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Abstract 

Forecasting volatility is a fundamental topic in in both academic and applied financial 

economics. Different GARCH-specifications are by far the most popular model based 

approach used for this purpose. This thesis evaluates the forecast accuracy of some specific 

GARCH-models; GARCH, EGARCH, APGARCH and MRS-GARCH. The primary purpose 

of the essay is to investigate whether the more flexible two-regime MRS-GARCH model 

outperforms the more conventional one-regime GARCH models in a very volatile time period 

during the recent financial crises. The evaluation period stretches from the day when Lehman 

Brothers went bankrupt and one year ahead. Each model is evaluated using two indexes with 

different characteristics; the Standard & Poor 500 and the Bombay Sensex index. The result 

shows that the MRS-GARCH models are superior in predictive ability on S&P500 compared 

to the other tested models. Conversely, the overall relative performance accuracy of the BSE 

is less clear-cut since none of the tested models seem to perform particularly well. Generally, 

the results indicate that the MRS-GARCH provides better forecasts on S&P 500 compared to 

the other models and that no forecast can be distinguished as entirely superior on the BSE.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Acknowledgment  

I would like to thank my supervisors Milda Norkute and Birger Nilsson for their useful advice 

and patience throughout the process. Your expertise has been much appreciated when I have 

encountered unexpected issues and needed guidance.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Table of Contents 

I. Introduction and Background..................................................................................................5 

II.GARCH-models......................................................................................................................7 

i) Single Regime GARCH-models...............................................................................7 

ii) Markov Regime Switching GARCH……................................................................9 

III. Data and Methodology........................................................................................................12 

IV. Loss Functions and Forecast Evaluation.............................................................................14 

V. In-sample Estimates.............................................................................................................16  

     i)  mmSingle Regime GARCH-models.............................................................................17 

     ii)   mmMarkov Regime Switching GARCH-models.........................................................19 

VI. Forecast Evaluation.............................................................................................................23 

i) Diebold Mariano-results..........................................................................................26 

VII. Conclusion.........................................................................................................................32 

 

VIII. References........................................................................................................................34 

 

VX. Appendix...........................................................................................................................36 

i)        Markov Regime Switching-GARCH.....................................................................36 

ii)        Diebold Mariano-test..............................................................................................37 

iii)        Tables.....................................................................................................................38  

 

 

 

 

 

 

 



5 
 

I. Introduction and background 

Forecasting market volatility is of great importance in financial economics. Correct 

predictions of future volatility are crucial to risk managers, asset managers and other financial 

actors that try to minimize risk and maximize profits. The recent financial crisis emphasized 

the need of proper predictions in the aftermath of tightened financial regulations and common 

scepticism towards financial markets. Hence, understanding volatility is not only demanded 

by regulations but also a necessity to minimize the damage of future crises.  

This essay will focus on empirical approaches originating from the Autoregressive 

Conditional Heteroskedasticity (ARCH) model developed by Engle (1982). The most popular 

approaches used to model volatility are derived from the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model developed by Bollerslev (1986). The 

GARCH models are popular since they are both reasonably easy to estimate and perform 

diagnostic tests on. Except from user-friendliness, the popularity originates from the different 

models ability to capture characteristics in volatility series like nonlinearity, clustering and 

asymmetry (Enders, 2010).  

The literature about GARCH models and their applications are incredibly 

comprehensive. Prominent researchers like Bollerslev (1986), Zakoian (1990), Nelson (1991), 

Higgins and Bera (1992), Harvey et al (1992). Ding, Granger and Engle (1993), Glosten, 

Jaganathan and Runkle (1993) and Klaassen (2002) have all developed noticeable 

specifications of the GARCH model. Consequently the large variety of GARCH-

specifications can make the choice of model less straightforward. One purpose of this thesis is 

to elucidate the present literature by evaluating the forecast accuracy of some specific 

GARCH-models. The considered GARCH-models contain three of the most popular 

specifications and one less conventional.  

To assess whether any of the more parameterized GARCH specifications increases the 

performance of the traditional model, the standard GARCH by Bollerslev (1986) is included 

in the study. Despite the GARCH models ability to capture volatility clustering and 

nonlinearity it has some flaws. One of those weaknesses is the ability to capture asymmetric 

movements in stock returns, i.e., more extensive movements to negative news than positive 

news.  Over the years, there have been many interesting attempts to control for these 

asymmetric effects commonly referred to as leverage effects. This thesis evaluates two of the 

most influential and useful specifications built to control for asymmetric movements, namely 

the Exponential-GARCH (EGARCH) by Nelson (1991) and the Asymmetric Power GARCH 

(APGARCH) by Ding, Granger and Engle (1993). Both the EGARCH and the APGARCH 
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models have several nice properties that makes them interesting. For instance, the output of 

the APGARCH model nests other well-renowned GARCH-specifications like the model of 

Glosten, Jaganathan and Runkle (1993) (GJR-GARCH) and the Threshold-GARCH (T-

GARCH) by Zakoian (1990). Hence, by evaluating the APGARCH, the appropriateness of 

several other GARCH specifications are indirectly performed (He, Malmsten and Teräsvirta, 

2008).   

Despite the extensive variety of GARCH specifications, most of the models seem to 

be excessively persistent, i.e., react too slowly to movements of the market. It seems like the 

conditional dependency of the GARCH models helps the model to account for volatility 

clustering but at the same time it decreases the adaptability to shifts in stock movements 

(Lamoureaux and Lastrapes, 1990). Volatility series suffer from shifts that are caused by 

structural changes but also due to changed expectations of the market-participants. For 

example, the terms “Hausse” and “Baisse” refers to states with large movements of return 

series that causes these shifts. “Hausse” refers to rapidly increasing stock movements and 

“Baisse” the opposite. Both these situations are subject to periods with large variance that can 

be modelled as high-variance regimes. Hence, the situation where neither one of them occurs 

can be considered as a low-variance regime. Incorporating regimes or states in a GARCH 

model makes its mean-reversion state dependent. Thus, how quick the variance will get back 

to its long-run average will vary between the regimes. Given that there exists more than one 

state, a multi-state model will always be more flexible since a single-state model’s parameters 

only represent the average mean-reversion of the states. Hence, including regimes in a 

GARCH framework are therefore likely to yield better estimates of the persistence and is 

therefore of interest (Alexander and Lazar, 2009).    

Hamilton and Susmel (1994) introduced a way of modelling volatility with different 

states when they combined Hamiltons (1989) Markov Switching Regression with the ARCH 

model and introduced SWARCH. By letting volatility jump between different regimes with 

certain probabilities a new more flexible way of estimating volatility was born (Teräsvirta, 

2006). Sprung from the SWARCH-model, a generalization soon came, i.e., the Markov 

Regime-Switching GARCH (MRS-GARCH) developed by Gray (1996) and Klaassen (2002). 

Marcucci (2005) proved that MRS-GARCH yielded a superior forecast at a short horizon on 

the S&P 100 index compared to the GARCH, EGARCH and GJR-GARCH. Despite the 

seemingly nice properties, the literature about the MRS-GARCH and its capacity is quite 

narrow.  
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This thesis aims to carry on the work of Marcucci (2005) by investigating the 

efficiency of the GARCH, EGARCH, APGARCH and MRS-GARCH on S&P 500 but also 

on the Bombay Sensex index (BSE). BSE is a more volatile index with different 

characteristics than S&P500. To assess the effectiveness of the different types of GARCH-

models, an out of sample forecast evaluation is performed starting from the first trading day 

after the Bankruptcy of Lehman brothers in 2008. Since the GARCH, EGARCH and 

APGARCH are more acknowledged models the contribution of this thesis is foremost the 

evaluation of the MRS-GARCH during the financial crisis. The thesis thereby returns an 

answer to weather the MRS-GARCH successfully captures the characteristics of the two 

indexes during this erratic time-period compared to the considered single regime models.   

The thesis is outlined as follows: In chapter II the evaluated models are presented. 

Chapter III covers the data and methodology. Chapter IV discusses the framework of forecast 

evaluation and loss functions used in the thesis. Chapter V presents the in-sample results and 

Chapter VI the results of the forecast evaluation. Finally in chapter VII the conclusions are 

presented. 

II. GARCH-models  

i) Single Regime GARCH-models 
The GARCH (   )-model with a constant mean equation can then be written, 

                               (1) 

with the conditional variance given by 

                     
             

        
                  (2) 

and     ,      and     0, which guarantees a positive conditional variance estimate. 

The conditional variance is useful since economic time series often violates the assumption of 

homoscedasticity and the variance often seems to be dependent of its recent lags. As 

previously discussed there are some common problems with the GARCH specification. One 

commonly discussed issue is that the GARCH model is too persistent, meaning that it doesn’t 

react fast enough to changes. The persistence of a GARCH (1,1) model is calculated by 

summing the ARCH and GARCH parameter,   +  .  

 Moreover, the EGARCH was built to explain financial returns known tendency to react 

differently to news depending on whether they are positive or negative. Nelson (1991) 

specified the EGARCH with the logarithm of the conditional variance to ensure a positive 

measure without any constraints. The model standardises      which according to Nelson 
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(1991) allows for a more natural interpretation of the size and persistence of shocks. 

Additionally the asymmetry parameter   captures the leverage effect. The EGARCH are 

defined:  

              
         |

    

    
|   (

    

    
)             

                        (3) 

The APGARCH’s by Ding, Granger and Engle (1993) way of controlling for leverage 

effects resembles the EGARCH in many ways. There is no standardisation or logarithm of the 

conditional variance in the APGARCH but the asymmetry parameter is still given by  .  The 

model also allows the power   of the heteroskedasticity equation to be estimated from the 

data. The APGARCH model is specified as, 

             
         |    |         

          
                                  (4) 

It is noticeable that the APGARCH under certain circumstances will yield other GARCH 

specifications. The taxonomy of nested ARCH specifications adapted from McKenzie and 

Mitchell (2002) in the APGARCH model is presented in table 1. 

 

Table 1. Taxanomy of the Asymmetric Power GARCH  

Model 
 

 

      
 

 

               
 

 

   
 

 

    
 

      ARCH 

 

            2       free          0            0 

GARCH 

 

            2       free        free            0 

Leverage ARCH             2       free          0       | |    

Leverage GARCH             2       free        free    | |    
GJR-

ARCH 

 

            2                   0        

GJR-GARCH             2                 free        

Taylor ARCH             1       free          0            0 

Taylor GARCH             1       free        free            0 

TARCH 

 

            1       free          0       | |    

Generalized TARCH             1       free        free       | |    

NARCH 

 

         free       free          0            0 

Power GARCH          free       free        free            0 

Asymmetric Power ARCH          free       free          0       | |    

Asymmetric Power GARCH          free       free        free       | |    

 

 

The one day ahead forecasts of the Single-Regime GARCH models are obtained by  ̂   
  

which only are directly dependent on the values from the present time period. For example, 

the forecast of the GARCH (1,1)  is calculated by 
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                                                  ̂   
         

      
           (5) 

All single-regime GARCH models are estimated using maximum likelihood in Eviews. Since 

an out of sample evaluation is performed, one estimation is made of each time period in the 

out-sample. The set of log likelihood functions are thereby given by  

 

        ∑    [     ]   
                (6) 

where   {       } and   is the chosen number of trading days considered for the in-

sample. A rolling window of log likelihood functions yielding out-sample estimates are 

thereby created. Hence, the appealing name of the first forecast, i.e.,  ̂     
  is retrieved by 

choosing     . Thus, if     we obtain the in-sample estimate and with     we obtain 

the first out-of sample estimate and so on 

ii) Markov Regime-Switching GARCH 
While previous research assumed asymmetry in the volatility series Hamilton and Susmel 

(1994) suggested that volatility could be considered as regime-switching. In their SWARCH-

model, persistent jumps in the volatility series are defined as switches between regressions. 

The different regimes or states of the world are administrated by a state variable    that affects 

the probability of shifting to another regime. The evolution of the discrete state variable    is 

said to follow an     order Markov-chain meaning that    is assumed to be dependent solely 

on the     previous states.  

 The SWARCH model became influential but the known problems of long lag structures 

remained from the original ARCH-model. It is however problematic to include a state-

dependent conditional variance term in a regime-switching ARCH. Generalizing the ARCH 

process within a regime switching context requires integration over unobserved regime paths 

that increases exponentially with sample size and makes estimation intractable, (Klaassen, 

2002). To avoid the conditional variance to be a function of all previous states, several 

estimation techniques were suggested. Gray’s (1996) model was the first to generalize the 

model into a Switching regression GARCH but his model was unable to forecast multiple 

periods forward. The Markov Regime Switching GARCH used in this thesis was developed 

by Klassen (2002) and is an improved version of Gray’s (1996) that allows for multiple period 

forecasts.  

  In the framework of MRS-GARCH it is assumed that there exists a state variable, 

which evolves according to a first-order Markov chain with transition probabilities defined as 
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                                                                   |                 (7) 

The state variable    gives the probability of switching from state   at time     into state   at 

 , which grouped together form the transition matrix. The transition matrix in (8) is based on a 

two state Markov chain like the one depicted below in figure 1 which means that     and 

    

                      [
      

      
]  [

      
      

]     (8) 

Volatility that follows a two state Markov-chain can then be displayed as in Figure 1. 

 

                                 Figure 1. Two State Volatility Markov Chain  

 

         q 

                                                                                         1-p     

 

    

           1-q            p 

 

 

The unconditional probability or ergodic probability of      is given by     
     

       
 

The MRS-GARCH with two regimes expressed in a generalized form is then given by 

                                        |     {
 (  

   )                        

             (  
   )                   (      )

    (9) 

where the density function  (  
   ) displays the assumed conditional distributions of the two 

regimes. The ex-ante probability,      gives the probability of being in the first regime given 

all available information at time    . The ex-ante probability is dependent on      

{                }, which is the information set at     inferred by all observed variables at 

   , i.e., the sigma algebra. A more thorough formula of the ex-ante probability is given in 

equation (18) provided below. For now it is sufficient to know that the ex-ante probability 

encompasses 

High  

Volatility

      

      

Low  

Volatility  
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                                                                               [    |    ]     (10) 

Furthermore, the vector   
   

 denotes time-varying parameters of the     regime, which can be 

divided into three elements. That is, the conditional mean, conditional variance and the shape  

parameter of the conditional distribution, i.e. 

                                                                         
   

    
   

   
 |   

   
   

                                  (11) 

Thus, the MRS-GARCH can be divided into four elements: the conditional mean, conditional 

variance, regime process and the conditional distribution. The conditional mean equation 

modelled as an AR(0)-process is given by, 

                                                                     
   

               (12) 

with the conditional mean    
   

 defined as 

                                                                      
   

  [  |    ]                (13)                  

and 

                                                                                                          (14) 

Where    is a zero mean and unit variance process and the conditional variance is defined 

                                            
 |   

    [  |    ]                (15) 

and the conditional variance equation in the MRS-GARCH (1,1) framework is then expressed 

                   
 |   

   
   

   
   

    
    

   
  
 |   

    (16) 

 The one step ahead forecast of the MRS-GARCH is then estimated as the sum of the 

potential expected conditional variances under each regime weighted by the ex-ante 

probability given in (18). Hence the one step ahead forecast is then calculated by 

    ̂     
 |   

        |     (  
   

   
   

  
    

   
  
 |   

)         |     (  
   

   
   

  
    

   
  
 |   

)      (17) 

The ex-ante probability      i.e. the probability of being in the first regime at time   given the 

information at time    , with the specification from Hamilton (1989) is given by 

      [    |    ]       [
      |                 

      |                    |                 
]   [

      |             

      |                    |                 
] (18) 

Where   and   are the transition probabilities and      is the density functions in (9). The set 

of log-likelihood functions is finally given by 
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    ∑    [        |                  |     ]   
              (19) 

where   {       },  is the number of trading days considered for the in-sample and  

   |     is the conditional distribution given that regime   occurs at time  , (Marcucci, 

2005).  A more in-depth derivation of the MRS-GARCH is found in the appendix.  

III. Data and Methodology 
The data used to estimate both the single regime and multi regime GARCH models in this 

thesis consists of the daily rate of return of the S&P 500 and BSE. The calculations of the 

“true volatility” used to evaluate the performance of the models are except from the closing 

price based on the intra-daily extreme values of the stock returns. The total sample consist of 

observations that stretches from September 1, 1997 to September 15, 2009 which due to 

different holidays yields 3072 observations from the S&P 500 and 3022 from BSE. The rate 

of return is specified as  

                                                     (20) 

where    is the closing price of the selected stock market index at time  . The time index of    

are then divided into two subsamples, specifically an in-sample and out-sample. The total 

sample stretches from   {             }, where   is the chosen number of trading 

days considered for the in-sample and   the total number of considered returns in the out-

sample. The in-sample are defined by   {             } and the out-sample with 

  {       }. The in-sample covers a sample period from September 1, 1997 to September 

12, 2008 and the out-sample stretches from September 15, 2008 to September 15, 2009.  

The in-sample yields the estimated parameters and goodness of fit presented in table 

3,4,5 and 6 while the out-sample is used to produce the forecast series presented in diagram 1 

and 2. The forecast series are constructed as a one day ahead forecast corresponding to each 

trading day given in the out-sample.  Each forecast is estimated with a rolling window of 

observations corresponding to the number of observations defined by the in-sample. In other 

words, the first forecast,  ̂      will be obtained from the in-sample i.e.    {        }, 

the second forecast   ̂      will be obtained with   {        } and so on. The in-sample 

of the S&P 500 and BSE consists of 2819 and 2779 observations respectively. Consequently, 

the out-sample consists of the remaining 253 observations of the S&P 500 and 243 for BSE.  
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Descriptive statistics of the rate of return from the two indexes are summarized in table 2 

  

The statistics are calculated based on the whole sample. The ARCH (12) and   (12) is 

Engle’s ARCH test and Ljung-Box-Q-test calculated from the squared residuals of     

regressed on a constant. As expected, both Engle’s ARCH test and the Ljung-Box-Q-test 

indicate ARCH-effects up to the 12
th

 lag of both the indexes. The kurtosis of both BSE and 

S&P 500 are significantly higher than 3 which is the kurtosis of the Gaussian distribution. 

Thus, a fat tailed distribution is likely to suit the data better. There is also presence of negative 

skewness which indicates that negative returns often are more below the average than positive 

returns are above. Furthermore the null of normality is rejected in the Jarque-Bera test. 

Accordingly, the data of both indexes seems to exhibit of leverage effects and follow some 

leptokurtic distribution. There is however interesting differences in the sample of the 

considered indexes that supports the choice of additionally evaluating BSE. The leverage 

effects seem to be more extensive in S&P500 than in BSE which indicates a more leptokurtic 

distribution. The average standard deviation of BSE is also approximately 30% higher than 

S&P500 during the considered time span.  

Both the standard GARCH and the two asymmetric GARCH models are estimated 

using the regular maximum likelihood and the MRS-GARCH is estimated using quasi-

maximum likelihood. Either way, the logarithm of the likelihood function is maximized and 

both the conditional mean and variance are jointly estimated. The estimation procedure of the 

MRS-GARCH is conducted in MATLAB using the code from Juri Marcucci’s (2005) 

awarded essay and the single regime GARCH models are estimated in Eviews. The 

optimization of the likelihood function in the MRS-GARCH is derived by Broyden, Fetcher, 

Goldfarb, and Shanno’s (BFGS) quasi-Newton numerical optimization algorithm and the 

single regime models uses Marquardts optimization algorithm.  

To evaluate the performance of the models a comparison is made between the 

forecasts of the different GARCH specifications and the “true” volatility. However, 

estimating the ”true” daily volatility is not as straightforward as it might seem. This thesis 

therefore adopts two different measures of the “true volatility”. The classical volatility 

Table 2. Sample properties of the rate of return on Standard and Poor’s 500 and Bombay Sensex index 

  
    μ     σ Kurtosis Skewness     Min    Max     ARCH(12)   (12) Jarque-Bera 

 
S&P 500 

 
0.0054 1.3757 10.2555 -0.1567  -9.4695 10.9572     95.5611 2871.80 6748.595 

BSE 
 

0.0444 1.8004 7.9419 -0.1013 -11.8536 15.9456     25.1191  627.73 3079.382 
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estimator used is called the Close-Close Volatility Estimator. The Close-Close Volatility 

Estimator is simply calculated by 

           √   
 

 
∑   

  
                  (21) 

This is the fundamental historical volatility estimator which often is used due to its simplicity.   

Andersen and Bollerslev (1998) pointed out that the squared returns can be an inaccurate 

measure and that a more precise measurement can be derived using intra-daily data. One 

commonly used measure is the realized volatility measure developed by Koopman, 

Jungbacker and Hol (2004) which is calculated with intra daily stock prices sorted into 5-

minutes intervals. However, there is very hard to access intra-daily data with the required 

frequencies. This thesis therefore uses an extreme value estimate of the returns that only need 

the daily high and daily low of each trading day. This technique is called the Realized Range 

Estimator and was originally developed by Parkinson (1980).  Andersson and Bollerslev 

(1998) pointed out that the realized range estimator of daily volatility by Parkinson (1980) 

performs as well as realized volatility calculated from intra-daily data with intervals between 

2-3 hours. The realized range estimator is an extreme value estimator that uses the differences 

between the daily high    and daily low    and is defined, 

                                                √  

       

   

 
∑   (

  

  
)
 

 
                            (22) 

This estimate is proved by Parkinson (1980) to be approximately five times more efficient 

than the Close-Close Estimator. Hence, this thesis uses the Realized Range estimator to 

determine the forecast accuracy. The Close-Close proxy is foremost used to graphically 

illustrate the differences among the volatility proxies.    

IV. Loss functions and Forecast Evaluation 
The forecasting performances of the models used in this thesis are evaluated by specific 

statistical loss functions. The most popular way of determining the performance of volatility 

forecast in present literature is to measure the Mean Squared Error, i.e.,     . Evidently, the 

model that performs the best is the one that yields the lowest value of     . However, the 

     is rather criticised and there is a lot of loss functions that are argued as better choices. 

Unfortunately it does not exist a superior loss function that alone provides sufficient 

information of how accurate the models are compared to each other. The criticism towards 

evaluating forecast performances are foremost derived from the difficulties of choosing 
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appropriate loss functions. This thesis adopts the evaluating framework of Marcucci’s (2005) 

thesis. Instead of focusing on a particular loss function that the researcher claim to be superior 

to the others a battery of loss functions are chosen.  The certain statistical loss functions are: 

                                                ∑ ( ̂     ̂   | )
  

        (23) 

                                                ∑ ( ̂   
   ̂   | 

 )
  

        (24) 

                                         ∑ (      ̂   | 
    ̂   

  ̂   | 
  ) 

                    (25) 

                                                ∑ (    ( ̂   
  ̂   | 

  ))
 

 
                              (26) 

                                                  ∑ | ̂     ̂   | |
 
                                   (27) 

                                                  ∑ | ̂   
   ̂   | 

 | 
                              (28) 

                                                 ∑ ( ̂   
  ̂   | 

    )
  

                              (29) 

The equations given in (23) and (24) yields the mean squared error previously discussed. The 

metric found in (24) and (26) differ only since the logarithm of the parameters is used in the 

latter.  They both equal the    values of regressing a constant and the forecasted variance 

 ̂   | 
  on the actual volatility from the same time period  ̂   

 . As long as the forecasts are 

unbiased this is the Mincer-Zarnovitz (1969) regression. The metric in (26) originally 

suggested by Pagan and Schwert’s (1990) has the ability of punishing forecast errors in low 

volatility periods more extensive than in high volatility periods. The       therefore 

penalizes the models accordingly with the leverage effect. The       found in (25) is similar 

to the       in a sense since it also punishes forecasts that underestimate volatility more 

heavily.  The loss function was originally suggested by Bollerslev, Engle and Nelson (1994) 

and retrieves the standardised forecasts errors centred around 1 given that  ̂   | 
   ̂   

 . The 

      therefore returns the loss of a Guassian likelihood and are less sensitive to the largest 

variations among the observations and is therefore more robust (Hansen and Lunde, 2001). 

The loss functions given in (27) and (28), i.e., the mean absolute deviation      are argued 

to be more robust than the      under the presence of outliers. Finally the last equation (29) 

suggested by Bollerslev and Ghysel  (1994) adjusts for heteroskedasticity in the MSE. The 

     is useful since      may return a defective value if there is presence of 

heteroskedasticity in the forecast errors, (Marcucci, 2005).   
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 Intuitively, the loss functions provide the researcher with information about how 

reasonable the performances of the models are. The model which yields the smallest value of 

the loss functions is the one that performed the best. Nevertheless, there is a high possibility 

that different model returns good results on different loss functions or that some models seem 

to perform equally good. To be able to determine whether a forecast is significantly better 

than another one, Diebold-Mariano’s (1995) (DM) test of superior predictive ability can be 

applied. Taking the difference between two loss functions yields the series    with average  ̅, 

which is equal to zero under the null of no difference between the forecasts. The DM-test 

statistic is calculated as follows 

              
 

√   ̂( )

                 (30) 

which has an asymptotically standard normal distribution with               and 

             . However it is claimed that the DM test can be over-sized and reject the 

null too often. This is especially true for small sample sizes and long forecast horizons. 

Harvey, Leybourne and Newbold (1997) therefore introduced the Modified DM test which 

basically multiplies the DM statistic with 

√       
      

 

 
           (31) 

This thesis only compares series with short forecasts horizons (one-day ahead), and the out- 

sample being evaluated contains 253 or 243 observations which are reasonably large. 

Nevertheless, both the MDM and DM statistic are calculated to get as much information as 

possible (Marcucci, 2005).  A more thorough description about the DM-test can be found in 

the appendix.      

V. In-sample Estimates 
The estimates of the two indexes from the different single state GARCH specifications are 

presented in table 3 and 4 and the results from the Markov Switching GARCH in table 5 and 

6. Each model is estimated from both the considered indexes with an in-sample period from 

September 1, 1997 to September 12, 2008. Each model is also estimated under three different 

distributional assumptions, namely the normal, student’s t and the GED –distribution. The 

tables display the parameter values, significance level and standard errors and in-sample 

goodness of fit statistics are disregarded. This is because the purpose of the thesis foremost is 

to evaluate the predictive ability of the models. 
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i)  Single Regime GARCH 
 

- S&P 500 

The in-sample results from S&P500 of the single regime GARCH models are given in table 3.  

 

 

Almost all the estimates from the S&P 500 indicate high significance. The Exceptions are the 

conditional mean parameter   in the EGARCH and APGARCH as well as the asymmetry 

parameter   and ARCH-coefficent    in the APGARCH model with t-distribution. The 

negative   in the EGARCH models indicates that there is presence of leverage effects which 

furthermore is supported by    in the APGARCH-N. Moreover, the power term   in the 

APGARCH models is not statistically different from 1 and at the same time | |    under all 

distributions. This means that our estimates of the APGARCH model has yielded the nested 

 Threshold GARCH (TGARCH). The persistence in the GARCH and APGARCH models  

are as expected high for all models under all distributions. In the EGARCH models the 

persistence are solely captured by    which in this case also indicates high persistence under 

Table 3: Estimates of Standard GARCH models with different conditional distributions on Standard & Poor’s 500 index 

 

 
GARCH-N GARCH-t GARCH-GED EGARCH-N EGARCH-t EGARCH-GED APGARCH-N APGARCH-t APGARCH-GED 

           

  
 

 0.0377** 0.0463***      0.0526***    -0.0023    0.0128       0.0177     -0.0016     -0.0146        -0.0189 

 
(0.0180). (0.0167).     (0.0165).   (0.0171).   (0.0164).     (0.0163).    (0.0174).    (0.0165).       (0.0165). 

           

   
 

 0.0121***  0.0071**      0.0085***    -0.0706***   -0.0673***     -0.0693***     0.0205***      0.0138***.         0.0159*** 

 
(0.0020). (0.0028).    (0.0027).    (0.0102).   (0.0119).     (0.0123).    (0.0027).     (0.0032).        (0.0033). 

 

 
 

             0.0736***  0.0655***      0.0674***     0.0926***     0.0854***      0.0875***     0.0647***      0.0582         0.0608*** 

 
(0.0067). (0.0090).    (0.0092).    (0.0126).    (0.0151).     (0.0157).    (0.0113).     (0.0690).        (0.0272). 

           

   
 

 0.9198***  0.9318***      0.9288***     0.9807***     0.9857***      0.9845***      0.9305***      0.9373***.         0.9353*** 

 
(0.0075).  (0.0090).     (0.0096).    (0.0024).    (0.0026).     (0.0027).    (0.0079).     (0.0094).        (0.0097). 

           

  
 

88888 88888 88888    -0.1259***    -0.1227***      -0.1231***      1.0000***      1.0000         1.0000 

 
88888 88888 88888    (0.0074).    (0.0104).      (0.0000).    (0.2391).     (1.9589).        (0.6977). 

          
 

 
 

88888 88888 88888 88888 88888 
 
88888 
 

     1.0331***       1.1310***         1.0687***. 

  88888 88888 88888 88888 88888 88888     (0.1149).      (0.1674).        (0.1596). 

           

  
 
 

88888   8.4136***     1.4413*** 88888   10.6390***       1.5533*** 888888     10.7403***         1.5540*** 

 
88888  (1.0403).    (0.0410). 88888   (1.4494):      (0.0438). 888888     (1.4902).        (0.0456). 

           

 
 

 -4121.161 -4074.867   -4079.048   -4046.660   -4015.189   -4022.453    -4048.345    -4018.009       -4024.566 
          
Note: The standard errors are provided in the parenthesis. Significance levels (*): p<0,1;*, p<0,05**, p<0,01;***.   
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all distributions. The kurtosis of the GARCH, EGARCH and APGARCH under the t-

distribution is calculated by               which returns 4.3594, 3.9038 and 3.8902  

indicating that the returns follow a fat-tailed distribution. This is further emphasized from the 

models under the GED-distribution where the GED parameter   for all models lie between 1 

and 2, (Marcucci, 2005).  

 

- BSE 

 The estimates of the Single Regime GARCH models on BSE are given in table 4. 

 

 

The estimates of the single-regime GARCH models of the BSE differs some from S&P 500. 

The conditional mean parameter   are here highly significant together with all other 

parameters. Moreover, the persistence is much lower for especially the EGARCH and 

APGARCH. The presences of leverage effects are once again found since the asymmetric 

parameter   are negative and significantly different from zero in the EGARCH models. 

Table 4: Estimates of Single State GARCH Models with different conditional distributions on Bombay Sensex Index 

 

 
GARCH-N GARCH-t GARCH-GED EGARCH-N EGARCH-t EGARCH-GED APGARCH-N APGARCH-t APGARCH-GED 

           

  
 

 0.1356***  0.1349***   0.1410***        0.0802***    0.1041***     0.1066***     0.0889***     0.1053***        0.1092*** 

 
(0.0236). (0.0246).  (0.0242).     (0.0245).   (0.0243).    (0.0243).    (0.0256).    (0.0247).       (0.0246). 

           

   
 

  0.0987***  0.0799***   0.0888***    -0.1379***   -0.1538***    -0.1475***     0.1418***     0.1153***.         0.1292*** 

 
 (0.0134). (0.0187).  (0.0188).    (0.0147).   (0.0213).    (0.0208).    (0.0172).    (0.0223).        (0.0228). 

 

 
 

              0.1368***  0.1315***   0.1327***     0.2573***    0.2596***     0.2597***     0.1296***     0.1300***        0.1302*** 

 
 (0.0101). (0.0162). (0.0146).    (0.0202).   (0.0287).    (0.0281).    (0.0146).    (0.0204).       (0.0199). 

           

   
 

  0.8334***  0.8455***   0.8403***     0.9240***    0.9386***     0.9304***      0.8074***     0.8207***.         0.8127*** 

 
 (0.0110). (0.0175).  (0.0164).    (0.0077).   (0.0165).    (0.0103).    (0.0138).    (0.0197).        (0.0192). 

           

  
 

88888 88888 88888    -0.1261***   -0.1131***    -0.1192***      0.4585***     0.3939***        0.4240*** 

 
88888 88888 88888    (0.0111).   (0.0165).    (0.0158).    (0.0625).    (0.0829).       (0.0840). 

          
  

 
 

88888 88888 88888 88888 88888 
 
88888 
 

     1.6060***      1.6746***        1.6320***. 

 
88888 88888 88888 88888 88888 88888     (0.1732).     (0.2553).       (0.2414). 

           

  
 
 

88888  7.7335***   1.4635*** 88888    8.5119***      1.5143*** 888888      8.7103***        1.5211*** 

 
88888 (0.9281).  (0.0419). 88888   (1.1244):     (0.0465). 888888     (1.1449).       (0.0458). 

           

 
 

 -5087.288 -5030.219 -5044.814   -5055.376  -5010.965    -5023.672    -5051.217   -5007.504      -5020.359 
          
Note: The standard errors are provided in the parenthesis. Significance levels (*): p<0,1;*, p<0,05;**, p<0,01;***.   
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Moreover, the estimates of the APGARCH model under all tested distributional assumptions 

do not yield any of its nested models.  

The kurtosis of the models with t-distribution are 4.6070, 4.3298 and 4.2738 which 

indicates that a fat-tailed distribution is suitable. Under the GED distribution the parameter   

once again is between 1 and 2 indicating that the returns follow fat tailed distribution here as 

well.  

 

i) Markov-Regime Switching GARCH   
 

- S&P 500  

The in-sample estimates with corresponding standard errors of the MRS-GARCH on S&P500 

are gathered in table 5. The low variance regime is given by     and the high variance 

regime by     

 Most of the parameters derived from S&P 500 are significant. The conditional mean 

parameter      is highly significant under all conducted distributions for both regimes. The 

constant in the conditional variance equation   
   

 is significant for the low variance regime 

under each distribution. The ARCH parameter   
   

  is highly significant for the high variance 

regime but insignificant for the low variance regime under all distributional assumptions. 

Furthermore, the   
   

 parameter of the conditional variance is significant for both the regimes 

under all tested distributions. To find evidence of whether there exists a high and low variance 

regime the unconditional volatility must be calculated for all models and regimes. The 

unconditional variance is calculated by 

                  
  

   

    
   

   
                                              (32) 

The unconditional variance of the normal, t- and GED-distribution for the first regime is 

0.2766, 0.2761 and 0.2652 respectively and 6.2458, 2.9440 and 6.3353 for the high variance 

regime. Hence there is a significant difference between the two regimes under all 

distributions. There is also interesting to look at the values of the constants      and      

which is significant and negative for the high variance regime. This indicates that the returns 

of the high variance regime are negative and could demonstrate crisis periods.  
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Despite some fluctuations in the unconditional variance between the distributions the 

persistence seems to be very alike. The persistence of the MRS-GARCH estimated under the 

normal, t- and GED-distribution for the low variance regime is 0.9148, 0.9164 and 0.9181 and 

for the high variance regime 0.9811, 0.9756 and 0.9771. Consequently, the high variance 

Table 5: Estimates of MRS-GARCH models with different conditional distributions on S&P500 index 

 
 MRS-GARCH-N MRSGARCH-t MRSGARCH-GED 

 

     
 

       0.0359**       0,0397**         0,0424** 

 
      (0.0173)      (0,0170)        (0,0169) 

 

     
 

      -2.3627***      -2,3056***        -2,3432*** 

 
      (0.2192)       (0,1723)         (0,1844) 

 

  
   

 
 

        0.0236***        0,0231***           0,0217*** 

 
      (0.0032)       (0,0043)          (0,0047) 

 

  
   

 
 

        0.1184        0,0719           0,1451 

 
      (0.1632)       (0,1622)          (0,1818) 

 

  
   

 
 

        0.0128        0,0110           0,0113 

 
      (0.0092)       (0,0117)          (0,0123) 

 

  
   

 
 

        0.0756***        0,1023***           0,0734*** 

 
      (0.0000)       (0,0000)          (0,0000) 

 

  
   

 
 

        0.9020***        0,9054***           0,9067*** 

 
      (0.0093)       (0,0126)          (0,0134) 

 

  
   

 
 

        0.9055***        0,8733***           0,9037*** 

 
      (0.0000)       (0,0000)          (0,0000) 

 

  
 

        0.9775***        0,9778***           0,9791*** 

 
      (0.0020)       (0,0026)          (0,0027) 

 

  
 

        0.1872        0,1700           0,1863 

 
      (0.1231)       (0,1411)          (0,1427) 

 

  
 

 
      16,2025***            1,6478*** 

  
      (4,7168)           (0,0715) 

 

       
 

      -4062.29       -4058,06        -4052,90 
 

   
 

        0.0269          0,0261           0,0250 
 

   
 

        0.9731          0,9739           0,9750 
    
    
Note: The standard errors are provided in the parenthesis. Significance levels (*): p<0,1;*, 
p<0,05;**, p<0,01;***.   
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regime has under all distributions a persistence close to unity comparable to the single regime 

GARCH models and a lower persistence in the low variance regime. This demonstrates one of 

the mayor advantages of the MRS-GARCH.  By allowing for a second regime, the persistence 

becomes flexible since it can vary between the regimes. The shape parameter of both the t and 

GED-distributions indicates that the returns follow a fat-tailed distribution.  

 

- BSE 

The in-sample estimates with corresponding standard errors of the MRS-GARCH on BSE are 

gathered in table 6. The low variance regime is given by     and the high variance regime 

by     

 Analogous with the estimates from the S&P500 the constant from the mean equation 

     is highly significant for both regimes under all distributions. It is also evident that the 

high variance regime reflects crisis periods with lower returns compared to the low variance 

regimes. The MRS-GARCH under normal distributions has a negative constant for both 

regimes which indicates low returns in both cases but to a greater extent for the high variance 

regime. The intercept of the conditional variance equation   
   

 is highly significant for both 

regimes under the normal and GED-distribution but insignificant for the t-distribution. The 

ARCH parameter   
   

 is highly significant for the high variance regime under all distributions 

but only significant for the low variance regime under the t-distribution. The GARCH 

parameter   
   

 is significant for both the regimes under all distribution. Moreover, the 

persistence of the high variance regime under the normal distribution are extremely close to 

unity and indicates non-stationary. Consequently the unconditional variance becomes 

unreasonably high for the high variance regime. Nevertheless, under the t- and GED-

distribution the unconditional volatility for the low variance regime is 0.4468 and 0.4513 and 

the high variance regime yields 12.4912 and 46.0896 respectively. In addition, the persistence 

is close to unity in the high variance regime and the for low variance regime 0,8902 and 

0.8478 respectively. Even though the true volatility is higher in BSE compared to S&P500 the 

unconditional volatility seem to be overestimated by the MRS-GARCH. Nonetheless, this 

essay focus on the forecast accuracy and since new parameters will be estimated for each 

forecast none of the models can be ruled out yet. The shape parameter is significant for both 

the t- and GED-distribution and indicates that a fat tailed distribution is suitable for the data. 
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VI. Forecast evaluation 

Good in-sample fit does not necessary entail accurate forecasts. Practitioners are often more 

interested in a better forecast accuracy than a good in-sample fit. Diagram 1 and 2 depicts the 

out-of-sample forecast series of both indexes and all tested models. The volatility given by the 

Close-Close and Realized Range- estimator are given by the black and red line (the thicker 

Table 6: Estimates of MRS-GARCH models with different conditional distributions on BSE 

 
 MRS-GARCH-N MRSGARCH-t MRSGARCH-GED 

 

     
 

       -0.2106***        0,3032***          0,2368*** 

 
       (0.0267)       (0,0470)         (0,0271) 

 

     
 

        -0.5408***       -0,8814***         -0,6519*** 

 
        (0.1117)       (0,2832)         (0,1480) 

 

  
   

 
 

         0.0725***        0,0541          0,0687*** 

 
        (0.0224)       (0,0320)         (0,0235) 

 

  
   

 
 

         0.9077***        0,1460          0,6789*** 

 
        (0.1385)       (0,1899)         (0,1663) 

 

  
   

 
 

         0.0057        0,0690***          0,0290 

 
        (0.0212)       (0,0219)         (0,0240) 

 

  
   

 
 

         0.0134***        0,2700***          0,1004*** 

 
        (0.0000)       (0,0946)         (0,0000) 

 

  
   

 
 

         0.8321***        0,8212***          0,8189*** 

 
        (0.0214)       (0,0250)         (0,0218) 

 

  
   

 
 

         0.9866***        0,7183***          0,8848*** 

 
        (0.0000)       (0,1032)         (0,0000) 

 

  
 

         0.9180***        0,9223***          0,9300*** 

 
        (0.0094)       (0,0297)         (0,0103) 

 

  
 

         0.6972***        0,7051***          0,7470*** 

 
        (0.0290)       (0,0981)         (0,0373) 

 

  
 

 
       8,1764***          1,6794*** 

  
      (0,8238)         (0,0677) 

 

       
 

       -5018.74       -5004,42      -5015,05 
 

   
 

         0.2131         0,2085          0,2166 

 

   
 

         0.7869         0,7915          0,7834 
    
    
Note: The standard errors are provided in the parenthesis. Significance levels (*): p<0,1;*, 
p<0,05;**, p<0,01;***.   
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lines). Table 7 and 8 demonstrates the loss functions of both indexes calculated by the 

Realized Range estimator. The loss functions derived from the Close-Close proxy can be 

found in the appendix. In the last subsection of the chapter, the results of the Diebold Mariano 

tests are presented.  

 

- S&P 500 

It is quite obvious that the MRS-GARCH models produce a more accurate forecast series than 

the other models. The Realized Range volatility are clearly higher than all single-regime 

models except the GARCH with t-distribution. There is also a noticeable difference between 

the two volatility proxies. Both MRS-GARCH and the single regime models underestimates 

the volatility of the Close-Close estimator. However the Close-Close proxy is like previously 

mentioned known to produce unreliable estimates and focus should be put on the Realized 

Range volatility.   

 

 

 

A noticeable difference between the forecasts and Realized Range proxy was expected during 

the beginning of the considered time period when the highest volatility is found. However,  

three models can be distinguished graphically to predict the Realized Range volatility with 

what seem to be a much higher accuracy than the others. Those three models are the MRS-
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GARCH under all three distributional assumptions (depicted with solid lines). The GARCH 

under the t-distribution also seem to produce relatively accurate forecasts during the most 

critical time period but overvalues the volatility somewhere after New Year ’s Eve 2009. The 

EGARCH, APGARCH and GARCH under the normal and GED distribution underestimate 

the volatility in the beginning but produces better forecasts in the end of the considered time 

period. All in all, the MRSGARCH seems at least graphically to outperform the other models 

forecasting accuracy. Nevertheless, to be able to draw any conclusions more information is 

needed.  

Table 7 presents the calculated loss functions with the Realized Range proxy  

 

By investigating table 7 it is evident that the loss functions calculated with Realized Range 

yields the lowest value when the forecast series of the MRS-GARCH with GED distribution 

is used. The second best model is the MRS-GARCH with t-distribution and the third best is 

the MRS-GARCH under normal distribution. The results are not surprising, Marcucci (2005) 

also found that the MRS-GARCH under leptokurtic distributions outperformed the single 

regime GARCH models. However, to be able to tell with statistical significance whether the 

MRS-GARCH models actually outperform the others the DM test must be performed.  

 

- BSE 

Examining diagram 2 is not as clear as the previous diagram. All the MRS-GARCH once 

again depicted with a solid line seem to produce too high forecasts. All the forecasts seem to 

underestimate the Close-Close volatility except the MRS-GARCH models that both 

overestimates and underestimates the volatility. None of the models seem to produce 

relatively accurate forecast series of neither the Realized Range nor Close-Close volatility. It 

is really hard to determine which model that succeeds the most by only examining the series 

graphically. It seems like the Single Regime models fails to pick up any differences at all and 

 Table 7. Out-of-sample Loss functions of S&P 500   

                 MRS-GARCH                 APGARCH                    EGARCH                   GARCH 

 Normal     Student’s t   GED Normal   Student’s t   GED Normal     Student’s t     GED Normal   Student’s t   GED 

MSE1 0.0597 0.0455 0.0447 0.4048 0.4929 0.6154 0.5543   0.6374 0.6629 0.2085 0.3621 0.1081 
MSE2 0.9609 0.7346 0.7226 5.1060 5.8339 6.7220 6.3092   6.8823 7.0454 3.0936 5.2512 1.5057 
QLIKE 2.1059 2.0884 2.0881 2.4794 2.6378 2.9046 2.7692   2.9640 3.0283 2.2176 2.2320 2.1316 
R2LOG 0.0890 0.0610 0.0602 0.5630 0.7408 1.0246 0.8738   1.0758 1.1426 0.2439 0.4438 0.1463 
MAD1 0.2021 0.1760 0.1738 0.4975 0.5652 0.6633 0.6051   0.6727 0.6935 0.3587 0.5276 0.2807 
MAD2 0.7424 0.6521 0.6436 1.6686 1.8344 2.0571 1.9271   2.0773 2.1218 1.2824 2.0358 1.0026 
HMSE 0.1252 0.0682 0.0680 1.8881 2.8825 4.7617 3.8625   5.3180 5.8047 0.5226 0.2011 0.1343 
The volatility proxy is calculated with the Realized Range estimator 



25 
 

merely produces a non-fluctuating constant. Consequently, taking the mean of the Realized 

Range seems to yield a constant that would retrieve results comparable to the best models on 

BSE. Hence, none of the model appears to produce particularly good predictions. 

 

 

 

Table 8 contains the loss functions of derived from the Realized Range volatility. 

 

The results of the loss functions are like expected from the diagram not as straightforward as 

the result from S&P 500. The     ,      and        are lowest when they are calculated 

with the forecast from APGARCH under t-distribution. The       and      are lowest 

calculated from the GARCH under the normal distribution. Finally the best model based on 

     and      is the APGARCH with GED innovations. Nevertheless, there are not any 
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Diagram 2. Out-of-sample Series BSE 
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 Table 8. Out-of-sample Loss functions of BSE   

                 MRS-GARCH                APGARCH                 EGARCH                  GARCH 

 Normal     Student’s t    GED Normal  Student’s t   GED Normal  Student’s t      GED Normal  Student’s t   GED 

MSE1 0.3833 0.6017 0.5834 0.1193 0.1094 0.1136 0.1233 0.1148 0.1193 0.1402 0.1684 0.1663 
MSE2 10.5337 21.9014 20.3841 1.7449 1.6147 1.6865 1.7913 1.6876 1.7445 2.0253 2.4863 2.4147 
QLIKE 2.2673 2.2829 2.2855 2.2417 2.2292 2.2455 2.2455 2.2369 2.2417 2.2280 2.2387 2.2377 
R2LOG 0.2722 0.3319 0.3394 0.1356 0.1237 0.1270 0.1412 0.1301 0.1357 0.1610 0.1889 0.1893 
MAD1 0.4582 0.5154 0.5118 0.2409 0.2456 0.2329 0.2459 0.2388 0.2413 0.3371 0.3635 0.3735 
MAD2 2.1150 2.6279 2.5549 0.8786 0.9013 0.8559 0.8946 0.8728 0.8800 1.2794 1.3942 1.4315 
HMSE 0.1469 0.1515 0.1542 0.2832 0.2189 0.2619 0.2975 0.2606 0.2828 0.1225 0.1354 0.1270 
The volatility proxy is calculated with the Realized Range estimator 
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large differences between the values of the loss functions from the single regime GARCH 

models and they seem to have a somewhat similar accuracy.  

i)  Diebold Mariano Test 
 

Since the DM test only are able to compare the models pairwise and the seven loss 

functions are calculated from each model of both S&P 500 and BSE, 4032 test statistics are 

calculated. To uphold brevity most of the tables are decided to not be presented. The 

demonstrated results of the DM-test are entirely from the series of loss functions calculated 

with realized range. The DM-test aims to determine superior predictive ability and the 

Realized Range estimator is as discussed proved to be approximately five times more efficient 

than the Close-Close proxy. Moreover, to make the thesis as coherent as possible the two 

benchmark models chosen to be presented are the most efficient MRS-GARCH models based 

on the loss functions. Additionally, the best performing specification of each model are to be 

found in the appendix.  

The MRS-GARCH with GED innovations has the lowest loss functions out of all 

models on the S&P 500. Hence, rejecting the null hypothesis of no difference in the forecast 

series implies that the MRS-GARCH with GED innovations is superior to the model it’s 

being compared with. The opposite is almost true in table 10 where the MRS-GARCH with 

normal distribution is presented. Even though the MRS-GARCH with normal innovations 

yields the lowest loss functions compared to the Regime switching GARCH models, it has 

higher values on all functions except     , compared to the single regime models. 

Consequently, except for the     , when the MRS-GARCH with normal distribution is 

competing against a Single Regime model, rejecting the null implies that it has been 

outperformed. 
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- S&P 500 

Table 9 presents the p-values from the DM-tests where the MRS-GARCH with GED 

distribution serves as the benchmark model.  

 

 There is evident that most of the p-values in the table are rejected with high statistical 

significance. The only two models where it is hard to distinguish between the forecast 

accuracy is the other MRS-GARCH specifications and the GARCH under GED-distribution. 

The MRS-GARCH under all distributions yields loss functions with similar values compared 

to the other models. It is therefore expected that the different series of MRS-GARCH under 

GED and t-distribution can’t be distinguished for any loss function. Nevertheless, at least a 

90% significance level is fulfilled on all loss functions except the       and      when 

The MRS-GARCH under GED and normal distribution are compared. The result of the MRS-

GARCH with GED stressed against the GARCH under GED is fairly similar. A significance 

level higher than 90% is achieved for all loss functions except the      and      . 

Consequently, the MRS-GARCH with GED innovation is without a doubt superior to all 

models except the other MRS-GARCH and the GARCH with GED innovations. Nonetheless, 

the MRS-GARCH under GED is superior to both the MRSGARCH with normal innovations 

Table 9: Diebold-Mariano test Benchmark: S&P 500 - MRS-GARCH(GED)   

                                       

MRS-GARCH(N)     0.0170 0.0654 0.1167 0.0908 0.0216 0.0146 0.1637 

       0.0182 0.0676 0.1194 0.0933 0.0230 0.0157 0.1666 

MRS-GARCH(T)     0.6002 0.7484 0.7178 0.6253 0.3741 0.4393 0.9368 

       0.6021 0.7496 0.7192 0.6271 0.3768 0.4419 0.9371 

APGARCH(N)     0.0050 0.0162 0.0027 0.0015 0.0009 0.0024 0.0086 

       0.0056 0.0174 0.0031 0.0017 0.0010 0.0027 0.0094 

APGARCH(T)     0.0025 0.0109 0.0012 0.0004 0.0001 0.0006 0.0063 

       0.0028 0.0118 0.0014 0.0005 0.0002 0.0008 0.0069 

APGARCH(GED)     0.0008 0.0063 0.0003 0.0000 0.0000 0.0001 0.0037 

       0.0009 0.0069 0.0004 0.0001 0.0000 0.0001 0.0042 

EGARCH(N)     0.0019 0.0092 0.0011 0.0003 0.0000 0.0003 0.0069 

       0.0022 0.0100 0.0013 0.0004 0.0001 0.0004 0.0076 

EGARCH(T)     0.0008 0.0063 0.0004 0.0001 0.0000 0.0001 0.0047 

       0.0010 0.0069 0.0005 0.0001 0.0000 0.0001 0.0052 

EGARCH(GED)     0.0006 0.0055 0.0003 0.0000 0.0000 0.0000 0.0039 

       0.0008 0.0061 0.0003 0.0000 0.0000 0.0000 0.0044 

GARCH(N)     0.0249 0.0499 0.0184 0.0141 0.0074 0.0154 0.0295 

       0.0264 0.0519 0.0196 0.0152 0.0081 0.0166 0.0311 

GARCH(T)     0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0006 
       0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.0007 

GARCH(GED)     0.0317 0.1478 0.0203 0.0123 0.0313 0.0639 0.1249 
       0.0333 0.1506 0.0216 0.0133 0.0330 0.0661 0.1277 
Loss functions calculated with the Realized Range volatility  
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and the GARCH with GED innovations on five out of seven of the considered loss functions. 

This could be interpreted as a weakly superior predictive ability of the MRS-GARCH under 

GED. The only model with inseparable forecast accuracy to the MRS-GARCH with GED 

innovations is the MRS-GARCH with t-distribution.   

 

-  BSE 

The MRS-GARCH with normal distribution is presented in table 10  

 

The result from BSE is not as easy to interpret as the result of S&P 500. Except for     , 

the MRS-GARCH models has under all distribution higher loss function values than the 

single regime models. It is evident that the      lacks significance independently of which 

model it’s evaluated against. All the APGARCH and EGARCH models outperforms the 

MRS-GARCH with normal distribution on all loss functions except       . However, the 

forecasts of the APGARCH and EGARCH merely yields a constant almost entirely without 

fluctuations compared to the volatility proxy. A table of the standard deviation from the 

forecast series compared to the Realized Range volatility can be found in the appendix. 

Hence, neither the APGARCH nor EGARCH returns appealing forecasts. Taking the average 

Table 10: Diebold-Mariano test Benchmark: BSE - MRS-GARCH(N)   

                                       

MRS-GARCH(T)     0.1477 0.1269 0.3729 0.2990 0.2796 0.1645 0.6782 
       0.1507 0.1298 0.3758 0.3020 0.2827 0.1675 0.6798 

MRS-GARCH(GED)     0.2097 0.2047 0.3251 0.2768 0.2340 0.1806 0.9453 
       0.2128 0.2078 0.3281 0.2799 0.2371 0.1836 0.9456 

APGARCH(N)     0.0169 0.0537 0.2023 0.0219 0.0083 0.0072 0.9481 
       0.0181 0.0559 0.2054 0.0233 0.0091 0.0079 0.9484 

APGARCH(T)     0.0144 0.0513 0.3334 0.0270 0.0021 0.0025 0.7434 
       0.0156 0.0535 0.3364 0.0287 0.0025 0.0029 0.7447 

APGARCH(GED)     0.0174 0.0535 0.4657 0.0464 0.0040 0.0035 0.6382 
       0.0186 0.0556 0.4683 0.0484 0.0045 0.0040 0.6400 

EGARCH(N)     0.0160 0.0526 0.3648 0.0335 0.0040 0.0038 0.7301 
       0.0172 0.0548 0.3677 0.0352 0.0045 0.0043 0.7314 

EGARCH(T)     0.0168 0.0531 0.4659 0.0453 0.0038 0.0034 0.6389 
       0.0181 0.0553 0.4684 0.0473 0.0043 0.0039 0.6407 

EGARCH(GED)     0.0183 0.0539 0.5415 0.0586 0.0049 0.0038 0.5895 
       0.0196 0.0561 0.5437 0.0609 0.0055 0.0044 0.5915 

GARCH(N)     0.1275 0.1128 0.2468 0.2742 0.3286 0.1889 0.3706 
       0.1304 0.1156 0.2499 0.2773 0.3316 0.1919 0.3734 

GARCH(T)     0.1317 0.1149 0.2401 0.2770 0.3918 0.2258 0.3210 
       0.1346 0.1177 0.2432 0.2800 0.3946 0.2289 0.3240 

GARCH(GED)     0.0766 0.0908 0.1094 0.1236 0.1948 0.1177 0.3002 
       0.0791 0.0935 0.1122 0.1264 0.1979 0.1205 0.3032 
Loss functions calculated with the Realized Range volatility  
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of the Realized Range volatility would therefore probably also be superior in forecast 

accuracy to the MRS-GARCH with normal innovations. Furthermore, when the MRS-

GARCH with normal distribution is evaluated against the GARCH under normal and t-

distribution the null can’t be rejected for any loss function. Nevertheless, when it is evaluated 

towards the GARCH under GED the null can be rejected under 90% significance for the 

     and     .    

 

VII. Conclusion 

The aim of this thesis was to evaluate the accuracy of volatility forecast from a set of single 

regime GARCH models and the MRS-GARCH during the financial crisis of 2008. The 

forecast horizon was one day ahead and the models were estimated from both the S&P 500 

and BSE. All models were estimated under three distributional assumptions, i.e., normal-, t- 

and GED-distribution.  

 The purpose was foremost to evaluate the predictive accuracy of the MRS-GARCH 

and additionally whether the MRS-GARCH assessed on the BSE would be successful. This 

evaluation was stressed by comparing a series of forecast towards a proxy for the true 

volatility. The Realized Range estimator was used as the true volatility, calculated using intra 

daily extreme values.  

  The predictive accuracy was measured by calculating loss functions from an out-

sample period starting from the collapse of Lehman brothers in 2008 until one year ahead. 

Furthermore the DM-test was applied to be able to determine whether the forecasting 

performance differed between the models. A statistical significant difference of the 

performance of two models means that one models has a superior predictive ability. The DM-

tests is a pairwise test where one model is appointed as benchmark. The benchmark models 

predictive ability is then tested towards all other models and loss functions. Hence, the 

conclusions of the forecasting performances are only relative to the other models included in 

the thesis. 

 The results were very different depending on which index that was evaluated. The 

predictive accuracy was generally far better on S&P 500 than the BSE. Both the Single and 

Regime Switching models had a hard time forecasting volatility on the BSE. The MRS-

GARCH models was superior in predictive accuracy to the single regime models on the S&P 

500 except for the GARCH with GED innovations. However, the MRS-GARCH was at least 

weakly superior since the null were rejected on five out of seven loss functions. The superior 

predictive accuracy is conversely hard to determine on the BSE. It seems like no model 
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performed particularly well and that the characteristics of BSE was either hard to pick up or 

wasn’t symptomatic of the out-sample period. This is also evident when the DM-test is 

performed and a difference in performance accuracy is much harder to find. In fact no model 

was entirely superior in predictive ability.  

 It should be noted that there are many GARCH specifications that aren’t evaluated in 

this thesis. Nonetheless, the MRS-GARCH demonstrated an ability to produce relatively 

accurate short-term forecasts of S&P 500’s volatility. If the aim of a researcher is to find 

accurate short-term forecasts, the MRS-GARCH proved itself useful. Furthermore, none of 

the models forecasting performance are particularly successful on the BSE. There is 

consequently interesting to further investigate other kind of GARCH models on this index. An 

especially interesting feature left for further research is to let the density function of the MRS-

GARCH shift between the different regimes.  
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IX. Appendix 

i) Markov Regime Switching GARCH 

The conditional variance equation in the MRS-GARCH (1,1) framework is expressed as 

                                                           
 |   

   
   

   
   

    
    

   
  
 |   

             (A1) 

The conditional variance of the rate of returns is dependent on the whole regime path 

 ̃  {              } which is unobserved by the econometrician. The conditional variance 

is therefore given by 

                           
 |   

    [  | ̃      ]               (A2) 

This make the estimation procedure problematic since the possible regime paths increase 

exponentially with time. Many prominent researchers has dealt with this issue in numerous 

ways but this thesis focus on the estimation procedure by (Klaassen, 2002). The conditional 

variance equation in (A1) for the MRS-GARCH(1,1) is then written as 

                    
 |   [  | ̃      ]    

   
   

   
    
    

   
 [   {    | ̃        }|       ]     (A3) 

where    {   }  and the expectation   is across the state   ̃    and conditional on the 

information set      and current regime   . The constraints are the same as for the traditional 

GARCH model:   
   

   and   
   

,   
   

   to ensure positivity of the conditional variance. 

With this setting it is only necessary to integrate out one single regime,      since (A3) can be 

expressed as 

            
 |   [  |       ]    

   
   

   
    
    

   
 [    

 |   |       ]          (A4) 

which is independent of  ̃ .This is true since    [  | ̃      ] by construction only depends on 

the present variance regime which means that    [  | ̃      ]      [  |       ] . Hence by 

using the law of iterated expectations, i.e., taking the conditional expectation of the lagged 

conditional variance on the current regime, Klaassen (2002) get rid of the path dependence 

problem. Consequently the conditional variance is given by 

  
 |   

   
   

   
   

    
    

   
 [    

 |   
|       ]            (A5) 

where the expected conditional variance is calculated as 

  [    
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  (A6)  

with the probabilities given by 

                              ̃            |                
       |     

         |     
    

    

      
             (A7) 
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where        .  

 

ii) DM-test 

Assume that we have two competing forecast series, one from the MRS-GARCH, 

 {  ̂   
        }

 

 
 and one from the standard GARCH {  ̂   

     }
 

 
, with corresponding forecast 

errors  {     
        }

 

 
 and {     

     }
 

 
. By taking the difference between two loss function 

      
          and       

       we define 

                                             ( (    
        )        

      )           (A8) 

Under fairly weak conditions explicitly that {  } 
  is covariance-stationary and has short 

memory Diebold Mariano proved that the mean of the loss differential series,   ̅  is        

√ (   )   (     ( )), where     ( ) is the asymptotic or long-run variance of the 

sample mean loss differential series.  Assuming that the conditions above holds the 

difficulties attached with calculating the DM statistic is that the econometrician do not 

observe the long run variance and therefore must estimate it with  

             ̂( )     ( ̂  ∑    ̂ 
 
   )           (A9) 

where  ⌊ (
 

   
)
   

⌋  ,      (
 

   
)   is the lag window and  ̂  is the     order 

autocovariance estimated by 

          ̂  
 

 
∑ (    )(      ) 

                         (A10) 

for        . Finally the DM test statistic is retrieved by calculating 
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iii) Tables 

 

 

 Table A1. Out-of-sample Loss functions of S&P 500   

               MRS-GARCH                     APGARCH                     EGARCH                      GARCH 

   Normal  Student’s t  GED  Normal     Student’s t   GED  Normal     Student’s t  GED  Normal    Student’s t   GED 

MSE1  1.4590   1.4455 1.4456  3.2892   3.5756   3.9315  3.7425    3.9827  4.0551  2.5437  0.7676   1.7525 
MSE2 39.9120      40.6670    40.6075 76.8817         80.0642    83.6154 81.8714        84.1584   84.7997 66.8292      28.6072      52.9460 
QLIKE  4.0104   3.9142 3.9186  6.1204    6.8145   7.8810  7.3134    8.0823  8.3336  4.7978  3.3417     3.9413 
R2LOG  1.1878   1.1005 1.1060  2.8463   3.3040   3.9431  3.5804    4.0312  4.1777  1.8691  0.3739   1.0770 
MAD1  1.1642   1.1539 1.1557  1.6610   1.7449   1.8433  1.7851    1.8527  1.8735  1.4405  0.6976   1.1634 
MAD2  5.6924   5.7051 5.7082  7.5080   7.7140   7.9373  7.8073    7.9576  8.0021  6.8962  4.0292   5.9789 
HMSE  4.6999   3.9030 3.9224 28.8309        39.8277     59.3873 49.7532        64.6519    69.6028 11.8624        0.9585        4.3904 
The volatility proxy is calculated with the Close-Close estimator 

 Table A2. Out-of-sample Loss functions of BSE 

               MRS-GARCH                  APGARCH                      EGARCH                      GARCH 

   Normal  Student’s t     GED   Normal   Student’s t   GED   Normal    Student’s t  GED   Normal  Student’s t   GED 

MSE1   0.9609 0.8882   0.9148   2.2113   2.4643  2.4723  2.3749   2.4602   2.4803   1.4683   1.3461   1.4961 
MSE2  26.1525   23.3308      24.8487  60.6587     65.3370   64.9262 63.3962      64.7508    65.0688  46.3168     43.7379      46.9985 
QLIKE   3.7184 3.6883   3.6934   4.4787   4.7314  4.7528  4.6481   4.7407   4.7662   3.8534     3.7651   3.8659 
R2LOG   0.6725 0.6449   0.6494   1.4684   1.7094  1.7363  1.6324   1.7226   1.7440   0.8216   0.7258    0.8402 
MAD1   0.8947 0.8720   0.8765   1.3669   1.4703  1.4689  1.4301   1.4633   1.4692   1.0579   1.0134   1.0797 
MAD2   4.6021 4.4401   4.5064   6.8421   7.2338  7.1869  7.0582   7.1686   7.1871   5.6777   5.5049   5.7735 
HMSE   2.2243 1.9873   2.0244  7.7815        9.6494     10.0232  9.1937        9.9555      10.2115   3.1491   2.5675   3.1935 
The volatility proxy is calculated with the Close-Close estimator 

Table A3: Diebold-Mariano test Benchmark: APGARCH (N)   

                                       

MRS-GARCH(N)     0.0070 0.0193 0.0055 0.0038 0.0028 0.0053 0.0123 
       0.0077 0.0206 0.0061 0.0043 0.0032 0.0059 0.0133 
MRS-GARCH(T)     0.0033 0.0127 0.0022 0.0010 0.0004 0.0014 0.0081 
       0.0038 0.0137 0.0025 0.0012 0.0005 0.0017 0.0088 
MRS-GARCH(GED)     0.0010 0.0071 0.0005 0.0001 0.0000 0.0001 0.0044 
       0.0012 0.0078 0.0006 0.0001 0.0000 0.0002 0.0049 
APGARCH(T)     0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0033 
       0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0037 
APGARCH(GED)     0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 
       0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 
EGARCH(N)     0.0000 0.0003 0.0002 0.0000 0.0000 0.0000 0.0056 
       0.0001 0.0004 0.0003 0.0000 0.0000 0.0000 0.0062 
EGARCH(T)     0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0032 
       0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0037 
EGARCH(GED)     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026 
       0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0030 
GARCH(N)     0.0008 0.0023 0.0008 0.0003 0.0012 0.0013 0.0052 
       0.0010 0.0027 0.0010 0.0004 0.0014 0.0015 0.0057 
GARCH(T)     0.8168 0.9533 0.1112 0.6201 0.8537 0.5178 0.0181 
       0.8177 0.9535 0.1139 0.6220 0.8545 0.5200 0.0193 
GARCH(GED)     0.0127 0.0176 0.0053 0.0100 0.0386 0.0440 0.0082 
       0.0138 0.0188 0.0059 0.0109 0.0404 0.0459 0.0089 
Loss functions calculated with the Realized Range volatility 
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Table A4: Diebold-Mariano test Benchmark: S&P 500-EGARCH (N)   

                                       

MRS-GARCH(N)     0.0025 0.0105 0.0017 0.0006 0.0002 0.0007 0.0082 
       0.0029 0.0115 0.0020 0.0008 0.0002 0.0009 0.0090 
MRS-GARCH(T)     0.0011 0.0071 0.0006 0.0001 0.0000 0.0001 0.0054 
       0.0013 0.0078 0.0008 0.0002 0.0000 0.0002 0.0060 
MRS-GARCH(GED)     0.0008 0.0062 0.0004 0.0001 0.0000 0.0001 0.0045 
       0.0010 0.0069 0.0005 0.0001 0.0000 0.0001 0.0051 
APGARCH(N)     0.0000 0.0003 0.0002 0.0000 0.0000 0.0000 0.0056 
       0.0001 0.0004 0.0003 0.0000 0.0000 0.0000 0.0062 
APGARCH(T)     0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0032 
       0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0037 
APGARCH(GED)     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0026 
       0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0030 
EGARCH(T)     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 
       0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 
EGARCH(GED)     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 
       0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0012 
GARCH(N)     0.0003 0.0012 0.0004 0.0000 0.0000 0.0000 0.0054 
       0.0004 0.0014 0.0005 0.0001 0.0000 0.0000 0.0060 
GARCH(T)     0.0004 0.0004 0.0004 0.0004 0.0000 0.0000 0.0004 
       0.0005 0.0005 0.0005 0.0001 0.0000 0.0000 0.0005 
GARCH(GED)     0.0041 0.0094 0.0017 0.0015 0.0045 0.0088 0.0067 
       0.0046 0.0102 0.0019 0.0017 0.0051 0.0096 0.0074 
Loss functions calculated with the Realized Range volatility 

Table A5: Diebold-Mariano test Benchmark: S&P 500-GARCH (GED)   

                                       

MRS-GARCH(N)     0.0249 0.0499 0.0184 0.0141 0.0074 0.0154 0.0295 
       0.0264 0.0519 0.0196 0.0152 0.0081 0.0166 0.0311 

MRS-GARCH(T)     0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0006 
       0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.0007 

MRS-GARCH(GED)     0.0317 0.1478 0.0203 0.0123 0.0313 0.0639 0.1249 
       0.0333 0.1506 0.0216 0.0133 0.0330 0.0661 0.1277 

APGARCH(N)     0.0001 0.0005 0.0001 0.0000 0.0000 0.0000 0.0027 
       0.0001 0.0007 0.0001 0.0000 0.0000 0.0000 0.0031 

APGARCH(T)     0.2624 0.6051 0.0075 0.0687 0.4171 0.9686 0.0054 
       0.2653 0.6069 0.0082 0.0710 0.4197 0.9687 0.0060 

APGARCH(GED)     0.0017 0.0061 0.0005 0.0003 0.0005 0.0022 0.0036 
       0.0020 0.0068 0.0006 0.0003 0.0007 0.0025 0.0040 

EGARCH(N)     0.0001 0.0005 0.0001 0.0000 0.0000 0.0000 0.0046 
       0.0001 0.0006 0.0001 0.0000 0.0000 0.0000 0.0035 

EGARCH(T)     0.2035 0.0005 0.0049 0.0407 0.3266 0.8805 0.0054 
       0.2065 0.5419 0.0055 0.0426 0.3295 0.8811 0.0060 

EGARCH(GED)     0.0013 0.0053 0.0004 0.0002 0.0000 0.0013 0.0038 
       0.0015 0.0059 0.0005 0.0002 0.0000 0.0015 0.0043 

GARCH(T)     0.2348 0.2541 0.8555 0.2013 0.0005 0.0025 0.1606 
       0.2378 0.2571 0.8562 0.2043 0.0006 0.0028 0.1635 

GARCH(GED)     0.0006 0.0016 0.0031 0.1895 0.2495 0.0022 0.2324 
       0.0008 0.0019 0.0035 0.1924 0.2524 0.0025 0.2353 
Loss functions calculated with the Realized Range volatility 
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Table A6: Diebold-Mariano test Benchmark: BSE-APGARCH (T)   

                                       

MRS-GARCH(N)     0.0496 0.0847 0.0912 0.0343 0.0123 0.0202 0.9873 
       0.0517 0.0873 0.0939 0.0361 0.0134 0.0215 0.9873 

MRS-GARCH(T)     0.0460 0.0832 0.1440 0.0295 0.0032 0.0114 0.7670 
       0.0481 0.0858 0.1470 0.0312 0.0037 0.0124 0.7682 

MRS-GARCH(GED)     0.0491 0.0847 0.2225 0.0395 0.0048 0.0133 0.6515 
       0.0512 0.0872 0.2256 0.0414 0.0054 0.0144 0.6533 

APGARCH(N)     0.5183 0.4538 0.2562 0.5841 0.6724 0.6209 0.0776 
       0.5207 0.4565 0.2593 0.5862 0.6741 0.6228 0.0802 

APARCH(GED)     0.0053 0.0066 0.0080 0.0045 0.0185 0.0197 0.0233 
       0.0059 0.0074 0.0088 0.0051 0.0198 0.0211 0.0248 

EGARCH(N)     0.3114 0.3590 0.3532 0.2733 0.4357 0.4381 0.5694 
       0.3145 0.3619 0.3562 0.2764 0.4384 0.4408 0.5715 

EGARCH(T)     0.0093 0.0123 0.0152 0.0073 0.0020 0.0022 0.0402 
       0.0102 0.0134 0.0164 0.0080 0.0024 0.0026 0.0421 

EGARCH(GED)     0.0070 0.0095 0.0118 0.0052 0.0018 0.0018 0.0345 
       0.0077 0.0104 0.0129 0.0058 0.0021 0.0022 0.0363 

GARCH(N)     0.4685 0.4390 0.9364 0.4977 0.1648 0.1148 0.2680 
       0.4711 0.4417 0.9367 0.5002 0.1679 0.1177 0.2712 

GARCH(T)     0.4971 0.4968 0.9324 0.5016 0.1416 0.0964 0.2817 
       0.4996 0.4993 0.9327 0.5040 0.1446 0.0991 0.2848 

GARCH(GED)     0.7332 0.7432 0.7303 0.7250 0.2323 0.1707 0.2246 
       0.7346 0.7446 0.7317 0.7264 0.2355 0.1738 0.2278 
Loss functions calculated with the Realized Range volatility 

Table A7: Diebold-Mariano test Benchmark: BSE-EGARCH (T)   

                                       

MRS-GARCH(N)     0.0482 0.0842 0.1645 0.0355 0.0059 0.0143 0.7509 
       0.0503 0.0868 0.1676 0.0373 0.0066 0.0155 0.7522 

MRS-GARCH(T)     0.0488 0.0845 0.2217 0.0390 0.0048 0.0133 0.6523 
       0.0509 0.0871 0.2248 0.0409 0.0054 0.0144 0.6540 

MRS-GARCH(GED)     0.0502 0.0850 0.2737 0.0451 0.0056 0.0141 0.5991 
       0.0523 0.0876 0.2767 0.0471 0.0063 0.0152 0.6011 

APGARCH(N)     0.3114 0.3590 0.3532 0.2733 0.4357 0.4381 0.5694 
       0.3145 0.3619 0.3562 0.2764 0.4384 0.4408 0.5715 

APGARCH(T)     0.0093 0.0123 0.0152 0.0073 0.0020 0.0022 0.0402 
       0.0102 0.0134 0.0164 0.0080 0.0024 0.0026 0.0421 

APGARCH(T)     0.0070 0.0095 0.0118 0.0052 0.0018 0.0018 0.0345 
       0.0077 0.0104 0.0129 0.0058 0.0021 0.0022 0.0363 

EGARCH(N)     0.1474 0.1123 0.0727 0.1930 0.7176 0.7519 0.0339 
       0.1504 0.1151 0.0752 0.1960 0.7191 0.7532 0.0357 

EGARCH(GED)     0.0047 0.0068 0.0085 0.0034 0.0030 0.0030 0.0284 
       0.0053 0.0076 0.0094 0.0038 0.0034 0.0035 0.0300 

GARCH(N)     0.4967 0.4592 0.8758 0.5346 0.1890 0.1289 0.2412 
       0.4991 0.4618 0.8764 0.5369 0.1920 0.1318 0.2443 

GARCH(T)     0.5321 0.5242 0.8680 0.5450 0.1648 0.1102 0.2533 
       0.5344 0.5265 0.8687 0.5473 0.1678 0.1130 0.2564 

GARCH(GED)     0.7746 0.7772 0.6729 0.7743 0.2706 0.1967 0.2026 
       0.7757 0.7783 0.6745 0.7755 0.2737 0.1998 0.2057 
Loss functions calculated with the Realized Range volatility 
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Table A8: Diebold-Mariano test Benchmark: GARCH (N)   

                                       

MRS-GARCH(N)     0.1275 0.1128 0.2468 0.2742 0.3286 0.1889 0.3706 
       0.1304 0.1156 0.2499 0.2773 0.3316 0.1919 0.3734 

MRS-GARCH(T)     0.1317 0.1149 0.2401 0.2770 0.3918 0.2258 0.3210 
       0.1346 0.1177 0.2432 0.2800 0.3946 0.2289 0.3240 

MRS-GARCH(GED)     0.0766 0.0908 0.1094 0.1236 0.1948 0.1177 0.3002 
       0.0791 0.0935 0.1122 0.1264 0.1979 0.1205 0.3032 

APGARCH(N)     0.2999 0.2876 0.8224 0.3096 0.1101 0.0747 0.3639 
       0.3029 0.2906 0.8233 0.3126 0.1129 0.0771 0.3668 

APGARCH(T)     0.3423 0.3564 0.8567 0.3321 0.1033 0.0698 0.3719 
       0.3453 0.3593 0.8574 0.3350 0.1061 0.0722 0.3668 

APGARCH(T)     0.5470 0.5700 0.9216 0.5263 0.1774 0.1278 0.2958 
       0.5492 0.5721 0.9221 0.5286 0.1804 0.1306 0.2988 

EGARCH(N)     0.4271 0.3997 0.9729 0.4550 0.1557 0.1064 0.2786 
       0.4298 0.4024 0.9730 0.4576 0.1587 0.1091 0.2817 

EGARCH(T)     0,4967 0,4592 0,8758 0,5346 0,1890 0,1289 0,4967 
       0,4991 0,4618 0,8764 0,5369 0,1920 0,1318 0,4991 

EGARCH(GED)     0.6944 0.7047 0.7546 0.6868 0.2282 0.1653 0.2325 
       0.6959 0.7062 0.7558 0.6884 0.2312 0.1684 0.2356 

GARCH(T)     0.8978 0.7621 0.8901 0.9694 0.0123 0.0201 0.5300 
       0.8983 0.7633 0.8906 0.9695 0.0133 0.0215 0.5323 

GARCH(GED)     0.0102 0.0089 0.0113 0.0002 0.5983 0.0168 0.0088 
       0.0111 0.0098 0.0122 0.0002 0.6003 0.0180 0.0097 
Loss functions calculated with the Realized Range volatility 

Table A9. Standard deviation of Forecast series. 

 APGARCH(N)    APGARCH(T)      APGARCH(GED)  EGARCH(N)  EGARCH(T) EGARCH(GED) RR-proxy 

Std.dev      0.1189  0.2863        0.1198  0.1432 0.1892      0.1301  1.0488 


