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Abstract 

The precise orbit determination problem is to accurately 

determine the position and velocity vectors of an orbiting 

satellite. In this paper we review the general contents of 

the orbit determination process, with particular emphasis 

on Low Earth Orbit (LEO) satellites.  The different orbit 

determination approaches and the different force models 

contained within are briefly discussed. The two main 

estimation techniques, the batch least squares approach 

and the Kalman filter, are reviewed and their relative 

merits discussed. Numerical results are used to consider 

the impact of different modeling errors on the final orbit 

accuracy, in addition to errors due to the nature of near 

real-time processing conditions.  

1 INTRODUCTION 

With the ever increasing sophistication of satellites in low 

Earth orbit the ability to precisely predict the position and 

velocity of the satellite is extremely important. This need 

has been amplified in recent years by the development of 

Earth observation and meteorological satellites, which 

need to make measurements of the Earth’s atmosphere, 

gravity field, sea surface height, etc. with unprecedented 

precision. This has led to the development of advanced 

numerical methods, which allow a precise orbit to be 

calculated on the basis of observation data from GPS 

signals as measured by the LEO satellite. Additionally, 

the observation data is often required by the user in “near 

real-time” (for use in, for example, numerical weather 

prediction simulations). This means that the data must be 

downloaded from the satellite every orbital revolution, 

and must then be processed to an accuracy of less than 

one meter in position and distributed to users within 

approximately one hour of downloading. This task 

presents a formidable challenge, but, with the use of 

numerical estimation methods, accuracies of 2-3 cm in 

position can be achieved, well within requirements. 

The precise orbit determination problem is to accurately 

determine the ephemeris of an orbiting satellite. To 

achieve this, estimates of the position and velocity of the 

orbiting vehicle are made based on a sequence of 

observations. This is usually accomplished by integrating 

the equations-of-motion, starting from a reference epoch 

to produce predicted observations. This initial orbit is 

generally not very accurate but is a good starting point 

from which to construct a state vector which can then be 

used in a least squares algorithm to obtain a better 

estimate of the observations. The state vector is composed 

of the position vector, the velocity vector, empirical 

forces and measurement model parameters. Components 

of the satellites state vector at a reference epoch are then 

adjusted to minimize the observation residuals in a least 

squares sense. Thus, to solve the orbit determination 

problem one needs: 

• Equations-of-motion describing the forces acting on 

the satellite and possibly the covariance of the 

process noise if a Kalman filter is employed. 

• The relationship between the observed parameters 

and the satellite’s state vector. 

• A least squares estimation algorithm. 

Finally, we illustrate how orbit determination methods 

can be verified by means of independent measurements. 

An analysis of worst-case scenarios, in which the usual 

error sources are maximized, is presented. Additionally, 

the impact of processing the data under near real time 

conditions is illustrated. Despite such adverse conditions 

the orbital accuracy is still shown to be sufficient, for 

example, for radio occultation experiments.  

2 ORBIT DETERMINATION 

There are three main approaches to this problem: the 

kinematic or geometric approach, the dynamical approach 

and the reduced dynamic approach. The kinematic 

approach does not include a dynamical description of the 

spacecraft’s motion except for interpolation between 

solution points, but instead relies purely upon observation 

data. This approach generally assumes the availability of 

highly accurate measurements, a high data sampling rate 

and for GPS techniques at least four simultaneous 

measurements per epoch depending on the requirements 

of the mission. The dynamical approach uses dynamical 

models of the forces acting on a satellite. This approach is 

commonly used because the accuracy is mostly limited by 

the modeling errors in, for example, the atmospheric drag 

model (which decreases with altitude) and the 

geopotential model (whose errors have been reduced in 

recent years by the incorporation of satellite data). 

Finally, the reduced dynamical orbit determination uses a 

process noise model to absorb dynamic model errors by 

optimally weighting observational and dynamical errors. 

2.1 Force Models 

The equations-of-motion of a LEO satellite are usually 

described in an inertial reference frame as being 

composed of a sum of gravitational, non-gravitational and 

empirical or un-modeled forces [1].  The gravitational 

forces are primarily composed of a series of perturbations 

from the following sources: 
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PGeo is the geopotential force due to the gravitational 

attraction of the Earth and can be expressed as a spherical 

harmonic expansion of the gradient of the Earth’s solid 

body mass distribution. PSET is the Solid Earth Tide term 

as the Earth is not a rigid body its mass distribution 

changes due to gravitational perturbations, e.g., the Sun 

and the Moon.  POT is the Ocean Tide term and is due to 

tidal perturbations, which are dominated by the Sun and 

the Moon. PRD is the term due to Rotational Deformation 

caused by a variable centrifugal force, which has it origins 

in the elastic nature, and fluid components, of the Earth. 

The temporal variation of the geopotentials induced from 

solid Earth tides, ocean tides and the rotational 

deformation are also derived from spherical harmonic 

expansions. PSMP is the gravitational perturbation of the 

Sun, Moon and planets, which are usually modeled as 

point masses within the Newtonian framework. The 

planetary ephemerides are readily obtained from the Jet 

Propulsion Laboratory. PRel is the general relativity 

correction to the above Newtonian approximation and 

includes corrections for Schwarzschild motion, effects 

due to precession of perigee, geodesic (or de Sitter) 

precession and Lense-Thirring precession, due to the 

angular momentum of the rotating Earth.  

Non-gravitational forces acting on the LEO satellite are: 

ThermalEarthSolarDragNG PPPPF +++=  

PDrag is the atmospheric drag force acting on a satellite. 

This force depends on the ratio of the satellite’s mass and 

surface area in the direction of motion (the ballistic 

coefficient), and on the density of the atmosphere. This is 

an important quantity to model correctly, particularly for 

satellites in lower orbits. The density of the atmosphere is 

usually obtained from models, which have increased in 

sophistication over the years. Nevertheless, this is a field 

where new and better models are still being developed. 

The combined effect of atmospheric density and ballistic 

coefficient is usually estimated for low Earth orbiters as 

part of the state vector as this is a major error source. 

PSolar is the force exerted by solar radiation pressure and a 

simple model can be constructed [1]. Again, the area to 

mass ratio is a key quantity for solar radiation pressure. 

PEarth is the radiation pressure imparted by the energy flux 

of the Earth and this clearly must take into account the 

shadowing effects of the Earth. PThermal is the force due to 

a net thermal radiation imbalance caused by non-uniform 

temperatures on different satellite surfaces. 

Finally, empirical forces can be introduced to account for 

any un-modeled or incorrectly modeled forces, which 

may still affect the solution. Two sets of empirical 

parameters are customarily introduced. Firstly, empirical 

tangential perturbations cope with un-modeled forces in 

the tangential direction for example by estimating a set of 

piecewise constants, either along the inertial velocity or 

the spacecraft-centered velocity. Secondly, once-per-

revolution perturbations and constant empirical 

accelerations in the radial, transverse and normal 

directions can be computed in the spacecraft frame and 

transformed into geocentric inertial components when 

necessary. The use of such empirical parameters has been 

shown to significantly reduce orbit errors [1]. 

2.2 Observation Models 

While, in principle, any observations of a satellite may be 

suitable for orbit determination (with differing degrees of 

accuracy) the global availability and high accuracy of 

GPS signals to satellites in low Earth orbit makes them 

ideal for the solution of the precise orbit determination 

problem.  There are two types of GPS observations: 

Pseudoranges and carrier phases. Either can be used 

independently in the orbit determination process, but 

carrier phases must be used for high precision 

applications. Combinations of the two observables are 

often employed for orbit determination problems. 

The pseudorange is a measure of the distance between the 

GPS satellite and the LEO’s receiving antenna. The 

pseudorange measurement model may be expressed as: 

εδρδρδρ

δδρρ

++++

⋅+⋅−=

RelIonoTrop

LEOGPSPR tctc
 

The first term ρ is the true geometric range between the 

two satellites. The second term represents the clock error 

on the transmitting GPS satellite, and the third term is the 

clock error on the receiving LEO satellite. Next is the 

troposphere term due to the Earth’s atmosphere and is 

only relevant if a ground station is used. The fifth term is 

the ionosphere path delay and is relevant for satellites 

below about 1000 km, unless an ionosphere-free linear 

combination of data is used, or if a ground station is used 

instead of a LEO satellite. Clearly the troposphere and the 

ionosphere terms are zero for satellites in higher orbits. 

The penultimate term is a correction for relativistic 

effects, while the final term includes all other effects such 

as electronic hardware delays, multipath effects and 

random measurement noise. 

The carrier phase observable is the difference between the 

received GPS carrier phase and the phase of the internal 

LEO receiver oscillator. The carrier phase measurement is 

likewise modeled as follows: 

εφφφ ++−= )()()( 0tNtt
g

lLEOlGPS

gg

l  

The carrier phase contains an initial integer ambiguity N, 

which is an arbitrary counter of the number of whole 

carrier waves between the transmitter and receiver at the 

start of observations (phase lock). This is an important 

quantity because it is unknown. Processing of carrier 

phases makes use of the fact that the received phase was 

emitted at some point in the past, and that the temporal 

variation of the carrier phase relates to changes in the 

topocentric distance in a similar manner to pseudorange 

measurement. Different strategies are used to either 

eliminate the initial ambiguity - as in epoch-by-epoch 

phase differencing - or to estimate the ambiguities as part 

of the least squares solution.  



3 LEAST SQUARES ESTIMATION 

There are two commonly used classes of least squares 

algorithms: firstly, the batch least squares approach where 

all the data for a fixed period is collected and processed 

together; secondly, the Kalman filter which sequentially 

updates the state vector to produce a better estimate at 

each epoch using process noise information. The batch 

least squares approach is commonly employed for off-line 

processing of trajectories from LEO spacecraft as the 

tracking data is typically downloaded once per revolution. 

On the other hand, in applications involving on-board 

navigation of spacecraft in real time, the Kalman filter (in 

various guises) is typically used for the least squares 

estimation algorithm. In recent years the need has 

increased for precise orbit determination for LEO 

spacecraft in near-real time. In this case, either the 

Kalman filter or the batch approach can be used, with the 

majority now choosing to use the Kalman filter approach. 

Alternative methods may also be employed, a good 

example being the square root information filter, which is 

a special solution technique for the Kalman filter and the 

related smoothing problem. Although this is a less 

popular choice it can increase computational accuracy by 

guaranteeing positive definiteness of the covariance 

matrix and decreasing the condition number of the 

manipulated matrices.   

3.1 Batch Least Squares 

Least squares estimation involves finding the trajectory 

and model parameters for which the square of the 

difference between modeled observations and actual 

measurements, i.e. residuals, becomes as small as 

possible. As different measurements have different units 

and reliability, a weighting factor is applied to each 

residual, and it is the square of the weighted residuals, 

which is minimized. In this section we discuss the general 

least squares problem. Note that the formalism is a batch 

least squares when all the data is processed in a single 

step to obtain a better estimate, as opposed to sequential 

least squares which will be discussed under the heading of 

Kalman filters in the next section. 

Following Montenbruck and Gill [2], let x denote an m-

dimensional time-dependent vector comprising the 

satellite’s position r and velocity v along with the free 

parameters p and q which affect the force and 

measurement models. Likewise, let z denote an n-

dimensional vector of measurements taken at each epoch. 
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where the h vector denotes the model values as a function 

of the state vector x0 at the reference epoch and the vector 

ρ denotes the difference between actual and modeled 

observations due to measurement errors. 

The least squares orbit determination problem is then 

defined as finding the state, x0
lsq

, that minimizes the loss 

function for the sum of the square residuals for given 

measurements z. 
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As h is a non-linear function of the unknown vector x0, 

locating the global minimum of the loss function is not 

straight-forward. We may reformulate the orbit 

determination problem as an iterative solution to a linear 

least squares problem. Utilizing approximate orbit 

information for x0
apr

 at each epoch, the residual is 

approximately given by: 
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Jacobian 
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= gives the partial derivatives 

of the observations with respect to the state vector at the 

reference epoch. The linearization error is highly 

dependent on the selection of the reference state vector, 

however during the iterative solution this will converge 

quickly to the best estimated state and thus the error is 

negligible. The loss function is then defined as: 
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The derivative of the loss function is uniquely defined if 

the columns of H are linearly independent, i.e. H is full 

rank. The minimum of the loss function is uniquely 

defined when the partial derivatives of J with respect to 

0x∆  vanish. 
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Computing the partial derivatives and rearranging, we 

obtain the familiar least squares solution: 
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This correction may be adequate if the a-priori state 

vector is very close to the best estimate; if this is not the 

case several iterations may be required. Thus far we have 

treated all observations equally. However, in practice the 

observations will consist of different measurement types 

with different accuracies. This can easily be achieved by 

weighting all observations with the inverse of the mean 

measurement error σi (random and systematic errors) so 

the residuals become: 
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where the subscript i denotes the i
th

 data batch and the 

subscript zero indicates the initial state or epoch. The least 

squares expression remains unchanged except that we 



replace H and ∆z by .ˆ;ˆ zSzSHH ∆=∆=  Here S is a 

square diagonal matrix: 
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which divides the i
th

 row of a matrix or vector by σi upon 

multiplication. The solution of the weighted least squares 

may then be written as: 
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with the weighting matrix 
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This is a widely used formula for least squares problems 

and can handle uncorrelated measurements and correlated 

measurements, in which case W becomes non-diagonal. A 

final improvement on the above formulation is to include 

information on the accuracy of the approximate state, 

x0
apr

, used to start the least squares orbit determination. 

The least squares expression can then be reformulated to 

include a-priori information in the form: 
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The information matrix Λ (or inverse covariance matrix) 

1

0 )( −=Λ apr
P  

is used to penalize any deviations from x0
apr

+∆x0
apr

 by an 

appropriate contribution to the loss function. This feature 

is often used to avoid singularities in least squares 

problems by giving a small a-priori weight to each 

estimation parameter and adding the corresponding 

diagonal matrix Λ to the normal equation matrix. To 

conclude this section we should comment that the above 

represents a conceptual understanding of the least squares 

problem. The numerical solution of the least squares 

problem may be obtained by a number of standard 

mathematical approaches. Common approaches include 

QR factorization, which can be achieved using 

Householder transformations or Givens rotations. 

Alternatively, singular value decomposition may be used 

to analyze the least squares problem and to solve it in a 

numerically stable manner.  

3.2 Kalman Filters 

The Kalman filter is a set of mathematical equations that 

provide an efficient recursive solution to the least squares 

problem and is a common approach to sequential least 

squares. The filter is powerful in that it enables the use of 

dynamical (process) noise models in order to 

accommodate the use of models with known, and to some 

extent unknown, error characteristics. It is therefore of 

particular interest for orbit determination applications 

where the dynamical models are not completely known 

(for example the density of the atmosphere) and where a 

sequential update of the state vector is required. 

Using the solution for the general least squares problem, 

and rewriting in terms of the covariance matrix [2]: 
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with a-posteriori (+ superscript) covariance matrix: 
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11

00
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which represents the increased knowledge of x0 based on 

a-priori (- superscript) covariance information and the 

latest data batch. Rearranging (2) for the inverse 

covariance matrix and substituting into (1) one can relate 

the new estimate of +
0x  to the previous estimate −

0x  

yielding a recursive least squares formulation: 

)( 000

−−+ ∆−∆+∆=∆ xHzKxx  

The Kalman gain, 
1
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maps the residuals into an appropriate correction for the 

estimate −
0x . The Kalman gain can also be used together 

with (2) to update the covariance matrix without inverting 

the normal equations, using: 
−+ −= 00 )1( PKHP  

In order to obtain estimates of the state vector at 

measurements times both the state vector and its 

covariance between observation times are required. The 

state transition matrix between epochs can be defined as: 
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Using this, the state vector and the corresponding a-priori 

state covariance may be predicted at future epochs as: 
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Here Q has been introduced as the covariance matrix of 

the assumed white process noise model. To incorporate 

new observations zi to update the a-priori information hi 

is replaced by gi to model the observations as a function 

of ti instead of t0. The observations in terms of the state 

vector at the measurement time and the Jacobian become: 
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Deviations between the reference state and the estimated 

state must be small to avoid any non-linearities of the 

dynamical system and the measurement modeling. To 

avoid this the extended Kalman filter was developed by 

resetting the reference state, 
ref

ix 1− , to the estimate, 
+
−1ix , at 

the start of each update step. The extended Kalman filter 

thus makes use of the latest estimate to propagate the state 

vector and the state transition matrix, which makes it less 

sensitive to non-linearities than the linearized version. 

The final expressions comprise a time update phase 
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followed by the measurement update phase: 
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Both phases are then repeated cyclically.  The addition of 

process noise gives the filter a fading memory behavior as 

past observations have a gradually decreasing effect on 

the state estimate. Another advantage of including process 

noise is that the covariance can be based on a physical 

model of the satellite and station clock errors. 

Incorporating a clock model with known statistics as 

process noise is expected to improve the orbit 

determination accuracy in future applications.  

4 APPLICATIONS 

There is a wide range of orbit determination tools 

available, some used by space agencies and universities, 

others in commercial products. We shall briefly mention 

three of the software tools, but the reader should bear in 

mind that other high quality tools also exist. The 

European Space Agency (ESA) has traditionally used 

BAHN, which relies mainly on batch processing, 

although there is interest in incorporating a sequential 

filter. In the USA GIPSY/OASIS-II is widely used and 

employs the Kalman filter approach. Finally, we have 

relied on the Bernese tool [3] from the University of Bern 

in our own studies [4][5] for GPS based radio occultation 

missions. This tool uses the batch processing approach 

with optional sequential processing as well as stochastic 

force estimation. Additionally, custom developed 

software by AIUB [6] was used. All the packages are 

written in Fortran - the mainstay of scientific computing. 

4.1 Verification Methods 

To assess the accuracy of a GPS based POD software tool 

it is typical to choose an existing satellite, which has 

independent measurements of its orbit with an accuracy 

comparable to the orbit determination tool. Fortunately 

such data is available based on Satellite Laser Retro-

reflector (SLR) measurements and Doppler based 

receivers (DORIS) for a number of satellites. The selected 

satellite must also have GPS receiving equipment onboard 

which facilitates the orbit determination process described 

in this paper. The TOPEX/Poseidon satellite has been 

chosen for this task as it carries both a GPS receiver and 

SLR/DORIS equipment, thus making it possible to have 

independent orbital comparisons. Since TOPEX/Poseidon 

is located at an altitude of 1335 km, additional analysis 

has to be made to demonstrate the feasibility of orbit 

determination for satellites in lower orbits. Three steps are 

required to accomplish this: 

• The orbit determination tool is validated by 

comparing its results with those from an independent 

tool and based on independent measurements. 

• The orbit for a satellite at lower altitude is simulated 

by use of an orbit integrator providing a reference 

orbit and realistic errors are injected both into the 

dynamical equations and the simulated observations. 

• An orbit determination is performed using this set of 

simulated measurements and standard dynamical 

models. The result is compared to the reference orbit. 

The SLR/DORIS equipment has been used to determine 

the TOPEX/Poseidon orbit to a high degree of accuracy.  

Using the Bernese tool, the comparison with SLR/DORIS 

data shows agreement at ~2-3 cm. Likewise, the 

GIPSY/OASIS tool, which uses the Kalman filtering 

approach, also shows agreement at this level.   

4.2 Data Analysis 

The design of a precise orbit determination tool is 

strongly motivated by accuracy and performance, 

allowing measurements to be processed for near-real time 

applications. Figure 1 gives an overview of a generic 

precise orbit determination process which includes the 

iterative process of integrating the orbit based on models 

and parameters, comparing with observations from the 

pre-processing module and finding better estimates for the 

model parameters using the least squares method. The 

process may be iterated until convergence is achieved.  

 

Figure 1 : POD overall functional flow 

The main observation inputs for this process generally 

include: IGS (International GPS Service) Final or Ultra 

Rapid GPS orbits; IGS weekly ground station solutions; 

ground based 30-second GPS measurements and LEO 

satellite GPS measurements. The measurements generally 

consist of L1 and L2 pseudorange and carrier phase data; 

IGS configuration files containing ground station, 

receiver, antenna and antenna height information. The 

model parameters may include Earth Orientation 

parameters, luni-solar ephemerides, etc. 



An important part of the process is data validation to 

ensure its quality and screening of poor data during a pre-

processing phase. The screening of unusable observations 

often relies on an a-priori orbit, which may be derived 

from code observations or an earlier predicted orbit. The 

preprocessing algorithms provide a transparent layer to 

the observation data as seen from the least squares 

algorithm. They also estimate the initial parameters to be 

used in further processing and detect, remove or correct as 

many of the errors in the observation data as possible. 

The observational model employed in a precise orbit 

determination tool describes the theoretical observables as 

a function of the state variables and time. The model 

depends on the types of data used, which in the current 

context are usually dual frequency pseudorange and 

carrier phase measurements. By appropriate differencing 

between phase measurements and separately 

pseudoranges at different receivers and/or for different 

satellites, it is possible to eliminate the first-order clock 

errors. This can be achieved if two or more receivers 

observe the same GPS satellite. A new observable can 

then be formed. This is known as single differencing but 

double differencing techniques, which form baselines 

from the LEO satellite to different ground stations, are 

also routinely employed [7]. This approach is often used 

to advantage but some effort must be put into selecting 

the appropriate observations for differencing. Another 

approach [6] employs zero-difference code observations 

and their epoch-by-epoch phase differences. Tracking 

data from ground stations is needed only for the 

independent generation of the GPS clock corrections. This 

results in simple and fast algorithms and is of particular 

interest in the context of numerical weather predictions 

where data processing is needed in near-real time. A 

review of precise orbit determination approaches may be 

found in reference [8]. 

Finally, the output data from the least squares algorithm 

depends on the user requirements. Examples include: Best 

orbit fits, using ephemerides to represent the satellite’s 

position and velocity at equidistant time points; Estimated 

model parameters; Statistical analysis; Post-fit residuals, 

which are the difference between observables and the 

observation model using the estimated orbit; Precise orbit 

predictions for future epochs.  

4.3 Worst Case Numerical Studies 

Before building a new satellite for a specific application 

the space agencies concerned typically want to know how 

accurately they can predict the satellites orbit. This may 

have a huge impact on the scientific measurements of 

which the satellite is capable. Indeed, if the orbit accuracy 

is insufficient the satellite may have to be moved to a 

higher orbit or redesigned to reduce the perturbing forces 

acting on it. It is within this context that we have 

conducted a number of feasibility studies for potential 

new spacecraft [4][5]. The objective was not to determine 

the best orbit fit but to investigate the worst case error 

sources and then to combine the individual worst case 

errors in a number of simulations to see if the desired 

accuracy in position and velocity can still be achieved. 

4.4 Error Sources 

In terms of modeling errors, atmospheric drag is usually 

expected to give a large contribution for LEO satellites. 

Both the uncertainty in the way drag affects the satellite 

and the uncertainty in the density of the upper atmosphere 

contributes to the total error. Another large error source is 

solar radiation pressure, which is almost constant but its 

impact on the orbit is not well known due to inappropriate 

modeling of re-radiation from the spacecraft or 

temporally changing radiation parameters. Additionally, 

imprecisely known attitude information may also be a 

source of errors, depending on the shape of the satellite.  

Figure 2 : Satellite position and velocity errors based on a 

tracking network of 57 ground stations with worst case 

errors. 

In these simulations we used the empirical MSIS90 

atmosphere model, which describes factors such as 

temperature and density as a function of day of year, time 

of day, geodetic latitude and longitude, ultraviolet 

radiation linked to solar activity, and geomagnetic index. 

To obtain worst case results we choose large values for 

the geomagnetic index and the radiation pressure 

coefficient. Additionally, an extra error term, constructed 

from a high order polynomial, is added allowing up to 

300% variation in the drag and radiation pressure models. 

The gravitational model employed is EGM96. As it is 

difficult to determine the true errors associated with using 

this model we have included as an extra source the 

difference between using this model and the older and 

less accurate JGM3 model. This is not a realistic error but 



it does represent the model error to some extend. Realistic 

observation noise - based on residual statistics from the 

TOPEX/Poseidon orbit determination - is included for the 

pseudoranges and the carrier phases. Finally, near-real 

time (NRT) errors are also included. These errors arise as 

the orbit determination process is often required within a 

few hours of downloading the data. Final IGS precise 

orbits for the GPS network and estimated tropospheric 

zenith delays are not available in NRT. Thus, one has to 

rely on less accurate ultra-rapid GPS orbits and model 

troposphere parameters. The difference between these two 

data sets has been included as an extra error source.   

 

Table 1 : Summary of impact of individual error sources 

on the satellite radial and velocity errors. A ballistic 

parameter of 80 kg/m
2
 is assumed where applicable. 

Brackets imply the last 20 mins. of the orbit. 

Figure 2 shows the worst case results, which include all 

the error sources mentioned above, while Table 1 shows 

the individual contributions. The results have been 

calculated for a relatively ideal tracking network 

consisting of 57 ground stations. Our studies [4][5], 

which use the epoch-by-epoch phase difference 

algorithms described in reference [6], have shown that the 

orbit determination process is fairly robust if smaller less 

ideal networks are chosen. The simulated orbit geometry 

is polar with an altitude of 833 km and no eccentricity. 

Results are calculated based on 30 s tracking data over a 

300 min. data arc, which we have determined to be the 

optimal data arc length for the investigated errors and 

orbital geometry [4]. Additionally, as the processing error 

typically gets worse at the start and the end of the arc, the 

results from the last 20 minutes and the middle 260 

minutes of the arc are shown. Clearly, the errors at the 

end of the arc are considerably worse. From the graph we 

see the errors increase dramatically for small ballistic 

parameters (mass/area). This is because a light satellite 

with a large surface area is strongly affected by 

atmospheric drag and solar radiation pressure. Such 

graphs are useful for satellite designers as they can place 

limits on the final mass and shape of the satellite for fixed 

altitudes.  Accuracies of less than 1 m in position were 

desirable for the ACE study [4] and this is clearly 

achieved here under worst case conditions. The velocity 

error requirements are less well defined. In our studies 

[4][5], the velocity error drift during an instruments 

measurement interval was the driving requirement. For 

radio occultation measurements this interval is typically 2 

minutes, and the corresponding worst case error was 

found to be ~0.035 mm/s compared to a requirement of 

0.1 mm/s. As these results are worst case the prospect of 

designing such missions is quite feasible. 

5 CONCLUSION 

In this paper we have reviewed the two main methods of 

least squares parameter estimation and their application to 

the precise orbit determination problem. Several other 

methods exist but these two were chosen due to their 

widespread use and due to their different areas of 

applicability. The batch least squares solution is typically 

employed in post-processing while the Kalman filter finds 

its main use in real-time applications. The implementation 

of the Kalman filter is generally faster and more efficient 

in terms of storage capacity. Both the batch least squares 

and the extended Kalman filter approach can give 

equivalent results in terms of precision especially if the 

basic methods are augmented in order to add features 

such as smoothing to the Kalman filter and stochastic 

state parameters to the batch least squares method. Future 

research will thus be focused on developing better force 

models for the orbit integration and determining how they 

can best be incorporated into existing orbit determination 

packages. 
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