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Abstract 
Nearshore marine ecosystems and resources serve numerous facets of our natural and 

human existence, and in order to effectively manage these coastal zones, knowledge of 

the spatial configuration of benthic habitats is important.  In this regard, the Government 

of Jamaica is desirous of mapping the benthic features at all fish sanctuaries across 

Jamaica; however several habitat mapping methodologies exist, and as such, it was 

deemed necessary to test the practicality of applying two methods, namely optical and 

acoustic remote sensing.  Consequently, benthic habitats at a pilot site, the Bluefields Bay 

fish sanctuary, were mapped using optical remote sensing, particularly pixel-based 

supervised classification of two available multispectral images (WorldView-2 and 

GeoEye-1), and by a sonar survey using a BioSonics DT-X Portable Echosounder and 

undertaking subsequent interpolation by means of indicator kriging in order to create 

continuous benthic surfaces.  Image classification resulted in the mapping of three benthic 

classes, namely submerged vegetation, bare substrate and coral reef, with an overall map 

accuracy of 89.9% for WorldView-2 and 86.8% for GeoEye-1 imagery.  These accuracies 

surpassed those of the acoustic classification method, which attained 76.6% accuracy for 

vegetation presence, and 53.5% for bottom substrate (silt, sand and coral reef/ hard 

bottom).  Both approaches confirmed that the Bluefields Bay is dominated by submerged 

aquatic vegetation, with contrastingly smaller areas of sand and coral reef patches.  The 

mapping exercise ultimately compared each method and although it was found that 

satellite image classification was perhaps the most cost-effective and well-suited for 

Jamaica given current available equipment and expertise, it is acknowledged that acoustic 

technology offers greater thematic detail required by a number of stakeholders and is 

capable of operating in turbid waters and cloud covered environments ill-suited for image 

classification.  The choice in mapping approach, as well as the survey design and 

processing steps is not an easy task; however the results of this study certainly highlight 

some of the pros and cons of implementing optical and acoustic classification approaches 

in Jamaica. 

Keywords: remote sensing, image classification, GIS, acoustic survey, benthic habitat 

mapping 
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1 

Chapter 1. Introduction 

1.1 Project background and context 

 Importance of marine habitats 

Coastal and nearshore habitats such as mangroves, seagrasses, and coral reefs act as 

natural coastal infrastructure and collectively constitute approximately one-third of the 

coastline in the Caribbean (UNESCO, 1983).  The offshore environments in Jamaica are 

comprised of sand, seagrass beds, rocky platforms, and coral reefs (Warner and 

Goodbody, 2005) and these habitats are all essential to maintaining the connectivity and 

functioning of coastal ecosystems.  Seagrass beds stabilize sediments and act as 

contaminant filters; they also provide habitats and act as shelter, primary producers, and 

nurseries to juvenile fish species (Thorhaug, 1981; Creary, 1999; Green and Short, 2003).  

The rich and varied epibenthic flora and fauna that is supported by seagrass include sea 

urchins, sea cucumbers, conch (Strombus spp.), star fish (e.g. Oreaster reticulatus), coral 

and juvenile fish (Creary, 1999; Jones and Sefton, 2002; Warner and Goodbody, 2005).  

Coral reefs are sometimes referred to as the “rain forests of the sea” (Burke, et al., 2011) 

because they support diverse marine populations (UNESCO, 1983), approximating to 1 

million associated species (Nellemann and Corcoran, 2006).  Non-sessile fauna associated 

with reef structures in Jamaica include small fish, sea urchins, gastropods and crinoids 

(Warner and Goodbody, 2005).  They contribute to the geomorphological attributes of 

coastal systems as well; they produce sand and function as protective barriers to incoming 

wave energy (UNESCO, 1983; UNEP/IUCN, 1988) for in excess of 150,000 km of 

shoreline globally (Burke, et al., 2011).   

Small island states such as those in the Caribbean are described as being reef-dependent 

(Burke, et al., 2011) and this dependency can equally be extended to the complete 

nearshore ecosystem complex and its resources.  Nearshore habitats are of recreational 

and cultural value and the goods and services provided by theses habitats are also 

particularly indispensable to tourism and fishing industries (UNEP/IUCN, 1988; Day, 

2009; Waite, et al., 2011).  As such, they contribute significantly to economies and 

employment within the region (Natural Resources Conservation Authority, Technical 

Support Services, Inc., 1996).  For example, tourism accounts for approximately one-third 

of the labour force in the region (Schill, et al. 2011) - in 2011, this equated to 

approximately 28 million direct, indirect and induced jobs (World Travel and Tourism 

Council, 2012).  Tourism also contributed to 25.6% of Jamaica’s GDP in 2011, which 

was larger than the contribution from any other sector (World Travel and Tourism 

Council, 2012).  The fishing industry similarly contributes to regional and national 

economies and provides a source of livelihood for coastal populations.  On average, 5% of 

the Caribbean labour force was employed in the fisheries sector in 2008, with Jamaica 

having the highest national percentage of 15% (Masters, 2012).  In Jamaica, the fisheries 
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sector provides direct and indirect employment (e.g. fish vendors, boat builders, gear 

manufacturers, and ice suppliers) (Waite, et al., 2011) for approximately 200,000 persons 

(ECOST Project, 2007).   

The provision of ecosystem services and ‘markets’ of coastal nearshore areas depend 

greatly on the healthy functioning of these ecosystems; nonetheless the coastal areas and 

nearshore waters across the world have been, and continue to be degraded and developed 

unsustainably.  Nearshore communities are often impacted by various types of land-based 

pollution such as solid waste, sewage effluent and sediments (UNEP/IUCN, 1988; 

Nellemann and Corcoran, 2006; Ferwerda, et al., 2007), as well as developments on 

adjacent coastal lands and within nearshore habitats.  Structures or activities that fall under 

“development” include coastal engineering works (Burke, et al., 2011) such as breakwaters 

or piers, dredging (UNEP/IUCN, 1988), sand mining and swimming area “manicuring”.  

Improper boating, destructive fishing and overfishing negatively impact marine seagrass 

and coral communities as well (UNEP/IUCN, 1988); the latter two activities affecting more 

than 55% of the world’s reefs (Burke, et al., 2011).  Regionally, more than 75% of reefs 

throughout the Atlantic are threatened, and in Jamaica all are rated as threatened (Burke, et 

al., 2011).  Coral reef deterioration is notable in Jamaica and algal overgrowth owing to 

overfishing of herbivorous fish species and increased nutrient levels is a major threat 

(Goreau, 1992) in addition to those already mentioned.  Overfishing is considered 

detrimental to the fisheries sector in Jamaica (Aiken and Kong, 2000) and unfortunately, 

Jamaica is one the most overfished areas in the Caribbean, with the exception of offshore 

conch (Waite, et al., 2011; Aiken, 2014). 

Global or regional occurring phenomena have the potential to cause widespread habitat 

degradation, compound local threats (Waite, et al., 2011) and reduce the resilience of 

ecosystems (Nellemann and Corcoran, 2006).  Thermal stresses (coral bleaching), ocean 

acidification (Burke, et al., 2011), storm events, disease or mortalities that result in 

community changes (e.g. Diadema antillarum sea urchin mortality in the 1980s) (Liddell 

and Ohlhorst, 1986; UNEP/IUCN, 1988), geological coastal uplift or subsidence (Green 

and Short, 2003) are examples of such phenomena.  A number of studies have also assessed 

the biodiversity impacts of climate change (Foody, 2008), one facet to these considerations 

being “coastal squeeze” (Day, 2009).  Owing to the development of coastal land with 

permanent manmade barriers on the land side of the equation, as well as increased sediment 

loads and permanent structures previously mentioned existing within the nearshore zone, 

natural seaside reactions from climate change such as migration of seagrass beds, 

mangroves and associated fauna inland are restricted, thereby resulting in nearshore and 

coastal habitats competing for the little area that remains.   

 Conservation of marine resources 

As defined by the Protected Areas Committee (2012), a protected area is a “clearly defined 

geographical area of land and or water that is dedicated to and managed for the long term 
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conservation and sustainable use of its ecological systems, biodiversity and/or specific 

natural, cultural or aesthetic resources”.  Currently, protected areas in Jamaica may be 

grouped into 19 categories (Protected Areas Committee, 2012) and this can be 

distinguished between natural areas and built heritage, as well as national governance and 

international designations, each with a responsible authority and overarching legislation.  

Those protected areas of interest to this study are the natural marine areas which account 

for 15% of the Jamaica’s archipelagic waters (Protected Areas Committee, 2012), and 

specifically the marine protected areas (MPAs) and marine parks declared under the 

Natural Resources Conservation Authority Act 1991 and the Beach Control Act 1956, as 

well as fish sanctuaries established under the Fishing Industry Act 1975 (Government of 

Jamaica, 1975) and for which the Fisheries Division, Ministry of Agriculture and Fisheries 

(MoAF) have jurisdiction.  Within the past two years, the Fishing Industry (Special 

Fishery Conservation Area) Regulations 2012 was promulgated and this was used to 

declare 14 areas as Special Fishery Conservation Areas (Ministry of Agriculture and 

Fisheries, Government of Jamaica, 2011).  A Special Fishery Conservation Area (SFCA) 

is analogous with “fish sanctuary” and although it is broadly understood that SFCAs, akin 

to fish sanctuaries, are no-fishing zones, specific terms and conditions for each area may 

be directed by the Minister to allow for specific fishing activities for conservation, 

management or educational purposes (Government of Jamaica, 2012).   

Given the myriad of human, as well as natural activities with the potential to cause spatial 

and temporal changes within the nearshore environment, continuous change must be 

accepted as being inevitable (Ferwerda, et al., 2007) and often unpredictable.  If these 

changes need to be identified, quantified and monitored, some baseline data must exist, 

whether obtained when the environment was in a pristine state prior to human 

interference or an accepted starting point that encompasses anthropogenic impacts 

(Olenin and Ducrotoy, 2006).  Cogan, et al. (2009) discusses the role of marine habitat 

mapping in ecosystem-based management practices and suggest that the mapping and 

classification of habitats should be undertaken in the early phases of management 

planning, prior to biodiversity mapping and management.  At the base of this, is the 

simple fact that the management of a natural area should be influenced by the natural 

ecological boundaries.  This is recognised in the Draft Fisheries Policy where sound 

scientific research is accepted as a basis for the management of fisheries stocks (Fisheries 

Division, Ministry of Agriculture and Lands, 2008), and similarly by the Protected Areas 

Committee (2012) that acknowledged that an absence of comprehensive and 

representative data was an institutional gap.  A scientific basis is required for planning by 

means of a sustainable ecosystem approach. 

The development of management strategies for any protected area is an integrated process 

that assimilates aspects of the natural (ecological) and human (social, economic, cultural, 

political) environment (Day, 2009), both existing and projected.  A spatial context 

underpins this multi-criteria process and this spatial structure facilitates the measurement 
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of inevitable change, whether owing to direct influences on the marine benthos, or 

indirectly from outside sources over time in a quantitative manner.  Key to the 

management of fish sanctuaries and the productivity of the fisheries sector in particular, is 

the association between key fish species and the spatial composition of the marine 

habitats, that is, the benthic landscape ecology and connectivity within habitats.  A 

number of studies have explored connections between fish and other faunal populations 

and habitat structure parameters (Blanc, et al., 2001; Bostrom, et al., 2006; Friedlander, et 

al., 2007).  Knowing the spatial extent of various habitats assists in understanding the 

ecology of the area and examining the “functional flows and movements through the 

landscape” (Forman, 1995).  Quantifiable knowledge also lends itself to economic 

valuation (Waite, et al., 2011), instrumental in resource management and decision making 

processes.  Not only does a spatial basis support further ecological modelling and 

ultimately inform management practices, but on the ground an important use is simply 

knowing the location of seafloor features.  

 Benthic habitat mapping 

1.1.3.1 Nomenclature 

Typically the “benthic” zone is the lowest region at the bottom of a water body that 

comprises the sediment surface and some sub-surface layers, whilst the “benthos” is 

specific to the organisms, both flora and fauna living in or on the seabed.  The term 

“habitat” is often heard in conjunction with other scientific terms such as ecosystem, 

biotype and biome; however within a purely scientific context, a habitat may be 

considered a subset of the larger ecosystem and is lexically defined as “the place or type 

of site where an organism or population naturally occurs” (United Nations, 1992).  The 

ambiguity of the term “habitat” lends itself to the understanding that as suggested by 

Diaz, et al. (2004), a benthic habitat is “more than substrate” and for the purpose of this 

study, it is the marine communities (benthos), in addition to the physical seabed features 

such as sediment or pavement that constitute a “benthic habitat”.  As defined by Brown et 

al. (2011), marine habitat mapping is “the use of spatially continuous environmental data 

sets to represent and predict biological patterns on the seafloor (in a continuous or 

discontinuous manner)”.   

Zonation of coastal and marine areas, as well as associated nomenclature, are often 

specific to the various scientific disciplines within which they are studied; for example 

coastal beach morphology (Komar, 1998), coral reef ecology (Levinton, 2001) and 

coastal management (Norrman, et al., 1997).  The potential uses of this study stretch 

across more than one field of study and it is not the intention to focus on any single 

specialized inclination and semantics of terms used within each.  As such, terminology 

used throughout this report is somewhat “fluid” in description, as opposed to exact in 

definition.  A nearshore area, typically used in beach morphology descriptions, generally 

encompasses the area between the shoreline and area of wave breaking (Komar, 1998); 
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whilst utilising a more coral-focussed zonation, terms such as lagoon, bank/shelf and fore 

reef come into play (Figure 1).  For the purposes of this study, descriptive terms such as 

“nearshore” or “lagoon” or “bank/shelf” may be interchanged to collectively describe the 

subtidal areas within the study area and does not include coastal features inland of the 

water’s edge.  Further, owing to the dynamic nature of waves and tides and transitions 

between high and low water levels; any reference made to the “coastline”, “shoreline” or 

“intertidal zone” will be assumed to be a fuzzy land-water margin.   

Figure 1.  Cross-sectional view of typical coral reef geomorphological zones where: (a) an 

emergent reef crest is present and (b) emergent reef crest is absent (Kendall, et al., 2001). 

 

1.1.3.2 Remote sensing techniques and geographic information systems 

The science of remote sensing involves the acquisition of information without being in 

direct physical contact with the object under investigation; its applicability to 

distinguishing features is based on the fact that interactions with objects will differ.  It is 

often automatically associated with the observation of the Earth’s surface by means 

electromagnetic energy sensors fitted to satellites in space or airborne platforms, 

distinctly referring to optical remote sensing. However the science of remote sensing is 

not exclusively confined to this optical application; acoustic survey is another form of 

remote sensing.   

(a) 

 

(b) 

 



6 

Of the two main types of optical remote sensors, passive and active, the former type, and the 

focus of this study, uses a natural source of electromagnetic radiation, this typically being the 

Sun.  Electromagnetic radiation is transmitted to the Earth’s surface and the energy emitted 

and reflected from the surface is “sensed” and transformed into a digital image.  Marine and 

underwater sensing comprises factors unique to its field; the use of measured signals at the 

sensor and recorded in images is not straightforward as there are added interactions within 

and above the water column that often introduce complications in marine benthic image 

classification (Figure 2).  With increasing depths from the coastline, water column properties 

and the inability of sensor wavelengths to penetrate water (Roob, 2000; Foody, 2008; 

Baumstark, et al., 2013) often limit the application of image classification.  In instances 

where optical sensing falls short, acoustic/ sonar technology can supersede optical image 

sensing as this technique is applicable irrespective of water quality and is capable of 

acquiring data in greater depth ranges (Roob, 2000; Foster, et al., 2011).  Sonar technology 

involves the recording of acoustic signals (waveforms) reflected from seabed characteristics 

and the subsequent classification based on a library of acoustic signatures.  Acoustic seabed 

classification (ASC) is also referred to as acoustic ground discrimination systems (AGDS). 

 

 

Figure 2.  Schematic representation 

of ocean remote sensing: (a) water-

leaving radiance; (b) attenuation of 

the water-leaving radiance; (c) 

scattering of the water-leaving 

radiance out of the sensor's field of 

view (FOV); (d) sun glint; (e) 

scattered light reflecting from the 

water surface; (f) scattering of 

reflected light out of the sensor's 

FOV; (g) reflected light attenuated 

towards the sensor; (h) scattered 

light from the sun which is directed 

toward the sensor; (i) light 

scattered by the atmosphere toward 

the sensor; (j) water-leaving 

radiance originating out of the 

sensor FOV, but scattered toward 

the sensor; and (k) surface 

reflection out of the sensor FOV 

scattered toward the sensor. Lw 

denotes the total water-leaving 

radiance; Lr, the radiance above 

the sea surface due to all surface 

reflection effects within the FOV; 

and Lp, atmospheric path radiance 

(Loisel, et al., 2013, adapted from 

Robinson, I. S., 1983. Satellite 

observations of ocean colour, Philo. 

Trans. Royal Soc. of London, Series 

A, 309, 338-347). 
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Remotely sensed products are often further modelled and/or combined with other spatial 

information in a geographic information system (GIS).  It should be noted that although 

the coined acronym “GIS” is most commonly referenced to geographical information 

systems, it is not unique to this single description; geographic information science 

(Goodchild, 1992), geographic information studies (Longley, et al., 2005) and geospatial 

information studies are other examples.  In the same vein that GIS may be described as a 

system or a science, this project embraces both concepts with an emphasis being on the 

shared “GI” (Longley, et al., 2005) representing “geographic information” or “geospatial 

information”.   

1.2 Justification and purpose 

Nearshore marine ecosystems provide essential ecosystem services to diverse 

communities, yet Jamaica’s coast and nearshore waters have been, and continue to be 

developed extensively.  In recognition of the value and their contribution to the 

livelihoods of local communities, they were given priority for protection in an effort to 

promote and improve the management and sustainable use of coastal/nearshore marine 

resources to meet local and national needs.  Consequently, some have been designated as 

SFCAs (fish sanctuaries), as well as marine parks and protected areas.  However, a 

knowledge-gap exists that precludes the effective management of these sites.  The current 

extent and state of habitats within designated SFCAs are currently unknown and local 

management organizations face severe limitations as there is a lack of resources and 

capacity to undertake the foundational research required to develop and guide 

scientifically-based management strategies.  The Fisheries Division, MoAF, Government 

of Jamaica (GoJ) sought to fill this gap, and will map nearshore habitats at all designated 

fish sanctuaries across the island, and in doing so, build on the geospatial data inventory 

within the established boundaries.  Additionally, the Caribbean Fish Sanctuary 

Partnership (C-FISH) Initiative was launched in November 2012 through the 

CARIBSAVE Partnership (CARIBSAVE) with the main goal of strengthening the 

management of fish sanctuaries.  

Remote sensing is used extensively to map and assess the spatial characteristics of 

benthic habitats and the use of these technologies for mapping coastal and nearshore 

marine ecosystems has been convincingly demonstrated.  This project aims to map the 

benthos of a pilot site, namely the Bluefields Bay SFCA (BBSFCA), using optical and 

acoustic remote sensing technologies and techniques.  The mapping exercise will 

ultimately compare these mapping techniques to determine the feasibility, practicality and 

cost effectiveness of each approach when applied to the Jamaican (and possibly 

Caribbean) context, and will directly support the efforts of the Fisheries Division and C-

FISH, as well as broadly contribute to coastal research in the region.   
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1.3 Research objectives 

The aim of this research was to test marine habitat mapping technologies and techniques 

for use in Jamaica and the wider Caribbean.  Specifically, the use of two primary 

mapping techniques for benthic mapping - optical and acoustic remote sensing 

technologies - were evaluated.  Habitat maps for the Bluefields Bay fish sanctuary 

produced from this assessment will be used by the relevant stakeholders in support of 

various conservation and management initiatives.  

The specific task-based objectives of this project were as follows: 

Objective 1. Map and classify nearshore benthic features using acoustic/sonar 

survey data. 

Objective 2. Map and classify nearshore benthic features using remotely sensed 

images (Landsat 8, WorldView-2 and GeoEye-1). 

Objective 3. Assess and compare the accuracy of each mapping technique using 

an accuracy assessment with ground-truth data. 

Objective 4. Determine the most cost effective and efficacious mapping method 

that can be replicated at other sites across Jamaica and the 

Caribbean. 
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Chapter 2. Study area 

2.1 Location and boundary delineation 

The research area of interest, the BBSFCA, or colloquially referred to as the Bluefields 

Bay fish sanctuary, is located in the western parish of Westmoreland, Jamaica, within one 

of two pilot sites for benthic habitat mapping proposed by the Fisheries Division (Figure 

3).  At present, 14 fish sanctuaries exist at nearshore sites across the island of Jamaica and 

at one offshore location (Government of Jamaica, 2012), and with an area of 13.82 km2, 

the Bluefields Bay fish sanctuary is the second largest declared.  The landward boundary 

has a general northwest to southeast orientation, extending 13.82 km along the coastline 

between the settlement of Paradise to the north and Belmont Point at its southernmost 

extent, with a seaward extent less than 2 km from the shore (Figure 3).  As defined by the 

second schedule of the Fishing Industry (Special Fishery Conservation Area) Regulations 

2012, the exact bounding limits are as follows: 

Starting at Point A, a land-based mark at Belmont Point with geographical 

coordinates 18 09’ 9.432” N and 78 01’ 58.449” W, and shall proceed –  

(a) from Point A, the boundary shall run in a straight line to Point B, a water-based 

mark at geographical coordinates 18° 11' 28.147" N and 78° 03' 40.638" W; 

(b) from Point B, the boundary shall run in a straight line to Point C, a water-based 

mark at Paradise, with geographical coordinates 18° 12' 11.103" N and 78° 05' 

12.93" W; 

(c) from Point C, the boundary shall to Paradise Point, a land-based mark 

geographical coordinates 18° 12' 20.724" N and 78° 05' 13.944" W; and 

(d) from Point C, the boundary shall follow the contours of the coastline back to the 

starting point.  

2.2 Description 

 Coastal land-water margin 

The southern extent of Jamaica is characterised by plains (Warner and Goodbody, 2005) 

and Bluefields Bay is located within the south-western coastal plain and wetlands coast 

region, defined as being one of the natural coastal regions in Jamaica (Norrman, et al., 

1997).  The underlying geology inland of the bay is the Gibraltar – Bonny Gate 

formation, with alluvium and other superficial deposits lining the coast (Mines and 

Geology Division, 1984).  Alluvial sand and deposits of boulder and sand material is 

characteristic of the geology in the general area (Burrowes, 2013).  Natural drainage 

features existing within the Bluefields Bay 135.6 km2 watershed include Bluefields River, 

Bluehole, Sawmill River, Robins River, Sweet River and Waterwheel (Ebert, 2010).   
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Figure 3.  Bluefields Bay Special Fisheries Conservation Area (BBSFCA) boundary 

delineation, Bluefields Bay, Westmoreland, Jamaica (c), with the extent of this map shown as a 

dotted box in the map of Jamaica inset (b), along with the locations of all SFCAs across 

Jamaica.  The location of Jamaica in the northern Caribbean region is denoted by a dotted box 

in inset (a). 

 



11 

A large percentage of the shoreline/ intertidal zone comprise mangrove stands (41.7%) 

(Plate 1a), followed by 35.5% sandy beach (Plate 1b) and the remaining 22.8% of 

shoreline consisting of naturally occurring limestone bedrock and cliffs or manmade 

structures including rip rap (Plate 1c), sea walls, and boulder/ rubble  (Plate 1d) (Carroll, 

2013).  Mangroves and sandy beaches are predominant towards the northern section of 

the bay, with smaller sections occurring throughout the central and southern regions of 

the bay.  Bedrock, limestone cliffs, sea walls, boulder rubble and rip rap are primarily 

found at the southern section of the bay (Carroll, 2013).  Piers and jetties have been 

constructed within the bay, one example being those situated at the Bluefields Bay fishing 

beach and Bluefields Bay Bluefields Bay Fishermen's Friendly Society (BBFFS) office 

(Plate 1e).  In addition to small fishing villages distributed along the shoreline, a public 

Blue Flag certified beach (Blue Flag, n.d.), namely Bluefields Beach Park is situated in 

the southern section of the bay and is used recreationally by locals and visitors.  A 

number of accommodations including those owned by Bluefields Bay Villas, as well as 

residences are located along the coastline.   

 Land use and population 

The combined population of the eight enumeration districts (EDs) that share a boundary 

with the Bluefields Bay coastline was 3,671 in 2011 (Statistical Institute of Jamaica, 

2011) (Figure 4).  Four of these EDs fall within the larger community of Bluefields, 

which was reported to have 1,121 households and a total population of 4,708 persons, 

based on a 2009 socioeconomic survey conducted by the Social Development 

Commission (Social Development Commission, 2014).  Land use inland of the bay’s 

intertidal zone is varied; the coastal towns of Belmont, Bluefields, Mearnsville and Cave 

have given rise to residential and commercial areas amidst a generally rural area.  Within 

the past few decades, fields, inclusive of herbaceous crops, fallow and cultivated 

vegetables, as well as secondary forest have generally constituted the primary land use in 

the Bluefields area (Forestry Department, 1998) (Figure 4).  In addition to subsistence 

farming, artisan fishing is another important livelihood in the coastal communities 

surrounding the bay (Garffer, 1992), which is a primary fishing ground within the country 

(ECOST Project, 2007).  At present, there are 282 registered fishers and 89 vessels 

operating from the Belmont Beach landing site (Figure 4) (Reid, 2014).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Plate 1.  Features along the BBSFCA coastline: (a) red mangrove (Rhizophora mangle) in the 

north, (b) sandy beaches, (c) rip rap abutting seaside property and sea wall towards southern 

section, (d) man-made boulder jetty structure in foreground with red mangrove (Rhizophora 

mangle) and (e) pier at Bluefields Bay fishing beach and Bluefields Bay Bluefields Bay 

Fishermen's Friendly Society (BBFFS) office (Photography credit: Karen McIntyre, 2013).  
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Figure 4.  Socioeconomic and recreational characteristics of the Bluefields Bay, including land 

use, population distribution, beaches, hotels and intertidal classification. 
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 Physiography and benthos of the subtidal nearshore area 

Bluefields Bay experiences mixed semidiurnal tides, characteristic of the western 

Caribbean (Kjerfve, 1981).  With relatively small annual tidal ranges of less than 1 m at 

Savanna-la-Mar and Black River (United Kingdom Hydrographic Office, 1980), Jamaica’s 

south-western coast may generally be described as microtidal, based on classifications 

established by Davies (1964) in Hayes, et al. (n.d.) and Komar (1998).  Wave and wind 

energy are typically the driving factors in such microtidal coastal regimes (Hayes, et al., 

n.d.).  Owing to its western location, the bay is sheltered from the predominant easterly 

trade winds that affect the Caribbean, thereby resulting in a low-wave environment within 

the bay.  Average nearshore wave heights of 0.35 m, primarily approaching from the south 

southeast are reported at the Bluefields Beach Park (Smith Warner International, 2000).  

Shore-parallel currents with average speeds of 7 cm s-1 and a net drift to the northwest of 

2.5 cm s-1 have been recorded offshore Savanna-la-Mar, approximately 4 km west of 

Bluefields Bay; there are no known current measurements in the Bluefields Bay (Smith 

Warner International, 2000).  An average surface salinity of 3.8% was measured within the 

bay (Carroll, 2013) and this is slightly greater than average salinities of ~ 3.6% for Jamaica 

(CARICOM Fisheries Resource Assessment and Management Program, 2000).  Sea 

surface temperatures range annually between 24 and 27.5 °C (Goreau, 1959). 

A “relatively shallow shelf up to 20 km wide” (Warner and Goodbody, 2005) is 

characteristic of Jamaica’s south coast.  At Bluefields Bay, the shelf edge is situated 

approximately 6 km from the coastline, and at its nearest, 3 km from the seaward edge of 

the BBSFCA.  The study area for this project is primarily within the nearshore subtidal 

zone (below low water level).  Emergent reefs are not evident at Bluefields Bay and 

according to zones described by Kendall, et al. (2001) (Figure 1), the extent of the 

sanctuary is situated within the bank/shelf region shoreward of the fore reef, where 

maximum depths of 10 m have been reported (Carroll, 2013).  The seafloor of the BBSFCA 

may be described as seagrass and sand-dominated (Keegan, et al., 2003) with mud and 

boulder deposits also constituting the seafloor sediment to the south (Dryer, 2010; 

Thompson, 2013; Burgess, 2013; Bluefields Bay Fishermen's Friendly Society, n.d.).  

Spatial coverage of seagrass within the bay is believed to have changed over time; 

excavation surveys suggest that there was a well-developed high salinity seagrass habitat 

during Ostonian occupation during the 9th century and approximately 600 years later during 

the Meillacan period, the seagrass community was far less abundant with a more stagnant 

lower salinity environment (Keegan, et al., 2003).  During the 1990s, seagrass coverage 

generally increased (Smith Warner International, 2000) and in recent years, temporal 

changes in the sand and seagrass distribution have been observed following severe weather 

such as Tropical Storm Nicole in October 2010, wherein seagrass meadows were buried by 

extensive sand movement in the bay (Thompson, 2013; McNaught, 2013). 
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Offshore reefs at Bluefields Bay have been classified as part of a coastal barrier reef 

complex (UNEP-WCMC, WorldFish Centre, WRI, TNC, 2010), as well as an intra-shelf 

barrier reef, described to be a fringing system of reefs along land separated by a lagoon 

(Maxam, et al., 2011).  This fringing system is the dominant type of reef existing in 

Jamaica, although it has an intermittent distribution (Goreau, 1959; UNESCO, 1983; 

UNEP/IUCN, 1988; Warner and Goodbody, 2005).  Owing to a greater proportion of 

sediment loaded rivers exiting along the south coast of Jamaica, coastal waters typically 

have higher levels of turbidity in the south, when compared to the island’s northern 

coastal waters (Warner and Goodbody, 2005; Norrman, et al., 1997), perhaps causing the 

discontinuity of the fringing reef system along the south cost.  Coral reefs are located 

towards the seaward limit of the BBSFCA, with an artificial reef structure consisting of 

350 EcoReef modules erected in July 2011 at 18° 10’ 18.4” N; 78° 02’ 34.0” W (World 

Geodetic System (WGS) 1984 datum) at a depth of 7.92 m within the sanctuary 

(Rudolph, 2012).  Other notable man-made features existing within the bay are 22 lobster 

“condominiums”, which were placed across the bay between July 2010 and August 2011 

(McNaught, 2013; Squire, 2013).  The deployment of these simple box-like 

configurations of concrete blocks, are a part of the Lobster Casita Project and were placed 

in the sanctuary to encourage the proliferation of lobster populations (Jamaica 

Information Service, 2008).  

 Threats and conservation efforts 

Up until the mid-20th century, Bluefields Bay was considered to be in “excellent 

environmental condition” (Bluefields Bay Fishermen's Friendly Society, n.d.) and capable 

of supporting local fishers.  Owing to numerous factors, also recognisable at the national 

level, there has been an observed decline in catch.  The reefs of Bluefields Bay have been 

described to have “very high” local threat levels (Waite, et al., 2011); likely threats include 

land-based sources of pollution and effluent, leading to increased nutrient levels in the 

coastal bay (Ebert, 2010; Bluefields Bay Fishermen's Friendly Society, n.d.).  Along the 

south coast, there is an apparent disposition for reef fishing; in 1997, 82% of fish landings 

along the south coast by artisanal fishers were coral reef species, such as parrotfish, 

groupers, goatfish, mullets, and wrasses, whilst the remaining 28% comprised offshore and 

coastal pelagics and invertebrates (CARICOM Fisheries Resource Assessment and 

Management Program, 2000).  This propensity perhaps assisted in the destruction of reef 

habitats in the vicinity of Bluefields Bay owing to overfishing on reefs and destructive 

fishing practices such as dynamiting in the latter half of the 1900s (Bluefields Bay 

Fishermen's Friendly Society, n.d.).  Today, coral reef finfish and lobster remain target 

species of fishers operating from Belmont Beach (Reid, 2014).  Additionally, natural 

disturbances have played a role in the destruction of reefs nationally (Ecosystems 

Management Branch, National Environment and Planning Agency, 2008), as well within 

the local Bluefields area (Bluefields Bay Fishermen's Friendly Society, n.d.).  
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Since being declared a fish sanctuary in March 2009, there has been an evident 

improvement in Bluefields Bay.  As reported by the Bluefields Bay Fishermen’s Friendly 

Society (n.d. a), a noticeable growth in fish and lobsters has been observed in the vicinity 

of the previously mentioned lobster “condominiums” and EcoReef structure.  Similarly, 

from a survey undertaken in 2012, the Bluefields Bay Fishermen’s Friendly Society 

reported that 67% of those interviewed observed improvements in the catch within the 

past six months (Bluefields Bay Fishermen’s Friendly Society, n.d. b).  In addition to the 

growth of fish populations, Thompson (2013) believes that healthier reef assemblages 

seen throughout the bay are due to the prohibition of traps and dynamites.  Improvements 

within the BBSFCA may be attributed as well to the effective management and on-going 

monitoring undertaken by the various entities such as BBFFS, NEPA and the Fisheries 

Division.  Such efforts are also supported by "voluntourism", termed by Jacks (2011), 

which is easily achieved in the Bluefields area owing to resort and real estate 

development in the area (Sir William Halcrow and Partners Ltd., 1998), as well as 

growing ecotourism efforts (Garffer, 1992) (National Environment and Planning Agency, 

n.d.).  Such collective work indeed resulted in the founding of the BBFFS, the 

management authority of the BBSFCA in 2006.   

2.3 Motivation for study area selection 

One of the site selection criteria used for the establishment of SFCAs is the ecological 

characteristics of the site and specifically the existence of coastal and marine habitats such 

as seagrass meadows, coral reef and adjoining mangroves forest, crucial for the 

development of various ontogenic stages of marine fish (Ministry of Agriculture and 

Fisheries, Government of Jamaica, 2011).  Coral reef, sand and seagrass are marine 

conservation targets, that is, “specific biological features that serve as the focus of 

conservation planning and management efforts”, in Jamaica’s National Ecological Gap 

Assessment Report (Anon., 2009).  The BBSFCA is comprised of these three benthic 

habitat types (Carroll, 2013) and falls within one of the Fisheries Divisions pilot mapping 

sites (Figure 3).  The area is also a primary fishing ground within the country (ECOST 

Project, 2007); the parish of Westmoreland accounted for the second largest proportion of 

fishers by parish or approximately 12.3% (2,250 fishers) of all registered fishers within the 

country, with the smallest parish on the island, Kingston, having the highest proportion or 

18.9% (3,461 fishers) (Ministry of Agriculture and Fisheries, 2011). Further, in addition to 

its local and national environmental importance as a fish sanctuary, at the global level, 

Bluefields Bay is identified as a Habitat/Species Management Area (Category IV) under the 

International Union for Conservation of Nature (IUCN) Protected Areas Categories System 

(ProtectedPlant, 2014; United Nations Development Programme, n.d.) and is cited as a 

potential marine heritage site (since not confirmed by means of field survey) and a natural 

anchorage site (Sir William Halcrow and Partners Ltd., 1998).  For these multiple reasons, 

BBSFCA was considered an ideal site for the study.   



17 

Chapter 3. Methods 

3.1 Interviews and participatory approaches 

Approaches taken to map the benthic environment of the BBSFCA and other similar 

coastal areas should ideally be guided by persons involved in the use, research, 

management and protection of these areas.  For this reason, garnering information from 

stakeholders within the marine and coastal arena was regarded as a paramount component 

of the project.  With the purpose of establishing useful habitat mapping requirements, 

such as minimum mapping unit (MMU) (threshold area that dictates whether a feature is 

mapped or not) and benthic classes, as well as identifying existing data and resources in 

Jamaica, a questionnaire (Appendix A) was administrated to a range of coastal 

stakeholders, including scientists, engineers and management bodies by means of email, 

as well as via telephone calls between August and December 2013 (Appendix B).  In 

addition to this formal questionnaire, the perspectives and local knowledge of marine 

users from coastal communities along Bluefields Bay were captured by means of informal 

interviews during field surveys.  Indeed, participatory methods have the additional benefit 

of acting as an important introductory liaison with the area and associated stakeholders. 

3.2 Standards 

 Habitat classification scheme 

The classification system developed by the National Oceanic and Atmospheric 

Administration (NOAA) for shallow-water (< 30 m) benthic habitats (Kendall, et al., 

2001) has been applied across the Caribbean, for example in the U.S. Virgin Islands 

(Kendall, et al., 2004), Puerto Rico (Zitello, et al., 2009) and Jamaica (Haynes-Sutton, et 

al., 2010) (Carroll, 2013).  This system classifies habitats according to a larger 

biogeographic zone within the nearshore area, then subsequently into a collapsible 

hierarchy with four major habitat groupings (Kendall, et al., 2001).  An improvement was 

made to this 2001 system, such that classifications would no longer be biased to coral 

cover but would now encompass all biological assemblages as major cover types (Zitello, 

et al., 2009).  The redeveloped system groups habitat classes into four ecosystem 

attributes, namely Geographic Zone, Geomorphological Structure, Biological Cover and 

Coral Cover (Figure 5).  In order to satisfy the requirements of the Fisheries Division 

(Table 1), facilitate comparison amongst existing benthic data outputs in Jamaica and 

allow for additional ecological data to be appended in the future, the NOAA hierarchal 

shallow-water classification scheme described in (Zitello, et al., 2009) was chosen for 

use.  It must be noted that although mangrove forests are important intertidal habitats, it is 

not considered a marine benthic habitat here.   
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Geographic Zone  

Land  

Salt Pond  

Shoreline Intertidal  

Lagoon  

Reef Flat  

Back Reef  

Reef Crest  

Fore Reef  

Bank/Shelf  

Escarpment  

Channel  

Dredged  

Unknown  

Geomorphological Structure  

Coral Reef and Hard Bottom  

Rock Outcrop  

Boulder  

Aggregate Reef  

Individual Patch Reef  

Aggregated Patch Reefs 

Spur and Groove  

Pavement  

Pavement with Sand Channels 

Reef Rubble  

Rhodoliths  

Unknown  

Unconsolidated Sediment 

Sand  

Mud  

Sand with Scattered Coral & Rock  

Unknown  

Other Delineations  

Land  

Artificial  

Unknown 

Biological Cover  

Major Cover  

Algae  

Live Coral  

Coralline Algae  

Mangrove  

Seagrass  

No Cover  

Unknown  

Percent Major Cover  

10% -<50%  

50% -<90%  

90% -100%  

Unknown  

Coral Cover  

Percent Coral Cover 

0% -<10%  

10% -<50%  

50% -<90%  

90% -100%  

Unknown 

Figure 5.  NOAA shallow-water classification scheme, with four primary attributes grouped 

into boxes and associated hierarchical levels within each (Zitello, et al., 2009). 

 

Table 1.  Benthic classes recommended by the Fisheries Division for the classification of fish 

sanctuaries (Fisheries Division, Government of Jamaica, 2013). 

Feature Definition 

Hard Coral Areas of Interest (AOI) covered in greater than 1 m2 patches by Acroporidae spp.  

Rubble Assemblages of skeletal rubble greater than 5 m2 in area, which may be bonded by 

coralline algae. 

Sparse 

seagrass 

Extent to which any of the major seagrass species from the Hydrocharitaceae family are 

present in community of less than 50% cover.  Green algae (Chlorophyta) may be 
associated with seagrass.  

Dense 

seagrass 

Extent to which any of the major seagrass species from the Hydrocharitaceae family are 
present in community of greater than 50% cover.  Green algae (Chlorophyta) may be 

associated with seagrass. 

Pavements Hard ground covered by dense Gorgonian spp., other forms of soft corals with low to 
moderately high three-dimensional cover or macro-algae.  

Sand Small particles derived from coralline, rock fragments or other minerals sources, and 
range in size from 0.63 mm to 2 mm.  

Mud Submerged regions of thick deposits of soft, unconsolidated silty clay, which remains 
saturated with water.  
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 National GIS data standards 

The current accepted national coordinate system for Jamaica is the Jamaica Grid 2001 

(JAD 2001); this was considered the working projection of the project, and to which all 

spatial data was referenced to.  Available national guidelines useful to mapping, 

cartography and metadata were also applied as required throughout the project activities 

(Land Information Council of Jamaica, 2006; Geographic Information Systems (GIS) 

Cartographic Standards and Symbologies Technical Committee, 2010).   

3.3 Field surveys and equipment 

 Sonar survey 

3.3.1.1 Equipment and sampling logistics 

A sonar survey was conducted within the BBSFCA between 26 July and 2 August 2013 

using a factory calibrated BioSonics DT-X Portable Echosounder with split-beam 

transducer. The echosounder was set to have a pulse duration of 0.4 ms and sampling 

frequency of 206 kHz; all three available data channels (bathymetry, macro and fish) were 

enabled.  The echosounder was coupled with a Garmin Global Positioning System (GPS) 

and both securely affixed to a 14’ jon boat utilised throughout the survey, with the 

exception of one day when the BBFFS 21’ Sea Cat was used (Plate 2).  In order to ensure 

that the equipment remained mounted correctly and to prevent cavitation around the 

transducer, boat speed was maintained below 2.5 ms-1 (5 knots) and the survey was run 

during calm wave conditions, particularly at night and during morning hours.  Weather 

throughout the duration of the sonar survey was fair; whenever calm conditions 

deteriorated or if rainfall was imminent, the survey was suspended.  Tide data from the 

United Kingdom Hydrographic Office (UKHO) Tidal Prediction Service (TPS) predicted 

lowest predicted tide at 0.299 m and highest tide at 0.485 m above Chart Datum (Lowest 

Astronomical Tide, LAT) during the field survey time periods (Table 2).   

Predefined transect lines spaced 50 m apart and perpendicular to the major axis of the 

shoreline were generated prior to the survey (Figure 6); this systematic placement enabled 

full coverage of the study area.  Ideally, for model validation purposes, diagonal transects 

would have been run in addition to those represented in Figure 6; however owing to 

constraints in the field, this data collection was not possible.  During the survey, transects 

were run as close as possible to the shoreline and extended seaward of the sanctuary 

boundary in anticipation of the interpolation process (to avoid extrapolation at the 

sanctuary boundary).  Gaps in the survey data occurred in areas where the vessel was 

unable to survey (such as shallow waters less than 0.5 m), or where the data files were 

corrupted or where potentially erroneous data was recorded due to rough seas or 

questionable transducer alignment (this was noted in the field) (Figure 6).  
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(a) 

 

(b) 

 

(c) 

  

Plate 2.  Arrangement of BioSonics DT-X Portable Echosounder (a), GPS antenna and linked 

laptop on the BBFFS 21’ Sea Cat* (b) and 14’ jon boat (c) (Photography credit: Karen 

McIntyre, 2013).   

 

Table 2.  Dates and times during which surveys were undertaken, along with highest tide (HT) 

and lowest tide (LT) modelled values obtained from the UKHO TPS Savanna-la-Mar port. 

Day Date Survey times Tidal range (m) 

1 26 July 2013 12:30 – 6:40 PM LT: 0.300, HT: 0.432 

2 27 July 2013 10:00 AM – 1:00 PM LT: 0.370, HT: 0.419 

3 28 July 2013 

28 July 2013 - 29 July 2013 

7:00 AM – 12:30 PM 

6:40 PM – 4:00 AM 

LT: 0.299, HT: 0.390 

LT: 0.369, HT: 0.406 

4 30 July 2013 8:20 AM – 5:10 LT: 0.300, HT: 0.430 

5 1 August 2013 - 2 August 2013 7:50 PM – 8:10 AM LT: 0.349, HT: 0.475 

6 2 August 2013 – 3 August 2013 8:00 PM – 3:10 AM LT: 0.341, HT: 0.485 

                                                

* The photograph shows the echosounder mounted beside one of the two outboard engines on the Sea Cat; 

however it should be noted that this engine was not in operation during data collection. 
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Figure 6.  Sonar survey transects generated 50 m apart and data points plotted from sonar 

survey bathymetry output records. 
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3.3.1.2 Sonar ground-truth library 

As part of the data collection process, a standard library of hydroacoustic signals specific to 

the BBSFCA, termed the “ground-truth” library was created for sand, mud/silt and coral.  

In June 2014, signals were recorded at 16 sites whilst simultaneously identifying the bottom 

type by means of grab samples.  Non-intrusive methods of collecting ground truth data 

were preferred in the BBSFCA, however, grab sampling was deemed necessary in order to 

accurately distinguish between sand and other sediment types present in the BBSFCA (e.g. 

mud, silt).   

 Videography 

3.3.2.1 Image classification training 

A Seaviewer Underwater video camera and connected Garmin GPS was used to record 

georeferenced video of the seabed during the sonar survey.  The georeferenced videos 

were used to provide in situ benthic information necessary for the identification of 

features during the sonar survey and classification training.  Bottom types such as bare 

substrate, rubble and coral reef were determined visually from the georeferenced video 

files and were represented as points.  Additional information such as estimated vegetation 

cover and species were also recorded, and was used as auxiliary information when 

applying benthic classification scheme (Kendall, et al., 2004).    

3.3.2.2 Accuracy assessment ground-truth data 

A stratified random sampling method was employed in order to generate in excess of 200 

ground truth points across the bay on three different occasions in July 2013, March 2014 

and June 2014.  Each reference point description was collected by means of video camera 

drops, and supplemented by additional inspection of grab samples where possible.  

Recorded benthos descriptions included substrate type, estimated vegetation cover, species 

present and type of sediment and were subsequently categorised according to the Kendall, 

et al. (2004) hierarchy.    

3.4 Study area boundary mapping 

The BBSFCA boundary points defined by the (Government of Jamaica, 2012) were 

mapped as vector point and polyline features using the WGS 1984 latitude longitude 

coordinates indicated and subsequently projected to the JAD2001 system.  The area of 

interest encompasses the marine environment within the fish sanctuary and excludes all 

land features.  The images acquired for the purposes of the image classification project 

components, and in particular the near infrared (NIR) bands were utilised to detect land 

features and manually digitise the coastline of Bluefields Bay at a minimum scale of 

1:3,000.  The WorldView-2 image was preferentially used owing to its relatively high 

spatial resolution and collection date (Figure 19), and the remaining images (GeoEye-1 

and L8 OLI/TIRS) were used in areas of cloud cover on the WorldView-2 image.  The 

seaward limit and coastline polyline files were merged in order to create a detailed, up-to-
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date outer boundary for the BBSFCA; this was considered the working extent of the 

study.   

3.5 Bathymetric modelling 

The production of a bathymetric model for the BBSFCA was not an objective of this 

study; nonetheless a continuous representation of depth across the bay was needed for 

input in the water column correction procedure as part of the image pre-processing 

(section 3.7.2.2).  Furthermore, since high density bottom data is a by-product of the 

BioSonics, Inc. processing software (Figure 7), it was used to create a bathymetric model.  

In order to generate a continuous raster model, interpolation, that is, the process of 

estimating the attribute value of unknown vector points within surrounding sampled data 

(Burrough and McDonnell, 1998) is applied.  Geostatistical and deterministic methods are 

one subdivision of interpolation techniques; both take into the account the principle of 

spatial autocorrelation - the closer something is to a known point, the likelihood that it is 

more similar is higher than if further away (de By, et al., 2001).  Geostatistics almost 

always refers to kriging (Babish, 2002), the term being credited to Daniel Krige (Oliver 

and Webster, 2014).  Interpolation by means of a kriging technique typically involves the 

following steps: 1) dataset building and exploration; 2) semivariogram modelling and 

kriging; and 3) validation. The overall process is iterative; the final result is only 

accomplished subsequent to a series of data building and experimental modelling steps.   

 Dataset building and exploration 

The batch processing functionality of BioSonics, Inc. processing software Visual Bottom 

Typer ™ (VBTTM) was used to extract and process bottom depth data from the 

hydroacoustic data.  The bottom typing method used was the B4 (Fractal Dimension and 

Cluster Analysis) and output reports averaged 20 pings per record.  Output files from the 

VBTTM were collated for each of the six days of field survey, mapped as vector points using 

the latitude and longitude coordinates (WGS 1984) provided in the report files and 

subsequently reprojected to JAD2001.  Identical coordinate pairs were summarised and the 

mean depth reading calculated for these points.  Data points were spaced 4 – 5 m along 

transects and more or less 50 m between transects.  Depth measurements were corrected for 

the position of the sounder on the vessel (39 cm below water surface), as well as tide 

(Figure 7).  Tide data was provided courtesy of the UKHO via its TPS.  Tidal heights above 

Chart Datum (LAT) were received for the port closest to the study area, namely Savanna-

la-Mar, located at 18.20, -78.13 (WGS 1984) in 10-minute intervals.     
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Figure 7.  Flowchart showing main data processing and GIS modelling stages for acoustic data.  
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In order to avoid erroneous extrapolation, it was essential to explicitly demarcate the 

landward boundary of the BSM (Hell, 2009) and assign a depth reading in anticipation of 

the interpolation process.  Mock coastline data points were created along the sanctuary 

coastline with a spacing of 5 m and assigned a depth reading of 0.1 m in order to 

represent the shoreline extent of the boundary.  These coastline points were merged with 

VBTTM processed sonar data for the six days of field survey undertaken resulting in a 

combined total of 69,072 records; this represented the “working” dataset of depth points.   

The suite of tools available in the ArcGIS ArcMap 10 software were used in order to 

carry out all data exploration and interpolation steps for the project (bathymetric, as well 

as submerged vegetation and bottom subgrade, sections 3.6.1.2 and 3.6.2.2).  Prior to 

interpolation, the working dataset of depth points was examined in order to identify 

outliers, investigate the statistical properties and explore potential dataset trends and 

spatial autocorrelation.  Systematic errors in measured data may also lead to erroneous 

models and as such it was imperative to detect and remove these errors (Hell, 2009).  

Semivariograms are typically used to identify outliers and potential erroneous data.  

Unfortunately, the respective ArcMap Semivariogram Cloud tool did not function with 

the full training dataset; histogram and voronoi maps however revealed that relatively 

shallow depths existed amongst areas of deeper depths close to the seaward study area 

boundary (Figure 8).  A number of these instances corresponded with the occurrence of 

coral which was documented during the videography exercises, and as such were deemed 

accurate.  Other potential errors of concern included erroneous deeper depths found close 

to the shoreline (Figure 9) and these were not found to be true representation of reality 

when they were compared with VBTTM echogram windows.  Although these outliers 

were within the typical range of depths for the bay, they were inconsistent with 

neighbouring values and were considered as local outliers.  Those points deemed 

inaccurate were removed from the working dataset, resulting in a total of 68,604 vector 

points for further exploration. 
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Figure 8.  Graphical and spatial representation of untransformed acoustic depth data: (a) 

histogram and summary statistics for depth data, (b) larger scale map of area under 

investigation showing depth data points and (c) spatial distribution of all data points across 

BBSFCA.  All points falling within the fifth histogram depth bin shown in red in (a) with 

depths between 2.631 and 3.288 m are highlighted in red in (b) and (c). 
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Figure 9.  Graphical and spatial representation of untransformed acoustic depth data: (a) 

histogram and summary statistics for depth data, (b) larger scale voronoi map of area under 

investigation and (c) spatial distribution of all data points across BBSFCA.  All points falling 

within the fourth histogram depth bin shown in red in (a) with depths between 1.973 and 2.63 

are highlighted in red in (b) and (c). 
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The kriging method is based on variography, that is, the assessment of spatial variability 

and for which there is an assumption of normality.  The frequency distribution of depths 

across the BBSFCA may be described as normal with a slight positive skew of 0.12 

(Figure 10a).  Although the median and mean are more or less comparable (4.02 and 4.10 

respectively), the distribution was not perfectly symmetrical and the histogram shape was 

platykurtic with a kurtosis of 2.26.  In addition to the normality suggested by the bell-

shaped appearance of the histogram, the QQ plot showed that the majority of the data fits 

the normal line (Figure 10b) and thereby data transformation was not required. 

(a) 

  
(b) 

 

Figure 10.  Plots for the final depth dataset (m) subsequent to changes made during data 

exploration steps: (a) histogram and (b) normal QQ plot. 
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Two types of trends or patterns may be identified in a dataset: a broader scale pattern or 

fixed ‘global fit’ (Babish, 2002), and secondly a local directional effect (anisotropy).  The 

global trend may be described as “overriding” (Johnston, et al., 2001) and in the study 

area, water depth is likely a result of short range coastal geomorphology and underlying 

geology that affects all data points and which do not change over time.  Trend analysis 

revealed an intrinsic trend of decreasing depths in a NE to SW direction, which may be 

modelled using a second or third order polynomial (Figure 11). 

(a) 

 

(b) 

 

Figure 11.  Trend analysis for the final depth dataset at a 225° angle showing a: (a) second 

order polynomial and (b) third order polynomial trend on projections. Projected data points in 

YZ plane shown in navy blue, in the ZX plane in green and XY plane in red.  Trend lines in YZ 

plane depicted in blue, and in XZ plane in lime green.  

 

The working dataset was randomly subsampled in order to generate training data for input 

to the interpolation (80%) and an independent test dataset to be used in model validation 

(20%).  The smaller test dataset (500 data points) was used to generate semivariogram 

clouds (Figure 12), which revealed a NE-SW principal axis for anisotropy.  This 

directional pattern was observed over a smaller distance than all directions, as expected 

by the spatial extent of data in the NE-SW direction and the narrow distance between the 

coast and seaward SSFCA boundary limit.  Outliers were not readily identified from any 

of the semivariograms generated and those paired points close to the outer limits of the 

cloud were found to be accurate on further inspection.  Given that no further erroneous 

data points were discovered, the working dataset of 68,604 points was considered final 

with a subsample of 54,883 points for the training and 13,721 data points for testing.   
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(a) 

 
(b) 

 

(c)  

 

Figure 12.  Semivariogram clouds and surface maps with angle direction (insets) generated 

using the test subsample of data points for: (a) all directions, (b) NE-SW direction (225° angle) 

and (c) NW-SW direction (315° angle).   
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 Kriging 

Numerous types of kriging exist, however universal kriging (UK) was employed owing to 

its approach of combining global trends (Oliver and Webster, 2014), such as those 

evidenced for BBSFCA, with local statistical variation.  It is possible to overfit a global 

trend, and it is recommended that global surfaces be modelled as simply as possible since 

over fitting can result in negligible local variation in residuals to accurately explain model 

uncertainty (Johnston, et al., 2001).  The NE-SW trend in BBSFCA appeared to be 

satisfactorily modelled by simple both second order and third order polynomial trends 

(Figure 11); however it was found that a constant, local exponential method with an 

exploratory trend surface of 1 best fit the general depth trend of the bay.   

Unlike global trends which may be attributed to a known physical process or 

phenomenon, reasons for anisotropy are typically unknown or random and do not affect 

all data points.  In order to examine the local, spatially related variation, an experimental 

semivariogram is plotted and this allows spatial autocorrelation between data points to be 

examined.  The shape of the variogram may vary with direction; however the detrended 

dataset revealed to be isotropic and as such an omnidirectional was utilised (Figure 13b).  

The fit of various variogram model types were investigated within the first few distance 

lags (intervals), given that changes in the shape of the model near the origin of the graph 

have greatest influence on the prediction.  The exponential form graphically fit with the 

empirical variogram and generated the best statistical cross-validation results when 

compared to other test variogram models.   

It has been stated that variogram lag sizes should be in similar size to the sampling 

distance if a sampling grid was used (Johnston, et al., 2001; Oliver and Webster, 2014), 

which in this case was 50 m between transects and at minimum 4 m along transects.  In 

an attempt to avoid any masking of short-range autocorrelation caused from local benthic 

features, a relatively small lag size of 10 m was chosen, with a total of 40 lags.  

Measurement error and spatial variation occurring at scales smaller than the sampling 

spacing result in nugget effects.  Features less than 5 m in extent, such as coral heads or 

lobster condominiums do in fact exist and the mapping of these features was thought to 

be important.  Owing to the dense sample data along transects and existence of co-located 

data records averaged prior to variogram modelling, it was reasonable to assume that the 

nugget effect seen may be attributed to local fluctuations in depth as well as measurement 

error, and was therefore modelled with a value of 0.0015.  Other variogram parameters 

utilised included a range of 191.79 and partial sill of 0.11.  Given the general NE-SW 

direction of the transect lines, a four-sector type search neighbourhood with 5 maximum 

and 2 minimum data points within each sector allowed for sample points to be included 

from neighbouring transect lines. 
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(a) 

 

(b) 

  

Figure 13.  Exponential semivariogram model used to produce the BSM (a), and corresponding 

semivariogram map for the training data set (b).  

 

 Validation 

Cross-validation predicts a value for a point momentarily removed from the dataset 

and compares the measured value with the predicted value (prediction error); this is 

repeated for all points within the training dataset.  Graphical plots, together with 

statistical measures, and specifically mean prediction error (ME), mean squared error 

(MSE) and root mean squared error (RMSE) were used to assess the quality of the 

interpolated maps produced by the kriging methods.  That model resulting in the 

smallest RMSE (Ly, et al., 2011), a RMSE standardised closest to 1 and a ME closest 

to 0 (Johnston, et al., 2001) may be used to identify the most accurate model.  These 

diagnostic measures are comparable to some extent with those suggested by Oliver 

and Webster (2014), who state that ME should theoretically be zero and the MSE 

minimized.  However Oliver and Webster (2014) further stated that these measures do 

not necessarily pinpoint the ‘correct’ krig model and recommended that the mean 

squared deviation ratio (MSDR) should be used as the indicator parameter, and that 

the MSDR value closest to 1 should be selected as the optimal model.  The RMSE and 

the RMSE standardised that are generated are the square roots of the MSE and MSDR 

Semivariance (γ) 
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respectively.  RMSE standardised is thought to be a good measure of model 

performance (Li and Heap, 2011) and this was used as the main measure for assessing 

model performance, as well as others.  That kriging model resulting in the RMSE 

standardised closest to 1 from the cross-validation was deemed the optimal model for 

this study.   

The resulting surface was referred to as a Bathymetric Surface Model (BSM), the 

oceanic equivalent to a Digital Surface Model (DSM), representing the topography of 

the seabed’s surface, including the sea bottom, vegetation canopy and other manmade 

features that may be present on the seafloor.  Such bathymetric representations are also 

referred to as Digital Bathymetric Models (DBMs) (Hell, 2011) and Digital Depth 

Models (DDMs) (Roob, 2000).  In order for the resulting BSM to be combined with the 

satellite imagery data, the cell size chosen was identical to the spatial resolution of the 

imagery.  The optimal kriging model was therefore exported to a raster GRID format 

with a spatial resolution of 2 m, and clipped to the BBSFCA boundary.  Lastly, the 

cross-validation step described previously exclusively uses the input points (training 

dataset); as such it was deemed necessary to undertake validation of the final UK 

surface using the independent test dataset subsampled prior to interpolation in order to 

independently assess the performance of the interpolation.   

3.6 Acoustic classification 

 Submerged vegetation 

3.6.1.1 EcoSAVTM processing 

The macro acoustic data collected from the field survey (section 3.3.1.1) was processed 

using the BioSonics, Inc. processing software EcoSAVTM in order to assess submerged 

aquatic vegetation (SAV).  The echogram was used as a validating source, and processing 

parameters were defined to ensure that the most accurate vegetation reports were 

generated.  Data for all six days was processed for every ten pings, and were then plotted 

as vector points in WGS1984 and subsequently reprojected to JAD2001.  Duplicate 

points were removed and a total of 121,929 processed points with an average spacing of 2 

- 3 m along transects.  In order to obtain validation points from this across the bay, a 

random start transect was chosen and every tenth transect of data points, as well as 

transects perpendicular to the shoreline were selected for inclusion in the test subset of 

data points for model validation (representing 12% or 14,853 points) (Figure 14).  The 

remaining 107,076 points comprised the training dataset for modelling (approximately 

88% of all data points, Figure 7).   
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Figure 14.  Graphical and spatial representation of EcoSAVTM training data points: (a) 

histogram and summary statistics for vegetation percent cover, (b) spatial distribution of 

training data points showing presence /absence across BBSFCA, as well as spatial distribution 

of test data points.  
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3.6.1.2 Interpolation 

Given that various researchers successfully utilised IDW (Roob, 2000; Sabol and 

Johnston, 2001; U.S. NOAA Coastal Services Center, 2001; Cholwek, et al., n.d.) and 

various types of kriging (Valley, et al., 2005; Stevens, et al., 2008), IDW, as well as 

ordinary kriging (OK) and indicator kriging (IK) were tested on the SAV data output 

from EcoSAVTM.  Similar to Valley, et al. (2005), evaluation of prediction error 

parameters showed that OK and IK produced the more accurate models compared to 

IDW.  IK, which is a binary form of OK, was favoured owing to its application to 

categorical data (Bierkens and Burrough, 1993) and the fact that binary values (0 or 1) are 

kriged, and not continuous variables (Babish, 2002).  Although EcoSAVTM outputs a 

number of useful georeferenced vegetation features including plant height (cm) and areal 

coverage (%), the presence/ absence of SAV was selected as the classification output.  

Owing to the high variability of SAV temporally and spatially within the bay (Thompson, 

2013; McNaught, 2013) and the unavoidable time lag between image and field data 

collection, this was the only output that was chosen.  Indeed, vegetation presence data is 

fundamentally nominal in nature; it is not a continuous feature and may be regarded as 

patchy across a study area and may therefore be aptly represented in binary form.    

The training dataset (107,076 points) was input to the IK model, and because a trend was 

not apparent during data exploration, trend removal was not necessary.  In order to create 

a binary dataset, a threshold value of 9.99% was set; consequently, vegetation cover less 

than 10% was considered as bare substrate (and was assigned a binary value of 0) and 

those points having a percentage cover of 10% or more, were considered as vegetated 

(and were assigned a binary value of 1).  The 9.99% threshold value was chosen so that 

the SAV classification corresponded with the NOAA habitat classification scheme that 

was used throughout this project (Figure 5).  The processed data points were not normally 

distributed (Figure 14) and as such did not meet the normality requirement of variography 

and kriging; nonetheless, one benefit of IK is its ability to deal with skewed distributions 

(Babish, 2002) and this model produced optimal results and as such was chosen for 

interpolation of the SAV for the bay.  Statistical cross-validation results were utilised to 

inform the selection of model parameters.  This included the choice of an exponential 

variogram model type and since anisotropy was not evident in the experimental 

semivariogram plotted, an omnidirectional variogram was used (Figure 15).  Short range 

change and thereby smaller lag sizes was considered particularly important in modelling 

SAV owing to a very small sampling distance along transects of 2-3 m for the EcoSAVTM 

processed data and the abrupt changes from vegetated to bare sediment.  After testing 

various models, a lag size of 4 and 20 lags was found to be optimal.  The empirical 

variogram had a nugget 0.009, range of 34.37 and sill of 0.06.  Large differences were not 

observed when neighbourhood type and size were tested and it was concluded that an 

eight-sector search neighbourhood, with 89.48 m axes (no anisotropy present) were best 

suited for the modelling exercise.   
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(a) 

 

(b) 

   

Figure 15.  Exponential semivariogram model utilised for IK of SAV (a), and corresponding 

semivariogram map for the training data set (b).  

 

Once the final model for SAV was obtained, a final validation exercise was undertaken 

using the test data subset (14,853 points) created prior to modelling.  Furthermore, in 

order to delineate the resulting surface of vegetation occurrence probabilities into 

meaningful SAV presence and absence classes, a 50% threshold was employed.  That is, 

areas in which vegetation occurrence with probabilities less than 50% were considered as 

bare, whilst those having probabilities greater than 50% were considered vegetated.  One 

pixel or 4 m2 was established as the MMU for the project, and was used to eliminate all 

areas that were less than this size.   

 Bottom classification 

3.6.2.1 VBTTM processing 

The BioSonics, Inc. processing software VBTTM B4 method (Fractal Dimension) was 

used to decode the field-collected acoustic data into bottom type (BioSonics, Inc., 2011).  

A ground-truth library was manually created for the study area; ground-truth data 

collected in the field were analysed and feature spaces (also referred to as acoustic 

classes) for three bottom types were distinguished, namely silt (type 1), sand (type 2) and 

coral/ hard bottom (type 3) (Figure 16).  Using this library, all acoustic data was 

Semivariance (γ) 
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processed for every twenty pings and 

subsequently plotted and projected as vector 

points in JAD2001.  Similar to the 

bathymetric data, the average along transect 

point spacing ranged from 4 and 5 m.  Test 

and training datasets were created similar to 

the vegetation processed data from a total 

66,092 plotted points (with collocated points 

removed).  A total 58,034 points comprised 

the training dataset (88% of all data points), 

whilst 8,058 comprised the test dataset (12% 

of all data points) (Figure 17).   

3.6.2.2 Interpolation 

Of the various interpolation methods evaluated in order to predict seabed composition in 

areas for which field survey tracts did not cover, kriging, specifically IK proved to be the 

most statistically-accurate model.  Like SAV presence/ absence, bottom type is categorical 

in nature and as such the best suited interpolation technique available in ArcMap 10 was IK 

owing to the possibility of modelling binary values.  IK was performed on the training 

subset of data (58,034 points) three times in order to arrive at the probability of occurrence 

for each bottom type (1-silt, 2- sand and 3-coral reef/ hard bottom).  Trend removal was 

deemed unnecessary and a spherical omnidirectional variogram model was chosen for all 

three interpolations owing to the optimal statistical measures produced (Figure 18).  A lag 

size of 5 and 12 lags and an eight-sector type search neighbourhood, with 90.02 m axes (no 

anisotropy present) were employed.  Once all models were finalised, a final validation 

exercise was undertaken using the test data subset (8,058 points) in order to independently 

evaluate the performance of each IK model for bottom type.  Similar to the IK for 

vegetation presence, the resulting bottom substrate surfaces were categorised using a 50% 

threshold for the probability of occurrence, whereby areas with probabilities greater than 

50% were considered as having the respective bottom type present.  The three data layers 

for bottom type created using the 50% probability threshold were subsequently combined 

using the ArcMap Raster Calculator to produce a single bottom substrate map output 

showing silt, sand and coral reef/ hard bottom distribution across the bay.  Areas less than 

the 4m2 MMU were eliminated. 

Figure 16.  Feature spaces of ground truth 

data points for coral reef/ hard bottom 

(pink), sand (brown) and silt (green) using 

the B4 bottom typing method in VBTTM. 
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Figure 17.  Graphical and spatial representation of VBTTM training data points: (a) histogram 

and summary statistics for coral/ hard bottom (type 3), (b) spatial distribution of all training 

data points showing bottom type, as well as spatial distribution of test data points.  
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(a) Silt 

Range: 35.83 

Sill: 0.061 

Nugget: 0.062 

 
 Semivariance (γ)  

(b) Sand 
Range: 37.71 

Sill: 0.059 

Nugget: 0.068 

 
 Semivariance (γ) 

(c) Coral reef/ 

hard bottom 

Range: 59.24 

Sill: 0.002 

Nugget: 0.005 

 
Semivariance (γ) 

Figure 18.  Spherical semivariogram model and associated parameters utilised for IK of bottom type training data and corresponding semivariogram 

map for: (a) silt, (b) sand and (c) coral reef/ hard bottom. 
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3.7 Satellite image classification 

 Image acquisition 

Several studies have used remotely sensed images to map benthic features by means of 

image classification; however the accuracy of classified maps vary depending on the type 

of airborne and satellite imagery used (Green, et al., 2000; Fyfe, 2003; Phinn, et al., 2008).  

The aim of this study was to test the viability of various mapping methodologies and 

therefore efficacy of different types of remotely sensed images available at the time of the 

study were compared.  Archived standard multispectral image products were acquired 

from the following satellite sensors: 1) GeoEye-1; 2) WorldView-2; and 3) Landsat 8 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (L8 OLI/TIRS) 

(Figure 19, Appendix C).  The L8 OLI/TIRS image (WRS Path 012, Row 048) was 

downloaded via the U.S. Geological Survey Earth Explorer web utility 

(http://earthexplorer.usgs.gov/), whilst WorldView-2 and GeoEye-1 images of the study 

area were donated by the DigitalGlobe Foundation (formerly GeoEye Foundation).   

Processing undertaken by DigitalGlobe include radiometric, sensor, and geometric 

corrections, projection to a plane using map projection and datum and normalization for 

topographic relief with the use of a coarse DEM (DigitalGlobe, 2014).  In the case of the 

Landsat image product, the Level 1 Product Generation System (LPGS) was applied by 

the provider and this included cubic convolution resampling, orientation of image north-

up, projection to Universal Transverse Mercator (UTM) with WGS 1984 datum, and is 

available in the GeoTIFF file format (U.S. Geological Survey, 2014).  Furthermore, the 

L8 OLI/TIRS image was processed to Standard Terrain Correction (L1T) using ground 

control points and DEMs developed by the U.S. Geological Survey (USGS) and NASA 

Global Land Surveys were used to correct for topographic distortions and improve 

radiometric and geometric accuracy.   

 Image enhancement and processing 

3.7.2.1 Geometric correction and resampling 

Downloaded images were reprojected from Universal Transverse Mercator (UTM) Zone 

17N (WorldView-2 and GeoEye-1) and Zone 18N (L8 OLI/TIRS) to JAD2001 (Figure 

20) and image to image georectification undertaken utilising a nationally-accepted dataset 

(IKONOS 2001 island images).  The visible and infrared L8 OLI/TIRS image was 

pansharpened using the 15 m panchromatic band and subsequently resampled to ensure 

that the cell size of all L8 OLI/TIRS image bands was 2 m.  WorldView-2 and GeoEye-1 

images were not spatially enhanced and the spatial resolution of the visible bands was 2 

m.    

http://earthexplorer.usgs.gov/
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* Wavelength ranges not depicted. 

Figure 19.  Characteristics of WorldView-2, GeoEye-1 and Landsat 8 (OLI/TIRS) archived satellite imagery products acquired (DigitalGlobe, 2014) 

(U.S. Geological Survey, 2014). 

Satellite 

sensor

Collection 

date

Spatial 

resolution (m)

Wavelength 

(nm)

Panchromatic 0.5 447-808

1 Coastal Blue 2.0 396-458

2 Blue 2.0 442-515

3 Green 2.0 506-586

4 Yellow 2.0 584-632

5 Red 2.0 624-694

6 Red-Edge 2.0 699-749

7 NIR1 2.0 765-901

8 NIR2 2.0 856-1,043

Panchromatic 0.5 450-800

1 Blue 2.0 450-510

2 Green 2.0 510-580

3 Red 2.0 655-690

4 NIR 2.0 780-920

1 Coastal aerosol 30 430-450

2 Blue 30 450-510

3 Green 30 530-590

4 Red 30 640-670

5 Near IR 30 850-880

6 SWIR 1 * 30 1,570-1,650

7 SWIR 2 * 30 2,110-2,290

8 Panchromatic 15 500-680

9 Cirrus 30 1,360-1,380

10 Thermal IR 1 100 10,600-11,190

11 Thermal IR 2 100 11,500-12,510

600 700 800 900 1000 nm

Band

3-Jan-12

16-Apr-13

400 500

WorldView-2

GeoEye-1

Landsat 8 

(OLI/TIRS)

7-Apr-13
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Figure 20.  Flowchart showing key image correction and classification stages.  
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3.7.2.2 Imagery band selection  

Spectral resolution, that is, the portion of the electromagnetic spectrum measured by the 

sensor and the image band groupings is important for remote sensing of marine 

environments.  Water primarily reflects in the shorter visible part of the spectrum (blue 

and green wavelengths), and in the longer visible wavelengths (red wavelengths) and NIR 

energy is absorbed more than the shorter visible wavelengths.  As such, the visible bands 

for all three imagery products were assessed in order to select bands with reasonable 

penetration of water, yet with differences in bottom reflectance.  Similar to work 

undertaken by DigitalGlobe (2012), Florida Environmental Research Institute (2010), 

Sagawa, et al. (2010) and Green, et al. (2000), the blue and green bands in all three 

imagery products (respectively GeoEye-1 bands 1 and 2; WorldView-2 bands 2 and 3; 

and L8 OLI/TIRS bands 2 and 3), as well as the coastal blue (band 1) and coastal aerosol 

(band 1) bands available in WorldView-2 and L8 OLI/TIRS products respectively, were 

selected for use in the image classification exercise.  Because of the high absorption and 

low reflection of the NIR and red portions of the electromagnetic spectrum of water, these 

bands were not used for image classification.  The NIR bands were however used for 

coastline digitisation (section 3.4) and thresholding techniques (section 3.7.2.4).   

3.7.2.3 Radiometric correction 

ATMOSPHERIC CORRECTION 

Although correction of atmospheric effects is an optional first step in the sun glint removal 

technique employed, it has to precede the water column correction method employed, and 

as such, it was the first pre-processing step undertaken.  Several techniques such as 

FLAASH Module in ENVI (ENvironment for Visualizing Images) (Vahtmäe and Kutser, 

2013) and ATCOR (Atmospheric Correction and Haze Reduction) implemented in ERDAS 

can be used to remove the effects of the atmosphere. The effect of path radiance was 

removed using the dark pixel subtraction method, also referred to as the histogram 

minimum method (developed by Chavez et al. 1977, cited in Green, et al. (2000)). It was 

applied to each image band by following this equation: 

𝑨𝒕𝒎𝒐𝒔𝒑𝒉𝒆𝒓𝒄𝒊𝒂𝒍𝒍𝒚 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 𝒓𝒂𝒅𝒊𝒂𝒏𝒄𝒆 = 𝑳𝒊 − 𝑳𝒔𝒊 Equation 1 

Where 𝐿𝑖 is the measured radiance for a single image band i; and 𝐿𝑠𝑖 is the average radiance 

observed over deep water for image band i. 

SUN GLINT 

On inspection of the acquired imagery, it was found that sun glint was abundant 

throughout each image product.  Several sun glint removal methods were reviewed by 

Kay, et al. (2009) and a method suggested by Hedley, et al., (2005) was found to be 

applicable to shallow waters and for sub-surface use. Similar to Schill, et al. (2011) and 

Vahtmäe and Kutser (2013), the following steps outlined by Hedley, et al. (2005) were 

employed for each visible band: 
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Step 1:  Sample areas in homogenous regions of deepwater where sun glint is present 

were demarcated and the minimum NIR value was ascertained (𝑀𝑖𝑛𝑁𝐼𝑅). 

Step 2:  A linear regression of visible band values (y-axis) against NIR values (x-axis) 

was performed for each band (i), and the slope for each line noted (bi). 

Step 3:  Image bands were deglinted using Equation 2: 

𝑹𝒊
′ =  𝑹𝒊 −  𝒃𝒊(𝑹𝑵𝑰𝑹 −  𝑴𝒊𝒏𝑵𝑰𝑹) Equation 2 

Where 𝑅𝑖
′is the sun-glint corrected pixel value in band I; 𝑅𝑖 is the pixel value in band i; 𝑏𝑖is the 

slope of the regression; 𝑅𝑁𝐼𝑅 is the pixel NIR value; and 𝑀𝑖𝑛𝑁𝐼𝑅 is the ambient NIR level. 

WATER COLUMN CORRECTION 

Common amongst water column correction models researched (e.g. Lyzenga, 1978, 1981, 

Mishra, et al., 2006, Gilvear, et al., 2007; Sagawa, et al., 2010, Kanno, et al., 2011), is the 

recognition of Lyzenga’s original water reflectance equation (Lyzenga, 1978): 

𝑳𝒊 = 𝑳𝒔𝒊 + 𝒊𝒓𝑩𝒊𝒆𝒙𝒑(−𝒌𝒊𝒇𝒛) Equation 3 

Where 𝐿𝑖 and 𝐿𝑠𝑖 are similar to Equation 1; 𝑖 is a constant including solar irradiance, 

transmittance of the atmosphere and water surface, as well as the reduction of the radiance due to 

refraction at the water surface; 𝑟𝐵𝑖 is the bottom reflectance; 𝑘𝑖 is the effective attenuation 

coefficient of the water; 𝑓 is a geometric factor which accounts for pathlength through water; and 

𝑧 is the water depth. 

The model expressed in Equation 3 is applicable for areas over clear shallow water and 

does not take into account internal reflection at the water surface or the effects of 

scattering in the water (Lyzenga, 1978).  Lyzenga (1978) addresses the neglect of 

scattering effects in the water at the surface by introducing a more general algorithm: 

𝑿𝒊 = 𝒍𝒏(𝑳𝒊 − 𝑳𝒔𝒊) Equation 4 

Where 𝑋𝑖is the transformed radiance of a pixel in band i; and 𝐿𝑖 and 𝐿𝑠𝑖 are the same as in Equation 1. 

Bottom reflectance is an exponential function of water depth and this thereby forms the 

basis of this equation, wherein when transformed using natural logarithms (ln), the 

relationship becomes approximately linear.  The bottom reflectance (𝑟𝐵𝑖) from Equation 

3, that is the reflectance without the interference of the varying water column, is the 

parameter being sought; however, a number of the remaining input values are unknown.  

In order to determine the unkown parameters, the ratio of the effective attenuation 

coefficients of the water (𝑘𝑖) (also included in Equation 3) is calculated from a linearized 

bi-plot of two selected band pairs (i and j) and a depth-invariant index generated and 

applied to the entire image. 

Due to several limitations of the Lyzenga method, such as the unaccounted effects of 

internal reflection, the disregard for disparities in water quality and clarity (Sagawa, et al., 

2010; Kanno, et al., 2011), and variations in bottom type and reflectance (Mishra, et al., 
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2006; Kanno, et al., 2011) several authors have attempted to extend or improve the 

method.  The method proposed by Sagawa, et al. (2010) in which a reflectance index was 

created using Equation 5, was used (Equation 5):  

𝑰𝒏𝒅𝒆𝒙𝒊 =  
(𝑳𝒊 − 𝑳𝒔𝒊)

𝒆𝒙𝒑(−𝑲𝒊𝒈𝒁)
 Equation 5 

Where 𝐿𝑖 and 𝐿𝑠𝑖 are similar to Equation 1; 𝐾𝑖 is the effective attentuation coeffiecnt of the water, 

simialr in Equation 3; 𝑔 is a geometric factor which accounts for pathlength through water, 

simialr to f in Equation 3; and 𝑍 is the water depth , simialr in Equation 3. 

The numerator, (𝐿𝑖 − 𝐿𝑠𝑖) is essentially the band radiance and at this stage in pre-

processing, it is the radiance values that were corrected for atmospheric effects and sun 

glint.  As mentioned previously, bottom reflectance is an exponential function of water 

depth; as such, in order to ascertain 𝐾𝑖𝑔, radiance for each band (i) was plotted against 

depth and a regression curve obtained and from which the gradient was used to represent 

𝐾𝑖𝑔.  The BSM created from the sonar bottom processing provided the requisite depth 

data and the reflectance index was calculated for each band and imagery product. The 

resulting reflectance index layers were stacked for each product, thereby producing 3-

index stacked composite images for L8 OLI/TIRS (bands 1, 2 and 3) and WorldView-2 

(bands 1, 2 and 3) and a 2-index stacked image for GeoEye-1 (bands 1 and 2).    

3.7.2.4 Masking and thresholding 

Cloud cover and cloud shadows were present in the WorldView-2 and GeoEye-1 images, 

therefore cloud masks were created for the radiometrically corrected images.  The NIR 

bands for each imagery product and a thresholding technique were used to isolate the 

extent of cloud and land/ manmade features such as boats or piers present within the 

study area, similar to Mishra, et al. (2006), Florida Environmental Research Institute 

(2010) and Schill, et al. (2011).  The blue bands were useful for highlighting the cloud 

shadows over water; in contrast, for land-based image classification the NIR bands are 

used in thresholding process (Martinuzzi, et al., 2006;  Song, et al., 2014).  Where the 

thresholding process failed, such as inaccurately identifying clouds in areas with high 

amounts of suspended sediment, subjective judgement was employed and regions of 

cloud, cloud shadow and land/ man made features were manually digitised; this also 

ensured the inclusion of mixed pixels.  Masks for each feature of interest (cloud, cloud 

shadow and land/ manmade features) were compiled along with the BBSFCA boundary, 

and a polygon feature was generated to represent the final image masks for WorldView-2 

and GeoEye-1 images.  Each image by-product (reflectance indices) was clipped to the 

respective mask prior to classification.  In addition, for comparison purposes, a composite 

mask combing both WorldView-2 and GeoEye-1 masks were used to clip the 

classification results.  The L8 OLI/TIRS did not require masking, as clouds and cloud 

shadows were absent from the image within the study area extent; the respective index 

was clipped solely to the BBSFCA boundary polygon. 
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 Classification 

After visual assessments and numerous unsupervised and supervised classification trials, it 

was concluded that manual segmentation based on the characteristics inherent within each 

individual region, rather than a gridded structure or based purely on one characteristic such 

as depth was necessary.  WorldView-2 and GeoEye-1 products were segmented into 30 and 

59 segments respectively, and each segment buffered using a distance of 5 m to allow for a 

10 m overlap between segments.  Owing to the medium scale resolution of the L8 

OLI/TIRS imagery, only the stacked reflectance indices for the larger scale WorldView-2 

and GeoEye-1 products were segmented and subsequently classified. 

A supervised, per-pixel maximum-likelihood classification was employed in ERDAS 

IMAGINE 9.1 in order to classify each WorldView-2 and GeoEye-1 segment into three 

benthic classes - submerged vegetation, bare substrate and coral reef.  Although these 

classes do not correspond perfectly with the NOAA classification scheme (Figure 5), it was 

necessary to include bare substrate as a class and remove hard bottom from the coral reef 

grouping since it is impossible to differentiate bare hard bottom or pavement and 

unconsolidated sediment from optical image sources.  Known benthic information from 

local experts and videography were used to identify features and training samples were 

created using the region growing tool within each individual segment.  The signatures were 

evaluated using histogram plots and contingency matrices in order to ensure minimal 

overlap between signatures.  In cases of high overlap, further segmentation was carried out 

in order to attain distinct signatures for benthic types within segments.  Classified image 

segments were mosaicked and areas of overlap were blended in order to generate a single 

classified map of the study area.  Pixel based classification often result in ‘salt and pepper’ 

effects (Lu and Weng, 2007) and in order to reduce this, classified images were clumped 

and the MMU of 4 m2 was used to eliminate all classified areas that were less than this size.  

Finally, contextual editing, that is, “the application of common sense to habitat mapping” 

(Mumby, et al., 1997) was employed.  A priori and on site knowledge of the area were used 

to identify the misclassified areas with similar spectra that were recoded; for example, 

circular patches surrounded by a ring of bare substrate classified as submerged vegetation 

were recoded as coral reef.  

3.8 Accuracy assessment 

Accuracy assessments of all final mapped outputs from the image classification (with and 

without contextual edits) and acoustic survey techniques were undertaken using 

referenced ground truth points collected in the field (section 3.3.2.2).  Given the temporal 

variability of the BBSFCA seabed, care was taken to avoid using reference points on the 

edges of vegetation patches.  Depending on the classification method employed, the areas 

that were removed using the cloud mask and the level of detail required (e.g. 

unconsolidated sediment type for acoustic bottom type classification), the number of 

accuracy assessment points varied for each assessment (Table 3).  An error matrix was 
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created for each classified output and statistics on classification accuracy were calculated; 

this included user’s accuracy, producer’s accuracy, overall accuracy and the kappa 

coefficient.   

Table 3.  Number of ground truth points collected for use in the accuracy assessment of image 

and acoustic classification mapped outputs. 

Method/ Mapped output No. of benthic 

classes 

No. of ground truth points 

By reference class Total 

Image classification - GeoEye-1 

(clipped by GeoEye-1 cloud mask) 

3 Bare substrate  =29 

Submerged vegetation (SAV) = 82 

Coral reef = 18 

129 

Image classification - 

WorldView-2 and GeoEye-1 

(clipped by composite mask)† 

3 Bare substrate = 24 

Submerged vegetation (SAV) = 68 

Coral reef = 6 

98 

Acoustic classification - SAV 2 SAV absence (bare substrate)  = 29 

Submerged vegetation (SAV) = 82 

111 

Acoustic classification – Bottom 

type 

3 Silt = 19 

Sand = 16 

Coral reef/ hard bottom = 23 

58 

 

3.9 Feasibility analysis 

Required resources, including time/effort, software and hardware, and associated costs 

were collated in the form of a table in order for the feasibility of the various mapping 

methods and resulting accuracies to be evaluated.  Labour costs for data manipulation and 

modelling were estimated using a rate of USD 30.00 per hour in order to be comparable 

to studies reviewed (Baumstark, et al., 2013); field survey, image acquisition, equipment 

and software costs (set up costs) were also assessed similar to Baumstark, et al. (2013) 

and Green, et al. (2000).  In addition to time and cost considerations presented in the form 

of a table, other considerations such as technical competence necessary for carrying out 

each method, as well as stakeholder requirements, use of maps, and existing available 

resources were important considerations.   Here, the results from the questionnaire survey 

(section 3.1) were particularly useful.   

                                                

† Accuracy assessment points did not fall within the area masked by clouds and cloud shadow for the 

GeoEye-1 image and as a result, the points falling within the WorldView-2 image clipped by the respective 

WorldView-2 mask alone were the same as those for the composite masked images (WorldView-2 and 

GeoEye-1).   
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Chapter 4. Results 

4.1 BBSFCA boundary 

The BBSFCA mapped boundary totalled 13.82 km2 in area, with a perimeter of 22.35 km, 

8.53 km of which represented the seaward boundary of the sanctuary.   

4.2 Bathymetry 

Along the seaward edge of the BBSFCA boundary, the northern section of the bay is 

generally shallower than the southern half where maximum depths of 9.3 m occur (Figure 

21).  A general NE-SW progression of increasing depth towards the sanctuary’s seaward 

limit is observed throughout the study area.  Along the coast in proximity to the 

settlement of Mearnsville, the slope from the coastline to the 2 m contour is dramatically 

steeper than other areas along the bays shoreline.  An apparent feature resembling a 

sandbank is located in the southern section of the bay (Figure 22).  The BSM also 

appeared to model localised seabed features such as sand patches, shown to be slightly 

deeper than surrounding areas vegetated by seagrass and algal communities.  Aggregated 

patch reefs within the back reef in proximity of the seaward SFCA boundary are revealed 

to have heights ranging between 2.5 and 3.5 m and situated in waters with a depth of 8 m.  

Patch reefs towards the centre of the boundary and in the northern section of the 

sanctuary are also identifiable by enclosed contour lines (Figure 21).   
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Figure 21.  Bathymetric surface model of the BBSFCA with 2 m depth contours. 
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(a)  

 
  

(b) 

 

 
* Not drawn to scale; horizontal and vertical scales do not correspond. 

Figure 22.  Vertically exaggerated 3D representations of the BBSFCA BSM, highlighting 

various benthic morphological features from two perspectives: (a) no rotation and (b) north 

rotated approximately 45°, facing east. 

 

Although both training and test datasets have comparable mean depths, all minimum and 

maximum predicted depths were slightly under predicted (Table 4).  Examination of 

graphical plots (Figure 23) reveal that significant scatter was not observed along the 

linear trend line and the predicted and measured depth values are highly correlated (R2 = 

0.9982).   

Table 4.  Statistical summary of measured and model predicted data for training and test datasets.‡ 

 Training Test 

 Measured Predicted Measured Predicted 

Count 54,883 54,883 13,721 13,721 

Minimum (m) 0.100 -0.007 0.100 0.049 

Maximum (m) 9.864 9.760 9.729 9.688 

Mean (m) 4.100 4.100 4.108 4.107 

Standard deviation (m) 2.144 2.141 2.168 2.167 

                                                

‡ All data points were used for validation, including those outside the BBSFCA boundary. 

Depth contour (metres) 2 m 4 m 6 m 8 m

[
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Figure 23.  Scatter plot of predicted versus measured depth data values (m) using the 

independent validation results. Depth values plotted as circles and linear trendline represented 

by black line. 

 

The BSM accepted as the optimal model had RMSE standardised values of 0.909 and 

0.906 using the training and independent test datasets respectively (Table 5), all other test 

models resulted in lower RMSE standardised values after cross-validation (not presented 

here).  The average difference between the measured and the predicted values (ME) using 

both the training and test datasets, were very close to zero and spatial trends in these 

errors were not evident within the study area (Figure 24).  Standard errors of the BSM 

ranged from 0.0294 to 0.389 across the BBSFCA with lower values around input data 

points (Figure 25).  The average standard errors were greater than the RMSE prediction 

errors by 0.0123 m and 0.0116 m for the training and test datasets respectively.   

Table 5.  Prediction errors for the final BSM using the training and test datasets as cross-

validation and validation source datasets respectively. 

 Training dataset Test dataset 

No. of points 54,883 13,721 

ME (m) 0.0000224 -0.00128 

RMSE (m) 0.0917 0.0914 

ME standardised 0.000185 -0.0122 

RMSE standardised 0.909 0.906 

Average standard error (m) 0.104 0.103 
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Figure 24.  Error of BSM for the BBSFCA depicted by validated independent test data points. 
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Figure 25.  Standard error of final BSM for the BBSFCA. 
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4.3 Acoustic classification 

 Vegetation cover 

The BBSFCA may be described as SAV-dominated with high probabilities of SAV 

occurring across the bay and fewer areas exhibiting less than 50% SAV probability 

occurrence and constituting bare substrate (Figure 26)§.  Although model artefacts are 

evident in the northern section of the bay, this area contains the greatest homogenous 

expanse of bare substrate. Based on the final SAV IK model, and using 50% probability 

of occurrence as a cut-off for vegetated versus non-vegetated areas, 12.6 km2 or 91.2% of 

the substrate within BBSFCA may be categorised as vegetated, whilst 1.2 km2 was 

devoid of SAV (or 8.8% of the SFCA).  Field evidence from this study suggest that a large 

proportion of the BBSFCA sea bottom inhabited by SAV is characterised by three seagrass 

species, namely Thalassia testudinum (turtle grass) (Plate 3a), Syringodium filiforme 

(manatee grass) and Halodule wrightii (shoal-grass) (Plate 3b) that are found in 

monospecific and mixed beds, as well as algal species including Halimeda spp. (Plate 3c) 

and Penicillus spp.. 

                                                
§ The IK method outputs the percentage probability of vegetation occurring (and exceeding a cut-off value 
of 10% vegetation cover) and this must not be confused with the threshold of 50% model probability of 

occurrence used to designate an area vegetated or bare.   
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(a) 

 

(b) 

 
(c)  

 

(d) 

 

(e) 

 

(f) 

 

Plate 3.  Oblique underwater images showing various benthic features with the BBSFCA: (a) 

seagrass bed dominated by Thalassia testudinum, (b) seagrass bed dominated by Halodule 

wrightii, (c) unconsolidated bare sediment with sparse algal cover, including Halimeda sp., (d) 

unconsolidated bare sediment, (e) reef assemblage including finger coral (Porites sp.) and sea 

fan (Gorgonia sp.) and (f) lobster condominium within Thalassia dominated seagrass bed 

(Videography credit: Karen McIntyre, 2013, 2014). 
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Figure 26.  Probability of SAV presence across the BBSFCA. 
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RMSE for the training dataset was small (0.183) compared to other models tested and the 

ME was very close to zero (Table 6); these results assisted in the selection of the final IK 

model for SAV.  The ME for the test dataset, although larger than the ME for the training 

dataset, is also close to zero.  Areas of highest error occur over highly heterogeneous 

areas close to shore, small patches of non-vegetated areas within the bay, as well as in the 

last transect in the northern section of the bay, north of which only three survey transects 

occur.  RMSE is also greater for the test dataset when compared to the training dataset.  A 

RMSE standardised value of 1.199 was obtained from the cross-validation automatically 

undertaken with the model training data; this is further away from 1 than the RMSE 

calculated for the test dataset (1.105).  Average standard error of the final IK model was 

0.248 when the test dataset was used for validation;  no apparent spatial pattern was 

observed when these points are plotted, however a greater number of lower than average 

standard errors were interspersed along those transect lines parallel to the shore and 

crossing the sonar survey transects (Figure 28).  The final SAV IK shows that standard 

error along transects were lowest, and in areas for which transects were not possible, for 

example in shallow areas close to shore, standard error was highest (Figure 26).  The 

average standard errors were less than the RMSE prediction errors for the training and 

test datasets by 0.03 and 0.02 respectively.  

Table 6.  Prediction errors for the SAV IK model using the training and test datasets as cross-

validation and validation source datasets respectively.  

  Training dataset Test dataset 

No. of points 107,076 14,853 

SAV presence (Indicator = 1) 94,079 12,541 

SAV absence (Indicator = 0) 12,997 2,312 

ME 0.0000841 0.00357 

RMSE 0.183 0.266 

ME standardised 0.000102 0.0177 

RMSE standardised 1.199 1.105 

Average standard error 0.153 0.248 
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Figure 27.  Error of indicator krig for SAV within BBSFCA, depicted by validated 

independent test data points.  
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Figure 28.  Standard error of indicator krig for SAV within BBSFCA, depicted by validated 

independent test data points. 
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Figure 29.  Standard error of final indicator krig for SAV within BBSFCA. 

 

 



61 

 Bottom classification 

The probability of silt occurrence is highest primarily close to shore and in select areas of 

deeper waters within the BBSFCA, whilst the opposite was seen for the occurrence of 

sand (Figure 33a and b).  One distinct patch of coral reef was modelled in the southern 

half the bay by the IK for coral reef occurrence (>50% probability of coral reef/ hard 

bottom occurrence) (Figure 33c).  When substrate occurrence was combined, it was 

evident that there were areas in which probabilities of <50% existed for all three 

substrates of interest, as well as areas having >50% probability of two or more substrate 

classes; these areas were deemed unclassifiable (Figure 30).  Approximately equal areas 

of silt and sand are predicted (6.88 km2 or 49.7% and 6.78 km2 or 49.0% respectively), 

0.05 km2 or 0.3% coral reef/ hard bottom (Plate 3e) and 0.13 km2 or 0.9% unclassified. 

Of the three substrates modelled, ME, RMSE and average standard error were smallest 

for coral reef/ hard bottom substrate; however RMSE standardised values for silt and sand 

were closer to 1 (Table 7, Figure 32).  Lower measures of standard error are evident in the 

shore-parallel transects and in a few areas across the bay (Figure 31).  Similar to previous 

krigs created for this project, standard error of the models for each substrate are highest in 

the northern section of the bay, and other areas where transect data was not collected and 

data used in the modelling process.  

Table 7.  Prediction errors for the final indicator krig for bottom substrates using the test data 

points as validation source datasets. 

  Silt Sand 
Coral reef/ hard 

bottom 

No. of points 8,058 8,058 8,058 

Presence (Indicator = 1) 4,643 3,369 46 

Absence (Indicator = 0) 3,415 4,689 8,012 

ME -0.02060 0.01950 0.00115 

RMSE 0.346 0.351 0.070 

ME standardised -0.0615 0.0574 0.0135 

RMSE standardised 0.999 0.994 0.845 

Average standard error 0.349 0.355 0.082 
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Figure 30.  Combined probability of bottom substrates across the BBSFCA. Unclassified 

accounts for areas having <50% occurrence of silt, sand or coral, or areas having >50% 

probability of two or more substrate classes.  
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Figure 31.  Standard error of validated independent test dataset for indicator krig of bottom substrates across the BBSFCA: (a) silt, (b) sand and (c) 

coral reef/ hard bottom. 
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Figure 32.  Standard error of indicator krig for bottom substrates across the BBSFCA: (a) silt, (b) sand and (c) coral reef/ hard bottom. 
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Figure 33.  Probability of bottom substrates across the BBSFCA: (a) silt,  (b) sand and (c) coral reef/ hard bottom.  



66 

4.4 Image classification 

The mask for the WorldView-2 isolated areas for cloud and cloud shadow and 

collectively accounted for 2.89 km2 (approximately 21% of study area); therefore only 

10.93 km2 of the BBSFCA was classified using the WorldView-2 image (Figure 34).  On 

the other hand, less than one percent of the study area was masked owing to cloud 

shadow for the GeoEye-1 image; 13.75 km2 remained for classification (Figure 35).  

Combining these, the composite mask accounted for a total of 2.91 km2, resulting in only 

10.91 km2 of the classified study area for comparison purposes.   

Although the resulting coverage of the classification without contextual coral reef edits is 

presented in Table 8, given that coral reef is a known benthic feature within the BBSFCA 

(Plate 3e), the image classification results with contextual edits for coral reef were 

presented (Table 9).  Only 0.6% of the sanctuary was masked by cloud shadow in the 

GeoEye-1 image, therefore the resulting classification can perhaps give a representative 

estimation of the areal coverage of benthic classes within the bay (Table 9a).  Areas 

classified as SAV totalled 10.79 km2 (78.1%), whilst 2.75 km2 (19.9%) accounted for 

bare substrate, and 0.20 km2 (1.4%) comprising the coral reef class.  When images are 

compared using areas clipped by the composite mask, SAV coverage is comparable 

(64.3% and 63.0% for the WorldView-2 and GeoEye-1 images respectively) and was the 

main benthic habitat within BBSFCA (Table 9b, Figure 34, Figure 35).  Spatial coverage 

of the coral reef/ hard bottom habitat were similar between imagery products as well, with 

GeoEye-1 results exhibiting only 0.02 km2 more coral coverage than WorldView-2 

classification (Table 9b).  Bare substrate accounts for 13.8% and 15.0% of the classified 

WorldView-2 and GeoEye-1 masked images (1.91 and 2.07 km2 respectively).  

Differences in the spatial pattern of bare substrate were not significant; slightly larger 

bare patches were evident in the northern section of the BBSFCA whereas smaller 

patches were observed towards the southern section of the bay for the Worldiew-2 results 

(Figure 34, Figure 35).   
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Table 8.  Spatial coverage of benthic classes computed from image classification of 

WorldView-2 and GeoEye-1 stacked reflectance indices without contextual edits for coral reef: 

(a) clipped by respective image masks and (b) clipped by composite mask. 

(a) WorldView-2 GeoEye-1 

  Area (m2) Percentage Area (m2) Percentage 

Bare substrate 1.93 14.0% 2.78 20.1% 

Submerged vegetation 9.00 65.1% 10.96 79.3% 

Unclassified (mask) 2.89 20.9% 0.08 0.6% 

TOTAL: 13.82 100.0% 13.82 100.0% 

 
(b) WorldView-2 GeoEye-1 

  Area (m2) Percentage Area (m2) Percentage 

Bare substrate 1.93 13.9% 2.10 15.2% 

Submerged vegetation 8.98 65.0% 8.81 63.7% 

Unclassified (composite mask) 2.91 21.1% 2.91 21.1% 

TOTAL: 13.82 100.0% 13.82 100.0% 

 

 

Table 9.  Spatial coverage of benthic classes computed from image classification of 

WorldView-2 and GeoEye-1 stacked reflectance indices with contextual edits for coral reef: (a) 

clipped by respective image masks and (b) clipped by composite mask.  

(a) WorldView-2 GeoEye-1 

  Area (m2) Percentage Area (m2) Percentage 

Bare substrate 1.91 13.8% 2.75 19.9% 

Submerged vegetation 8.91 64.4% 10.79 78.1% 

Coral reef/ hard bottom 0.11 0.8% 0.20 1.4% 

Unclassified (mask) 2.89 20.9% 0.08 0.6% 

TOTAL: 13.82 100.0% 13.82 100.0% 

 
(b) WorldView-2 GeoEye-1 

  Area (m2) Percentage Area (m2) Percentage 

Bare substrate 1.91 13.8% 2.07 15.0% 

Submerged vegetation 8.89 64.3% 8.71 63.0% 

Coral reef 0.11 0.8% 0.13 0.9% 

Unclassified (composite mask) 2.91 21.1% 2.91 21.1% 

TOTAL: 13.82 100.0% 13.82 100.0% 

 



68 

 

Figure 34.  Image classification results utilising the composite Worldiew-2 reflectance index, 

showing areas of classed as unconsolidated sediment, submerged vegetation and coral reef 

within the BBSFCA. 
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Figure 35.  Image classification results utilising the composite GeoEye-1 reflectance index, 

showing areas of classed as unconsolidated sediment, submerged vegetation and coral reef 

within the BBSFCA. 
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4.5 Accuracy assessment 

The accuracy assessment revealed that of all the classification outputs tested, image 

classification with contextual edits for coral reef produced the highest overall accuracies 

of 89.9% and 86.8%, with kappa statistics of 0.78 and 0.77 for Worldiew-2 and GeoEye-1 

reflectance indices respectively, clipped to their respective masks (Table 10a).  The 

GeoEye-1 reflectance index, when clipped to the composite mask also attained similar 

accuracy results of 86.7% overall accuracy and 0.73 kappa.  These results surpass those 

of both image classification without contextual edits for coral reef, as expected owing to 

the relatedness of coral and vegetation signatures within the image and subsequent 

absence of the coral reef class.  Accuracies for this benthic class (coral reef), as well as 

the kappa coefficients had values of 0 for the image classification outputs without 

contextual edits.  Interestingly, the Worldiew-2 imagery attained a slightly higher overall 

classification accuracy (82.7%) than the GeoEye-1 image (72.9%) without contextual 

edits when clipped by the composite mask.   

A reasonably high producer’s accuracy of over 80% for bare and vegetated classes in the 

image classification outputs indicate that it was highly probable that a randomly chosen 

location in BBSFCA belonging to any of these classes was correctly mapped (Table 10).  

User’s accuracy varied amongst these classes, with SAV having consistently higher user 

accuracy values than bare substrate.  The SAV benthic class therefore outperformed 

unconsolidated sediment in terms of map classification accuracy, being correct when 

compared to field data. 

Overall accuracies for the acoustics survey were slightly lower than satellite image 

classification with contextual edits (Table 11).  Although the SAV prediction attained a 

reasonable overall accuracy of 76.7%, bottom substrate mapping was less accurate, 

having an overall accuracy of 53.5%; both kappa statistics were generally poor (0.3).  

SAV presence had reasonable high producer’s and user’s accuracies of 90.2% and 80.4%, 

however the kappa value was 0.25.  Similar to the image classification with contextual 

edits, user’s accuracy for coral reef/ hard bottom was 100.0% with a kappa coefficient of 

1.00; however producer’s accuracy was only 17.4% suggesting that is unlikely that a 

randomly chosen coral reef patch in BBSFCA was correctly mapped.  Unlike sand, finer 

silty sediment appears to be mapped reasonably accurately, with 94.7% and 72.0% 

producer’s and user’s accuracy and a kappa value of 0.58.    
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Table 10.  Calculated accuracies (%) and kappa coefficients from accuracy assessments of GeoEye-1 and Worldiew-2 reflectance indices classifications 

with contextual edits for coral reef: (a) clipped using respective image masks and (b) clipped using composite masks (P = producer’s accuracy, U = user’s 

accuracy, 0 = overall accuracy, K = kappa coefficient).** 

(a) GeoEye-1 Worldiew-2 

  Without contextual edits 
With contextual edits for 

coral reef 
Without contextual edits 

With contextual edits for 

coral reef 

  P U K P U K P U K P U K 

Bare substrate 89.7% 63.4% 0.53 89.7% 65.0% 0.55 83.3% 71.4% 0.62 87.5% 75.0% 0.67 

Submerged vegetation (SAV) 82.9% 77.3% 0.38 82.9% 95.8% 0.88 89.7% 87.1% 0.58 89.7% 95.3% 0.85 

Coral reef 0.0% 0.0% 0.00 100.0% 100.0% 1.00 0.0% 0.0% 0.00 100.0% 100.0% 1.00 

Overall accuracy (%) 72.9 86.8 82.7 89.9 

Overall K 0.45 0.77 0.6 0.78 

 
(b) GeoEye-1 Worldiew-2 

  Without contextual edits 
With contextual edits for 

coral reef 
Without contextual edits 

With contextual edits for 

coral reef 

  P U K P U K P U K P U K 

Bare substrate 87.5% 65.6% 0.54 87.5% 67.7% 0.57 83.3% 71.4% 0.62 87.5% 75.0% 0.67 

Submerged vegetation (SAV) 85.3% 87.9% 0.60 85.3% 95.1% 0.84 89.7% 87.1% 0.58 89.7% 95.3% 0.85 

Coral reef 0.0% 0.0% 0.00 100.0% 100.0% 1.00 0.0% 0.0% 0.00 100.0% 100.0% 1.00 

Overall accuracy (%) 80.6 86.7 82.7 89.9 

Overall K 0.57 0.73 0.6 0.78 

 
 

                                                

** Recall accuracy assessment points did not fall within the area masked by clouds and cloud shadow for the GeoEye-1 image and as a result, the points falling within the 

WorldView-2 image clipped by the respective WorldView-2 mask alone were the same as those for the composite masked images (WorldView-2 and GeoEye-1).  Accuracies 

for the Worldiew-2 image clipped using the respective image mask and the composite mask are therefore identical for this reason.   
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Table 11.  Calculated accuracies (%) and kappa coefficients from accuracy assessments of the acoustic SAV and bottom substrate IK model (P = 

producer’s accuracy, U = user’s accuracy, 0 = overall accuracy, K = kappa coefficient).  

 P U K Overall accuracy Overall K 

SAV 
SAV absence 37.9% 57.9% 0.43 76.6% 0.32 

SAV presence 90.2% 80.4% 0.25     

Bottom substrate 

Silt 94.7% 72.0% 0.58 53.5% 0.33 

Sand 56.3% 32.1% 0.06   

Coral reef/ hard bottom 17.4% 100.0% 1   

Unclassified 0.0% 0.0% 0     
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Chapter 5. Discussion 

The main goal of this study was to investigate the applicability of acoustic and optical 

remote sensing techniques in mapping benthic features within the BBSFCA.  The spatial 

patterns resulting from each mapping technique presented in Chapter 4 are discussed 

briefly first; however the emphasis in this section was placed more on evaluating the 

methods employed, resulting accuracies and feasibility of use.   

5.1 Bottom features within BBSFCA 

 Bathymetric model 

Given the general NE-SW trend from the coastline identified during the data exploration 

steps, the progression of increasing depth towards the sanctuary’s seaward limit is 

expected throughout the study area.  When compared to previous models (United 

Kingdom Hydrographic Office, 1980; Carroll, 2013), the maximum depth of 9.3 m and 

the overall bathymetric surface pattern resulting from this study are similar, with deepest 

depths occurring in the southern section of the bay (Figure 21).  On the other hand, the 

BSM depicted here (Figure 21) appears to expose more localised morphological detail, 

revealing likely benthic features such as bare patches and patch reefs.  The sandbank 

depicted in Figure 22 was also not pronounced in previous bathymetric models.  The 

disparity in data collection dates for previous studies precludes direct comparisons as it 

relates to dynamic seabed features and in particular sand and seagrass beds, that are 

reported to change considerably over short time frames within the bay (Thompson, 2013; 

McNaught, 2013).  However, given the scale of the admiralty charts produced by the 

United Kingdom Hydrographic Office (1980) (1:200,000), as well as the density of the 

depth soundings from the Carroll (2013) study, the BSM produced for the purposes of 

this study exposes finer scale patterns.   

With regard to the bathymetric modelling process, the variable of interest (water depth) is 

considered a regionalised variable and numerous interpolation techniques have been 

employed to model this parameter and its land-based counterpart elevation.  These 

techniques include IDW (Burroughes, 2001); spline (Hell, 2011); and kriging (Lloyd and 

Atkinson, 2006) (Vella and Ses, n.d.).  A set of regionalised variables however is one 

realisation of random function, whose complex nature precludes the use of deterministic 

interpolation functions (Oliver and Webster, 2014).  Though deterministic techniques 

have been used extensively to model depth (Hell, 2011), kriging is generally more 

favoured owing to its robust nature (Oliver and Webster, 2014).  For this reason, kriging 

was the primary focus for interpolation of depth data within the study area and ultimately, 

the BSM was created using UK, one of the more complex forms of kriging.  The 

specification of numerous parameters for UK may generate better model fits over OK if 

used correctly (Babish, 2002), however it also has the potential to reduce confidence in 
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the resulting surface.  Unlike OK, which assumes that there is no global trend existing 

within the dataset (Babish, 2002), the U.S. Environmental Protection Agency (2004) 

highlighted that UK is appliable where a global trend is present and consequently for this 

study, the implementation of the IK method was deemed appropriate given the observed 

NE-SW trend within BBSFCA (Figure 11). 

Caruso and Quarta (1998) used two viewpoints to assess interpolation methods, namely 

prediction and characterization.  Based solely on visual assessment, the BSM appeared to 

model the features known to exist within the bay fairly well.  In fact, a number of trial 

models performed well and seemed “acceptable” in terms of characterisation.  This is 

perhaps attributable to the dense sampling regime employed wherein larger datasets 

typically result in similar results for varying interpolation methods (Burrough and 

McDonnell, 1998).  The average standard errors of the model were slightly greater than 

the RMSE prediction errors and the RMSE standardised values were slightly less than 1; 

therefore it can be concluded that there was a slight overestimation in the variability of 

predictions.  Finally, the model for BBSFCA slightly under-predicted minimum and 

maximum predicted values; however the underestimation of larger values and 

overestimation of small values is an artefact of kriging (Babish, 2002).    

 Benthic classification 

The sonar survey was conducted in July and August 2013, whilst the WorldView-2 image 

was taken in April 2013 and GeoEye-1 in January 2102.  Given historical temporal 

changes in seagrass distribution within the bay (McNaught, 2013; Thompson, 2013), 

variation in vegetation cover is probable within these data collection time periods; 

unfortunately, such dynamics are not often integrated into benthic classifications 

(Anderson, et al., 2008) and are beyond the scope of this project.  Vegetation cover was 

estimated from hydroacoustic data irrespective of bottom substrate; in contrast, the image 

classification approach classified coral reef/ hard bottom without any further separation of 

benthic classes found in the bay.  Also, bare substrate classified from the images could 

either be unconsolidated sediment or hard bottom/pavement, whereas the acoustic method 

was used to separate the two.  For these reasons, resulting quantities of benthic cover 

could not be compared directly, nor could the significance of any differences observed be 

tested statistically. 

5.1.2.1 Submerged vegetation 

The dominance of SAV throughout the BBSFCA is exhibited by both techniques, 

wherein 78.1% and 64.4% of vegetation surface resulted from the GeoEye-1 and 

WorldView-2 images respectively (clipped by respective masks) and 91.3% for acoustic 

classification (Figure 36).  This is not unlike the recent habitat assessment conducted by 

Carroll (2013) which concluded that seagrass constituted 82.3% of the seabed environment.  

Carroll (2013) reported the presence of Thalassia testudinum and Syringodium filiforme 

within the bay and this project likewise revealed the presence of these seagrass species, in 



75 

addition to another, namely Halodule wrightii.  Though differences in data collection dates 

and mapping resolutions between this study and older accounts including Carroll (2013), 

Keegan et al. (2003), as well as the South Coast Sustainable Development Study (SCSDS) 

and the Coastal Atlas of Jamaica (Norrman, et al., 1997) (Figure 37) prohibits direct 

quantitative and qualitative comparisons, the general conclusion of a SAV-dominated bay 

is evident.   

(a)  

 

(b) 

 

 
 

Figure 36.  Relative coverage of benthic classes (km2) resulting from: (a) acoustic survey and 

interpolation and (b) image classifications, clipped by respective masks and composite mask. 

Clipped by respective masks Clipped by composite mask 
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Figure 37.  Existing benthic data for Bluefields Bay from the following sources: (a) Sir William Halcrow and Partners Ltd., 1998, (b) Norrman, et al., 

1997 and (c) UNEP-WCMC, WorldFish Centre, WRI, TNC, 2010. 
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Establishing an acceptable mapping accuracy within the realms of habitat classification is 

problematic because benthic features are semi-continuous in nature, and as such achieving 

extremely high accuracies of 95% from benthic classification exercises is impractical 

(Mumby, et al. 1997).  This is exemplified by the map accuracy requirements of 86.4% of 

interviewed stakeholders who required 70% and higher accuracies.  These required 

accuracies were met by this study, wherein producer’s and user’s accuracy were 77% and 

higher for the SAV vegetation class and greater than 72% for overall classification 

accuracies in both the image and acoustic SAV classification results (Table 10, Table 11).  

These accuracies are also more or less comparable to accuracies reported for other studies 

that included SAV classification.  For example Ludin, et al. (2011) achieved more than 70% 

accuracy using WorldView-2 imagery up to 5m depth depending on the water conditions; 

Mishra, et al. (2006) obtained 80.6% overall accuracy using QuickBird multispectral data, 

with the dense seagrass class having producers and users accuracies of 75.8% and 66.4% 

respectively; and for areas classified as continuous seagrass, Stevens, et al. (2008) reported 

acoustic classification accuracy of 76%.  Lower accuracies from remote sensing 

classifications have also been reported, for example Wabnitz, et al. (2008) classified seagrass 

density from Landsat scenes with 46% overall accuracies (and high of 88%); Riegl, et al. 

(2005) obtained an overall accuracy of approximately 60% from an acoustic SAV survey 

differentiating sand, seagrass and algae, and for areas classified as patchy seagrass by 

Stevens, et al. (2008), acoustic classification accuracy was 42%.  The SAV and overall 

accuracies for this study may be deemed “acceptable” based on stakeholder requirements 

and other studies; conversely, whilst the SAV class and overall kappa coefficient for the 

image classification with contextual edits were favourable (greater than 0.75), the kappa 

coefficients for the acoustic vegetation occurrence map were poor (< 0.4), suggesting that 

the SAV classification is only moderately better than a classification undertaken by chance.  

The area classified as being devoid of vegetation were very small when compared with the 

area occupied by SAV for all techniques considered and these values are comparative to that 

achieved by Carroll (2003) wherein 11.8% was classed as sandy bottom, 4.0% sand or 

consolidated sediment with scattered coral/rock and 1.8% coral.  The localised sediment 

patterns were more noticeable in the image classifications (Figure 34, Figure 35) when 

compared to the acoustic classification IK (Figure 26), where the patterns were far more 

generalised and the smaller bare patches were less numerous.  Producer’s and user’s 

accuracies for the bare substrate class, as well as kappa coefficients were all greater for the 

image classification result (lowest accuracy and kappa were 63.4% and 0.53 respectively, 

Table 10) compared to those achieved for the acoustic SAV absence class (37.9% 

producer’s, 57.9% user’s and 0.43 kappa, Table 11).  Nevertheless, the generalised 

vegetation pattern within BBSFCA is comparable amongst all mapped final outputs, with 

the largest areas of vegetation absence occurring towards the northern section of the bay and 

other bare areas smaller in size similarly noticeable across the bay.   
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5.1.2.2 Bottom substrate 

Visual assessment of sediment grab samples at ground-truthing locations allowed for a 

coarse classification of bottom sediment into two groupings, namely silt and sand.  

Indeed, laboratory sieving and subsequent grain size analysis can be used to produce 

quantitative measures of grain size and thereby a more precise delineation between the 

two sediment groupings; unfortunately this was outside the scope of this project.  

Nonetheless, the rough classification of sediment type employed was considered 

sufficient for this study given the unavoidable subjectivity in defining the number of 

classes and restricted ability of the sonar to precisely discern between these.  The two 

sediment classes used resulted in feature spaces with minimal overlap (Figure 16) and 

allowed for the distribution of sand and silt to be mapped across the sanctuary; such local-

scale sediment mapping being absent prior to this study (Figure 37).  Seasonal changes in 

the sediment regime in the Bluefields watershed are reflected in the bottom substrate 

makeup within the bay.  Descriptive accounts of the study area reveal that owing to flood 

events, fine silty sediment has been observed in localities along the shoreline to the south of 

the bay, such as the Bluefields Bay fishing beach (Thompson, 2013), the Bluefields Beach 

Park (Bluefields Bay Fishermen's Friendly Society, n.d.) and the Bluefields River mouth 

(Dryer, 2010); this overlaps with the resulting silt distribution in the bay (Figure 33a).  

Interestingly, the sandbank feature identified from the bathymetric model described 

previously is also a noticeable linear formation in the resulting combined substrate map; 

however is modelled as silty sediment (Figure 30).  Silt also constitutes the largest expanse 

of bare sediment in the northern BBSFCA.    

Two distinct patches of coral reef (>50% probability) were predicted in the southern half 

of the bay for the acoustic interpolated surface (Figure 33c).  Although clear distinctions 

between bottom substrate are not typically easy, for example owing to coral reef covered 

by a sediment layer or where they are interspersed with sand channels (Roob, 2000), VBT 

processing results did in fact identify more than two regions of coral reef/ hard bottom 

and were subsequently included to the IK model (Figure 17).  Field knowledge, that was 

also used to contextually edit the image classification results, confirmed the presence of 

coral reef as individual coral heads, patch reef and aggregated patch reef, along with reef 

rubble at numerous locations across the bay and align well with morphological features 

revealed from the bathymetric model of the bay (Figure 34, Figure 35).  Image 

classification results for GeoEye-1 show that coral reef/ hard bottom covered a total of 

0.20 km2 or 1.4% of the seafloor and that for WolrdView-2 indicate 0.11 km2 or 0.8%.  

Although both these percentages take into account the unclassified areas owing to 

respective image masks, both coral reef cover estimates are greater than that predicted by 

the acoustic IK (0.05 km2 or 0.3% (Figure 36).  Similarly Carroll (2013) estimated that 

coral reefs covered 1.8% of the BBSFCA (not including scattered coral reef or rock in 

consolidate sediment), and this is also greater than the acoustic classification IK, further 

demonstrating the underestimation of coral reef areas by the acoustic IK model (with a 50% 

probability threshold).  With regard to the coral reef class, producer’s and user’s 
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accuracies of 100.0% for both image classifications with contextual edits, and 17.4% and 

100.0% respectively for the acoustic bottom substrate classification output, with kappa 

coefficients of 1 for both methods (Table 10, Table 11) demonstrate the level of coral 

mapping precision using both methods.  However, overall accuracies for the acoustic 

bottom substrate classification was only 53.5%, and this was generally lower than overall 

accuracies obtained in the literature reviewed (Gleason, 2009; Foster, et al., 2009; 

Diesing, et al., 2014) and accuracies deemed acceptable by the interviewed stakeholders.  

5.2 Feasibility analysis 

 Considerations for benthic classification methods 

Various benthic mapping methods exist and the choice of method is often influenced by 

the level of detail required, the extent of the study area, technical capacity and available 

resources (equipment, human, financial).  In-situ sampling and assessments produce 

reliable species data, however the ability to apply such methods to large study extents is 

limited (Sabol, et al., 2009). Remote sensing, including both optical and acoustic 

approaches, has the ability to derive biodiversity data and associated indices at varying 

spatial and temporal scales (Foody, 2008).   

5.2.1.1 Image classification techniques 

Passive optical remote sensing is often employed for mapping features spanning large 

areas, such as MPAs, and the sensed data products, such as aerial photographs and 

satellite imagery, can generate moderate- to high- resolution digital images of such large 

areas (Walker, et al., 2008).  Spatial, temporal and spectral resolution are important 

considerations when selecting images for benthic classification.  Various researchers have 

successfully mapped benthic habitats using high spatial resolution products (< 10 m pixel 

size) from various sensors including IKONOS (Schill, et al., 2011; Baumstark, et al., 

2013), QuickBird (Mishra, et al., 2006; Schill, et al., 2011) and the newly launched 

WorldView-2 (Florida Environmental Research Institute, 2010; DigitalGlobe, 2012; 

Vahtmäe and Kutser, 2013), as well medium spatial resolution products (10 – 100 m) 

such as Landsat (Roob, 2000; Andréfouët, et al., 2003; Wabnitz, et al., 2008; Pu, et al., 

2012).  Though spatial resolutions of airborne sensors are flexible depending on aircraft 

altitude (Green, et al., 2000), these sensors typically provide finer spatial resolution 

products than satellite sensors (Foody, 2008), and thereby have the capability to produce 

better results (Phinn, et al., 2008; Vahtmäe and Kutser, 2013) and allow for the 

assessment of small scale changes over time.   The reason for this is that the spatial 

resolution of an image has an effect on the spectral mixing within each image pixel.  A 

mixed pixel can result from various combinations of benthic features (Hochberg and 

Atkinson, 2003), preventing the accurate extraction of a single benthic feature that 

otherwise has a spectral signature different from the other features it is mixed with 

(Mishra, et al., 2006).  Fine spatial resolutions reduce the amount of intermixing; for 

instance Andréfouët, et al. (2003) found that IKONOS-based classifications (4 m 
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resolution) achieved 15-20% better overall accuracies when compared to Landsat (30 m 

resolution).  However fine spatial resolutions are more costly (Lu and Weng, 2007) and 

require more storage space and processing power.   

Unfortunately, even with a fine spatial resolution of 2 m for the GeoEye-1 and 

WorldView-2 multispectral images available for this study (Figure 19), there was 

confusion between SAV and coral reef spectral signatures, which necessitated the use of 

post classification contextual editing.  Coral heads and benthic patches smaller than 2 m 

and the MMU (4 m2) would perhaps not be mapped owing to the mixing of the spectra with 

the habitat surrounding these features.  The misclassification of coral reef and SAV may 

also not be as a result of spectral mixing, because it possible that some of the coral reef 

found in the bay might be covered by algal communities which would result in a spectral 

appearance similar to SAV.  Notwithstanding the drawbacks encountered with this study, 

features including coral reef assemblages have been mapped successfully at varying 

resolutions, such as 4 m IKONOS by Riegl and Purkis (2005) and at the larger 30 m 

spatial resolution of Landsat 7 ETM satellite images (Andréfouët, et al., 2001).  Benefits 

of the medium resolution Landsat imagery that should be mentioned here are its cost 

efficiency and longest set of continuous imagery scenes (Cohen and Goward, 2004), 

which enables spatiotemporal analysis.   

The resolution of the spectral bands can also improve optical remote sensing efforts; 

Vahtmäe and Kutser (2013) obtained a higher overall accuracy (77.5%) classifying 

Compact Airborne Spectrographic Imager (CASI) hyperspectral than utilising 

WorldView-2 (71.6%) multispectral images.  Similarly, Green, et al. (2000) report that 

CASI enables classification of seagrass beds with 80-90% accuracies and satellite 

imagery typically with lower accuracies of about 60%.  Generally, hyperspectral remotely 

sensed images provide greater information owing to a greater number (~100) of smaller 

ranged spectral bands (Ferwerda, et al., 2007).  Although DigitalGlobe’s newest 8-band 

sensor, the WorldView-2 satellite, is not considered to be truly hyperspectral, it 

nevertheless provides multispectral imagery with a relatively high number of bands with 

the added advantage of having the Red Edge band that is specific for coastal mapping 

(DigitalGlobe, 2012).  Since its launch in 2009, a number of studies have used 

WorldView-2 image datasets to map seabed habitats (Florida Environmental Research 

Institute, 2010; Ludin, et al., 2011; DigitalGlobe, 2012) and the results of this study 

showed marginally greater accuracies for classifications using this sensor’s products 

when compared to GeoEye-1 (Table 10).  However, whilst SAV presence/ absence, 

density and biomass have been successfully undertaken by various authors (Pasqualini, et 

al., 2005; Mishra, et al., 2006; Wabnitz, et al., 2008), distinction between seagrass species 

(Green, et al., 2000) or between algal and seagrass habitats (Mumby, et al., 1997) is not 

easily achieved with image classification using multispectral imagery and hyperspectral 

data is promising for this utility (Fyfe, 2003; Phinn, et al., 2008; Pu, et al., 2012).  

Acoustic technologies also offer additional benefits, as additional substratum detail such 
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as plant height and the possibility of differentiating between biological species is possible 

(BioSonics, Inc., n.d.).  

As found in this study, the georectification of satellite images with large expanses of 

ocean/ coastal areas is not as straightforward as land-based imagery owing to a smaller 

number of well distributed points suitable to rectify the acquired imagery.  The imagery 

acquired had sufficient land coverage to enable georectification using land-based control 

points; however other factors such sea surface disturbances (waves and sun glint) also 

often render affected sections of satellite images unusable.  The problem of sun glint has 

been encountered in a number of studies (Goodman, et al., 2008; Bouali, et al., 2009; 

DigitalGlobe, 2012; Streher, et al., 2013) including this study; in fact Wicaksono (2012) 

found that on average, 64.3% of the differences classified within a benthic habitat was 

attributed to sun glint.  Sun glint removal techniques have been successfully applied 

(Hochberg, et al., 2003; Hedley, et al., 2005; Goodman, et al., 2008; Bouali, et al., 2009; 

Kay, et al., 2009; DigitalGlobe, 2012; Streher, et al., 2013) and once the problem is 

corrected, the accuracy of benthic classifications has been shown to improve (Hochberg, 

et al., 2003).  For this reason, sun glint removal was considered a necessary step in this 

study and the method suggested by Hedley et al. (2005) was found to be easily 

implemented.   

Coastal areas are also subject to influences from land-based activities, such as suspended 

sediment load at river mouths and increased turbidity levels.  Such areas are at times 

incorrectly confused with cloud cover by NIR masking techniques as turbid waters 

contribute to NIR backscatter (Nordkvist, et al., 2009); this was experienced throughout 

the thresholding process of this study and which ultimately necessitated supplementation 

with subjective judgement and manually digitisation of regions of cloud.  Aerosols 

present in coastal areas from land-based sources may also have an effect on the signals 

received by sensors (Ferwerda, et al., 2007; Vahtmäe and Kutser, 2013).  Together, these 

influences make radiometric corrections more difficult and if not undertaken, or applied 

incorrectly, classification results may be inaccurate (Vahtmäe and Kutser, 2013).  In some 

cases, aerial or satellite-based mapping techniques are entirely not suitable owing 

turbidity (Kendall, et al., 2005) and in such waters, visual assessments are also rendered 

futile and acoustic sensing is perhaps the only applicable method of ascertaining bottom 

features.  This is of special importance along the southern coast of Jamaica where coastal 

waters are known to have higher levels of turbidity than the island’s northern coastal 

waters (Norrman, et al., 1997; Warner and Goodbody, 2005).  

The effects of varying water depth and water column (Mumby, et al., 1997; Mishra, et al., 

2006) is another factor that was deemed crucial to address.  In fact, Andréfouët, et al. 

(2003) invited reserachers to further assess the benefits of radiometric depth correction 

techniques in comparison to contextual editting in coastal reef zones or depth strata and 

this project examined the effectiveness of water column correction approches in Jamaican 
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nearshore waters.  Water column correction is capable of diminishing the effects of depth 

above bottom features and thereby ascribing the image radiance to the benthos and 

increasing the accuracy of benthic habitat classifications (Green, et al., 2000; Pu, et al., 

2012; Baumstark, et al., 2013).  The measurement of water depth and attenuation 

characteristics of the water column is essential to achieving in situ water column 

correction.  In the absence of optical equipment capable of acquiring radiance 

measurements above and beneath the surface, and thereby estimating the attenuation 

characteristics of the water column related to depth in situ, models developed by various 

researchers were reviewed (Lyzenga, 1978; Lyzenga, 1981; Mishra, et al., 2006; Gilvear, et 

al., 2007; Sagawa, et al., 2010; Kanno, et al., 2011).  The Lyzenga method generally takes 

into consideration the majority of the radiance recorded by an optical sensor and although 

it is the most common method used in reviewed literature (Mishra, et al., 2006; Gilvear, 

et al., 2007; Sagawa, et al., 2010; Kanno, et al., 2011), it requires the fulfilment of 

unrealistic statistical and physical assumptions.  Despite the fact that the extended and 

alternative methods proposed by Sagawa, et al., (2010) and Kanno, et al. (2011) produce 

higher map accuracies than that resulting from the application of the original Lyzenga 

method, these proposed methods do not appear to be applied extensively by other authors, 

perhaps owing to the relative newness of these methods.  This study opened an 

opportunity to test the Sagawa, et al. (2010) method and although this method was 

successfully implemented in this study, because of the well documented use and 

simplistic nature of the Lyzenga method (Lyzenga, 1978; Lyzenga, 1981; Green, et al., 

2000; Kanno, et al., 2011), the Lyzenga method may also be considered for 

implementation in future projects in order to increase the likelihood and ease of 

reproducibility.  Still, the Lyzenga method is restricted to waters deeper than 2 m since 

nonlinearity caused by internal reflection effects at the surface is not incorporated in this 

algorithm; therefore the utility of this model is restricted to areas where these effects are 

insignificant, such as waters that are not considered very shallow or having high 

reflectance (Lyzenga, 1978).   

Image segmentation prior to classification (Pasqualini, et al., 2005) or post classification 

(Baumstark, et al., 2013) was not foreseen as a compulsory step given the implementation 

of water column correction techniques and shallow water depths not exceeding 10 m 

across the bay.  However, although the water column correction applied to the imagery 

showed visual improvements††, irregularities in reflectance indices not corrected by the 

Sagawa method necessitated the segmentation of the images prior to classification.  This 

additional task was likely due to high turbidity levels within the study area and resulted in 

an increase in image processing time; this was also reported by Baumstark, et al. (2013).  

Although the segmentation process was undertaken prior to classification, the option 

                                                

†† Classifications were not undertaken for pre-corrected images, and thereby quantitative comparisons of 

pre- and post-corrected classification accuracies was not possible.  However studies have showed improved 

accuracies from water column correction techniques (Mumby, et al., 1998). 
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exists for this to be executed after unsupervised image classification (Baumstark, et al., 

2013), which has the benefit of reducing subjectivity.   

Cloud cover is another major limitation throughout optical remote sensing efforts (Green, 

et al., 2000) as excess cloud cover may render acquired images useless.  Detection and 

removal of cloud cover and associated cloud shadows may be accomplished by manual 

digitisation or by employing automatic thresholding methods (Dare, 2005; Huang, et al., 

2010; Krezel and Paszkuta, 2011; Fisher, 2014).  Thresholding techniques were tested for 

the study area in order to identify clouds, as well as white caps on the water’s surface.  

However this method was not solely used owing to cloud-free areas being selected; on 

further inspection, it was found that these areas appeared to be affected by sun glint or 

were highly turbid.  An algorithm suggested by Nordkvist, et al. (2009) has utility here, as 

it was developed to overcome the problem of turbid coastal waters being confused with 

cloud during the thresholding technique.  In addition to creating a cloud and cloud 

shadow mask, a land mask was necessary in order to restrict the classification to marine 

features (Krezel and Paszkuta, 2011; Curran, 2011) and the NIR proved useful in this 

regard by highlighting land features (Mishra, et al., 2006).  Islands were not observed 

within the bay and the boundary created for the BBSFCA essentially mirrored the 

resulting land mask.  

The subjectivity of supervised classification and contextual edits may be eliminated by 

electing to train the images using a spectral library (Vahtmäe and Kutser, 2013); however 

additional resources in terms of equipment, software, expertise and time are required in 

order to employ this training method.  Another alternate option is to use object-oriented 

classification such as in eCognition, a method involving the merging of like pixels into 

objects which are then classified.  This classification has been demonstrated to surpass the 

classification capabilities of per pixel classification (Lu and Weng, 2007).  

5.2.1.2 Acoustic survey, processing and interpolation techniques 

The various drawbacks of implementing optical remote sensing highlight the attractiveness 

of acoustic technology and specifically its ability to sample the benthos regardless of water 

column effects and cloud cover and its relative ease of operation and processing (Foster, et 

al., 2009).  Moreover, sonar has the ability to sense certain characteristics of benthic 

features, such as sediment type and vegetation height, which cannot be detected by 

imagery.  However, similar to optical remote sensing wherein obtrusions such as cloud 

cover and turbidity result in discontinuous data inputs, expanses of unsurveyed seafloor 

interspaced between narrow footprints along survey transects is one disadvantage of single 

beam acoustic devices (Anderson, et al., 2008).  Since data collection is restricted to sonar 

footprints (Bruckner, 2012), the efficacy of this type of sensing is dependent on sampling 

scale (Riegl and Purkis, 2005) and requires the application of interpolation techniques in 

order to produce a continuous mapped surface (U.S. NOAA Coastal Services Center, 

2001).  The process of interpolation may be limited by user capabilities and introduces a 
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disadvantage of failing to capture fine-scale features in unsampled areas (Brown, et al., 

2011).  In this regard, multibeam systems are advantageous.  Multibeam sonar functions 

on the same principle as single-beam units, however multibeam sonar simultaneously 

emits many acoustic pulses, obtaining continuous swaths of coverage rather than a single 

point beneath the vessel.  Compared to single beam acoustics however, multibeam systems 

have higher costs, a need for greater data storage and more complex calibration and 

processing (Anderson, et al., 2008).   

Regardless of the type of acoustics system, rapid changes in benthic cover, as well as 

positional inaccuracies contribute to acoustic signatures being potentially misclassified.  

Furthermore, although automated data processing allows for easy interpretation of 

acoustic data, the results may be erroneously refined by simply changing software 

settings.  Owing to restrictions of this study, empirical test data was not collected in order 

to accurately estimate percentage plant cover and although only distinctions between 

SAV presence and absence were made, the effectiveness of the processing to accurately 

calculate plant cover could not be tested.  User-defined parameters inputs to EcoSAVTM 

and VBTTM can affect the resulting point data used in the interpolation exercise; as such, 

a series of trial and error allowed for the selection of parameters that resulted in the 

generation of the most accurate data, which was subsequently used for final processing.   

The hardest decision for interpolation is often the first, that is, which of the many existing 

methods should be implemented (Caruso and Quarta, 1998).  A number of factors may be 

considered when selecting the type of interpolation to be performed on a dataset; the 

research objectives, type of data and relative importance of ease versus accuracy all come 

into play (Babish, 2002).  Of interest to acoustic classification is the applicability of 

interpolation techniques on nominal/categorical data and specifically submerged 

vegetation cover and bottom substrate.  A wide range of interpolators have been used to 

map percentage cover, plant height and biovolume of SAV data from point data, such as 

natural neighbour (Sabol, et al., 2009), nearest neighbour (Riegl, et al., 2005), minimum 

curvature method (Hoffman, et al., n.d.) and IDW (Roob, 2000; Sabol and Johnston, 

2001; U.S. NOAA Coastal Services Center, 2001; Cholwek, et al., n.d.).  Valley, et al. 

(2005) assessed three methods of interpolating biovolume, specifically IDW, spline and 

kriging; it was found that kriging resulted in the best modelled data, followed by IDW.  

Following this finding and the realisation that linear interpolators are not best suited for 

patchy features such as SAV, Stevens, et al. (2008) chose to apply kriging to their data.  

Likewise, various interpolation methods have been employed in order to predict seabed 

composition in areas for which field survey tracts did not cover; these include IDW (U.S. 

NOAA Coastal Services Center, 2001; Reid and Maravelias, 2001), IK (Bierkens and 

Burrough, 1993; Jerosch, et al., 2006), cokriging (Meilianda, et al., 2011; Diesing, et al., 

2014), UK (Omran, 2012) and OK (Cholwek, et al., n.d.).  As illustrated by these studies, 

one interpolation algorithm is not a one-size-fits-all method, that is, one particular 

interpolation technique is not suited for all environmental variables.   
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Li and Heap (2011) found that IK and ordinary IK were two of the least implemented (2 

and 1 study respectively) interpolators in the environmental sciences field, both with a 

recommendation rate of 0%.  Although IK was not a favourable interpolation method, IK 

consistently produced optimal results throughout this study when compared with IDW 

and other forms of kriging and was chosen for the interpolation of vegetation cover as 

well as bottom substrate owing to its ability to deal with skewed distributions (Babish, 

2002) and its ability to interpolate categorical information as binary forms of data.  

Furthermore, a user-friendly tool for performing IK was available in the software being 

used for this study (ArcMap 10) and to allow for replication at other sites, the use of IK 

was justified here.  As with all methods however, IK has its drawbacks, including the 

possibility of computational complications and the challenging nature of modelling 

accurate variograms for less frequently occurring categories (Hengl, 2007), such as coral 

reef in the case of this study.  Here, other hybrid interpolators have proven to be more 

robust, e.g. kriging with external drift (KED) (Verfaillie, et al., 2006), the similar concept 

regression kriging (RK) (Hengl, et al., 2004; Hengl, et al., 2007), Bayesian Maximum 

Entropy (BME) (D'Or and Bogaert, 2004) and Markovchain algorithms (mentioned in 

Hengl (2007)).  These techniques are certainly more complicated than other kriging forms 

and require more user interaction in perhaps less friendly computer environments (Hengl, 

et al., 2007).  Computational demand and software restrictions also play an important role 

as a number of the mentioned hybrid interpolators require far more complex 

computational requirements (Hengl, 2007) and are not as readily available to the general 

environmental science community.  

Not only is the interpolation method an important choice, but the selection of model 

parameters is a crucial step as changes to these can bring about varying results (Oliver 

and Webster, 2014).  Ascertaining the best kriging model involves an often time 

consuming iterative process of trial and error and subjective judgement is used throughout 

(Babish, 2002), for example while fitting semivariograms with an appropriate model and 

specifying lag sizes and search neighbourhoods.  Any model discrepancies resulting from 

these decisions are assessed by means of cross-validation and for all interpolations carried 

out for this project, optimal prediction error results were weighed more heavily than 

favourable visual assessments in ultimately selecting the final models.  This facility to 

quantitatively test prediction capabilities is an obvious benefit of all kriging forms.  It 

must be stressed however that the purpose of cross-validation is not to determine whether 

a model is accurate or not, although it does reveals where a model fails and suggests that 

it is perhaps not inaccurate (Babish, 2002).  Similarly, although validation diagnostics 

assists to reveal properties of the model, it does not necessarily provide an absolute 

measure of accuracy as it may give misleading results depending on the spatial 

configuration of the independent test data points and those points input to the model.  Test 

data in proximity to measured points may result in better validation results, than if these 

stations were placed far away from measured input points (Ly, et al., 2011).  This was 

observed for the acoustic vegetation probability IK models, wherein the test dataset 
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prediction errors were less favourable than those resulting from the use of the training 

datasets in the cross validation exercise (Table 6).   

The chosen interpolation method does not solely affect the accuracy of the classified map; 

additional factors such as data diversity and variation, as well as sampling design come 

into play (U.S. NOAA Coastal Services Center, 2001; Li and Heap, 2011; MacCormack, 

et al., 2013).  Interestingly Li and Heap (2011) state that the effect of various influences 

such as data density on model accuracy are inconsistent amongst studies reviewed.  

Whereas it is believed that higher density data points contribute to robust modelling 

(Foster-Smith and Sotheran, 2003) and minimise prediction errors (Ly, et al., 2011), Li 

and Heap (2011) suggest that data variation is also a major factor affecting any influence 

sampling density may have on interpolation results, where in instances of high data 

variation, sampling density should be increased in order to improve the interpolation.  

MacCormack, et al. (2013) found that the number of input points is more crucial 

compared to distribution for highly complex geological environments, whilst the opposite 

was found for simple geological settings.  Generally, data quantity and distribution can be 

optimized for interpolation and as such can be used to inform data sampling regime 

(MacCormack, et al., 2013).  A dense uniform grid extending across the entire study area 

is the preferred sampling design for any type of spatial interpolation (U.S. Environmental 

Protection Agency, 2004).  In regard to this study, although smaller intervals such as 8 m 

(Sabol and Johnston, 2001), 10 m (Valley, et al., 2005) and 25 m (Stevens, et al., 2008; 

Foster, et al., 2011) would increase mapping details, limited time and resources 

necessitated a wider spacing of 50 m.  A 50 m transect interval has been successfully 

implemented in other surveys (e.g. Clizia, et al., 2002; Stevens, et al., 2008; Sabol, et al., 

2009; Hoffman, et al., n.d.), as well as wider spacings of 75 m (Foster, et al., 2009) and 

greater than 100 m (Anderson, et al., 2002; Cholwek, et al., n.d.).   

Acoustic coverage across the entire study area was unattainable owing to the inability of 

the vessel and equipment to navigate very shallow waters of less than 0.5 m, such as in 

proximity to the coast and particularly to the north of the study area (Figure 6).  

Generally, in areas of increased transect spacing and where data points are deficient, 

modelled detail is reduced (Valley, et al., 2005) and in such areas, model artefacts 

become easily recognisable.  Artefacts of the modelling process were observed 

throughout the interpolation model testing phase, and the character of the resulting 

interpolated surfaces reflected the sampling regime and model parameters chosen.  Owing 

to the arrangement of dense data points along transects perpendicular to the shoreline, a 

predisposition exists for predicted surfaces to reflect this sampling pattern and a bias 

exists here where more accurate predictions result along transect interpolation, as shown 

by lower standard errors along transects than between them (Figure 29).  This is one 

likely reason for scarcer localised vegetation patterns being exhibited by the acoustic IK 

for vegetation presence.   
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Finally, the choice of using a 50% probability as the threshold for the delineation of the SAV 

class and bottom substrates was highly subjective and affected the resulting acoustic 

classification maps.  Indeed, any probability value could have been selected; however after 

examination of varying possibilities, 50% probability was believed to be a reasonable 

threshold.  The resulting bottom substrate map is a combination of IK models for the three 

bottom types in question (silt, sand and coral).  Although areas remained unclassified either 

because in these instances all bottom types had less than 50% probability of occurrence, or 

more than one bottom type was likely to occur there (> 50 %), this may be seen as 

advantageous in the sense that it shows ambiguous areas and offers a sense of reality (Zhang 

and Stuart, 2001).  

 Additional limitations and error propagation 

Errors may be defined for every step of data collection, modelling and interpretation, and 

all contribute to the overall error budget of a study.  Error propagation embraces sources 

of uncertainty throughout the modelling process and Burrough and McDonnell (1998) 

suggest that the quality of input data, the quality of the model and the way in which the 

data and model interact all influence the modelled results.  Error sources and propagation 

should particularly be considered for example with the BSM, which was not only a final 

output, but also used as input to image classification.  Similarly, although the iterative 

data processing and model testing undertaken for the kriging approaches assisted in 

reducing errors inherent in all final kriged outputs (bathymetry, vegetation and bottom 

substrate probability),  interpolation was the penultimate step in acoustic classification 

methods and crucial data collection and processing steps led up to this and are equally as 

important.    

Error can be measured against the real world such as in the case of accuracy assessments.  

However, although the creation of an error matrix and subsequent accuracy assessment is 

frequently used for evaluating classification outputs (Lu and Weng, 2007) resulting 

accuracies are dependent on the selection of reference data points, and specifically the 

number of points and sampling regime used to identify them.  If a purely random sample 

is taken, the possibility to under sample rarer habitat classes or regions within the study 

area exists, and thus the inclination to undertake stratified random selection according to 

benthic class.  The essence of stratified random selection is that each point within each 

benthic class has an equal chance of being selected and thus statistically, this type of 

sampling would produce the best sample.  This also applies to interpolation validation, 

wherein a more representative division of training and test points is achievable if sampled 

based on classes rather than by purely random function or systematic selection.  Here, 

kappa, which incorporates the influence of chance, and other measures such as the 

balanced error rate (BER) supersede the use of traditional accuracy assessment 

percentages.  It must be noted that though useful, a quantitative measure of error/ 

accuracy does not pinpoint the numerous sources and types of error (spatial, positional 
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and thematic) that may have occurred throughout the various stages, such as from 

classification, interpretation or even the accuracy assessment itself (Lu and Weng, 2007).  

The time lapse between data collection (imagery and acoustic) and ground-truthing 

exercises must be taken into account given the dynamic nature of the seabed within 

BBSFCA, and this may have given rise to errors in the accuracy assessment (Mumby, et 

al., 1997).   

Spatially inconsistent scales across data collection and verification methods is a crucial 

consideration.  All final interpolated surfaces, inclusive of the final BSM, vegetation and 

bottom substrate probability maps were exported as 2 m gridded rasters and this spatial 

model resolution, though chosen to be comparable amongst all project raster layers 

(including image classification) may introduce some ambiguity when defining any errors 

in the interpolated surface.  In this regard the question of whether resulting inaccuracies 

are as a result of the model itself, owing to the spatial resolution or both may be posed 

(Goodchild, 2011).  Acoustic ground-truth sites are essentially calibration sites used to 

train the classification process, similar to the use of training samples for supervised image 

classification.  The positioning of acoustic pings are not exact and with regard to the 

ECOSAVTM vegetation processing, each cycle of ten pings covers varying distances.  As 

such, although the spacing of output points averaged 2-3 m, this ranged from as small as 

1.5 m to 20 m in some localities.  The bathymetric data and bottom substrate processed 

data points however were spaced between 4 and 5 m on average along transects owing to 

the averaging of 20 pings.  The spatial resolution of output rasters of 2 m is therefore 

smaller than some sampling distances occurring along field transects for the sonar survey 

and features smaller than 4 m, such as coral heads would perhaps not have been detailed 

owing to the averaging of returns in the acoustic survey output.  Correspondingly, as 

discussed previously with regard to image classification, the spatial resolution of the 

image is the basic measure of scale; both the 2 m GeoEye-1 and WorldView-2 images 

mask any potential variation in vegetation coverage that may have been revealed using a 

1 m2 quadrant for example within the 4 m2 area pixel.  Despite the limitations discussed 

regarding data collection scales and the ultimate removal of areas smaller than the MMU 

of 4 m2 from all mapped results, the resulting surfaces certainly revealed some local-scale 

bottom variations, such as coral reef structures and bare sediment patches.  Furthermore, 

natural variations in spatial extent of habitats is inevitable and even though clear 

distinctions are mapped in final outputs, the intrinsic “fuzzy” nature of benthic habitats 

both horizontally as well as vertically, particularly at scales incapable of accurate 

mapping must not be forgotten.    

Another factor considered by a number of researchers (Kendall, et al., 2005; Diesing, et 

al., 2014) which must be mentioned, is that the scale of the accuracy assessment may also 

be smaller than the MMU.  This disparity was considered and in order to minimise this 

potential error, an effort was made to use points in homogenous areas and not along patch 

boundaries or highly diverse areas.  Accuracy assessment results are also affected by the 
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number of benthic groupings, wherein increased habitat complexity and number of 

benthic classes produce lower map accuracies (Andréfouët, et al., 2003; Pu, et al., 2012).  

Relating to the level of detail attained for both methods employed, the number of classes 

per mapped output did not exceed 3 classes.  Such broad groupings lessen the potential 

for misclassification (Foster-Smith and Sotheran, 2003) and perhaps explains the 

relatively high accuracies of the acoustic SAV and image classification results (Table 10, 

Table 11).   

Subjective judgement also played a major role in thematic accuracy.  Although vegetation 

presence was based on the chosen NOAA classification scheme (Figure 5), accurately 

quantifying 10% vegetation cover from imagery was not straightforward and certainly 

subjective since exact areal coverage measures were not possible by means of a quadrant.  

This is unlike the characterization algorithm employed by EcoSAVTM that summarises 

cyclic acoustic ping data to output a percentage cover numerical value.  Generally, 

classification associated with sonar technology is far less subjective than that of 

supervised image classification and has been described as objective by Anderson, et al. 

(2002).  It must be added that although accuracies improved with contextual edits, 

subjective interpretation was used during the contextual editing for coral reef areas and 

the potential bias introduced by this editing (Green, et al., 2000) must not be overlooked.   

Finally, although accuracy assessments give an indication of error of the final output, they 

may be considered only as a first step in map assessment as stakeholder-involved critique 

is another form of assessment (Schill, et al., 2011).  The final maps resulting from this 

project are yet to undergo stakeholder assessment and it is hoped that sharing of these 

mapped outputs will encourage map critique and assist in any needed map revisions.  This 

local interaction is not only necessary at this stage, however throughout the project life 

cycle as collaboration ultimately improves the usefulness of mapped products.   

 Mapping requirements and use 

The main goal of this study was to ascertain the feasibility of image and acoustic 

classification in a Jamaican context.  In addition to the advantages and limitations of the 

methods discussed thus far, it is important to determine the reproducibility of these 

methods in other localities and settings.  The study area in question, map user 

requirements and availability of resources, including budget, technical expertise, 

equipment, software and allotted time frames influence the choice of classification 

method.   

5.2.3.1 Map applicability 

Fundamental to any habitat mapping exercise, is the selection of a suitable classification 

scheme that will structure the study area into defined classes.  Numerous marine benthic 

classification schemes have been developed worldwide (Kendall, et al., 2001; Madley, et 

al., 2002; Madden, et al., 2008); however a national standard for marine benthic 
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classification does not exist in Jamaica.  Of the 22 completed stakeholder questionnaires, 

9 persons described data collection standards utilised at their organisation (e.g. Atlantic 

and Gulf Rapid Reef Assessment, AGGRA and Reef Check), national GIS standards 

stipulated by the Land Information Council of Jamaica (LICJ), or did not provide any 

description.  One response (Kenny, 2013) also suggested the usefulness of employing the 

System for Classification of Habitats in Estuarine and Marine Environments (SCHEME), 

developed by the Florida Fish and Wildlife Conservation Commission, Florida Marine 

Research Institute (Madley, et al., 2002). Given the similarity between coastal ecosystems 

in Jamaica, the wider Caribbean and Florida, the tiered SCHEME system appears 

applicable to Jamaica.  The importance of applicability and reproducibility of 

classification schemes cannot be disregarded and classifications should be able cross all 

boundaries that may be imposed owing to differences in equipment, methods, study suite, 

data of data collection, analysis, scale, targets and policies (Cogan, et al., 2009).  

Classification systems should also be structured in such a way to allow for comparison of 

mapping results from various sources, that is, provide a “common language” (Madley, et 

al., 2002) for habitat groupings at various levels of detail and allow for future additions.  

Whereas the SCHEME system was developed with previous systems in mind and may be 

applied to a number of these easily, it was recognised that a number of studies within the 

Caribbean had not applied this system; however that developed by the NOAA hierarchal 

classification system (Figure 5) and used in this study.  

Thematic scale of the final mapped outputs from this study may be considered broad; 

however owing to the simple geographic setting of the study area, it was not possible to 

split the area further into geographic zones defined by NOAA; however such post 

classification zonation similar to Anderson, et al. (2002) can be undertaken in larger 

areas.  Similarly, although the main focus for SAV output from the acoustic data was 

presence/ absence, it is possible to map SAV species and percentage cover, as well as 

additional sediment groupings with acoustic technologies; this would certainly fulfil the 

desires of stakeholders interviewed.   In addition to the classes represented on the final 

mapped outputs of this project, other benthic features and characteristics that were 

thought to be useful by stakeholders were cobbles, boulders, gravel, rock outcrop, rubble, 

seagrass species, rugosity, sediment depth and health of biological cover.  Indeed, these 

relate to the often varying user needs which exist, as evidenced by the results of the 

stakeholder questionnaires, in which applications to coastal zone management and 

planning, engineering works, impact assessments, hazards and vulnerability, ecological 

studies such as natural valuations, health assessments, change monitoring, habitat 

restoration and development for recreational activity were anticipated.  The advantage of 

employing the NOAA system is that the hierarchal groupings consist of collapsible tiers 

and allow for the mapped products to be supplemented with further zonation and class 

detail as required by future applications.   



91 

Detail finer than 2 m, such as coral patches 1 m2 in size as specified by Fisheries Division 

(Table 1) was unattainable utilising the acquired imagery and sonar survey transect data.  

The spatial resolution of the acquired GeoEye-1 and WorldView-2 visible bands is 2 m, 

whilst the smallest resolution of the sonar data was between 2 and 3 m along transects.  In 

an attempt to retain the highest level of detail and allow for comparison amongst resulting 

classifications, a 2 m grid cell size and MMU of 4 m2 (1 pixel) was accepted as the 

working spatial resolution for all raster data generated.  Further, favourable resolutions 

for mapped outputs expressed by stakeholders varied from 1 x 1 m to 10 x 10 m and as 

such it is believed that the 2 x 2 m resolution of the mapped data was suitable within the 

Jamaican setting.   

The resulting digital data products are primarily in the form of GIS vector and raster, both 

of which may be easily converted to tabular or Google KML and used in the creation of 

cartographic maps; all of which are formats specified as being useful to stakeholders.  It 

should be noted that this study did not require a comprehensive database system, however 

if benthic mapping is to be undertaken at numerous sites across the island, consideration 

should be made for implementing a relational database.  It should also be borne in mind 

that depending on the scale and level of detail required for a particular project, 

geometrical object types become dynamic; for instance, on a regional level, a point 

location for coral may be sufficient; however within locales of an MPA, the extent of 

coral coverage will be required for management purposes.  In data modelling the 

semantics of scale may be related to the mapping extent, as well as the spatial resolution 

of the data and modelling (Goodchild, 2011).  It is important to note that manipulating 

very detailed data of a large scale from a database for modelling and presentation with a 

smaller scale often involve generalization techniques which inevitably loses information 

and has the potential to give rise to erroneous results. 

The mapped outputs of this study are representative of benthic habitats at the time of data 

collection and in a dynamic environment such as BBSFCA, the shelf life of such mapped 

information should be deliberated (Anderson, et al., 2008).  The majority of questionnaire 

respondents required updates to benthic maps every 2 to 5 years (59.1%) and updates 

would also be required after natural disturbance or significant anthropogenic activity 

within the bay.  Indeed the regularity at which mapping is required and the available 

resources will both influence survey design. 

5.2.3.2 Associated costs 

Recurring costs comprise the costs associated with the time taken to undertake all 

necessary processing steps, as well as data acquisition (images and field survey).  

Processing labour costs are more expensive for the acoustic classification method (USD 

$276.43 per km2) when compared to the satellite image classification (USD $70.72 per 

km2) and this is directly related to the time taken for each method, which is tripled for the 

acoustic method.  Imagery costs vary depending on the provider, type of image, area 
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required and collection method; costs for standard ortho-ready images (50/60 cm 

resolution) based on minimum area requirements range from USD $400.00 for archived 

GeoEye-1 imagery (25 km2 scene, with minimum width of 3 km) to USD $3,800.00 for 

new collect (not older than 90 days) WorldView-2 images (100 km2 scene, with minimum 

width of 5 km) (McDonald, 2014).  Satellite image acquisition costs were comparable 

between this study and Baumstark, et al. (2013) (USD $16.00 for archived 4-band 

multispectral), however the total per km2 labour costs for image classification estimated 

for this study (USD $70.72, Table 12) greatly exceed those of Baumstark, et al. (2013), 

who found that it cost USD $28.20 per km2 to carry out satellite image processing.  This 

may be attributable to differences in processing steps; inconsistent spatial properties 

encountered in this study post water column correction can lead to complications in the 

image processing steps (Baumstark, et al., 2013).   

Set-up costs associated with software and equipment for the acoustic survey carried out 

for this project are greater than that for optical remote sensing (USD $52,000.00 and 

$12,000.00 respectively, Table 12); and similar to Green, et al., (2000), these costs 

comprise the largest portion of costs (90%).  However, set-up cost is a one-time 

obligation that is perhaps more easily warranted if the mapping exercise is to be repeated.  

The total cost of the image classification method, inclusive of set-up costs, labour and 

data collection (new collect 100 km2 WorldView-2 imagery scene, $3,800.00) was 

estimated to be USD $16,790.00, whilst the acoustic survey was USD $39,080.00 more 

costly (Table 12).  A number of factors can greatly affect total cost estimates for benthic 

mapping exercises however.  Firstly, increased image spectral and spatial resolution 

available with optical options such as aerial photography and hyperspectral imagery 

provide enhanced mapping capabilities and are both typically more costly.  If fine-scale 

bottom features such as smaller sand and coral reef assemblages are requisite mapped 

outputs, increasing the sampling density of the acoustic survey may be necessitated, 

further increasing the cost of this method per mapping exercise. It should also be noted 

that only the equipment utilized in this study are presented in Table 12 and more 

affordable acoustic equipment and software specific to benthic mapping are available, for 

example the BioSonics, Inc. MX Aquatic Habitat Echosounder system costing USD 

$12,000 (Munday, 2015).  Further, the cost of carrying out the bathymetric data collection 

and processing was not included in the image classification process as bathymetric data 

may be collected reasonably cheaper than using the sonar equipment and the method used 

for this study, and in some cases already exists.   

Although the many benefits of undertaking an acoustic survey have been discussed, 

comparing the resulting accuracies, as well as the time and cost allocated to each method 

employed highlights some drawbacks of this method.  Resulting from this study and vital 

to mapping technique applicability and cost, is the fact that image classification attained the 

higher classification accuracies and kappa statistics (Table 10 and Table 11) and are more 

affordable than acoustic surveys (Table 12); however benthic detail is compromised as 
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acoustic surveys are capable of achieving a greater level of bottom feature characterisation.  

Cost effectiveness is particularly a major consideration in assessing mapping feasibility in 

Small Island Developing States (SIDS) as limited resources, in terms of financial support, 

expertise, equipment and software often restrict research activities (Schill, et al., 2011).  

Typically, measures required to improve map accuracy are reflected in increased costs; 

however a point is normally reached where increased effort does not reap further 

improvements (Mumby, et al., 1998).  Not only should such a threshold be considered, 

but the ultimate use of the maps must be deliberated; that is, if improved accuracies or 

detail is not essential, then the increased effort and associated costs for instance of USD 

$180.00 to undertake radiometric corrections or USD $13.00 per km2 for 8-band imagery 

versus 4-band imagery are perhaps not justified.  This is similar to comparing aerial 

photograph interpretation and satellite imagery-based classification, wherein if medium-

scale thematic resolution of reasonable accuracy is sufficient for user needs, then the lower 

associated costs of satellite sensing make it a more viable option than airborne sensing 

(Mumby, et al., 1999).  When available cost and time are considered, there is often 

compromise between resolution (spatial and map detail) and coverage; whilst it is 

possible to attain the highest level of accuracy and map detail for a smaller setting, 

acquiring such comprehensive data on a much larger scale will be more expensive and 

time consuming.     
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Table 12.  Times (hrs) and costs (USD) associated with benthic classification methods employed.  

Method Steps 
Approx. time 

(hrs) 

Recurring cost (USD) Equipment and 

software (USD) Labour‡‡ Other Per km2§§ 

Image 

Image acquisition 
   

Archived: $29.00 (WorldView-2), $16.00 

(GeoEye-1); New collect: $38.00 
(WorldView-2), $25.00 (GeoEye-1)*** 

 

Processing 
    

ERDAS Imagine: 

$10,500.00; ArcGIS 
10.2.2 for Desktop 

Basic: $1,500.00 ††† 

Projection and geometric correction 1.5 $45.00 
 

$3.21 

Resolution merge and resampling 0.5 $15.00 
 

$1.07 

Band selection 0.25 $7.50 
 

$0.54 

Radiometric correction (atmospheric, sun 

glint and water column corrections) ‡‡‡ 
6 $180.00 

 
$12.86 

Masking and thresholding 1 $30.00 
 

$2.14 

Classification 
    

Segmentation and supervised pixel-based §§§ 20 $600.00 
 

$42.86 

Mosaicking 0.5 $15.00 
 

$1.07 

Contextual editing 3 $90.00 
 

$6.43 

Clump and eliminate 0.25 $7.50 
 

$0.54 

TOTAL: 33 $990.00 
 

$70.72 
 

Sonar 

Sonar survey 52 $1,560.00 
Boat rental: 
$900.00 **** 

$175.71 

BioSonics DT-X 

Portable Echosounder, 
differential GPS, 

laptop and associated 
software: $52,000.00 

Vegetation presence 
    

EcoSAV processing 9 $270.00 
 

$19.29 

Interpolation 3 $90.00 
 

$6.43 

Bottom classification 
    

VBT processing 30 $900.00 
 

$64.29 

Interpolation 5 $150.00 
 

$10.71 

TOTAL: 99 $2,970.00 
 

$276.43 

                                                
‡‡ Labour cost calculated based on USD $30/hour. 
§§ Labour unit costs for field survey and processing steps based on 14 km2 (BBSCFA study area). 
*** Unit costs quoted are for standard ortho-ready (50/60 cm) images. Imagery not older than 90 days is considered new collect. Pricing courtesy of Mona GeoInformatics 

Institute (McDonald, 2014). 
††† http://store.esri.com/esri/showdetl.cfm?SID=2&Product_ID=29&Category_ID=121 [Accessed 08 November 2014] 
‡‡‡ Water column correction requires bathymetric data, time and cost for which is not included here. 
§§§ Time estimated based on 30 segments. 
**** Based on rental of boat for 150 USD/day, for 6 days. 
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5.2.3.3 Available resources 

Cogan, et al. (2009) draws attention to technological factors that may limit the 

implementation of certain mapping methods.  The development of software to carry out 

geostatistical tasks have enabled users to perform modelling techniques with ease; 

however some are described as “black boxes” since an interpolated surface may be 

created by an inexperienced user at the press of a button (Oliver and Webster, 2014).  

Software driven by menus such as the ArcMap Geostatistical Wizard run the necessary 

code “behind the scenes” (U.S. Environmental Protection Agency, 2004); whilst this may 

be considered a positive feature,  a prior understanding of the theory should still be gained 

so that users may intervene by manipulating parameters during the interpolation process.  

ArcMap is also beneficial owing to display outputs and its ability to effortlessly overlay 

with other data; however the Semivariogram Cloud tool was incapable of handling the 

very large bathymetric dataset created for this study, and the software may be regarded as 

costly (Table 12).  Of specific mention here are freeware such as GStat and R that afford 

users the ability to undertake geostatistical hybrid interpolation techniques with direct 

control over all aspects of the modelling process, without licensing and at no cost.  There 

is the belief that R can meet all statistical needs and for this reason Hengl (2007) 

promotes its use.  However, an expert level of statistical knowledge is required in order to 

effectively use the R package, and since visualisation is not recommendable in R, export 

to other GIS software is necessitated.  Google Earth has become an everyday tool for 

persons worldwide, and its utility in the visualisation process and data sharing as Keyhole 

Markup Language (KML) is advantageous since it is available freely and a number of 

stakeholders desire data in this format.   

As summarised by Hengl (2007), available user resources scarcely match the capabilities 

of some researchers and one program hardly encompasses all the required GIS and 

statistical functions.  In the same regard, findings from the stakeholder questionnaire 

survey demonstrated that although GIS, underwater photography and scuba are common 

skills (greater than 60% of stakeholders), image classification and sonar processing skills 

were not (6 respondents or 27.3% and 2 respondents or 9.1% respectively).  Access to 

equipment also shows a propensity to GIS use and marine surveys with 50% or more of 

respondents having access to GPS and GIS software, satellite imagery, boats, underwater 

camera and scuba gear, yet only 5 organisations (22.7%) had access to acoustic devices 

and 1 (4.5%) to remote sensing software.  Recently, the Khaled bin Sultan Living Oceans 

Foundation (KSLOF), in partnership with The Nature Conservancy undertook the 

assessment of coral reef community structure at Pedro Bank using transects and recorded 

observations and/or photographic assessments to assess benthic cover (Bruckner, 2012).  

Although a pilot sidescan sonar survey was a part of this research mission (Quester 

Tangent, 2012), sonar is not a widespread technique used for the purpose of benthic 

mapping in Jamaica.    
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Chapter 6. Conclusions 

Bluefields Bay is dominated by submerged seagrass and algal species, inhabiting varying 

types of substrates across the bay, such as finer silty substrate along the shoreline, sand 

found further offshore, as well as smaller areas of coral reef and hard bottom.  The general 

benthic patterns within the BBSFCA were comparable amongst both optical and acoustic 

remote sensing classifications produced, yet image classification outperformed acoustic 

methods in terms of overall accuracy.  The inability of optical remote sensing to classify 

sections of the bay owing to cloud presence and complications due to water column 

properties were obvious shortcomings of the image classification process however.  

Furthermore, this method was only applicable given the broad level of benthic detail 

necessary for this particular study, which is not always the case - more detailed 

information such as seagrass species and sediment groupings were found to be 

indispensable benthic parameters to a number of stakeholders.  The benefits of acoustic 

surveys have been praised by numerous studies (Anderson, et al., 2002; Anderson, et al., 

2008; Foster, et al., 2009; BioSonics, Inc., n.d.) and this was shown by the capability of 

attaining fine thematic groupings, in addition to its operation in turbid waters otherwise 

unsuitable for optical remote sensing.  A major step in the acoustic classification process 

however, was the interpolation of processed data which gave rise to a number of 

additional considerations.  The accuracy of a chosen interpolation algorithm was not 

viewed as a standalone factor in selecting a particular method and the software, expertise 

and intricacies of carrying out the necessary steps were major influences.  Certain 

interpolators are often implemented more frequently than others simply owing to its 

availability in GIS software and ease of use (Lu and Wong, 2008).  Availability of 

particular methods should not be seen as an instant benefit, as without an appreciation of 

how a model functions, the tools may be used incorrectly; expert input is vital to 

geostatistical modelling (Diesing, et al., 2014) and must not be overshadowed by friendly 

user interfaces.   

The pros and cons of each method cannot be weighed without the consideration of user 

needs and available resources that may ultimately render a method ill-suited for a 

particular locality.  Both mapping methodologies may theoretically be replicated at 

additional sites in Jamaica given that similar benthic features will likely be encountered 

and satellite imagery and expertise, as well as sonar technology exists locally (albeit only 

for a few organisations); the acoustic survey however was more costly and certainly 

requires greater financial resources than satellite image classification.  So, the question 

remains as to which approach is better for benthic habitat mapping in Jamaica and 

possible the wider Caribbean.  Based on the results of this study, the most cost effective 

and efficacious mapping method is satellite image classification.  Nevertheless, similar to 

Diesing, et al. (2014), it must be reiterated that each method has associated limitations 

and benefits and the effective implementation will depend on a number of factors that 

must be weighed in order to select the most feasible mapping method for a particular site.  
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A consideration to be made as well, is combining techniques in order to overcome 

apparent method deficiencies and improve mapping products.  It must also be added that 

technological advancements should not be a dominating factor and any chosen survey 

design should “remain science-based rather than technology-driven” (Cogan, et al., 2009).  

Irrespective of the mapping method chosen, maps are described as being “one truth and 

not the truth” (The Joint Nature Conservation Committee (JNCC), 2008); with any 

mapping exercise, careful attention must be given to the survey design in order for the 

methodologies and outputs to optimise accuracy and be of utmost use to interested 

groups.   

It is hoped that the work undertaken for the purposes of this thesis will be of benefit to the 

efforts of the Fisheries Division in the mapping of benthic features at all designated fish 

sanctuaries across the island, as well as similar initiatives both locally and regionally.  

Not only will the results of the feasibility analysis be useful in the selection of a viable 

mapping approach, but the intricacies of each method discussed throughout may assist in 

designing the survey programme.  The mapped data of the benthic mapping exercise will 

certainly augment spatial marine resource inventories, and hopefully be considered as 

inputs to further ecological studies and management deliberations.  
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Appendix B: Stakeholder questionnaire participants 

Appendix Table 1.  List of participants who completed and returned questionnaire survey  

 Organization Administration Interviewee 

1 Bluefields Bay Fishermen's Friendly Society (BBFFS)  Telephone interview Livingston Thompson 

2 Bluefields Villas Telephone interview Houston Moncure 

3 Caribbean Coastal Area Management (C-CAM) Email Donovan B. Hay 

4 Caribbean Natural Resources Institute (CANARI) Email Terrence Phillips 

5 CEAC Solutions Co. Ltd.  Email Christopher Burgess 

6 Centre for Marine Sciences, University of the West 

Indies (UWI) 

Email Marcia Creary Ford 

7 Caribbean Fish Sanctuary Partnership Initiative (C-

FISH) 

Email Michelle McNaught 

8 CL Environmental Co. Ltd. Email Matthew Lee 

9 Discovery Bay Marine Lab, UWI Email Dayne Buddo 

10 Environmental Management Consultants Caribbean 

Ltd. (emc2) 

Email and 

Telephone interview 

Marc Rammelaere, 

Ravidya Burrowes 

11 Environmental Solutions Limited (ESL) Email Kimberly Bryan 

12 Environmental Foundation of Jamaica (EFJ) Email Karen McDonald Gayle 

13 Fisheries Division, Ministry of Agriculture and 

Fisheries (MoAF) 

In person interview Junior Squire 

14 Marine Geology Unit, UWI Email Shakira Khan 

15 Montego Bay Marine Park Trust Email Hugh Shim 

16 National Environment and Planning Agency (NEPA) Email Sean Green 

17 Natural History Division (NHD), Institute of Jamaica 

(IOJ) 

Email Keron Campbell 

18 Oracabessa Bay Foundation Telephone interview Inilek Wilmot 

19 Planning Institute of Jamaica (PIOJ) Email Nadine Brown 

20 Seascape Caribbean Email Andrew Ross 

21 Smith Warner International Ltd. Email David A. Y. Smith 

22 Urban Development Corporation (UDC) Email   

 

Attempts were made to interview the following stakeholders; however either successful contact was 
not be made, or if contact was made, completed questionnaire not received: 

 ALLOAH Fisherman Cooperative 

 Breds Treasure Beach Foundation 

 EcoReef 

 Jamaica Conservation and Development Trust (JCDT) 

 Jamaica Environment Trust (JET) 

 Jamaica National Heritage Trust (JNHT) 

 Ministry of Water, Land, Environment and Climate Change (MWLECC) 

 Negril Area Environmental Protection Trust (NEPT) 

 Negril Coral Reef Preservation Association (NCRPS) 

 Northern Jamaica Conservation Association (NJCA) 

 Westmoreland Parish Council 

 Port Royal Marine Laboratory & Biodiversity Centre, UWI 

 Sandals Foundation 

 The Nature Conservancy (TNC) 

 Veterinary Division, MoAF 
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Appendix C: Satellite image metadata 

Appendix Table 2.  WorldView-2 satellite image metadata 

[Online] Available at: 

https://browse.digitalglobe.com/imagefinder/showBrowseMetadata?catalogId=1030010020450700 

[Accessed 6 Feburary 2014]. 

Catalog ID 1030010020450700 

Acq Date Apr 7, 2013 

Center Lat/Long 18.295°/-78.066°  

Avg Off Nadir Angle 6° 

Avg Target Azimuth 256° 

Sensor WV02 

Band Info Pan_MS1_MS2 

 

Appendix Table 3.  GeoEye-1 satellite image metadata 

[Online] Available at: http://geofuse.geoeye.com/landing/image-

details/Default.aspx?id=20120103155627816030316022972012010315562781603031602297_000 

[Accessed 6 Feburary 2014]. 

Attribute Value 

Best of Ranking 6580 

Cloud Cover Percentage 7 

Collection Date 03-Jan-2012 

Collection Month 1 

Collection Year 2012 

COLLECTION_DATE_D

AY 

3 

Data Owner GEOY 

DOWNLINK_FACTORY

_ID 

ET 

Full Metadata URL http://geofuse.geoeye.com/landing/image-

details/Default.aspx?id=2012010315562781603031602297201201031556

2781603031602297_000 

Ground Sample Distance 0.44 

Image Identifier 20120103155627816030316022972012010315562781603031602297_000 

IMAGE_FILE_URL http://geofuse.geoeye.com/static/browse/geoeye/ge1/2012/01/03/2012010

315562781603031602297_0.jpg 

Imagery Source GEOEYE-1 

Imagery Source 

Abbreviation 

GE-1 

IS_GEORECTIFIED 1 

Is_Line_Rate_Enhanced 0 

LAYER_FILE_URL N/A 

Line_Rate_MS 2500 

Line_Rate_Pan 10000 

LL_LAT 18.0996 

LL_LON -78.1447 

LR_LAT 18.0993 

LR_LON -77.9815 

https://browse.digitalglobe.com/imagefinder/showBrowseMetadata?catalogId=1030010020450700
http://geofuse.geoeye.com/landing/image-details/Default.aspx?id=20120103155627816030316022972012010315562781603031602297_000
http://geofuse.geoeye.com/landing/image-details/Default.aspx?id=20120103155627816030316022972012010315562781603031602297_000
http://geofuse.geoeye.com/landing/image-details/Default.aspx?id=20120103155627816030316022972012010315562781603031602297_000
http://geofuse.geoeye.com/landing/image-details/Default.aspx?id=20120103155627816030316022972012010315562781603031602297_000
http://geofuse.geoeye.com/landing/image-details/Default.aspx?id=20120103155627816030316022972012010315562781603031602297_000
http://geofuse.geoeye.com/static/browse/geoeye/ge1/2012/01/03/2012010315562781603031602297_0.jpg
http://geofuse.geoeye.com/static/browse/geoeye/ge1/2012/01/03/2012010315562781603031602297_0.jpg
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Attribute Value 

OBJECTID 6480170 

Order Identifier 2012010315562781603031602297 (1125081) 

Product Information URL http://www.geoeye.com/CorpSite/products/Default.aspx 

Scene Identifier 2012010315562781603031602297_000 

Sensor Azimuth Angle 250.28043 

Sensor Elevation Angle 70.956764 

Sensor Mode PAN/MSI 

SHAPE Shape Type: esriGeometryPolygon 

WKID: 4326 

SHAPE.STArea() 278444940.17594 

SHAPE.STLength() 66861.2578240599 

SHAPE_Area 0.0237777341718836 

SHAPE_Length 0.618349628375529 

Spatial Reference System EPSG:4326 

SQKM 278 

STEREOMATE_STRIP_I

D 

N/A 

Strip Identifier 2012010315562781603031602297 

Sun Azimuth Angle 153.56877 

Sun Elevation Angle 44.512035 

UL_LAT 18.2473 

UL_LON -78.1397 

UR_LAT 18.2465 

UR_LON -77.9796 

WORLD_FILE_URL http://geofuse.geoeye.com/static/browse/geoeye/ge1/2012/01/03/2012010

315562781603031602297_0.jgw 

 

Appendix Table 4: Landsat 8 satellite image metadata  

[Online] Available at: http://earthexplorer.usgs.gov/metadata/4923/LC80120482013106LGN01/ [Accessed 

6 Feburary 2014]. 

Data Set Attribute Attribute Value 

Landsat Scene Identifier LC80120482013106LGN01 

WRS Path 012 

WRS Row 048 

Target WRS Path 012 

Target WRS Row 048 

Nadir Off Nadir NADIR 

Full or Partial Scene FULL 

Data Category NOMINAL 

Roll Angle -.001 

Station Identifier LGN 

Day/Night DAY 

Data Type Level 1 L1T 

Sensor Identifier OLI_TIRS 

Date Acquired 16-APR-13 

Start Time 16-APR-13 03.35.26.9736770 PM 

Stop Time 16-APR-13 03.35.56.7696980 PM 

http://www.geoeye.com/CorpSite/products/Default.aspx
http://geofuse.geoeye.com/static/browse/geoeye/ge1/2012/01/03/2012010315562781603031602297_0.jgw
http://geofuse.geoeye.com/static/browse/geoeye/ge1/2012/01/03/2012010315562781603031602297_0.jgw
http://earthexplorer.usgs.gov/metadata/4923/LC80120482013106LGN01/
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Data Set Attribute Attribute Value 

Image Quality 9 

Scene Cloud Cover 6.95 

Sun Elevation 65.88749737 

Sun Azimuth 103.50098079 

Geometric RMSE Model X 7.274 

Geometric RMSE Model Y 5.57 

Browse Exists Yes 

Center Latitude 17°20'39.95"N 

Center Longitude 77°48'35.57"W 

NW Corner Lat 18°19'55.74"N 

NW Corner Long 78°30'21.85"W 

NE Corner Lat 17°58'00.84"N 

NE Corner Long 76°44'54.31"W 

SE Corner Lat 16°20'46.61"N 

SE Corner Long 77°07'24.35"W 

SW Corner Lat 16°42'49.21"N 

SW Corner Long 78°51'55.22"W 

Center Latitude dec 17.34443 

Center Longitude dec -77.80988 

NW Corner Lat dec 18.33215 

NW Corner Long dec -78.50607 

NE Corner Lat dec 17.9669 

NE Corner Long dec -76.74842 

SE Corner Lat dec 16.34628 

SE Corner Long dec -77.12343 

SW Corner Lat dec 16.71367 

SW Corner Long dec -78.86534 
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Series from Lund University 

Department of Physical Geography and Ecosystem Science 

Master Thesis in Geographical Information Science (LUMA-GIS) 

1. Anthony Lawther: The application of GIS-based binary logistic regression for 

slope failure susceptibility mapping in the Western Grampian Mountains, 
Scotland. (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. 

Applied GIS methods in time geographical research. (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using 
GIS and Remote Sensing. (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems 

as an analytical and visualization tool for mass real estate valuation: a case 
study of Fontibon District, Bogota, Columbia. (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: 

The use of GIS functionalities in transport of transformers, as part of 
maintaining a reliable power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 

(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding 
sites using aerial photographs (2010) 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome 

of the programme of rehabilitation measures for the river Rhine in the 
Netherlands (2010) 

9. Samira Muhammad: Development and implementation of air quality data mart 

for Ontario, Canada: A case study of air quality in Ontario using OLAP tool. 
(2010) 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 

temporal relationships between photosynthetic productivity of vegetation and 
malaria transmission intensities in selected parts of Africa (2011) 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse 

water pollution problems (2011) 

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study 

using GIS to monitor the urban growth of Lagos 1990 - 2008 and produce 

future growth prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for 
Android (2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color 

infrared imagery (2011) 

15. Andrew Farina: Exploring the relationship between land surface temperature 

and vegetation abundance for urban heat island mitigation in Seville, Spain 

(2011) 

16. David Kanyari: Nairobi City Journey Planner  An online and a Mobile 
Application (2011) 
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17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power 
plants - A case study from Berlin (2012) 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi 

criteria evaluation of ArRiyadh City (2012) 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building 

rooftop integration analysis tool for GIS for Dokki District, Cairo, Egypt 

(2012) 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via 

Site Suitability and Spatially Explicit Carrying Capacity Modeling in 

Virginia’s Chesapeake Bay (2013) 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing 
Manchester’s Cultural Heritage ‘gold mine’ (2013) 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley 
(2013) 

23. Monika Ogden: Land use impact on water quality in two river systems in 

South Africa (2013) 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake 
Flaten in Salem, Sweden (2013) 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200 

years. How can we predict past landscape pattern scenario and the impact on 
habitat diversity? (2013) 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity 

models to predict weed species presence (2014) 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014) 

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a 
GIS analysis within the Greater London Authority area (2014) 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote 

sensing and GIS - A Case Study for Kjósarhreppur (2014) 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of 

agricultural droughts in the southern Ukraine between the years 2000-2012 

(2014) 

31. Sarah Tressel: Recommendations for a polar Earth science portal 

in the context of Arctic Spatial Data Infrastructure (2014) 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral 
Formosat-2 Imagery for Precision Agriculture Applications (2014). 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria 

evaluation analysis - weighted linear combination model (2014) 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway 
network at the Swedish Transport Administration  (2014) 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information 

System and analytical hierarchy process: case study Dhaka City (2014) 
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36. Alexia Chang-Wailing Spitteler: Development of a web application based on 

MCDA and GIS for the decision support of river and floodplain rehabilitation 

projects (2014) 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of 

potential changes to the public transportation system in the City of Milan 

(2014) 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using 
Controlled Burn in Australia. Case Study: Logan City, QLD (2015) 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; 

Geographical Distribution, Spatial Analysis and Non-traditional Risk Factors 
(2015) 

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, 

Jamaica (2015) 

 


