and design is
included in Section 2.1. The single frequency QZ′ estimation method is pre-
sented in Section 2.2. The convex optimization formulation used to derive phys-
ical bounds on D/Q and D/Q-optimum currents is described in Section 2.3.
Section 3 presents the numerical simulations performed in this paper and their
results. Section 3.1 describes the general simulation setup. The performance
and examples of GA/MoM optimized 3D structures are presented and compared
with optimum-current performance in Section 3.2. Section 3.3 illustrates the fact
that some antennas can have QZ′ � 1 even though Q > 1. An antenna place-
ment situation is investigated using optimum currents and physical limitations
in Section 3.4. The paper ends with conclusions in Section 4.

2 Stored Energies and Physical Bounds for An-
tenna Analysis and Design

2.1 Stored Energies

Practical antenna analysis and design is usually performed using numerical tech-
niques that solve differential and/or integral equations describing an electromag-
netic problem. Examples and details of numerical techniques for electromagnetics
can be found in text books such as [15, 21], etc., and references therein. Such
techniques are based, in general, on a discretized computation domain. The
method of moments (MoM) is a numerical method particularly appropriate for
antenna analysis due to the fact that the discretized domain is the surface of
the spatially finite radiating structure, [15]. We consider a structure discretized
for analysis using an electric field integral equation (EFIE)-based MoM solver.
The current density J excited on the surface of the structure is approximated in
terms of the local basis functions ψp as

J(r) ≈
N∑
n=1

Jnψn(r), (2.1)
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where r is the position vector, J = (J1, J2, . . . , JN )T is a column vector of com-
plex, surface-current, expansion coefficients, and N is the number of basis func-
tions used to approximate the current. The expansion coefficients are usually
determined from the system of equations

ZJ = V, (2.2)

where V is a column vector describing the feeding of the structure, and Z is the
impedance matrix describing the structure, [14, 15, 21].

The electric and magnetic energies stored in the fields created by a radiating
structure, [25], are approximated in terms of the discrete current density J as the
quadratic forms, [10],

We ≈
1

4ω
JHXeJ (2.3)

and

Wm ≈
1

4ω
JHXmJ, (2.4)

where ω is the angular frequency, and Xe and Xm are the electric and magnetic
reactance matrices, respectively. The power radiated by an antenna is, [8, 13, 22,
25],

Pr ≈
1

2
JHRrJ, (2.5)

where Rr is the radiation resistance matrix. Equations (2.3), (2.4) and (2.5) can
be used to compute the Q-factor of a lossless resonant or non-resonant antenna
as, [5, 28],

Q =
2ωmax{We,Wm}

Pr
≈ max{JHXeJ,J

HXmJ}
JHRrJ

. (2.6)

The definition in the first part of (2.6) is equivalent to that in [1] for resonant
antennas. An overview of expressions for the Q-factor of antennas can be found
in [26]. Equation (2.6) expresses the Q-factor of an antenna in terms of the
current density computed for a single frequency. The bandwidth of an antenna
can be estimated using a single frequency simulation, [5], based on the inverse
proportionality between the bandwidth and Q in a single resonance model, [9, 28].
Quadratic forms similar to those in (2.5) have been employed for antenna array
optimization in free space in [14].

The expressions for Xe, Xm and Rr resemble the expression for the EFIE-
based impedance matrix, Z, commonly computed by MoM solvers [5, 10, 12]. An
MoM algorithm with Galerkin’s method, [14, 21], applied to a mixed-potential
EFIE formulation computes the impedance-matrix elements, [15, 21],

Zmn = jη0

∫
∂V

∫
∂V

(
kψm1 ·ψn2 −

1

k
∇1 ·ψm1∇2 ·ψn2

)
e−jkR12

4πR12
dS1 dS2, (2.7)

where η0 is the free space impedance, k = ω/c0 is the wave number, c0 is the speed
of light in free space, R12 is the distance between the integration points in the two
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integration domains, and V is the the volume occupied by the antenna, bounded
by the surface ∂V . Note that due to the inner product operation performed in
the MoM, i.e., one integration over the surface ∂V , the SI unit for Zmn is Ωm2

and for the right-hand-side V— Vm. The resemblance of Xe and Z is illustrated
by expressing the elements of the electric reactance matrix [10, 25]

Xe,mn = η0

∫
∂V

∫
∂V

∇1 ·ψm1∇2 ·ψn2

cos(kR12)

4πkR12

−
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) sin(kR12)

8π
dS1 dS2. (2.8)

Similarly, Xm and Rr resemble Z as (2.8) resembles (2.7) [5, 10]. These similar-
ities allow integrating the computation of Xe, Xm and Rr in EFIE-based MoM
solvers with little computational effort.

The MoM matrices, Z, Xe, etc., are intrinsically suitable for some global
optimization algorithms such as GA/MoM optimization, [17, 23], current opti-
mization, [10], etc. In such algorithms the optimization time of some antenna
parameters, e.g., the bandwidth, may be reduced using the single frequency ex-
pression (2.6) for Q. In addition these matrices are suitable for current optimiza-
tion [10] used to derive physical limitations.

2.2 Single Frequency QZ′ Computation

Consider an antenna having the input impedance

Zin(k) = Rin(k) + jXin(k). (2.9)

This antenna is tuned to achieve resonance at the wave number k0 using a series-
connected, ideal, lumped inductor or capacitor, as in [28]. The input impedance
of the tuned antenna becomes

Zin,t(k) = Zin(k) + jXt(k), (2.10)

where

Xt(k) =


−kXin(k0)

k0
Xin(k0) < 0

−k0Xin(k0)

k
Xin(k0) > 0

. (2.11)

At the resonance frequency the input impedance has only the real part, i.e.,

Zin,t(k0) = Rin(k0). (2.12)

The Q-factor of the antenna tuned to resonance, in a single-resonance model, can
be approximated as [28]

QZ′(k0) ≈
k0

∣∣Z ′in,t(k0)
∣∣

2Rin(k0)
, (2.13)
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where prime denotes first derivative with respect to wave number. Note the
change of variables k = ω/c0, performed in order for Zin to be expressed in
terms of the same frequency variable as Z, whose elements are (2.7). If the single
resonance assumption does not hold, the derivative of the input impedance may
approach zero such that QZ′ ≈ 0.

We express QZ′ in terms of the frequency derivative of the impedance matrix,
Z′, whose elements are given by

k∂Zmn
η0∂k

=

∫
V

∫
V

j
(
k2ψm1 ·ψn2 +∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4πkR12

+
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4π
dV1 dV2. (2.14)

Replace (2.10) and (2.11) in (2.13) to obtain

QZ′(k0) ≈
∣∣∣∣k0Z

′
in(k0)

2Rin(k0)
+ j
|Xin(k0)|
2Rin(k0)

∣∣∣∣ . (2.15)

An MoM solver gives all quantities needed to evaluate (2.15) except Z ′in. This
quantity is traditionally computed using a numerical approximation based on
evaluating Zin for two closely spaced frequencies. An alternative to this approach
is presented in the following.

The input impedance derivative is expressed in terms of the input admittance.
The admittance matrix is given by:

J = YV = Z−1V. (2.16)

This matrix defines the input impedance of the antenna using a voltage gap
model of feeding edge elements:

Yin =
VTYV

V 2
in

, (2.17)

where Vin is the voltage applied across the gap. Note that in an EFIE mixed-
potential formulation with Galerkin testing and basis functions defined on pairs
of adjacent rectangular mesh elements, [15, 19, 21], we have: Vf = Vin`f , where
a voltage gap is applied along basis function f , and `f is the length of the edge
common to the two rectangles where ψf 6= 0. We consider that the source is real-
valued and frequency independent, i.e., V′ = 0. The input impedance derivative
becomes

Z ′in =

(
1

Yin

)′
= −Y

′
in

Y 2
in

= −
(
VTYV

)′
V 2

inY
2
in

= −VTY′V

V 2
inY

2
in

. (2.18)

Consider the following equation:

0 =
(
Z−1Z

)′
=
(
Z−1

)′
Z + Z−1Z′. (2.19)
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Multiplication from the right by Z−1 gives

Y′ = −Z−1Z′Z−1 = −YZ′Y, (2.20)

such that the input impedance derivative is

Z ′in =
JTZ′J

V 2
inY

2
in

, (2.21)

where the fact that Z and Y are symmetric matrices has been used. Re-
place (2.21) in (2.15) to obtain

QZ′(k0) ≈
∣∣∣∣k0Z

2
in(k0)JTZ′J

2Rin(k0)V 2
in

+ j
|Xin(k0)|
2Rin(k0)

∣∣∣∣ , (2.22)

where the first derivative with respect to wave number of the impedance matrix,
Z′, is computed for the wave number k0. The corresponding expression for QZ′

in [4] differs from (2.22) as the former includes frequency derivatives of the current
density and complex conjugates. An expression similar to (2.22) can be derived
using a parallel tuning susceptance.

2.3 Physical Bounds

Physical bounds customized for the antennas analyzed can be derived by for-
mulating appropriate optimization problems for antenna parameters [10]. These
problems determine optimum antenna current densities in the sense of the pa-
rameter(s) of interest. Optimum antenna currents may or may not be physically
realizable, i.e., there may or may not exist a feeding scheme of the antenna that
produces the optimum current. However, optimum currents give an upper bound
on the performance a physical structure can achieve. One of the advantages of
current optimization is the fact that customized bounds are derived without re-
strictive assumptions, e.g., bounding geometry, electrical size, etc.

We use a convex optimization formulation for maximizing the partial direc-
tivity Q-factor ratio, D/Q, of radiating structures. This formulation is obtained
by relaxation of, [10],

minimizeJ max{JHXeJ,J
HXmJ}

subject to FHJ = −j,
(2.23)

to the dual problem, [3],

minimizeJ JH (αXe + (1− α)Xm) J

subject to FHJ = −j,
(2.24)

over 0 6 α 6 1. The solution of (2.24) for a fixed α is

J =
−j (αXe + (1− α)Xm)

−1
F

FH (αXe + (1− α)Xm)
−1

F
, (2.25)
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with appropriate scaling of J such that FHJ is dimensionless. The N × 1 matrix
F, with the elements

F ∗n =
−jkη0

4π

∫
V

ê∗ ·ψn(r)ejkk̂·r dV, (2.26)

is used to approximate the far field, F , in the fixed direction k̂, projected on the
polarization vector, ê, as

ê∗ · F (k̂) ≈ FHJ. (2.27)

Formulation (2.24) minimizes the energy stored in the fields created by a ra-
diating structure for a fixed partial radiation intensity in a specific direction.
Current densities optimum in the sense of (2.24) give the physical limitation on
D/Q. The Q-factors of these currents, (2.6), may not be optimum in the sense
of the Q-factor, i.e., there may exist current densities producing smaller Q val-
ues. One advantage of formulation (2.24) and its solution (2.25) is the fact that
there exist algorithms that solve (2.24) fast and efficiently even for large matrices
and multiple directions and polarizations. For example the MATLAB function
fminbnd can be used to solve (2.24).

3 Results

3.1 Simulation Setup

An in-house EFIE-based MoM solver computes the matrices Z, Xe, Xm and Rr

that describe the antennas studied. These matrices are used in GA/MoM as
mother matrices [17], and for current optimization [10].

The in-house MoM-solver is based on Galerkin’s method and a mixed po-
tential EFIE-formulation [14, 15, 21]. The basis and testing functions have a
“rooftop” profile on pairs of adjacent rectangular mesh elements, i.e., rectangles
sharing a common edge [19], as illustrated in Fig. 1. Such a function has the
amplitude linearly increasing toward the common edge and the direction from
the first to the second rectangle (numbered according to a fixed mesh element
numbering rule). The change of variable described in [18] is used to integrate the
1/R singularity for identical and closely spaced mesh elements.

An in-house genetic algorithm [5, 6] is employed for searching realistic struc-
tures with performance close to physical limitations. An initially-random, 200-
individual, antenna population is improved according to evolutionary principles
in steps. At each step 80 randomly chosen individuals compete to become one
of two breeding parents. The resulting two offspring are affected by two-point
cross-over (which happens 80 % of the time) and single-gene mutation (20 % prob-
ability). These offspring are placed in the population, which is enlarged by two.
The antennas in this expanded population are ranked according to their fitness.
The two least-fit antennas are removed from the population. Fitness is evaluated
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F

`2`1
`

w

`3

Fixed ground plane Antenna

Figure 1: Illustration of rectangular mesh element discretization and “rooftop” basis
function amplitude for a three-dimensional radiating structure. Metal areas are depicted
in gray shading. The amplitudes of three of the total 7×3+6×4−4−3 basis functions
are depicted in blue, pink and green shading. The feeding edge is marked F .

as an objective (cost) function that is minimized during optimization. This func-
tion is a combination of antenna parameters with different weights. After 300
consecutive steps without population improvement the algorithm enters a phase
where the offspring produced always have up to 4 genes mutated. This phase is
meant to reduce the solution time of the GA (however, this time improvement
has not been studied). Once improvement is observed, the algorithm returns to
“natural” conditions, single-gene mutation with 20 % probability. The optimiza-
tion is stopped after 2 105 steps or when genetic stability during 2 104 steps is
observed.

The commercial electromagnetic solver ESI-CEM [7] is used to verify the
results obtained using the in-house solver through genetic optimization. This
commercial solver uses a triangular element mesh for discretizing the surfaces
of analyzed structures. The results of a GA/MoM-optimized antenna ESI-CEM
simulation are used to calculate the cost function for that antenna. In this way
a comparison between the results obtained using the in-house solver and the
commercial solver ESI-CEM is possible.

3.2 Bent-End Simple Phone Model

We consider infinitely-thin, lossless, perfect-electrical-conductor (PEC) struc-
tures in vacuum. The analyzed structures are spatially confined to three rect-
angular regions connected together as illustrated in Fig. 1. The first region has
the length `1 and width w = 7 cm. This region is the fixed ground plane, [5, 6].
The second and third rectangular regions, with the lengths `2 and `3 = 0.7 cm,
respectively, and width w, represent the antenna region, [5, 6]. The lengths `1
and `2 are chosen such that `1 + `2 = ` = 14 cm. The region with the length
`3 extends in a direction perpendicular to the common plane of the other two
regions. This arrangement models, in a simplified manner, some common mobile
terminals.

Three situations of the above arrangement are considered. The structures
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corresponding to these situations have `2 = 0.7 cm, 1.4 cm and 2.8 cm, i.e., 5 %,
10 % and 20 % of `, respectively. The ground plane is fixed and metallic (PEC).
The antenna region is used for current optimization—to derive physical limita-
tions, and for genetic optimization—to find realistic structures approaching their
physical limitations. Physical limitations are derived using convex optimization
formulation (2.24) for the D/Q-ratio for each situation, [10]. Antennas are opti-
mized for minimum Q through the GA/MoM optimization procedure, [17, 23].

The mother structure, [17, 23], corresponding to the arrangement described
above consists of three infinitely thin PEC rectangular surfaces with the lengths
`1, `2 and `3, and width w arranged as in Fig. 1. This structure is discretized
with a non-uniform mesh, finer in the antenna region than in the ground plane
for all situations considered. The first 11.2 cm in the `-direction from the left
in Fig. 1 are divided in 40 mesh elements (and 25 in the w-direction). The
remaining 2.8 cm in the `-direction are divided in 20 mesh elements (and 50 in
the w-direction). The bent region is divided in 5 by 50 mesh elements in the `3
and w directions, respectively. This particular choice of discretization results in
square mesh elements with the side 1.4 mm in the antenna region and 2.8 mm in
the ground plane. A row of overlapping basis functions in the `-direction at the
place of the discontinuity in the mesh size couples electrically the regions with
different discretizations.

The mother matrices, i.e., the matrices Z, Xe, etc., describing the mother
structure, are square with 4435 rows. A block matrix decomposition is applied
to these matrices, [17]. This decomposition reduces the sizes of the matrices ma-
nipulated repetitively during the GA/MoM optimization. These latter matrices
are square with 990, 1485 and 2475 rows respectively for `2 = 0.7 cm, 1.4 cm and
2.8 cm.

The genetic optimization of antenna Q has been run for five frequencies,
given by `/λ = 0.1, 0.2, 0.3, 0.4, and 0.5. Five optimized structures have been
generated by the GA for each combination of `2 and frequency. The smallest
optimized-structure Q-factor (2.6) of the five corresponding to each combination
of `2 and frequency is labeled “Pred.” in Fig. 2. The optimized structures with
these smallest Q-factors (of which six are depicted in Fig. 3) have been simulated
using the commercial solver ESI-CEM, [7]. The input impedance of these struc-
tures is used to obtain the Q-factors labeled “Sim.” in Fig. 2. These Q-factors
agree to a large extent with those obtained using the in-house MoM solver and
the discrete expressions (2.3)–(2.6) (less than 6 % deviation relative to the former
Q values). The single-resonance model described in [9, 28], (2.13), is employed to
compute the Q-factor for `/λ = 0.1 and 0.2. The Q-factors for the other frequen-
cies are computed using the multiple-resonance, Brune-synthesis model, [27]. The
single-frequency QZ′ (2.22) has been applied to the structures having the small-
est Q-factors mentioned above. The QZ′ values in these cases have less than 5 %
difference relative to corresponding QZ′ values computed using (2.13).

The Q-factors obtained in optimization and simulation are compared to Q-
factors given by optimum antenna current distributions, labeled “Opt.” in Fig. 2.
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0.1 0.2 0.3 0.4
1

10

102

`/λ

Q 0.2 0.4 0.6 0.8 1f/GHz, ` = 14 cm

Opt. Pred. Sim.
`2 = 0.7 cm
`2 = 1.4 cm
`2 = 2.8 cm

Bound, rectangle

Figure 2: The Q-factors of antennas optimized using a genetic algorithm (“+”) com-
pared to corresponding Q-factors of D/Q-optimum current densities, [10], for the bent-
end model illustrated in Fig. 1 with `2 = 0.7 cm, 1.4 cm and 2.8 cm and ` = 14 cm. The
input impedance of the GA-optimized structures, computed by ESI-CEM, [7], has been
used to calculate the Q-factors “◦” using a resonance model [9, 27, 28]. The physical
bound on Q for a rectangular PEC surface 14 × 7 cm2, [11], is depicted in solid black
line.

Figure 3: Example of genetic algorithm optimized structures (gray shading—part of
the ground plane, black—antenna region part coplanar with the ground plane, bronze—
antenna region part normal to the ground plane) with Q-factors depicted in Fig. 2 for
`/λ = 0.1 (left column) and `/λ = 0.5 (right column), and `2 = 0.7 cm (top row), 1.4 cm
(middle row), and 2.8 cm (bottom row). Feeding edges are circled.
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These distributions are obtained using the convex optimization formulation (2.24)
for the D/Q-quotient, [10]. The matrices involved in these formulations are
square with 990, 1485 and 2475 rows respectively for `2 = 0.7 cm, 1.4 cm and
2.8 cm. These matrices are obtained using a uniform, 1.4 mm-side square mesh
element discretization of the mother structure—same mother structure as that
considered for GA optimization. The physical bound on the Q-factor of a rect-
angular PEC region with the dimensions 14× 7 cm2 computed using the results
in [11] is included for illustration. It is observed in Fig. 2 that the optimized-
structure Q-factors are close to those achieved by optimum antenna currents (less
than 13 % deviation relative to the optimum-current Q-factors). Note that the
current distributions used to compute the curves labeled “Opt.” in Fig. 2 are
optimum in the sense of D/Q. However, the Q-factors computed from these
distributions may not be optimum in the sense of the Q-factor. This may re-
sult in structures that are on the “wrong side” of the D/Q-optimum current
Q-factor, e.g., below the curves in Fig. 2. The D/Q-quotient of such structures
is on the “right side” of the physical bound.

3.3 Bent-End Simple Phone Model—Optimization for QZ′

The bent-end model with `1 = 12.6 cm and `2 = 1.4 cm, described in Sec. 3.2, has
been optimized using the GA for operation between 700 MHz and 960 MHz. This
frequency band is divided in two sub-bands with the center frequencies fc,1 =
759.5 MHz and fc,2 = 889.5 MHz, The fractional bandwidths of the two sub-bands
are equal, FBW1,2 ≈ 15.8 %. The matrices Z, Xe, Xm and Rr are computed for
the center frequencies. Two extra impedance matrices are computed for the
frequencies 1.001fc,1,2 in order to evaluate QZ′ at fc,1,2 using (2.13). The cost
function minimized by the genetic algorithm is

FC = αQ,M max

{
Q1

7
+
Q2

7

}
+ αQ,S

(
Q1

7
+
Q2

7

)
+ αQZ′ ,M max {QZ′,1 +QZ′,2}+ αQZ′ ,S (QZ′,1 +QZ′,2) , (3.1)

where the indices 1 and 2 denote the sub-band, Q is the energy-based antenna-
Q (2.6), QZ′ is the single-resonance input-impedance-derivative antenna-Q (2.13),
and the weights α define the optimization target. The normalization values for
Q, 7, ensure less than −6 dB reflection coefficient magnitude at the antenna input
for the targeted FBW, under the assumption of single-resonance. The QZ′ values
are not normalized because some applications target as low QZ′ as possible, i.e.,
little variation of the input impedance in the operation band.

The GA has been run five times for each optimization target whose α-values
are listed in Table 1. The Q-factors of the four GA-optimized structures depicted
in Fig. 4 (of the total 15 structures) are presented in the same table. The struc-
tures corresponding to rows 1, 2 and 3 have the minimum cost function. The
structure whose Q-factors are listed on row 4 has been optimized for simultaneous
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Target
αQ, αQZ′ , Q1 Q2 QZ′,1 QZ′,2

M S M S

1 min Q 1 0.1 0 0 4.6 3.7 2.9 0.3
2 min QZ′ 0 0 1 0.1 8.2 8.9 0.01 0.01
3

min Q & QZ′ 1 0.1 1 0.1
8.7 6.8 0.08 0.08

4 6.5 5.5 1.1 1.1

Table 1: GA cost function parameters and results for different optimization objectives

1 2 3 4

Figure 4: GA-optimized structures whose Q-factors are listed in Table 1. Gray
shading—part of the ground plane, black—antenna region part coplanar with the
ground plane, bronze—antenna region part normal to the ground plane. Feeding edges
are circled.

minimumQ andQZ′ , does not have the minimum cost function, but has minimum
Q on both sub-bands (out of the total 5 GA-optimized structures with this tar-
get). The values for QZ′ listed in Table 1 are evaluated with (2.13). These values
agree to a large extent with the same values reevaluated at the center frequencies
with (2.22). The four structures of Fig. 4 have been simulated in ESI-CEM [7].
The magnitudes of the reflection coefficients at the inputs of these structures
are depicted in Fig. 5. Matching networks that yield less than −6 dB reflection
coefficient in the entire band have been designed using BetaMatch [2]. These
networks are depicted in Fig. 6 and the resulting S11 magnitudes in Fig. 5. Real
component models of surface-mount device (SMD) lumped elements, including
losses, have been used for matching.

3.4 Wireless Terminal Antenna Placement Analysis Using
Optimum Currents

Optimum antenna currents can be employed for evaluation and comparison of the
performance achievable by a device with antennas placed at different locations.
For illustration, we would like to determine the position and shape of the antenna
region, [5, 6], that has the smallest Q-factor in the frequency range of Fig. 2. The
nine 3D simplified models of common hand-held wireless terminals depicted in
Fig. 7 are analyzed. These models are limited to a rectangular parallelepiped
with the dimensions `×w× h = 14× 7× 0.7 cm3 (i.e., length×width× height).
Note that limiting the structures to a parallelepiped is introduced for illustration
purpose and does not restrict the applicability of the procedure exemplified here.
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Figure 5: Magnitude of S11 at the input of the structures depicted in Fig. 4 without
matching network, the curves labeled 1, 2, 3 and 4, and with the matching networks
sketched in Fig. 6, the curves labeled 1m, 2m, 3m and 4m.
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3.3 p

2.2 p
27 n

15 n

4.7 p

2.2 p

1 2 3 4

Figure 6: Matching networks designed for the structures depicted in Fig. 4 to yield
less than −6 dB reflection coefficient magnitude between 700 . . . 960 MHz (solid curves
in Fig. 5). Component values in SI units. Matching networks numbered as structures
in Fig. 4—left to right and top to bottom.



104 Paper III

Struct. a b c d e, f g h i
N 7584 8256 7568 7584 8256 8256 10830 7584
NAR 1936 2608 1928 1944 2616 2612 5168 1992

Table 2: Dimensions of MoM matrices for the structures of Fig. 7

Each model is drawn in Fig. 7 to scale in three side views from the `, w and h-
directions (except for Fig. 7h where an h-side view and two sections through the
symmetry planes are depicted). Gray and black represent the ground plane and
antenna region, respectively. The thickness of the infinitely thin PEC material
is exaggerated.

The ground plane, [5, 6], consists of an infinitely thin planar PEC sheet that
covers 90 % of the area of one `× w face of the parallelepiped bounding the an-
tenna. The remaining 10 % of that face represents the support of the antenna
region, which may be continuous or divided in more sub-regions. Here, a maxi-
mum of two sub-regions have been used. The structures in the antenna regions
are limited to infinitely thin PEC sheets placed on faces of the 3D shape of the
antenna region. This shape is obtained by translating the 10 % of the `×w-face
area reserved for the antenna region a distance h perpendicularly to the ground
plane (i.e., by extruding the 10 % in the h-direction to the opposed face). The
shapes resulting in the antenna region are made of rectangular parallelepipeds.
These parallelepipeds are covered with PEC sheets on the four largest-area faces
(in the case depicted in Fig. 7h there are four openings adjacent to the ground
plane corners in the w × h-plane; these are one mesh-element wide and extend
the entire h-dimension).

The antenna region placement situations introduced above are discretized
using a uniform mesh of 1.75×1.75 mm2 rectangular elements. The total number
of basis functions, N , resulting for the structures depicted in Fig. 7 are presented
in Table 2 (i.e., the number of rows and columns, where applicable, of Z, Z′,
Xe, Xm, Rr, and F). The same table presents the number of rows, and columns
where applicable, NAR, of the blocks, [17], corresponding to the 10 %-`×w-area
antenna region [5, 6]. These blocks are computed for the matrices involved in the
convex optimization formulation (2.24).

The bounds on D/Q using formulation (2.24) for the simplified models of
Fig. 7 are depicted in Fig. 8. Linear polarization along the length and directivity
in the direction of the height of the parallelepiped bounding the models are
considered. The bound computed using the results in [11]1 for a rectangular,
infinitely thin, 14×7 cm2 PEC sheet is labeled “R” in Fig. 8. The D/Q-optimum
current distributions giving the physical bounds in Fig. 8 are used to compute
the Q-factors (2.6) depicted in Fig. 9. The physical bound on Q for a rectangular
14× 7 cm2 PEC sheet, [11], is labeled “R” in Fig. 9. The ring structure depicted
in Fig. 7h outperforms all other structures in the figure in terms of D/Q and Q,

1http://www.mathworks.se/matlabcentral/fileexchange/26806-antennaq
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a b c d e

f g h i

Figure 7: Nine simplified wireless-device models limited to a parallelepiped, consisting
of a planar ground region extending 90 % of one length×width face, and an antenna
region occupying 10 % of the parallelepiped volume. Three side views are depicted for
a-g and i, i.e., structures as seen along the length, width and height. A side view
along the height and two sections at the symmetry planes are depicted for h. Gray
shading—ground plane; black—antenna region, [5, 6].

except for a frequency region around `/λ ≈ 0.1 where the structure in Fig. 7b
has a greater D/Q. We also note that around `/λ ≈ 0.37 a few of the structures
in Fig. 7 reach close to the D/Q bound of a rectangular region and the structure
in Fig. 7h has a D/Q value greater than that of a rectangular region. The
optimum-current Q-factors do not reach as close to the physical bound on Q for
a rectangular region as the D/Q-values.

4 Conclusions

A method to estimate QZ′ of antennas from the current distribution computed
for a single-frequency is introduced. This method and other previous results
are applied to three analysis and design situations of three-dimensional radiating
structures. These applications suggest that customized physical bounds, opti-
mum currents, and single-frequency expressions such as (2.6), (2.22), are tools
that may be useful for antenna design, e.g., to stop an optimization process,
assess realizability of specifications, assess performance of antenna locations, etc.

The first situation mentioned above is global optimization of 3D antennas
with knowledge of physical bounds pertaining the radiating structure as it is,
without assumptions such as electrical size, bounding geometry, etc. The results
presented here suggest that single-frequency estimations such as (2.6) and (2.22)
can reduce the optimization time of some antenna parameters, e.g., antenna
bandwidth, Q. Furthermore, carefully integrated physical bounds can be used
for physical-limitation aware optimization, i.e., to stop an optimization process
when the target is achieved with a certain margin.

The second situation is a non-exhaustive study of optimizing antennas for
Q versus QZ′ , or both. Four examples illustrate values for Q and QZ′ obtained
by antennas optimized genetically for Q, (2.6), QZ′ , (2.13), and both. The three
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Figure 8: Physical bounds on D/Q for the structures depicted in Fig. 7 obtained using
the convex optimization formulation (2.24), [10], when only the antenna region (black
in Fig. 7) is optimized. The physical bound on D/Q for a rectangular PEC surface
14× 7 cm2, [11], is depicted in solid black line and labeled “R.”
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Figure 9: The Q-factors (2.6) achieved by the currents that give the optimum D/Q-
values depicted in Fig. 8. The Q-factor of a 14× 7 cm2 PEC rectangle, [11], is labeled
“R.”
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targets include simultaneous operation on two different frequencies. The different
frequencies can be centers of adjacent (as here) or separated frequency bands.

The third situation is the use of optimum antenna currents for determining
the optimum position of an antenna in a wireless device. Nine simplified device
models are analyzed, in which the antenna/antennas may occupy 10 % of the
device volume. These models can be generated manually (as is the case here) or
by an optimization process.
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Abstract

Physical bounds on the directivity Q-factor quotient and optimal cur-
rent distributions are determined for antennas of arbitrary shape and size
using an optimization formulation. A variational approach offers closed
form solutions for small antennas expressed in the polarizability of the
antenna structure. Finite sized antennas are solved using Lagrangian pa-
rameters in a method of moments formulation. It is also shown that the
optimal charge density for a small antenna can be generated by several cur-
rent densities. Numerical examples for small and large antennas are used
to illustrate the results.

1 Introduction

Chu used spherical waves to express the stored and radiated energies outside
the smallest circumscribing sphere of an antenna structure [3]. This approach
has dominated the research on small antennas and offers many results on the
Q-factor, and the directivity Q-factor quotient, D/Q, see [23] for an overview.
The physical bounds on D/Q were generalized to arbitrary shapes using the
forward scattering sum rule in [5, 7, 8]. Yaghjian and Stuart derived bounds on
the Q-factor in the limit of small antennas ka� 1, see [25]. In [22], Vandenbosch
determines analogous bounds on Q for non-magnetic antennas. The results in [5,
7, 8, 22, 25] are similar for the case of small dipole antennas composed of non-
magnetic materials.

In this paper, new bounds on D/Q are derived using the expression for the
stored energy given by Geyi [4] for small antennas and generalized to finite size
by Vandenbosch [21]. Closed form solutions are presented in the limit of small
antennas, where it is shown that it is sufficient to consider surface currents and the
minimization problem separates for electric dipoles, magnetic dipoles and their
combinations. Moreover, the bounds for the electric dipole case are identical to
the bounds in [5, 7, 8], in this limit. The combined bound also resembles the
combined TE and TM bound by Thal [18] for spherical geometries.

Antennas are often considered as small if ka 6 1 or ka 6 1/2, which is a range
of many interesting antennas. It is, hence, important to analyze the antenna
performance for ka in this range. Here, a Lagrangian formulation is used to solve
the D/Q optimization problem for finite ka. We show that this maximization
problem has large similarities with solving the classical integral equations in
electromagnetics using the method of moments (MoM). The maximizing currents
are obtained by solving a linear system. This makes the approach attractive as
it determines the optimal current distribution as well as the upper bounds on
D/Q.

The theoretical results are illustrated by numerical examples. The spherical
region is used to illustrate that there are several optimal current densities that
have identical charge densities. The considered current densities are similar to
the current densities on folded spherical dipoles, capped spherical dipoles [17],
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and folded spherical helix [2] antennas. Planar structures are analyzed in detail
and the obtained bounds are similar to the bounds in [5, 7–9, 13]. It is shown
that the self-resonant strip dipole antenna has a current density that is close to
the optimal current density and also performs close to the bound. Moreover,
numerical simulations show that an array of capacitively loaded dipoles performs
close to the bound.

The expressions for the stored energies in [21] are very useful and produce
similar bounds as in [5, 7, 8]. However, it is illustrated that the stored electric
energy can be indefinite and explicit results are presented for divergence free
loop type currents that have a negative stored electric energy for objects of the
size ka ≈ 3/2. It is shown that this problem can be mitigated by a Helmholtz
decomposition of the current.

This paper is organized as follows. The optimization formulation for D/Q in
the current density is introduced in Sec. 2. Closed form solutions in the limit of
small antennas are derived using a variational formulation in Sec. 3. In Sec. 4,
the D/Q bound is solved with a Lagrangian formulation for finite size antennas.
Numerical examples for a spherical region, strip dipole antennas and two dipole
arrays are presented in Sec. 5. Sec. 6 contains the conclusions. In App. A, explicit
examples are given that illustrates that the considered stored electric energy is
negative for some divergence free loop type currents.

2 Physical Bounds on the Directivity Q-factor
Quotient

We consider antennas that are confined to a bounded volume V , see Fig. 1. It is
assumed that the antenna structure is composed of non-magnetic materials. The
electromagnetic fields are generated by the current densities, J , flowing on the
antenna.

To determine the directivity Q-factor quotient, D/Q, we express these quan-

tities in terms of the definitions [1]. The partial directivity, D(k̂, ê), characterizes
the radiation properties of the antenna. It is defined as

D(k̂, ê) = 4π
P (k̂, ê)

Prad
, (2.1)

where P (k̂, ê) denotes the radiation intensity in the direction k̂ with polarization
ê and Prad is the total radiated power. The quality factor, Q, is defined as

Q =
2ωW

Prad
=

2c0kW

Prad
, (2.2)

where W = max{We,Wm} denotes the maximum of the stored electric and mag-
netic energies, ω is the angular frequency, k the wave number, and c0 the speed
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V

J(r)

kê ^

a
n̂

@V

Figure 1: Illustration of the object geometry V , with boundary ∂V and with outward
normal unit vector n̂ and current density J(r). The radiated far field is evaluated in
the k̂-direction for the polarization ê in free space. The object is circumscribed by a
sphere with radius a.

of light in free space. Combine (2.1) and (2.2) to express the directivity Q-factor
quotient as

D(k̂, ê)

Q
=

2πP (k̂, ê)

c0kW
. (2.3)

We now express D/Q in terms of the electric current density J in the antenna
volume V . Note that there are no magnetic currents due to the assumption of
non-magnetic materials. The radiation intensity from the current density J in
the direction k̂ and polarization ê is

P (k̂, ê) =
ζ0k

2

32π2

∣∣∣∣∫
V

ê∗ · J(r)ejkk̂·r dV

∣∣∣∣2 , (2.4)

where k̂ · ê = 0 is used, ζ0 denotes the free space impedance, the superscript, ∗,
denotes the complex conjugate, and the time convention ejωt is used.

The aim of this paper is to determine an upper bound on D/Q. It is not
clear how to decompose the energy in its radiated and stored parts, see e.g., [3,
4, 21, 26]. Similarly to the discussion in [22] we only use the vacuum terms of the
stored energies, see also [24]. Here, we use the results by Vandenbosch [21], and
write the free space part of the stored electric energy as We = µ0/(16πk2)w(e),
where

w(e) =

∫
V

∫
V

∇1 · J1∇2 · J∗2
cos(kR12)

R12
− k

2

(
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
)

sin(kR12) dV1 dV2, (2.5)

and J1 = J(r1), J2 = J(r2), R12 = |r1 − r2| and µ0 is the permeability of
free space. The corresponding stored magnetic energy is Wm = µ0/(16πk2)w(m),
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where

w(m) =

∫
V

∫
V

k2J1 · J∗2
cos(kR12)

R12
− k

2

(
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
)

sin(kR12) dV1 dV2. (2.6)

We now have an explicit expression for D/Q in the current density J , i.e.,

D(k̂, ê)

Q
= k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}
, (2.7)

where w(e)(J) and w(m)(J) are defined in (2.5) and (2.6). The D/Q quotient is
maximized to produce physical bounds, i.e.,

D(k̂, ê)

Q
6 max

J
k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}
, (2.8)

where J are all the admissible current densities in V . The continuity of the
normal component requires that n̂ ·J(r) = 0 for r ∈ ∂V , where n̂ is the outward
unit normal of the antenna volume V , see Fig. 1.

Note that (2.8) is invariant for amplitude scalings J → αJ , and if J0 is

a solution to the maximization problem, then J1 = J0/
∫
ê∗ · J0ejkk̂·r dV is

another solution to it. This property is used repeatedly in the upcoming sections
to reformulate the optimization problem and to determine the maximizing current
density.

We first analyze electrically small antennas to find closed form solutions of
the D/Q-bound in Sec. 3, i.e., the current expressions are analyzed in the limit
ka→ 0, where a denotes the radius of the smallest sphere that circumscribes the
antenna volume V . The general case with finite ka is considered in Sec. 4.

3 Electrically Small Antennas

The radiation intensity (2.4) and stored electric (2.5) and magnetic (2.6) energies
simplify in the low-frequency limit, k → 0 for fixed a. We use the expansions

ejkk̂·r = 1 + jkk̂ · r + O(k2) and J = J (0) + kJ (1) + o(k) as k → 0, where

∇ · J (0) = 0 and ∇ · J (1) = −jρ follow from the continuity equation. Note that
the charge density in SI-units is given by ρSI = ρ/c0. The radiation intensity (2.4)
is expanded as∫

V

J(r)ejkk̂·r dV =

∫
V

J (0)(r) + kJ (1)(r) + jkk̂ · rJ (0)(r) +O(k2) dV

= −k
∫
V

r∇ · J (1)(r) +
j

2
k̂ × (r × J (0)(r)) dV +O(k2), (3.1)
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as k → 0, see [20]. We observe that the first term corresponds to an electric
dipole and the second term to a magnetic dipole. The stored electric (2.5) and
magnetic (2.6) energies have the low-frequency expansions [4, 21, 22]

w(e) = k2

∫
V

∫
V

ρ(r1)ρ∗(r2)

|r1 − r2|
dV1 dV2 (3.2)

and

w(m) = k2

∫
V

∫
V

J (0)(r1) · J (0)∗(r2)

|r1 − r2|
dV1 dV2, (3.3)

respectively. Insert the last three expressions into (2.8) to get the bound

D

Q
6 max
ρ,J(0)

k3

∣∣∣∣∫
V

ê∗ · rρ(r) +
1

2
ĥ
∗
× r · J (0)(r) dV

∣∣∣∣2
max

{∫∫
V

ρ1ρ
∗
2

R12
dV1 dV2,

∫∫
V

J
(0)
1 · J

(0)∗
2

R12
dV1 dV2

} , (3.4)

where we have used the magnetic polarization ĥ = k̂ × ê and the notation
ρn = ρ(rn) and J (0)

n = J (0)(rn), n = 1, 2. We observe that the optimization

decouples in ρ and J (0), see [10]. The case with J (0) = 0 corresponds to an
antenna radiating as an electric dipole and it is analyzed in Sec. 3.1. The case
with ρ = 0 corresponds to an antenna radiating as a magnetic dipole and it is
analyzed in Sec. 3.2. In general, both quantities can be non-zero and this case is
discussed in Sec. 3.3.

3.1 Electric Dipole

A small antenna that radiates as an electric dipole, i.e., J (0) = 0 in (3.4), gives
the maximization problem:

De

Qe
6 max

ρ

k3

4π

∣∣∣∣∫
V

ê∗ · rρ(r) dV

∣∣∣∣2∫
V

∫
V

ρ(r1)ρ∗(r2)

4π|r1 − r2|
dV1 dV2

. (3.5)

The term 4π is included to simplify the identification with the free space Green’s
function.

Consider the optimization problem:

maximizeρ

∣∣∣∣∫
V

ê∗ · rρ(r) dV

∣∣∣∣2∫
V

∫
V

ρ(r1)ρ∗(r2)

4π|r1 − r2|
dV1 dV2

, (3.6)
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subject to the constraint
∫
V
ρdV = −j

∫
∂V
n̂ · J (1) dS = 0 that follows from the

continuity of the normal component of the current density, i.e., n̂ ·J (1) = 0 at the
boundary. We note that this maximization problem is homogeneous for scalings
ρ → αρ and, if ρa is a solution to (3.6), then ρb = ρa/

∫
ê∗ · rρa dV is another

solution to it. Thus, (3.6) can be rewritten as

minimizeρ

∫
V

∫
V

ρ(r1)ρ∗(r2)

4π|r1 − r2|
dV1 dV2, (3.7)

subject to the scaling invariant constraints
∫
ê∗ · rρ(r) dV = E0γ and the charge

conservation constraint
∫
ρ(r) dV = 0, where E0 ∈ C and γ ∈ R are constants.

This is a standard minimization problem that is easily solved by introducing
basis functions for ρ and using Lagrange multipliers [16]. We can also write the
solution as an integral equation using a variational formulation, see also [22] for
a corresponding variational approach to minimize the Q-value. The minimum
of (3.7) is stationary with respect to variations ρ → ρ + δρ′ as δ → 0. To the
first order in δ, we get∫

V

ρ′(r2)

∫
V

ρ∗(r1)

4π|r1 − r2|
dV1 dV2 = 0, (3.8)

together with ∫
V

ê∗ · rρ′(r) dV = 0 and

∫
V

ρ′(r) dV = 0, (3.9)

for all ρ′(r). This shows that ρ satisfies the volume integral equation∫
V

ρ(r1)

4π|r1 − r2|
dV1 = E0ê · r2 + C for r2 ∈ V, (3.10)

where E0 is the constant introduced above and the constant C is determined
from the condition

∫
ρ(r) dV = 0. This is an integral equation for the region V

with constant potential and zero total charge in a homogeneous exterior electric
field E0ê. Applying ∇2 to (3.10) shows that ρ(r2) = 0 for r2 ∈ V \ ∂V . The
solution is hence given by the surface charge density ρs, determined from the
boundary integral equation∫

∂V

ρs(r1)

4π|r1 − r2|
dS1 = E0ê · r2 + C for r2 ∈ ∂V. (3.11)

This is the integral equation for the charge density used in the computation of
the high-contrast polarizability dyadics [14]. Rewriting (3.5) by making use of
the previous results, we get

De

Qe
6
k3

4π

|E0|2γ2∫
∂V

∫
∂V

ρs(r1)ρ∗s (r2)

4π|r1 − r2|
dS1 dS2

=
k3

4π
γ. (3.12)
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Figure 2: Bounds on D/(Qk3a3) for a spheroid with height `z, width `x, electric
polarization ê = x̂, and a = max{`x, `z}/2.

Using the high-contrast polarizability dyadic of the region V ,

γ = ê∗ · γ∞ · ê =
1

E0

∫
∂V

ê∗ · rρs(r) dS, (3.13)

we obtain the final bound

De(k̂, ê)

Qe
6
k3

4π
ê∗ · γ∞ · ê. (3.14)

The bound (3.12) is identical to the bound in [7, 8] for the generalized ab-
sorption efficiency η = 1/2. This verifies that η = 1/2 for small dipole antennas
as shown in [5]. It is also observed that η ≈ 1/2 for many narrow band, Q� 1,
minimum scattering antennas, i.e., it is not required that ka→ 0 for the bound
in [7, 8] to hold.

The bound (3.14) is illustrated in Fig. 2 for a spheroid with height `z, width
`x, and polarization ê = x̂, see [10] for details1. It is observed that De/Qe 6 k3a3

for a sphere `x = `z. This can also be written Qe > 3/(2k3a3) as D = 3/2 for
small dipole antennas. This is identical to the bound by Thal [18]. The bound
approaches De/Qe 6 4k3a3/(3π) and Qe > 9π/(8k3a3) in the limit of a circular
disc `z = 0, see also [7–9, 25].

1see also http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq
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3.2 Magnetic Dipole

The corresponding magnetic dipole radiator is obtained when ρ = 0 in (3.4) and
its D/Q performance is bounded by

Dm

Qm
6
k3

4π
max
J(0)

∣∣∣∣∫
V

1

2
ĥ
∗
× r · J (0)(r) dV

∣∣∣∣2∫
V

∫
V

J (0)(r1) · J (0)∗(r2)

4π|r1 − r2|
dV1 dV2

, (3.15)

where ĥ = k̂ × ê. We use the amplitude scaling invariance to rewrite the mini-
mization problem as

minimizeJ(0)

∫
V

∫
V

J (0)(r1) · J (0)∗(r2)

4π|r1 − r2|
dV1 dV2, (3.16)

subject to the constraints ∇·J (0) = 0 and 1
2

∫
V
ĥ
∗
×r ·J (0)(r) dV = H0ν, where

H0 ∈ C and ν ∈ R are constants. The perturbation J (0) → J (0) + δJ (0)′ shows
that ∫

V

J (0)′(r2) ·
∫
V

J (0)∗(r1)

4π|r1 − r2|
dV1 dV2 = 0, (3.17)∫

V

ĥ
∗
× r · J (0)′(r) dV = 0, (3.18)

and ∇ · J (0)′ = 0. Thus, the solution satisfies the following volume integral
equation: ∫

V

J (0)(r1)

4π|r1 − r2|
dV1 =

H0

2
ĥ× r2 +∇ψ(r2) for r2 ∈ V, (3.19)

where ψ(r2) is an arbitrary function to account for the constraint ∇ · J (0) = 0,
assuming sufficient constraint on the regularity of the domain (e.g., Lipschitz)
and functions that Green’s formula hold see e.g., [15]. Taking the divergence

of the above equation and using n̂(r) · J (0)(r) = 0 for r ∈ ∂V , shows that

∇2ψ(r2) = 0 for r2 ∈ V . Applying ∇×∇× · to (3.19) implies that J (0)(r2) = 0
for r2 ∈ V \∂V . This gives the boundary integral equation for the surface current

density J (0)
s (r1) as:

n̂×
∫
∂V

J (0)
s (r1)

4π|r1 − r2|
dS1 =

H0

2
n̂× (ĥ× r2) + n̂×∇ψ(r2) for r2 ∈ ∂V. (3.20)

Note that the restrictions to the tangential components follow from the vanishing

normal component of the current density at the boundary, i.e., n̂ · J (0)′(r2) = 0
for r2 ∈ ∂V in (3.17).



4 Non Electrically Small Antennas 121

The bound for the optimizing J s (3.15) becomes

Dm

Qm
6
k3

4π

|H0|2ν2∫
∂V

∫
∂V

J (0)
s (r1) · J (0)∗

s (r2)

4π|r1 − r2|
dS1 dS2

=
k3

4π
ν. (3.21)

where we identify ν as the ĥ-component of the magnetic moment.
The bound for a spheroid with ĥ = ẑ and surface currents J = Jφφ̂ is

depicted in Fig. 2. It is observed that Dm/Qm = De/(2Qe) for this case, see
also [10]. In particular this gives Dm/Qm 6 k3a3/2 and Dm/Qm 6 k3a38/3 for
spheres and discs, respectively.

3.3 Combined Electric and Magnetic Dipoles

Maximization of (3.4) is given by the combination of the electric and magnetic
dipole cases. It is first observed that

max
a,b

|αa+ βb|2

max{|a|2, |b|2}
= (α+ β)2, (3.22)

for α > 0 and β > 0, see [10]. Replace α and β with the electric (3.12) and
magnetic (3.15) cases, i.e., α =

√
De/Qe and β =

√
Dm/Qm to obtain the

bound for combined electric and magnetic dipole radiators:

D

Q
6

(√
De

Qe
+

√
Dm

Qm

)2

. (3.23)

The combined bound (3.23) is depicted in Fig. 2 for a sphere with polarization
ê = x̂. It is seen that D/Q 6 (1 +

√
1/2)2k3a3 ≈ 2.9k3a3 for this case. For

an electrically small, spherical radiator, the bound reads D/Q 6 2.9k3
0a

3. Note
that the bound in [7, 8] is sharper than (3.23) for linearly polarized antennas; see
also [6] for the circular polarization case.

The upper bound (3.23) requires that the electric and magnetic dipoles con-
tribute equally and have the polarization ê. This gives the partial directivity
D = 3 and implies that Q > 3/2.9(ka)−3 for a spherical region. This is similar
to the combined TE and TM bound in [19].

4 Non Electrically Small Antennas

The general expression (2.8) offers the possibility to analyze D/Q in terms of the
current, J , that flows on the antenna. It also offers the possibility to optimize
an antenna with respect to its D/Q performance. In order to increase the D/Q
ratio, we make the assumption that either the stored electric or magnetic energy
is greater than the other.
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4.1 Optimization Formulation for D/Q

We illustrate the maximization of (2.8) assuming that the stored electric energy
is greater than the stored magnetic energy. Thus, using the amplitude scaling in-
variance in (2.8), the maximization problem can be reformulated as the following
minimization problem:

minimizeJ

∫
V

∫
V

∇1 · J1∇2 · J∗2
cos(kR12)

R12

− k

2

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)
sin(kR12) dV1 dV2, (4.1)

subject to the constraint ∣∣∣∣∫
V

ê∗ · J(r)ejkk̂·r dV

∣∣∣∣ = 1. (4.2)

To account for the appropriate class of admissible current densities we also impose
the condition

n̂ · J(r) = 0 for r ∈ ∂V. (4.3)

The first constraint can be reduced to∫
V

ê∗ · J(r)ejkk̂·r dV = 1, (4.4)

using the amplitude scale invariance in (2.8), see Sec. 2.
An alternative technique to the variational method of Sec. 3 for obtaining the

optimal currents is described in the following. We represent the current densities
in appropriate basis functions ψm,

J(r) =

M∑
m=1

Jmψm(r), (4.5)

and denote J = (J1, J2, . . . , JM )T. Introduce the matrix C with elements

Cmn =

∫
V

∫
V

∇1 ·ψm(r1)∇2 ·ψn(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2ψm(r1) ·ψn(r2)−∇1 ·ψm(r1)∇2 ·ψn(r2)

)
sin(k|r1 − r2|) dV1 dV2

(4.6)

for m,n = 1, 2, ...,M . The equivalent minimization problem in this basis repre-
sentation takes the form

min
Jm

M∑
m=1

M∑
n=1

J∗mCmnJn = min
J

JHCJ, (4.7)
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subject to the constraints

M∑
m=1

Jm

∫
ê∗ ·ψm(r)ejkk̂·r dV =

M∑
m=1

A∗m,1Jm = 1 (4.8)

and
n̂ ·ψm(r) = 0 for r ∈ ∂V. (4.9)

In matrix notation AHJ = f , where: A∗m,1 =
∫
ê∗ ·ψm(r)ejkk̂·r dV, and f = 1.

The optimization problem (4.7) to (4.9) is solvable using Lagrange multipliers
ν, [16], resulting in the linear system(

C A
AH 0

)(
J
ν

)
=

(
0
f

)
. (4.10)

Note that the constraint (4.9) can be included in the basis functions ψm. Return-
ing to the matrix C with elements given in (4.6), note that we can represent the
first kernel with cosines as Re(G) where G is the Green’s function correspond-
ing to the scalar Helmholtz equation. Thus, with minor modifications on e.g.,
a method of moments solver, we can implement the above outlined optimiza-
tion problem. Below we illustrate the solutions of the optimization for planar
rectangular structures.

4.2 Planar Rectangular Structures

Consider a planar rectangle in the xz-plane and broad side radiation k̂ = ŷ with
linear polarization ê = x̂. A Helmholtz decomposition [15] of the surface current

J = ∇tJ
(g) + ∇t × J (c) simplifies the corresponding electric energy (2.5) (and

equivalently the matrix C in (4.6)), where ∇t denotes the transverse part of ∇. It

is seen that the radiation in the ŷ-direction is independent of J (c). This reduces
the optimization problem (4.10) to the irrotational part of the current density,

i.e., we use J (c) = 0.
Optimization of the D/Q-ratio (2.8) using (4.10) yields the result shown in

Fig. 3. The bound is depicted for k`x = {0, 0.1, 1, 2, 3} and normalized with the
electrical size k3a3 to decrease the dependence on ka, where a = (`2x + `2z)1/2.
It is observed that it is not possible to distinguish the k`x = {0, 0.1, 1} cases
in the figure and that the bound increases slightly for the k`x = {2, 3} cases.
The results for k`x = {2, 3} are only shown when their corresponding Q-factors
are sufficiently large, see the corresponding Q-values in Fig. 4. This means that
there are no severe bounds on Q for these rather large structures. Note that
ka ≈ 10 for k`x = 2 and `z/`x = 20. The figures also contain the asymptotic
expressions in [10] where it is assumed that the current is of the form J = Jx(x)x̂
and k`z � 1.
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Figure 3: Bound on D/Q for a planar rectangle with sides `x and `z for k`x =
{0, 0.1, 1, 2, 3} and k̂ = ŷ normal to the rectangle and ê = x̂. The solid curves show
the bounds determined for irrotational surface currents, ∇t ×J = 0, using (4.10). The
dashed curves show the corresponding asymptotic results in [10].
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Figure 4: Resulting Q factors for planar rectangles with sides `x and `z for k`x =
{0, 0.1, 1, 2, 3} and k̂ = ŷ normal to the rectangle and ê = x̂ from the D/Q bound in
Fig. 3. The solid and dashed curves show the results for arbitrary irrotational surface
currents, ∇t × J = 0, using (4.10) and the asymptotic expression in [10], respectively.
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5 Numerical examples

We illustrate the theoretical results with numerical examples of some current dis-
tributions on spherical regions, current distributions and bounds on strip dipoles,
and planar rectangular array antennas.

5.1 Spherical Region

It is observed that the currents that generate the optimal D/Q-ratios are not
unique. We illustrate this for a simple electric case, in the limit of small ka so
that we can use the variational formulation in (3.5). Consider a spherical volume
of radius a and electric polarization ê = ẑ. The optimal charge distribution
determined from (3.11) is of the form ρ(θ, φ) = ρ0 cos θ. The corresponding
surface current density satisfies ∇ · J = −jkρ (recall ρSI = ρ/c0) on the surface
of the sphere. This gives

∂

∂θ

(
sin θJθ

)
+
∂Jφ
∂φ

=
−jkaρ0 sin(2θ)

2
(5.1)

This equation has many solutions, e.g., all the functions of the form

J = Jθ0θ̂
(

sin θ − β

sin θ

)
+

1

sin θ

∂A

∂φ
θ̂ − ∂A

∂θ
φ̂ (5.2)

where Jθ0 = −jkaρ0, β is a constant, and A = A(θ, φ).
The simplest solution to (5.1) is a rotationally symmetric current density in

the θ̂-direction that vanishes as θ = 0 and θ = π, i.e., J = θ̂Jθ0 sin θ. This is a
surface current density that generates a single spherical TM mode. It is noted
that the surface current density on a folded spherical dipole has this form, see
Fig. 5a. An alternative solution is obtained by the requirement that the current
density vanishes at θ = π/2. This gives the solution J = Jθ0θ̂(sin θ − 1/ sin θ),
see Fig. 5b. This surface current density is infinite at θ = 0 and θ = π and
resembles the current density on a capped spherical dipole [17]. A third solution
is offered by β = 0 and A = A(θ). In particular, we consider the surface current

density J = Jθ0
(
0.15θ̂ sin θ − φ̂ sign(cos θ) sin2 θ

)
, as this solution is similar to

the current density on a spherical folded helix, see Fig. 5c.

5.2 Strip Dipole Antennas

The optimal current distributions are determined for rectangles with side lengths
`y = ξ`x with ξ = {0.1, 0.01, 0.001} using (4.10) for ka 6 2. The surface current
in the center J(x, 0) = Jx(x)x̂ is depicted in Fig. 6 for the half-wave antenna,
i.e., ka ≈ 1.5, where a = (`2x + `2y)1/2/2. It is observed that the currents resemble
the commonly assumed cos(πx/`x) shape.

The corresponding bound on D/Q normalized with (ka)3 is shown in Fig. 7.
Here it is seen that the performance improves with the width of the rectangle.
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Figure 5: Examples of surface current distributions on spheres with the surface
charge density ρ = ρ0 cos θ. a) folded spherical dipole with J ≈ Jθ0θ̂ sin θ. b)
capped spherical dipole with J ≈ Jθ0θ̂(sin θ − 1/ sin θ). c) folded spherical helix with
J ≈ Jθ0

(
0.15θ̂ sin θ − φ̂ sign(cos θ) sin2 θ
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.
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Figure 6: Optimal current distribution (4.10) for planar rectangles with side lengths
`y = ξ`x with ξ = {0.1, 0.01, 0.001} and ka = 1.5 (solid curves). Simulated currents
on a strip dipole for the inductively loaded and self-resonant case respectively with
`y = 0.01`x for ka ≈ {0.28, 1.49} (dashed curves). Theoretical current distribution,
cos(πx/`x)(dotted curve)

Moreover, D/(Qk3a3) is nearly independent of the electrical size of the structure
for ka 6 1.5.

The resulting Q-factor is computed from the current distribution using the
radiated power in [21], see Fig. 8. It is observed that Q decreases with the increase
of the width of the strip. The directivity D is depicted in Fig. 9. Here, it is seen
that the directivity increases with the electrical size of the object.

The bounds are compared with numerical results for a center fed strip dipole
with `y = 0.01`x. The dipole is self-resonant for ka ≈ 1.49 with the directivity
D ≈ 1.63. The Q-factor is estimated to Q ≈ 6 using the differentiation of the
impedance [11, 26]. These results are indicated with stars at ka ≈ 1.49 in Figs 7
to 9. The corresponding current density is also depicted in Fig. 6. It is observed
that the self-resonant dipole has a current distribution that resembles the optimal
current distribution. The estimated values of D/Q, D, and Q are also close to
the corresponding optimal values.

It is also illustrative to consider an inductively loaded strip dipole with the
same dimensions. The loading decreases the resonance wave number to ka ≈ 0.28
and the parameters are estimated to D ≈ 1.5, Q ≈ 1250, and D/(Qk3a3) ≈ 0.054,
see the stars at ka ≈ 0.28 in Figs 7 to 9. It is observed that the performance of
the loaded dipole is farther away from the optimum than the performance of the
unloaded dipole. This is also seen from the shape of the current distribution in
Fig. 6.
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Figure 7: Bound on D/Q normalized with k3a3 for a planar rectangle with side
lengths `y = ξ`x where ξ = {0.1, 0.01, 0.001}. The numerical results for strip dipoles
with ξ = 0.01 and ka ≈ {0.28, 1.49} are indicated by the stars.
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Figure 8: Q factor for the optimal current distributions corresponding to the D/Q
bound in Fig. 7. The numerical results for strip dipoles with ξ = 0.01 and ka ≈
{0.28, 1.49} are indicated by the stars.
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Figure 10: Illustrations of the physical bounds on the effective antenna aperture, σa,
of planar rectangular circumscribing regions with height `x, width `z, and physical area
A = `x`z.

5.3 Array Antennas

The performances of linear arrays are illustrated with numerical results using the
method of moments (MoM) for dipole and capacitively loaded dipole elements.
The one-dimensional dipole array consists of n elements with the length `x and
the width ∆ = `x/50 and inter-element spacing `x. This gives approximately
arrays with half a wavelength, λ0/2, spacing. The array is modeled as perfectly
conducting with a gap feed model. The passive array is analyzed, where iden-
tical lumped resistances, R0, are placed in the feed gaps. The resistance R0 is
determined by maximizing the effective antenna aperture at the first resonance
frequency, see [13] for details.

The dipole array is compared with the physical bounds for antennas confined
to rectangular regions, see Fig. 3. The electric polarization of the arrays is
aligned with the `x-direction. The arrays with n elements are circumscribed by
rectangles with height `x and width `z = (n − 1)`x + `x/50 for n = 1, ..., 10.
The corresponding results are shown in Fig. 10, where the effective antenna
aperture, σa, (absorption cross section) is normalized with the physical area, A.
The physical bound is drawn for k`x = 0 and the asymptotic result in [10] for
k`x = {1, 2}. It is observed that the performances of the capacitively loaded
dipoles are close to the physical bound. The dipole array is a factor of 1/15
below the physical bound. Using the polarization interpretation on the array
of [13] we see that this is due to the reduction of polarizability of the dipole as
compared with the rectangle.
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6 Conclusions

Upper bounds on the directivity antenna Q quotient, D/Q, are derived based
on a quadratic optimization problem. The D/Q quotient is formulated in the
current density on the antenna structure as given from the radiation intensity and
the expressions of the stored energies in [4, 21, 22]. The expression is not bases on
a small antenna limit assumption opening the possibility to analyze electrically
large structures. The optimization problem is solved analytically in the limit
of small antennas and numerically using Lagrange parameters for arbitrary size
antennas. The upper bounds are useful as they show how the shape and size of
the antenna geometry affect the antenna performance [5, 7, 8]. They can also be
used as a priori estimates of what can be expected from an antenna in a given
geometry.

The closed form solution for small antennas expresses the bounds in the po-
larizability of the antenna structure. The bound on non-magnetic antenna struc-
tures is identical to the bound in [5, 7, 8] and agrees with the results in [25] for
the directivity D = 3/2. In [22], Vandenbosch considered the corresponding
bound on Q for small antennas using a line search optimization algorithm. In
contrast, the results presented here are for D/Q where the bound can be solved
analytically. This formulation distinguishes between the polarizations (linear, in
different directions as well as circular). It is also shown that it is sufficient to
consider surface currents in this small ka-limit. Moreover, the case with com-
bined electric and magnetic dipoles is analyzed, where it is noted that the results
resemble the mixed TE and TM bound in [18] for spherical regions.

We also illustrate that there are several current densities for a given charge
density. The explicit solutions for a spherical region include current distributions
that resemble the current on folded spherical dipoles, capped spherical dipoles,
and folded spherical helices.

Lagrange multipliers are used to solve the D/Q optimization problem for
finite size antennas. This reformulates the problem of obtaining the optimal
current densities as a linear system that has many similarities with standard
method of moments solvers. It is shown that the bound performs well for fairly
large antennas with high directivity. It is illustrated that the stored electric
energy in [21] can be negative for certain kinds of loop type currents on planar
structures. Although this stored energy corresponds to a case that can cause
numerical problems this can be mitigated with a Helmholtz decomposition of the
current density.

Appendix A Negative stored Electric Energy

In Sec. 4.2, we removed the loop-currents J (c) through the observation that they
do not contribute to the radiation in the normal direction. If the numerical
optimization is done with these currents, it is observed that they may cause a
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Figure 11: Stored electric energy for circular (A.1) and rectangular loop currents.

negative stored electric energy (2.5). This behavior of the stored electric energy
is illustrated here using simple examples.

Consider first the following divergence free i.e., ∇ · J = 0, current density
J(r) = I0δ(% − a)δ(z)φ̂, where δ denotes the Dirac delta distribution, I0 is a
constant that depends on the source of current, and the cylindrical coordinates
(%, φ, z) are used. In this case, the stored electric energy (2.5) reduces to

w(e) = −πk3a2I2
0

∫ 2π

0

cosφ sin

(
2ka sin

φ

2

)
dφ. (A.1)

Numerical integration shows that w(e) is positive for ka < 1.5, see Fig. 11. When
the electric size of the structure increases, the electric energy becomes negative
for some objects. It is noted that the corresponding stored magnetic energy is
infinite for the considered current.

For a rectangular surface of dimensions `x, `y we use the current density
J = I0δ(z)

(
(δ(y + `y/2) − δ(y − `y/2))x̂ + (δ(x − `x/2) − δ(x + `x/2))ŷ

)
. The

corresponding stored electrical energy is shown in Fig. 11.
It is important to note that the current used in (A.1) contains no phase or

amplitude variation and it is a mathematical construction with the purpose of
illustrating that direct optimization of (4.7) can be difficult. The total electric
energy defined as the integral of |E|2 is also positive.

In Sec. 4, we used a Helmholtz decomposition to reduce the problem with the
indefinite stored electric energy. This decomposition is motivated by the energy
expressions for small antennas in Sec. 3, where it is observed that the stored
magnetic energy dominates over the stored electric energy for divergence free
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current densities, ∇ · J = 0. Moreover, the identity∫
R3

∫
R3

(
(∇1×J1)·(∇2×J∗2)+(∇1 ·J1)(∇2 ·J∗2)−k2J1 ·J∗2

)cos(kR12)

R12
dV1 dV2

= 4π

∫
R3

|J |2 dV (A.2)

for all smooth current densities J supported in a bounded region show that

w(e) − w(m) = 4π

∫
R3

|J |2 dV > 0 (A.3)

if ∇ × J = 0. This suggests that the Helmholtz decomposition [15] J =

∇J (g) +∇× J (c) can be used to separate the currents into the dominantly elec-
tric and magnetic parts ∇J (g) and ∇ × J (c), respectively. It is also noted that
the decomposition into spherical TE and TM modes in [12] is based on a similar
factorization.
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Abstract

The all spectrum absorption efficiency appears in the physical bounds on
antennas expressed in the polarizability dyadics. Here, it is shown that this
generalized absorption efficiency is close to 1/2 for small idealized dipole
antennas and for antennas with a dominant resonance in their absorption.
Also, the usefulness of this parameter is analyzed for estimation of antenna
performance. The results are illustrated with numerical data for several
antennas.

1 Introduction

A new set of physical bounds on antennas was introduced in [4–7, 16]. These
bounds relate the performance of the antenna to the electro- and magneto-static
polarizability dyadics of a circumscribing geometry. This generalizes the classical
bounds by Chu [3] for spherical geometries to geometries of arbitrary shape. The
new bounds are valid for lossless and linearly polarized [4, 6, 7, 16] and elliptically
polarized [5] antennas. Moreover, the approach can be used to estimate the
performances of many small antennas if the polarizabilities of the antennas are
used instead of the circumscribing geometries [4, 7, 16].

The only parameter in the bound that depends on the dynamic properties
of the antenna is the generalized (or all spectrum) absorption efficiency, η. This
is the generalization of the frequency dependent absorption efficiency analyzed
in [1] given by integration of the absorbed and total power, independently, over
all wavelengths.

In [4, 6, 7, 16], it is demonstrated that η is close to 1/2 for many small antennas
that are connected to a frequency independent resistive load and matched at
their first resonance. This is motivated by the minimum scattering property
that small matched antennas often possess, i.e., they scatter as much power as
they absorb at the resonance frequency giving an absorption efficiency of 1/2
at the resonance frequency [1, 12]. Here, it is shown that small idealized dipole
antennas with a dominant first single resonance have an all spectrum absorption
efficiency η > 1/2. The region around the resonance is minimum scattering but
the contributions from regions away from the resonance scatter slightly more
power than is absorbed giving a generalized (all spectrum) absorption efficiency
close to but less than 1/2.

Minimum scattering is a property that many non electrically small resonant
antennas also possess. Numerical simulation results of common antennas, both
electrically small and not small, verify the theoretical results.

2 Absorption efficiency

The physical bounds analyzed in [4, 6, 7, 16] are derived for single port, linearly
polarized, reciprocal, and lossless antennas with the reflection coefficient Γ (k)
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and the directivity D(k; k̂, ê), where k denotes the free space wave number, k̂
the direction, and ê the electric polarization. The forward scattering sum rule [6]
gives the antenna identity∫ ∞

0

(1− |Γ (k)|2)D(k; k̂, ê)

k4
dk =

η

2

(
ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

)
, (2.1)

where γe and γm are the electro- and magneto-static polarizability dyadics, re-
spectively. The integral (2.1) is bounded in various ways to produce bounds for
different applications, e.g., resonant and constant partial-realized gain in [4, 6, 7]
and ultra-wide band cases in [16]. The resonant case is applicable for antennas
with a dominant first single resonance [7]. It is given by

D(k; k̂, ê)

Q
6
ηk3

0

2π

(
ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)

)
, (2.2)

where k0 is the resonance wave number and Q denotes the Q-factor at the reso-
nance, i.e., it has the half-power fractional bandwidth B ≈ 2/Q.

The polarizability dyadics in the right-hand sides of (2.1) and (2.2) are easily
determined for the antenna or, as an upper bound, for an arbitrary circumscrib-
ing geometry1 by the solution of the corresponding electro- and magneto-static
equations [4, 6, 7, 16]. This leaves the generalized absorption efficiency, η, as the
only quantity in the right-hand sides of (2.1) and (2.2) that depends on the dy-
namic properties of the antenna. It is an all spectrum measure of the absorption
and scattering properties of the object, that is defined by

η =

∫ ∞
0

σa(k)

k2
dk∫ ∞

0

σext(k)

k2
dk

=

∫ ∞
0

σa(2π/λ) dλ∫ ∞
0

σext(2π/λ) dλ

, (2.3)

where σext = σa +σs, σa, and σs denote the extinction, absorption, and scattering
cross sections, respectively and λ = 2π/k is the wavelength. It is clear that
0 6 η < 1 for all objects as σa > 0 and σs > 0. In [4, 7], it is observed that η ≈ 1/2
for many small antennas that are matched at a dominant first resonance k0. This
is partly explained by the fact that the absorption efficiency σa(k0)/σext(k0) =
1/2 for minimum scattering antennas, i.e., small single mode antennas absorb
and scatter the same amount of power at the resonance frequency [1, 12]. The
weighting factor, k−2, in (2.3) emphasizes the dynamics of the antenna for low
wave numbers. Thus, the lower the resonance frequency, the closer η is to 1/2 as
the resonance region will dominate the integrals. As a consequence, the theory
derived here is useful if the analyzed resonance has the lowest frequency. The
contributions to η in (2.3) away from the resonance are small due to the fact

1http://www.mathworks.fr/matlabcentral/fileexchange/26806-antennaq
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that scattering dominates the behavior of the antenna in the regions where the
mismatch is high.

Here, the case with an idealized lossless antenna that radiates an electric
dipole mode is considered to explicitly determine η and illustrate how σext(k)
and σa(k) depend on the wave number around the resonance. A spherical dipole
mode at the radius a has the impedance [3] ZTM = 1/(jωC) + jωL/(1 + jωL/η0),
where L = µ0a, C = ε0a, ω = kc0, the time convention ejωt is used, and ε0,
µ0, c0, and η0 denote the free space permittivity, permeability, speed of light,
and impedance, respectively. The impedance is modified by the antenna. We
consider an antenna with the input impedance obtained from the impedance of
the dipole mode, ZTM, tuned to be resonant at ω = ω0 with a lumped inductance
L1, i.e.,

Z(ω) = jωL1 +
1

jωC
+

jωL

1 + jωL/R1
. (2.4)

The inductance L1 is given by L1 = 1/(ω2
0C)−L/(1+ω2

0L
2/η2

0), and the radiation
resistance at the resonance frequency is R0 = Z(ω0) = ω2

0L
2R1/(R

2
1 +ω2

0L
2), and

R1 = η0, L = µ0a, and C = ε0a in the idealized dipole case. The corresponding
Q-factor at ω = ω0 is determined to Q = 1/(C2LR1ω

3
0) + R1/(Lω0) and the

reflection coefficient, Γ (ω) = (Z(ω) − R0)/(Z(ω) + R0), has a single resonance
with Γ (ω0) = 0, see Fig. 1. The absorption cross section (or effective antenna
aperture) for lossless antennas is given by [15]

σa(k) =
D(k)(1− |Γ (kc0)|2)π

k2
, (2.5)

where D(k) = 3/2 in the horizontal plane for the considered dipole mode.
Evaluation of η in (2.3) requires a model of the extinction cross section,

σext(k), that is consistent with (2.4). Consider a single port antenna with in-
coming signal u and outgoing signal v. The electromagnetic field is expanded in
incoming and outgoing spherical modes with coefficients a and b, respectively.
This gives the scattering matrix [11](

Γ R
T S

)(
u
a

)
=

(
v
b

)
, (2.6)

where Γ is the reflection coefficient, R is an 1×∞ matrix with elements Rn, T
is an ∞× 1 matrix with elements Tn, and S is an ∞×∞ matrix with elements
Smn.

For simplicity, order the modes such that the idealized dipole antenna radiates
the first mode, i.e., Rn = Tn = 0 for n > 1. Conservation of energy shows that
the amplitudes of the reflection coefficient and the scattering coefficient, S11, are
identical in this case, i.e.,

|Γ (kc0)| = |S11(k)| (2.7)

for k ∈ R. Moreover, the scattering matrix is non-causal, i.e., it increases as
e2jka as k → ∞ with | arg(jk)| < π/2 − α, for some α > 0 where a denotes



140 Paper V

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

¸/a

j¡ j

k a=0.250k a=0.50

B¸ /a0B¸ /a0

Figure 1: The reflection coefficient of the idealized dipole antenna (2.4) for k0a = 1/2
and k0a = 1/4 with C = ε0a, L = µ0a and R1 = η0 as function of the normalized
wavelength λ/a = 2πc0/(ωa).

the radius of the smallest circumscribing sphere, see [9, 14]. As the amplitude
of S11 is determined by the reflection coefficient (2.7) they can only differ by
a function that has unit magnitude for k ∈ R. Using rational functions, i.e.,
Blaschke products [14], gives the model

S11(k) = e2jkaZ(kc0)−R0

Z(kc0) +R0

∏
n

kn − k
k∗n − k

, (2.8)

where kn denote the zeros of S11 in Re{jk} > 0.
The extinction cross section is often expressed in the transition matrix. It

is related to the S-matrix in (2.6), S, via Tmn = (Smn − 1)/2. Consider an
idealized dipole antenna that is resonant for k0a � 1. The scattering from
higher order modes is negligible for k0a � 1 so the extinction cross section is
well approximated with the dipole mode in this region. The extinction cross
section from the dipole mode is hence approximated by

σext(k) ≈ −6πRe {T11(k)}
k2

and σs(k) ≈ 6π|T11(k)|2

k2
, (2.9)

where T11 denotes the diagonal dipole element of the transition matrix [14]. Con-
sider the simplest possible case with a single zero k1. The value of k1 is determined
by (2.8) and (2.9) inserted into the low-frequency expansions [13] σext(k) = O(k2)
and σs(k) = O(k4) as k → 0. This shows that k1 = j/(a − CR0c0), giving the
model

S11(k) = e2jka Z(kc0)−R0

Z(kc0) +R0

1− jk(a− CR0c0)

1 + jk(a− CR0c0)
. (2.10)
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Figure 2: The extinction, σext, absorption, σa, and scattering, σs, cross sections for
the idealized dipole antenna (2.4), depicted in Fig. 1, and (2.10) as function of the
normalized wavelength λ/a = 2π/(ka).

The cross sections σext, σa, and σs are depicted in Fig. 2 for the same cases as
in Fig. 1. It is observed that the areas under the curves are concentrated to
the resonances and that σa(k) ≈ σs(k) around the resonances for k0a = 0.25.
For minimum scattering, Re {T11(k)} = −1/2 in (2.9), we obtain the envelope
σext(k)/a2 ≈ 3π/k2a2 = 3λ2/4πa2, also plotted in Fig. 2. The more dominant a
resonance, the closer the obtained value of the extinction cross section is to this
envelope at the resonance frequency.

The generalized (all-spectrum) absorption efficiency (2.3) for the idealized
dipole is finally determined by

η =

∫ ∞
0

(1− |Γ (k)|2)Dπ

k4
dk∫ ∞

0

σext(k)

k2
dk

≈

∫ ∞
0

1− |Γ (k)|2

k4
dk

−4

∫ ∞
0

Re {T11(k)}
k4

dk

. (2.11)

The generalized absorption efficiency η is evaluated for the idealized dipole mo-
del (2.4) and (2.10) as well as various other parameter values on C, L, and R1 in
Fig. 3. It is observed that η > 1/2 for k0a � 1. The deviation from 1/2 is due
to the region with small σs but negligible σa for λ/a < 8 as seen in Fig. 2.

The particular impedance (2.4) is not crucial for this result. It is sufficient
that the contributions to the integrals in (2.3) are dominated by the region around
the resonance k0 and that σa and σext have similar bandwidths and shapes. It
is common to assume antennas with a single resonance structure [8] to relate
the bandwidth with the antenna Q. Similarly, assume that the transition matrix
element T11(k) has a single resonance at k0 and is minimum scattering, i.e.,
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Figure 3: The generalized absorption efficiency for the idealized dipole antenna (2.4)
and (2.10) and various values of C,L, and R1 as function of the normalized resonance
wave number k0a.

S11(k0) = 0 implying T11(k0) = −1/2. The resonance model has complex valued
poles at k ≈ ±k0 and the shape of the classical Lorentz or resonance circuit [8, 14]
around the resonance, i.e.,

T11(k) =
−1

2

1 +
j

ν

(
k

k0
− k0

k

) =
− jνk

2k0

1− k2

k2
0

+
jνk

k0

(2.12)

with 0 < ν � 1. It satisfies

−Re {T11(k)} =
1/2

1 +
1

ν2

(
k

k0
− k0

k

)2 = 2|T11(k)|2 (2.13)

for all k ∈ R showing that σext(k) = 2σs(k) = 2σa(k) around the resonance wave
number, see the k0a = 1/4 case in Fig. 2. For antennas with negligible σa away
from the resonance, e.g., the dipole model (2.4), the σext ≈ σs contribution to
the integral (2.3) away from the resonance gives η > 1/2.

3 Numerical Examples

The above theoretical results have been analyzed for a number of geometries by
numerical simulations; the numerical results show very good agreement with the
theory. For each of the examples the approach was the same; first we started
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Figure 4: Geometry of the two arm spherical helix with circumscribing sphere radius
a = 62 mm and wire radius Rw = 2 mm.
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Figure 5: Input impedance of the spherical helix depicted in Fig. 4.
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Figure 6: Extinction, absorption and scattering cross sections of the spherical helix
depicted in Fig. 4.

with the design and simulation of a radiating structure using the Method of Mo-
ments (MoM) simulator in Efield2. Then the radiation resistance at the first
resonance was used as a load at the feeding point in a forward scattering sim-
ulation, performed using the same software. The results of the antenna and
scattering simulations have been used to numerically compute the theoretical
parameters using Matlab. Note that not all the available digits are presented in
the text as the numerical accuracy does not justify them. However the formulas
are computed without truncation.

3.1 Folded Spherical Helix – D = 1.5, k0a = 0.38

We first describe the results for the folded spherical helix [2] depicted in Fig. 4.
It comprises a closed loop of perfectly electric conducting wire of radius Rw =
2 mm that is folded on the surface of a sphere of radius 58 mm thus obtaining a
structure with the radius of the smallest circumscribing sphere a = 62 mm. The
structure has two arms of equal length (approximately la = 646 mm) symmetric
with respect to the z axis.

The first step in the analysis is to simulate this structure with Efield. The
antenna parameters are determined with an ideal voltage source connected at
point F (see Fig. 4). The resulting input impedance is plotted in Fig. 5. The
first interesting resonance from a practical point of view appears around 294 MHz
with a radiation resistance of 17 Ω. It is this resonance that is used to illustrate
the physical bounds in [4, 6, 7, 16]. At this frequency the antenna radiates a z
dipole type pattern. First we compute the D/(Qk3

0a
3) value using the simulation

data from Efield and the method proposed in [8, 18] to approximate the Q factor.
The computed values D = 1.5, Q = 43 and k0a = 0.38 result in the quotient

2www.efieldsolutions.com
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Figure 7: Extinction, absorption and scattering cross sections of the spherical helix
depicted in Fig. 4 as function of wavelength, λ = 2π/k = c0/f .

D/(Qk3
0a

3) = 0.63.
The second step is to evaluate the right hand side in (2.2). Here, the polar-

izability dyadics reduce to the high contrast polarizability dyadic of the perfect
electric conductor which is computed using a MoM algorithm (see e.g., [4]) that
solves the electrostatic problem associated with the wire geometry. With ê = ẑ
and only high contrast electric material present ê · γe · ê+ (k̂ × ê) · γm · (k̂ × ê)
evaluates to:

ẑ · γ∞ · ẑ = 2 · 10−3 m3.

The generalized absorption efficiency is computed from the Efield simulation
data with (2.3) and the definitions of absorption and extinction cross sections
from [7, 17]. After an integration of 5999 absorption and extinction cross sections
samples taken equidistantly between 1 MHz and 3 GHz (see Fig. 6) we obtain
η ≈ 0.51 and write:

D

Qk3
0a

3
≈ 0.63 6 0.67 ≈ η

2πa3
(ẑ · γ∞ · ẑ) .

This is a true relation showing that the antenna performs close to the D/Q bound
of the wire structure.

Moreover, the integrated extinction cross section is related to the polarizabil-
ity of the structure, as stated in [17] i.e.,

2

π

∫ ∞
0

σext(k)

k2
dk =

1

π2

∫ ∞
0

σext(λ) dλ ≈ 1.99 · 10−3 m3

which is approximately 1% away from the polarizability determined from the
MoM simulation. This deviation can be attributed to the high frequecies (low
wavelengths) which are missing in Fig. 7. The cross sections should show one
dominant resonance and asymptotically tend to 0 for low frequencies.
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Figure 8: Two element array of folded dipoles with ` = 492.9 mm and d = 470 mm.

The physical bounds in (2.2) create a link between the dynamic properties
of the radiating structure and its static properties described by the electric and
magnetic polarizability dyadics. Because many common antennas have a gen-
eralized absorption efficiency of approximately 1/2 obtaining the bounds for an
antenna reduces to a static problem of computing the polarizability dyadics for
the geometry, which is easily solved using a Method of Moments algorithm.

It is very important to distinguish the geometry of the radiating structure
from its smallest circumscribing sphere. The antenna can be optimized in the
limit given by its own polarizability, e.g., the smallest circumscribing sphere of the
helix in Fig. 4 has the radius a = 62 mm, which gives ẑ·γ∞·ẑ = 4πa3 ≈ 3·10−3 m3

thus the maximum attainable value for the D/Q quotient is: D/(Qk3
0a

3) 6
1, whereas the wire structure simulated here has a maximum attainable value
D/(Qk3

0a
3) 6 0.67. The presence of the (k0a)3 term allows radiating structures

to be directly compared even though they do not have the same size. It can
be stated that the wire structure of the helix in Fig. 4 can only reach 67% of
the best attainable performance of an antenna circumscribed by a sphere with
equal radius. Hence, it is neccesary to use a structure with high polarizability to
improve the performance, e.g., the polarizability of the spherical helix increases
with the number of arms and with the wire radius.

3.2 Folded Dipole Array – D = 2.6, k0a = 1.7

The second considered structure is a folded dipole array [10]. The dimensions in
Fig. 8 are the following: ` = 492.9 mm, d = 470 mm, h = 40 mm and s = 65.8 mm.
The structure is assumed to be fed at point F with an ideal voltage source. All
wires have a radius of Rw = 4 mm thus simulating one possible realization of a
simple and common array design using the same type of conductor for all the
elements. The smallest circumscribing sphere has the radius a = 347 mm.
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First we simulate the structure in transmission in order to obtain the imped-
ance behavior in the frequency range of interest, see Fig. 9. The first resonance
with practical relevance is close to 233 MHz and, at this frequency the antenna
has an input impedance of 59 Ω. We shall illustrate the bounds using the char-
acteristics of the structure at this frequency. The far field radiation pattern at
this resonance consists of two linearly polarized (x̂-direction) pencil beams in the
broad sides, with a maximum directivity D = 2.6. The quality factor of this res-
onance is Q = 4.2 and with k0a = 1.7 we obtain the quotient D/(Qk3

0a
3) = 0.13.

The high contrast polarizability for ê = x̂ polarization has the value γ∞,11 =
67.4 · 10−3 m3. We note here that the structure is also highly polarizable on the
ŷ-direction but the ŷ-polarization does not contribute to the radiation because
of the choice of feeding.

We now turn to the analysis of the cross sections and use 5999 absorption and
extinction cross section samples from equidistantly spaced frequencies between
1 MHz and 3 GHz. The first and dominating resonance is shown in Fig. 10. The
array has a two band behavior; in either of the two bands it approximately absorbs
as much energy as it scatters. Besides these two resonances there is another
scattering resonance which contributes to the generalized absorption efficiency.
By comparing Fig. 6 with Fig. 10 we expect to have differences between the two
generalized absorption efficiencies but in fact η ≈ 0.48. The reason for the small
deviation is the presence of the second resonance very close to the first one, and
with comparable values of the radiation resistance.

Gathering the results, we rewrite (2.2) in numbers as: 0.13 6 0.13 thus
making this array a structure that is close to the optimal D/Q performance of
the wire structure. The perfect matching is explained by the deviation of the
structure from the assumed models for the Q-factor (Q� 1) and the first single
and dominant resonance. Compared with a smallest circumscribing sphere, the
array only reaches 13% of its D/Q performance. For evaluating the reliability
of the generalized absorption efficiency we integrate the extinction cross section
over the wavelength and obtain the value 66.8 · 10−3 m3 which is less than 1%
from the previous γ∞,11 = 67.4 · 10−3 m3; so the frequency interval is well chosen
as to not significantly deviate the resulted η from its correct value.

3.3 Other Structures

A number of other structures have been analyzed and the results are gathered
in Table 1. The first eight rows in the table correspond to planar geometries
circumscribed by different l1× l2 rectangles with l1/l2 respectively equal to: 500,
100, 25, 9, 3.6, 2, 1 and 0.5. The polarization is always directed along l1. There
are two meander type antennas which differ by their aspect ratios and feeding
structure. The ninth and tenth rows correspond to the structures described
respectively in 3.1 and 3.2.

The eleventh and twelfth rows correspond to four element arrays fed in phase
to obtain two broadside pencil shaped lobes. For the first one the elements are
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Figure 9: Input impedance of the array depicted in Fig. 8.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

f/GHz

 /m2 ext

a

s

Figure 10: Extinction, absorption and scattering cross sections of the array depicted
in Fig. 8.
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represented by simple dipoles of length ` = 500 mm spaced at d = 500 mm and
wire radius Rw = 1 mm and for the second the elements are folded dipoles with
length ` = 502 mm and height h = 6 mm spaced at d = 470 mm and wire radius
Rw = 2 mm. Both structures are fed through transmission lines made from the
same wire as the radiating elements.

The last line corresponds to a two element array, each element being a Yagi
antenna with a reflector (lr = 510 mm), driven element (lf = 500 mm) and direc-
tor (ld = 420 mm) spaced at ls = 200 mm. The distance between the elements in
the array is d = 470 mm and the wire radius is Rw = 5 mm. Feeding is realized
with a transmission line made from the same wire as the elements.

4 Conclusions

We demonstrate that η > 1/2 for small, k0a � 1, idealized dipole antennas
and for minimum scattering antennas with a dominant first single resonance.
As observed in [4, 7] this is also valid for several antennas that are of the order
k0a ≈ 1. Here, it is important to realize that the identity (2.1) is not restricted
to electrically small antennas and that η in general cannot be replaced by 1/2.
Many antennas, e.g., Yagi-Uda and reflector antennas have η � 1/2 and some,
e.g., the spiral antenna in [16], have η > 1/2.
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