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Summary 

 i 

Summary 
 
In Sweden, it is possible to discern a considerable increase in the use of quantitative risk 
analysis (QRA) as part of the foundation for decision making regarding safety-related issues 
in various areas, for instance land use planning, licensing procedures for hazardous activities, 
infrastructure projects, and as an integrated part of environmental impact assessments. The 
QRA methodology has proven to be of substantial use regarding the determination of major 
contributions to risk, and for the evaluation of different decision options, e.g. different design 
alternatives. However, due to a lack of consensus concerning which methods, models and 
inputs should be used in an analysis, and how the, sometimes considerable, uncertainties that 
will inevitably be introduced during the process should be handled, questions arise regarding 
the credibility and usability of the absolute results from QRA. Without a description of and 
discussion on the uncertainties involved in such an analysis, the practical use of the results in 
absolute terms will be severely limited. For instance, comparison of the results with 
established risk targets, or tolerability criteria, something that is becoming increasingly 
common, becomes a fairly arbitrary exercise. The need for standardisation in this area is 
evident. 
 
In this dissertation, the fundamental characteristics of different types of uncertainty 
introduced in QRA, together with different methods of treatment, are presented. Somewhat 
simplified, comprehensive uncertainty analysis can be regarded as having three major 
objectives. Firstly, it is a question of making clear to the decision-maker that we do not know 
everything, but decisions must be based on what we do know. Secondly, the task is to define 
how uncertain we are. Is the uncertainty involved acceptable in meeting the decision-making 
situations we face, or is it necessary to try to reduce the uncertainty in order to be able to 
place enough trust in the information? Consequently, the third step is to try to reduce the 
uncertainty involved to an acceptable level. 
 
At an elementary level, two major groups of uncertainty can be discerned, i.e. aleatory (or 
stochastic) and epistemic (or knowledge-based) uncertainty. The most important distinction 
between these two types of uncertainty, at a practical level, is that the knowledge-based 
uncertainty can be reduced by further study, should a reduction in the overall uncertainty in 
the results from an analysis prove necessary. The aleatory uncertainty, on the other hand, is by 
definition irreducible. Inherent in the QRA process is the need to use expert judgement to 
estimate the values of unknown parameters (knowledge-based uncertainty). A discussion is 
presented on various methods of eliciting information from experts in a structured manner, 
together with a presentation of known pitfalls of such exercises. Knowledge about such 
procedures, and about the problems associated with them, is a key issue in keeping 
knowledge-based uncertainty to a minimum. 
 
The core of the dissertation, however, is a structured survey of methods of propagating and 
analysing parameter uncertainty. The basic features of a number of different approaches and 
methods of uncertainty treatment are presented, followed by a discussion of the arguments for 
and against the different approaches, and on different levels of treatment based on the 
problem under consideration. To further exemplify the different features of the methods 
surveyed, a case study is presented, in which a simplified facility for ammonia storage is 
analysed with respect to the risk it poses to its surroundings. Emphasis is placed on the kind 
of information required for use of the different methods, and on the kind of results they 
produce.  
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It is concluded that methods are available for the explicit treatment of uncertainty in risk 
analysis with sufficient sophistication for most problems, although some types of uncertainty, 
mainly those related to completeness and general quality issues, are inherently problematic to 
quantify. Furthermore it is concluded, regarding future standardisation work in this area, that 
the probabilistic (Bayesian) framework offers the most comprehensive “tool box” for 
uncertainty analysis, and appears to be the most promising approach for dealing with the 
uncertainties in QRA. This is due to its strong theoretical foundations and the possibility of 
quantifying, and analysing, uncertainties originating from fundamentally different sources 
(e.g. aleatory and epistemic uncertainty) separately.  
 
Recommendations for future research and standardisation efforts in the area are given, and the 
main conclusion is that generic guidelines across all sectors of industry are not deemed viable, 
due to the different conditions under which they operate. Instead, differences between various 
industrial sectors, for instance, the chemical process industry and the transportation industry, 
would have to be acknowledged in such work, presumably resulting in separate guidelines. 
Furthermore, possible ways of differentiating the level of uncertainty description and analysis 
required in an analysis, based on, for instance, the complexity of the problem and the nature 
of the hazard source, should be examined within each sector of industry. In this dissertation, a 
discussion is presented on various levels of treatment, which may serve as a basis for further 
debate. This kind of work on standardisation is an absolute necessity for the general use of 
risk tolerability criteria to be meaningful. 
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Sammanfattning (summary in Swedish) 
 
Användandet av kvantitativ riskanalys som en del av beslutsunderlaget vid ärenden som berör 
allmänhetens säkerhet i Sverige ökar märkbart, exempelvis inom fysisk planering, 
tillståndsärenden för farliga verksamheter och i infrastrukturella projekt. Den kvantitativa 
riskanalysmetodiken har visat sig användbar för att bestämma de huvudsakliga riskbidragen 
från en verksamhet, samt för att utvärdera och jämföra olika beslutsalternativ, exempelvis 
olika utformningar av den aktuella anläggningen eller verksamheten, med avseende på risk. 
En generell avsaknad av samsyn angående vilka metoder, modeller och ingångsdata som bör 
användas vid sådana analyser, samt angående hur de (ibland mycket stora) osäkerheter som 
oundvikligen introduceras i riskanalysprocessen skall hanteras, leder emellertid till att den 
praktiska användbarheten av resultaten i form av absoluta riskmått från en kvantitativ 
riskanalys kan ifrågasättas. Utan en beskrivning av, och diskussion kring, dessa osäkerheter 
kommer den reella användbarheten av resultaten att vara mycket begränsad. Exempelvis blir 
jämförelse av sådana absoluta riskmått med på förhand bestämda kriterier för tolerabel risk, 
något som blir alltmer vanligt, en tämligen godtycklig övning. Behovet av någon form av 
standardisering inom området är uppenbart. 
 
I denna avhandling presenteras huvudsakliga kännetecken och egenskaper hos olika typer av 
osäkerhet som uppkommer i en kvantitativ riskanalys, tillsammans med olika metoder för att 
hantera dessa. Något förenklat kan fullständig analys av osäkerheterna sägas ha tre 
huvudsakliga syften. I första hand handlar det om att göra klart för de beslutsfattare, som skall 
använda sig av analysen som beslutsunderlag, att osäkerheten existerar, d.v.s. att det finns 
saker vi inte vet etc., men beslut måste fattas baserat på det material som finns. I andra hand 
blir uppgiften att redogöra för hur osäkra vi är. Är nuvarande grad av osäkerhet acceptabel i 
den aktuella beslutssituationen, eller måste åtgärder vidtas för att minska osäkerheten? 
Följaktligen blir det tredje huvudsyftet och uppgiften att försöka reducera osäkerheten till en 
acceptabel nivå. 
 
På en grundläggande nivå är det möjligt att särskilja två huvudsaklig typer av osäkerhet. 
Dessa är osäkerhet i form av naturlig variation (stokastisk osäkerhet) och osäkerhet som 
härrör sig från avsaknad av kunskap (kunskapsrelaterad osäkerhet, genuin osäkerhet). Den 
viktigaste skillnaden mellan dessa typer av osäkerhet, på det praktiska planet, är att den 
kunskapsrelaterade osäkerheten är möjlig att reducera genom vidare studier, medan den 
stokastiska osäkerheten alltid kommer att finnas där så länge systemet inte ändras. Denna 
skillnad är givetvis viktig i situationer då bedömningen görs att osäkerheten måste minskas 
för att ett beslut skall kunna fattas. I situationer av genuin osäkerhet används ofta 
expertbedömningar för att finna troliga värden på osäkra variabler i en riskanalysmodell. I 
avhandlingen diskuteras även, i viss utsträckning, olika metoder för att på ett strukturerat sätt 
inhämta och strukturera information från experter, tillsammans med en presentation av kända 
svårigheter och fallgropar vid sådana övningar, något som är en förutsättning för att kunna 
minimera kunskapsrelaterad osäkerhet. 
 
Avhandlingens kärna består emellertid av en strukturerad kartläggning av metoder för att 
fortplanta och analysera osäkerheter i de parametrar och variabler som ingår i 
riskanalysmodellen. Ett antal olika metoder och angreppssätt presenteras med avseende på 
deras respektive egenskaper, följt av en diskussion angående argument för och emot de olika 
metoderna. Även olika nivåer av osäkerhetshantering, baserat på problemets karaktär, 
komplexitet mm, diskuteras. En case study, där en förenklad anläggning för lagring av 
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ammoniak analyseras med avseende på risk för omgivningen, presenteras i syfte att ytterligare 
exemplifiera egenskaperna hos de olika metoderna och angreppssätten. Tonvikten ligger här 
på vilken typ av information som krävs för att använda de olika metoderna, samt vilken typ av 
resultat de producerar. 
 
Slutsatsen dras att metoder för explicit osäkerhetshantering som är tillräckligt sofistikerade för 
de flesta problemsituationer existerar, även om vissa typer av osäkerhet, ofta relaterade till 
analysens täckningsgrad och allmänna kvalitetsfrågor, är svåra att kvantifiera. Vad gäller 
framtida standardiseringsarbete inom området, dras slutsatsen att det probabilistiska 
(Bayesianska) angreppssättet erbjuder den mest omfattande ”verktygslådan”, samt förefaller 
vara det mest lovande angreppssättet till hantering av osäkerheter i kvantitativa riskanalyser. 
Detta främst beroende på dess starka teoretiska överbyggnad samt möjligheten att kvantifiera 
och analysera osäkerheter från fundamentalt olika källor (exempelvis stokastisk och 
kunskapsrelaterad osäkerhet) separat i en analys.  
 
Rekommendationer ges angående framtida forskning och nationellt standardiseringsarbete på 
området. De huvudsakliga slutsatserna i detta avseende är att generiska riktlinjer för alla 
industrisektorer inte bedöms gångbart, främst på grund av genuint olika förutsättningar inom 
olika sektorer. I stället måste dessa skillnader accepteras, och sektorsspecifika riktlinjer bör 
tas fram. Vidare bör, inom respektive industrisektor, möjligheten att differentiera kraven på 
explicit osäkerhetshantering i en analys, baserat på exempelvis det analyserade problemets 
komplexitet och riskkällans karakteristik undersökas. I rapporten diskuteras olika nivåer av 
osäkerhetshantering, en diskussion som kan tjäna som underlag för vidare debatt. Denna typ 
av standardiseringsarbete är en absolut nödvändighet för att en generell användning av 
kriterier för tolerabel risk skall bli meningsfull.  
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1. Introduction 

1.1 Background 
 
The role of Quantitative Risk Analysis (QRA) as a foundation for decision making regarding 
hazardous activities and establishments, has gained increased importance during recent 
decades. In Sweden, it is possible to discern an increase of the use of QRA in various 
decision-making situations where safety issues are of major concern, for instance in land use 
planning, licensing procedures for hazardous establishments, infrastructure projects, the 
transportation of hazardous goods, and as part of environmental impact assessments.  
 
In a study by Abrahamsson (to be published during the summer of 2002), where some twenty 
risk analysis reports from the areas mentioned above were studied, one of the major findings 
was the significant diversity regarding approaches, methods, models and general assumptions 
applied in the analyses. This might pose a serious problem in practical decision-making 
situations since analyses based on different methods, models and basic assumptions will be 
difficult to compare. Also, a general lack of transparency of the analyses makes them difficult 
to verify and reproduce for anyone not involved in the work; a definite drawback for e.g. the 
authorities who are to review and evaluate the results of such analyses. In Sweden no standard 
for risk analysis is currently recommended, a situation that contributes to the diversity of 
approaches used, even within specific sectors of industry. The need for work in this area is 
evident. 
 
The problem of acknowledging and treating uncertainty is central for the quality and practical 
usability of quantitative risk analysis. When performing a QRA, a wide range of uncertainties 
will inevitably be introduced during the process. The impact of these uncertainties must 
somehow be addressed if the analysis is to serve as a tool in the decision-making process. In 
Abrahamsson (2000), a study of international standards for risk analysis is presented. One of 
the major conclusions of the study was that all of the standards considered acknowledged the 
importance of explicit and careful treatment of uncertainties while performing quantitative 
risk analysis, even though none of them offered any explicit information on how this should 
be done in practice. A starting point for this dissertation is that any standardisation 
recommendations in this area will have to be explicit regarding the treatment of uncertainty in 
the QRA process. 
 

1.2 Objectives and purpose 
 
The main objective of the work described in this dissertation was to provide background 
material for future standardisation efforts regarding quantitative risk analysis for use in safety-
related decision making in Sweden. Regarding the dissertation itself, the principal objectives 
are twofold: firstly, to clarify the fundamental problems uncertainty poses for risk analysis in 
decision making, and secondly to provide a structured survey of the approaches and methods 
available for dealing with these problems. 
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1.3 Overview of the dissertation 
 
In Chapter 2 the role of quantitative risk analysis in risk management is discussed. Different 
objectives of QRA are described, with emphasis on the use of QRA for risk tolerability 
decisions, since this aspect poses the most intricate problems regarding uncertainty due to the 
use of absolute estimates of risk. To illustrate the main problems introduced by uncertainties 
in quantitative risk analyses, some results from the European benchmark study ASSURANCE 
are briefly introduced and discussed. 
 
In Chapter 3 a discussion on major sources/classes of uncertainty is presented, together with 
an overview of how different types of uncertainties might be introduced in different stages of 
the QRA process. Furthermore, different methods of representing uncertainty regarding 
parameters and variables used in risk modelling are briefly introduced, followed by a concise 
presentation of methods of considering “general quality uncertainty”, and methods of 
incorporating managerial and organisational issues in a QRA. 
 
The main theme of Chapter 4 is the treatment of model uncertainty. An outline of what might 
affect the reliability of model predictions is given, followed by a discussion on the handling of 
model uncertainty in the practical risk analysis situation. 
 
One of the major challenges in quantitative risk analysis is the persistent lack of data, making 
the use of expert judgement to provide estimates of unknown quantities a necessity.  In 
Chapter 5 some widely used approaches to expert elicitation are presented together with a 
discussion on some of the many known pitfalls of such exercises. The chapter is concluded 
with a brief presentation of three different approaches for the aggregation of expert opinions. 
 
Chapter 6 contains a brief introduction to how different kinds of experience (accident) 
databases might be of use in different stages of the QRA process. In addition, some basic 
requirements on databases to be used in risk analysis are given. 
 
While searching the literature in this area I have come to realise that there is an abundant 
variety of methods available for parameter uncertainty analysis. In Chapter 7 a comprehensive 
presentation of various methods is given, focusing on the kind of information necessary for 
the use of the different methods, and the kind of results they produce. Furthermore, arguments 
for and against the different approaches are presented, together with a discussion on different 
levels of treatment of uncertainty based on the problem under consideration.  
 
One of the major objectives of performing a complete parameter uncertainty analysis is that it 
enables the analyst to rank the parameters with respect to their contributions to the overall 
uncertainty in the model prediction. In Chapter 8, a fairly thorough presentation of different 
methods of ranking the uncertain parameters in a model is given. 
 
Chapter 9 presents a theoretical case study, where the different methods for uncertainty 
analysis are used in a simplified case. This is followed by conclusions and recommendations 
for future research and standardisation efforts in Chapter 10. 
 
 



Quantitative risk analysis in risk management 

 3 

2. Quantitative risk analysis in risk management 
 
Quantitative risk analysis is, in many situations, considered a helpful tool for understanding 
and managing risk in technological systems, for instance in the chemical process industry. In 
this section, a general discussion of the practical use of QRA as one decision-making aid in 
risk management is presented1. 
 
At a fundamental level, QRA can be described as a structured process for identifying and 
analysing the most important contributions to the overall risk that an establishment or activity 
poses to people, the environment or some other vulnerable part of society. In Figure 2.1 the 
basic steps of a QRA and a simplified relationship between risk analysis, risk assessment and 
risk management is presented (as these terms will be used within this dissertation). 
  
 

 
 
Figure 2.1. Simplified relationship between risk analysis, risk assessment and risk management.  
Adapted from IEC (1995). 
 
The procedure for performing a QRA, and the impact various types of uncertainty will have 
on the different steps in that procedure, will be discussed further in the subsequent chapters of 
this dissertation. Before this, however, I would like to highlight some diverse approaches to 
the use of the results from a QRA, and in what way the existence of uncertainties will affect 

                                                 
1 For an interesting discussion on the role of science in the overall management of technological risk, see Stirling 
et al. (1999). 
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the credibility and usefulness of these results. This discussion is related to the “Risk 
evaluation” box in Figure 2.1.  
 

2.1 QRA to determine major contributions to risk 
 
A key merit of QRA is that the procedure provides a structured way to determine the major 
contributions to the overall risk, which will obviously prove useful in the risk management 
situation where decisions are to be made regarding efforts to reduce the risk. Knowing the 
major contributions to the overall risk is really a prerequisite for being able to direct efforts 
towards managing and reducing the risk to those areas where they will have the greatest 
impact, thus facilitating cost effectiveness in risk management (Hendershot, 1995).  
 

2.2 QRA for evaluating options / comparative studies 
 
It has been stated that QRA is most useful when used to evaluate the impact of design 
alternatives on facility risk (comparing the risk of one design option with one or more 
alternatives) (Hendershot, 1995). Although this particular statement referred to QRA 
performed in a chemical process industry context, the merits of QRA for comparative studies 
and for evaluating competing options are valid in a more general sense, for instance in land 
use planning with a variety of hazard sources. As stated in CCPS (2000, p. 450): “The use of 
risk estimates in a relative sense is often much less sensitive to error. /…/ Because the same 
methodologies and assumptions are used to the extent possible to evaluate the various 
alternatives under consideration, the resulting risk estimates are subject to similar 
uncertainties. Thus, the relative ranking of the various alternatives may be less affected by 
uncertainty than the absolute value of the risk measure”. A condition for this statement is that 
the alternatives really are highly comparable, e.g. a comparison of two alternative locations of 
a new road through the outskirts of a city. In situations where the alternatives are not entirely 
comparable, e.g. comparison of the risks associated with the transport of dangerous goods 
from point A to point B via railroad and road transport, one would have to be more careful 
regarding the impact of uncertainties since the methods of arriving at an estimate of the risks 
involved might be quite different for the two transportation alternatives. 
 

2.3 QRA for risk tolerability decisions 
 
Due to the fact that a QRA will produce a quantitative estimate of the risks generated by an 
activity or establishment, it is inevitable that questions will be raised as to whether this level 
of risk is to be considered tolerable. As a consequence of this, several companies, 
organisations, authorities and even countries have issued their own “target risks” or criteria 
for what may be considered tolerable levels of risk. Issues regarding the suitability of such 
tolerability criteria, and the problems related to establishing them, will not be discussed at 
length here. However, since they inherently focus on absolute risk levels, the impact of 
uncertainties will play a major role in the usefulness of such criteria. For a survey of existing 
criteria and a structured discussion regarding the basic features of such criteria and underlying 
principles see, for instance, Davidsson et al. (1997). 
 
In Sweden, no such criteria for the tolerability of risk have been issued at the national level. 
However, local authorities are beginning to use their own, for instance, in planning situations, 
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and there is a general trend where a growing group of actors in the decision-making process, 
e.g. in land use planning, are advocating such an approach. This development is not 
unproblematic, however. Depending on how one makes use of such criteria2, this could lead 
to problems since there is still a great deal of confusion in the Swedish risk analysis 
community regarding methods, models and data to be used in a QRA. No standard for risk 
analysis is currently available in Sweden. 
 
2.3.1 What is the problem? The ASSURANCE benchmark study 
 
Several studies have been undertaken during the past decade regarding the impact of 
uncertainty on the results of quantitative risk analyses. In a benchmark exercise on major 
hazard analysis for a chemical plant, managed by the Joint Research Centre (JRC) during 
1988-1990, 11 teams from different European countries performed an analysis for a reference 
object, an ammonia storage facility (Amendola et al., 1992). The objectives of the study were 
to evaluate the state of the art and to obtain estimates of the degree of uncertainty in risk 
studies. The results of this study showed great variability in risk estimations between the 
different analysis teams.  
 
A follow-up benchmark exercise, ASSURANCE (ASSessment of Uncertainties in Risk 
ANalysis of Chemical Establishments), which was completed in late 2001, where seven teams 
from different European countries performed a risk analysis on an ammonia storage facility, 
showed a similar considerable spread in both the frequency and the consequence assessment, 
suggesting that consensus on methodologies, models and basic assumptions has not been 
reached. In this section, some of the results from the ASSURANCE study will be presented to 
exemplify the problems encountered in decision making based on absolute risk measures. 
 
An important part of the study was to ask the seven teams to perform an analysis of 11 
“reference scenarios”, which were selected partly in order to cover different release and 
dispersion conditions. The scenarios chosen for the analysis were: 
 

1. Major ammonia leak from an 8´´ feeding pipe (a long pipeline connected to a pump, 
containing pressurised ammonia) 

2. Breakage of a 4´´ pipe (connecting the cryogenic with the pressurised storage area) 
3. Rupture or disconnection between ammonia transport ship and unloading arm 

(refrigerated ammonia) 
4. Rupture of a 10´´ pipe (discharge line, tank to ship; refrigerated ammonia) 
5. Rupture of a ship tank (release of refrigerated ammonia on the sea surface) 
6. Catastrophic rupture of a cryogenic tank 
7. Rupture of a 20´´ pipe connected to the cryogenic tank (refrigerated ammonia) 
8. Catastrophic rupture of one of the ten pressurised tanks 
9. Rupture of a 4´´ pipe on the distribution line (pressurised ammonia) 
10. Rupture or disconnection between truck and unloading arm (pressurised ammonia) 
11. Catastrophic rupture of a truck tank 

 
For these 11 reference scenarios, both frequency and consequence calculations were 
performed. The spread in the results is shown in Table 2.1 and Figure 2.2. 
 

                                                 
2 In a context where target risks, or tolerability criteria, are used in a “clear cut” manner (i.e. either you pass or 
you fail), problems arise due to lack of consensus regarding methods, models and which data to use in the QRA. 
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Table 2.1. Frequencies of the top events of the common scenarios assessed by the partners (events/year). From 
Lauridsen et al. (2001b). 

 
 
Table 2.1 shows that the range of deviation for several of the reference scenarios covers 
several orders of magnitude; a spread in the results that will obviously be transferred to the 
final risk estimates (partner 6 did not provide estimates of frequencies). For more information 
on the principal methods of frequency calculation used by the different partners, see 
Lauridsen et al. (2001b). 
 

 
Figure 2.2. Variation in the results for the consequence assessment of the reference scenarios. Minimum, 
maximum and average values for a concentration endpoint of 6200 ppm (LC50). From Lauridsen et al. (2001b). 
 
In Figure 2.2 the variation in the results for the consequence assessment of the reference 
scenarios is shown. Minimum, maximum and average values for a concentration endpoint of 
6200 ppm (LC50) are displayed and, as with the frequency estimates presented above, the 
spread is significant. 
 
In Figure 2.3 a comparison of the results (societal risk in the form of F-N curves) from the 
complete analysis is displayed. These results are based on the scenarios identified and judged 
suitable to be included in the analysis by the different partners. Once again, considerable 
spread in the results is evident. For instance, the frequency of events leading to 100 or more 
fatalities ranges over two orders of magnitude between the different partners’ assessments.   
 



Quantitative risk analysis in risk management 

 7 

 
Figure 2.3. Discrepancy in societal risk calculations (based on fictitious population data). From Lauridsen et al. 
(2001a). 
  
It is not hard to see the practical implications these results will have on the applicability of 
absolute risk measures in tolerability judgement situations. The level of risk could be judged 
to be tolerable or totally unacceptable depending on which assessment you choose to put your 
trust in. For results like these to be of practical use in real-life decision-making situations 
some discussion and estimation of the uncertainties involved is essential. 
 
It should be pointed out, however, that the main objective of this second benchmark exercise 
was not to (once again) prove that these differences exist, but to focus on the underlying 
causes of the differences in the different stages of the QRA process that led to the final risk 
estimation. For a comprehensive discussion on the results of this project see, for instance, 
Lauridsen et al. (2001a, b).  
 
The same kinds of problems have also been recognized in other areas, for instance in road 
safety and the transportation of dangerous goods. Saccomanno et al. (1991) showed that 
differences in estimates of accident rates, fault and release probabilities and hazard areas 
could result in variations in risk estimates of several orders of magnitude. 
 
The above examples highlight, to some extent, the problems associated with the calculation of 
absolute risk measures, and above all the difficulties these might introduce in situations where 
absolute estimates of risk are to be used in a decision-making situation, e.g. in land use 
planning or licensing procedures for hazardous activities. 
 
2.3.2 Possible ways of handling problems associated with absolute measures of risk 
 
Is it possible for QRA results, in the form of absolute risk measures, to be truly useful in real-
life decision-making situations? For such results to be valuable they would have to be 
comparable between analyses of different establishments and activities, transparent and 
reproducible. In a study by Abrahamsson (2000), where various standards/guidelines for risk 
analysis and policy documents regarding risk analysis were studied, two conceptually 
different approaches were discerned. At one extreme the Dutch approach, as described by the 
Committee for the Prevention of Disasters (1999), prescribes the starting points, models and 
default values for several parameters to be used in the analysis. To some extent, this means 
that the regulatory body accepts responsibility for any uncertainty involved in an assessment 
and the impact this might have on the regulatory decision. Obviously, this approach has 
considerable advantages regarding consistency in risk-related decision making, since 
assessments using the same models and variable values will be comparable. Perhaps this level 
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of standardisation of the risk analysis process is required for the explicit use of target risks or 
tolerability criteria to make sense. On the other hand, it is my firm belief that this approach 
might have negative effects on scientific progress regarding the development of new models 
for use in risk assessment, as well as a risk assessor’s motivation for finding situation-specific 
data to use in his/her analysis. It should be mentioned however, that the Dutch guideline 
encourages the development of situation-specific models and the use of site-specific data, as 
long as the deviations from the prescribed models and data are explicitly explained and 
justified for the authorities concerned. As stated before, it seems to me that the objective of 
this guideline is to make it possible to make consistent decisions, and not to try to be explicit 
about uncertainty in the analyses. 
 
At the other extreme, the American Environmental Protection Agency (EPA) policy for the 
use of probabilistic analysis in risk assessment (U.S. EPA, 1997) advocates a somewhat 
different approach. It focuses more on providing conditions to be met in an assessment to 
ensure high-quality science, regarding transparency, reproducibility, and the use of sound 
methods. It also recognizes the fact that there are situations where a fully probabilistic 
approach is not called for, and it provides guidance on how to decide whether to perform a 
QRA or not. The strength of this approach, from a scientific point of view, is that it does not 
dictate any specific method or methods, but highlights the importance of transparency and of 
being explicit about the methods and input used in an assessment. From a decision-maker’s 
point of view, however, this approach is more demanding than, for instance, the Dutch 
approach, since clear-cut target risks will be difficult to apply and one will have to turn to 
other “softer” means of evaluating the results from a QRA. 
 
For an approach like the one adopted by the EPA to be successful it is vital to define methods 
for characterizing, quantitatively, the variability and uncertainty of a risk estimate, to identify 
the main sources of variability and uncertainty, and their relative contributions to the overall 
uncertainty in the results. This task is one of the major objectives of the present work. 
 

2.4 Why be explicit about uncertainties? 
 
It should be clear from the above discussion that uncertainties are ever present in the QRA 
process and will by definition affect the practical usefulness of the results. In Chapter 3, the 
different parts of the QRA process will be further examined, and various kinds of 
uncertainties introduced at different stages of that process will be described and discussed. 
Before that, however, I would like to present my simplified view on the primary objectives for 
being explicit about uncertainties.  
 
“One could regard uncertainty analysis as having three fundamental purposes. Firstly, it is a 
question of making clear to the decision maker that we do not know everything, but decisions 
has to be based on what we have. Secondly, the task is to try to define how uncertain we are. 
Is the uncertainty involved acceptable in meeting the decision-making situations we face, or is 
it necessary to try to reduce the uncertainty in order to be able to place enough trust in the 
information? Consequently, the third step is to try to reduce the uncertainty involved to an 
acceptable level.” (Abrahamsson, 2000). 
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3. Introducing uncertainties in the QRA process 

3.1 Sources / classes of uncertainty 
 
To help understand the concept of uncertainty, and to be able to treat uncertainties in a 
structured manner, many attempts have been made to characterise classes of uncertainty and 
the underlying sources of uncertainty. In this section a brief summary of classes/sources of 
uncertainty found in literature is presented. 
 
In Parry (1998) the perhaps most traditional definition of classes of uncertainty is presented. 
The three major groups of uncertainty, according to this definition, are: 
 

•  parameter uncertainty  
•  model uncertainty  
•  completeness uncertainty 

 
Parameter uncertainty, which is introduced when the values of the parameters used in the 
models are not accurately known, is often dealt with by assigning probability distributions or 
some other kind of distribution to the parameters, representing the analyst’s knowledge about 
them. Parameters used in a model may also be subject to natural variability, which may be 
dealt with the same way. (More on the distinction between knowledge-based uncertainty and 
variability can be found in Section 3.1.1.) An array of methods for representing and 
propagating parameter uncertainty in risk analysis models is presented in Chapter 7. 
 
Model uncertainty arises from the fact that any model, conceptual or mathematical, will 
inevitably be a simplification of the reality it is designed to represent (for an explicit 
discussion on model uncertainty, see Chapter 4), whereas completeness uncertainty originates 
from the fact that not all contributions to risk are addressed in QRA models. For example, it 
will not be feasible to cover all possible initiating events in a QRA.  
 
Knowing the sources of uncertainty involved in the analysis plays an important role in the 
overall handling of uncertainty. First of all, different kinds of uncertainty call for different 
methods of treatment. Another aspect is the possibility of reducing uncertainty. If one knows 
why there are uncertainties and what kinds of uncertainty are involved, one has a better 
chance of finding the right methods for reducing them. 
 
3.1.1 Epistemic vs. aleatory uncertainty 
 
At an even more fundamental level, two major groups of uncertainty are recognised in most 
of the literature. On the one hand there is the aleatory, or stochastic, uncertainty and on the 
other the epistemic, or knowledge-based uncertainty. This section provides a brief discussion 
on the differences and practical meaning of these two types of uncertainty. 
 
The question arises: can uncertainty just be considered as uncertainty regardless of its origin? 
Is there really a need to identify and separate various kinds of uncertainty? The answers to 
these questions are yes and no, respectively. As stated by Winkler (1996): ”At a fundamental 
level, uncertainty is uncertainty, yet the distinctions are related to very important practical 
aspects of modelling and obtaining information. Such aspects include decomposition in model 
building, bounding models, identification and incorporation of different types of information, 
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probability assessment, value of information, and sensitivity analysis.” There is no 
fundamental reason for distinguishing between different types of uncertainty, but it may well 
be appropriate in many practical applications. 
 
The most widespread tool (but not the only tool, as will be discussed further in Chapter 7,) for 
quantifying uncertainties is the mathematical concept of probability. Unfortunately, the 
concept of probability has no unequivocal definition. The two main schools of thought in this 
field are the frequentist and the Bayesian. According to Paté-Cornell (1996) the frequentist 
school (including classical statisticians), defines probability as a limiting frequency, which 
applies only if one can identify a sample of independent, identically distributed observations 
of the phenomenon of interest. The Bayesian school, on the other hand, regards the concept of 
probability as a degree of belief. This means that not only statistical data and physical models 
will serve as information, but also expert opinions which will, by nature, be subjective. The 
Bayesian framework also provides methods of updating probabilities when new data are 
introduced.  
 
The type of uncertainty here referred to as aleatory, has been given many different names in 
the literature, e.g. variability, randomness, stochastic or irreducible uncertainty. Significant 
for aleatory uncertainty is that it represents randomness in nature and that it is only in the 
domain of this type of uncertainty that the frequentist definition of probability is valid.  
 

 
 
Figure 3.1. Aleatory or stochastic uncertainty represents randomness in nature, e.g. wind speed. 
 
As with the aleatory uncertainty described above, epistemic uncertainty has many aliases, e.g. 
ambiguity, ignorance, knowledge-based, reducible or subjective uncertainty. In essence, 
epistemic uncertainty represents a lack of knowledge about fundamental phenomena. It is 
when dealing with this kind of uncertainty that one often has to rely on experts and their 
subjective judgement. Different techniques for eliciting information from subjective opinions 
given by experts, together with a discussion of some possible pitfalls, are more thoroughly 
discussed in Chapter 5. 
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Figure 3.2. Epistemic or knowledge-based uncertainty represents a 
lack of knowledge about fundamental phenomena. 
 
Hofer (1996) illustrates the concept of different kinds of uncertainties by an example: 
“Suppose there are two dice on the table. One, call it A, is being cast continuously. The other, 
call it B, is covered, left untouched and it is uncertain which side is up. At any instance the 
number shown by B and the number that will be shown by A are uncertain, and so is their 
sum. For simplicity, denote these uncertain quantities by A, B and A + B. The mathematical 
concept of probability is used to quantify uncertainty. There is the classical frequentist 
(probability as the limit of relative frequency) and the subjective (probability as a measure of 
degree of belief) interpretation of probability. With both interpretations the wealth of well-
established concepts and tools of probability calculus and statistics are at one’s disposal. 
Sample evidence can be used to update degrees of belief for parameters that govern 
probabilities in the frequentist interpretation. In this sense the subjectivist interpretation is an 
extension of the latter. Both interpretations have their place in the example. The uncertainty of 
A is quantified using the frequentist interpretation where one simply speaks of ‘probability’ 
while the subjectivist interpretation, where one speaks of ‘subjective probability’ is used for 
B. Since B is constant, i.e. has only one true value, limits of relative frequencies don’t make 
sense. Rather, degrees of belief are held for either of the six numbers on the dice to be up. 
They quantify the state of knowledge for B.” 
 
The most obvious distinction of practical importance between the types of uncertainty is the 
fact only knowledge-based uncertainty can be reduced, e.g. by gathering more information. 
The stochastic uncertainty is, by definition, irreducible. Another important difference is that 
the stochastic uncertainty (random variation) partially cancels itself out in a risk analysis, but 
knowledge-based uncertainty does not. Different methods are available for representing and 
propagating these two types of uncertainty, either together or separately, see Chapter 7.  
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3.2 Uncertainties introduced at the different stages of QRA 
 
In this section a brief discussion is presented on the different ways in which uncertainties may 
be introduced during the different stages of quantitative risk analysis.  
 
 

 

Identify hazards / define 
potential accident scenarios 

 

Evaluate the event 
consequences/effects 

Estimate the potential 
accident frequencies 

 
Estimate the risk 

Risk 
Analysis 

Define scope and 
objectives 

 
 
Figure 3.3. The different stages of quantitative risk analysis. 
 
3.2.1 The identification stage 
 
The identification stage includes system description as well as the actual identification of 
possible initiating events and scenarios. In this stage of an analysis the main objective is to 
produce a comprehensive list of possible initiating events, and possibly also to identify 
priorities between them and make decisions on which of them are to be analysed further.  
 
The dominant question regarding uncertainty at this stage will be that of completeness. Have 
all major hazards and/or possible accident scenarios been identified? Have any important 
cases been omitted when selecting hazards for further analysis? In many areas where QRA is 
used, well-established methods for structured identification are used in order to facilitate 
completeness, e.g. HAZard and OPerability (HAZOP) procedures, what-if analysis and 
Failure Mode and Effects Analysis (FMEA). During this stage of an analysis accident and 
failure databases are also useful (these are discussed in Chapter 6). 
 
As stated before, this type of uncertainty, related to completeness of the analysis, is often very 
difficult to quantify. However, one attempt to address this kind of completeness (general 
quality) uncertainty in a quantitative manner is briefly introduced in Section 3.4. 
 
3.2.2 Frequency estimation 
 
In this section, the main approaches and techniques used to estimate or calculate incident 
frequencies and subsequent consequence probabilities will be briefly introduced, together 
with a discussion on different uncertainties associated with this phase of the QRA. In Figure 
3.4, the two main methods of likelihood and frequency estimation are shown. 
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Figure 3.4. The two major approaches to estimating likelihood and frequency (adapted from CCPS, 2000). 
 
Historical record 
 
The approach of using historical records and incident frequencies is widely used, partly due to 
the relative simplicity of the method. In its simplest form, one can obtain an estimate of the 
frequency of an event using the recorded number of incidents and dividing that number by the 
exposure period (e.g. years of operation). For a comprehensive description of the general 
technique, see CCPS (2000). Apart from relative simplicity, one major benefit of this 
approach is that (provided that some fundamental criteria, such as sufficient number of 
records and applicability of the data to the process in question, etc, are met) the frequency 
estimate will include most relevant circumstances leading to the event. Such circumstances 
include failure modes that are inherently difficult to analyse, such as human errors and 
common cause failures3. 
 
The obvious problems related to such an approach originate from questions of accuracy and 
applicability. Historical data may be inaccurate, incomplete or inappropriate. For instance, it 
is seldom the case that an adequate amount of data has been collected from the activity one is 
about to analyse, making the use of data from related activities necessary. Caution should 
always be used when applying this kind of generic data to one specific establishment, since 
local conditions may deviate considerably from those at which the generic data were gathered. 
Another drawback of this approach is that direct and uncritical use of historical data may fail 
to recognise changes in the system, e.g. activity upscaling.  
 
Fault and event tree analysis 
 
Both fault and event tree analysis techniques have been used extensively in various fields 
where QRA is routinely performed. Expressed simply, fault tree analysis is used to derive the 
frequency of a hazardous incident, using a logical model consisting of basic system 
components, safety systems and human reliability, while event tree analysis essentially 
constitutes a model that identifies and quantifies possible outcomes following an initiating 
event. For a detailed description of the techniques, see for instance CCPS (2000). 
 
Some problems associated with fault tree and event tree techniques, related to questions of 
completeness and simplification, as well as uncertainty regarding parameters in the model 
have been identified. For instance, much effort must be devoted to developing a well-
structured fault tree, and the omission of significant failure mechanisms can lead to erroneous 
results. Additionally, many of the parameters in the models must be determined using 
historical data, expert judgement or a combination, making them to some extent vulnerable to 
the same problems as the historical record approach described above. A more detailed 
                                                 
3 Common cause failures, i.e. failure of several parallel safety systems resulting from a single cause of failure, 
see for instance CCPS (2000) pp. 331-332. 
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discussion of the methods used and pitfalls encountered when using expert judgement in risk 
analysis is presented in Chapter 5. 
 
3.2.3 Consequence estimation 
 
The consequence estimation part of the analysis consists of several interacting parts. Physical 
models are used to estimate, for instance, concentrations of dispersed hazardous substances 
(at various locations around the source), shock wave overpressure from explosions, and the 
radiant flux from pool fires, jet fires, etc. Various effect models are used to predict the effect 
that the different outcome cases generated using the physical models mentioned above have 
on the object of the study, e.g. death or injury to human beings, effects on physical property 
such as damage to structures etc. Not surprisingly, all these exercises are, to some extent, 
afflicted with uncertainties, both stochastic and epistemic. Some general examples are given 
below. 
 
The actual physical modelling is a process in which mathematical models are used to 
represent reality, e.g. real physical processes, for example vapour dispersion. Obviously, any 
mathematical model of such a complex physical process can only be an approximation of that 
process, often with severe limitations on applicability. This kind of (knowledge-based) 
uncertainty is often difficult to quantify, although attempts have been made to establish 
uncertainty bounds on model estimates using a semi-quantitative approach (COWI, 1996a-d). 
This approach, together with a more thorough discussion on model uncertainty and means of 
reducing it, e.g. model validation exercises, will be further examined in Chapter 4.  
 
When modelling the effects on humans of exposure to toxic substances etc., the prevailing 
approach is to use results from dose-response tests performed on laboratory animals, by 
extrapolating these data to humans. “Most toxicological considerations are based on the dose-
response function. A fixed dose is administered to a group of test organisms and, depending 
on the outcome, the dose is either increased until a noticeable effect is obtained, or decreased 
until no effect is obtained,” (CCPS 2000). It is not difficult to realise that such an approach 
will be associated with substantial uncertainties, both in the extrapolation from animal data to 
humans (knowledge-based uncertainty), and the fact that in any population exposed to the 
same dose of a substance there will be a significant spread in response (stochastic 
uncertainty). In addition, in order to make calculations less cumbersome, it is customary to 
use so-called probit4 functions to convert the dose response curve into a straight line, 
introducing yet another kind of model uncertainty.  
 
Both in the modelling of physical phenomena, such as vapour dispersion, and in the 
modelling of effects, the parameter values used in the models will be subject to both natural 
variability (e.g. wind speed) and epistemic uncertainty (e.g. constants for use in probit 
relationships differ from one study to another). 
 

                                                 
4 “For single exposures, the probit (probability unit) method provides a transformation method to convert the 
dose-response curve into a straight line.” (CCPS, 2000). 
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3.2.4 Estimation of risk 
 
The final step in the quantitative risk analysis process is to generate the actual risk measure. 
This is usually done by combining the probability of a certain outcome with the consequence 
of that particular outcome, then aggregating the information from all the outcomes identified. 
Numerous risk measures have been suggested in the literature, but here only two main groups 
of measures will be briefly introduced, i.e. individual risk measures and societal risk 
measures. For an exhaustive survey of various quantitative risk measures, see for instance, 
CCPS (2000). 
 
The term individual risk refers to the risk to which a person present at a specific location in 
the vicinity of a hazard is exposed. Individual risk is often expressed as the probability of 
fatality at that location per year. Several definitions of individual risk measures are in use, the 
most common being individual risk contours, which show the geographical distribution of 
individual risk, see Figure 3.5. For a comprehensive description of the methods used for 
calculating individual risk, together with a survey of definitions of individual risk measures, 
see CCPS (2000). 
 

 
 
Figure 3.5. Example of an individual risk contour plot. Note: the contours connect 
 points of equal individual risk of fatality, per year, (from CCPS, 2000). 
 
Societal risk is a measure of the risk to a group of people, and is often used to complement 
individual risk measures in order to account for the fact that major incidents often have the 
potential to affect many people. The most common form of presentation of societal risk is the 
FN-curve, which is the frequency distribution of multiple casualty events identified at the 
object under study, see Figure 3.6. 
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Figure 3.6. Example of an F-N curve used to present societal risk. (Frequency of 
 incidents resulting in N or more fatalities per year, from CCPS, 2000.) 
 
In order to be able to calculate the societal risk, the same information regarding frequencies 
and consequences of events as for the individual risk is needed. In addition, the calculation of 
societal risk requires a definition of the population at risk in the vicinity of the establishment. 
For a comprehensive description of the methods used for calculating societal risk, see CCPS 
(2000). 
 
The uncertainties introduced during this stage of the QRA process are principally related to 
assumptions and simplifications made in order to decrease the complexity of the analysis, i.e. 
the computational burden. Various symmetry assumptions regarding, for instance, equally 
probable wind directions, distribution of ignition sources and population distribution, together 
with assumptions on a single or a few wind and stability conditions, raise questions regarding 
the completeness of the analysis.  
 

3.3 Methods of representing uncertainty 
 
In this section a brief introduction is given to different ways of representing uncertainty 
regarding variables and parameters used in risk modelling. 
 
3.3.1 The probabilistic approach 
 
The, by far, most common approach used to represent uncertainty regarding a quantity, either 
stochastic or epistemic, is to use probabilistic distributions. As mentioned earlier in this 
chapter, there are two fundamental interpretations of the concept of probability, the 
frequentist and the Bayesian, where the frequentist school defines probability as a limiting 
frequency and the Bayesian school of thought defines probability as a degree of belief. Due to 
the high degree of epistemic, or knowledge-based, uncertainty involved in the QRA process 
the frequentist interpretation of probability, which is valid only if it is possible to identify a 
sample of independent, identically distributed observations of the phenomenon of interest,  
does not work in all situations making a Bayesian approach necessary. 
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Within a Bayesian framework probability distributions for unknown or varying quantities can 
be constructed using both “hard” data and subjective judgement. The resulting probability 
distribution is a representation of the assessor’s degree of belief regarding the probability of 
the assessed quantity to take a certain value, see Figure 3.7. A description of methods of 
eliciting information regarding unknown quantities from experts and transforming into 
probability distributions is given in Chapter 5. 

CDF for A

0

1

0 5 10
a

P(
A

 ≤
 a

)

 
Figure 3.7. Probability distributions are often used to represent uncertainty regarding a quantity. The quantity A 
is assumed to be normally distributed with mean = 5 and standard deviation = 1. Here, the distribution for A is 
presented as the Cumulative Distribution Function (cdf). 
 
3.3.2 Interval representation 
 
The interval representation of uncertainty is useful in situations where we are absolutely sure 
about the bounds of a quantity, but we know little or nothing else. Here is a simple example5. 
A golfer makes two birdies over the first three holes. How many birdies will he make in total 
over the whole round of 18 holes? Unless we have no other information about the situation 
than that given above, a reasonable way of expressing our uncertainty about the situation 
without having to make any (unjustified) assumptions would be to give our answer in the 
form of an interval between 2 and 17 (the total range of possible birdies over the 18 holes). 
 
Interval analysis can be used to estimate the possible bounds on model outputs using bounds 
(i.e. intervals) to represent uncertainty about model inputs and parameters.  
 
3.3.3 The probability bounds approach 
 
The uncertainty in a scalar number may be described as an interval as stated above. In the 
same way, a pair of probability bounds may be used to circumscribe the uncertainty regarding 
a probability distribution (Ferson et al., 1996, 1998, 1999). Probability bounds may be 
constructed from parametric probability distributions where the parameters are uncertain, as 
shown in Figure 3.8, where parameter X is a log-normal distribution with the mean µ = [2.5,3] 
and standard deviation σ = [0.8,1]. It is also possible to construct probability bounds in a 

                                                 
5 Example given by J. Arlin Cooper, Sandia National Labs (USA), at the workshop “Beyond Point Estimates – 
Risk Assessment Using Interval, Fuzzy and Probabilistic Arithmetic”, organised by the Society for Risk 
Analysis, 5 December 1999. 
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distribution-free context where the particular shape of the distribution cannot be specified. In 
these cases bounds on the possible distributions that are consistent with the empirical 
information are generated. For example, the only information available on parameter Y is its 
min = 2, max = 3 and mean = 2.4. Nothing is known about the shape of the distribution. In 
Figure 3.8, the bounds on all possible distributions given this information are shown for 
parameter Y. Probability bounds have been derived for various sets of information regarding 
the uncertain variable. Examples of such sets of information are sample data, knowledge 
about the mean and variance, knowledge about the minimum, maximum and mode etc. 
(Ferson et al. 1999). 
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Figure 3.8. Examples of probability bounds representing uncertainties in unknown quantities X and Y. 
 
See Section 7.5 for examples of arithmetic operations on probability bounds. For a 
mathematical background on how to generate the probability bounds, see Ferson et al. (1996, 
1999). 
 
3.3.4 Fuzzy representation 
 
The theory of fuzzy sets was introduced by Zadeh (1965), with the original objective of 
providing a mean of modelling the uncertainty (or vagueness) of natural language. Within this 
framework, notions like “densely populated” and “relatively strong winds” can be formalised 
using so-called membership functions. The main idea is easily grasped by a comparison with 
classical set theory. 
 
As stated by Isukapalli (1999): In classical set theory, the truth value of a statement can be 
given by the membership function µA(x), as: 
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On the other hand, fuzzy theory allows for a continuous value of µA between 0 and 1, as 
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Fuzzy arithmetic, which is an offshoot from fuzzy set theory, and can also be regarded as a 
generalisation of interval analysis, will be briefly introduced in Section 7.6. 
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3.4 Background studies on methods of considering other types of uncertainty 
 
3.4.1 General quality uncertainty 
 
In (COWI, 1996a-d) an interesting method of incorporating (quantitatively) uncertainty 
related to general quality issues, such as science and engineering state of the art, improper 
definition of the assessment problem, competence of the analyst team etc. The scope of this 
method is very broad and perhaps unattainable at a practical level, but still it provides an 
interesting platform for further discussions regarding these matters. A brief description of the 
methodology is presented in Appendix 2. 
 
3.4.2 Management and organisational safety 
 
The concept of incorporating organisational factors and effects of managerial decisions into 
the results of a risk analysis has gained increased interest in recent years. Hale & Hovden 
(1998) presents “a review of approaches to organisational aspects of safety, health and 
environment”, where several research projects in this area are identified and presented. In this 
section, two examples of recent projects, I-risk and SAM, are briefly introduced. For a 
comprehensive survey of a number of similar projects, see Sklet et al. (1999). 
 
I-risk is a European project involving partners from the UK, Greece, the Netherlands and 
Norway. The overall objective of the project is to provide a method making it possible to 
integrate the technical model of an installation with a safety management model of an 
organization (Hale et al., 1998a). 
 
Another attempt to capture and model human behaviour and management effects in risk 
analysis has been presented by Murphy & Paté-Cornell (1996). The SAM (System-Action-
Management) framework provides a general approach for addressing the human and 
management causes of system failure. The approach is based on the assumption that most 
accidents in complex technical systems are not caused by pure technical problems, or isolated 
human errors, which is the perhaps most common approach to causal analysis today. Instead 
the failure of a system is regarded as a consequence of management and organisational factors 
that influence the decisions and actions of individuals. The SAM framework is a three level 
approach, which involves the physical system level, where a probabilistic risk analysis model 
is used. At the intermediate level, human decisions and actions that affect system performance 
is addressed, and at the highest level, the management and organisational factors that 
influence decisions and actions are included. The SAM framework, including examples of 
applications, is presented in, for instance, (Murphy & Paté-Cornell, 1996), and in (Paté-
Cornell, 1998). 
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4. The use of models in risk analysis 
 
The use of models, either conceptual or mathematical, to represent reality, is by far the most 
common approach in the risk analysis process. Since it is literally impossible to create the 
“perfect” model, i.e. a model that imitates reality exactly in every detail, there will always be 
limitations on the use of any existing model. As an illustration of the problem, consider the 
sketch in Figure 4.1. The objective of this sketch was not to depict a human being as 
accurately and in as much detail as possible, yet I am convinced that few of the models used 
in risk analysis today provide better resolution. 
 

 
 
Figure 4.1. Is the resolution of this sketch representative for 
 the resolution of models used in risk analysis? 
 
As Katherine Laskey put it, in her lecture notes for a summer course on probability in 
Artificial Intelligence: “All models are wrong, but some are useful” (Laskey, 1994). Being 
aware of this, and acting accordingly by taking precautions so that the model used is valid for 
the specific situation under consideration, is a very important step in reducing the uncertainty 
caused by imperfect models. Sometimes, however, there are no models explicitly validated for 
the specific situation, or it may not be known which of the available models should be used to 
obtain the best results. In situations like these, one may, for instance, make use of several 
parallel models in order to compare the results and in this way enhance the credibility of the 
results. 
 
All use of models will introduce subjective judgement into the analysis. The model/models 
that best represent reality in a specific situation will always be a question of belief when there 
is no, or sparse, empirical data available to support any of them. Under these circumstances 
one often has to rely on subjective expert judgement. This topic is further discussed in 
Chapter 5. 
 

4.1 What affects the reliability of model predictions? 
 
In this section some basic factors with the potential to affect the ability of a model to make 
reliable predictions are briefly described. The examples given in the text refer mainly to 
transportation models, commonly used in QRA, but the basic steps for evaluating model 
reliability presented are general. The structure of this section follows to a great extent the 
IAEA report (1989), in which more information on the subject is available. 
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Figure 4.2.  The five classes affecting the reliability of model predictions (adapted from IAEA, 1989). 
 
4.1.1 Problem specification 
 
Obvious at it might seem, one should not underestimate the importance of a thorough 
specification of the scenario or problem that the model is intended to address. Important 
factors to focus on when evaluating the reliability of models in this sense are, for example, the 
intended use of the results and the temporal/spatial resolution required. Failure to accurately 
define the scenario or problem in question might lead to the classical mishap of having a 
model that produces correct results for the wrong problem. It might well be that the difference 
between the model predictions and the observed reality is completely dependent on an 
inadequate specification of the characteristics and important mechanisms controlling the 
scenario.  
 
4.1.2 Conceptual and computational model formulation 
 
A conceptual model is useful and necessary because it is needed to identify, for example, 
processes, pathways, compartments and interactions between compartments, processes and 
mechanisms that are to be considered explicitly while evaluating a scenario. Naturally, for 
practical reasons, such as limited or low-quality data, it is virtually impossible to include all 
imaginable processes and mechanisms in the conceptual model. As always, it will, to some 
extent, be a matter of judgement whether a chosen conceptual model is suitable for a specific 
scenario. 
 
The computational model, i.e. the model that is actually used for computations in risk 
analyses, is simply the set of equations and parameters used to obtain quantitative results. 
Various forms of quality assurance procedures, such as model verification and model 
comparison, are available and necessary for testing computational models. Basically, 
verification of the computational model implies testing the model against a known solution to 
identify any errors in the set of equations, numerical solutions, etc. Obviously, as stated in 
(IAEA, 1989), the extent of verification will depend on the intended use of the model. 
 
4.1.3 Estimation of parameter values 
 
Regardless of how sophisticated a model one has access to for evaluating a specific scenario, 
the accuracy of the results will be dependent to a high degree on the constants and 
independent variables of the equations in the model. Undoubtedly the ideal situation would be 
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to have access to experimental data pertinent to the specific scenario or situation one wishes 
to evaluate. However, this is seldom the case and model parameters often have large 
uncertainties associated with them. Often one has to rely on somewhat subjective expert 
judgements of estimates of model parameters.  
 
One basic prerequisite regarding the computational model one intends to use in an analysis is 
to ensure that the values the parameters may take lie within the range that the model can 
handle. For example, if a certain dispersion model is only valid for wind speeds between 2 
and 8 m/s, and the typical wind speeds in the area one is about to analyse range up to 15 m/s, 
one would have to look for another model that can handle such a range. For a comprehensive 
discussion regarding ranges of valid parameter values in some widely used dispersion and 
transportation models, see for instance COWI (1996c). Methods of parameter uncertainty 
analysis will be extensively described in Chapter 7. 
 
4.1.4 Calculation, presentation and documentation of results 
 
“Among the more obvious factors affecting the reliability of model predictions are those 
associated with the calculation and documentation of results”, (IAEA, 1989). This source of 
uncertainty and potential source of error will not be discussed at length here, however, it may 
be pointed out that there are quality assurance procedures available to minimise these 
problems, e.g. benchmark studies and peer review procedures. 
 

4.2 Treatment of model uncertainty 
 
Whereas the intention in Section 4.1 was to provide a general discussion on what might affect 
model reliability, this section will briefly describe some approaches to dealing with model 
uncertainty explicitly. A short discussion concerning model validation, a topic with an 
immense body of literature available for the interested reader, will be followed by some 
approaches to handling model uncertainty in the practical situation. 
 
4.2.1 Model validation 
 
The importance of using models that have been proven valid for the specific problem under 
consideration is self-evident. Model validation in this context generally refers to exercises 
where model predictions are tested against experimental data that are independent of the data 
set used to develop the model. The topic of model validation has been extensively discussed 
in many areas. One example related to QRA activities is the European initiative on 
“Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes”, which 
was launched in 1991 to promote increased cooperation and standardisation of atmospheric 
dispersion models for regulatory purposes (Olesen, 2001). Since then several conferences and 
workshops have been held resulting in, among other things, a Model Validation Kit, which is 
a collection of three experimental data sets accompanied by software for dispersion model 
evaluation. Extensive and detailed information on this initiative can be found at, for instance,  
www.dmu.dk/AtmosphericEnvironment/harmoni.htm (2002-02-05). Similar efforts have been 
made in other areas. 
 
A general rule is that whenever a risk analyst is about to use a model it is up to that analyst to 
assess the usefulness of the model in the specific situation. Situations might arise, however, 
where model validation is not viable, making model comparison studies, possibly by using 
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theoretical test cases, one way to evaluate model predictions. However, model comparison 
exercises can not by any means replace a proper validation process, since each of the models 
used in the exercise might contain inaccuracies. For more information on methods of 
evaluating model reliability, see for instance COWI (1996c) or the report of the Model 
Evaluation Group (1994). For a practical example of a model evaluation exercise, see Hanna 
et al. (1991). 
 
4.2.2 Treatment of model uncertainty in the practical situation 
 
As pointed out in Section 3.1, model uncertainty is one of the major sources of uncertainty 
when performing a QRA. Nevertheless, relatively modest attention is generally directed 
explicitly towards this kind of uncertainty, compared, for instance, with parameter 
uncertainty. For example, in the survey by Abrahamsson (to be published), in which some 
twenty risk analysis reports where studied, none of them explicitly discussed the possible 
impact of model uncertainty on the results. In most of the analyses different models were used 
with no comment on their applicability to the specific situation, and in some of them the 
problem was “dealt with” by simply stating that the models are “not perfect representations of 
reality”. 
 
It is not possible to devise general rules on how to deal with model uncertainty that will 
satisfy every situation. Sometimes a qualitative discussion may suffice, while other situations 
may call for more sophisticated treatment. Apart from model evaluation exercises, it is 
possible to outline three major approaches to the practical treatment of model uncertainty in 
risk analysis. 
 
Firstly, in the Dutch guidelines for QRA (Committee for the Prevention of Disasters, 1999) 
discussed earlier, the main approach is to prescribe which models to use in the different stages 
of an analysis, an approach that has obvious advantages regarding comparability between 
analyses and consistent decision making. To some extent, such a prescriptive method 
indicates that the individual or organisation responsible for of the Guidelines accepts 
responsibility for any inaccuracies introduced into the analysis by imperfect models. 
 
A conceptually different approach would be to try to quantify the uncertainty ascribed to a 
specific model, for instance, by introducing a knowledge uncertainty parameter into the model 
representing one’s belief in the “correctness” of the model predictions for the specific 
situation. This model uncertainty parameter could then be treated in the same way as other 
uncertain parameters in the model (see Chapter 7 for a thorough review of methods of 
parameter uncertainty analysis). The process of establishing the (knowledge-based) model 
uncertainty parameter one would, by definition, have to include the subjective judgement of 
the analyst, something that calls for a structured methodology. One interesting approach to 
establishing bounds on the model uncertainty parameter is presented in COWI (1996a), 
previously introduced in Section 3.4, where the model uncertainty class is decomposed into 
three sub-classes which are assessed separately and then aggregated to form one uncertainty 
factor representing the total model uncertainty. The three sub-classes of model uncertainty are 
(COWI, 1996a):  
 

1. relevance, i.e. to what extent the model used covers the specific situation 
2. validity, i.e. how well the model has been validated 
3. the natural variability of the modelled phenomenon. 
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Based on these three “sub-classes” a semi-quantitative assessment is performed using tables 
provided in the guidelines. In Table 4.1 the guidance given for the model uncertainty factor 
UF3 is presented: 
 
Table 4.1. Sub-classes of the model uncertainty factor UF3 (adapted from COWI, 1996a). 
 Small uncertainty 

1 < UF3 < 2 
Moderate uncertainty 
2 < UF3 < 10 

Large uncertainty 
10 < UF3 

Relevance 
Validity 
Variability 

High 
High 
Low 

Medium 
Medium 
Medium 

Low 
Low 
High 

 
The total model uncertainty factor is then calculated using: 
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The perhaps most appealing feature of such an approach is that it forces the analyst to 
explicitly consider model uncertainty in the analysis (in addition to the quantification of the 
uncertainty factor, a qualitative description of the three sub-classes is required in the 
guidelines.) The obvious drawback of the quantification exercise is that it tends to be 
somewhat arbitrary.  
 
Finally, a fairly common approach is to make use of several parallel models in order to 
enhance credibility in the results. An appealing feature of this methodology is that it is 
possible to compute bounds on the results which will enclose all possible results from the 
models used, and these bounds can be used further in the analysis. The obvious pitfall of 
using parallel models is that they might be based on the same fundamental mechanisms, the 
same (possibly erroneous) data set or that they share the same biases. The fact that several 
different models produce more or less the same results is no guarantee that they are indeed 
accurate. 
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5. The use of expert judgement in risk analysis 

5.1 General discussion 
 
As mentioned in previous chapters, the use of expert judgement becomes necessary when one 
does not have a complete understanding of the underlying fundamental mechanisms. This 
may involve the structure of the models used as well as uncertainty regarding the 
quantification of the variables involved. The task of eliciting useful information based on 
various experts’ subjective opinions “is not to be taken lightly”. There is no universal method 
that applies to all situations regarding this matter. In fact, there is not one “scientifically 
correct” method at all (Paté-Cornell 1996). Nevertheless, several structured methods of 
eliciting information from experts have been suggested in the literature and proven useful in 
practical risk analyses. For practical examples see, for instance, Morgan & Henrion (1990). In 
this chapter some basic methods of eliciting and aggregating information from experts will be 
briefly introduced followed by a discussion on the psychology of judgement under uncertainty 
and a presentation of the basic requirements of elicitation exercises. This discussion is solely 
aimed at representing uncertainty in the unknown variable by using probabilistic measures 
such as probability distributions, since that is by far the most common approach in risk 
analysis today.  
 

5.2 Elicitation  
 
In this section some general approaches to assessing probabilities for specific values of 
unknown variables will be briefly introduced. Somewhat simplified, such assessments can be 
divided into two categories, i.e. the assessment of discrete probabilities and the assessment of 
continuous probabilities. 
 
5.2.1 Encoding discrete probabilities 
 
The encoding of discrete probabilities, i.e. the probability of a discrete quantity (e.g. events) 
can be done in several different ways, the simplest being to directly ask the interviewee 
(expert), “What is your belief regarding the probability that event A will occur?” It is, 
however, likely that the interviewee will find it difficult to answer such direct questions, let 
alone place any confidence in the answer (Clemen, 1996).  
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The perhaps most common approach is based on a thought experiment where the expert is 
asked to compare (and choose between) two lottery-like games, which can both result in a 
prize (X or Y) where prize X is strongly preferred to prize Y (e.g. price X is a free trip around 
the world and prize Y is a t-shirt.) For example: The interviewee is asked to compare the 
lottery: 
 
 Win prize X if event A6 occurs 
 Win prize Y if event A does not occur 
 
With the lottery: 
 
 Win prize X with known probability p. 
 Win prize Y with probability 1 – p. 
 
The second lottery is called the reference lottery. It is of major importance that the probability 
mechanism for the reference lottery is well defined and easy for the interviewee to 
understand. Classical mechanisms often used are drawing coloured balls from an urn in which 
the proportion of coloured balls is known to be p, and the “probability wheel” with a known 
area representing “win prize X”. When spun, if the pointer lands on the “win prize X” area the 
interviewee wins prize X, see Figure 5.1. 
 

The probability wheel

 
Figure 5.1. The probability wheel. In this example the ”win prize X” area  
is the striped area giving a probability p = 0.35.  
 
The trick here is to adjust the probability p of winning prize X in the reference lottery until the 
interviewee is indifferent (has no preference) between the two lotteries. Then the subjective 
probability assessed by the interviewee for event A is p. When a series of probability 
assessments has been performed one must check the probabilities obtained for consistency, 
i.e. the probabilities assessed by the interviewee obey the laws of probability theory. 
 
5.2.2 Encoding continuous probabilities 
 
The classical approach to encoding continuous probabilities is to apply the technique for 
encoding discrete probabilities to assess several cumulative probabilities and then plot these 
in a diagram making a rough CDF (cumulative distribution function). Consider the following 
example. 
 

                                                 
6 Event A may be that it will rain in Lund a certain day, for example. 
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We want the interviewee to express his/her beliefs regarding the snow depth at a certain place 
in the Swedish mountains next New Year’s Eve, using a probability distribution to represent 
his/her uncertainty. The characteristic question would be to assess P(snow depth ≤ a) where a 
is a certain value. One assessment point could for instance be P(snow depth ≤ 50 cm), where 
the outcome “snow depth ≤ 50 cm” is a discrete outcome that can be assessed using, for 
instance, the reference lottery approach described above. To be able to construct a CDF in this 
manner, the cumulative probability would have to be assessed for a number of points. 
Suppose the following assessments were made: 
 
 P(snow depth ≤ 5 cm) = 0.00 

P(snow depth ≤ 25 cm) = 0.05 
 P(snow depth ≤ 50 cm) = 0.25 
 P(snow depth ≤ 75 cm) = 0.60 
 P(snow depth ≤ 100 cm) = 0.80 
 P(snow depth ≤ 150 cm) = 1.00 
 
In Figure 5.2 these cumulative probabilities are plotted as a rough CDF representing the 
interviewee’s beliefs (uncertainty) about the unknown quantity: 
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Figure 5.2. CDF representing the interviewee’s beliefs about the snow depth at a  
certain place in the Swedish mountains next New Years’ Eve. 
 
The methodology used in the example above is usually referred to as a “fixed value” method. 
An alternative strategy to construct the CDF above would be to do the reverse, i.e. by 
choosing some fractiles on the vertical axis and assessing the corresponding values of the 
snow depth (the “fixed probability” method). 
 
For a comprehensive discussion on these and more techniques for encoding probabilities and 
discussions on experiments related to the merits of each of them, see for example Cooke 
(1991) or Morgan & Henrion (1990).  
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5.2.3 Basic structure of the assessment protocol 
 
Generally, an elicitation exercise follows some kind of protocol, i.e. a documented structure 
for the elicitation process. There is no single procedure available that will guarantee “success” 
in any given situation, indeed several different protocols have been used in practise (see, for 
example, Morgan & Henrion (1990)). Nevertheless, a (simplified) presentation of the basic 
requirements in elicitation exercises as given by Clemen (1996) is given below. According to 
Clemen at least the following steps should be included in the assessment protocol. 
 

•  Background, i.e. thorough identification and description of the variables for which 
expert assessment is needed. It may be possible to assess some variables using 
conventional scientific studies while others may require expert assessment. 

•  Identification and recruitment of experts, possibly with help from professional 
associations. 

•  Motivating experts. Some scientists might be reluctant to participate in such exercises 
since they feel that their opinions might not be “correct” in a scientific sense. 
However, since variables that require expert assessment cannot be assessed using 
traditional, scientific methods and decisions still have to be made using the best 
information available, there is no realistic alternative. 

•  Structuring and decomposition, i.e. exploring the experts’ understanding of the causal 
and statistical relationships between the assessed variables. For instance, the 
probability distribution of one variable may need to be assessed conditional on other 
variables. 

•  Probability assessment training, e.g. explanation of the basic principles of the 
assessment and of known heuristics and biases related to such exercises (see Section 
5.3.) 

•  Probability elicitation and verification, i.e. the actual assessment of the unknown 
variables made by the expert, always under the guidance of an individual trained in the 
elicitation process. 

•  Aggregation of different experts’ probability distributions, see Section 5.4. 
 
For more information on this subject, see Clemen (1996) and “Attributes of a Good 
Assessment Protocol” described in Morgan & Henrion (1990). 
 

5.3 Heuristics and biases 
 
Inherent in the concept of using expert judgement in risk assessment is that we are dealing 
with unknown quantities of some kind, for which we have no or limited hard data. In 
situations where people are asked to estimate probabilities or degrees of belief for such 
quantities they tend to use various rules of thumb, or heuristics, in their assessments. In some 
situations however, such heuristics may lead to predictable “errors”, where “error” should be 
interpreted as an estimate that is not in accord with the subject’s “true” beliefs. Heuristics that 
lead to errors as described above are referred to as biases, i.e. in this context biases are related 
to “misperceptions” of probabilities.  Whenever one intends to use experts (or any human 
being, whether they want to call themselves experts or not…) for the estimation of unknown 
quantities, one should be aware of the possible pitfalls these biases might constitute. In this 
section some recognised heuristics that might lead to errors such as those described above will 
be briefly introduced. For a more exhaustive presentation of this topic see, for example, 
Kahneman, Slovic and Tversky (1982) or Cooke (1991). The information and examples in the 
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following five sub-sections are, to a great extent, based on Cooke (1991), one of the standard 
references in the field of expert judgement. 
 
5.3.1 Availability 
 
The concept of availability concerns the phenomenon that when asked to estimate the size of a 
“class” (e.g. the number of deaths due to residential fires in a year) people tend to base their 
estimates upon the ease with which such instances can be recalled.  
 
The availability heuristic has proved to have considerable impact on people’s perception of 
different risks. In a study by Slovic, Fischoff and Lichtenstein (1982) a large number of lay 
people were asked to estimate the probability of death from various causes. The typical 
response pattern was that the risks from well-publicised causes of death (e.g. botulism and 
tornadoes) were strongly overestimated, whereas the risks of “unglamorous” causes (e.g. heart 
disease and stomach cancer) were underestimated. Figure 5.3 shows the typical response 
pattern in the study. 
 

 
Figure 5.3. Relationship between judged frequency and the actual number of deaths per year for 41 causes of 
death. If judged and actual frequencies were equal, the data would fall on the straight line. The points, and the 
curved line fitted to them, represent the average response of a large number of lay people. As an index of the 
variability across individuals, vertical bars are drawn to depict the 25th and 75th percentiles of the judgements 
for botulism, diabetes and all accidents. The range of responses for the other 37 causes was similar (from Slovic, 
Fischoff and Lichtenstein, 1982). 
 
5.3.2 Anchoring 
 
A known phenomenon when people are asked to estimate the value of an unknown quantity is 
that they tend to fix on an initial value and then adjust this value. This phenomenon is called 
anchoring, and the problem with this heuristic is that frequently the adjustment that people 
make is insufficient. In an experiment by Tversky and Kahneman (1982a) subjects were asked 
to estimate what percentage of the member nations in the UN were African. A number 
between 1 and 100 was generated by spinning a wheel (in the subject’s presence). The median 
estimate of the percentage of African countries was 25 for a group with “anchor” number 10, 
and 45 for a group with “anchor” number 65.  
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A perhaps more relevant instance of anchoring to expert judgement (or elicitation of expert 
estimations) occurs when subjects are asked to estimate the fractiles7 of a continuously 
distributed variable. When subjects are asked to estimate for instance the 5% and 95% 
fractiles of a distribution, they appear to fix on a central value of the distribution and then 
adjust to obtain the fractiles of interest. The 5% and 95% fractiles obtained in this way are 
often too close to the central value, i.e. the true value will too often fall outside the given 
interval.  
 
5.3.3 Representativeness 
 
Representativeness is a phenomenon related to conditional probabilities. In short, the 
representativeness heuristic has important implications (in terms of biases) when a subject is 
asked to estimate the conditional probability p(A|B) that event A will occur given that event B 
has occurred. Experiments have shown that when making such judgements, subjects tend to 
rely on an assessment of the degree of similarity of events A and B (Cooke, 1991; Tversky 
and Kahneman, 1982b). In addition, the representativeness heuristic leads people to ignore 
effects due to sample size. An experiment by Tversky and Kahneman (1982c) illustrates this 
effect. 
 

A certain town is served by two hospitals. In the larger hospital about 45 babies are 
born each day, and in the smaller hospital about 15 babies are born each day. As you 
know, about 50% of all babies are boys. However, the exact percentage varies from 
day to day. Sometimes it may be higher than 50%, sometimes lower. For a period of 
1 year, each hospital recorded the days on which more than 60% of the babies born 
were boys. Which hospital do you think recorded more such days? 

 
Of the 95 subjects responding to this question, 21 opted for the larger hospital, 21 for the 
smaller hospital, and 53 thought that both hospitals recorded about the same number of such 
days. Of course, the smaller hospital is much more likely to see more than 60% boys on any 
given day. 
 
5.3.4 Control 
 
One possible source of distorted probability assessments is that subjects tend to act as if they 
have some sort of control over situations that they could not possibly have any influence over. 
One example given by Cooke (1991) is an experiment carried out on office workers in New 
York. One group of 26 subjects was given the opportunity to buy a ticket for an office lottery 
at $1 each. The prize of $50 would go to the winning ticket, to be drawn from an urn. The 
subjects were allowed to choose their own ticket. A second group of 27 subjects was given the 
opportunity to buy tickets for the same lottery but were simply given tickets and were not 
allowed to choose. Each subject was then approached by the experimenter and asked: 
 

Someone in the other office wants to get into the lottery, but since I’m not selling 
tickets any more, he asked me if I’d find how much you’d sell your ticket for. It 
makes no difference to me, but how much should I tell him? 

 

                                                 
7 The k% fractile of a continuously distributed quantity X is the smallest value xk such that p(X≤xk) ≥ k/100. 
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In the group that chose their own ticket, the median resale price was $8.67, whereas in the 
group that was given their tickets, the median resale price was $1.96. 
 
5.3.5 Overconfidence and calibration 
 
In Cooke (1991) a rough definition of calibration regarding expert judgement is given: “A 
subjective assessor is well-calibrated if for every probability value r, in the class of all events 
to which the assessor assigns a subjective probability value r, the relative frequency of 
occurrence is equal to r. Calibration represents a form of empirical control on subjective 
probability assessments”. Whether an expert (or a person who is asked to estimate some 
quantity) is well calibrated or not can be measured in two different types of test: discrete tests 
and quantile or fractile tests. For discrete tests, see Cooke (1991). 
 
When one is interested in someone’s assessment of a variable with a continuous range one can 
use fractile tests for calibration. For example, one may be interested in the maximal capacity 
(measured, for instance, in people/min) of a particular escape route in a building under certain 
conditions. It is not likely that anyone would predict this value with any certainty (not without 
making unjustified assumptions anyway), but it would be possible for an expert to give a 
subjective probability distribution representing the uncertainty in the estimate (see Section 
5.2.2). Using the following type of question enables us to learn about this subjective 
probability distribution: “For which x is your probability 25% that the capacity of the escape 
route is less than or equal to x?” The answer will be called the subject’s 25% fractile. In the 
same manner, a whole set of fractiles can be elicited to obtain a representation of the subject’s 
subjective probability distribution for the unknown variable. The matter of calibration 
regarding fractile tests can be expressed as follows: “Suppose we ask an expert for his 1%, 
25%, 50%, 75% and 99% fractiles for a large number of variables, for which the actual values 
later become known. If the expert is well calibrated, then we would expect that approximately 
1% of the true values fall beneath the 1% fractiles of their respective distributions, roughly 
24% should fall between the 1% and the 25% fractiles, etc. The interquartile range is the 
interval between the 25% and the 75% fractiles. We would expect 50% of the true values to 
fall within the interquartile ranges.” (Cooke, 1991). 
 

5.4 Different approaches to the aggregation of expert opinions  
 
Difficulties naturally arise when the experts disagree about the problem in question, for 
instance the likelihood estimates regarding initial events. There are many ways to circumvent 
this problem, some more appropriate than others. One’s first thought might be to just look for 
some kind of common value or range that is within, or at least in the vicinity of, everybody’s 
estimated confidence interval. This is clearly not the proper way to go about it, since experts 
tend to underestimate uncertainties. It could well be that the most well-informed expert has 
the largest uncertainty interval, and using this method would only lead to the choice of value 
or segment being decided by the narrowest uncertainty interval obtained. Paté-Cornell (1996) 
states: “The methods that are most likely to provide a reasonable degree of objectivity are 
those that focus on the construction of a set of hypotheses and on the assessment of 
axiomatically correct probability distributions based on all scientific evidence. This requires a 
process that starts with gathering all available data, then assessing and aggregating relevant 
probabilities in an orderly and logical fashion.” It is not difficult to see that doing this 
properly will be a time-consuming and expensive task. 
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The three classical ways of aggregating expert opinions described in Paté-Cornell (1996) are: 
 
•  The analytical approach, where each of the experts provides their probability distribution. 

Then someone (e.g. the decision maker) creates a combined distribution, for example by 
equal weighting of the distributions provided by the experts, or by somehow assigning 
different weights to the different distributions provided.   

 
•  The iterative approach (e.g. the Delphi technique), where the different assessments 

provided by the experts are averaged by the analyst, then sent back to the experts who are 
given the possibility to revise their opinion based on what the other experts have said. The 
process is repeated until the value converges, which is usually rather quickly, provided 
that there aren't one or more experts who think they know something the others don’t. 

 
•  The interactive approach, where the experts are asked to debate and explain their 

assessments. The experts are given the chance to exchange information about the 
evidence base, on which they rely, which further helps the objectivity process.  

 
For a survey of literature dealing with the problem of aggregating information from multiple 
experts with different opinions, see Morgan & Henrion (1990). It should be noted, however, 
that there might be situations in which aggregation of information provided by different 
experts is not desirable. For instance, one could argue that creating a combined distribution 
for the uncertainty quantity based on the different distributions provided by the experts will 
produce a result that nobody actually believes in. The common approach suggested by 
scientists advocating such a point of view is to make use of parallel distributions (models) for, 
or bounds on, the unknown quantity in the analysis. 
 
In this chapter some basic methods of eliciting information on unknown variables from 
experts in the form of probabilities have been discussed. Probabilistic measures are, however, 
not the only ones used to represent uncertainty (although they are by far the most common) 
about an unknown variable. In Chapter 7 some approaches to uncertainty propagation, such as 
interval analysis and fuzzy arithmetic are briefly introduced. The kind of information needed 
when using such measures of uncertainty is also discussed in Chapter 7. 
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6. The use of databases in risk analysis  

6.1 General introduction 
 
Accident and other kinds of experience databases traditionally play a significant role in the 
risk analysis and risk management process. In this chapter a fairly general discussion on the 
merits of experience databases in risk analysis, mainly based on Davidsson et al. (1999), is 
presented.  
 
Depending on the characteristics of the hazards connected with a certain activity, it is possible 
to discern three major safety strategies (Rasmussen, 1994; 1997), see Figure 6.1. 
 

 
Figure 6.1. Hazard source characteristics and risk management strategies, adapted from Rasmussen (1997). 
 
It is possible to relate the use of experience databases to the type of safety strategy 
implemented. In category 1, empirical safety strategy, which is often applied when dealing 
with a complex set of hazard sources with high frequencies of accidents but usually with 
potential for only relatively small consequences, experience databases are mainly used for 
statistical analysis, e.g. analysis of trends and as an aid in hazard identification.  
 
In category 2, evolutionary safety strategy, often applied in the process industry and 
transportation sector, the hazards are characterised by low accident frequencies but with the 
potential of substantial consequences. Quantitative risk analysis is a common tool in this 
domain. Within this category, experience databases are frequently used for identification of 
hazard sources and accident event sequences, for estimating the probability of failures and as 
support for consequence estimation. 
 
In category 3, analytical safety strategy, characterised by hazard sources with extremely low 
accident frequencies but with the potential of truly catastrophic consequences, e.g. nuclear 
power plant accidents, experience databases are frequently used as input for the analysis of 
initiating events and of the reliability of safety barriers.  
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6.2 The use of databases in the different stages of an analysis 
 
In Section 3.2 the uncertainties introduced at different stages of a QRA were discussed. In this 
section a short presentation will be given of some ways in which experience databases can be 
of use in the different stages of such an analysis.  
 
The main problems in the identification phase of an analysis are related to questions of 
completeness, e.g. have all the relevant scenarios been identified? In this phase experience 
databases used together with a structured methodology for identification, such as HAZOP and 
FMEA procedures, will provide means of keeping completeness uncertainty to a minimum. 
Used wisely, experience (accident) databases have the potential to both increase direct 
knowledge about possible accident scenarios and to serve as input in the creative process of 
identification. For examples of existing databases for use in the identification phase, see 
Appendix 1. 
 
In the frequency estimation phase of an analysis experience databases can be used both to 
calculate the expected frequency directly from historical data, and to estimate the probabilities 
of parameters of logical models used for calculating frequencies of events, see Section 3.2. 
Obviously, such analysis places special requirements on the type of data included in the 
database. Besides identification and general descriptions of accidents or failures, the database 
must also contain information on relevant parameters that might affect the frequency of 
accidents, (e.g. the number of units/systems in operation, the total number of years in 
operation, the total number of accidents, etc.) For examples of existing databases for use in 
the frequency estimation phase, see Appendix 1. 
 
The consequence estimation part of an analysis is usually performed using theoretically 
and/or empirically established models of physical phenomena like vapour dispersion, and of 
effects on human beings. In situations where the possible outcomes of accidents are difficult 
to model, experience from previous accidents might prove useful in establishing probable 
estimates of the consequences. For such an approach to be successful, the information in the 
database must include detailed (objective) descriptions of the effects and damage caused by 
the accident and, if possible, the damage mechanism. Information about subsequent events 
might also prove helpful. 
 

6.3 Requirements on databases to be used in risk analysis 
 
The requirements on databases to be used in risk analysis may vary considerably depending 
on several factors, such as the objective of the analysis or the stage of the analysis. In some 
stages of an analysis very specific, detailed information will prove necessary, while other 
stages require large, comprehensive experience databases. As a result, it might be difficult to 
find a database that covers all one’s needs simultaneously. However, some basic requirements 
are common for all use of experience databases in risk analysis (Davidsson et al., 1999): 
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•  Accessibility 
•  User-friendliness 
•  Reliability (i.e. traceable data sources) 
•  Relevance (e.g. with respect to the analysed object) 
•  Coverage 
•  Regular updating 

 
 A quantitative analysis of experience data is needed when performing QRA in order to 
calculate (estimate), for instance, failure frequencies, consequences and effects. When 
analysing data from a specific database it is of importance to know the criteria for registration 
in that database, i.e. why are the data there? If possible, it might also be of importance to 
know whether some data have been deliberately omitted from the database, e.g. accidents 
where the consequences are looked regarded negligible. 
 
Above all, the frequency analysis is greatly dependent on specific descriptions (calculations) 
of relevant parameters that might affect the frequency of accidents, e.g. the number of 
units/systems in operation, the total number of years of operation, the total number of 
accidents, etc. 
 
A fortunate fact, but still a fact that might pose some problems when it comes to estimating 
the frequency of events, is that large-scale accidents tend to occur rather seldom. As a result 
of this, a company often has limited hard data regarding large-scale accidents within its own 
organisation. This increases the need for more generic data, e.g. data that have been collected 
from a large number of facilities within the same principal sphere of activities. The problems 
related to more generic data are quite obvious. One must ensure that the relevance of the data 
used in an analysis is acceptable. 
 
For a more comprehensive discussion of the requirements of databases to be used in a risk 
analysis see, for instance, Davidsson et al. (1999). For an extensive list (and description) of 
existing databases, see Lees (1996). For a description of some major experience databases, 
see Appendix 1. 
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7. Methods of parameter uncertainty propagation and analysis 

7.1 General introduction 
 
In this chapter the core of this work, i.e. the actual uncertainty analysis, will be examined in 
some detail. As stated previously, a variety of models can be used during the QRA process. 
Let us assume that we have the necessary battery of models at our disposal (see comment in 
Section 7.1.1), and that we have identified uncertainties in a number of the inputs to those 
models. This chapter will be devoted to how we can assess the impact these uncertainties in 
the input parameters will have on the model output. It is possible to discern three major 
groups of techniques for examining the effects of uncertain inputs on model output.  
 

•  Sensitivity analysis, i.e. methods of assessing the effect various changes in input 
parameters might have on the model output. 

•  Uncertainty propagation, i.e. methods of transmitting the uncertainty in the model 
inputs to the model output. 

•  Importance measures, i.e. methods of calculating the relative contribution of the 
uncertainty in the input parameters to the uncertainty in the model output. 

 
The first two groups will be discussed in this chapter with the emphasis on uncertainty 
propagation, since it is such methods that provide a measure of how uncertain the predictions 
made by the model are. An abundance of methods is available in the literature and only those 
most frequently used will be described here. The third group, importance measures, is 
explicitly examined in Chapter 8 due to the practical relevance of such measures. By 
examining which of the input parameters contributes most to the overall uncertainty, guidance 
can be obtained on where to direct further efforts to reduce uncertainty, if so desired. 
 
7.1.1 Response surface methods 
 
Most of the methods of uncertainty propagation described in this chapter require models in 
the form of analytical expressions. Since most of the models commonly used in quantitative 
risk analysis are computer programs, regression analysis and response surface methods may 
be used to produce an analytical expression, based only on a few input variables, representing 
the more complex computer model. For a detailed presentation of response surface methods, 
with explicit information on how to create the response surface equation see, for instance, 
Frantzich (1998) or Ang et al. (1975). When using response surface methods it is imperative 
to make sure that the variables used for the response surface equation are the ones of most 
interest for the uncertainty analysis, and that the model is not used outside the parameter 
range defined by the regression analysis. It should also be noted that the generation of the 
response surface equations introduces yet another kind of model uncertainty. However, 
statistical measures of goodness of fit of the surface are available. For a discussion on the 
accuracy of the results using response surface methods see, for instance, Morgan & Henrion 
(1990). 

7.2 Sensitivity analysis 
 
As indicated above, sensitivity studies are aimed at identifying the important variables in a 
model, i.e. the variables that have the greatest impact on the model output. Sensitivity analysis 
is often performed using “what if” type questions, e.g. by changing the value of one uncertain 
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parameter at a time, while maintaining all others at their nominal value, and then assessing the 
relative impact each change has on the model output. In this way, sensitivity can be regarded 
as a simple measure of uncertainty importance. However, one serious problem associated with 
simple sensitivity in comparing the importance of the uncertainty in different inputs is that it 
depends on the units of the inputs and output, making measures like those described in 
Chapter 8 necessary. Nevertheless, sensitivity analysis is frequently used to identify which 
parameters should be included in the full uncertainty analysis, i.e. propagation and importance 
studies. (Full uncertainty analysis with too many uncertain variables will be computationally 
burdensome). 
 

7.3 Probabilistic uncertainty analysis 
 
In this section we will acquaint ourselves with some probabilistic methods frequently used in 
uncertainty propagation and analysis. The presentation is by no means exhaustive, and the 
interested reader is directed to standard references in this area, such as Morgan and Henrion 
(1990). It should be pointed out that the probabilistic framework is by far the most widely 
used for dealing with uncertainty in most areas of risk analysis, perhaps partly because it rests 
on strong theoretical foundations and has been used for a long time in other areas as well. 
This presentation of the most common probabilistic methods is included in the dissertation for 
completeness, and to provide a background to the following description of more recent and 
unorthodox approaches. 
 
Within this framework one primarily makes use of probabilistic distributions to describe the 
parameter uncertainty. In Figure 7.1 the propagation of the uncertain variables f1, f2 and f3, 
(here presented using their respective probability density function, PDF) through the model 
function (f1, f2, f3) is schematically described (adapted from IAEA, 1989). Some basic 
knowledge in probability theory and statistics will be helpful in reading this section; see, for 
instance, Vose (2000), Morgan & Henrion (1990), or any standard textbook on probability 
and statistics. 
 

  
Figure 7.1. Propagation of uncertainty through a model. The parameter uncertainty  
is specified as probability density functions. Adapted from IAEA (1989). 



Methods of parameter uncertainty propagation and analysis 

 41 

7.3.1 Analytical methods 
 
The use of analytical methods for propagating uncertainty is still widely recognised, 
notwithstanding the fact that they are often only approximate methods with somewhat 
constrained validity, and the fact that development in personal computers has made 
computationally expensive sampling methods more feasible. Here, only a selection of the 
methods available will be presented and discussed. For a more thorough presentation see, for 
instance, Robinson (1998). 
 
Approximation from the Taylor series 
 
Exact analytical methods of propagating uncertainty are rarely employed in risk analysis since 
they are tractable only for simple cases, such as linear combinations of normal variables. The 
approximate techniques presented here, often referred to as the “method of moments”, are 
based on Taylor series expansion of the function. The name “methods of moments” refers to 
the fact that with these methods one propagates and analyses uncertainty using mostly the 
mean and variance, but sometimes higher order moments of the probability distributions. The 
presentation below follows in most parts Morgan and Henrion (1990). 
 
Consider X which is a vector of n uncertain inputs, and f(X) the function representing a model 
generating the output y as follows: 
 

X = (x1, x2 … xn) 
 

y = f(X)     (7.1) 
 
Assume that the nominal value (i.e. the “best guess”), 0

ix , for each input is equal to its 
expectation value: 
 
 For i =1 to n, 0

ix = E[xi] 
 
From this follows that the nominal scenario is also the mean scenario: 
 
 X0 = ( 0

1x , 0
2x , …, 0

nx ) = E[X]    
 
The Taylor series expansion provides a way of expressing deviations in the output from its 
nominal value, y - y0 in terms of deviations in its inputs from their nominal values, xi - 0

ix . 
Successive terms contain higher order powers of deviations and higher order derivatives of 
the function with respect to each input. Below, the expansion around the nominal scenario 
including the first three terms is shown (Morgan and Henrion, 1990): 
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It should be noted that all derivatives are evaluated for the nominal scenario X0. If the 
deviations xi - 0

ix are relatively small, the higher powers will become very small. And if the 
function is relatively smooth in the region of interest, the higher derivatives will be small. 
Under these conditions the Taylor series produces a good approximation even when the 
higher order terms are ignored. 
 
First order approximation 
 
In order to simplify the calculations, one usually only takes the first order term into 
consideration. To the first order, the expected value of y can be approximated by the nominal 
value, since the expected value of the deviation in y is zero: 
 
 E[y – y0] ≈ 0, 
 E[y] ≈ y0 = f(X0)    (7.3) 
 
One can now obtain the general first order approximation of the variance in the output, using 
only the first order term from Eq. (7.2): 
 

 Var[y] = E[(y – y0)2] ≈ 
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The above expression can, after some modifications and assumption of independence between 
the uncertain inputs (for the intermediate calculation steps, see Morgan & Henrion, 1990), be 
transformed to the simple Gaussian approximation formula given below: 
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As shown in the above equation, the variance of the output y is approximately the sum of the 
squares of the products of the standard deviation and sensitivity of each input, xi.  
 
This concludes this brief section on analytical methods of uncertainty propagation. More 
elaborative presentations are given by Morgan & Henrion (1990) and Robinson (1998). It is 
important, however, to remember that the formulas presented here are only approximations. 
They will not perform well in situations where the uncertainties are large. One can always try 
to improve the accuracy of the approximation by using higher order terms in the Taylor 
expansion, but then one must expect the complexity of the algebra to increase rapidly, 
especially when dealing with complex models, as is often the case in risk analysis. 
 
7.3.2 Sampling methods 
 
Given the limitations of the analytical methods presented in the previous section, and the 
rapid development in personal computers, there has been a shift towards more 
computationally demanding, numerical methods for uncertainty analysis, allowing the use of 
full probability distributions to describe the uncertainty regarding parameters. In this section 
the basic features of two of these sampling procedures, Monte Carlo sampling and Latin 
hypercube sampling will be discussed. Bearing in mind that the sampling procedures 
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discussed here utilise the full distributions of the uncertain parameters for propagation, a 
technique for random sampling from these distributions must be established. In fact, this is 
essentially the difference between the two methods presented; they use different strategies for 
sampling from the input distributions. The presentation will be at a fairly basic level, focusing 
on the fundamentals of the methods and on principles of sound use in uncertainty analysis. 
The reader who is interested in hands-on examples of how these methods work is directed to 
the manuals of the many software packages that include these features, e.g. @Risk (Palisade 
Corporation, 2001).  
 
Monte Carlo sampling 
 
The oldest and best known sampling method still extensively employed in uncertainty 
analysis is the Monte Carlo sampling method. Vose (2000) gives an explicit presentation of 
how the method works, and here only the basic features are discussed. Let us start by defining 
the way in which the Monte Carlo procedure produces samples from the input distributions. 
 
Consider the cumulative distribution function F(x) for the uncertain variable X. It gives the 
probability P that the variable X will be less than or equal to x: 
 
 F(x) = P(X ≤ x) 
 
F(x) ranges from zero to one. Let us consider the reverse of this equation, i.e. what is the 
value of F(x) for a certain value of x? The answer is given by the reverse function G(F(x)), 
which is written as follows: 
 
 G(F(x)) = x 
 
In Figure 7.2 a graphical representation of the relationship between F(x) and G(F(x)) is given.  
 

 
Figure 7.2. The relationship between x, F(x) and G(F(x)) (from Vose 2000). 
 
This is the concept used in the Monte Carlo sampling scheme for generating random samples 
from the distributions of the uncertain variables in the risk analysis model. To generate a 
random sample for a probability distribution, a random number, r, is generated between zero 
and one. This value is then fed into the equation to determine the value to be generated for the 
distribution: 



Uncertainty in Quantitative Risk Analysis – Characterisation and Methods of Treatment  
 

 44

G(r) = x 
 
Many algorithms have been developed to generate a series of uniformly distributed random 
numbers between zero and one. (The basis of such algorithms is not discussed here, and the 
interested reader is referred to Johnson et al. (1993, 1994, 1995)). 
 
This method of sampling (i.e. random sampling) will, by definition, lead to over- and under-
sampling from various parts of the distribution. In practice, this means that in order to ensure 
that the input distribution is well represented by the samples drawn from it, a very large 
number of iterations must be made. In most risk analysis work, the main concern is that the 
model or sampling scheme we use should reproduce the distributions determined for the 
inputs. This is why the Latin hypercube sampling scheme described below has gained more 
and more attention in during recent years. 
 
Let us now consider the situation where we have a model with several uncertain inputs. For 
each iteration, a value is sampled from the respective distributions of the uncertain inputs and 
then the model output is calculated. By performing a large number of iterations, a distribution 
of the model output will be produced, representing the total uncertainty in the model output 
due to the uncertainties in the model inputs, see Figure 7.1. 
 
Latin hypercube sampling 
 
Latin hypercube sampling is a refinement of classical Monte Carlo (or random) sampling, 
which uses “stratified sampling without replacement” (Iman et al., 1980). Below the 
procedure as described by Vose (2000) is presented: 
 

•  The probability distribution is divided into n intervals of equal probability, where n is 
the number of iterations that are to be performed. Figure 7.3 illustrates an example of 
the stratification that is produced for 20 iterations of a normal distribution. The bands 
can be seen to become progressively wider towards the tails. 

 

 
Figure 7.3. Example of the effect of stratification in Latin hypercube sampling (from Vose, 2000). 
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•  In the first iteration, one of these intervals is selected using a random number. 
•  A second random number is then generated to determine where, within that interval, 

F(x) should lie.  
•  x = G(F(x)) is calculated for that value of F(x). 
•  The process is repeated for the second iteration but the interval used in the first 

iteration is marked as having already been used and therefore will not be selected 
again. 

•  This process is repeated for all of the iterations. Since the number of iterations n is 
also the number of intervals, each interval will only have been sampled once and the 
distribution will have been reproduced with predictable uniformity over the range of 
F(x). 

 
Two-phase sampling procedures 
 
In situations where it is desirable to keep different uncertainties separate in an analysis, for 
instance separating stochastic and epistemic uncertainty, “two-phase” sampling procedures 
are suitable. A two-phase sampling procedure is based on either traditional Monte Carlo 
sampling or another kind of sampling scheme, e.g. the Latin hypercube procedure described 
above. The procedure is conceptually relatively simple. The sampling is performed in two 
“loops”, an outer and an inner loop, to which the two different groups of uncertain parameters 
belong. For each iteration in the outer loop (where a value is sampled for all the parameters 
within the “outer loop” group), a specified number of iterations (in each of which a value is 
“drawn” for all the parameters in the “inner loop” group) is performed in the inner loop.  
 
For example, suppose we want to keep stochastic uncertainty and knowledge-based 
uncertainty separate in an analysis. Below is a description of the structure of one cycle in the 
outer loop. 
 
First we sample values for all of the parameters afflicted with knowledge-based uncertainty 
(the outer loop). These will be used while computing the model output in this cycle. Then we 
perform a specified number of iterations (say 10 000) in each of which we sample values for 
all the parameters afflicted with stochastic uncertainty (the inner loop). After each iteration in 
the inner loop we calculate the model output (using the same values for the outer loop 
parameters for all 10 000 iterations). The result will be a distribution which is governed solely 
by the uncertainty in the stochastic parameters. 
 
This procedure is repeated as many times as desire, each cycle producing one distribution. 
The final result will be a collection of distributions representing stochastic uncertainty, while 
the spread of distributions represents knowledge-based uncertainty, see Figure 7.4.  
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Figure 7.4. Example of results from a two-phase Monte Carlo simulation (from Frantzich, 1998). 
 
The parameter n in Figure 7.4 is the number of cycles performed in the outer loop. Each 
CCDF (Complementary Cumulative Distribution Function) represents the stochastic 
uncertainty while the spread in distributions is due to knowledge-based uncertainty.  
 
The American Environmental Protection Agency have issued a policy document regarding the 
use of probabilistic analysis in (environmental) risk assessment (U.S. EPA, 1997), with 
associated guiding principles for Monte Carlo analysis. These documents contain conditions 
that are to be satisfied to ensure high quality science, when risk assessments using 
probabilistic techniques are submitted to the Agency for review and evaluation. Furthermore, 
16 guiding principles for Monte Carlo analysis, mainly related to the selection of input data 
and distributions, separate treatment of stochastic and knowledge-based uncertainty, and the 
presentation of results from the analysis, are given. Although these principles were derived 
principally for ecological risk assessments, they may serve as guidance also in a more general 
framework.  
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7.4 Interval arithmetic 
 
The concept of interval arithmetic offers a computationally inexpensive, logically consistent 
methodology that produces conservative estimates of uncertainty in the final result of an 
analysis. Intervals have long been used in many disciplines to represent uncertainty. For 
instance, in empirical studies scientists are accustomed to reporting the measured values in 
terms of the best estimate and the possible error in the estimate in the form of an interval.  
 
Interval analysis can be used to propagate uncertainty concerned with input parameters 
(specified as intervals) through a model. An appealing feature of interval analysis is that it is 
fairly straightforward, which makes the methodology attractive, for example, in the screening 
phase of an analysis. In this section the basics of this arithmetic will be briefly discussed. For 
a more comprehensive presentation of interval analysis, see for instance Dwyer (1951), 
Moore (1966, 1979) or Alefeld & Herzberger 1983).  
 
Consider two variables X and Y, given as intervals [xl,xu] and [yl,yu] respectively, where xl ≤ xu 
and yl ≤ yu. The most basic arithmetic operations for intervals are given below: 
 
 X + Y  = [xl + yl, xu + yu]    (7.5) 
 X – Y  = [xl - yu, xu - yl]    (7.6) 
 X · Y  =[min(xlyl, xlyu, xuyl, xuyu), max(xlyl, xlyu, xuyl, xuyu)]  (7.7) 
 X / Y  =[min(xl/yl, xl/yu, xu/yl, xu/yu), max(xl/yl, xl/yu, xu/yl, xu/yu)]; 0∉ [yl,yu] (7.8) 
 
Let us visualise this with a simple example (from Ferson et al., 1999). Suppose we know that 
the value of A is between 2 and 4, and that of a number B is between -1 and 3, which we 
represent by writing A=[2,4] and B=[-1,3]. Intuitively it is easy to see that the sum of A and B 
must be somewhere between 1 and 7, i.e. in the interval [1,7]. The endpoints of the resulting 
interval are the sums of respective endpoints of the inputs. However, as can be seen in Eq. 
(7.6), for subtraction the endpoints are the differences of the opposite endpoints of the inputs. 
In the example this would mean A - B = [-1,5], see Figure 7.5. A difference as low as -1 will 
arise from A being 2 and B being 3, and a difference as large as 5 will arise when A is 4 and 
B is -1.  
 

A

1 2 3 4 5  

B

-2 -1 0 1 2 3 4

A+B

0 1 2 3 4 5 6 7 8  

A-B

-2 -1 0 1 2 3 4 5 6  

A*B

-5 0 5 10 15

B/A

-1 -0.5 0 0.5 1 1.5 2  
Figure 7.5. Examples of basic arithmetic operations on interval numbers. 
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The product A · B must be in the interval [-4,12], see Figure 7.5. Notice that in this case 
finding the resulting interval is somewhat more complicated than simply finding the products 
of the endpoints of the factors. The lower bound of A is not even involved in the calculation 
of the result. As can be seen in Eq. (7.8), division is defined for interval numbers when the 
divisor does not contain zero within its range. Thus B/A exists, see Figure 7.5, but A/B does 
not. 
 
The example given above deals only with the most basic arithmetic operations: addition, 
subtraction, multiplication and division. The rules of interval analysis also allow us to 
compute bounds on all the elementary mathematical operations, for instance powers, roots, 
minima, maxima, exponentials and logarithms. Software for this kind of arithmetic is 
commercially available. 
 
Finally, it should be noted that interval analysis might seem somewhat paradoxical in that it 
implies that while one cannot know the exact value of a parameter, it is still fully feasible to 
know the bounds of the parameter exactly. This problem is addressed to some extent in fuzzy 
arithmetic, which is briefly introduced in Section 7.6. 
 
7.4.1 Worst case analysis requires interval arithmetic 
 
It should be clear from the example above that interval arithmetic is an appropriate method of 
performing worst case analysis, i.e. estimating the upper (and by definition also the lower) 
bounds of the result as required in worst case analysis. Certainly, estimating the upper bound 
of a quantity, e.g. concentration or dose, by simply combining the upper bounds of all the 
variables in their respective deterministic expressions might lead to erroneous results, 
depending on the computational model structure.  
 
7.4.2 Repeated parameters 
 
A problem in using non-deterministic measures (uncertain numbers) in arithmetic operations, 
which is easily seen in interval arithmetic, becomes apparent when the same parameter occurs 
more than once in an expression. For instance, consider the difference X-X: 
 
 X - X = [x1, x2] - [x1, x2] 
  = [x1 - x2, x2 - x1] 
  ≠ 0 
 
for situations where x1 ≠ x2, i.e. the cancellation law does not hold for intervals (with nonzero 
width). This result might seem somewhat peculiar at first and the explanation is given below. 
First, however, we shall consider yet another example of a variant of the problem. One of the 
basic laws of arithmetic on real numbers is called the distributive law of real numbers. 
Essentially, what it says is that X (Y + Z) = XY + XZ. We shall show that the distributive law 
does not always hold for uncertain numbers. Consider the numerical example:  
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X = [1, 3] 
 Y = [2, 3] 
 Z = [-1, 4] 
 
 Alt. 1:  X (Y + Z) = [1, 3] ([2, 3]+ [-1, 4]) = [1, 3] [1, 7] = [1, 21] 
 Alt. 2: XY + XZ = [1,3] [2, 3] + [1, 3] [-1, 4] = [2, 9] + [-3, 12] = [-1, 21] 
 
As can be seen above the result is not the same for the two alternatives, i.e. the distributive 
law does not hold for intervals with negative inputs. It can be easily shown, however, that as 
long as the intervals are entirely positive, the distributive law holds. Furthermore, for all types 
of intervals, X (Y + Z) is always inside XY + XZ. 
 
It has been shown that neither the cancellation law nor the distributive law holds for all types 
of intervals. However, there are weaker laws for intervals: 
 
 0 ∈  X – X      (7.9) 
 X (Y + Z) ⊆  XY + XZ    (7.10) 
 
Where ∈  means “is an element of” and ⊆  “is a subset of”. The essence of these laws is that an 
expression where X occurs several times might be wider than an expression where the Xs have 
been cancelled out. The obvious explanation is that interval analysis does not recognise and 
account for the dependence between the two Xs, i.e. repeating a parameter introduces the 
same uncertainty more than once in an expression. For this reason, the expression should be 
simplified, and any multiple occurrences of parameters should be cancelled out (whenever 
possible) before conducting interval analysis. In cases where repeated parameters cannot be 
cancelled out, the final result may show a greater uncertainty than would be expected. Despite 
this limitation, interval analysis may still be useful in the screening phase of an analysis, since 
the result will still enclose the true value. 
 
Finally, a word on the problems that repeated parameters might cause in other forms of 
uncertainty calculations. For reasons that will become apparent in the following section 
(where fuzzy arithmetic is regarded as a generalisation of interval analysis), the same 
problems will be experienced within the framework of fuzzy arithmetic. Furthermore, fuzzy 
arithmetic will show the same type of “fail-conservative” behaviour as interval analysis in  
that repeated parameters will always increase the uncertainty in the final result. The same type 
of problem could occur in Monte Carlo analysis, but within that framework a straightforward 
solution is feasible. For each iteration in the Monte Carlo procedure, one simply instantiates 
each occurrence of the parameter to the same value. For example, if the parameter X occurs 
twice in the expression analysed, the same value is used (in an iteration) at both positions in 
the expression. 
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7.5 Probability bounds analysis 
 
In this section a relatively new approach to uncertainty propagation (Ferson et al., 1996, 1998) 
is briefly described. The most attractive feature of this approach, in my opinion, is that it 
provides a way of using the information available on a parameter to construct bounds on 
possible probability distributions without having to make any (unjustified) assumptions. With 
user-friendly software this approach provides a fairly simple tool for quality assurance of 
results from sampling based analyses, most of which often force the analyst to make 
(sometimes questionable) assumptions about the distributions of the parameters and 
dependencies and correlations between the parameters in the model expression. The basic 
features of the probability bounds approach are presented below. 
 
Probability bounds may be constructed from parametric probability distributions, where the 
parameters of the distributions are uncertain. For example, parameter X is a log-normal 
distribution with a mean µ = [2.5,3] and standard deviation σ = [0.8,1]. In Figure 7.6, the 
bounds on all possible distributions given this information are displayed for parameter X. 
Probability bounds can also be constructed in a distribution-free context, where one cannot 
specify the particular shape of a distribution. For instance, all that is known about parameter Y 
is its min = 2, max = 3 and mean = 2.4. Nothing is known about the shape of the distribution. 
In Figure 7.6, the bounds on all possible distributions given this information are displayed for 
parameter Y. The software RiskCalc (Ferson et al., 1999) was used to generate the probability 
bounds in this example. Distribution-free probability bounds have been derived for various 
sets of information regarding the uncertain variable, see Ferson et al. (1999). Z is a uniform 
distribution with min = 2 and max = 3. All Parameters are shown as cumulative distribution 
functions. 
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Figure 7.6. Examples of the addition of probability bounds. 
 
In the lower right corner of Figure 7.6, the parameters X, Y and Z have been added assuming 
independence (the bold lines). If one is uncertain about dependencies between the variables 
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the probability bounds approach allows arithmetic operations where no assumptions about 
dependencies are made (Ferson et al., 1999). The fine lines in the lower right corner of Figure 
7.6 show the result of addition where no assumptions about dependencies have been made. 
Obviously, without the assumption of independence, the uncertainty band is wider. 
Probability bounds may be used in calculations wherever probability distributions can be 
used. For more details on the mathematical foundations of the probability bounds approach 
see, for instance, Ferson et al., (1996, 1999). 
 

7.6 Fuzzy arithmetic 
 
Fuzzy arithmetic can be regarded as a generalisation of interval analysis in that a fuzzy 
number can be considered to be a nested stack of intervals, each at a different level of 
presumption α, 0 ≤ α ≤ 1, see Figure 7.7. The range of values is widest at a presumption or 
‘possibility’ level of zero. Just above α level zero is the interval that everyone would agree 
contains the true value, i.e. the most conservative range. At an α level of one the most 
optimistic range of values is given. This range may even be a point, i.e. the best estimate of 
the value. It is also possible to consider the α level in the following way: α = 1 is the range of 
values that are identified as “entirely possible”, while in contrast just above α = 0 is the range 
of values that are “just possible” or only “conceivable” (Ferson & Kuhn, 1994). Zadeh first 
introduced the concept of fuzzy sets in 1965 (Zadeh, 1965). Since then, several thousands of 
papers and books have been published on the subject. Fuzzy arithmetic is an offshoot from 
fuzzy set theory and the rules for combining fuzzy numbers in calculations are given within 
this framework. The arithmetic of fuzzy numbers, as described by Kaufmann and Gupta 
(1985), essentially reduces to interval analysis repeated once for each α level. The difference 
is that fuzzy arithmetic generates an entire distribution instead of a simple interval or range. In 
the examples shown below the software RiskCalc 3.0 (Ferson et al, 1999) has been used to 
demonstrate some basic arithmetic operations on fuzzy numbers. As for intervals, most 
arithmetic operations, including powers, roots, minima, maxima, exponentials and logarithms, 
are defined for fuzzy numbers, and a wide range of software for performing fuzzy arithmetic 
is commercially available. 
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α
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A-B

0

0.5
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α

 

A*B

0

0.5
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α

B/A

0

0.5

1

-1 0 1 2 3
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Figure 7.7. Examples of basic arithmetic operations on fuzzy numbers. 
 
Fuzzy numbers in the sense described above have been used to some extent to represent 
uncertainty in various risk analysis applications in the past 10-20 years. For example, Schemel 
et al. used fuzzy numbers to represent uncertainty in failure probabilities in fault trees 
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regarding the reliability of foam suppression systems (Schemel et al., 2000). Abrahamsson et 
al. made use of fuzzy numbers to represent uncertainty in probabilities in a decision-making 
situation regarding which level of fire protection to use in an industrial facility (Abrahamsson 
et al., 2001). Ferson & Kuhn used fuzzy numbers to propagate uncertainty in ecological risk 
analysis (Ferson & Kuhn, 1992). There is an immense body of literature on this matter 
available for the interested reader. 
 
The main argument for using fuzzy numbers and fuzzy arithmetic over the more classical 
probabilistic approach in risk analysis is that it is claimed to “make fewer assumptions” than 
probability theory, principally because it is based on weaker axioms. Obviously, no one can 
argue against probability theory possibly proving more powerful in situations where all of its 
axioms are satisfied but, it is claimed that risk analysis is often performed in situations where, 
for example, access to data is severely limited. In a classical example of how probability 
theory and fuzzy arithmetic differ, Ferson et al. compare the sums of uniform distributions 
(Ferson et al., 1999):  
 
“When two uniform probability distributions are added together under the assumption of 
independence, the result is a triangular distribution. In the limit, the sum tends to a normal 
distribution (with a very small coefficient of variation). When two analogous flat fuzzy 
numbers (i.e. intervals) are added together, the result is another flat distribution, and in the 
limit, still a flat distribution. The big difference here is that fuzzy arithmetic is not assuming 
independence between the variables. Of course, when the input distributions are not flat, the 
answer coming out of fuzzy arithmetic won’t be either, but the distribution will be broader 
than that predicted by the comparable probabilistic method. However, it won’t be as broad or 
hyper conservative as the analogous interval or worst case method. Likewise, because fuzzy 
numbers are fashioned merely as robust representations of existing uncertainty, there should 
only be weak sensitivity of the final results to details of the shapes of the input distributions. 
Many analysts consider this an important advantage because there is often so little 
dependable empirical information underlying the selection of one input distribution over 
many alternatives. It’s fair to say that fuzzy arithmetic is intermediately conservative between 
Monte Carlo analysis and worst case/interval analysis.” 
 
It should not be forgotten that fuzzy arithmetic is still considered controversial by a “non-
negligible” part of the risk analysis and decision theory community, see for instance Cooke 
(1991). In Ferson et al. (1999) the following comments are made: “/…/ it is true however that 
possibility theory and fuzzy arithmetic are young disciplines. There has not been very much 
time for theorists and practitioners to amass a long tradition of experience from which risk 
analysts might draw guidance. Nevertheless, the many advantages of fuzzy arithmetic suggest 
it can be very useful for risk assessments where data are perennially in short supply.” 



Methods of parameter uncertainty propagation and analysis 

 53 

7.7 Arguments for and against the different approaches to uncertainty analysis 
 
It is my firm belief that it is impossible to identify a single approach to uncertainty analysis 
that will prove to be the most powerful in all situations. The choice of approach is a delicate 
one and will most certainly be dependent on factors such as the purpose of the risk 
assessment, the information at hand, the nature of the uncertainty, e.g. variability or ambiguity 
etc. In this section, an effort is made to present the most obvious pros and cons regarding the 
different methodologies that have been presented in the previous sections. I believe that it will 
always, to some extent, be a matter of opinion which method is most appropriate in a given 
situation. Indeed, the differences between the methods are substantial, and the choice of 
method may significantly influence the final result of the risk assessment. It might at times 
prove wise to employ more than one methodology for a particular situation, perhaps at 
different times during the process, e.g. interval analysis in the screening phase and some other 
method for the more detailed analysis, or to answer different questions or address different 
problems. 
 
7.7.1 Deterministic (best estimate) approach 
 
Pros: The results will represent the best estimate of the risk, hopefully producing more 
realistic results than, for instance, worst case analysis. 
  
Cons: This approach does not express the reliability of the results. To make sound use of this 
approach it would have to be combined with other types of information including the effects 
of uncertainties.  
 
7.7.2 Worst case analysis 
 
Pros: Worst case analysis accounts for uncertainty by being conservative and it might prove 
especially useful in screening assessments.  
 
Cons: It will be very difficult, if not impossible, to be consistent regarding how conservative 
different analyses are, which makes it impossible to compare risks from different analyses. 
There is a good chance that the analysis will be hyper-conservative, which makes it 
impossible to make sound decisions on, for instance, risk-reducing measures under 
economical constraints.  
 
7.7.3 Interval analysis 
 
Pros: Interval analysis is a straightforward, easily explainable, method that in fact generalises 
and refines worst case analysis. Interval analysis can be used whatever the source of 
uncertainty. Interval analysis is very well suited for screening studies, due to inherent 
conservatism and simplicity. 
 
Cons: Since one is working with only the ranges of the inputs, these ranges can grow very 
quickly, making the results more or less useless in many real-life situations. There is no way 
to take into account more information on the parameters than just the ranges, which will often 
lead to too conservative results. To some extent, the approach is paradoxical, since it implies 
that one cannot know the exact value of a parameter, but the exact bounds may be known. The 
methodology compounds stochastic and knowledge-based uncertainty. 
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7.7.4 Fuzzy arithmetic 
 
Pros: Fuzzy arithmetic can be regarded as a generalisation of interval analysis, making 
computations easy and easy to explain. (Software is required for non-elementary problems). 
The methodology does not require detailed empirical information; one can make use of 
subjectively assigned distributions. Fuzzy numbers are robust representations of uncertainty 
when empirical information is very sparse. Dependencies and correlations between 
parameters need not be specified as the methodology is inherently conservative in this matter.  
 
Cons: Fuzzy arithmetic is not yet widely known in the risk analysis community, and some 
criticism has been directed towards the fundamentals of the methodology. The meaning of α, 
i.e. the level of conservatism is not clear. This poses problems since one might use different 
levels of conservatism for different parameters in an analysis. Although it is not as 
conservative as interval analysis, it might still be too conservative in some situations. One 
could say that the approach is intermediate regarding conservatism between analogous Monte 
Carlo and interval approaches. As with interval analysis, repeated parameters may constitute a 
computational problem, leading to unnecessarily conservative results. There is as yet no 
method for merging fuzzy arithmetic with Monte Carlo-based methods, which possibly would 
have been an advantage since some argue that fuzzy numbers handle certain types of 
uncertainty better than Monte Carlo methods and vice versa. No methods are available within 
the fuzzy framework to keep different types of uncertainty separate in an analysis.  
 
7.7.5 Analytical probabilistic analysis 
 
Pros: For simple models where the uncertainties are small, Gaussian approximation methods 
have proved to be useful. The approach is fairly simple and has a long tradition in, for 
instance, the physical sciences. It usually requires only the mean and variance, i.e. one does 
not have to specify the total distribution. One of the most appealing features of this approach 
is that the importance of each parameter in the model, with respect to its contribution to the 
overall uncertainty, is given directly since the variance of the model output is expressed as the 
sum of the variances of each input. 
 
Cons: The uncertainties in risk analysis are often large compared with nonlinearities in the 
models, making these first-order approximations less suitable. Higher order approximations 
could be used to help solve this problem, but this often leads to complicated algebraic 
solutions when the models grow in complexity, which is often the case in risk analysis. Since 
the method only requires the mean and variance as input, these are also what is obtained as 
output. This could be a problem, especially when the tails of the distributions are of interest in 
the risk analysis, e.g. in the analysis of systems characterised by low probability, high 
consequence scenarios. 
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7.7.6 Monte Carlo analysis (including Latin hypercube and other sampling schemes) 
 
Pros: The sampling-based methodologies described earlier are all fairly simple to implement, 
equally simple to explain, and user friendly software is available for analysts. When used 
correctly, the total distributions of the model output are obtained, representing the full 
uncertainty in the model output. Within this framework, one can use information on 
correlations and dependencies between the variables to see what impact they have on the 
uncertainty in the final results. 
 
Cons: To be able to perform a Monte Carlo analysis, one has to have access to a great deal of 
empirical information, e.g. explicit information on the distributions of all variables and their 
correlations and dependencies. In practice, this often forces the analyst to make (sometimes 
questionable) assumptions regarding, for instance, independence, which might lead to non-
protective results, i.e. the output distributions are “narrower” than justified. Within the 
classical Monte Carlo approach, it is not possible to separate different kinds of uncertainties, 
i.e. stochastic uncertainty and knowledge-based uncertainty are combined.  
 
7.7.7 Two-phase Monte Carlo analysis 
 
Pros: The most obvious advantage of two-phase Monte Carlo methods over standard methods 
is that it is possible to distinguish between different kinds of uncertainty, i.e. uncertainty due 
to natural variability (stochastic uncertainty) and uncertainty due to a lack of knowledge 
(epistemic uncertainty). Within this framework it is possible to express and account for 
uncertainty in the parameters of the chosen distributions for the input variables. The 
methodology provides a way of handling model uncertainty. When carried out correctly, this 
is the perhaps most powerful method of uncertainty propagation and analysis. 
 
Cons: Although this methodology deals with uncertainty in the parameters of the distributions 
it is not capable of handling uncertainty in distributional shapes. In complex models, the 
calculations can be cumbersome and the computational requirement grows rapidly. 
 
7.7.8 Probability bounds analysis 
 
Pros: The most attractive feature of this approach is that it can deal with uncertainty in 
parameter values, distribution shapes, dependencies (in a conservative way) and model form. 
One can make use of newly gained empirical information to tighten the bounds, thus reducing 
the uncertainty in the final result. This approach provides a simple means of quality assurance 
of Monte Carlo results.  
 
Cons: The only way to present the results is in cumulative form. It is difficult to obtain 
optimal bounds when there are repeated occurrences of parameters in the expression. One 
cannot use information on correlations and dependencies (apart from independence 
assumptions) to tighten the bounds. The methodology can not be used to separate different 
kinds of uncertainties.  
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7.7.9 Computational requirements 
 
In this section, the relative computational demands for each of the methods described in the 
previous sections, (analytical probabilistic methods excluded for obvious reasons), is 
presented (from Ferson et al., 1999). 
 
Table 7.1. Relative execution time for the different analysis methodologies. 
Analysis methodology 
 

Relative execution time 

Deterministic point estimate 
 

T 

Interval analysis 
 

4T 

Fuzzy arithmetic MT 
where M ∈  [40, 200] 

Monte Carlo analysis NT 
where N ∈  [400, 50 000] 

Probability bounds analysis K2T 
where K ∈  [20, 100] 

Two-phase Monte Carlo analysis N2T 
where N ∈  [400, 50 000] 

 
With the recent and ongoing development in personal computer capacity this issue will be of 
less importance in the future. The time required to set up the model is often far longer than the 
actual execution time. For large, complex models however, computational requirements may 
still be an issue worth considering before choosing a methodology. 
 
7.7.10 Discussion  
 
The different approaches to dealing with uncertainty presented above have proved to possess 
different desirable and undesirable features, making them more or less useful in different 
situations. A general conclusion, with respect to future standardisation work, is that the 
probabilistic framework appears to be the most promising. This is due to its strong theoretical 
foundations and the possibility of quantifying, and analysing, uncertainties originating from 
fundamentally different sources (e.g. aleatory and epistemic uncertainty) separately. The 
treatment of knowledge-based uncertainty within the probabilistic framework implies 
probability being regarded a degree of belief, i.e. the Bayesian point of view. 
 

7.8 Choosing a methodology based on the problem under consideration 
 
It is thus fairly clear that we will have to accept the fact that there is no single method 
available that is useful and effective in all situations. Different levels of treatment will be 
required in different assessment situations.  
 
In this section, an attempt to identify different possible levels of treatment of uncertainty, 
proposed by Paté-Cornell (1996) is briefly presented. The main objective of this section is to 
demonstrate that there can be no single methodology suitable for every situation and 
assessment, but different situations call for different solutions. As stated by Paté-Cornell 
(1996): “Clearly, some decisions do not need full explicit quantitative treatment of 
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uncertainties (or any at all): sound risk management decisions are often made and have been 
made for a long time without any such analysis. In other cases, an analysis is extremely 
helpful because the problem is complex and the information needs to be structured.” An 
attempt is made here to relate the different levels of treatment proposed by Paté-Cornell to the 
methods presented earlier in this chapter. 
 
Level 0: Identification of hazard 
 
Level 0 involves the identification of a potential hazard or of the different ways in which a 
system can fail, without attempting to assess the risk in any quantitative way. This level of 
analysis can be sufficient to support zero-risk policies, or to make risk management decisions 
when the costs are low and the decision is clear. Not many practical decision-making 
situations in the area under consideration fit this description, however. 
 
Level 1: “Worst-Case” approach 
 
Level 1 is the “worst-case” approach. This approach does not consider the probability or 
possibility of different outcomes. It is based on the accumulation of worst-case assumptions 
and yields, in theory, the maximum loss level. The approach is reasonable if knowing the 
worst possible loss is sufficient to support the decision. Worst-case analysis requires interval 
analysis for reasons described in Section 7.4.1. However, in practical decision-making 
situations this approach is rarely of any real value, since regardless of how the worst-case 
scenario is constructed, it will always be possible to imagine (even more unlikely) events that 
will worsen the results. This is partly why the “quasi-worst case” has been a dominant 
approach in many engineering disciplines as the main method of accounting for uncertainty, 
see below. 
 
Level 2: Quasi-worst-case, plausible upper bounds 
 
Level 2 involves “plausible upper bounds”. This analysis represents an attempt to obtain a 
deterministic evaluation of the worst possible conditions that can “reasonably” be expected 
when there is either some uncertainty as to what the worst case might be, or when the worst 
case is so unlikely that it is meaningless. This is, by far, the most common approach in many 
engineering disciplines, e.g. fire safety engineering, to account for uncertainty in design 
situations. For example, when evaluating the fire safety in public buildings, the predominant 
methodology is to construct “design fire scenarios” using a quasi-worst-case approach. The 
method best suited for this level of treatment of uncertainty would be interval analysis. 
However, major shortcomings in the quasi-worst-case approach become apparent when 
decisions have to be made under budget constraints, e.g. a choice between different design 
alternatives, since there is no way of evaluating and comparing the level of conservatism in 
the different alternatives. Furthermore, comparison of risks based on the plausible upper 
bounds approach will not be meaningful, since there is no theoretical reason for the ranking of 
risks according to plausible upper bounds to be the same as the ranking of the means (Paté-
Cornell, 1996). In this respect, a “best estimate” approach is more promising.  
 
Level 3:”Best estimate”, central value 
 
Level 3 analysis involves a “best estimate” and/or on a central value (e.g., the mean, the 
median or the mode) of the outcome distribution, generally obtained by using “best estimates” 
of the different variables. This approach is often used in applications such as cost-benefit 
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analysis. “Generally speaking, the advantage of central values is to provide a reasonable 
balance to plausible upper bounds” (Paté-Cornell, 1996). However, this kind of deterministic 
approach does not provide a sufficient description of the effects of uncertainties on the results.  
 
Level 4: Probabilistic risk assessment, single risk distribution 
 
It is first on this level that one can talk of quantitative risk analysis as defined in Chapter 2. It 
is within this group that most of the methods presented earlier in this chapter belong. (The 
term used by Paté-Cornell implies that only the probabilistic approach is valid, but if one 
accepts the fuzzy framework, it provides this level of treatment.) The approach is based on 
generating a distribution of the possible outcomes, where aleatory and epistemic uncertainties 
are aggregated into one single distribution. (It should be noted, however, that when performed 
in its simplest form, QRA provides a distribution of the probabilities of different system states 
based on best estimates of the models and parameter values, involving only aleatory 
uncertainties.) The approach in which different types of uncertainty are aggregated into one 
distribution is sufficient if one is interested only in a full representation of all the uncertainties 
involved in an analysis, and not in whether the uncertainties originate from randomness or 
lack of knowledge. (The probability bounds approach described in Section 7.5 can be 
regarded a special case in this group, since it provides bounds on all the possible distributions 
of the outcome, but still aggregates stochastic and knowledge-based uncertainty.) Obviously, 
if one is interested in finding ways of reducing the total uncertainty in the results, it may be 
helpful to keep different types of uncertainty separate in an analysis, see below.  
 
Level 5: Separation of different types of uncertainty 
 
Level 5 constitutes the most sophisticated treatment of uncertainty, since fundamentally 
different types of uncertainty, i.e. randomness and epistemic uncertainty, are kept separate 
during the analysis; for a practical example, see Chapter 9. The main methods capable of this 
kind of analysis are the analytical probabilistic methods (for simple problems), and two-phase 
Monte Carlo procedures. The results obtained from such an exercise will be a family of 
distributions of the output, where each distribution represents stochastic uncertainty, and the 
dispersion of the distributions represents the effects of epistemic uncertainty. 
 
Let us conclude this section with the words of Paté-Cornell (1996): “In all cases, it is essential 
to remember how the numbers were generated, what they represent and what they can be used 
for.” 
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8. Methods of ranking uncertain parameters 
 
One of the major objectives in performing a complete parameter uncertainty analysis is to 
rank the parameters with respect to their contributions to the uncertainty in the model 
prediction (IAEA, 1989; Morgan & Henrion, 1990). The most obvious reason for this being 
that such a ranking makes it possible to allocate research resources efficiently, should a 
reduction in the calculated uncertainties in the output prove necessary in order to reach an 
acceptable degree of reliability in the results. Of course, the methods available for this kind of 
ranking will be dependent on the type of uncertainty propagation method used, e.g. if 
analytical or numerical methods have been used. In this section, only methods within the 
probabilistic framework will be described. Some suggestions have been made regarding 
methodology for importance measures within a “fuzzy” framework. None of these are, 
however, discussed here, partly due to lack of consensus regarding appropriate methods in the 
literature. The interested reader is directed towards Suresh et al. (1996) and Furuta & 
Shiraishi (1984) where fuzzy importance measures in fault tree analysis are discussed. 
 

8.1 Analytical methods 
 
The probabilistic analytical methods of uncertainty propagation discussed in Section 7.3.1 
provide the variance of the model prediction as a function of the variances and covariances of 
the uncertain parameters, and an immediate ranking of the individual parameters with respect 
to their contribution to the overall uncertainty in the model prediction is thus possible. 
 

8.2 Numerical methods 
 
In this section some of the most commonly employed indicators for ranking uncertain 
parameters in relation to sampling-based methods for uncertainty analysis and propagation 
will be presented.  
 
8.2.1 Correlation coefficients 
 
One fairly simple and straightforward method of ranking uncertain parameters is to calculate 
the sample correlation coefficient of the model prediction and each of the uncertain 
parameters, using the sample of output values and the corresponding sample of values for 
each input. Consider n samples from the output and a single input, denoted as yj, xj, for j = 1 
to n. The sample (or Pearson) correlation coefficient is computed from: 
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The correlation coefficient provides an estimate of the degree of linear relationship between 
the sample values of the model output and the input parameter. This is done for every input 
parameter, providing a measure of how much each input contributes to the output uncertainty. 
The sign of the coefficient tells us the direction of the relationship, and the absolute value of 
the coefficient indicates the strength of the relationship (where -1 indicates a completely 
negative linear relation and +1 a completely positive linear relation). In situations often 
encountered in risk analysis, where there are significant correlations between the input 
parameters, the correlation coefficient measure fails to recognise these correlations. For 
example: the contribution from an uncertain parameter to the total uncertainty in the output is 
insignificant. It is, however, strongly correlated another input parameter, which is a major 
contributor to the output uncertainty. In this case, the correlation coefficients computed for the 
two input parameters will be almost the same in absolute terms (IAEA, 1989). However, Iman 
and Helton (1988) show how to compute partial correlation coefficients, which eliminates the 
effect of correlated inputs. 
 
8.2.2 Partial correlation coefficients 
 
As stated above, the correlation coefficient measure does not account for correlations between 
the input parameters. Partial correlation coefficients (PCC) are, however, measures of the 
contribution of each input parameter to the total output uncertainty, after effects attributable to 
other input parameters have been removed (Morgan and Henrion, 1990). See the IAEA report 
(1989) for information on how to calculate the PCC. 
 
However, the IAEA report (1989) indicates several limitations regarding the usefulness of this 
measure in ranking uncertain parameters. For instance, it is not possible to obtain an estimate 
of how much of the final variation in the model output can be explained by a linear 
relationship between the uncertain parameters and the model output in the nonlinear case, 
which makes a discussion about linear regression and standardised regression coefficients 
necessary. 
 
8.2.3 Multiple linear regression analysis 
 
 A linear regression model of Y as a function of X assumes that a linear relationship of the 
type Y = a + bX + ∈  holds, where ∈  is a random error (IAEA, 1989). Basically, the model 
tries to fit a straight line to data consisting of the values y1, y2, … , yn observed for given 
values of x1, x2, … , xn by obtaining estimates of the coefficients a and b. (See IAEA (1989), 
or any standard textbook on statistics for a detailed description of the linear regression 
procedure.) In the case of multiple linear regression the assumed linear expression for Y is not 
just a function of one variable, X, but of several variables X1, X2, … , Xm. The resulting 
approximate expression is often called a “fitted response surface”. For a practical example of 
the response surface method, see Frantzich, Harrada & Magnusson (1995). 
 
When performing a multiple regression analysis, it is common practice to calculate the sample 
coefficient of determination R2 (see, for instance, IAEA (1989) for guidance on how to 
calculate R2), which is an indication of how much of the variation in the model output is 
explained by a linear relationship to the uncertain parameters included in the regression 
expression. This is very useful since it provides an indication on how much confidence we 
may have in the ranking of the uncertain parameters generated by the regression analysis. 
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Partial regression coefficients 
 
The coefficients ai, i = 1, 2, … , m of a multiple linear regression model, 
 

Y = a0 + a1X1 + a2X2 + … + amXm + ∈    (8.2) 
 
are called partial regression coefficients. They are by definition the partial derivates of Y with 
respect to Xi. The practical meaning of this is that the coefficient ai indicates the change in 
model output Y associated with a unit change in Xi, all other Xk, k ≠ i remaining constant, 
making the coefficients in some sense suitable for ranking the uncertain parameters, (together 
with the sample coefficient of determination, R2). One problem, however, is that this measure 
is sensitive to the units of the uncertain parameters. This problem is eliminated by calculation 
of the standardised partial regression coefficients. 
 
Standardised partial regression coefficients 
 
If, in the multiple regression model presented in the previous section, Y and Xi are 
standardised according to: 
 

V = (Y – E(Y)) / D(Y),  Ui = (Xi – E(Xi)) / D(Xi) 
 
then the coefficients bi, i = 1, 2, … , m of the multiple linear regression model  
 

V = b1U1 + b2U2 + … + bmUm + ∈    (8.3) 
 
are called standardised partial regression coefficients. The practical meaning of this is that the 
coefficient bi indicates by how many standard deviations the model output Y changes when Xi 
changes by one standard deviation, all other Xk, k ≠ i remaining constant. This, together with 
the sample coefficient of determination R2, makes the standardised partial regression 
coefficients very illustrative measures for ranking uncertain parameters. 
 
8.2.4 Rank correlation coefficients 
 
One limitation of correlations and regression coefficients in ranking uncertain parameters is 
that they are generally not good indicators of nonlinear monotonic relationships between input 
and output. This, however, is not at all surprising since regression and correlation analyses are 
in fact based on developing linear relationships between variables. To overcome the problems 
associated with poor linear fits to nonlinear data one can use a rank transformation procedure, 
in which the original data are replaced by their corresponding ranks, and the normal 
regression and correlation procedures are then performed on these ranks. The procedures are 
explicitly described by Saltelli & Sobol (1995). Basically, the rank transformation itself is 
nothing more than a process of arranging a set of values in ascending order and assigning an 
ordinal number to each value, for example: 
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Given set    Corresponding rank 
of values    transformed values 

 -2.4 3 
 -7.2 5 
 -2.7 1 
 -3.8 4 
 -0.5 2 
  
The sample correlation coefficients of the rank transforms of the model prediction and each of 
the uncertain parameters are called sample rank correlation coefficients (RCCs). Rank 
correlation coefficients are considered to be more generally suitable for ranking uncertain 
parameters than indicators of degrees of linear relationship only, such as the correlation 
coefficients and standardised partial regression coefficients described in the previous sections.  
 
It was shown above that the correlation coefficient can be found via the partial correlation 
coefficient to finally reach the standardised partial regression coefficient, which proved to be 
a more effective indicator for ranking uncertain parameters due to (among other things) its 
insensitivity to the units of the uncertain parameters and the possibility of checking how good 
an indicator it really is by calculating the sample coefficient of determination R2. In a similar 
manner one can argue for a transition from the rank correlation coefficient, via the partial 
RCC to the standardised partial rank regression coefficient (SPRRC) to reach a more 
generally applicable indicator for ranking uncertain parameters. IAEA (1989) describes the 
process of obtaining the SPRRCs as follows. 
 
“To obtain the SPRRCs from a given random sample of parameter values and corresponding 
model predictions the sample values are first rank transformed and then standardised. 
Multiple linear regression performed on these rank transformed and standardised values 
provides the SPRRCs. The corresponding value of R2 indicates how much of the variation of 
the rank transformed sample values of the model prediction is explained by a linear 
relationship to the rank transforms of the uncertain parameters.” 
 
In situations where the underlying data do not show monotonic relationships (where, by 
definition, correlation and regression methods perform poorly, whether rank transformed or 
not), Helton & Davis suggest sampling based methods for identification of nonmonotonic 
patterns and random patterns. These methods are not discussed here and the interested reader 
is referred to Helton & Davis (2000). 
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9. A case study 
 
In this section, a simple case study will be presented, in which the different features of the 
methods of uncertainty propagation surveyed are highlighted. The example involves a 
simplified pressurised ammonia storage facility, consisting of a pressurised tank and 3 metres 
of pipeline (∅  50 mm). The assessment will consider the release of pressurised ammonia to 
the surroundings, and the assessment end-points are: 
 

•  Concentration of ammonia at a geographical location (x,y), see Figure 9.1. 
•  Individual risk (as defined in CCPS 2000) at a geographical location (x,y). 
•  Societal risk (as defined in CCPS 20008) at a geographical location (x,y). 

 
The different methods of uncertainty propagation described earlier have been used for each of 
these end-points. For comparison, the installation was also analysed using the Dutch approach 
described by the Committee for the Prevention of Disasters in the report CPR18E (1999). 
 

 
 
Figure 9.1. Overview of the assessment case. The delimited system, consisting of a  
pressurised tank and 3 metres of pipe, and the calculation grid used in the example. 
 
In the example, three different physical models are used, i.e. a discharge model for estimating 
the source term, a dispersion model for estimating the concentration of ammonia at a specific 
geographic point (i.e. the grid point), and a Probit function to represent the dose-response 
relationship. The (fairly simple) models used in this example are all in the form of analytical 
expressions (see Appendix 3), which is a prerequisite for the use of most of the methods of 
uncertainty propagation described earlier. The objective of this example is to demonstrate the 
various features of the methods of uncertainty propagation, not to model the situation as 
accurately as possible. (When more complex computer models are used for the physical 
modelling, response surface methods are available, producing analytical expressions, based on 

                                                 
8 For the calculation of individual and societal risk, the general approach is to define a grid over the area of 
interest, i.e. the calculation grid. For the calculation of societal risk, the population density in each grid cell is 
assumed to be condensed in the grid point (i.e. the central point of the grid cell). Thus, calculations have only to 
be made for the grid point. 
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a few variables, to represent the computer models, see Section 7.1.1.) Furthermore, model 
uncertainty is not explicitly treated, except for one isolated example in Section 9.2.2, where 
model uncertainty is used to exemplify the features of two-phase Monte Carlo analysis. 
 

9.1 Extended QRA - Definition of possible incidents/scenarios 
 
Inherent in the QRA methodology is the identification of possible accident scenarios. In the 
Dutch guidelines for QRA, described by the Committee for the Prevention of Disasters 
(1999), the loss of containment (LOC) events required to be included in an analysis are 
prescribed for various equipment9. Below the prescribed LOCs for the equipment analysed in 
this example are shown. These will be used throughout the example, without further efforts to 
identify additional possible LOCs. Thus, completeness uncertainty in this respect is not 
analysed in the example. 
 

T1: instantaneous release of the complete inventory of the tank, 
T2: continuous release of the complete inventory in 10 min at a constant rate of release, 
T3: continuous release from a hole with an effective diameter of 10 mm, 
P1: full bore rupture of the pipe, 
P2: outflow from a leak with an effective diameter of 10% of the nominal diameter of 
the pipe, and a maximum of 50 mm. 

 
In the following examples, some of the parameters in the above scenarios, for instance, the 
time required to empty the tank in LOC T2 will be treated as uncertain variables, in order to 
exemplify how the different methods of uncertainty propagation work, and what kind of result 
they produce. In the example, no formal methods have been used when establishing the 
representation of uncertainty for the variables under consideration. However, as stated above, 
the main objective of the example is to present the features of the different methods of 
uncertainty propagation and analysis rather than to try to model the situation as correctly as 
possible.  
 

9.2 Concentration at grid point (300,0) 
 
In this section, the average concentration of ammonia at grid point (x,y), following a 
discharge, will be calculated, where x is the downwind distance from the discharge to the 
geographical point of interest, and y is the cross-wind distance from the centre of the gas 
plume.  In the example x is set to 300 m and y is set to 0 m. 
 
9.2.1 A single LOC 
 
Let us consider one single LOC, for instance T2 in the list above. The concentration at grid 
point (300,0) is calculated for a number of different weather conditions, i.e. different stability 
classes10 and wind speeds.  

                                                 
9 It should be noted that when prescribing the LOCs to be used in an analysis, the issuer of such guidelines, by 
some means, accepts responsibility for any completeness uncertainty introduced during the identification stage 
of an analysis. 
10 For a description of atmospheric stability classes see, for instance, CCPS (2000). 



Case study 

 65 

The Dutch approach 
 
In the Dutch approach, each LOC has to be evaluated for the six representative weather 
classes presented in Table 9.1. This, obviously, is an attempt to model the stochastic 
uncertainty related to atmospheric conditions. (In the example, the central value for wind 
speed is chosen in each class). 
 
Table 9.1. The six representative weather classes (from the Committee for the Prevention of Disasters, 1999). 
Stability class (Pasquill class) Wind speed 

B Medium (3-5 m/s) 
D Low (1-2 m/s) 
D Medium (3-5 m/s) 
D High (8-9 m/s) 
E Medium (3-5 m/s) 
F Low (1-2 m/s) 

 
The mass release rate, Q, is generated from the definition of the LOC, i.e. a continuous leak of 
20 000 kg for 600 s ⇒ Q = 33.3 kg/s. The resulting concentrations are given in Table 9.2. 
 
Table 9.2. Resulting concentrations using the Dutch approach. 
LOC Stability class Wind speed [m/s] Concentration [mg/m3] 
T2 B 4  1 556 
T2 D 1.5 19 990 
T2 D 4 7 496 
T2 D 8.5 3 528 
T2 E 4 18 095 
T2 F 1.5 185 394 

 
In the following sections, the different approaches to modelling the uncertainties in the 
calculations described earlier will be used, based on the same set of stability classes as above. 
Note that the area of the hole and the discharge coefficient (which will both influence the 
mass discharge rate), as well as wind speed, are treated as uncertain variables in the following 
sections. 
 
Interval analysis approach 
 
As stated in Section 7.4, the interval analysis approach requires knowledge of the uncertainty 
regarding variables being specified as intervals. The intervals should represent the absolute 
bounds of the uncertain parameter that one wants to explore in the analysis. In Table 9.3, the 
intervals chosen for the uncertain variables in this example are given.  
 
Table 9.3. Uncertain variables specified as intervals. 
Uncertain variable Interval used in the analysis  
Wind speed, U, (stability class B) [3, 5] [m/s] 
Wind speed, U, (stability class D) [1, 9] [m/s] 
Wind speed, U, (stability class E) [3, 5] [m/s] 
Wind speed, U, (stability class F) [1, 2] [m/s] 
Hole area, A [0.0012, 0.0025] [m2] 
Discharge coefficient, Cd [0.7, 0.9] [-] 
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In Table 9.4, the resulting intervals for the concentrations in the different stability classes are 
given. 
 
Table 9.4. Resulting concentrations using the interval approach. 
LOC Stability class Concentration interval [mg/m3] 
T2 B [698, 3 116] 
T2 D [1 878, 45 273] 
T2 E [8 091, 36 121] 
T2 F [57 326, 306 632] 

 
Note that the interval for stability class D is wider than in the Dutch approach above ([3 528, 
19 990]). Obviously, this is due to the treatment of the area of the hole, the discharge 
coefficient and the wind speed as uncertain variables (intervals) in the interval approach. (It 
should also be noted, in the proceeding analysis, that when modelling the effects, one has to 
bear in mind that the exposure time will be dependent on the discharge time, and thus on the 
discharge rate, i.e. one cannot use the same exposure time for all discharges.) If one truly 
wants to push the interval approach to the limit, an interval covering the total range of 
concentrations may be constructed, C = [698, 306 632], providing the “best case” and the 
“worst case” simultaneously. 
 
Fuzzy arithmetic approach 
 
In this example, the uncertain variables are specified as fuzzy numbers using the simple 
strategy of allowing α-level 0 be represented by the intervals specified above, and α-level 1 to 
be represented by the best estimate (i.e. the values used in the Dutch approach above), with 
linear membership functions in between, see Figure 9.2 for two examples. 
 

Discharge coefficient, Cd

0

0.5

1

0.6 0.8 1
Cd [-]

α

 

Hole area, A

0

0.5

1

0.001 0.002 0.003

A [m2]

α

 
Figure 9.2. The uncertain variables, Cd and A, represented by fuzzy numbers. 
 
In Table 9.5, the fuzzy numbers for all the uncertain variables in this example are presented. 
 
Table 9.5. Uncertain variables specified as fuzzy numbers. 
Uncertain variable Fuzzy number used in the analysis  
Wind speed, U, (stability class B) [3, 4, 5] [m/s] 
Wind speed, U, (stability class D) [1, 5, 9] [m/s] 
Wind speed, U, (stability class E) [3, 4, 5] [m/s] 
Wind speed, U, (stability class F) [1, 1.5, 2] [m/s] 
Hole area, A [0.0012, 0.00185, 0.0025] [m2] 
Discharge coefficient, Cd [0.7, 0.8, 0.9] [-] 
 
The computations were performed using RiskCalc (Ferson et al., 1999). In Figure 9.3, the 
resulting fuzzy numbers for the concentration are shown for the different stability classes. 
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Figure 9.3. Resulting fuzzy numbers for the concentration in the four stability classes. 
 
Not surprisingly, the range of the resulting concentration at α-level 0 is the same as for the 
interval analysis above, and the point estimation of the concentration at α-level 1 is the same 
as for the Dutch approach (apart from stability class D, where three different values of wind 
speed are used in the Dutch approach). However, the interpretation of the different α-levels is 
unfortunately not as clear-cut as one would like. At α-level 0, obviously the most 
conservative range is displayed, whereas at α-level 1 the most optimistic estimation is 
presented. The intermediate α-levels, however, can only be interpreted in very general terms, 
i.e. as α increases, the level of conservatism decreases. This reduces the practical use of this 
approach, in this specific example, to a fairly simple means of generating a “best case”, a 
“best estimate”, and a “worst case” in one single analysis. The fuzzy number approach will 
not be examined further in this example. Let us now turn to the probabilistic framework, 
where the interpretation of the distributions is much more straightforward. 
 
The Monte Carlo approach 
 
When using Monte Carlo procedures for uncertainty propagation, the uncertain variables must 
be specified as probability distributions. Here, the methods described in Chapter 5, or other 
standard statistical methods, may be used to construct the distribution based on the available 
information. In Table 9.6, the distributions used for the uncertain variables in this example are 
given. 
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Table 9.6. Uncertain variables specified as probability distributions. 
Uncertain variable Distribution used in the analysis  
Wind speed, U, (stability class B) Normal (4, 0.4)11 [m/s] 
Wind speed, U, (stability class D) Normal (5, 1.5)[m/s] 
Wind speed, U, (stability class E) Normal (4, 0.4) [m/s] 
Wind speed, U, (stability class F) Uniform (1, 2)12 [m/s] 
Hole area, A Triang. (0.0012, 0.00187, 0.0025)13 [m2] 
Discharge coefficient, Cd Uniform (0.7, 0.9) [-] 
 
In the example, the Latin hypercube sampling scheme (10 000 iterations) was used for the 
sampling procedure. Independence between the uncertain variables was assumed. The 
calculations were performed using @risk from Palisade (2001). In Figure 9.4, the resulting 
probability distributions for the concentration in the different cases (i.e. stability classes) are 
shown. The distributions are given as complementary cumulative distribution functions, 
CCDFs. The interpretation of a CCDF is fairly simple. The y-axis represents the probability 
of the concentration, C, being ≥ c on the x-axis. 
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Figure 9.4. Resulting CCDFs for the concentration in the four stability classes. 
 
The above distributions are then used in the analysis as input for the calculation of effects. In 
situations where decisions are to be made using the concentration as a decision variable, the 
above distributions can be used directly, providing the possibility to choose a desired level of 
conservatism. For instance, a possible decision criterion could be that the probability of the 
concentration exceeding xx mg/m3 must not be higher than 5% (i.e. the 95% fractile of the 

                                                 
11 The notation ”Normal (4,0.4)” refers to a normal distribution with mean = 4, and standard deviation = 0.4. 
12 The notation ”Uniform (1,2)” refers to a uniform distribution with minimum = 1, and maximum = 2. 
13 The notation ”Triang. (0.0012, 0.00187, 0.0025)” refers to a triangular distribution with minimum = 0.0012,  
maximum = 0.0025, and mode = 0.00187. 
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distributions is used, possibly after weighting of the different distributions (e.g. by using the 
probabilities for the different stability classes)). 
 
Probability bounds approach 
 
Let us assume that the exact probability distributions of the uncertain variables are not known; 
some information, however, is still available on the possible distributions. In this section, the 
uncertain variables are specified using bounds on the possible probability distributions. For 
instance, let us assume that the information available regarding the wind speed in stability 
class D is that it is normally distributed with a mean value somewhere between 4.5 and 5.5 
m/s, and a standard deviation somewhere between 1.0 and 1.3. Within the probability bounds 
approach, bounds on all possible distributions given this information are constructed, see 
Figure 9.5. In this example the software RiskCalc (Ferson et al., 1999) was used to construct 
the bounds and to perform the computations. 
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Figure 9.5. Bounds on all the possible distributions given the information available for  
wind speed in stability class D. 
 
In Table 9.7 the probability bounds used for the uncertain variables in this example are given. 
 
Table 9.7. Uncertain variables with bounds on all the possible distributions given the available information. 
Uncertain variable P-bounds used in the analysis  
Wind speed, U, (stability class B) Normal ([3.9, 4.1], [0.3, 0.4]) [m/s] 
Wind speed, U, (stability class D) Normal ([4.5, 5.5], [1.0, 1.3])[m/s] 
Wind speed, U, (stability class E) Normal ([3.9, 4.1], [0.3, 0.4]) [m/s] 
Wind speed, U, (stability class F) Uniform (1, 2) [m/s] 
Hole area, A Triang. (0.0012, [0.0016, 0.0021], 0.0025) [m2] 
Discharge coefficient, Cd Uniform (0.7, 0.9) [-] 
 
In Figure 9.6, the resulting bounds on all the possible distributions for the concentration are 
given for the different stability classes. The bold lines represent the resulting bounds based on 
the assumption of independence between all of the uncertain parameters, whereas the fine 
lines represent the resulting bounds when no assumptions about dependence between the 
parameters are made. 
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Figure 9.6. Resulting bounds on all the possible distributions for the concentration in the four stability classes. 
 
The interpretation of the resulting bounds on the CCDFs is as straightforward as with single 
CCDFs, i.e. the y-axis represents the probability of the concentration, C, being ≥ c on the x-
axis. 
 
Comparison of the results 
 
In Figure 9.7, some results from the Dutch approach, the interval approach, the Monte Carlo 
approach, and the probability bounds approach are displayed for comparison. The results refer 
to the average concentration in grid point (300,0) resulting from LOC T2, in stability class D. 
Some general conclusions can be drawn from studying Figure 9.7. The interval approach 
provides, by definition, a “best case/worst case” result. However, a decision based on the 
maximum value of the interval will be extremely conservative. For instance, the maximum 
value from the interval analysis is almost four times the 95% fractile of the resulting 
distribution from the Monte Carlo analysis (C = 12 110 mg/m3). This conservatism will 
obviously be transmitted throughout the rest of the analysis. Furthermore, the effects of 
uncertainty regarding the parameters of the distributions in a probabilistic approach are easily 
recognised when comparing the Monte Carlo analysis and the probability bounds analysis. In 
my opinion, the probability bounds approach provides an interesting way of testing the 
reliability of Monte Carlo results in this respect. Finally, the three deterministic values of the 
concentration resulting from the Dutch approach represent a “low”, a “medium” and a “high” 
consequence (originating from the three different wind speeds), which of course is an inherent 
objective of the approach, i.e. to represent the range of possible outcomes using deterministic 
values. 
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Figure 9.7. Comparison of the results generated by the different methods of representing and propagating 
uncertainty. 
 
Results such as those above were produced for all of the LOCs and for all weather classes for 
further use in the analysis, i.e. in the computation of individual and societal risk. 
 
9.2.2 Model uncertainty – two-phase Monte Carlo 
 
In this section, the two-phase Monte Carlo methodology is exemplified, using the practical 
treatment of model uncertainty14 for illustrating the approach and the results. A (knowledge-
based) model uncertainty parameter was constructed for each model. For the assessment end-
point concentration at grid point (300,0), only two models were used in the example, i.e. the 
discharge model and the dispersion model. The model uncertainty parameters chosen for the 
two models used in the example are given in Table 9.8. It should be noted that the model 
uncertainty may well be much larger than assumed here. In fact, several evaluation studies on 
the reliability of predictions of hazardous gas models have shown a significant discrepancy 
between observed and calculated concentrations (up to an order of magnitude) see, for 
instance, Hanna et al., (1991). 
 
Table 9.8. Model uncertainty parameters used in the example. 
Model Model uncertainty parameter 
Discharge model Uniform (0.5, 1,5) 
Dispersion model Uniform (0.5, 1.5) 

                                                 
14 Model uncertainty was considered only in this isolated part of the case study, with the main objective to 
exemplify the two-phase M. C. approach. In the rest of the study, the models used were assumed to be “true”. 
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In order to demonstrate one way of keeping different kinds of uncertainty separate in an 
analysis, a two-phase Monte Carlo procedure was performed, where the model uncertainty 
parameters were sampled in the outer loop, and all the other uncertain parameters were 
sampled in the inner loop. In Figure 9.8, the resulting CCDFs for the concentration at grid 
point (300,0) are presented, based on 40 cycles in the outer loop (and 10 000 iterations in the 
inner loop). The “dotted” CCDF is the result obtained from standard Monte Carlo analysis. 
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Figure 9.8. Resulting CCDFs from the two-phase Monte Carlo procedure. 
 
As stated earlier, the spread of distributions is due to model uncertainty, whereas each CCDF 
represents the uncertainty in all the other parameters. This methodology can of course be 
applied to whichever uncertain parameters the analyst wants to treat separately in an analysis. 
The most common use of this methodology is to separate stochastic and knowledge-based 
uncertainty. 
 

9.3 Individual risk at grid point (300,0) 
 
For the calculation of individual risk at grid point (300,0), the general procedure described in 
CCPS (2000) was followed. Based on the distributions (and intervals/point estimates) of the 
concentration at grid point (300,0), the probit equation was used to produce distributions of 
the probability of death at grid point (300,0). Furthermore, the frequency of the different 
LOCs was estimated, together with probabilities for different stability classes, wind 
directions, etc, see Appendix 3. The procedure of calculating the individual risk can also be 
found in Appendix 3, in the description of an example RiskCalc file, together with an 
overview of all the uncertain variables in the example, and how the uncertainty was specified 
within the different approaches. 
 
In Figure 9.9, the resulting individual risk estimates at grid point (300,0), generated by the 
different methods, are displayed. The Dutch (standard QRA) approach generates a point 
estimate of the individual risk, while the different methods of uncertainty analysis provide a 
range or distribution of the individual risk, thus accounting for the various uncertainties in the 
calculations.  
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Figure 9.9. Resulting individual risk at grid point (300,0). 
 
Some general conclusions may be drawn from studying Figure 9.9. Firstly, the range of 
variation for the individual risk is significant, notwithstanding the fact that neither 
completeness uncertainty nor model uncertainty have been explicitly incorporated in the 
analysis. Secondly, the individual risk levels obtained by the different methods are fairly low. 
This is mainly due to the fact that only five LOCs (i.e. a small system) were considered. (In 
fact, the maximum possible individual risk (i.e. if the probability of death = 100% for all of 
the LOCs, perhaps attainable right beside the tank) in the Dutch approach was 2.7*10-5, just 
above what is not regarded tolerable for existing plants in Holland). However, a significant 
uncertainty range must of course be expected also when studying a bigger system or 
geographical locations nearer to the system, where the total individual risk values are 
expected to be higher. 
 
Since the individual risk measure is commonly used in decision making, for example for 
comparison with various kinds of tolerability criteria, it is of vital importance to make clear 
how these tolerability criteria were constructed. Do they refer to the central (best estimate) 
value of the risk, or some other part of the distribution? The answers to questions like these 
must be agreed upon before a general use of such tolerability criteria in practical decision-
making can be considered legitimate. Finally, regardless of how the results are to be used, it is 
not difficult to see that the description of the situation using, for instance, the total probability 
distribution of the individual risk, is far more informative than using point estimates with no 
description of the uncertainty. 
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9.3.1 Ranking the uncertain parameters 
 
In this section, the different methods of ranking the uncertain parameters described in Chapter 
8 will be used to analyse the contribution of each of the uncertain parameter to the total 
uncertainty in the individual risk at grid point (300,0). In order to simplify the calculations, 
only event T2 and stability class E were examined, i.e. in this section “individual risk” refers 
to the individual risk originating from event T2, stability class E. In Figure 9.10, the 
standardised partial rank regression coefficients for the individual risk at grid point (300,0) 
are presented. 
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Figure 9.10. Standardised partial rank regression coefficients for individual risk at grid point (300,0). R2 ≈ 
0.9815. 
 
In Table 9.9, the ranking of the different uncertain parameters according to four different 
methods is presented. 
 
Table 9.9. Ranking of the uncertain parameters using four different ranking methods. 
Uncertain parameter CC SPRC RCC SPRRC 
Frequency of event T2 -0.9608 -0.9579 -0.9635 -0.9643 
Exposure time  -0.1687 -0.1473 -0.1630 -0.1591 
Hole area -0.1341 -0.1405 -0.1241 -0.1297 
Wind speed -0.0945 -0.0923 -0.0871 -0.0857 
Discharge coefficient -0.0717 -0.0671 -0.0694 -0.0593 
 

CC = (Spearman) Correlation Coefficient 
SPRC = Standardised Partial Regression Coefficient 
RCC = Rank Correlation Coefficient 
SPRRC = Standardised Partial Rank Regression Coefficient 
 
As can be seen in Figure 9.10 and in Table 9.9, the single parameter influencing the 
uncertainty in the resulting individual risk most is the frequency of the event. Thus, if one is 
interested in reducing the overall uncertainty, one would probably benefit most from trying to 

                                                 
15 The sample coefficient of determination, R2, (ranging from 0 to 1) is an indication of how much of the 
variation in the model output is explained by a linear relationship to the uncertain parameters included in the 
regression model, see IAEA (1989).  
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reduce the uncertainty regarding the LOC frequency, for instance by collecting more data. 
This kind of information can be obtained for whichever assessment end-point one chooses to 
analyse. 
 

9.4 Societal risk in grid cell (300,0) 
 
For the calculation of the societal risk in grid cell (300,0)16, information on the population in 
the grid cell, and on the fraction of the population being inside a building, is necessary (in 
addition to the information required for the calculation of the individual risk). In Figure 9.11, 
the resulting F-N curves, representing the societal risk, from the Dutch approach, the interval 
analysis, and the Monte Carlo analysis are presented. 
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Figure 9.11. Resulting societal risk for grid cell (300,0).  
 
The procedure of calculating the societal risk can be found in Appendix 3, in the description 
of an example RiskCalc file. One general assumption, inherent in this methodology, is that the 
probability of death in the grid cell is calculated for the grid point only, whereas the 
population is assumed to be evenly distributed throughout the whole grid cell. Thus, the 
definition of the grid is of importance for the resolution of the analysis. 
 
Not surprisingly, the interval approach generated the largest spread in the results, ranging over 
several orders of magnitude regarding the frequencies of the different outcomes (number of 
deaths), while the Dutch approach generated only one single F-N curve representing the “best 
estimate” of the societal risk in the grid cell (300,0). For the Monte Carlo approach (and the 
probability bounds approach17) F-N curves representing the different fractiles can be 
constructed, see Figure 9.11.  

                                                 
16 In this context, grid cell (300,0) is defined as the cell containing grid point (300,0). 
17 The results from the probability bounds approach may be constructed in the form of bounds on the possible 
fractile F-N curves, for instance, a minimum and a maximum 95% fractile F-N curve. 
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Obviously, if one is interested in the total societal risk a plant poses to its surroundings, one 
would have to calculate the contributions from all the grid cells that are within the effect zone 
of the plant, and then construct the total F-N curve(s) based on this information. The same 
discussion as for the individual risk applies to societal risk regarding comparison of the results 
with absolute tolerability criteria. 
 

9.5 Conclusions from the case study 
 
First and foremost, it has been shown that methods are available for representing and treating 
uncertainty which makes it possible to account for different types of uncertainty in all stages 
of an analysis. Furthermore, methods are available for identifying which parameters in the 
risk analysis model affect the final uncertainty in the results to the highest degree, thus 
making it possible to direct efforts in reducing the total uncertainty, should it prove necessary. 
However, the calculations rapidly become complex and extensive when a full analysis of the 
uncertainty, for instance using the Monte Carlo method, is to be performed. 
 
Regarding the different methods of uncertainty propagation used in the example, some 
general conclusions may be drawn. The interval approach provides a fairly straightforward 
way of performing a “best case/worst case” analysis simultaneously. The fuzzy number 
approach provides little extra value due to the problems associated with interpretation of the 
different α-levels. Probabilistic (Monte Carlo) analysis provides the most versatile approach, 
mainly due to the possibility of keeping different types of uncertainty separate during an 
analysis and its strong theoretical foundations. The probability bounds approach provides an 
interesting method for primarily quality assurance for Monte Carlo analyses.  
 
Furthermore, the range of variation for the resulting risk in the example is significant, 
notwithstanding the fact that neither completeness uncertainty nor model uncertainty have 
been explicitly incorporated in the analysis. The implications such an uncertainty range may 
have on the applicability of target risks (tolerability criteria) are apparent. 
 
Finally, it can once again be stressed that performing a full uncertainty analysis is inherently 
time-consuming. The importance of finding ways of differentiating levels of treatment of 
uncertainty is clear.  
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10. Conclusions and recommendations 

10.1 Conclusions drawn from the study 
 
In this section some general conclusions drawn from the study will be presented, followed by 
a number of recommendations regarding future work and research in this area. 
 
In Sweden, it is possible to discern a substantial increase in the use of quantitative risk 
analysis as part of the basis for decision making regarding safety-related issues in various 
areas, for instance land use planning, licensing procedures for hazardous activities, and 
infrastructure projects. The QRA methodology has proven to be of considerable use regarding 
the determination of major contributions to risk, and for the evaluation of different decision 
options with respect to risk. However, due to a lack of consensus concerning which methods, 
models and inputs should be used in an analysis, and how the uncertainties that will inevitably 
be introduced during the process should be handled, questions arise regarding the credibility 
and usefulness of the absolute results from QRA. The results of a European benchmark study 
regarding the impact of uncertainties on the results of quantitative risk analyses, in which 
several teams were asked to perform an analysis of the same facility, showed  a very large 
variation between the different teams, originating from different methods, models and basic 
assumptions. The problems related to such variation are of greatest concern in situations 
where the quantitative (absolute) estimation of the risk is to be evaluated regarding 
tolerability. Without a description and discussion of the uncertainties involved in such an 
analysis, the practical use of the results in absolute terms will be questionable. For example, 
comparison of the results with established risk targets, or tolerability criteria, becomes a fairly 
arbitrary exercise. 
 
In this dissertation, a variety of methods of identifying, quantifying and analysing 
uncertainties within the QRA framework has been presented and discussed, together with 
discussions on model reliability and various structured procedures of eliciting information 
from experts. It is concluded that methods exist for dealing with most kinds of uncertainty, 
with sufficient sophistication for most problems introduced by those uncertainties in practical 
decision-making situations. The presentation given may serve as a basis for discussions in 
future work on standardisation regarding quantitative risk analysis in different sectors of 
industry. A general conclusion, with respect to future standardisation, is that the probabilistic 
framework appears to be the most promising for treatment of uncertainties in such analyses. 
This is due to its strong theoretical foundations and the possibility of quantifying, and 
analysing, uncertainties originating from fundamentally different sources (e.g. aleatory and 
epistemic uncertainty) separately. The treatment of knowledge-based uncertainty within the 
probabilistic framework implies probability being regarded as a degree of belief, i.e. the 
Bayesian point of view. 
 
Some types of uncertainty, however, mainly related to questions of completeness and general 
quality issues, are intrinsically problematic (and challenging) when it comes to rational ways 
of quantification and analysis. For instance, the explicit inclusion of organisational factors in 
the QRA is an area that needs to be developed further. Some attempts at dealing with this 
problem have been examined within this study, and it is concluded that this is still an area 
under rapid development. 
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Another question of major concern in this study was the level of uncertainty description and 
analysis required in different situations. Obviously, due to differences regarding, for instance, 
problem complexity and the nature of the hazard source, different levels of uncertainty 
analysis might be called for in order to make the analysis useful in practical decision-making 
situations. In this dissertation, a discussion on arguments for and against the different methods 
of uncertainty analysis is presented, together with a discussion on different levels of 
treatment, which might serve as a basis for further debate on how to differentiate the 
requirements of uncertainty treatment, based on the situation under consideration, in future 
guidelines for quantitative risk analysis. 
 

10.2 Recommendations on future research and standardisation efforts 
 
In order to make the results of quantitative risk analyses useful in practical decision situations, 
efforts must be made to ensure that such results are verifiable, reproducible and comparable. 
To be able to reach this goal, some recommendations on the subject of future research and 
standardisation are presented below. 
 
Possible ways of standardising the QRA process at a national level should be assessed. 
However, generic guidelines across all sectors of industry are not deemed viable, due to the 
different conditions under which they operate. Instead, differences between industrial sectors, 
for instance, the chemical process industry and the transportation industry, would have to be 
acknowledged in such work, presumably resulting in separate guidelines. A possible starting 
point for such work would be to examine the Dutch guidelines presented in the report from 
the Committee for the Prevention of Disasters (1999). Below, some key elements of such 
future standardisation efforts are highlighted. 
 

•  While undertaking preparatory work for such guidelines, emphasis must be placed on 
the treatment of uncertainties introduced in an analysis. This report may serve as a 
basis for discussions regarding these issues, especially the quantification and treatment 
of parameter uncertainty.  

 
•  Efforts must be made to assess how questions of general quality and completeness 

uncertainty are to be handled within an analysis. Some attempts at dealing with this 
problem have been discussed in this dissertation. Consensus on methods of 
quantifying or, in some other way, dealing this type of uncertainty must be reached. 

 
•  Possible ways of differentiating the level of uncertainty description and analysis 

required, based on the situation under consideration, should be examined within each 
sector of industry. The discussion presented in this dissertation on various levels of 
treatment may serve as a basis for further debate. 

 
•  As stated above, differences between different sectors of industry call for separate 

guidelines. A natural starting point for future standardisation efforts would be to 
consider the risk analysis process for industrial sites that are required to produce a 
safety report according to the European Council Directive (96/82/EC), the “Seveso II 
Directive”. This is partly due to the relatively well-defined problems related to such 
sites, and also due to the fact that risk analysis is routinely performed for such 
establishments. 
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•  This kind of work is an absolute necessity for the general use of risk tolerability 
criteria to be meaningful. 

 
It is my firm belief that such work would facilitate many of the situations where decision-
makers today are struggling to find a solid foundation on which to make robust decisions 
regarding risk-related issues. 



Uncertainty in Quantitative Risk Analysis – Characterisation and Methods of Treatment  
 

 80



Acknowledgements 

 81 

Acknowledgements 
 
I would like to express my sincere gratitude to my supervisor, Professor Sven Erik 
Magnusson, for his encouragement and patience during the process which resulted in this 
dissertation. 
 
Many thanks are also directed towards Mr Robert Jönsson and all my colleagues at the 
Department of Fire Safety Engineering, Lund University. 
 
The financial support of the work on which this dissertation is based, provided by the Swedish 
Rescue Services Agency, is gratefully acknowledged. This work is part of a project entitled 
Behandling av osäkerheter i kvantitativa riskanalyser (The Treatment of Uncertainties in 
Quantitative Risk Analyses). 
 
Finally, to my wife and dear friend Sofie, you deserve my very special thanks for your 
continuous love and support. You really make all the difference… 
 
 
 
 
 



Uncertainty in Quantitative Risk Analysis – Characterisation and Methods of Treatment  
 

 82



References 

 83 

References 

Databases 
 
MHIDAS (Major Hazard Incident Data Service) http://www.hse.gov.uk/infoserv/mhidas.htm 
(2001-05-30). 
 
FACTS (Failure and Accident Technical Information System) http://www.mep.tno.nl (2001-
05-30). 
 
The Accident Database, IchemE, 
http://www.environment97.org/framed/icheme/ichememain5.htm (2001-05-30). 
 
MARS (Major Accident Reporting System)  
http://mahbsrv.jrc.it/Activities-WhatIsMARS.html (2001-05-30). 
 
OREDA Offshore Reliability Data Handbook, third edition, 
http://www.sintef.no/sipaa/prosjekt/oreda/handbook.html (2001-05-30). 
 
Guidelines for Process Equipment Reliability Data – with Data Tables, Center for Chemical 
Process Safety, American Institute of Chemical Engineers, New York, 1989. 
 

General References 
 
Abrahamsson, M., Treatment of Uncertainty in Risk Based Regulations and Standards for 
Risk Analysis. Report 3116, Department of Fire Safety Engineering, Lund University, Lund, 
2000. 
 
Abrahamsson, M., Behandling av osäkerheter i riskanalyser – Studie av befintliga analyser. 
Department of Fire Safety Engineering, Lund University, Lund, to be published. (In Swedish). 
 
Abrahamsson, M., Johansson, H., & Magnusson, S.E., Methods for treatment of uncertainty 
in quantitative risk analysis. Safety, Risk and Reliability – Trends in Engineering, Conference 
report, IABSE, Zürich, 2001. 
 
Abrahamsson, M., & Magnusson, S.E., Treatment of uncertainties in quantitative risk 
analysis. Foresight and Precaution, Cottham, Harvey, Pape & Tait (eds.), Balkema, 
Rotterdam, 2000. 
 
Alefeld, G., & Herzberger, J., Introduction to Interval Computations. Academic Press, New 
York, 1983. 
 
Amendola, A., Contini, S., & Ziomas, I., Uncertainties in chemical risk assessment: Results 
of a European benchmark exercise. Journal of Hazardous Materials, vol. 29, Elsevier Science 
Publishers, Amsterdam, 1992. 
 
 



Uncertainty in Quantitative Risk Analysis – Characterisation and Methods of Treatment  
 

 84

Ang, A.H-S., & Tang, W.H., Probability concepts in Engineering Planning and Design, 
Volume 1 – Basic Principles. John Wiley & Sons, New York, 1975. 
 
CCPS, Guidelines for Chemical Process Quantitative Risk Analysis. Center for Chemical 
Process Safety, American Institute of Chemical Engineers, New York, 2000. 
 
Clemen R.T., Making Hard Decisions – An Introduction to Decision Analysis. Wadsworth 
Publishing Company, Belmont, 1996. 
 
Committee for the Prevention of Disasters, Guidelines for Quantitative Risk Assessment. 
CPR18E “Purple book”. Sdu Uitgevers, Den Haag, 1999. 
 
Cooke R.M., Experts in Uncertainty – Opinion and Subjective Probability in Science. Oxford 
University Press, New York, 1991. 
 
COWI, Usikkerhedsbeskrivelse i kvantitative risikoanalyser – vejledning. COWI, Denmark, 
1996a. (In Danish). 
 
COWI, Usikkerhedsbeskrivelse i kvantitative risikoanalyser – projektrapport. COWI, 
Denmark, 1996b. (In Danish). 
 
COWI, Usikkerhedsbeskrivelse i kvantitative risikoanalyser – gasspredningsmodeller. COWI, 
Denmark, 1996c. (In Danish). 
 
COWI, Usikkerhedsbeskrivelse i kvantitative risikoanalyser – litteraturgennemgang. COWI, 
Denmark, 1996d. (In Danish). 
 
Dwyer, P., Linear Computations. John Wiley & Sons, New York, 1951.  
 
Davidsson, G., Haeffler, L., Hannah, J., & Akersten, P.A., Databaser om olyckor och 
olycksrisker. Räddningsverket, Karlstad, 1999. (In Swedish). 
 
Davidsson, G., Lindgren, M., & Mett, L., Värdering av risk. Räddningsverket, Karlstad, 1997. 
(In Swedish). 
 
Ferson, S., & Kuhn, R., Propagating uncertainty in ecological risk analysis using interval 
and fuzzy arithmetic. Computer Techniques in Environmental Studies IV, Elsevier Applied 
Science, London, 1992. 
 
Ferson, S., & Ginzburg, L.R., Different methods are needed to propagate ignorance and 
variability. Reliability Engineering and System Safety 54, Elsevier Science limited, Northern 
Ireland, 1996. 
 
Ferson, S., & Sunil, D., Probability Bounds Analysis. Proceedings of the 4th International 
Conference on Probabilistic Safety Assessment and Management, PSAM 4, Edited by 
Mosleh, A. & Bari, R.A., New York, 1998. 
 
Ferson, S., Root, W., & Kuhn, R., Ramas Risk Calc – Risk Assessment with Uncertain 
Numbers. Applied Biomathematics, Setauket, New York, 1999.  
 



References 

 85 

Fisher, S., Forsén, R., Hertzberg, O., Jacobsson, A., Koch, B., Runn, P., Thaning, L., & 
Winter, S., Vådautsläpp av brandfarliga och giftiga gaser och vätskor – metoder för 
bedömning av risker.  Försvarets Forskningsanstalt, Grindsjön, 1997. (In Swedish). 
 
Frantzich, H., Uncertainty and Risk Analysis in Fire Safety Engineering. Doctoral 
dissertation, Department of Fire Safety Engineering, Lund University, Lund, 1998. 
 
Frantzich, H., Harrada, K., & Magnusson S.E., Fire Safety Design Based on Calculations – 
Uncertainty Analysis and Safety Verification. Report 3078, Department of Fire Safety 
Engineering, Lund University, Lund, 1995. 
 
Furuta, H., & Shiraishi, N., Fuzzy importance in fault tree analysis. Fuzzy Sets and Systems 
12, Elsevier Science, 1984. 
 
Hale, A.R., & Hovden, J. Management and Culture: the third age of safety. Occupational 
Injury: Risk, Prevention and Intervention, Edited by Feyer, A.M., and Williamson A. Taylor 
& Francis, United Kingdom, 1998. 
 
Hale, A.R., Oh, J.I.H., Brouwer, W.G.J., Bellamy, L.J., Ale, B.J.M., & Papazoglou, I.A. The 
IRISK project: Development of an integrated technical and management risk control and 
monitoring methodology for managing and quantifying on-site and off-site risks. Proceedings 
of the 4th International Conference on Probabilistic Safety Assessment and Management, 
PSAM 4, Edited by Mosleh, A., & Bari R.A., New York, 1998a. 
 
Hanna, S.R., Strimaitis, D.G., & Chang, J.C., Evaluation of fourteen hazardous gas models 
with ammonia and hydrogen fluoride field data. Elsevier Science Publishers, Amsterdam, 
1991. 
 
Hendershot, D.C., Risk Guidelines as a Risk Management Tool. Prepared for presentation at 
the 1996 Process Plant Safety Symposium. Rohm and Haas Company, Bristol, 1995. 
 
Helton, J.C., & Davis, F.J. Sampling-Based Methods for Uncertainty and Sensitivity Analysis. 
Sandia Report SAND99-2240, Sandia National Laboratories, Albuquerque, 2000. 
 
Hofer, E., When to Separate Uncertainties and When Not to Separate. Reliability Engineering 
and System Safety 54, Elsevier Science limited, Northern Ireland, 1996. 
 
IAEA, Evaluating the reliability of predictions made using environmental transfer models. 
International Atomic Energy Agency, Vienna, 1989. 
 
IEC, International standard nr 60300-3-9: Dependability management – part 3: Application 
guide – Section 9: Risk analysis of technological systems. International Electrotechnical 
Commision, Geneva, 1995. 
 
Iman, R.L., Davenport, J.M., & Ziegler, D.K., Latin Hypercube sampling (a program user’s 
guide). Technical Report SAND79-1473, Sandia National Laboratories, Albuquerque, 1980. 
 
Iman, R.L. & Helton, J.C., An Investigation of Uncertainty and Sensitivity Analysis 
Techniques for Computer Models. Risk Analysis 8, no. 1, Kluwer Academic/Plenum 
Publishers, New York, 1988. 



Uncertainty in Quantitative Risk Analysis – Characterisation and Methods of Treatment  
 

 86

 
Isukapalli, S.S., Uncertainty analysis of transport-transformation models. PhD dissertation, 
The State University of New Jersey, New Brunswick, 1999. 
 
Johnson, N.L., Kotz, K., & Kemp, A.D., Univariate Discrete distributions. John Wiley & 
Sons, New York, 1993. 
 
Johnson, N.L., Kotz, K., & Balakrishnan, N., Continuous Univariate distributions (Vol. 1). 
John Wiley & Sons, New York, 1994. 
 
Johnson, N.L., Kotz, K., & Balakrishnan, N., Continuous Univariate distributions (Vol. 2). 
John Wiley & Sons, New York, 1995. 
 
Kahneman, D., Slovic, P., & Tversky, A., (eds.) Judgement under Uncertainty, Heuristics and 
Biases. Cambridge University Press, Cambridge, 1982. 
 
Kaufmann, A., & Gupta, M.M., Introduction to Fuzzy Arithmetic – Theory and Applications. 
Van Nostrand Reinhold, New York, 1985. 
 
Laskey, K., Model confidence (Lecture notes) Summer Institute on Probability in AI, George 
Mason University, 1994. 
 
Lauridsen, K., Christou, M., Amendola, A., Markert, F., Kozine, I., & Fiori, M., Assessing the 
Uncertainties in the Process of Risk Analysis of Chemical Establishments: Part 1. 
Proceedings ESREL conference Towards a Safer World, Torino, 2001a.  
Available from: http://www.aidic.it/italiano/congressi/esrel2001/webpapersesrel2001/pro.html 
(2002-02-05) 
 
Lauridsen, K., Christou, M., Amendola, A., Markert, F., Kozine, I., & Fiori, M., Assessing the 
Uncertainties in the Process of Risk Analysis of Chemical Establishments: Part 2. 
Proceedings ESREL conference Towards a Safer World, Torino, 2001b. 
Available from: http://www.aidic.it/italiano/congressi/esrel2001/webpapersesrel2001/pro.html 
(2002-02-05) 
 
Lees, F.P., Loss Prevention in the Process Industries. 2:nd edition, Vol. 1-3, Butterworth-
Heinemann, Oxford, 1996. 
 
Model Evaluation Group, Model Evaluation Protocol. Can be requested from the European 
Communities, DG XII/D1, Rue de la Loi 200, B-1049 Brussels, Belgium, 1994.  
 
Moore, R.E. Methods and Applications of Interval Analysis. SIAM Studies on Applied 
Mathematics, Vol. 2, Philadelphia, 1979. 
 
Moore, R.E., Interval analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1966.  
 
Morgan, G.M., & Henrion, M., Uncertainty – A guide to Dealing with Uncertainty in 
Quantitative Risk and Policy Analysis. Cambridge University Press, New York, 1990. 
 



References 

 87 

Murphy, D.M., & Paté-Cornell, E., The SAM Framework: Modelling the Effects of 
Management Factors on Human Behaviour in Risk Analysis. Risk Analysis, Vol. 16, No 4, 
Plenum Press, New York, 1996. 
 
Olesen, H.R., Ten years of Harmonisation activities: Past, present and future. Introductory 
address to the 7th International conference on Harmonisation within Atmospheric Dispersion 
Modelling for Regulatory Purposes, Belgirate, Italy, May 2001. 
Proceedings available from: 
http://www.dmu.dk/atmosphericenvironment/Harmoni/ProcIntr.htm (2002-02-05) 
 
Palisade Corporation, Guide to using @RISK. Palisade Corporation, Newfield, 2001. 
 
Parry, G.W., Uncertainty in PRA and its Implications for use in Risk-Informed Decision 
Making. Proceedings of the 4th International Conference on Probabilistic Safety Assessment 
and Management, PSAM 4, Edited by Mosleh, A. & Bari, R.A., New York, 1998. 
 
Paté-Cornell, M.E., Uncertainty in risk analysis: Six levels of treatment. Reliability 
Engineering and System Safety 54, Elsevier Science limited, Northern Ireland, 1996. 
 
Paté-Cornell, M.E., Priorities in Risk Management: Human and Organisational Factors as 
External Events and a Maritime Illustration. Proceedings of the 4th International Conference 
on Probabilistic Safety Assessment and Management, PSAM 4, Edited by Mosleh, A. & Bari, 
R.A., New York, 1998. 
 
Rasmussen, J., Risk Management, Adaptation, and Design for Safety. In Sahlin, N.E., and 
Brehmer, B., (Eds.) Future Risks and Risk Management, Kluwer, Dordrecht, 1994.  
Rasmussen, J., Risk Management in a Dynamic Society: A Modelling Problem. In Safety 
Science 27/2-3, pp 183-213, Elsevier Science, 1997. 
 
Robinson, D.G., A Survey of Probabilistic Methods Used in Reliability, Risk and Uncertainty 
Analysis: Analytical Techniques 1. Sandia Report SAND98-1189, Sandia National 
Laboratories, Albuquerque, 1998. 
 
Saccomanno, F.F., & Bakir, O., Analysis of Risk Uncertainty for the Transport of Hazardous 
Materials. In Transportation of Dangerous Goods: Assessing the Risks. Institute for Risk 
Research, University of Waterloo, Ontario, Canada, 1991. 
 
Saltelli, A., & Sobol, I.M., About the Use of Rank Transformation in Sensitivity Analysis of 
Model Output. In Reliability Engineering and System Safety, Vol. 50, no. 3. Elsevier Science 
limited, Northern Ireland 1995 
 
Schemel, S.D., Schemel, C.F., & Van Brunt, V., Methodology for determining reliability of a 
foam suppression system using fuzzy set theory and fault tree analysis. Appendix A in 
“Aircraft Hangar Fire Suppression System Design Study”. Scheffey et al., Naval Research 
Laboratory, Washington DC, 2000. 
 
Sklet, S., & Øien, K., Bruk av risikoanalyser i driftsfasen, etablering av sikkerhetsindikatorer 
og modellering av organisatoriske faktorers effekt på risikonivået – en ”state of the art” 
beskrivelse. SINTEF rapportnr. STF38 A99416, SINTEF, Trondheim, 1999. (In Norwegian). 
 



Uncertainty in Quantitative Risk Analysis – Characterisation and Methods of Treatment  
 

 88

Slovic, P., Fischoff, B., & Lichtenstein, S., Facts versus Fears: Understanding Perceived 
Risk. In Kahneman, D., Slovic, P., and Tversky, A., (eds.) Judgement under Uncertainty, 
Heuristics and Biases. Cambridge University Press, Cambridge, 1982. 
 
Stirling, A., Renn, O., Klinke, A., Rip, A., & Salo, A., On Science and Precaution in the 
Management of Technological Risk. EUR 19056 EN, ECSC-EEC-EAEC, Luxembourg, 1999. 
 
Suresh, P.V., Babar, A.K., & Venkat Raj, V., “Uncertainty in fault tree analysis: A fuzzy 
approach. Fuzzy Sets and Systems 83, Elsevier Science, 1996. 
 
Tversky, A., & Kahneman, D., Availability: A Heuristic for Judging Frequency and 
Probability. In Kahneman, D., Slovic, P., and Tversky, A., (eds.) Judgement under 
Uncertainty, Heuristics and Biases, Cambridge University Press, Cambridge, 1982a. 
 
Tversky, A., & Kahneman, D., Causal Schemas in Judgements Under Uncertainty. In 
Kahneman, D., Slovic, P., and Tversky, A., (eds.) Judgement under Uncertainty, Heuristics 
and Biases, Cambridge University Press, Cambridge, 1982b. 
 
Tversky, A., & Kahneman, D., Judgement under Uncertainty: Heuristics and Biases. In 
Kahneman, D., Slovic, P., and Tversky, A., (eds.) Judgement under Uncertainty, Heuristics 
and Biases, Cambridge University Press, Cambridge, 1982c. 
 
U.S. Environmental Protection Agency, Policy for use of Probabilistic Analysis in Risk 
Assessment and Guiding Principles for Monte Carlo Analysis. EPA/630/R-97/001, EPA, 
1997. 
 
Vose, D., Risk Analysis – A Quantitative Guide. 2:nd edition. John Wiley & Sons Ltd., 
Chichester, 2000. 
 
Winkler, R.L., Uncertainty in Probabilistic Risk Assessment. Reliability Engineering and 
System Safety 54, Elsevier Science limited, Northern Ireland, 1996. 
 
Zadeh, L.A., Fuzzy sets. Information and Control Theory 8:338-353, 1965. 
 
 
 
 
 
 
 
 
 
 
 



Appendix 1 

 89 

Appendices 
 

APPENDIX 1 Examples of existing databases 
 
This appendix contains short, non-exhaustive descriptions of some databases relevant to risk 
analysis, with emphasis on describing the kind of information available in each of them. 
 
A.1.1 Accident (event) databases 
 
MHIDAS (Major Hazard Incident Data Service) 
 
The Major Hazard Incidents Data Service (MHIDAS) is maintained by AEA Technology by 
appointment of HSE (Health & Safety Executive, Great Britain). The database contains 
approximately 7000 incidents where dangerous substances were released and affected, or 
could have affected the surroundings, in the process industry, during transportation or during 
storage. This definition contains events that lead to casualties, evacuation and/or effect on the 
environment or property. Events that under a different set of conditions could have lead to any 
of the above are also included in the database. Some special kinds of incidents, such as 
incidents including radioactive materials, have been omitted from the database. All 
information in the MHIDAS is collected from publicly available sources of information, 
including approximately 30 technical/scientific journals, and information from the company 
involved in the event. Most of the approximately 7000 events are collected from either Great 
Britain or the United States of America. 
 
The database contains information from 1964 and onwards and is updated quarterly. Events 
are not included in the database until one year after they take place. The reason for this is that 
efforts are made to ensure maximum coverage of the event, e.g. by using multiple sources of 
information. 
 
There are several ways to get access to the MHIDAS database, none of which are for free. An 
adapted service is available from AEA Technology. The database is also available on OSH-
ROM through SilverPLatter InformationLtd, or as an Internet service through European 
Information Network Services (EINS) 
 
FACTS (Failure and Accident Technical Information System) 
 
Failure and Accident Technical Information System (FACTS) is maintained by the Dutch 
research organisation TNO. The database has been in use since 1980 and contains information 
about approximately 16 000 industrial accidents and incidents from 1900 - today. 
Approximately 700 new events are added every year and about 500 existing events are 
updated when new information becomes available. The information in the FACTS database is 
collected via, for instance, symposium proceedings, periodic journals with focus on industrial 
safety, risk management and loss prevention. Other important sources are companies (supplies 
data with the proviso that strict anonymity applies), authorities, organisations with internal 
report systems, e.g. the rescue services (supplies data with the proviso that strict anonymity 
applies) etc. The database contains no population-, components- or operational data that can 
be used to estimate failure frequencies. The FACTS database is available through TNO, 
Division of Technology for Society, either on diskettes, CD-ROM or in paper format. 
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The Accident Database 
 
The Accident Database is maintained by the Institute of Chemical Engineers (IchemE). The 
database contains more than 8000 accidents and incidents. All information in the database is 
based on information provided by companies dealing with dangerous substances or processes. 
Approximately 3000 events are based on internal company reports that have not been publicly 
available before.  
 
The Accident Database is available on CD-ROM from IchemE. 
 
MARS (Major Accident Reporting System) 
 
Most of the information about MARS presented here is taken from the MAHB (Major 
Accident Hazards Bureau) web-page: http://mahbsrv.jrc.it/Activities-WhatIsMARS.html 
(where more information is available). 
 
The Major Accident Reporting System (MARS) was established to handle the information on 
major accidents submitted by Member States of the European Union to the European 
Commission in accordance with the provisions of the Seveso Directive. Currently, MARS 
holds data on more than 450 major accidents. 
 
Two reporting forms have been established. The “short report” is intended for use for 
immediate notification of an accident, and the "full report" is prepared when the accident has 
been fully investigated, and the causes, the evolution of the accident, and the consequences 
are fully understood. In certain cases further information comes to light - for example in the 
course of judicial proceedings - and there is provision for the 'full report' information to be 
further modified. 
 
The “short report” gives essential information concerning the accident, in a free-text format, 
under the following headings: 
 

•  Accident type 
•  Substances directly involved 
•  Immediate sources of accident 
•  Immediate causes 
•  Immediate effects 
•  Emergency measures taken 
•  Immediate lessons learnt  

 
The “full report” is much more analytic, and involves more work in its preparation. While 
there are always “free-text” fields available to describe facts connected with an accident, 
substantial effort has been put into the definition of descriptive codes, for the accident itself 
and for associated information, to enable the MARS database to be searched under almost 200 
different headings (data variables), e.g.: 
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•  Type of accident 
•  Industry where accident occurred 
•  Activity being carried out 
•  Components directly involved 
•  Causative factors (immediate and underlying) 
•  Ecological systems affected 
•  Emergency measures taken 

 
This information is then used to perform lessons-learnt type of data analyses, identifying 
significant dependencies and overall patterns in the data. 
 
A.1.2 Failure frequency databases 
 
The accident (event) databases briefly presented above focuses on describing possible causes 
and the general course of events leading to accidents or near accidents. In addition to this kind 
of documentation of accident scenarios, failure frequency databases contains information and 
data which makes it possible to calculate different kinds of reliability measures, e.g. failure 
probabilities (frequencies) of components. 
 
OREDA 
 
OREDA – Offshore Reliability Data is a collaboration project among several enterprises (e.g. 
BP Exploration Operating Company Ltd. and Philips Petroleum Company, Norway) with the 
objective to produce and maintain a database on equipment used in the offshore-, oil- and gas 
industries mainly in Great Britain and the Norwegian sector of the North Sea. 
 
OREDA contains data, both qualitative descriptions and quantitative failure rate data, on 
process systems, safety systems, electrical systems, help systems, lifting systems and drilling 
systems. The qualitative descriptions contain information on the units of the system, their 
function and application, the environment in which they operate, possible causes of failure 
etc., while the reliability data tables contain information on failure rates and reparation times 
etcetera. 
 
Guidelines for Process Equipment Reliability Data – With Data Tables 
 
“The Guidelines for Process Equipment Reliability Data – With Data Tables” (CCPS, 1989), 
is available from the Center for Chemical Process Safety (CCPS) of the American Institute of 
Chemical Engineers (AIChE).  
 
The main purpose of this publication is (CCPS, 1989): “/…/ to provide the engineer and risk 
analyst with failure rate data needed to perform a CPQRA18. Consequently, the book contains 
easily accessible data in the CCPS Generic Failure Rate Data Base, information on several 
available generic data resources, and procedures to develop failure rate data using information 
from the plant and process being studied.” 
 

                                                 
18 Chemical Process Quantitative Risk Analysis 
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Failure rate data are given for a variety of common equipment in the chemical process 
industry, such as pipes, compressors, pumps, switches, transmitters etc. The data are 
characterised as equipment failures per 106 operating hours for time-related failure rates and 
failures per 103 demands for demand-related failure rates. 
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APPENDIX 2  Background studies on completeness and general quality 
uncertainty 

 
In this Appendix a method of incorporating (quantitatively) uncertainties related to 
completeness and general quality issues is presented. The method is a Danish approach 
presented in COWI (1996a-d). The text in this Appendix is a reprint (with minor corrections 
made) from Abrahamsson & Magnusson (2000). 
 
We start by briefly describing a Danish effort to produce guidelines on the treatment of 
uncertainty in QRA. The scope of this method is very broad, and perhaps unattainable at a 
practical level. We chose to describe it since it provides an interesting platform for further 
discussions on how to incorporate general quality uncertainty (science and engineering state 
of the art, improper definition of the assessment problem, competence of the analyst team, 
etc.) into a quantitative risk analysis. 
 
A.2.1 Description of uncertainty in quantitative risk analysis 
 
Substantial effort directed towards producing “hands-on” guidelines for the description of 
uncertainty in quantitative risk analysis in the oil/gas industry was initiated in Denmark 
during 1994 in a joint project with several participants (COWI, 1996a-d). The project was 
completed in 1996 and four reports were published, one of which contained the actual 
guidelines. The main features of these guidelines are briefly presented below. 
 
These guidelines provide methods of dealing with uncertainty explicitly at three different 
levels of analysis: no description of uncertainty, rough description of uncertainty and 
extensive description of uncertainty. For each of these levels guidance is given on how to treat 
uncertainty and how to present the uncertainty. It is stressed that the uncertainty analysis, 
when undertaken, should be an integral part of the overall risk analysis. For motivation of the 
first two levels of analysis, see COWI (1996a). The level 3 analysis includes an explicit 
description of all the important uncertainties. In practice, it might not be feasible to cover all 
aspects of uncertainty in an analysis, but the minimum requirement for the level 3 analysis 
includes the following. 
 

•  A qualified quantification of all the uncertainties in all the classes of uncertainty 
described below. 

•  A description of the sources of uncertainty that have the greatest influence on the 
result. 

•  Uncertainty propagation of all the important uncertain variables. 
•  The final uncertainty in the results is presented as an uncertainty interval, using an 

uncertainty factor with accompanying confidence level. 
 
The Danish guidelines provide a method for level 3 analysis, which is presented in some 
detail in the following section. The description of the method follows the steps of the 
guidelines but each step is not extensively described here, see (COWI, 1996a). 
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Classification of uncertainty 
 
The uncertainty in the results from a quantitative risk analysis can be decomposed into four 
classes: 
 
Class 1 Uncertainty in prevailing analysis conditions or environment; e.g. state of the 

art, competence of analyst team 
Class 2 Uncertainty due to assumptions in scenario generation 
Class 3 Uncertainty in mathematical models 
Class 4 Uncertainty in input data 
 
Decomposing the overall uncertainty into the above classes will force the analyst to consider 
and treat conceptually different uncertainties, thus avoiding a common mistake in uncertainty 
analysis; i.e. treating one type of uncertainty explicitly (often the uncertainty in input data) 
and forgetting or ignoring other kinds of uncertainty, which may have an even greater 
influence on the overall uncertainty in the final results. 
 
Best estimate / uncertainty in the best estimate 
 
When performing a quantitative risk analysis one should, under normal circumstances, present 
the result based on the best estimate, preferably the median value (COWI, 1996a). The 
unknown stochastic variable, of which the median is sought will, for reasons that are beyond 
the scope of this paper, often have the approximate shape of a log-normal distribution. This 
method was developed based on this assumption. When uncertainty in risk analysis is 
quantified, it must be clear how the uncertainty should be interpreted. Under normal 
circumstances, the uncertainty should (according to COWI, 1996a) be represented by an 
interval around the best estimate. For an asymmetric distribution such as the log-normal, the 
uncertainty should be represented by an uncertainty factor. The uncertainty factor is the 
number by which the median should be multiplied, and divided, to establish the uncertainty 
interval. For each of the classes of uncertainty enumerated above an uncertainty factor 
corresponding to a coverage factor of 2 standard deviations and a confidence level of 
approximately 95% should be determined. For uncertainties originating from classes 1-3 it 
will often be difficult to quantify the contribution based on statistical methods. For these 
classes other methods must be used, i.e. expert judgement. It will almost always be possible to 
treat the uncertainty originating from class 4 through uncertainty propagation. For all four 
classes an uncertainty factor responding to a coverage factor of 2 and a confidence level of 
95% is determined, called UF1, UF2, UF3 and UF4. The total uncertainty factor, TUF, is then 
determined from: 
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This equation follows from the assumption of a log-normal distribution. The concept assumes 
that the different variables (classes) are independent. It is therefore important, when 
determining the uncertainty factor for each of these classes, to ensure that no part of the 
uncertainty is accounted for more than once. 
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Determination of uncertainty factors in the different classes 
 
There are two alternative methods available to determine the uncertainty factors in each of the 
different classes. The first, simple method is based on an overall estimate of the uncertainty 
factor of the whole class. In the second, more sophisticated method, each class of uncertainty 
is divided into sub-classes, for each of which the uncertainty factor is determined. The 
uncertainty factor for the whole class is generated in the same manner as the overall 
uncertainty factor: 
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Class 1 Uncertainty in prevailing conditions or environment:  
 
The uncertainty in the prevailing analysis conditions or environment may originate from the 
fact that everything is not known about the final construction of the system in the beginning 
phase of the project. Another reason could be disagreement between experts regarding how to 
model the system, or lack of knowledge about the fundamental physical or chemical reactions 
in the system. In Table A.2.1 suggestions are given on ways to determine the uncertainty 
factor in this class. The table is not exhaustive, and the analyst should, if necessary, make 
efforts to complete it in order to cover the situation under consideration as fully as possible. 
 
Table A.2.1 Suggestions of ways to determine the uncertainty factor in class 1 
 Small uncertainty 

1<UF1<2 
Moderate Uncertainty 
2<UF1<10 

Large uncertainty 
10<UF1 

Analyst’s 
experience and 
competence 

Extensive. The analyst is 
qualified to determine the 
uncertainties. 

Reasonable. The analyst is able to 
give qualified estimates of most of 
the uncertainties involved. 

Little. The analyst can only 
give coarse estimates of 
the uncertainties involved. 

Knowledge of 
background 
and conditions 
of the project 

Extensive Reasonable Little 

Available time 
and resources 

Sufficient Reasonable Lacking 

General 
knowledge 
base in the 
specific area 

The specific area is well 
known. There is consensus 
between experts. 

There is some lack of clarity and 
disagreement between experts. 

There is substantial lack of 
clarity and disagreement 
between experts. 

 
The uncertainty factor for the other classes of uncertainty is obtained in a similar way, based 
on tables provided in the guidelines with the same structure as Table A.2.1, but specific for 
each class. One difference lies in the treatment of the uncertainty in class 4, due to input data. 
When the uncertainty in each of the input variables is determined, uncertainty propagation is 
conducted to determine the uncertainty factor of class 4. The uncertainty propagation is 
conducted using a simulation based on Latin hypercube sampling, possibly combined with the 
response surface method. The results of uncertainty propagation will nearly always be a 
graphical representation of the distribution function for the output. These distributions can, in 
most cases, be approximated by the log-normal distribution, making it possible to find the 
uncertainty factor UF4 by interpreting the graph. After having determined all the uncertainty 
factors of the different classes the total uncertainty factor can be obtained by using Eq. 
(A.2.1).  
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Conclusions 
 
We conclude that the methodology adopted in the Danish guidelines may provide a rational 
platform for incorporating all kinds of uncertainty into the analysis. However, to be able to 
make consistent decisions using an analysis based on this methodology, it would have to be 
standardised in some way. In its present form quantification of the different uncertainty 
factors will be subject to biases. For instance, what is to be considered as “Extensive” 
knowledge of background and conditions of the project, justifying the rating “Small 
uncertainty” and the corresponding uncertainty factor (1-2) in Table A.2.1? National 
consensus regarding the prerequisites for the different uncertainty factors must be reached if 
this approach is to be adopted, to ensure the possibility of comparing analyses carried out by 
different assessors. 
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APPENDIX 3 Background information on the case study 
 
A.3.1 Models and basic assumptions 
 
In the example presented in Chapter 9, fairly simple analytical models are used. As stated in 
Chapter 9, the objective of the example is to demonstrate the features of the various methods 
of uncertainty propagation and analysis, not to model the situation as accurately as possible. 
Below the models and basic assumptions for the mass discharge rate, the vapour cloud 
dispersion, and the effect model (Probit-equation) are shown. 
 
Mass discharge rate 
 
The equation used for the mass discharge rate is taken from (Fisher et al., 1997), and refers to 
liquid discharges for pressurised gas.  
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Where 
 
Q  is the mass discharge/release rate [kg/s] 
Cd is the discharge coefficient [dimensionless] 
A  is the area of the hole [m2] 
P0  is the pressure in the tank at hole level [N/m2] 
Pa  is the atmospheric pressure [N/m2] 
vf  is the specific volume of the liquid [m3/kg] 
 
Vapour cloud dispersion 
 
The equation used for the vapour cloud dispersion is the Gaussian plume model19 as described 
in (Fisher et al., 1997). This model describes a continuous release of material, and the model 
output is dependent on the rate of release, the atmospheric conditions, the height of the release 
above the ground, and the distance from the release (CCPS, 2000). 
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Where 
 
C(x, y, z) is the average concentration [kg/m3] 
Q is the continuous release rate [kg/s] 
σy, σz are the dispersion coefficients in the x, y and z directions [m] 
U is the wind speed [m/s] 

                                                 
19 In the example the mass charge rate estimated using Eq. A.3.1 is used directly in the Gaussian plume model, 
i.e. no consideration is taken of flashing, jet plumes etc. Furthermore, the Gaussian plume model can not account 
for negatively (or positively) buoyant gases. The model was chosen due to its relative simplicity. 
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y is the cross-wind direction [m] 
z is the distance above the ground [m] 
Heff is the height of the source above ground level [m] 
 
Eq. A.3.2 can be simplified in cases where one is only interested in the concentration at 
ground level (z = 0), and in the centre of the cloud (y = 0). If, in addition, the discharge takes 
place on ground level (Heff = 0), the simplified expression is: 
 

 ( ) ( ) ( )Uxx
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It is this expression that has been used in the example. The dispersion coefficients σy and σz 
used in the example are taken from CCPS (2000), and refers to rural conditions, see Table 
A.3.1. For definition of the different stability classes, see CCPS (2000) 
 
Table A.3.1 Pasquill-Gifford Dispersion Coefficients for plume dispersion (adapted from CCPS, 2000)  
Pasquill-Gifford stability class σy [m] σz [m] 

B 0.16 x (1+0.0001x)-1/2 0.12 x 
D 0.08 x (1+0.0001x)-1/2 0.06 x (1+0.0015x)-1/2 

E 0.06 x (1+0.0001x)-1/2 0.03 x (1+0.0003x)-1 

F 0.04 x (1+0.0001x)-1/2 0.016 x (1+0.0003x)-1 
 
Probit equations 
 
The following Probit equation was used in the example for modelling of effects (from CCPS, 
2000). 
 
 Y = k1 + k2 ln (Cn te)    (A.3.4) 
 
Where 
 
Y is the probit variable [-] 
k1, k2 are constants dependent on the released substance 
C is the average concentration [mg/m3 or ppm20] 
n is a constant dependent on the released substance 
te is the exposure time [s] 
 
The substance-specific constants used in the example (ammonia) are: 
 
Table A.3.2 Probit constants used in the example 
Reference k1 k2 n 
CCPS (2000) -9.82 0.71 2.00 
Committee for the Prevention 
of Disasters (1999) 

-15.6 1.00 2.00 

 
Conversion from probit value to percentage of population killed is made using the following 
expression (from CCPS, 2000): 
                                                 
20 The substance-specific constants used in the example are based on concentration in ppm (CCPS, 2000), and on 
concentration in mg/m3 (Committee for the Prevention of Disasters, 1999). 



Appendix 3 

 99 

 














 −
−
−+=

2
|5|

|5|
5150 Yerf

Y
YP    (A.3.5) 

 
where 
 
P is the percentage of the population killed by the exposure 
erf is the error function. 
 
A.3.3 Specification of uncertain parameters 
 
In Table A.3.3, the various point estimates, intervals and distributions used for the uncertain 
parameters for different methods are displayed.  
 
Table A.3.3. Specification of uncertain parameters 

Uncertain 
parameter 

Dutch 
app. 21 

Interval analysis Monte Carlo analysis Probability bounds analysis 

Cd [-] 1 [0.7, 0.9] Uniform(0.7, 0.9) Uniform(0.7, 0.9) 
A(P1) [m2] 0.004 [0.0025, 0.0056] T(0.0025, 0.004, 

0.0055) 
Triangle(0.0.25, [0.0035, 0.0045], 

0.0056) 
A(P2) [m2] 2*10^-5 [1.25*10^-5, 2.83*10^-5] T(1.25*10^-5, 2*10^-5, 

2.83*10^-5) 
Triangle(1.25, [1.80, 2.20], 2.83)*10^-5) 

A(T1) [m2] NA [0.018, 0.02] T(0.018, 0.019, 0.02) Triangle(0.018, [0.0185, 0.0195], 0.02) 
A(T2) [m2] NA [0.0012, 0.0025] T(0.0012, 0.00185, 

0.0025) 
Triangle(0.0012, [0.0016, 0.0021], 

0.0025) 
A(T3) [m2] 0.00009 [2.8*10^-5, 1.5*10^-4] T(0.00003, 0.00009, 

0.00015) 
T(2.8*10^-5, [7, 11]*10^-5, 1.5*10^-4) 

U(B) [m/s] 3 [3, 5] Normal(4, 0.4) Normal([3.9, 4.1],[0.3, 0.4]) 
U(D) [m/s] 1.5, 5, 9 [1, 9] Normal(5, 1.5) Normal([4.5, 5.5],[1.0, 1.3]) 
U(E) [m/s] 5 [3, 5] Normal(4, 0.4) Normal([3.9, 4.1],[0.3, 0.4]) 
U(F) [m/s] 1.5 [1, 2] Uniform(1, 2) Uniform(1, 2) 
tc(P1) [min] 5.5 [3, 8] Uniform(3, 8) Uniform(3, 8) 
tc(P2) [min] 30 [20, 40] Uniform(20, 40) Uniform(20, 40) 
tc(T1) [min] 2  [1, 2] Uniform(1, 2) Uniform(1, 2) 
tc(T2) [min] 10  [5, 15] Uniform(5, 15) Uniform(5, 15) 
tc(T3) [min] 30  [20, 40] Uniform(20, 40) Uniform(20, 40) 
fP1 [y—1] 3*10^-6 [8*10^-7, 8*10^-6] Uniform(8*10^-7, 

8*10^-6) 
Uniform([5, 8]*10^-7,[5, 8]*10^-6) 

fP2 [y—1] 1.5*10^-5 [6.5*10^-6, 6.5*10^-5] Uniform(6.5*10^-6, 
6.5*10^-5) 

Uniform([3.5, 6.5]*10^-6, [3.5, 6.5]*10^-
5) 

fT1 [y—1] 5*10^-7 [1*10^-7, 1*10^-6] Uniform(1*10^-7, 
1*10^-6) 

Uniform([1, 3]*10^-7, [7*10^-7, 1*10^-
6]) 

fT2 [y—1] 5*10^-7 [1*10^-7, 1*10^-6] Uniform(1*10^-7, 
1*10^-6) 

Uniform([1, 3]*10^-7, [7*10^-7, 1*10^-
6]) 

fT3 [y—1] 1*10^-5 [5*10^-6, 5*10^-5] Uniform(6.5*10^-6, 
6.5*10^-5) 

Uniform([5, 8]*10^-6, [2, 5]*10^-5) 

Number [n] 100 [80, 120] Normal(100, 10) Normal([95, 105],[3, 10]) 
Inside [-] 0.8 [0.6, 0.9] Normal(0.8, 0.05) Normal([0.7, 0.8],[0.03, 0.05]) 

 
Cd  Discharge coefficient 
A(P1-T3) Hole area for the different LOCs 
U(B-F) Wind speed in the different stability classes 
tc(P1-T3) Exposure time for the different LOCs 
f(P1-T3) Frequency of the different LOCs 
Number Number of people in grid cell (X, Y) 
Inside  Fraction of people being inside. For people inside, a coefficient of 0.1 is used in the calculations 

of number of deaths. 
                                                 
21 In the Dutch approach, the discharge rate is determined directly from the definition of the LOCs, i.e. the hole 
area and discharge coefficient are not always of interest. Furthermore, for stability class D, three different wind 
speeds are used. For the other stability classes, only one (deterministic) wind speed is used. 
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Furthermore, the following probabilities regarding weather classes, wind directions and 
dispersion angle have been used in the example. 
 
Stability class Probability 
B  0.15 
D  0.65 
E  0.15 
F  0.05 
 
Wind direction Probability 
N 0.15 
NE 0.15 
E 0.1 
SE 0.1 
S 0.15 
SW 0.1 
W 0.15 
NW 0.1 
 
Dispersion angle: 15°, i.e. a correction factor of 15/45 is used to account for the assumption 
that the vapour clod will not cover the whole 45° segment in a certain wind direction (360°/8 
wind directions = 8 segments of 45°). 
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A.3.4 Example file from RiskCalc 
 
In this section, an example file from one of the calculations is presented. Comments have 
been added in order to visualise calculation procedure. The example file is the loss of 
containment event T2, assessed using probability bounds analysis. 
 
Incident T2: 
 
Discharge:    //heading for the discharge model 
 
Cd=uniform (0.7, 0.9)   //Specification of the parameters. All uncertain 
A=T (0.0012, [0.0016, 0.0021], 0.0025)  variables are represented by probability bounds 
P0=500000     
Pa=100000 
Vf=1/617 
 
Q=Cd|*|A|*| ((2|*| (P0|-|Pa))|/|Vf)|^|0.5  //the actual discharge model. || means that the  
    arithmetic operation is performed assuming 
    independence 
 
(Might include model uncertainty factor)  //If desirable, a model uncertainty factor can be  
    incorporated in the model 
 
Dispersion:    //heading for the dispersion model 
 
X=300    //downwind distance from source 
UB=normal ([3.9, 4.1], [0.3, 0.4])   //specification of wind speed in the different stability 
UD=normal ([4.5, 5.5], [1, 1.3])   classes 
UE=normal ([3.9, 4.1], [0.3, 0.4]) 
UF=uniform (1, 2) 
SYB=47.3    //specification of the dispersion coefficients 
SYD=23.6 
SYE=17.7 
SYF=11.8 
SZB=36 
SZD=14.9 
SZE=8.3 
SZF=4.4 
 
CBI= (Q|/| (3.14|*|SYB|*|SZB|*|UB))|*|1000000  //the actual dispersion model 
CDI= (Q|/| (3.14|*|SYD|*|SZD|*|UD))|*|1000000 
CEI= (Q|/| (3.14|*|SYE|*|SZE|*|UE))|*|1000000 
CFI= (Q|/| (3.14|*|SYF|*|SZF|*|UF))|*|1000000 
CBII= ((CBI)|*|283|*|0.08206)|/|17   //conversion from mg/m3 to ppm 
CDII= ((CDI)|*|283|*|0.08206)|/|17 
CEII= ((CEI)|*|283|*|0.08206)|/|17 
CFII= ((CFI)|*|283|*|0.08206)|/|17 
 
 
(Might include model uncertainty factor)  //If desirable, a model uncertainty factor can be  
    incorporated in the model 
 
 
Probit:    //heading for the effect model (probit equation) 
 
tc=uniform (5, 15)    //exposure time 
aWB=-9.82    //probit constants from CCPS (2000) 
bWB=0.71 
nWB=2 
aGQRA=-15.6    //probit constants from the Dutch guidelines (1999) 
bGQRA=1 
nGQRA=2 
 
YWBB= (aWB|+| (bWB|*|ln ((CBII|^|nWB)|*|tc)))  //probit value resulting from CCPS (uses  
YWBD= (aWB|+| (bWB|*|ln ((CDII|^|nWB)|*|tc)))  concentration in ppm) 
YWBE= (aWB|+| (bWB|*|ln ((CEII|^|nWB)|*|tc))) 
YWBF= (aWB|+| (bWB|*|ln ((CFII|^|nWB)|*|tc))) 
 
YGQRAB= (aGQRA|+| (bGQRA|*|ln ((CBI|^|nGQRA)|*|tc))) //probit value resulting from Dutch guidelines (uses 
YGQRAD= (aGQRA|+| (bGQRA|*|ln ((CDI|^|nGQRA)|*|tc))) concentration in mg/m3 
YGQRAE= (aGQRA|+| (bGQRA|*|ln ((CEI|^|nGQRA)|*|tc))) 
YGQRAF= (aGQRA|+| (bGQRA|*|ln ((CFI|^|nGQRA)|*|tc))) 
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export YWBB, YWBD, YWBE, YWBF, YGQRAB, YGQRAD, YGQRAE, YGQRAF 
Exporting variable to YGQRAF.prn 
Exporting variable to YGQRAE.prn   //the distributions of the probit values are exported 
Exporting variable to YGQRAD.prn   and converted to distributions of probability of death  
Exporting variable to YGQRAB.prn   using Microsoft Excel 
Exporting variable to YWBF.prn 
Exporting variable to YWBE.prn 
Exporting variable to YWBD.prn 
Exporting variable to YWBB.prn 
 
 
(Conversion from probit to probability of death is made using Microsoft Excel.) 
 
 
import YWBB    //the converted variables are imported  
Importing variable from YWBB.prn    
import YWBD 
Importing variable from YWBD.prn 
import YWBE 
Importing variable from YWBE.prn 
import YWBF 
Importing variable from YWBF.prn 
import YGQRAB 
Importing variable from YGQRAB.prn 
import YGQRAD 
Importing variable from YGQRAD.prn 
import YGQRAE 
Importing variable from YGQRAE.prn 
import YGQRAF 
Importing variable from YGQRAF.prn 
 
 
PWBB=YWBB    //change of name to indicate that they now refer to 
PWBD=YWBD    distributions of the probability of death 
PWBE=YWBE 
PWBF=YWBF 
 
PGQRAB=YGQRAB 
PGQRAD=YGQRAD 
PGQRAE=YGQRAE 
PGQRAF=YGQRAF 
 
PDB=env (PWBB, PGQRAB)   //the union of the two uncertain numbers (i.e. the  
PDD=env (PWBD, PGQRAD)   probability bounds for the probability of death 
PDE=env (PWBE, PGQRAE)   generated using CCPS and the Dutch guidelines) 
PDF=env (PWBF, PGQRAF)   are constructed and used further in the analysis 
 
 
 
Frequencies & probabilities:   //heading 
 
fTII=uniform ([1*10^-7, 3*10^-7], [7*10^-7, 1*10^-6])  //specification of the (uncertain) frequency for LOC T2 
 
PB=0.15    //probabilities for the different stability classes 
PD=0.65 
PE=0.15 
PF=0.05 
 
PE=0.1    //probability that the vapour clod will travel to the east 
    , i.e. towards grid point (X, Y)  
Ang=1/3    //reduction factor for the “dispersion angle”, see  
    Section 9 
 
Individual risk calculation:   //heading 
 
IRTIIB=fTII|*|PB|*|PNE|*|Ang|*|PDB/100  //calculation of the contributions to the total individual 
    risk from the different stability classes 
IRTIID=fTII|*|PD|*|PNE|*|Ang|*|PDD/100 
 
IRTIIE=fTII|*|PE|*|PNE|*|Ang|*|PDE/100 
 
IRTIIF=fTII|*|PF|*|PNE|*|Ang|*|PDF/100 
 
IRTII=IRTIIB|+|IRTIID|+|IRTIIE|+|IRTIIF  //calculation of the total individual risk from LOC T2 
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Societal risk calculation:   //heading 
 
fB=fTII|*|PB|*|PNE|*|Ang   //calculation of the frequencies of the different  
    outcomes 
fD=fTII|*|PD|*|PNE|*|Ang 
 
fE=fTII|*|PE|*|PNE|*|Ang 
 
fF=fTII|*|PF|*|PNE|*|Ang 
 
export fB, fD, fE, fF   //the frequencies are exported to Microsoft Excel 
Exporting variable to fF.prn   to be used in the construction of F-N curves 
Exporting variable to fE.prn 
Exporting variable to fD.prn 
Exporting variable to fB.prn 
 
Number=normal ([95,105], [3, 6])   //definition of the (uncertain) number of people in 
    grid cell (X, Y) 
 
Inside=normal ([0.7, 0.8], [0.03, 0.05])  //definition of the fraction of people being inside. For 
    people inside, a reduction factor of 0.1 is used 
 
 
NumberDB=Number|*| ((Inside|*|0.1|*| (PDB|/|100))|+| ((1|-|Inside)|*| (PDB|/|100))) //calculation of the number of  
     deaths in the different stability 
NumberDD=Number|*| ((Inside|*|0.1|*| (PDD|/|100))|+| ((1|-|Inside)|*| (PDD|/|100))) classes 
 
NumberDE=Number|*| ((Inside|*|0.1|*| (PDE|/|100))|+| ((1|-|Inside)|*| (PDE|/|100))) 
 
NumberDF=Number|*| ((Inside|*|0.1|*| (PDF|/|100))|+| ((1|-|Inside)|*| (PDF|/|100))) 
 
export NumberDB, NumberDD, NumberDE, NumberDF //the number of dead persons are exported to 
Exporting variable to NumberDF.prn   Microsoft Excel to be used in the construction of 
Exporting variable to NumberDE.prn   F-N curves 
Exporting variable to NumberDD.prn 
Exporting variable to NumberDB.prn 
 
 
 
 
 
 
 
 
 


