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Populärvetenskaplig Sammanfattning

En atom består av en kärna och en eller flera elektroner. Den positivt laddade kärnan utgör
atomens centrum och större delen av dess massa. Elektronerna är små, negativt laddade,
partiklar i omloppsbana kring kärnan. För många applikationer (och inte minst för att
studera atomstruktur) kan det vara interessant att kunna slita loss elektronerna ur sina
banor – att jonisera atomen.

Ett sätt att jonisera en atom är att använda en laser. En laser genererar en stråle av
ljus, vilka slänger elektronerna de passerar upp och ner, likt en boj som guppar i havet.
Oftast är ljusvågorna symmetriska: hälften av tiden dras elektronerna åt ena hållet, och
hälften av tiden dras de åt det andra.

Om lasern är tillräckligt kommer elektroner att dras loss från sina atomer och frigöras
– atomerna joniseras. De fria elektronerna kommer att slungas fram och tillbaka av ljusvå-
gorna tills de antingen lämnar laserstrålen eller slungas tillbaka in i atomen av vågorna. De
som slungas tillbaka kommer antingen att falla in i atomen eller att studsa ut igen.

Laserljus består nästan alltid av endast en våglängd, vilket är ett mått på färgen hos det
ljus som genereras. Vad händer om man istället för att använda en använder två laserstrålar
med olika färg? I det här examensarbetet undersöks vad som händer om man använder två
lasrar, en stark och en svag, där den svaga laserns vågor gungar flera gånger snabbare än
den starkas.

En illustration av detta ses i figur 1 nedan, där en pensel har satts fast på varje hjul
av en cykel. Eftersom den blå penseln på det lilla hjulet fullbordar en rotation dubbelt så
ofta som den röda penseln på det stora hjulet, kommer vågen som målas av det lilla hjulet
svänga dubbelt så snabbt. Man säger att det lilla hjulet har två gånger högre frekvens
än det stora. Notera att en två gånger högre frekvens även leder till en hälften så lång
våglängd.

Figur 1: En röd och en blå pensel har satts fast på fram- respektive bakhjulet av en cykel målar
en vägg. Det lilla hjulet roterar fler varv än det stora på samma tid, vilket illustreras av färgen på
väggen.

När elektronerna är fria slängs de, som nämnt ovan, fram och tillbaka tills de lämnar
laserstrålen. Deras acceleration är proportionell mot summan av laservågornas höjd. Här
studerades endast fallet där fältet med högst frekvens är för svagt för att påverka acceler-
ationen. Detta medför att elektronernas energi efter att de lämnar atomen inte påverkas
av det svaga fältet i någon större utsträckning. Den högfrekventa lasern kan dock påverka
sannolikheten för jonisation vid en viss tidpunkt, vilket illustreras i figur 2. Eftersom jon-
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isationstillfället påverkar den frigjorda elektronens energi, påverar den högfrekventa lasern
hur många elektroner som kommer uppmätas med en given energi.

Figur 2: Två lasrar med olika frekvens interagerar. När båda pekar åt samma håll ökar jonisa-
tionssannolikheten, annars minskar den. Grön respektive röd färg representerar ökad respektive
minskad jonisationssannolikhet.

Genom att observera sannolikheten för elektroner att ha olika energier, vet man sanno-
likheten för att de ska frigöras vid olika tidpunkter. Elektroner som frigörs när den starka
lasern pekar uppåt åker uppåt och de som joniseras när den pekar neråt åker neråt. I de
områden där jonisationen ökar hos de elektroner som åker uppåt (till exempel innan de
positiva vågtopparna i figur 2), minskar den för de som åker neråt, och vice versa. Detta
betyder att endast skillnaden mellan hur många elektroner som åker uppåt och nedåt med
en viss energi behöver studeras. På detta sätt kan man få information om den relativa
förskjutningen i tidled mellan vågorna, vilket ger en större förståelse för vad som händer i
det fysiska systemet man studerar. Ett exempel på en annan relativ förskjutning ges i figur
3.

Figur 3: Vågor av samma frekvens och styrka som i figur 2, men med annan relativ förskutning.

När vågornas frekvens skiljer sig med en udda faktor, såsom i figur 4, kommer lasern
att accelerera lika många elektroner med samma energi både uppåt och nedåt. I detta fall
kan inte systemets asymmetri undersökas. Istället kan endast det totala antalet elektroner
joniserade med en viss energi studeras.

Figur 4: Vågor av samma förskjutning och styrka som i figur 2. Dock är här skillnaden i frekvens
en faktor 3.
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1 Introduction

When atoms are exposed to a strong laser field, their electrons can, using a quantum
mechanical description, be seen as absorbing more photons than required for ionisation, a
process known as Above Threshold Ionisation (ATI) [1]. If the probability for an electron
freed during ATI to absorb at least one photon is p, the probability to absorb at least two
will be p2, three p3, and so on. The energy of the electrons is proportional to the number
of photons used to excite them, giving an exponentially decreasing number of observed
electrons as a function of energy [2]. This process is illustrated in figure 1.

0
r

ε

ε

P

Figure 1: An illustration of ionisation during ATI. In the r− ε plane, where r is the distance from
the atomic core and ε is the energy, it is illustrated how an electron is freed from its ground state
in an atomic potential using multiple photons. As can be seen in the ε − P plane, where P (ε) is
the probability of finding an electron with energy ε, the exponentially decreasing pattern emerges.

According to the classical description of ATI, the electrons can be seen as gaining kinetic
energy due to their time in the electromagnetic field from the laser. The force ~F exerted
on the electrons with charge q is

~F = q
[
~E (t) + ~v × ~B (t)

]
, (1)

where ~E is the electric field, and ~B the magnetic field.
The strength of the magnetic field can be written

| ~B| = |
~E|
c
, (2)
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where c is the speed of light. For non-relativistic velocities ~v, this implies that the force
due to the magnetic field can be neglected and the force approximated as

~F (t) ≈ q ~E (t) . (3)

Consider a linearly polarised laser. If the electron has mass me, and the distance x from
the atom, its acceleration will be

ẍ (t) =
q

me
E (t) , (4)

where the notation E (t) = | ~E (t) | is used. The vector potential A, given by

− ∂A (t)

∂t
= E (t) , (5)

can be used to integrate equation (4), to get

x (t) = − q

me

A0 · (t− t0)−
t∫

t0

dt′A
(
t′
) , (6)

where A0 = A (t0) is the vector potential at the ionisation time t0. Assuming that the
electric field is sinusoidal, the last term in the expression will cancel out as the electron
leaves the beam. As the potential outside the beam is zero, the observed electron energy
can be computed by differentiating equation (6) to get

ε = lim
t→∞

meẋ
2

2
=

q2

2me
A2

0. (7)

Integrating equation (5), ε can be rewritten as

ε =
q2E2

2meω2
sin2 (ωt0) , (8)

where ω is the field frequency and E the amplitude of E (t). This gives the maximal observed
energy q2E2

2meω2 = 2Up, where Up, the ponderomotive energy, is the average potential energy
of the electrons in the laser field. The value of Up is explicitly calculated in section 2.4.

The exponentially decreasing pattern for ε < 2Up can be seen in figure 2, where a typical
ATI spectrum is shown. The peaks can be viewed as a result of the electron energy being
proportional to the number of photons absorbed in the quantum mechanical interpretation.

As the direction of ~E, due to linear polarisation, is constant, certain electron paths
will lead back to the atom, illustrated in figure 3. Due to this, some freed electrons will
scatter off the atom during the oscillation of the light wave. These electrons will scatter
off the core at an angle θ, and gain a velocity ẏ orthogonal to ẋ. Assuming completely
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Figure 2: A typical ATI spectrum, showing the logarithm of the probability P of observing an
electron with energy E during ATI. Below 2Up, the directly ionised electrons are dominant. Between
2Up and 10Up, a plateau is formed from rescattered electrons. Electrons observed with energies
over 10Up are a result of quantum mechanical effects [3], such as smearing. The jagged nature of
the spectrum is a result of the electrons absorbing energy in quanta – photons.

elastic rescattering, the electron velocity can be computed in the same manner as a newly
ionised electron, but with an initial velocity. If A1 = A (t1), The velocity of the rescattered
electrons can be written

ẋ = q
m [A1 −A (t)]− q

m |A1 −A0| cos (θ)

ẏ = q
m |A1 −A0| sin (θ)

, (9)

if A1 = A (t1) is the vector potential at rescattering time t1 [3]. As the potential will be
zero outside the beam, the observed electron energy is

ε ∝
〈
ẋ2 + ẏ2

〉
. (10)

The largest energy is given in the case of backscattering, giving an observed electron energy
of

ε =
q2

2me
(2A1 −A0)2 , (11)

which can be maximised with respect to t0 [and implicitly t1 (t0)] to give ε ≈ 10Up [3]. The
rescattered electrons therefore form a plateau in the region between 2Up and 10Up, which
can be seen in figure 2. The t0 dependence of ε can be seen in figure 3.

The electric field of a short laser pulse can be described as the product of a Gaussian
envelope, the amplitude of the pulse, and a carrier wave, responsible for its oscillation. For
few-cycle laser pulses, the rapid change of amplitude translates into a broadening in the
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0 π 2π 3πωt

0 π
ωt0

0

2

10

ε [Up]

Figure 3: To the left the classical paths of the electrons excited through ATI during one period of
the electric field are displayed. The force with which the electric field accelerates them is shown in
red. The green paths bring the electrons back to the atom, opening the possibility of rescattering,
whereas the blue paths lead to direct ionisation. The abscissa gives the phase of the electric field.
On the ordinate, the amplitude of the electric field, and the distance from the atomic core to the
electron paths is displayed in arbitrary units. To the right, the observed energy of the directly
ionised electrons are given in blue, and the maximum energy of the rescattered electrons is given
in green. the abscissa gives the excitation time, whereas the ordinate gives the observed electron
energy.

frequency plane, and they can be viewed as a sum of several plane waves. This broadening
will depend on the Carrier–Envelope Phase (CEP), and breaks the symmetrical character
of the wave, as can be seen in figure 4. During ATI the distribution of electrons between
the two directions of the electric field will be similarly affected, making it possible to gain
information about the CEP by studying the electron distribution [4, 5]. This is also shown
in figure 4.

For many-cycle laser pulses, the carrier wave can complete several cycles with approxi-
mately constant amplitude, making the broadening of the frequency less pronounced. How-
ever, the same effect can be obtained by using two different frequencies [6, 7]. The profile
of the ATI spectrum depends on the phase difference φ, as illustrated in figure 5, between
the respective carrier waves of the pulses.

As long as the intensities on one of the frequencies remains low, the electron paths,
being approximated classically, will have the same appearance as those in figure 3. The
same can be said for the electron energy, which depends only on the electron speed. The
non-linear excitation rate, however can be greatly influenced by the constructive and de-
structive interference [8]. This is what changes the resulting ATI spectrum, as it changes
the ionisation probability for electrons to be ionised at certain times, and as such with
certain energies.
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ωt ωt ωt

ωt ωt ωt

Figure 4: An illustration analagous to the first part of figure 3, but with a short pulse instead of
a field with constant amplitude. The pulse has a cos2 envelope, and the value of its CEP goes from
0 to 2π, in steps of 1

3π. Notice the asymmetry between the rows.

0 π 2π 3πφ ωt

Figure 5: Illustration of the symmetry breakup of a high-intensity, low-frequency, field, due to
a low-intensity, high-frequency field. Both fields displayed using dashed lines in the figure. The
resultant field is shown as a solid line, and the phase difference φ is marked on the abscissa.

The influence of φ on the electron spectrum demonstrates its significance. It also enables
the study of the observed electron spectrum to gain information about φ. This thesis aims
to study the effect of φ during ATI, for the case when one of the carrier waves is a harmonic
of the other, by studying the effect it has on the electron spectrum. The study is restricted
to cases where the intensity of the high-frequency pulse is within a factor 0.001–0.15 of the
low-frequency pulse intensity.
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2 Method

2.1 ATI Calculations

This section summarises the code, more extensively discussed in [9], which generated the
spectrum shown in figure 2, and which was used for the ATI calculations for this the-
sis. It solves the Time-Dependent Schrödinger Equation (TDSE) for single-active electron
approximation potentials on the form

V (~r) =
∑
`

V` (r) |`〉 〈`| − 1

r
, (12)

where ~r is the position vector with its origin in the atomic core and ` the angular momentum.
The grid is discretised along r = |~r|, and is described by a truncated base |`〉 in the angular
plane.

The z axis is chosen to be parallel with the electric field. For the electron wavefunction
|ψ〉 this gives the TDSE in the length gauge,

i
∂

∂t
|ψl〉 = [H0 + E (t) z] |ψl〉 , (13)

where H0 is the Hamiltonian with electric field strength zero. One disadvantage of this
form is that as z increases, the E (t) z term can cause great numerical inaccuracy. To avoid
this, the TDSE is written using the velocity gauge,

i
∂

∂t
|ψv〉 =

[
H0 − iA (t)

∂

∂z

]
|ψv〉 , (14)

where Â is the vector potential, given by equation 5.
This is convenient for large z, but for small z, the same problem seen in the length

gauge for large z, can be observed. For this reason, the length-gauge is used for small
z, and the velocity gauge for large z. An intermediate region is also defined, where the
TDSE is integrated separately in both gauges. As the areas over which the two gauges are
computed ends at the respective edges of this region, their boundary conditions will give a
contribution to the calculations. In order to counter this, the two gauges are matched, as
illustrated in figure 6.

The energy of the electrons is given to them by the photons they absorb, as are their `.
Thus, the total number of partial waves required, `tot, will be determined by the ` values
of the high energy electrons. Because both the range from the core and the kinetic energy
depends on the velocity, `tot will be determined in the velocity gauge.

The transformation between the gauges is

|ψl〉 = e−i[A(t)z+Φ(t)] |ψv〉 , (15)
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0
z

〈z|ψ〉

|ψl〉
|ψv〉

Figure 6: An illustration of the regions the two respective gauges are used to compute the wave-
function. Far from the atom, the velocity gauge is used, whereas the length gauge is used near the
core. The gauges overlap in a small region. To avoid effects from the boundary conditions at the
edges of this region, the two solutions are matched, as illustrated with arrows in the figure.

where
∂Φ (t)

∂t
=

1

2
A2 (t) , (16)

largely removing the ket phase factor in the velocity gauge, and thereby reducing `tot.

2.1.1 Convergence in `

Photons have angular momentum ±1, and the code uses a finite basis in the ` direction. As
the energy of the electrons are proportional to the number of photons absorbed, the energy
up to which the electron spectrum accurately can be modelled is proportional to the the
number of basis functions used in `.

The number of ` values needed equals the total energy section studied, multiplied by
the number of photons per unit of energy. Thus, optimally,

`tot ≈ 10Up ·
1

~ω
. (17)

Since the simulation time is proportional to the number of grid points, it was not feasible
to fulfil the convergence criterion of equation (17). This despite the use of mixed gauges to
decrease `tot. Instead, `tot was increased incrementally, as the convergence of the electron
spectrum was calculated. The code only accepted odd values of `tot, so a stepsize of two
was used. As a requirement for convergence for the vectors P `i describing the electron
spectrum, with momentum indicated by superscript and vector index indicated by subscript,
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containing the computed electron spectra up to 10Up,
1
N

√∑
i

(
P `i −P

`+1
i

P `i +P `+1
i

)2

< 10−4

max
i

∣∣∣∣P `i −P `+1
i

P `i +P `+1
i

∣∣∣∣ < 10−2

(18)

was used.

2.1.2 Pulse Envelope Shape

Envelopes of short laser pulses are often approximated as having a Gaussian shape. A
drawback of using Gaussian pulses for numerical computations is that they have no finite
cutoff point. The electric field and the vector potential must be approximately continuous
in order to model a physical system. Thus, in order to keep a high numerical accuracy, a
high number of time steps is required. A Gaussian is displayed in figure 7(a).

ωt

(a)

ωt

(b)

ωt

(c)

Figure 7: Different envelope shapes considered in this thesis. In (a), a Gaussian is displayed, in
(b), a cos2 shape, and in (c) a trapezoidal.

A Gaussian has roughly the same shape as a cos2 function, as can be seen when com-
paring figures 7(a) and 7(b). By using a cos2 envelope, the general shape of a Gaussian can
be obtained, with the additional benefit of cutoff points.

A third pulse envelope shape is that of a trapezoid. For trapezoidal envelopes, the
only frequency broadening comes from the linear slopes at the beginning and end of the

8



pulse. The pulse can therefore be made long enough to have the majority of asymmetry
contribution come from the interaction the two carrier waves of different frequency, during
the plateau of constant amplitude, which makes up the bulk of the envelope. It is also easy
to keep a constant intensity by using trapezoidal pulses. Unless otherwise stated, pulse
envelopes used in this paper were trapezoidal, the slopes near the edges of the envelopes
used here were one period of the low-frequency pulse each, whereas the plateau was six
periods long.

As Gaussian pulses are infinite, the entire pulse can not be modulated, as it would
require infinitely many time steps. Instead, the calculations were done over time T , with
a constant number of gridpoints per unit of time, and the center of the gaussian pulse at
time T

2 . The convergence criterion

1
N

√√√√∑
i

(
PTi −P

T+4π
ω

i

PTi +P
T+4π

ω
i

)2

< 10−4

max
i

∣∣∣∣∣PTi −PT+4π
ω

i

PTi +P
T+4π

ω
i

∣∣∣∣∣ < 10−2

, (19)

where the superscript indicates the total time simulated, was, analogously to equation (18),
used.

2.1.3 Method of Sweeping

In order to generate images according to section 2.2.2 below, data must be gathered for
several different φ. Here, three methods for numerically sweeping over values of φ, displayed
in figure 8, are considered.

The first method, displayed in figure 8(a), entails sweeping over different values of the
low-frequency CEP. This has the disadvantage of significantly altering the pulse shape,
which may cause secondary effects, and thus risk obscuring the effect from interactions
with the high-frequency field.

The second method, shown in figure 8(b), is analogous to the first, but the sweep is
done over the high-frequency, rather than the low-frequency, CEP. This causes the same
secondary effects as the first method, but to a lesser degree, due to the relative pulse
intensity of the waves. The effects from the interaction will, however, retain its magnitude.
Thus, this method is preferable to the former. It was used to generate all data and figures
in this study, unless otherwise explicitly stated.

The third and final method considered, illustrated in figure 8(c), was to keep the re-
spective pulse shapes constant, and to instead add a time offset to the smaller pulse. By
changing the time offset, φ can be changed while avoiding the effects associated with either
of the pulse-shapes changing. When using trapezoidal envelopes, as in figure 8, the high-
frequency pulse, if being kept within the amplitude plateau of the low-frequency pulse, can

9



ωt

(a)

ωt

(b)

ωt

(c)

Figure 8: Illustration of different methods for sweeping over φ. In (a), the CEP of the low-
frequency wave is changed, in (b), that of the high-frequency wave, and in (c) the high-frequency
wave is given an offset. The effect of the phase change between the solid and the dashed wave on the
relative peak phase between the low- and high-intensity pulses is the same in all three subfigures.

be viewed as a relatively weak laser pulse in a constant laser field. One drawback of this
method is that the relevant pattern will only be present during part of the total simulation
time. Thus, either the computational time has to be increased, or the effect on the ATI
spectrum will be less pronounced.

When sweeping over different φ, it should be noted that changing the phase of the low-
intensity wave of frequency kω has k times the effect on the peak location as changing the
phase of the high-frequency wave by an equal amount. This can be seen in figure 8, where
the absolute of the phase change between the solid and the dashed wave in (a) is half of
that in (b), but the absolute of the change in peak location is the same.

2.2 Even Harmonics

2.2.1 Selection of the High and Low Energy Ranges

Consider an ATI spectrum, generated by a pulse where the low-intensity wave is the second
harmonic of the high-intensity wave. As can be seen in figure 5, the contribution of the
high-frequency field is asymmetrical between the positive and negative field direction: if
there is constructive interference prior to the low-intensity peak in the positive direction
of the field, there is destructive interference prior to the low-intensity peak in the negative
direction of the field.

By considering the electrons being excited in the two directions of the field separately,
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the asymmetry can be studied further. In the positive direction of the field there will be
one energy region (one region of ionisation times) with constructive interference, and one
with destructive. In the negative direction the same regions will be inverted. This gives one
set of times contributing to an overrepresentation of electrons in the positive field direction,
and one contributing to an overrepresentation in the negative field direction.

0 1 2 3 4 5 6 7 8 9 10 11
ε [Up]

lo
g

(P
)

0 1 2 3 4 5 6 7 8 9

Figure 9: In blue, a simplified version of the general characteristics of an ATI spectrum is given.
The red lines illustrates how the electron spectrum was divided into ten equidistant sections, enu-
merated from 0 to 9. The abscissa gives the Energy in units of Up, whereas the ordinate gives the
logarithm of the probability density of electrons.

The probability of observing a free electron as a function of energy is highly dependent
on φ shape [7]. When observing either an increase or a decrease in the low energy spectrum,
the reverse should appear in the high energy spectrum. In order to gain a measure of the
asymmetry, one low, and one high, energy region, denoted εl and εh respectively, were
compared.

To make the selection of εl and εh, the spectrum up to 10Up was divided into 10 equally
spaced sections, enumerated 0 to 9, as illustrated in figure 9. Each energy region was
then generated from one, or several neighbouring, sections. The regions were chosen to be
non-overlapping. For quick reference, a four digit label was associated with each possible
selection of areas. The first pair of digits in the label describes the low and the second pair
the high region. For each pair of digits, the first denotes the number of sections included in
the region, and the second digit the index of the first included section. This is exemplified
in Table 1.

To find the most useful εl and εh, every possible division in accordance with the afore-
mentioned method were tested. In total 495 divisions were produced, out of which the ones
with the most beneficial properties could be selected. A similar division into n areas would
lead to N (n) divisions, where
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Table 1: Examples of the division of the ATI spectrum into εl and εh. The table gives the label of
each division, along with the sections included in, and the energy range covered by, the εl and εh.

Label
Sections Energy Range (Up)

εl εh εl εh

4136 1, 2, 3, 4 6, 7, 8 1–5 6–9

2113 1, 2 3 1–3 3–4

1041 0 1, 2, 3, 4 0–1 1–5

2219 2, 3 9 2–4 9–10

N (n) =
1

24

(
n4 + 2n3 − n2 − 2n

)
. (20)

For each division, measures of φ of varying quality were created according to section 2.2.2
below.

2.2.2 Representation in the Al −Ah and θ − φ planes

Call the probability of observing an electron per unit of energy as a function of energy
P+ (ε) and P− (ε), where the subscripts indicate in which direction of the electric field they
were observed. As in [4, 5], measures of the respective asymmetries of εl and εh, Al and
Ah, were defined as 

Al =

∫
εl

P+ (ε)− P− (ε) dε∫
εl

P+ (ε) + P− (ε) dε

Ah =

∫
εh

P+ (ε)− P− (ε) dε∫
εh

P+ (ε) + P− (ε) dε

. (21)

If the electric field amplitude of a pulse can be approximated as constant, a change in φ
of π radians corresponds to a sign change of the asymmetry and a time displacement, as
illustrated in figure 10. For many-cycle pulses the majority of contributions to the sym-
metry breakup can be seen as taking place over long periods with approximately constant
amplitude. Thus, the time displacement can be ignored. This relationship can be written
as

φ→ φ+ π ⇒
{
Al → −Al

Ah → −Ah

, (22)
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and is illustrated in the extrapolation of figure 11(a) to 11(b).

ωt

φ = 0

ωt

ωt

φ =
π

2

ωt

ωt

φ = π

ωt

ωt

φ =
3π

2

ωt

Figure 10: To the left the first and the second harmonic of a frequency ω is displayed over
one period, to the right their sum is shown over several. Between each row φ is changed by π

2 .
Comparing the first and third or the second and fourth row illustrates how changing φ by π radians
corresponds to a sign change of the total asymmetry of the electric field.

0

π

32π

3

(a)

Al

Ah

0

π

32π

3

π

4π

3

5π

3

(b)

Al

Ah

θ (φ)

φ

(c)

Al

Ah

Figure 11: An illustration of the Al − Ah plane. In (a) the positions of a two-colour pulse in the
Al − Ah plane have been given for φ ∈

{
0, π2 ,

2π
3

}
. An extrapolation of the values in (a) based on

equation 22 can be seen in (b). In (c) the φ dependent angle θ is shown.
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Figure 12: An illustration of the general characteristics of potential ATI spectra corresponding
to the coordinates marked in figure 11. Here, P+ is given in green and P− in blue. The first row
shows the ATI spectra for the coordinates marked in figure 11(a), and second row shows the ATI
spectra corresponding to the coordinates added in figure 11(b).

In figure 12, ATI spectra with the same general characteristics represented as those
represented by the coordinates in figure 11 is shown. For φ = 0, P+ is greater than P−
for both high and low ε, but especially for low, giving a large, positive, Al and a small,
positive Ah. For φ = π

3 , P+ is significantly larger than P− for both the low and high energy
spectra, resulting in both Al and Ah being large and positive. At φ = 2π

3 , P− has become
larger than P+ for high, and only for high, ε, resulting in a negative Al, but a positive Ah.
Because the difference between P+ and P− is small for both high and low ε, Al and Ah will
also be small.

The angular coordinate in the Al – Ah plane is here called θ, and is displayed in figure
11. For certain shapes in the Al – Ah plane, such as ovals, it can be uniquely matched to φ.
This is illustrated in figure 13, for the case of figure 11(c). The energy regions, generated
according to section 2.2.1, providing the most useful shapes were selected, and the matching
of θ and φ was used as a measure of φ.
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0 2π

θ − θ0

0

2π

φ

Figure 13: An illustration of how φ can be deduced from θ, using the values in figure 11. For
convenience θ0 = θ|φ=0 has been subtracted from θ.

The same line of reasoning which was used to derive equation (22) also gives

φ→ φ+ π ⇒
{
P+ → P−

P− → P+

, (23)

and therefore 
Al [P+ (φ) , P− (φ)] ≈ Al [P+ (φ) , P+ (φ+ π)]

Ah [P+ (φ) , P− (φ)] ≈ Ah [P+ (φ) , P+ (φ+ π)]

. (24)

In other words, it is possible to get a measure of the asymmetry while observing only the
electrons travelling in one of the ionisation directions.

2.2.3 Inverse transformations

For Al, equation (21) can be rewritten as

Al =
Γ+ − Γ−

Γ+ + Γ−
, Al ∈ [−1, 1] (25)

, where

Γ± =

∫
εl

dεP± (ε) . (26)
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This can in turn be written as
Γ+ =

1 +Al

1−Al
· Γ−, (27)

and the same principle can be applied for εh. From equation (25) it can be seen that Al

goes from −1 to 1 – the cases where all electrons with energy εl are observed leaving the
laser in the same direction. To put the area Al ∈ (−1, 1) into perspective, the cases where
Al takes the values of 0.2, 0.5, and 0.8 corresponds to overrepresentations of P+ over P−

at εl by factors 1.5, 3, and 9 respectively.

2.3 Odd Harmonics

For the case when the low-intensity pulse has a frequency on the form (2k + 1)ω, k ∈ N,
the total electric field will not be asymmetrical, since

E (ωt) ∝ sin (ωt) + sin ((2k + 1)ωt+ φ) , (28)

fulfils
E (ωt) = −E (ωt+ π) , (29)

as illustrated in figure 14. This means that the ATI spectrum will be affected symmetrically
along the directions of the electric field, and that, instead of the asymmetry, the total
effect the constructive and destructive interference has on the ionisation probability can be
measured.

0 π 2π 3πφ′ ωt

Figure 14: Illustration of the field resulting from the sum of two sinusoidal carrier waves, one low-
intensity field with frequency ω and a high-intensity field with frequency 3ω. The carrier waves are
displayed using dashed lines, and their sum using a solid line. The phase of one of the low-intensity
maxima, φ′, is marked on the abscissa.
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In order to measure how the ionisation probability of different energies changes depend-
ing on φ′, the quantity

∆P
(
φ′, ε

)
≡ P (φ′, ε)− P̃ (ε)

P̃ (ε)
(30)

was defined, where the φ′-average,

P̃ (ε) =
1

N

N−1∑
i=0

P
(
φ′i, ε

)
, (31)

was used to normalise the function, and P was computed for the linearly spaced φ′ ∈(
φ′0, φ

′
1, . . . , φ

′
N−1

)
. When considering the asymmetry discussed in section 2.2, the spectrum

was analysed by integrating over ε, which countered noise. For odd harmonics, however,
where the excitation probability of individual energies is considered, only the peak energies
are taken into account.

2.4 The Ponderomotive Energy of Two-Colour Fields

The maximal energy electrons can gain during the rescattering process is approximately
10Up. For this reason, the spectrum is only studied for energies up to 10Up. Consider a
two-colour electric field ~E, on the form

~E = ~Eω sin (ωt) + ~Ekω sin (kωt+ φ) , k ∈ N (32)

where the two electric field envelopes ~Eω and ~Ekω are parallel. The force F on a free
electron in the direction of the electric field is

F = q · Eω [sin (ωt) + Erel sin (kωt+ φ)] , (33)

where Erel is the relative magnitude of the electric fields. Integrating twice gives the electron
distance x from the core, for different ionisation conditions, as a function of time. However,
for the purpose of computing Up, the cycle-averaged energy that can be gained from the
field, the position and velocity at ionisation are irrelevant. Thus, for an electron with mass
me, the integration constants are chosen so that

x = − qEω
meω2

[
sin (ωt) +

Erel

k2
sin (kωt+ φ)

]
. (34)

In order to compute Up using

Up =
1

2
meω

2
〈
x2
〉
t
, (35)
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it can be noted that
〈
x2
〉
t
can be divided into three separate terms,

〈
x2
〉
t
∝
〈
sin2 (ωt)

〉
t
+

2Erel

k2
〈sin (ωt) sin (kωt+ φ)〉t +

E2
rel

k4

〈
sin2 (kωt+ φ)

〉
t
. (36)

The first and third terms become〈
sin2 (ωt)

〉
t

=
〈
sin2 (kωt+ φ)

〉
t

=
1

2
, (37)

whereas the second term is zero, as sin (ωt) and sin (kωt+ φ) are orthogonal over the period
2π
ω . Using the relative intensity Irel = E2

rel, Up can be written as

Up =
q2E2

ω

4meω2

(
1 +

Irel

k4

)
. (38)

The maximal relative intensity considered in this project is Irel = 0.15, and the minimum
k = 2. This gives a maximum increase in Up of less than a factor 1.01 compared to the
monochromatic case of Irel = 0. Given that information about Al and Ah is gathered by
integrating the electron spectrum over units of whole Up, a change of factor 1.01 in Up
will not have a significant effect, and need not be considered when selecting εl and εh.
For k larger than 2 the change to Up will become even smaller, and k = 1 can simply be
interpreted as a change in the total amplitude of a monochromatic wave, by a factor 1+Irel.
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3 Results and Discussion

3.1 Asymmetry as a Function of φ

2 10ε [Up]
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2 10ε [Up]

lo
g

(P
)

φ = π

2 10ε [Up]
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(P
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φ = 3
2
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Figure 15: The spectra along the two directions of the z axis of a two colour pulse with Irel = 0.15.
Electrons observed in the two directions are marked in blue and green, respectively. In the four
figures, φ takes the values of 0, π2 , π and 3π

2 .
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As can be seen in figure 15, the ATI spectrum changes drastically with φ. In the first figure,
every peak of the green spectrum is high enough to obscure its corresponding blue peak.
In the second figure, the blue peaks are greater than the green ones in the high-energy part
of the spectrum, and by the third figure this pattern is representative for almost the entire
spectrum. By the fourth figure, the green energy spectrum once again starts to dominate
in the high-energy region, and so the pattern starts over.

The asymmetry of an ATI spectrum as a function of φ can be represented in the Al−Ah

plane, as explained in section 2.2.2. Two such representations, created using the same data
as was used in figure 15, can be found in figure 16. In ATI spectra, such as those in figure
15,

P+ (ε, φ)− P− (ε, φ) ≈ P− (ε, φ+ π)− P+ (ε, φ+ π) , (39)

which translates into the approximately symmetrical Al − Ah representations that can be
seen in figure 16.

−0.3 0.0 0.3
Al

−0.3

0.0

0.3

Ah

(a)

−0.3 0.0 0.3
Al

−0.3

0.0

0.3

Ah

(b)

Figure 16: The Al − Ah representation for two divisions of the spectra seen in figure 15. In (a)
the 4219 division and in (b) the 1125 division is given. It can be seen how equation (22) translates
into an approximate symmetry in the Al −Ah plane.

3.2 Phase–Angle Matching

As can be seen in figure 17(a), it is possible to get an almost ellipsoidalAl−Ah representation
of the electron spectrum. In figure 17(b), the corresponding, and almost linear, relation
between θ and φ is displayed.
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(b)

Figure 17: In (a) the Al −Ah representation, and in (b) the θ − φ matching, of the 4055 division
of two pulses with Irel = 0.01, is given.
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0 π 2π
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Figure 18: The 1145 division of the data used in figure 17.

Although the division 4055 was chosen for figure 17 due to its almost linear θ − φ
representation, linearity is not necessarily optimal. Consider instead figure 18(b). Despite
the uncertainty in determining φ being high if φ ≈ π

3 , the 1145 division will be ideal to get
the exact value of φ if φ ≈ 3π

4 – the flat slope near θ − θ0 = 2π
3 minimises the effect of any

errors in θ or θ0. It is therefore possible to improve the accuracy of φ by choosing a good
division of the energy spectrum, something which can be done without the need to gather
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new measurement data.
Despite the advantages, there are risks associated with choosing the smallest ∂φ

∂θ . A flat
slope in the θ−φ plane, such as that in figure 19(b), tends to correlate with, and sometimes
is the result of, values near the origin point in the Al − Ah plane, as exemplified in figure
19(a). Because of this a small absolute change in the Al −Ah plane might translate into a
large change in φ.

−0.25 0.00 0.25
Al

−0.25

0.00

0.25

Ah

(a)

0 π 2π

θ − θ0

0

π

2π

φ

(b)

Figure 19: The 1163 division of the data is even more extreme than the 1327 division.
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Figure 20: For some divisions and ATI spectra, here the 1415 division of the same data as in
previous figures, θ (φ) is not injective.
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The function θ (φ) is not always injective, as can be seen in figure 20(b). The shapes
near (Al, Ah) = ± (0.05, 0.05) in figure 20(a) give an ambiguous reading of φ from θ, and
such divisions of the energy spectrum should be avoided.

3.3 Single Detection Direction

By using equation (24), it is possible to generate the Al−Ah and θ−φ representations of a
ATI spectrum while observing only those electrons travelling in one direction of the electric
field. This is illustrated by figure 21.
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Figure 21: The 2225 division of a two-colour pulse with Irel = 0.01. Instead of observing the
electrons travelling in both directions, equation 24 was used.

As can be seen in figure 21(a), the circle border is discontinuous on two points on the
Al − Ah plane. This happens when φ = π − δ → φ = π + δ. The reason for this is that,
if N different φ values, φ ∈ (φ0, φ1, . . . , φN ), have been used to generate the circle, Al will
change as

Al = Al

[
P+

(
φN/2

)
, P+ (φN )

]
−→ Al = Al

[
P+

(
φN/2

)
, P+ (φ0)

]
, (40)

in order to accommodate the fact that no values φi have been computed for i > N . The
same argument can be made for Ah. The discontinuity does not appear as clearly in the
θ − φ plane as in the Al −Ah plane, however it will appear at θ − θ0 = φ ∈ {0, π, 2π}, and
can be seen in figure 21(b).

Due to the use of the same measurement data for Al and Ah being used at φ = φi
as φ = φi + π, the Al − Ah representation of the φ sweep will be precisely symmetrical.
This is illustrated in figure 21(a), and figure 21(b), where φ (θ − θ0) = φ (θ − θ0 + π), for
θ − θ0 < π.
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3.4 Method of Sweeping

In figure 22 the result of using four different sweeping methods to study the asymmetry
problem can be observed. In figure 22(a), the phase envelope CEP was swept over. Com-
paring this to figure 22(d), where both the high- and low-frequency CEP was constant, it
is clear that the impact from the CEP-change makes a difference. However, as figure 22(b)
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Figure 22: The Al − Ah representations of the 4136 division for different sweeping methods and
Irel of a two-colour field. In (a), the low-frequency field CEP was swept over in order to change the
asymmetry, whereas in (b) and (c) the high frequency CEP was used. In (d) the origin point of the
high frequency pulse was instead moved. In all images but (c), where Irel = 0.15, Irel = 0.01 was
used.
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and 22(c) shows, the high-frequency border effects are neither significant at Irel = 0.01 nor
Irel = 0.15. Presumably the total effect of the border is greater in figure 22(c) than in 22(d),
but also obscured by the much larger asymmetry effects due to the higher Irel = 0.15.

Changing the CEP of either pulse changes the asymmetry in the same manner as chang-
ing φ. It is possible that the rough character of figure 22(a) is the result of a combination
of positive and destructive interference between the two asymmetry contributions – some-
times both effects increase the number of electrons going in the positive z direction in the
high-energy spectrum, sometimes one of them does the opposite. As expanded upon in
section 3.7 below, however, this is not a sufficient explanation.

In figure 22(d), the length of the low-frequency pulse was the same as in the other sub-
figures, while the high-frequency pulse was contained within the low-frequency amplitude
plateau, as explained in section 2.1.3. As expected, the total asymmetry of the pulse, and
therefore the radius of the circle, decreased. This method is therefore clearly inferior to
sweeping over the high-frequency CEP, which produces equally good results.

3.5 Pulse Envelope Shape

As can be seen in figure 23, a Al – Ah representation like those created with trapezoidal
ω − 2ω pulses can be modelled with cos2 and Gaussian envelopes as well. This is relevant,
as it shows that the phenomenon is not a result of the trapezoidal envelope shape.
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Figure 23: The Al – Ah representations of the 4035 divisions of two two-colour pulses with
Irel = 0.01. In (a), a cos2 envelope was used, and in (b) a Gaussian.
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3.6 System Dependence of Asymmetry

3.6.1 Relative Intensity
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Figure 24: The upper and the lower rows give the 1137 and the 1216 divisions, respectively. The
relative intensity was increased exponentially between the three columns, with a factor ≈ 12.5, so
that Irel ∈ {0.001, 0.0125, 0.15}.
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As can be seen in figure 24, the total asymmetry grows with Irel. This is to be expected,
as the high-frequency wave is the cause of the pulse asymmetry. What is not necessarily
as obvious, however, is the possibility of a clear change of the shape of the asymmetry
representation in the Al − Ah plane. For some divisions, such as 1216, θ (φ) even stops
being injective as Irel increases, which can be seen in the right column of figure 24.

3.6.2 Wavelength

All previous figures were generated using λ = 800 nm. Figures 25 and 26 shows that the
same process is applicable to other wavelengths.
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Figure 25: The 2012 division of a spectra generated with a high-intensity wavelength of 1300 nm
and Irel = 0.1.

27



−0.3 0.0 0.3
Al

−0.3

0.0

0.3

Ah

λ = 750 nm

−0.3 0.0 0.3
Al

−0.3

0.0

0.3

Ah

λ = 775 nm

−0.3 0.0 0.3
Al

−0.3

0.0

0.3

Ah

λ = 825 nm

−0.3 0.0 0.3
Al

−0.3

0.0

0.3

Ah

λ = 850 nm

Figure 26: Different wavelengths can be used to generate asymmetry in the same manner as 800
nm was used to generate previous images.

3.7 Comparison with CEP for Short Pulses

In figure 27, the Al − Ah representations are shown for two short pulses. It illustrates
the connection between the two-colour and the short-pulse cases. It can be noted that the
shorter pulse, the Al−Ah representation of which can be found in figure 27(b), has a higher
total asymmetry than the longer pulse, as seen in figure 27(a).

The short pulses’ Al − Ah representations exhibit the same type of behaviour seen in
figure 22(a). This indicates that this behaviour is intrinsic to CEP changes, rather than
a result of interaction between the two contributions to asymmetry in figure 22(a), as put
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forward as a possible explanation in section 3.4.
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Figure 27: The Al −Ah representations of the 2719 division of two short pulses. The pulse CEP
was changed in order to generate the different points on the circle. The pulses had cos2 envelopes,
with a width of 8π

ω for (a) and 16π
ω for (b).

3.8 Odd Harmonics

In figure 28, ∆P , as defined in equation (30), is shown for several energies, as a function of
φ′. The energy of the electrons ionised at t0 = φ′ is also shown. The largest electron yield
occur when φ′ ≈ π

2 , with the exceptions of ε ≈ 10Up and ε ≈ 2Up, φ′ ≈ π
2 . In other words,

positive interference when the field strength, and therefore the ionisation rate, is already
large, causes the highest ionisation rate.

The first exception is ε = 10Up. For this energy, the largest electron yield is given when
φ′ is slightly after the ionisation time which can cause 10Up. As could be expected, the
constructive interference increases the ionisation rate. It is possible that the ionisation rates
for electrons observed with other energies mainly increase for φ′ ≈ π

2 , because the electrons
can be ionised to those energies for several different t0. The green and blue lines in figure 28
only show the maximum energy as a function of ionisation time, and while there is only one
t0 to yield ε = 10Up, there are many that can result in 6Up. As t0 becomes less important,
the total ionisation rate becomes more important, and φ′ goes to π

2 .
The second exception is ε = 2Up. It is possible that same principle as for 10Up is in

effect here, as far as only directly ionised electrons are considered, changing the center of
mass of ∆P toward where ε = 2Up for directly ionised electrons. While the rescattered
electrons should even out the distribution slightly, they only make up a fraction of the total
electron yield.
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Figure 28: In red, the φ′-dependence of ∆P is shown. Despite ∆P seemingly extending to −1,
which would represent a complete lack of ionisation, it is larger than −1 for all φ′. In blue the
energies of the directly ionised, and in green the maximum energy of the rescattered, electrons
freed at time t0 = φ′ is shown, the rescattered in green and the directly ionised in blue. The values
of the energies are not given on the ordinate, but can be found in figure 3. For quick reference it
can be noted that the maximum observed energies for directly ionised and rescattered electrons are
2Up and 10Up, respectively. Also note that because the time between the peaks is shorter than half
a cycle, the energy plot has been cropped and wrapped.

30



4 Conclusions

When initiating ATI using long, linearly polarised pulses, it is possible to control the ap-
pearance of the resulting electron spectrum by combining carrier waves with multiple fre-
quencies. One such type of pulse is a two colour pulse, where one of the colours is a higher
order harmonic of the other. By varying the relative intensity and the phase difference, φ,
between the pulses, the character of the ATI spectrum will change.

For pulses where the higher harmonic is even, the ATI spectrum will display asymmetry
between the positive and negative direction of the electric field. If an ATI spectrum has
an overrepresentation of electrons over a certain energy interval, the spectrum in that
region tends to go to being symmetrical, to being underrepresented in the aforementioned
direction, to being symmetrical, and back to overrepresentation, when varying the phase
difference a total of 2π. This symmetrical behaviour is a direct result of the shape of a two
colour wave. It is possible to select two regions of the ATI spectrum, and by observing how
the respective asymmetry of the regions depend on φ, gain a measure of φ.

When the relative intensity between the pulses increases, the total asymmetry of the
spectrum also increases. However, it does not increase linearly and does not retain its
general appearance. It is even possible for φ, when calculated from the measures used in
this thesis, to loose its uniqueness for certain selections of regions in the energy spectrum.

As hinted on in the above paragraph, not all divisions of the energy spectrum are equally
useful. It is possible to choose a division which, with a good degree of certainty, can give
the approximate region of φ, and it is possible to select a division which produces a very
accurate measure of φ, if the region is known.

If the harmonic is odd, the ATI spectrum will retain its symmetry. Instead the ionisation
probability can be increased or decreased through constructive and destructive interference.
For most energies, the ionisation potential increases the most when the peaks of the waves
coincide, but the largest probability of ionisation for energies in the region of 2Up and 10Up
will occur if there is constructive interference at times when the directly ionised electrons
with energy 2Up, and the rescattered electrons with energy 10Up, respectively, are ionised.
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