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Abstract

The computer has since it was invented become a most crucial tool for scientists in all fields. It has however
severe limitations when it comes to e.g. simulating quantum systems, a task quantum computers might
be able to perform. In this project the possibility to create quantum hardware with the inorganic crystal
Y2SiO5 doped with triply charged europium of isotope 151, 151Eu3+ has been investigated. The ground
level of Eu, which is a rare-earth element, is denoted 7F0 and consists of three hyperfine levels. These
have lifetimes of several days at cryogenic temperatures, and the Eu-ions could therefore be used as semi-
permanent quantum memory.The aim was to create a prototype qubit, in analogy to a classical bit, and to
obtain as high transition fidelity as possible between the two qubit states |0〉 and |1〉.

Transitions between two of the ground levels and one excited level were used for the two qubit states
|0〉 and |1〉. All ions experience a different crystal field, and thus their transitions are all differently shifted.
Any ion with undesired transitions close to the selected frequencies were therefore moved to an auxiliary
ground state using spectral hole burning.

The aim of the present work was to achieve more than 99% transfer efficiency for 151Eu3+ in agreement
with simulations. The results were consistently lower than expected, and no transfer efficiency above 98.4%
was attained. This could be explained by flaws in the setup, and successful results are still to hope for.
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RE - rare earth element
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1 Introduction

In today’s society the computer has become an in-
creasingly important device, and the development of
this device is continuously in progress. The computer
has, as a fruit of science, opened amazing possibilities
for scientists in all fields.

Something that physicists have come to wish for is
a computer that can accurately simulate a quantum
system. This is with today’s technology only possible
for a few body systems, as very complex equations are
required to make these simulations accurately. An-
other limitation of the classical computer is that it
cannot generate true random numbers. Thus there
are needs for a more powerful type of computer: the
quantum computer.

In this project the possibility of creating a qubit,
which is the quantum analogy to a bit, in a rare-earth-
ion-doped inorganic crystal was investigated. To be
able to use the qubit for actual calculations opera-
tions need to be possible to do with very high fidelity.
In this project, this was analogous to make high effi-
ciency transfers between different ionic states.

How the qubit and the quantum computer works
is described in section 1.1 and 1.2. To implement
the theory presented in these sections in the real
world is far from trivial. The Rare-earth-elements
are commonly used in quantum information because
they have several properties that are suitable for this
implementation. How these properties are used for
designing a qubit is explained in section 1.3 and 1.4.

1.1 The Quantum Computer

A universal quantum computer is a computer which
can ”perfectly simulate any finite, realizable physical
system” [2]. It could do anything a classical com-
puter could do, but it could also perform tasks that
have no classical analogue. As mentioned it would
for example be able to generate true random num-
bers. Although not necessarily more efficient for all
types of problem, it would be much better at solving
some kinds of problems due to the quantum nature
of the system.

The processing unit of a quantum computer is
called a qubit (quantum bit), in analogy to a classical
bit. A classical bit can take one of the two discrete
values 0 and 1, and this causes several limitations on
the classical computer. When executing a computa-
tion, the computing machine is first prepared in some
initial state which is changed by dynamical processes
to end up in a final state. The classical computer has
a physical limitation when performing computations
as it is discrete. This causes the classical computer to
be deterministic, which means that the output will be

fully determined by the initial state and the computa-
tion. From this follows for example that the classical
computer can not handle a continuum, but merely
approximate it [2], nor can it generate true random-
ness. These are both features the quantum computer
would have.

The qubit consists of a two level quantum system,
where the two eigenstates are called |0〉 and |1〉. The
qubit can be in either state |0〉 or state |1〉, in corre-
spondence to the values 0 and 1 for a bit. It can also
be in a superposition of the two states, α |0〉+ β |1〉.
The properties of a two level quantum system is fur-
ther explained in section 1.2. Upon readout of a su-
perposition state the qubit wavefunction will collapse
to one of the two states with probabilities given by
the input and the computation. The readout of a
single computation will thus not be deterministic.

The possibility of putting the qubit in a super-
position state leads to another advantage with the
quantum computer, called quantum parallelism. This
means that a single quantum processing unit can
carry out multiple computations simultaneously, as
the quantum system can be in a superposition of sev-
eral states. A problem though is the readout of such
a system: As mentioned the readout of a superposi-
tion state will cause the wave functions to collapse,
and only one of all possible results can be obtained
from each computation, and a lot of information is
lost.

As the output is not deterministic, the computa-
tion could be carried out N times to obtain N an-
swers. For large enough N this should approximately
give the probability amplitudes for the superposition
state, and thus approximately all information about
the system after the computation. Then, however,
the idea of quantum parallelism is somewhat lost as
only one answer per processing unit is accessible for
each computation.

Instead of carrying out the calculation N times,
the algorithm for computing the calculation could be
very intelligently designed. There are examples of
algorithms making use of the quantum parallelism,
such as the Deutsch-Jozsa algorithm proposed in 1992
[3].

1.1.1 The quantum NOT-gate

The purpose of the present work was to create a
prototype qubit, more specifically a NOT-gate. The
classical NOT-gate is a negating logical gate, which
means that it changes the input to the logical oppo-
site. In other words it changes a 0 into a 1 and a 1
into a 0. The quantum NOT-gate would then invert
the input: α |0〉+ β |1〉 → α |1〉+ β |0〉.

1



To create the quantum NOT-gate is however not
trivial, but rather complicated. The ground level of
the europium ion is split into three hyperfine levels.
Life times of several days can be achieved for these
levels, and this could be used for creating the proto-
type qubit. In figure 1.1a two of the ground levels
has been denoted |0〉 and |1〉 respectively. The third
ground level has been denoted |aux〉 which is the aux-
iliary level. This level will be used for storage of unde-
sired ions, as will be explained further in section 1.4.
The ions are moved between the |0〉 and |1〉 states via
an exited state, |e〉, using laser pulses. These transi-
tions are indicated by the arrows. The ions are not
moved directly between the two ground states, as the
energy difference between them is to small for direct
manipulation with optical frequencies.

In figure 1.1b-d it is shown how the NOT-gate is
implemented in the europium ion. For each figure
one step in the procedure is taken, and the complete
operation will be:

α |0〉+ β |1〉 →
α |e〉+ β |1〉 →
α |1〉+ β |e〉 →
α |1〉+ β |0〉

(1.1)

This procedure does however use three different
states, and the described qubit consists of two cou-
pled two level systems instead of just one, namely
|0〉 ↔ |e〉 and |1〉 ↔ |e〉.

1.2 Two Level Quantum Systems

The simplest quantum system is one with only two
eigenstates. In nature no system is this simple, but
the two level quantum system can still be useful for
describing quantum phenomena. For example, the
two level system is very useful for describing how a
quantum system reacts to a laser pulse, as the laser
is only resonant with one transition at a time.

The two eigenstates of the two level quantum sys-
tem is here denoted |g〉 and |e〉 for ground and excited
state. The complete system can be either in one of
the eigenstates, or in a superposition of the two. Any
of these states are pure quantum states. The system
can be described by a vector in a unit sphere, the so
called Bloch sphere, with the axes denoted u, v and
w. The w-axis represents the inversion of the state
(see equation 1.3b). Figure 1.2a describes the eigen-
state |g〉 with w = −1. If the system is instead in the
eigenstate |e〉, w = 1. Any other value of w represents
a superposition state Ψ:

|Ψ(t)〉 = cg(t) |g〉+ ce(t) · e−iωrt |e〉 (1.2)

|aux〉
|1〉
|0〉

|e〉

a)

|aux〉
|1〉
|0〉

|e〉

b)

|aux〉
|1〉
|0〉

|e〉

c)

|aux〉
|1〉
|0〉

|e〉

d)

Figure 1.1: The procedure of a NOT-gate imple-
mented in the europium ion. In a) the transitions
that were used for creating the gate is indicated. In
b)-d) the successive procedure of inverting the super-
position state is shown. In b) the |0〉 part is trans-
ferred into |e〉. In c) |1〉 and |e〉 are inverted, and in
d) the part which is now in |e〉 is transferred down
into |0〉. This completely inverts the initial superpo-
sition state, as shown in equation 1.1.

with |cg(t)|2 and |ce(t)|2 being time depen-
dent probability amplitudes satisfying the relation
|cg(t)|2 = | 〈g |Ψ(t)〉 |2, |ce(t)|2 = | 〈e |Ψ(t)〉 |2 and
〈Ψ(t) |Ψ(t)〉 = |ce(t)|2 + |cg(t)|2 = 1. The factor
e−iωrt describes the relative phase between the two
states, which is described by the u− and v−vectors.
The quantity ωr is the resonance frequency of the
system, given as ωr = (Ee − Eg) /~. Here Eg and Ee
are the energies of the two states, respectively, and
~ is the Planck constant. Figure 1.2b illustrates a
superposition state in the Bloch sphere.

The relation between u, v and w is described as
follows [1]:

u(t)− iv(t) = 2 · ce(t) · c?g(t) (1.3a)

w(t) = |cg(t)|2 − |ce(t)|2 (1.3b)

As discussed above, w describes the inversion, that
is the probability of finding the atom in the excited
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(a) (b)

Figure 1.2: a) The figure shows a vector V in the
Bloch sphere, describing the eigenstate |g〉 in a two
level quantum system with w = −1. b) Here the vec-
tor V in the Bloch sphere describes one of infinitely
many superpositions of the two states |g〉 and |e〉.

state compared to finding it in the ground state. u
and v express the phase, or the oscillations at the
resonance frequency, ωr. If an electric field oscillating
at ωr is applied to the system, the u−component will
describe the part oscillating in phase with the field
(or completely out of phase in case u is negative),
and the v−component will describe the part 90◦ out
of phase.

For a pure state the vector always has the length
1, and the state is described by some point on the
surface of the sphere. This is illustrated in figure
1.2. Any point within the sphere corresponds to a
mixed state. Whenever the quantum system is inter-
acting with the environment in an uncontrolled way,
the states will be mixed as the interaction means that
the wavefunctions of the pure states mix with the en-
vironment. If the state of the system is well known,
the vector describing the state will end in a point
close to the surface even if the state is mixed. In
this case the relative phase of the system will also be
known. Even if known at some point in time, the
phase will not be known at any point in time, due to
decoherence.

The decoherence process is caused by the fact that
the superposition state will not evolve undisturbed,
because its wavefunction is mixed with the surround-
ings. The system itself also has a finite relaxation
time which will lead to decoherence as well. The loss
of coherence is described in the Bloch sphere by let-
ting the length of the vector decrease. This is further
discussed in section 1.2.1.

If the lifetime of the excited state is denoted T1,
the coherence time T2 is at most 2 ·T1. This happens
when the coherence time is only limited by the spon-
taneous relaxation. Whenever there is decoherence
due to interactions with the surroundings, the coher-

ence time will be shorter. When nothing can be said
about the phase any more, the vector describing the
state will be parallel to the w−axis. [1].

The Rabi frequency Ω is a measurement of
the interaction between the dipole moment µ =
−〈g | er | e〉 of a quantum system, in most cases an
atom, and a time-varying electric field E, e.g. from a
laser field resonant with the transition of interest:

Ω =
E · µ
~

= 2πf (1.4)

Here f is the non-angular Rabi frequency, which is
often used when performing simulations and experi-
ments.

Other quantities which are convenient to introduce
when talking about optically driven transitions in two
level quantum systems are the detuning, ∆, which is
the difference between the frequency of the laser and
the resonance frequency of the transition:

∆ = ωr − ωL (1.5)

and the generalized Rabi frequency which describes
the rate at which the phase of the atomic state
changes relative to the phase of the laser field:

ΩG =
√

Ω2 + ∆2 (1.6)

Now the Bloch vector can be described by the optical
Bloch equations, where Ω = ΩR + iΩI and ωeq is the
equilibrium state, usually w = −1:

∂u

∂t
= −∆v − u

T2
+ wΩI (1.7a)

∂v

∂t
= ∆u+ wΩR −

v

T2
(1.7b)

∂w

∂t
= −vΩR −

w − weq
T1

− uΩI (1.7c)

These equations were used for simulations in the
Bloch sphere, described in section 2. The complex
part of the Rabi frequency corresponds to a part of
the electromagnetic field not in phase with the two
level system.

Yet another useful quantity for optically driven
atomic transitions is the so called pulse area:

θ = Ω · t (1.8)

where t is the time during which the system is lased
at, assuming a square pulse. When the laser fre-
quency ωL is completely resonant with the transition

3



ωr = ωL

|e〉

|g〉

Ωps

θ = Ω · tΩps = (−Ω, 0, 0)

(a)

ωr = ∆ + ωL

|e〉

|g〉

∆

ωL

ωr

Ωps

Ωps = (−Ω, 0,∆)

(b)

Figure 1.3: (a) If the frequency of an applied laser field is in resonance with the transition in a two level system,
the state vector will rotate around a pseudo vector Ωps, with |Ωps| = ΩG = Ω, which lies in the −u direction for
a completely real Rabi frequency, Ω = ΩR. If the Imaginary part ΩI of the Rabi frequency is non-zero the pseudo
vector will lie somewhere in the vu−plane. ωL is the laser frequency, and ωr is the resonance frequency. (b) If
there is a difference ∆ between the oscillation of the applied field and the resonance frequency of the system, the
pseudo vector around which the state vector rotates will have an angle to the uv−plane. Now the detuning ∆ is
nonzero and thus ΩG 6= Ω. Note the change in perspective of the coordinate system relative to (a).

frequency ωr, or in other words ∆ = 0, the pulse
area describes the angle between the w−axis in the
negative direction and the state vector.

For example, a π−pulse, θ = π, corresponds to a
transition from (0,0,-1) to (0,0,1), that is a transition
from the ground state |g〉 to the excited state |e〉.
Applying another π-pulse will rotate the state vec-
tor past the excited state back to the ground state
|g〉. Thus the inversion w can be made to oscillate
between 1 and −1, and the Bloch vector is said to ro-
tate around a pseudo vector Ωps. This is described by
Ωps = (−ΩR,−ΩI , 0) for a complex Rabi frequency,
where Ω is given by equation 1.4 and |Ωps| = ΩG = Ω
as ∆ = 0, see equation 1.6. This situation is illus-
trated in figure 1.3a, assuming Ω = ΩR.

If the laser frequency is slightly detuned from the
resonance frequency, the inversion w will still oscil-
late between a maximum and a minimum value, but
it will never reach complete inversion. The pseudo
vector will no longer lie in the uv−plane, but slightly
above or below, depending on whether the detuning
results in a laser frequency ωL higher or lower than
the resonance frequency.

The pseudo vector will have the form Ωps =
(−ΩR,−ΩI ,∆) with |Ωps| = ΩG. This is illustrated
in figure 1.3b, still assuming Ω = ΩR. Now a pulse
area θ = π does not bring the system into the pure
excited state but to a superposition state (wmax, u, v)
where wmax is some maximum inversion for when the
state vector has turned half a revolution around Ωps.

(a) (b)

Figure 1.4: (a) An ensemble of atoms with slightly
different resonance frequencies are prepared in an
initial superposition state. At time t0 all atoms are
coherent with the laser field. (b) After some time all
the different atoms will have a different phase rela-
tive to the laser field, as they evolve slightly differ-
ently due to their different resonance frequencies.

In figure 1.3b the trajectory of the tip of the state
vector along the surface of the sphere is indicated
by the dashed line. For a small detuning the state
(wmax, u, v) will be close to the excited state.

1.2.1 Coherence

The importance of coherence has been noted previ-
ously, and will here be more rigorously explained with
help of the Bloch sphere.
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Imagine an atom oscillating between two states,
driven by a laser with a frequency of ωL = ωr − ∆.
The phase of the atom is considered with the phase
of the laser as reference. If this atom is left in a
superposition state, for example (1,0,0), it will after
some time no longer be in phase with the laser field
as the laser frequency is detuned, thus it will be in
a new state (u, v, 0). This can be illustrated by
considering a detuned field with zero intensity: The
pseudo vector will be Ωps = (0, 0,∆), and the state
vector would rotate around the w−axis at a speed
proportional to ∆.

Figure 1.4 shows the idea of decoherence for an en-
semble of atoms with similar but not equal resonance
frequencies, illustrated through the Bloch picture. At
time t0 the whole ensemble is in phase with the laser
field, but after some time the different states have
evolved differently and the state vectors are spread
out in the uv−plane. Taking an average of the vec-
tors would result in a new vector parallel to the v-axis
with a length shorter than 1.

1.3 Rare-Earth-Ion-Doped Crystals

As previously mentioned the rare-earth-elements are
commonly used in the field of quantum information,
often doped into inorganic crystals. These rare earth
ion doped crystals are called RE-crystals. The rare-
earth elements, also known as Lanthanides, are the
elements which have an atomic number between 57
(lanthanum) and 70 (ytterbium). These occur as
triply, positively charged ions when doped into some
inorganic crystals commonly used in quantum infor-
mation [1]. Optical transitions in the rare-earths in-
volve electrons in the 4f-shell, which is only partially
filled. The 4f-shell is shielded from the environment
by the 5s- and 5p-shells.

RE-ions doped into inorganic crystals will individ-
ually have transition peaks with very narrow homo-
geneous line widths, which are important when doing
accurate manipulations on the ions. However, as each
ion experience a somewhat different crystalline field,
they will be shifted with respect to each other and the
narrow absorption peaks add up to a much broader
spectrum. Due to the shielding of the 4f-shell they
have long lifetimes for the hyperfine ground states
and for the lowest excited states, and thus long co-
herence times at low temperatures. These properties
are suitable for creating a qubit, as will be more thor-
oughly explained in the following.

1.3.1 Homogeneous Line Widths

The homogeneous linewidth of a transition peak is
the frequency range within which a specific ion will

absorb or emit radiation. The homogeneous broaden-
ing is due to dynamic processes of the ion and sponta-
neous relaxation between states. The dynamic con-
tributions for an ion trapped in a crystal are very
small, especially at cryogenic temperatures.

The homogeneous line width is limited by the spon-
taneous relaxation time, or life time, T1 through the
coherence time T2. The coherence time can at most
be twice the life time, T2 ≤ 2T1. The correlation
between the line width and the coherence time for a
transition is described as

Γh =
1

πT2
(1.9)

Besides spontaneous relaxation, other processes
contributing to decoherence in the dopant ions are
disturbances in the surrounding crystal field due to
spin flips in nearby atoms, together with the emission,
absorption or scattering of phonons. By choosing a
host crystal where the nuclear magnetic momenta are
small or zero, disturbances from spin flips can be min-
imized. The flips can also be prevented by applying
an external magnetic field. The phonons are avoided
by keeping the sample at cryogenic temperatures of
a few K, where phonons are negligible.

By compensating for these processes, transition
peaks with narrow homogeneous line widths and long
coherence times can be achieved. The narrow line
widths suggest the use of narrow band laser pulses to
only interact with a specific class of ions with transi-
tions at specific frequencies, even if they are spatially
very close to ions from other classes, absorbing at
other frequencies. The long coherence times implies
that the ions could be put in superposition states
which could then evolve undisturbed for relatively
long times without loosing coherence [1]. These are
both important properties for quantum information
processing.

1.3.2 Inhomogeneous Line Width

The inhomogeneous linewidth is due to interactions
between the ions and between ions and the surround-
ings. The electric field from the crystal and nearby
ions will for each individual ion be different, and this
will cause the ionic levels to shift differently for each
individual ion. The inhomogeneous linewidth is a re-
sult of energy shifts and homogeneous broadening of
all ions summed together. This can be compared to
the Doppler broadening for free atoms in a gas, where
each individual atom has for itself a narrow absorp-
tion profile. The total width of the peak is however
much broader, as the absorption profiles from many
atoms with different Doppler shifts add together.
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Figure 1.5: Schematic picture of inhomogeneous
broadening, Γih. The transition peaks of all indi-
vidual ions, each with the homogeneous broadening
Γh, adds up to the total absorption spectrum which
has a total width Γih.

The inhomogeneous broadening is typically a few
GHz in weakly doped RE-crystals, but it can range
from less than one to several hundred GHz. It does in
general increase with increased dopant concentration
[1, 4]. In figure 1.5 it is schematically shown how the
spectral peaks of the individual ions add up to the
total absorption profile of the crystal.

1.3.3 Hyperfine Levels

As mentioned above, levels with long coherence times
are necessary for quantum computing. Such levels
can be found in many RE-materials, for instance due
to the hyperfine interaction, which is the interaction
between the intrinsic spin I for the nucleus and the to-
tal angular momentum J for the electrons (also called
IJ-splitting).

The hyperfine interaction causes the levels to split
into doubly degenerate levels. In most cases, the
dominating hyperfine interaction is a dipole interac-
tion between the magnetic field of the nucleus and
the magnetic field from the orbits. For the RE-ions
trapped in a crystal, the orbital magnetic field is
quenched by the crystal field, and therefore the hy-
perfine splitting in these ions is due to a second order
hyperfine splitting caused by the quadropole electric
moment in the nucleus and the electric field gradient
from the electrons [1, 5].

The levels are conventionally labeled by the
z−component of the nuclear spin, Iz, even though
this often is not a good quantum number as the wave-
functions mix and can be far from the eigenstates.
For Europium I=5/2, and thus the ground state lev-
els are labeled |±1/2〉, |±3/2〉 and |±5/2〉 with ± im-
plying the degeneracy. This notation will henceforth
be omitted, due to readability. The splitting is differ-
ent for different isotopes, and the intrinsic spin can
also be different. However, for 151Eu and 153Eu the

nuclear spin is the same and the hyperfine levels are
thus labeled in the same way. For the crystal trapped
ions the hyperfine levels also vary for non-equivalent
crystal sites.

As the splitting between the hyperfine levels is very
small compared to the gross structure only given by
the principal quantum number, the lifetime for an
electron in a hyperfine ground level can be very long,
up to several days [1]. They can therefore be used
for semi-permanent memory storage. The life times
of the excited states are not as long as for the ground
state, but they can still be long enough to use for
high-speed processing.

Transfers between hyperfine levels can be made ei-
ther via an excited state using optical pulses, or di-
rectly using radio frequency pulses. At energies cor-
responding to typical hyperfine splittings the phonon
density of states will be low, and at cryogenic tem-
peratures the relaxation of the electrons will thus be
slow.

1.3.4 Oscillator Strengths

As is known from atomic physics, only certain transi-
tions within an atom are allowed. Whether a transi-
tion is allowed or not depends on the quantum num-
bers n, s, l and ml, or in other words on the over-
lap of the wave functions. When quantum systems
are brought together their wavefunctions mix, and
the quantum numbers derived for describing the pure
eigenstates might no longer be good quantum num-
bers for describing the mixed states. The mixing al-
lows for transitions that might not be allowed if the
eigenstate wavefunctions were not mixed, and thus
some transitions that should not be possible can be
observed. In an atom the electronic wavefunctions
mix, and for heavy nuclei the conventionally used
LS-coupling is often insufficient for a satisfactory de-
scription of the system.

The transition strength, or oscillator strength, for
a transition is proportional to the probability of the
transition. High oscillator strength means that the
transition has high probability to happen, which
means that the power needed to drive it optically is
not so high and that the relaxation is fast. There-
fore weakly allowed transitions are chosen for opti-
cal information processing with very small oscillator
strengths compared to the allowed dipole transitions.

The oscillator strength is proportional to the
square of the dipole moment, and thus the Rabi fre-
quency is proportional to the square root of the os-
cillator strength (see equation 1.4).
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Figure 1.6: Electronic structure for the Eu-ions in
151Eu3+:Y2SiO5 for the two levels of interest [6, 7].
The red arrows indicate the transitions used for the
NOT-gate described in section 1.1.1.

1.3.5 The Europium Doped Yttrium Or-
thosilicate Crystal

In this experiment a Y2SiO5 crystal doped with 0.1%
151Eu3+ was used. Experiments have been done with
a very similar crystal 153Eu3+:Y2SiO5, and therefore
much could be learned about the properties of the
Eu3+-ion [7, 6].

Europium has atomic number 63, and thus the
Eu3+-ion has 60 electrons, of which 6 are in the 4f-
shell [5]. The ground level is the 7F0-level and the
excited level used in this project was the 5D0 level.
Each of these two levels are split into three hyperfine
levels, with the structure shown in figure 1.6. Both
levels have a total angular momentum J=0, which
means they do not possess any first order electronic
magnetic moment. They are therefore not sensitive
to spin flips in the crystal which causes decoherence,
as mentioned previously [4]. This means the sponta-
neous relaxation is slow, and thus the coherence times
at cryogenic temperatures will be long as desired [6].

The Y2SiO5 crystal is a good host material due
to the small magnetic moments of its constituent
atoms, which further reduces decoherence in the
Eu ions caused by spin flips in the crystal. Due
to the minimized interactions between the ions and
the host material, the homogeneous linewidths in
153Eu3+:Y2SiO5 is the narrowest linewidth measured

for any solid, measured to 122 respectively 167 Hz at
1.4 K for two different crystal sites [8].

When the Y2SiO5 crystal is doped the 151Eu3+ ions
substitute for Y3+ in two inequivalent crystal sites.
In this work ions at site 2 were used, corresponding to
the wider line width for 153Eu3+. The reason for why
the ions at site 2, and also why isotope 151 were used
is due to limitations in the experimental equipment.
The hyperfine splittings are smallest for isotope 151
at site 2, and the equipment could not handle bigger
energy splittings. This is further discussed in section
3.2.

The inhomogeneous broadening in 151Eu3+:Y2SiO5

with 0.1% dopant concentration at site 2 is 1.4 GHz
[4], and it increases with dopant concentration. Thus
the narrow transitions peaks of the individual ions
are not accessible in the actual absorption spectrum.
This can be accounted for using the method of hole
burning, which is further discussed in section 1.4.

The crystal has three directions which have dif-
ferent absorption properties. These directions are
labeled b, D1 and D2. The absorption properties
are also different for the two sites. For site 2 the
b-direction has the highest absorption coefficient [4].
The laser beam was sent along the D2−axis with the
electric field parallel to the b−axis to maximize the
absorption, and thus the transfer efficiency.

The dimensions of the crystal were 5.5×5.5×8.6
mm, with the crystalline D2−axis in the z−direction.
Thus the effective thickness of the crystal was 8.6
mm, which is rather thick. This has the advantage
that the signal-to-noise ratio should be high, and the
disadvantage that the beam can not be focused too
hard, as the focus should be approximately homoge-
neous throughout the crystal. This is also discussed
in section 5.2.

In section 1.1.1 the implementation of the NOT-
gate in the europium ion was described. In figure 1.6
the ground states |1/2g〉 and |3/2g〉 corresponds to
the states |0〉 and |1〉 in figure 1.1 respectively. The
ground state |5/2g〉 corresponds to the |aux〉 and the
excited state |e〉 is |5/2e〉.

1.4 Hole Burning

Hole burning is a method for investigating, but also
manipulating, the properties of an absorption spec-
trum. In the inhomogeneously broadened spectrum
given by the ions in the RE-crystal one frequency
will correspond to different transitions for different
ions due to the shifted energy levels, and all ions that
actually have a desired transition at the specific fre-
quency might not be in the correct hyperfine state to
absorb at this frequency. Thus some manipulation is
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Figure 1.7: Here is shown the idea of the spectral pit. Figure (a) shows the entire homogeneously broadened
peak. Figure (b) shows the part of the peak inside the red, dashed box in figure (a). In figure (c) a spectral pit
has been burned in this region of the spectrum.

needed before the crystal could be used for any logical
operations.

Hole burning refers to the creation of a spectral
hole in an absorption spectrum by burning at a spe-
cific frequency with a laser. The ions absorbing at
this frequency will then be excited, and the absorp-
tion will decrease as the absorbing ions are excited.
These spectral holes are usually not very long lived
as the ions will soon deexcite. However, the Eu-ions
have three different ground levels, and when the ions
are excited from one ground level they could deexcite
into another. Thus semi-permament sprectral holes
can be created in these ions, and also in other, similar
ions.

To deplete a minor region of the spectrum, instead
of just a narrow hole, the burning can be done by
sweeping across a frequency interval instead of just
burning at a single frequency. Then the region of
low absorption is called a spectral pit. The inho-
mogeneous broadening of the ions in the crystal is
schematically illustrated in 1.7a. Figure 1.7b zooms
in on a specific area marked with a red, dashed box
in 1.7a. Figure 1.7c shows the same zoomed in area
but now a spectral pit has been created.

The spectral hole, or pit, is limited by the possi-
ble transitions for the element in question. The pit
can only be so wide that the excited ions can relax
to a state outside the pit, otherwise the pit can not
be emptied. To create the desired narrow absorption
peak to use for quantum processing, some ions ab-
sorbing within a very narrow frequency interval are
burnt back into the pit.

Figure 1.8a shows two spectral pits corresponding
to the two transitions indicated by red arrows in fig-
ure 1.6 and 1.1. In each pit an absorption peak can
be created, corresponding to the transition from one
of the hyperfine ground levels to one of the excited
levels. The distance between the peaks is exactly the
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Figure 1.8: Schematic view of how the qubit is con-
structed. In (a) two spectral pits have been burned
corresponding to transitions between two different
ground states, |0〉 and |1〉, to an excited state. In
(b) atoms with the desired transitions are burnt back
into the |0〉−state from a third auxiliary state |aux〉.
(c) The ions can then be moved from |0〉 to |1〉 via
the excited state using optical pulses. (d) If the tran-
sition is not done completely, there will at readout
be a spectral peak in each of the two pits. The area
under the peaks will depend on the precise operation.

spectral distance between the two ground levels, and
the ions can be optically transferred from one pit,
|0〉, to the other pit, |1〉, via the excited state, |e〉. As
has been mentioned previously the two ground states
|1/2g〉 and |3/2g〉 has been used for the states |0〉
and |1〉 respectively. The excited state |5/2e〉 in the
5D0 level has been used as |e〉. These levels and the
associated transitions are indicated in figure 1.6.

As the two spectral pits are created, all ions with
the correct transitions within the pits will be trans-
ferred into the third state, |5/2g〉. This state has pre-
viously been referred to as the auxiliary state |aux〉,
and is also indicated in figure 1.6. The qubit is cre-
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ated by moving some ions which have the desired
transitions back into one of the pits, as in figure 1.8b.
Any ion with the correct frequencies inside the pits,
but not within the desired narrow peak, should how-
ever be left in the auxiliary state.

Once the qubit has been created, ions can be trans-
ferred between the ground states |0〉 and |1〉 via |e〉
using laser pulses (see figure 1.8c). If all atoms are
not completely transferred the readout spectrum will
show a peak in both pits, as the wavefunctions for the
atoms will collapse to one of the states before or at
readout, see figure 1.8d. These peaks will be smaller
than the peak in 1.8c and at most they will together
have the same area as the peak in 1.8c, assuming the
two transitions have the same transition strength. As
the absorption is proportional to the strength of the
transition, the absorption peak will be bigger for a
stronger transitions. If there is any population left
in the excited state |e〉 at readout the total area of
the absorption peaks will be smaller, as the readout
pulse will cause stimulated emission.

2 Simulations

The purpose of this project was to create a prototype
qubit, and to achieve as high fidelity as possible for
transitions between the two qubit states. How the
qubit is created was explained in section 1. In section
1.4 it was explained how all ions absorbing at the
wrong frequencies were removed from a part of the
absorption spectrum, and a schematic figure of how
the spectrum of the qubit looks can be seen in figure
1.8b-d.

Although the peaks inside the spectral pits are nar-
row, they are still broader than the homogeneous line
width of the individual ions, and the difference in
resonance frequency for the different ions will cause
them to respond differently to a laser pulse of a spe-
cific frequency. Thus a regular square pulse could
not be used for making the transfers, but instead a
complex hyperbolic sechant pulse, also called sech or
sechyp pulse, was used to make the transfers.

The sechyp pulse is designed to accurately transfer
an ensamble of ions with slightly different resonance
frequencies between two atomic states. It does this
by doing a frequency sweep in time over the peak
that is to be transferred. The Bloch vector will move
from the ground to the excited state in a spiral shape,
and the transfer efficiency is well over what could be
obtained for a frequency sweep with either square or
Gaussian pulses [9].

As the sechyp pulse does a frequency sweep in time,
the Rabi frequency will be time dependent. This time

dependence is given by:

Ω(t) = Ω0 [sech(β(t− t0))]
1+iµ

(2.1)

where Ω0 is the maximum Rabi frequency, µ is a real
constant given by the magnitude of the frequency
modulation and β depends on the time duration of
the pulse [1]. From this follow also the relations

|Ω(t)| = Ω0sech(β(t− t0)) (2.2a)

∆ν(t) = µβtanh(β(t− t0)) (2.2b)

where ∆ν is the deviation from the center frequency
of the laser.

The full width half maximum, FWHM, of the am-
plitude of the pulse is then given as 2.6/β, and when
µ is non zero the frequency of the laser changes with
time. When µ ≥ 2 and Ω0 ≥ µβ the inversion be-
comes insensitive to the maximum Rabi frequency,
and thus insensitive to intensity fluctuation in the
laser beam. The sechyp pulse is also highly frequency
selective, with a sharper selection for increased µ and
decreased β [1].

The properties of the sechyp pulse is shown in
figure 2.1. In the top plot the population transfer
with respect to resonance frequency is shown. The 0-
frequency denotes the central laser frequency. In the
two plots at the bottom the time depending Rabi fre-
quency and the frequency sweep of the sechyp pulse
can be seen, which are the two relations given in equa-
tion 2.2.

The population transfer is very efficient within a
frequency range around the center laser frequency for
the pulse shown in figure 2.1. However, the transfer
efficiency is still sensitive to very small changes in
the pulses, and therefore simulations were made to
design pulses which should optimize the transfer effi-
ciency prior to the experimental measurements. The
program used for this was based on the Bloch equa-
tions, equation 1.7a-c. The output showed the final
state of the Bloch vector depending on the resonance
frequency of the ion, along with the transfer efficiency
and the properties of the transfer pulse.

The program initially showed the final state for the
Bloch vector and the transfer efficiency for a sechyp
pulse given the length and time FWHM of the pulse,
the maximum non-angular Rabi Frequency and a fre-
quency width of the sechyp pulse. Figure 2.1 shows
the output from this program for a pulse with fre-
quency f = 0.51 MHz, FWHM of 0.96 MHz, a total
time duration of 5.11 µs and a time FWHM of 1.71
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Figure 2.1: Simulation for transfer efficiency for a sechyp pulse with non-angular Rabi frequency f = 0.51
MHz, FWHM of 0.96 MHz, a total time duration of 5.11 µs and a time FWHM of 1.71 µs. The topmost plot
shows the population inversion over a frequency interval inside the pit. As is seen only a small interval around
the center laser frequency is effected by the pulse. The left plot in the second row shows the center of the topmost
plot and the right plot in the second row shows the right half of the topmost plot. The third row shows the u,
v and w components of the Bloch vector depending on frequency. As desired it is close to (0,0,1), which means
this pulse should give a high transfer efficiency. The last two plots show the Rabi frequency and the frequency of
the pulse versus time respectively.

µs. This is the same pulse as in figure 2.2 and 2.3,
and the pulse denoted ”pulse 1” in section 4.4.

The simulations were done for the transitions
|1/2g〉 → |5/2e〉 and |3/2g〉 → |5/2e〉 in figure 1.6,
which corresponds to |0〉 → |e〉 and |1〉 → |e〉 respec-
tively in section 1. A pulse was optimized to each of
these transitions considering to the maximum Rabi
frequency the setup could produce for either transi-
tion (see section 4.3). Thus the maximum Rabi fre-
quency needed to be measured before the pulses could
be fully designed.

As can be seen the simulated pulse should give a
transfer efficiency of more than 99.8 %. This does
however only consider the spatial center of the beam
where the intensity is highest, but says nothing about
what would happen when the intensity decreased to-

wards the edges of the beam.

Equation 1.4 shows the relationship between the
Rabi frequency and the electric field E, and 1.8 shows
the relation between the angular Rabi frequency Ω
and the pulse area θ assuming a square pulse. Equa-
tion 1.8 is not valid for the sechyp pulse, but the pro-
portionality is still valid. Thus the Rabi frequency,
and therefore also the pulse area and the transfer ef-
ficiency, decreases towards the edges of the beam.

Assuming the electric field has a Gaussian shape
a spatial coordinate was also implemented into the
program. The result from these simulations assuming
a focus of 100 µm is shown in figures 2.2 and 2.3.

In figure 2.2 the u and v are close to zero and w
close to 1 for ions close to the beam center. This
means that they are close to the |e〉−state with

10



Figure 2.2: Simulation for transfer efficiency for a sechyp pulse with non-angular Rabi frequency f = 0.51
MHz, FWHM of 0.96 MHz, a total time duration of 5.11 µs and a time FWHM of 1.71 µs, which is the same as
in figure 2.1. The left column shows the u, v and w components over the spectral interval of the transition peak,
and the right column shows the same plot from a perspective that clearly shows the spatial dependence from the
beam center.

(u, v, w) = (0,0,1), which is the pure excited state.
Around 15 µm from the center of the beam the u−
and v−components start to deviate notably from 0
and the w−component starts to decrease. Thus only
the light which comes from the center of the beam
was desired for measurements.

3 Setup

To create the simulated pulses in reality, great care
had to be taken in setting up the experiment. The
laser needed to be very stable, and very accurate ad-
justments of the laser frequency had to be possible.
The basic setup is shown in figure 3.1.

A dye laser was used to create a finely tunable
beam. The beam was coupled to a Pound-Drever-
Hall locking system to achieve a stable frequency with
a narrow bandwidth [10]. A single mode fiber was
used to assure that the beam spatially had a Gaussian
shape, and to allow for creating the sechyp pulses the
light was let to double pass through an acousto-optic
modulator (AOM) which allowed for fast and precise

frequency modulations. The crystal sample was kept
in a cryostat to allow for low enough temperatures to
make the homogeneous absorption peaks narrow by
making phonon interactions negligible.

A pinhole was used to only select information from
the center of the beam where the intensity, and thus
the amplitude of the electric field and the transfer ef-
ficiency, was the highest. How much of the beam that
was selected was based of the simulation described in
section 2, and how the pinhole was set up is described
in section 3.4.

3.1 The Dye Laser

To be able to create the desired pulses a tunable laser,
stable in both intensity and frequency, was needed.
To aquire this a dye laser was used. The dye laser
works by modulating the beam of a pump laser by
letting the beam hit a jet of liquid dye.

The frequency of the pump laser is fixed and must
be higher than the desired frequency of the dye laser.
Depending on the dye different frequency intervals
can be reached. The dye is dissolved in a solvent
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Figure 2.3: Simulation for transfer efficiency for a sechyp pulse with non-angular Rabi frequency f = 0.51
MHz, FWHM of 0.96 MHz, a total time duration of 5.11 µs and a time FWHM of 1.71 µs, which is the same
as in figure 2.1 and 2.2. The top plot shows the fraction of the total population which has been transferred to the
excited state depending on frequency and distance from the beam center. The two lower plots show the center of
the first plot from f = −0.1 to 0.1 MHz. In the lower right plot the spatial dependence in clear.

which is circulated in a closed system. A very smooth
jet is created where the laser beam from the pump
laser intersects with the dye. The atoms in the dye
are excited by the pump laser beam and when relax-
ing they emit within a wide frequency interval.

The dye laser had a cavity which allowed for pre-
cise adjustments to allow for selection of the desired
wavelength of 580.217 nm, which is the resonance fre-
quency of the 7F0 →5D0 transition, as shown in figure
1.6. The pump laser gave out a beam of 6 W and the
output after the dye laser was 1 W.

The laser cavity was coupled to a Pound-Drever-
Hall locking system. This consisted of a cavity with
resonances equally spaced in frequency space, and the
laser could be locked to one of these frequency modes.
Light was reflected inside the cavity and detected out-
side to create an error signal for adjusting the dye
laser [10, 11]. This resulted in a laser band width of

about 10 Hz.

3.2 Acusto-Optic Modulators

To allow for the frequency sweeps and intensity vari-
ations in the sechyp pulses an AOM was used. An
AOM alters the frequency of the light by sending a
sound wave through a crystal. The refractive index
of the crystal is periodically modified by the sound
wave to create an acoustic grating. The beam passed
through the AOM twice as the light gets deflected
when passing through, by an angle θ according to

θ =
λF

v
=
λ

Λ
(3.1)

where λ is the optic wavelength in the crystal, F is the
frequency and v is the speed of the acoustic wave and
Λ is the acoustic wavelength. As is seen the deflection
angle varies depending on the modulation frequency.
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This was compensated for by letting the light pass
twice, once in each direction. Thus it was deflected
an equal amount each time but in different directions,
and the net deflection became zero as is shown in
figure 3.1.

The light passing through the AOM picks up the
properties of the sound wave to get a new frequency
νdiff = νlaser+F ·m, where m is the order of diffrac-
tion. The AOM is most efficient for m = 1 and and
thus the intensity will be highest for m = 1. How-
ever, some light will always slip through without be-
ing modulated and therefore some intensity will be
lost each time the beam passes through an AOM.
The intensity of the deflected beam, I, is related to

Detector

Detection of

reference signal

Dye laser

Pound-

Drever-Hall

locking system

AOM

λ/2 plate

Pinhole
Cryostat

with crystal

Fiber

Single

mode fiber

Figure 3.1: Schematic over essential parts of the
setup. A dye laser was used to finely modulate the
beam of a pump laser to the desired frequency of
580.217 nm . A Pound-Drever-Hall locking cavity
was used to assure a stable frequency with narrow
band width. To assure that the focus spatially had a
Gaussian shape the beam was sent through a single
mode fiber, and an acusto-optic modulator (AOM)
was used to allow for frequency sweeps and intensity
modulations of the beam. Carefully selected lenses
were used to create the desired size and position of
the focus and a pinhole was used to only select light
from the center of the beam for detection. To align
the electric field with the b direction of the crystal a
λ/2 plate was placed just before the cryostat.

the incoming beam intensity, I0, as

I

I0
= ξsin2

(
π

2

√
P

P0

)
(3.2)

where P is the radio frequency power to the AOM
and P0 is the optimal power given by the proper-
ties of the specific AOM, at which the efficiency is
highest. ξ is the maximum efficiency of the AOM,
typically between 60-95%. For the AOM used in the
experiment, ξ = 84%. However, ξ also depends on
the frequency, as the AOM is not equally efficient for
all frequencies.

The efficiency is highest for some center frequency
specific for each modulator. Typical frequency mod-
ulations for an AOM lies between 50 and 500 MHz.
The AOM input, and thus the diffraction of the the
light, can often be tuned within ±25% of the AOM
center frequency. By using several modulators after
each other, or by letting the light pass twice through
one modulator, a frequency modulation of several
hundred MHz can be achieved [1].

3.3 The Cryostat

The sample was cooled using a cryostat, which con-
sisted of three vacuum shields with liquid nitrogen
and helium in between. In the center was a cham-
ber in which the sample was placed. This chamber
could be filled with liquid helium and was surrounded
by a vacuum shield. Between the innermost and the
middle vacuum shield was liquid helium, and between
the middle and outermost vacuum shields was liquid
nitrogen. Small windows allowed for a view of the
sample inside the chamber from four different direc-
tions.

When the sample was to be cooled liquid helium
was let into the sample chamber to cover and cool
the sample. To minimize the disturbances from scat-
tering of phonons in the ions the crystal was cooled
to 2.17 K at a pressure of 40 mBar. At these condi-
tions helium is super fluid, which means that it has
infinite heat conductivity and thus there will be no
disturbances from gas bubbles in the liquid due to
uneven temperatures in the sample chamber.

3.4 Placing The Pinhole

Figure 2.3 shows the population in the excited state
versus spatial and spectral position. Here it can be
seen that the population starts to decrease notably
about 15 µm from the beam center. Thus only the
light from the center of the beam is desired, which was
achieved using a pinhole. The setup of the pinhole is
shown in figure 3.1. After the cryostat the light was
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collimated with a 25 cm lens. It was then focused on
a 50 µm pinhole with a 40 cm lens. A small script
for calculating how much of the beam would pass
through the pinhole was written for a specific setup,
the setup described above would let through a part
of the beam with a radius of ∼ 16µm. As is seen
in figure 2.3 the transfer efficiency for the light that
passes through should never go beneath 99%.

4 Results

As mentioned previously the goal of this project was
to create a prototype qubit. In order to be able to
make operations with the qubit, transfers between
the two qubit states |0〉 and |1〉 must be possible to
do with very high fidelity. According to the simu-
lations presented in section 2 a population transfer
of more than 99% should be achievable for a single
transfer between the two states |0〉 ↔ |e〉, which is
the transition |1/2g〉 ↔ |5/2e〉 for the actual ion.

However, the transfer |e〉 → |1〉 was also needed
to make a complete transfer between the two qubit
states. In section 4.4 it is explained how the trans-
fer efficiency was measured and evaluated and the
results from this is presented. Before these measure-
ments were done some other properties of the sample
was studied: the oscillator strengths and the possible
Rabi frequencies.

Prior to any actual measurements, it was verified
that only the wanted class of ions with the correct fre-
quencies was moved back into the spectral pits. This
was to assure that the system behaved as expected.
This was done for all nine transitions, and all but one
peak was shown to contain only ions of the wanted
ion class. This peak did not correspond to one of the
qubit transitions and was thus not a problem. How
this verification was done is explained in section 4.1.

In figure 1.6 it can be seen that between the two
levels of interest there are nine possible transfers
in total. Pulses for the two transitions of interest,
|1/2g〉 ↔ |5/2e〉 and |3/2g〉 ↔ |5/2e〉, had to be op-
timized using the program described in section 2. As
mentioned previously a high Rabi frequency is de-
sired for making high efficiency transfers, as the pulse
times can then be kept short. Therefore is was in-
vestigated what Rabi frequencies could be achieved
with the current setup for the two transitions. This
was done by combining the results from two different
measurements.

One method used for measuring the Rabi frequen-
cies of the transitions was to measure the relative os-
cillator strengths. In section 4.2 it is described how
this mas done for the nine possible transitions. As
mentioned in section 1.3.4 the Rabi frequency is pro-

portional to the square root of the oscillator strength.
However, as the measurement didn’t give the propor-
tionality constant, some additional measurement was
required to obtain the absolute Rabi frequencies that
could be obtained.

The absolute Rabi frequency were thus also mea-
sured for seven of the nine possible transitions. These
measurements gave the maximum Rabi frequency
that could be obtained for each of the seven measured
transitions with the used setup. This is presented in
section 4.3. The reason to why these measurement
was not done for two of the transitions was because
one of them was too weak, and the other contained
ions that were not within the desired ion class, which
is further explained is section 4.1.

4.1 Verifying The Ion-class

To only move the desired ions back into the spectral
pits is not trivial. Therefore it was verified that only
the desired ions were burnt back before any measure-
ments were taken. To do so the crystal was prepared
by creating three pits corresponding to the transi-
tions from one of the hyperfine ground states to each
of the three excited states at a time. Ions were then
burnt back into the ground state, which would yield
a peak in each of the three pits. By burning at one
of the peaks all three should disappear, as the ions
should be moved to a different ground state through
this procedure.

For the |1/2g〉 and |3/2g〉 state to all three ex-
cited states all three peaks were there, though only
two were visible in the former case. For the |5/2g〉
state there was however something else in the peak
|5/2g〉 → |5/2e〉.

Figure 4.1 shows some of the obtained absorption
spectra. The absorption is given in αL where α is the
absorption coefficient and L is the optical length of
the absorbing medium. The plots show the readout
of 2 MHz around each peak, ignoring the spectral
distance between the peaks. This could be corrected
for using the values given in figure 1.6. This was not
done due to clarity, as the region of interest is very
small compared to the total spectral interval of the
different transitions.

In figure 4.1a the peaks from the |3/2g〉 state to
all three excited states can be seen. Burning at one
of the peaks caused all peaks to disappear, as was
expected. The same can be seen for the |1/2g〉 state
in figure 4.1b, though in the right spectrum there is
also a peak corresponding to the transition |5/2g〉 →
|1/2e〉 at 4 MHz. When the ions are burnt away from
the |1/2g〉 state they will end up in either |3/2g〉 or
|5/2g〉, which is the explanation to this new peak.
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(a) Readout spectra of the transitions from |3/2g〉 to all three excited states. (left) Scan over an interval of 2 MHz centered on each transitions
peak. From left to right the peaks correspond to the transitions |3/2g〉 → |1/2e〉, |3/2g〉 → |3/2e〉 and |3/2g〉 → |5/2e〉. (right) burning at the
transition |3/2g〉 → |1/2e〉 causes all three peaks to disappear, as the ions are moved into a different ground state and do not absorb at the
original frequencies any more. Burning at |3/2g〉 → |3/2e〉 and |3/2g〉 → |5/2e〉 produces the same result.
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(b) Readout spectra of the transitions from |1/2g〉 to all three excited states and at 4 MHz the transition |5/2g〉 → |1/2e〉 . (left) The
transitions |1/2g〉 → |3/2e〉 and |1/2g〉 → |5/2e〉 are visible at 2 and 6 MHz respectively. No peak corresponding to |1/2g〉 → |1/2e〉 at 0 MHz
is visible, nor at |5/2g〉 → |1/2e〉 at 4 MHz, where there should not be one as all ions should be in the |1/2g〉 state. (right) after burning
at the transition |1/2g〉 → |1/2e〉 at 0 MHz where no peak was visible, the two visible peaks have disappeared and a peak has been created at
|5/2g〉 → |1/2e〉, as ions have been moved to the |5/2g〉 and |3/2g〉 states from the |1/2g〉 state. The lack of a visible peak at 0 MHz means
that the transition |1/2g〉 → |1/2e〉 is very weak.
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(c) Readout spectra of the transitions from |5/2g〉 to all three excited states and the transition |1/2g〉 → |5/2e〉 at 4 MHz. (left) The three
peaks corresponding to the transitions |5/2g〉 → |1/2e〉, |5/2g〉 → |3/2e〉 and |5/2g〉 → |5/2e〉, positioned at 0, 2 and 6 MHz respectively,
are present as expected. However, there is also a peak at 4 MHz. This comes from some unwanted ion class, and must therefore be some
other transition than |1/2g〉 → |5/2e〉. (right) After burning at |5/2g〉 → |1/2e〉 the two first peaks disappear. The last one, corresponding to
|5/2g〉 → |5/2e〉 is still there, although somewhat smaller. This means that also in this peak there are unwanted ions from some other ions
class. The peak at |1/2g〉 → |5/2e〉 is still there and has become bigger, as expected.

Figure 4.1: Readout spectra for the transitions from each ground state to all excited states. The left column shows the
absorption spectra for when all ions are in the desired ground state and the right column is when they should all have been
removed from the ground state, thus no absorption on the original frequencies should occur. In the two lower sets the peak at
4 MHz comes from a transition from another ground state than the other peaks. Thus the 4 MHz-peak should not be visible in
the left column but only in the right. Note that these are the readout spectra: the peaks are not at a correct frequency interval
from each other, and the frequency is only used for reference. The reason to this is that the readout area is small (2 MHz)
compared to the frequency difference between the pits (tens of MHz). The spectra could be adjusted by separating the peaks by
the correct spectral distances given in figure 1.6. The spectra are taken as averages over 50 measurements. The absorption is
given in αL where α is the absorption coefficient and L is the optical length.
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Figure 4.2: Readout spectra for Rabi frequency measurements for the transition |1/2g〉 → |5/2e〉, using square
pulses of 2 µs and waiting 10 µs before readout. The first plot shows the full peak. Then the Rabi frequency is
increased with an equal amount each time. In the fourth plot a pulse area of ∼ π/2 seems to have been reached,
corresponding to a population of 50% in each state. In the sixth plot the population is almost completely inverted,
and in the last plot the population is once again ∼ 50% in each state. The frequency domain only refers to the
readout which was centered on the transition peak.

The same procedure was repeated for the |5/2g〉
state, seen in figure 4.1c. In the left figure there are
four peaks, of which the third at 4 MHz, correspond-
ing to the transition |1/2g〉 → |5/2e〉, was not desired.
This comes from an unwanted ion-class with transi-
tions at other frequencies than the desired ion-class.
It is thus not the transition |1/2g〉 → |5/2e〉 for the
ions causing this peak. When burning at either of the
two first peaks at 0 MHz and 2 MHz, these two both
disappear while the fourth peak at 6 MHz becomes
only somewhat smaller. The peak at 4 MHz grows
bigger as it should. This is shown in the right plot in
figure 4.1c.

When burning at the peak at 6 MHz all peaks but
the peak at 4 MHz disappears. The peak at 4 MHz
also becomes bigger than when burning on any of the
two first peaks, at 0 MHz and 2 MHz. This could
imply that the part left in the peak at 6 MHz in
figure 4.1c is correlated to the unwanted ions in the
peak at 4MHz. If so, the unwanted ions could maybe
have been removed by burning at the peak at 4 MHz.

4.2 Oscillator Strengths

The readouts were done both going up and down in
frequency to minimize systematical errors due to ef-
fects caused by absorption of the readout pulse. A
program was used to evaluate the area under each
absorption peak, which is directly proportional to the
oscillator strength. The absorption spectra used for
these measurements were of the same kind as those
shown in figure 4.1. The evaluated areas were nor-
malized to obtain the values presented in table 4.1.

The oscillator strengths for 153Eu3+:Y2SiO5 at site
1, taken from reference [6], and the corresponding
table with measured values for 151Eu3+:Y2SiO5 at
site 2 are shown in table 4.1. As seen, the transi-
tion strengths are not the same for the two cases but
differs significantly. The transition |1/2g〉 → |5/2e〉
is as expected the strongest one, but the transition
|3/2g〉 → |5/2e〉 was only about relatively half as
strong as in 153Eu3+:Y2SiO5 at site 1.

The weak transition strength means that a higher
laser power is needed to obtain the same Rabi fre-
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Figure 4.3: Data fit curves for the Rabi frequency measurements of the transitions |1/2g〉 → |5/2e〉 in (a), and
|3/2g〉 → |5/2e〉 in (b). These were the two transitions used for the prototype qubit. The red circles show the
data points and the blue line is the fit. The rightmost data point indicates the highest achievable Rabi frequency
for each transition. The Rabi frequencies stated in the figure titles and table 4.2 are given for some specified
input to the AOM.

Table 4.1: (top) Relative oscillator strengths for
153Eu3+:Y2SiO5 site 1. The values have an uncer-
tainty of ±0.03 [6]. (bottom) Measured relative os-
cillator strengths for site 2 151Eu3+:Y2SiO5. Uncer-
tainties are estimated to 0.03.

transition |±1/2e〉 |±3/2e〉 |±5/2e〉

|±1/2g〉 0.03 0.22 0.75

|±3/2g〉 0.12 0.68 0.20

|±5/2g〉 0.85 0.10 0.05

transition |±1/2e〉 |±3/2e〉 |±5/2e〉

|±1/2g〉 0.01 0.11 0.88

|±3/2g〉 0.18 0.73 0.09

|±5/2g〉 0.81 0.16 0.03

quency for the weaker transition than for the stronger
transition. Thus a higher laser power is also needed
to create a pulse area θ = π for the weaker tran-
sition, which is needed for making a complete tran-
sitions from the ground state to the excited state.
To achieve a larger pulse area the time of the pulse
could also be increased, but this was not desired as
the spontaneous decay of the ions would then become
more important.

As the peak corresponding to the transition
|5/2g〉 → |5/2e〉 did not only contain ions from the
desired ion-class this peak was disregarded in the

measurements (see figure 4.1c). The small value ob-
tained from the data analysis does however corre-
sponds well to the small change in this peak when
burning at any of the other two transition from
|5/2g〉.

The uncertainties in table 4.1 are estimated by
comparing the individual results from each measure-
ment for which the table is an average. There were
four of these for each row/column. The largest uncer-
tainty was 0.03, and the others ranged within 0.01-
0.02.

4.3 Rabi Frequency Measurements

The purpose of measuring the Rabi frequency was to
determine the correspondence between the beam in-
tensity and the Rabi frequency experienced by the
ions. These measurements were done for seven of
the nine possible transitions. The two transitions
|1/2g〉 → |1/2e〉 and |5/2g〉 → |5/2e〉 were not con-
sidered as the former was to weak (see figure 4.1b)
and the latter contained unwanted ions (see figure
4.1c).

The Rabi frequency measurements were done by
creating a pit at the transitions that was to be stud-
ied and burn the desired ions back into this pit. Only
one transitions was studied at a time. Thus the mea-
surement always started with the ions in the ground
state of the current transition. In figure 4.2 the stud-
ied transitions is |1/2g〉 → |5/2e〉, and the system
was thus initialized with all ions in |1/2g〉.

The ions were then put into a superposition state
using a 2 µs square pulse, and a readout spectra was
taken. At readout the ions will collapse to either
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Table 4.2: Measured maximum Rabi frequencies ob-
tainable with the present setup for all transitions but
|1/2g〉 → |1/2e〉 and |5/2g〉 → |5/2e〉, as the former
was too weak and the latter contained ions from an
undesired ion-class.

transition |±1/2e〉 |±3/2e〉 |±5/2e〉

|±1/2g〉 - 200 kHz 540 kHz

|±3/2g〉 275 kHz 495 kHz 189 kHz

|±5/2g〉 574 kHz 275 kHz -

the ground or the excited state. Ions collapsing to
the ground state will absorb the readout pulse, cre-
ating a peak in the readout spectrum. For the ions
collapsing to the excited state the readout pulse will
cause stimulated emission, which will cancel or re-
verse the absorption peak. Thus the absorption peak
will shrink for increased Rabi frequency, as more will
be transferred to the excited state.

The first plot in figure 4.2 shows the full absorp-
tion peak of the transition |1/2g〉 → |5/2e〉, that is
all ions are in |1/2g〉. The ions were put into differ-
ent superposition states by varying the intensity, and
thus the Rabi frequency, of the 2 µs square pulse.
The second plot shows the absorption peak after a
relatively weak pulse. As can be seen, the peak has
become smaller, as some ions has collapsed to the
excited state at readout.

The third plot in figure 4.2 shows the absorption
peak for a pulse with twice the Rabi frequency as
used in the second plot. For the following six plots,
this very same procedure was redone with the Rabi
frequency successively increased an equal amount be-
tween each measurement. The system was reset
between each measurement to have all ions in the
ground state when the square pulse was applied.

In the fourth plot there is approximately an equal
amount of ions collapsing to either state at readout.
In the fifth plot more ions collapse to the excited state
than to the ground state, and the peak is inverted.

As mentioned square pulses were used for these
measurements, even though the sechyp pulses are
more efficient for making a transfer. This is because
the final superposition state is more sensitive to the
Rabi frequency of a square pulse, than of a sechyp
pulse.The areas under the absorption peaks shown in fig-
ure 4.2 were evaluated and a fit was optimized to the
data points, to give the Rabi frequency of the best
fit. The fits for the transitions |1/2g〉 → |5/2e〉 and
|3/2g〉 → |5/2e〉 which were used for the prototype
qubit are shown in figure 4.3. The x-axis shows the

Rabi frequency experienced by the ions and the y-axis
shows the inversion, or w in the Bloch picture. The
inversion was obtained by normalizing the area un-
der each peak in figure 4.2 with respect to the initial
peak when all ions are in the |1/2g〉 state.

The maximum Rabi frequency that could be ob-
tained with the current setup, given by the fit for
all considered transitions, are presented in table 4.2.
Note that the presented values are rather arbitrary,
and does only couple the experimental setup to the
response of the ions. The absolute values in table 4.2
are not of any physical importance, but merely used
to relate the beam intensity to the Rabi frequency
experienced by the ions, as this was unknown before
these measurements. The Rabi frequency measure-
ments were also compared to the relative oscillator
strengths. As has been mentioned previously the
square root of the oscillator strengths should only
differ from the Rabi frequency measurements by a
constant. This is discussed in section 5.1.

The highest achievable Rabi frequency with the
considered setup for the two qubit transitions are
given as the highest frequencies in figures 4.3a and
b: 540 kHz respectively 189 kHz. These now corre-
sponds to the maximum beam intensity. With higher
laser power, or a more efficient AOM, higher Rabi
frequencies could be achieved.

4.4 Transition Fidelity

Ultimately the aim for this project was to measure
the fidelity for the transitions |1/2g〉 → |5/2e〉 and
|3/2g〉 → |5/2e〉, in order to investigate whether this
could possibly be used for quantum computer hard-
ware. These particular transitions were used consid-
ering the work of F. Könz et al. [4]. As has been men-
tioned they correspond to the transitions |0〉 → |e〉
and |1〉 → |e〉 discussed in section 1. This is illus-
trated in figure 1.6.

Similar experiments has been done previously using
a praseodymium doped YSO crystal, with results of
approximately 96% transfer efficiency for a complete
transfer between the two ground states [12]. This cor-
responds to a single transfer efficiency of more than
97%. Due to the longer life times and narrower homo-
geneous linewidths in Eu higher transfer efficiencies
were hoped for in this element. Unfortunately, no
reliable results were obtained.

With the purpose to assure that the transfer ef-
ficiency behaved as expected, four different pulses
were used for the first transfer |1/2g〉 ↔ |5/2e〉.
Only one pulse was used for the second transfer,
|3/2g〉 ↔ |5/2e〉, the pulses are presented in table
4.3.
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Table 4.3: Different pulses used for population
transfer. Transfer efficiency for the first transi-
tion |1/2g〉 ↔ |5/2e〉 was evaluated for all pulses,
while only pulse 2 was used for the second transition
|3/2g〉 ↔ |5/2e〉.

pulse 1 2 3 4

frequency/kHz 510 156 100 60

freq. FWHM 960 582 356 976

time duration/µs 5.11 60 80 206

time FWHM/µs 1.71 16.5 17.88 154
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Figure 4.4: Data from the transition fidelity mea-
surements. The red, dotted line shows the data with
the red circles indicating the data points. The blue,
solid line shows the fit. The upper plot shows data
for |1/2g〉 ↔ |5/2e〉 using pulse 1 and the lower plot
is for |3/2g〉 ↔ |5/2e〉. The fit is done with the re-
quirements from case 3 described below.

The essential difference between the pulses is a de-
crease in Rabi frequency and an increase in time dura-
tion to compensate for the decrease in Rabi frequency.
Pulse 1 is optimized for the transition |1/2g〉 ↔
|5/2e〉 and pulse 2 is optimized for |3/2g〉 ↔ |5/2e〉.
Results from simulations for pulse 1 are shown in fig-
ures 2.1-2.3.

The transfer from |1/2g〉 to |3/2g〉 via the excited
state was thus done using four different pulse se-
quences, as each of the four different pulses was used
for the transfer from |1/2g〉 to the excited state, and
only pulse 2 was used for the transfer from the excited
state to |3/2g〉.

For each of the four pulse sequences a curve was fit
to the data, minimizing four parameters: The relative

Table 4.4: Results from making fits to the data from
four different pulse sequences for making the trans-
fers. Definitions of the different cases are described
above. All numbers are given in percent.

pulse d1/2 d3/2 p1/2 p3/2

Case 1 1,2 53.3 6.3 98.4 96.6

2,2 51.0 6.5 95.4 96.0

3,2 52.3 6.4 95.1 95.2

4,2 49.7 6.8 89.7 94.6

Case 2 1,2 51.7 6.2 98.3 96.7

2,2 51.7 6.2 96.0 96.2

3,2 51.7 6.2 95.1 95.5

4,2 51.7 6.2 90.1 94.3

Case 3 1,2 47.4 5.9 98.3 96.5

2,2 47.4 5.9 95.5 96.5

3,2 47.4 5.9 94.0 96.5

4,2 47.4 5.9 87.9 96.5

decay to each of the ground states |1/2g〉 and |3/2g〉,
denoted d1/2 and d3/2 respectively, and the transfer
probability for each of the two transitions, denoted
p1/2 and p3/2. The fit was done using three different
requirements, which should optimally yield the same
results:

• Case 1: All parameters were adjusted to obtain
the best fit for each of the four pulse sequences
separately.

• Case 2: The decay to the ground states was re-
quired to be the same regardless of the pulses
used for making the transfers.

• Case 3: The decay to the ground states and
the transfer probability of the |3/2g〉 ↔ |5/2e〉,
p3/2, was required to be the same regardless of
the pulse used for transfers between |1/2g〉 and
|5/2e〉. As only pulse 2 was used for the for-
mer transfer, the probability should not differ
between the different pulse sequences, i.e. p3/2

should not change.

Typical plots of the collected data with fits are
shown in figure 4.4. Each maximum or minimum in
the plots corresponds to an average of ten data points
for a number of single transfers. A single transfer is
defined as a transfer between one of the ground states

19



and the excited state in either direction. This means
that a transition between the two ground states re-
quires two single transfers. Between each measure-
ment the system was completely reset to the initial
state, shown schematically in figure 1.8b. On the x-
axis is the number of transfers and on the y-axis the
area of the absorption peak in terms of αL is shown.

The results of the fit for each case are shown in ta-
ble 4.4. As is seen quite different results are obtained
for the different restrictions, which should not be the
case. The result also depends notably on the number
of included data points.

Another problem with the results are that they
are all below what was expected from simulations.
As best a transfer efficiency of 98.4% can have been
achieved for a single transfer. This is better than the
97% efficiency of a single transfer reported in [12], but
as both transitions are needed for the qubit, nothing
is really gained and yet higher efficiencies are needed
to create a functional qubit.

5 Curiosities, Errors and Discussion

The time for this project was too limited to draw any
rigid conclusions concerning how high transition effi-
ciency could be reached for the Eu3+:Y2SiO5, which
was the aim of the project. However, after consid-
ering parameters which are yet to be optimized, the
goal of reaching an efficiency of more than 99% does
not need to be out of reach. The shortcomings, po-
tential errors and noteworthy aspects of this project
will now be addressed.

5.1 The Rabi Frequency and Oscillator
Strengths

In plot four and nine of figure 4.2 the absorption peak
is gone, but there is still some wave-like shape in
the spectrum. This is most likely because the square
pulse is very frequency selective, and thus the edges
of the peak does not experience the same Rabi fre-
quency as the center of the peak. In the sixth plot in
figure 4.2 the population is inverted and the absorp-
tion becomes negative due to stimulated emission.

The emission peak never becomes as big as the ab-
sorption peak. This could have several explanations.
It could be due to decay: The fluorescence lifetime of
the 5D0 excited level at 3 K is measured to 1.62 ms [4].
About 0.5% should then have had time to fall down
into the ground state before readout, which should
not affect the results notably in this case. The dif-
ference is probably because the edges of the peak are
not affected by the highly frequency selective square
pulse. This should not have affected the results con-
siderably, as the maximum inversion still occurs for

the same beam intensity.
The square of the Rabi frequency for a transition

is proportional to the oscillator strength of the tran-
sition, as the latter is proportional to the square of
the dipole moment of the ion or atom. By taking
the square and normalizing the Rabi frequency mea-
surements in table 4.2 the relative oscillator strengths
should thus be obtained.

An interesting thing to note is that this is not quite
the case, which is realized by looking at the strongest
transition for each measurement. For the Rabi fre-
quency measurements this is not the |1/2g〉 → |5/2e〉
transition as would be expected from measurements
of the relative oscillator strengths. By looking at ra-
tios between the measurements in these tables the
Rabi frequency deviating the most from what would
be expected from the relative oscillator strengths in
table 4.1 is less than 20% off, and the best values are
less than 1% off.

5.2 Decay and Setup Issues

If the excited ions were to relax directly to the ground
level, the relative oscillator strengths should be pro-
portional to the decay to the different ground lev-
els. However, the decays obtained from the fits for
estimating the transfer fidelity in table 4.4 do not
match the relative oscillator strength matrix in table
4.1. Table 4.1 describes the coupling for a transition
from one of the hyperfine ground states to one of the
hyperfine excited states relative to the other transi-
tions between the ground and excited state. How-
ever, there are several levels between the two levels
used in this experiment. Thus there is nothing that
guarantees that the coupling strengths are the same
from the excited stated to the ground states, as the
relaxation could very well be non-trivial and occur
through several steps.

To minimize errors from decay the intensity needs
to be as high as possible, which was a problem in
this experiment. The maximum laser output still
required the duration of the pulse to be several to
tenths of µs. Care was taken to maximize the laser
output. The power still decreased from 1 W at the
dye laser to some tenths of mW where the beam ac-
tually went through the crystal. The crystal length
of 8.6 mm required a long focus for the measurements
to be accurate. To keep the focus close to homoge-
neous throughout the crystal the beam could not be
focused too hard, which also decreased the intensity.

To be able to achieve a tighter focus, and thus in-
crease the Rabi frequency it would be desirable to use
a thinner crystal. With a higher Rabi frequency the
duration of the pulse could be decreased. Accord-
ing to simulations, larger Rabi frequency and shorter
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duration did in general result in a higher transfer ef-
ficiency. The drawback of this would be a decrease in
the signal to noise ratio. Due to problems with the
setup and time limitations this was not done during
this project.

5.3 Error Sources

As mentioned in section 4.4, the results for the trans-
fer efficiency were consistently lower than predicted
by the simulations. The population plot from pulse
1, which is the most efficient pulse, can be seen in fig-
ure 2.3. The average population transfer should be
about 99.6%, and the lowest transfer considering the
pinhole should be 99%. For the less efficient pulses
the best result from the fit and the theoretical result
differs even more.

A simple explanation to why the results did not
match the simulations would be that the pinhole was
set up in a way that allowed for more light to go
through than was desired. In the lower right plot in
figure 2.3 it is seen that the transfer efficiency de-
creases rapidly towards the edges of the beam. How-
ever, especially for the less efficient pulses, the error
in what goes through the pinhole needs to be rather
large to account for the differences between the mea-
sured and simulated transfer efficiency. Assuming the
lenses and the pinhole could be some centimeter off
the optimal position the radius of the beam passing
through the pinhole could have approached 20 µm.
This partially explains the poor results, though not
completely.

The focus was measured to be 70 µm outside the
cryostat. At one Rayleigh length, that is when the
focus has increased to

√
2 ∗ 70 µm, it is 100 µm and

this occurs at 7 mm from the focus point. The focus
was thus within 100 µm throughout the crystal.

If the focus was assumed to be 70 µm instead of 100
µm in the simulations, the considered setup should
still result in a population transfer of 99%. This does
however not consider that the focus is not homoge-
neous throughout the beam, but will have a shape
resembling a time-glass with the most narrow part
in the center of the crystal. The overestimated fo-
cus used in the calculations could thus completely or
partly explain the deviations in the experimental re-
sults from simulations. The crystal was also placed in
a bath of liquid nitrogen at 2.17 K inside the cryostat,
which could potentially have changed the properties
of the focus. If the center of the focus was not in the
center of the crystal, this could also have affected the
outcome of the experiments.

If the pinhole also was assumed to let through light
within 20 µm from the beam center instead of 16 µm,

which corresponds to a displacement of some centime-
ter, the population transfer should be 97.9% for the
most efficient pulse, (pulse 1 in table 4.3). This is
less than actually obtained, and for this the time-
glass shape of the focus has still not been considered.

For the less efficient pulses (pulse 2 to 4 in table 4.3)
the deviations are even bigger than what is explained
by the mentioned potential errors. The time was un-
fortunately too limited for further investigations of
this. It is somewhat curious that the deviations in-
crease for the less efficient pulses, and it implies that
there is something in the setup that has not been
properly considered.

5.4 Interpretation of the NOT-gate

It was mentioned in section 1 that the qubit studied
in this project was supposed to work as a NOT-gate,
described in section 1.1.1. In the experimental part
though, only full transfers α |0〉 ↔ α |1〉 has been con-
sidered. This should however not matter, as a π-pulse
which completely inverts the system should be equal
regardless whether the transitions is from the ground
to the excited state or the reverse.

The complete operation of the NOT-gate is de-
scribed in equation 1.1. The first operation inverts
the populations in |0〉 and |e〉. This corresponds to
the transition |1/2g〉 ↔ |5/2e〉 which was the stronger
transition, for which four different pulses were used
in the experiments. The second operation inverts the
population in the two states |e〉 and |1〉. This corre-
sponds to the weaker transitions in the experiments,
which was |5/2e〉 ↔ |3/2g〉. The third and last oper-
ation inverts the population between the states |e〉
and |0〉. This would correspond to the transition
|5/2e〉 ↔ |1/2g〉. However, as there were no ions in
|3/2g〉 to start with, there would after the two first
operations be no population left in |5/2e〉, and thus
this last operation was unnecessary for the transition
|1/2e〉 → |3/2g〉.

By simply adding a pulse corresponding to the
third inversion in equation 1.1 the created qubit
would completely invert any superposition state
α |0〉+β |1〉. The same argumentation applies for the
reversed transfer |3/2g〉 → |5/2e〉 → |1/2g〉 in the
experiments, with the difference that there is now no
need for the first operation in equation 1.1, as both
|1/2g〉 and |5/2e〉 are initially empty.

6 Conclusions and Outlook

The goal of the project was to acquire a transfer ef-
ficiency of at least 99% for a specific transition in
the Eu ions in 151Eu3+:Y2SiO5. This goal was un-
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fortunately not fulfilled due to reasons discussed in
section 5, but at most a transfer efficiency of 98.4%
can have been achieved. Together with a possible
maximum transfer efficiency of 96.6% of the weaker
transfer, this would results in a double transfer effi-
ciency of at most 95%, which can be compared to the
96% achieved for the Pr:Y2SiO5 crystal mentioned in
section 4.4 [12].

The measured transfer efficiency was consistently
lower than expected from simulations. This could
partially or completely be explained by misplaced op-
tics and a smaller focus than what was used in the
simulations. For the less efficient pulses the devia-
tions from simulations were bigger than for the most
efficient pulse. The deviations for the most efficient
pulse could be completely explained with the men-
tioned error sources. This is however not the case for
the less efficient pulses, for which the results could
only be partially explained by the mentioned error
sources.

The possibility to reach 99% transfer efficiency for
the single transfer is thus still not necessarily out of
reach, but more care needs to be taken in the selec-
tion of what part of the beam is considered at readout
by choosing a smaller pinhole. To improve the simu-
lations and gain better understanding for the proper-
ties of the focus the fact that this is not homogeneous
throughout the beam could be implemented into the
program.

Other improvement that could be made is adding
an external magnetic field to prevent spin flips in the
crystal which would further increase the coherence
time, and a thinner crystal could be used to achieve
a higher Rabi frequency. The properties of the fo-
cus inside the cryostat chamber should also be more
rigorously investigated.

It is though not enough to gain 99% efficiency for
only one of the transfers, as a complete qubit opera-
tion involves both transfers. To achieve a total trans-
fer of 99% higher transfer efficiency are thus required
also for the weaker transition. However, if the Rabi
frequency is increased for one of the transitions it will
most likely be increased for both transitions, as it is
proportional to the electric field of the laser beam.
The limiting factor is mainly the Rabi frequency, and
the most efficient way for obtaining better results is
probably to use a laser with higher output.
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