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Abstract 

In this essay the systemic risk contributions of financial institutions in the European Monetary 

Union are analyzed. For this purpose the CoVaR measure, first introduced by Adrian and 

Brunnermeier (2011), is applied. The definition of CoVaR is changed in the way that 1) the 

definition of financial distress is changed from an institution being exactly at its VaR-level to 

being at most at its VaR, and 2) the CoVaR measure is extended to allow for measuring the 

systemic risk contribution of a group of banks. For the calculations of CoVaR an underlying 

student t-distribution for the returns is assumed. Volatility and time-varying correlations 

between the institutions and the system are modeled using a GARCH-DCC approach. The 

systemic risk contribution is then obtained by solving numerically for ∆CoVaR. The 

calculations are based on daily return data of 32 banks from 10 Eurozone countries covering 

the period 1st May 2005 to 1st May 2015. The analysis of the results of the collective systemic 

risk contribution by country receives extra attention. 

Keywords: systemic risk, CoVaR, Multivariate GARCH, DCC model 
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1 Introduction  

In today’s globalized financial world the downfall of an individual financial institution can have 

severe consequences for both the financial system and the real economy. A prime example for 

such a scenario is the bankruptcy of Lehman Brothers, which struck the financial system 

heavily, led to several bail-outs of big financial institutions in the time after the event, and 

demonstrated the fragility of the whole financial system. Financial crises impose high costs for 

the society through the spillovers from the financial system to the real economy, which drops 

into a deep recession, and through the bailouts of big financial institutions with taxpayers’ 

money. Hence, the regulation of financial institutions and the managing of such systemic risks 

is a desirable goal for the society as a whole. In the light of the global financial crisis, 

researchers and policymakers have recognized the importance of managing systemic risk. 

Before the events of the global financial crisis, banking regulation was solely based on 

idiosyncratic risk measures, as implemented in the Basel I and Basel II accords. With the 

acknowledgement of the importance of systemic risk, regulation authorities are moving towards 

a new regulation framework, such as Basel III, that incorporates macro prudential policies 

which focus on the mitigation of systemic risks. 

A rich literature on measuring systemic risk has evolved ever since the global financial crisis 

and numerous attempts have been made to apply the different systemic risk measures. One of 

the most famous systemic risk measures is 𝛥𝐶𝑜𝑉𝑎𝑅, introduced by Adrian and Brunnermeier 

(2008). 𝛥𝐶𝑜𝑉𝑎𝑅 measures the systemic risk contribution of an individual financial institution 

in the financial system. It is defined as the difference between the VaR of the system, 

conditional on an institution being in financial distress and the VaR of the system, conditional 

on this institution being in its benchmark state. Several studies, such as Cao (2013) and Girardi 

and Ergün (2013), have extended the 𝛥𝐶𝑜𝑉𝑎𝑅 measure and introduced new ways to calculate 

it. Cao (2013) introduced an extension to the original 𝛥𝐶𝑜𝑉𝑎𝑅 which allows for conditioning 

on several financial institutions being in distress at the same time. The extension is then applied 

to a French and Chinese banking panel. Girardi and Ergün (2013) proposed a way of calculating 

𝛥𝐶𝑜𝑉𝑎𝑅 using multivariate GARCH models. Using their new methodology they measure the 

systemic risk contribution of US financial firms. This essay relies on key features from both 

studies as well as the original study by Adrian and Brunnermeier (2011). 

As the epicenter of the global financial crisis, systemic risks in the financial system of the 

United States have been a main focus of research so far. However, little attempts have been 

made to analyze systemic risk contributions in the financial system of the European Monetary 

Union. Furthermore, the phenomenon of several institutions being simultaneously in financial 

distress has received little attention. Even though the collective failure of a group of banks is 

not just a theoretical construction but has been observed in practice, research on this 

phenomenon is very limited. 
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The aim of this essay is to analyze individual systemic risk contributions of 32 financial 

institutions from 10 different European Monetary Union countries, as well as their collective 

systemic risk contribution. Furthermore, the essay tries to identify the countries that are home 

to the most systemically risky financial institutions and to analyze the collective systemic risk 

contribution for cases of countrywide negative shocks to the associated banks. Extra attention 

is paid on the analysis of the collective systemic risk contribution of a group of banks and the 

underlying drivers of a group’s collective systemic risk contribution. 

The remainder of the essay is structured in the following way. Chapter 2 provides an overview 

over existing research with respect to CoVaR and introduces the concept of systemic risk. The 

estimation and calculation methodology for 𝛥𝐶𝑜𝑉𝑎𝑅 is described in Chapter 3. Chapter 4 

presents the data used for estimations and calculations. Empirical results for both the systemic 

risk contribution of individual banks and a group of banks are described in Chapter 5. The essay 

ends with a discussion and a summary in Chapter 6. 
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2 Related Literature and Theoretical Review 

This chapter will consist of a review of previous research concerning the CoVaR measure as 

well as a theoretical discussion about systemic risk. 

2.1 Previous Research on CoVaR 

While systemic risk caught broad attention only after the global financial crisis, the literature 

on measuring and managing systemic risk is already rich and comprehensive. Several attempts 

have been made to categorize the different systemic risk approaches. Borri et al. (2012), for 

example, identify two main strands in the literature on systemic risk. The first one, referred to 

as network analysis, focuses on the interconnectedness of the entities in the financial system 

and thus is concerned with the joint distribution of losses. It assesses the impact of a failing 

network entity on the other network components’ viability. Further discussions regarding 

network analysis lie beyond the scope of this essay. However, interested readers are referred to 

Martínez-Jaramillo et al. (2010) and Markose et al. (2010), as prime examples. The second 

strand, called micro-evidence approach measures systemic risk contribution of individual 

financial institutions. CoVaR, which is the measure of choice in this essay, is part of the micro-

evidence approach strand. Thus focus in this essay is put on studies following this strand. 

2.1.1 The first introduction of CoVaR 

One of the most famous systemic risk measures is the so-called CoVaR measure, first 

introduced by Adrian and Brunnermeier in their paper CoVaR in 2008. It lead to a widespread 

application and analysis of their CoVaR measure. CoVaR is defined as the VaR of the financial 

system conditional on an institution 𝑖 being in financial distress (Adrian & Brunnermeier, 

2011). The measure can be categorized as a tail measure and thus focuses on the co-dependence 

in the tails of equity returns between financial institutions or an institution and the financial 

system (Hansen, 2013). This is also emphasized by the name of the measure, chosen by the 

authors, in which “Co” stands for conditional, contagion or comovement (Adrian & 

Brunnermeier, 2011). 

The objectives of their paper are to 1) measure the contribution of a financial institution to 

systemic risk which is achieved through the measure ∆CoVaR, and to 2) create a forward 

looking indicator based on firm characteristics to predict future risk contributions of financial 

institutions which they call “forward ∆CoVaR”. ∆CoVaR is defined as the difference between 

the 𝑞%-CoVaR of the system 𝑗 conditional on institution 𝑖 being in financial distress and the 

𝑞%-CoVaR of the system 𝑗 conditional on institution 𝑖 being in its benchmark state, 
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∆𝐶𝑜𝑉𝑎𝑅𝑞
𝑗|𝑖
= 𝐶𝑜𝑉𝑎𝑅𝑞

𝑗|𝑋𝑖=𝑉𝑎𝑅𝑞
𝑖

− 𝐶𝑜𝑉𝑎𝑅𝑞
𝑗|𝑋𝑖=𝑀𝑒𝑑𝑖𝑎𝑛𝑖

. 

The authors define institution 𝑖’s state of financial distress as institution 𝑖’s equity returns being 

at their 1%-𝑉𝑎𝑅 level and its benchmark state as its equity returns being at their median level 

(50%-𝑉𝑎𝑅 level). 

Adrian and Brunnermeier (2011) estimate both an unconditional version of the measure, which 

results in a constant CoVaR over time, and a conditional version of the measure, which varies 

over time. In order to estimate a time-varying conditional CoVaR measure, the authors include 

systemic state variables that model the changes in tail risk dependence over time. The vector of 

state variables contains the aggregate credit spread, the VIX as the implied equity return 

volatility, and the slope of the yield curve. For all of their estimations they use the so-called 

Quantile Regression which allows them to focus on the tails of equity returns. Their estimations 

are based on weekly equity return data of 1226 financial institutions, from 1986Q1 to 2010Q4, 

belonging to the four sectors: commercial banks, security broker-dealers (including investment 

banks), insurance companies and real estate companies.  

The authors furthermore create the forward looking “forward ∆CoVaR” which is obtained by 

regressing the previously estimated ∆CoVaR on several firm characteristics such as size, 

market-beta, maturity mismatch, market-to-book ratio, and leverage. They find that a higher 

systemic risk contribution is related to a larger size, a higher leverage, and more maturity 

mismatch. Furthermore, “forward ∆CoVaR” is countercyclical, which means it is negatively 

correlated with the contemporaneous ∆CoVaR and thus captures the fact that systemic risk 

builds up in periods of tranquil market environments. 

Another important finding by Adrian and Brunnermeier (2011) is the loose relation between 

conventional VaR and ∆CoVaR; that a high VaR does not automatically imply a high 

contribution to systemic risk. This implies that financial regulation based solely on idiosyncratic 

risks is not sufficient to protect against systemic risks. However, they do find a strong relation 

between an institution’s VaR and its systemic risk contribution ∆CoVaR in the time series 

dimension. 

Since Adrian and Brunnermeier (2008) laid the foundation for the CoVaR measure a number 

of applications to different datasets and within different environments have emerged, such as 

in Arias, Mendoza, and Pérez-Reyna (2010), Borri et al. (2012), or Karkowska (2015). 

Assessments, extensions and customizations of the measure, such as in Cao (2013), Girardi and 

Ergün (2013), Karimalis and Nomikos (2014), Bernardi, Maruotti, and Petrella (2013), Benoit 

et al. (2013), and Mainik and Schaaning (2012), contributed to further developments of the 

CoVaR measure. 

2.1.2 Multi-CoVaR and Shapley value 

Cao (2013) in Multi-CoVaR and Shapley value: A Systemic Risk Measure, extends the basic 

CoVaR measure to a multivariate approach. By conditioning on more than one institution being 

in financial distress the Multi-CoVaR is able to measure the change in systemic risk when 

several institutions face financial difficulties at the same time.  
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The author follows a two-step procedure in order to calculate the contribution of a financial 

institution to systemic risk. First, the total systemic risk contribution for the case that all 

institutions in the system are in financial distress at the same time is calculated, which represents 

total systemic risk. Secondly, the systemic risk contribution of each institution is obtained by 

applying an allocation algorithm to the overall systemic risk. Thus, the definition of CoVaR 

slightly changes in the following way 

∆𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
1,…,𝑆 = 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑟1≤𝑉𝑎𝑅𝑞
1,…,𝑟𝑆≤𝑉𝑎𝑅𝑞

𝑆

− 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
−𝛼𝜎𝑡

1≤𝑟𝑡
1≤𝛼𝜎𝑡

1,…,−𝛼𝜎𝑡
𝑆≤𝑟𝑡

𝑆≤𝛼𝜎𝑡
𝑆

, 

where ∆𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
1,…,𝑆

 is the total systemic risk contribution of all institutions {1, … , 𝑆} at time 𝑡 

and confidence level 𝑞, 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑟1≤𝑉𝑎𝑅𝑞

1,…,𝑟𝑆≤𝑉𝑎𝑅𝑞
𝑆

 is the CoVaR of the system for all institutions 

being in financial distress, and 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
−𝛼𝜎𝑡

1≤𝑟𝑡
1≤𝛼𝜎𝑡

1,…,−𝛼𝜎𝑡
𝑆≤𝑟𝑡

𝑆≤𝛼𝜎𝑡
𝑆

 is the CoVaR of the system 

for all institutions being in their benchmark state. Adrian and Brunnermeier (2011) define the 

benchmark state as institution 𝑖’s returns being at their median, while Cao (2013) defines the 

benchmark state as the institution’s returns being at an 𝛼 × 𝜎𝑡-event around the mean, where 𝛼 

is constant, and 𝜎𝑡 is the institution’s standard deviation at time 𝑡. Furthermore, while Adrian 

and Brunnermeier (2011) only focus on a single institution being in financial distress, Cao 

(2013) calculates the total systemic risk contribution of all institutions in the system being in 

financial distress at the same time, and allocates the systemic risk contribution of a single 

institution in a second step.  

In the second step Cao (2013) applies the so-called Shapley value methodology to the total 

systemic risk. The Shapley value was initially introduced for cooperative games where players 

create together one outcome for the whole group. For a single player the Shapley value is the 

expected marginal contribution to the outcome over the set of all permutations of players. It is 

a fair and efficient method to allocate the systemic risk contribution among the institutions and 

fulfills a set of favorable characteristics such as additivity1.  

Cao (2013) also uses a different methodology compared to Adrian and Brunnermeier (2011). 

He starts by assuming an underlying multivariate student t-distribution for the returns of the 

system and each institution. Then, GARCH modeling for estimating the time-varying volatility 

of the returns and the DCC approach, introduced by Engle (2002), for estimating the time-

varying correlations between the returns is used to obtain the joint distribution of the returns. 

For the VaR of each institution however, Cao (2013) uses a Bootstrap approach which does not 

depend on a distributional assumption and is thus less restrictive. Given the VaR of each 

institution and the joint distribution of the system’s and institutions’ returns, Cao (2013) solves 

numerically for the CoVaR value of the system conditional on the adverse state and the 

benchmark state, and obtains ∆CoVaR.  

                                                                                                                                                         

1 For CoVaR, additivity means that the joint CoVaR of all institutions combined is equal to the sum of each 

individual CoVaR-value. Thus the following must hold: 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
1,…,𝑆 = ∑ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑖𝑆
𝑖=1 . 
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The estimations are based on two panels, a French and a Chinese one, which consist of the five 

biggest institutions of each country for which weekly returns are extracted for the time between 

19th April 2002 and 29th January 2012 for the French panel, and between 27th October 2006 and 

29th June 2012 for the Chinese panel. His results show that French banks are much more 

affected by the global and the European financial crisis than Chinese banks are, which indicates 

a lower global interconnectedness of the Chinese banks.  

Another important finding is that while the Multi-CoVaR using Shapley values exhibits 

additivity, the Multi-CoVaR without Shapley values is smaller than the sum of the individual 

corresponding CoVaR’s. 

2.1.3 CoVaR estimation using multivariate GARCH models  

Another paper extending the CoVaR approach is Systemic risk measurement: Multivariate 

GARCH estimation of CoVaR by Girardi and Ergün (2013). In their paper the authors change 

the definition given by Adrian and Brunnermeier (2011) of an institution being exactly at its 

VaR level as its distress state to an institution being at most at its VaR level as its distress state, 

which is formulated as  

Pr (𝑅𝑡
𝑖 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑖|𝑗
|𝑅𝑡
𝑗
≤ 𝑉𝑎𝑅𝑞,𝑡

𝑗
) = 𝑞, 

where 𝑅𝑡
𝑖 is the returns of the system 𝑖, 𝑅𝑡

𝑗
 is the returns of institution 𝑗, 𝑉𝑎𝑅𝑞,𝑡

𝑗
 is the VaR of 

institution 𝑗, and 𝑞 is the confidence level. This new definition also takes into account more 

severe outcomes than the VaR level and it opens up the possibility to back test the CoVaR 

measure as well as improves its consistency with respect to the dependence parameter between 

institution 𝑗 and the system 𝑖, as shown by Mainik and Schaanning (2012).  

Similarly to Cao (2013), Girardi and Ergün (2013) define the benchmark case as a one-standard 

deviation around the mean return event. Furthermore, they also use a GARCH and DCC 

approach to obtain skewed-t and Gaussian joint distributions of the returns of the system and 

institution 𝑗, which are then used to solve numerically for CoVaR.  

Their estimations and calculations are based on data of 74 US financial institutions with market 

value greater than 5bln USD for the time period between 26th June 2000 and 29th February 

2008. The authors backtest their CoVaR results based on both the Gaussian and the skewed-t 

distribution using the Kupiec and the Christoffersen test. While the results based on the skewed-

t distribution assumption pass all tests, the results from assuming a Gaussian distribution exceed 

the confidence level in the unconditional coverage test. Furthermore, they find that the CoVaR 

estimates based on the skewed-t distribution are all higher than the estimates based on the 

Gaussian distributional assumption.  

The authors also investigate the relation between firm characteristics and systemic risk 

contribution of an institution. Contrary to Adrian and Brunnermeier (2011), they do not find a 

strong relation between the VaR of an institution and its systemic risk contribution ∆𝐶𝑜𝑉𝑎𝑅 in 

the time series dimension, which implies that monitoring only the tail risk of an institution is 

not enough to predict its systemic risk contribution. 
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2.1.4 CoVaR estimation using Copula functions 

Karimalis and Nomikos (2014) in Measuring systemic risk in the European banking sector: A 

Copula CoVaR approach also extend the CoVaR approach in the sense that they propose a new 

methodology for its calculation. In order to obtain the joint probability distribution of the system 

and an institution, the authors use so-called Copula functions. Copula functions can replicate 

the true multivariate joint distribution function using only the univariate marginal distribution 

of each series and a copula which describes the dependence between the two series. 

Karimalis and Nomikos (2014) calculate the joint distributions using different types of copulas 

from different copula families, for both the definition of CoVaR given by Adrian and 

Brunnermeier (2011) (𝐶𝑜𝑉𝑎𝑅𝑞
𝑗|𝑋𝑖=𝑉𝑎𝑅𝑞

𝑖

) and for the definition given by Girardi and Ergün 

(2013) (𝐶𝑜𝑉𝑎𝑅𝑞
𝑗|𝑋𝑖≤𝑉𝑎𝑅𝑞

𝑖

). Furthermore, they extend their calculations to obtain the conditional 

expected shortfall (CoES) of the system.  

The authors base their estimations on return data of 42 European banks from 1st April 2002 to 

31st December 2012. Similar to Girardi and Ergün (2013), they backtest their results and obtain 

similar results concerning the Gaussian and the skewed-t distribution.  

Furthermore, the authors suggest ways for stress testing using their copula approach. These 

ways include changing the marginal distributional assumptions, changing the copula functions, 

or changing the dependence structure between the series.  

Karimalis and Nomikos (2014) also analyze the relation between VaR and ∆CoVaR and come 

to the conclusion that depending on the definition of the benchmark case, the link between VaR 

and ∆CoVaR is strong if the benchmark case is defined according to Adrian and Brunnermeier 

(2011), and weak if the benchmark case is defined as in Girardi and Ergün (2013). Following 

the work of Adrian and Brunnermeier (2011), Karimalis and Nomikos (2014) also assess the 

influence of common market factors as well as firm characteristics on the systemic risk 

contribution of an institution and receive similar results, namely that size, leverage and equity 

beta are key drivers of systemic risk. 

2.1.5 Systemic risk measures in comparison 

Benoit et al. (2013) in A Theoretical and Empirical Comparison of Systemic Risk Measures 

analyze several systemic risk measures, including CoVaR, both theoretically and empirically. 

For their analysis they focus on the three systemic risk measures: MES, SRISK, and ∆CoVaR.  

Through their theoretical assessment of ∆CoVaR, the authors come to the conclusion that, given 

the definition of ∆CoVaR by Adrian and Brunnermeier (2011), the measure is simply a linear 

projection of the institution’s VaR and thus can be expressed as  

∆𝐶𝑜𝑉𝑎𝑅𝑖𝑡(𝛼) = 𝛾𝑖𝑡[𝑉𝑎𝑅𝑖𝑡(𝛼) − 𝑉𝑎𝑅𝑖𝑡(0.5)], 
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where 𝛾𝑖𝑡 =
𝜌𝑖𝑡𝜎𝑚𝑡

𝜎𝑖𝑡
 is the linear projection coefficient of the market return on the firm return, 

𝜌𝑖𝑡 is the correlation between the market and the firm at time 𝑡, 𝜎𝑚𝑡 is the volatility of the 

market at time 𝑡, and 𝜎𝑖𝑡 is the volatility of the firm at time 𝑡. Benoit et al. (2013) find that, due 

to the scaling nature of 𝛾𝑖𝑡, ranking the institutions by their VaR and by their ∆CoVaR may lead 

to different results. However, they further find that for an individual institution, forecasting 

VaR is sufficient to predict the evolution of its systemic risk contribution ∆CoVaR.  

The authors also compare the ranking of the institutions’ systemic risk contribution as measured 

by their MES and ∆CoVaR, and conclude that the rankings may not be equivalent. However, 

they also find that the higher the correlation between an institution’s returns and the system’s 

returns, the more likely it is that MES and ∆CoVaR lead to the same systemic risk contribution 

ranking. Thus, even though the systemic risk measures have differing definitions, under certain 

conditions they will produce the same output. For the relation between SRISK and ∆CoVaR, 

the authors find that only under certain restrictive conditions, namely a high leverage of the 

bank and a high correlation of the bank’s returns with the system’s returns, the two measures 

will lead to equivalent results. 

Besides their theoretical analysis of the three systemic risk measures, Benoit et al. (2013) also 

conduct an empirical comparison of the measures. They base their results on data of 94 US 

financial firms with market capitalization above 5 bn. USD for the period between 3rd January 

2000 and 31st December 2010. The ∆CoVaR outputs that are used for the assessment are 

obtained through a Quantile Regression. The authors conduct their comparison by ranking the 

ten so-called SIFI’s (systemically important financial institution) as the institutions with the 

highest systemic risk contribution according to the three measures. They find that the different 

systemic risk measures lead to different identification of SIFI’s and report little overlap between 

the identified SIFI’s. In addition, their empirical results confirm what has been concluded 

previously on a theoretical basis, namely that there is only a weak link between the VaR of an 

institution and its systemic risk contribution ∆CoVaR in the cross-sectional dimension, but a 

strong relation in the time-series dimension. 

 

 

2.1.6 Summary and limitations of CoVaR 

The rich literature on CoVaR, including applications of the measure, in-depth analysis of its 

properties, and numerous extensions to the measure, show that the measure indeed makes an 

important contribution to the understanding, measuring, and managing of systemic risk. It has 

been shown that regulating financial institutions according to their idiosyncratic risk measured 

by VaR is not sufficient, given the loose link between its VaR level and its actual contribution 

to systemic risk measured by ∆CoVaR. Thus ∆CoVaR can be considered a useful tool in the 

process of identifying and managing systemic risks.  

However, there are also limitations to the CoVaR approach. While in the cross-sectional 

dimension there is only a weak relation between an institution’s VaR and its ∆CoVaR, in the 
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time-series dimension the evolution of the VaR of an institution resembles its ∆CoVaR 

evolution very closely. Thus it can be argued that ∆CoVaR does not capture the multiple facets 

of systemic risk and hence adds only little additional information beyond its idiosyncratic VaR 

measure (Benoit et al., 2013). Furthermore, systemic risk is characterized by a multitude of key 

features encompassed in it, of which ∆CoVaR only captures a small amount and is silent about 

features such as spillover effects to the real economy or the path systemic risk takes when 

spreading across a network. 

2.2 Systemic Risk 

So far, no consensus has been reached by researchers regarding the definition of systemic risk 

but rather a multitude of systemic risk definitions have evolved (Smaga, 2014). The European 

Central Bank (2009), for example, defines systemic risk as “the risk that financial instability 

becomes so widespread that it impairs the functioning of a financial system to the point where 

economic growth and welfare suffer materially“ (p. 134). While the definition by the European 

Central Bank is rather vague, Bisias et al. (2013) list in their survey of systemic risk measures 

more precise characteristics on which other authors have focused on for their definition of 

systemic risk. The list includes aspects such as imbalances, spillover effects to the real 

economy, asset bubbles, correlated exposures of banks, feedback reactions of financial 

institutions, contagion, information disturbances, and negative externalities. 

Smaga (2014) analyzes definitions of systemic risk in the literature with respect to the most 

common features associated with systemic risk. His analysis takes definitions from 55 different 

papers, studies and articles into consideration, dating from 1995 to 2014, and he summarizes 

his results as follows: 

- The transmission of shocks between the interconnected institutions of the financial 

system, which eventually leads to possible adverse results for the real economy, is a key 

feature of systemic risk. 

- In a large part of the literature it is highlighted that systemic risk affects the whole 

financial system or a majority of the financial institutions, and interferes with the 

operations and the purpose of the system, e.g. financial intermediation. However, the 

loss of confidence in the financial system that systemic risk causes is considered only 

by a small group of authors. 

- The first definitions of systemic risk were introduced between 1995 and the time of the 

global financial crisis and focused mainly on the contagion effect and the wide range of 

affection of this occurrence. After the financial crisis the number of research on systemic 

risk increased dramatically and with it the number of definitions of systemic risk. 

Furthermore, part of the emphasis was shifted towards the disruption of the features of 

the financial system and the negative spillover effects this causes for the real economy. 

Systemic risk can be summarized as a complex phenomenon that manifests itself through a 

wide range of different characteristics and affects the entire financial system which yields 

adverse results for both the financial system and the real economy through spill-over effects. 
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The multitude of definitions of systemic risk is a reflection of the undoubtable complexity of 

the phenomenon, and consensus on a single all-encompassing definition might never be 

reached. Naturally, the high number of different definitions results in a similarly high number 

of different systemic risk measures, and just as the various definitions emphasize on different 

aspects of systemic risk so are the systemic risk measures based on different aspects of the 

phenomenon. 

The main focus of this essay lies on ∆CoVaR to measure systemic risk. However, as mentioned 

above there exists a long list of different systemic risk measures. A selection of systemic risk 

measures are briefly introduced in Appendix A of the essay. 
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3 Methodology 

As described in Section 2, several extensions of the ∆CoVaR measure with respect to the 

methodology have been developed. In this essay, the methodology is based on the work of Cao 

(2013) and Girardi and Ergün (2013), who use a GARCH-DCC approach to model the time-

varying joint distribution of the system and a single institution, and calculate the systemic risk 

contribution of one or more institutions. The advantage of a GARCH-DCC approach, compared 

to a quantile regression, which Adrian and Brunnermeier (2011) use to calculate ∆CoVaR, lies 

in the feature that the GARCH-DCC approach allows to take into account time-varying linkages 

between the system and one or more institutions without having to rely on systemic state 

variables (Girardi & Ergün, 2013). 

3.1 VaR as a starting point 

Recall that VaR is defined as the 𝑞-quantile of the return distribution and thus can be formulated 

in terms of returns in the following way, 

 Pr(𝑟𝑡 ≤ 𝑉𝑎𝑅𝑡
𝑞) = 𝑞, (1) 

where 𝑟𝑡 is the return at time 𝑡, and 𝑉𝑎𝑅𝑖,𝑡
𝑞

 is the 𝑞-quantile of the returns 𝑟𝑡 at time 𝑡. This 

implies that VaR can also be written as the upper boundary of an integral in the following 

formulation, 

 

∫ 𝑝𝑑𝑓𝑡(𝑟𝑡) 𝑑𝑟𝑡

𝑉𝑎𝑅𝑡
𝑞

−∞

= 𝑞, (2) 

where 𝑝𝑑𝑓𝑡(𝑟𝑡) is the probability density function of the returns at time 𝑡. 

3.2 Definition of CoVaR 

Recall from the previous section, that CoVaR is defined as the VaR of the financial system 

conditional on an institution 𝑖 being at its 𝑉𝑎𝑅𝑞-level, which represents financial distress for 

this institution. By changing the definition of CoVaR to the VaR of the system conditional on 

an institution 𝑖 being at most at its 𝑉𝑎𝑅𝑞-level, the CoVaR measure exhibits favorable 

characteristics with respect to dependence consistency. Mainik and Schaanning (2012) show 
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that only with the latter definition of CoVaR, the measure is an increasing continuous function 

of the dependence parameter between the system and institution 𝑖. Furthermore, the definition 

can be extended to account for 𝑁 institutions being in financial distress at the same time as 

introduced by Cao (2013). Thus following the definition of CoVaR by Girardi and Ergün (2013) 

and Cao (2013), in this essay, CoVaR for the general case of 𝑁 institutions being at most at 

their 𝑉𝑎𝑅𝑞-level is defined as the 𝑞-quantile of the following conditional distribution, 

 Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|1,…,𝑁|𝑟𝑡
1 ≤ 𝑉𝑎𝑅𝑞,𝑡

1 , … , 𝑟𝑡
𝑁 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑁 ) = 𝑞, (3) 

where 𝑟𝑡
𝑆 is the return of the system 𝑆 at time 𝑡, 𝑟𝑡

𝑖 is the return of institution 𝑖 at time 𝑡, 

𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁

 is the CoVaR measure conditional on institutions {1, … ,𝑁} being in distress, and 

𝑉𝑎𝑅𝑞,𝑡
𝑖  is the VaR of institution 𝑖 at time 𝑡 at confidence level 𝑞. Following Girardi and Ergün 

(2013), the CoVaR measure of the system conditional on 𝑁 institutions being in their 

benchmark state 𝑏1,…,𝑁, is in this essay defined as the one standard-deviation around the mean 

event 𝜇𝑡
𝑖 − 𝜎𝑡

𝑖 ≤ 𝑟𝑡
𝑖 ≤ 𝜇𝑡

𝑖 + 𝜎𝑡
𝑖, where 𝜇𝑡

𝑖  is the mean of institution 𝑖 at time 𝑡 and 𝜎𝑡
𝑖 is the 

standard deviation of institution 𝑖 at time 𝑡. Given both the CoVaR measure for the distress state 

and the CoVaR measure for the benchmark state, the combined systemic risk contribution 

∆CoVaR of 𝑁 institutions can be expressed as 

 ∆𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁 = 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|1,…,𝑁 − 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏1,…,𝑁

, (4) 

where 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁

 is the CoVaR measure of the system conditional on institutions {1, … ,𝑁} 

being in financial distress, and 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏1,…,𝑁

 is the CoVaR measure of the system conditional 

on institutions {1, … ,𝑁} being in their benchmark state. 

3.3 Calculations steps of the CoVaR measure 

In order to increase the traceability of the calculations needed to obtain the ∆CoVaR measure, 

the calculation procedure is divided into three steps. 

3.3.1 Step 1: Calculation of individual VaR 

In a first step, a distributional assumption about the returns of the institutions in the system and 

the system itself has to be made. For the returns an underlying student t-distribution is assumed 

which accounts for fatter tails than a normal distribution, a well-known stylized fact of financial 

returns. Hence, the returns are defined as 

𝑟𝑡
𝑖~𝑡𝜈(𝜇𝑡

𝑖 , 𝜎𝑖,𝑡
2 ), 

where 𝜇𝑡
𝑖  is the mean, 𝜎𝑖,𝑡

2  is the variance, and 𝜈 are the degrees of freedom of the student t-

distribution. By assuming an underlying student t-distribution for the returns, the VaR for each 

institution, and the system itself, can be calculated using the following formula 
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𝑉𝑎𝑅𝑡
𝑞(𝑟𝑡

𝑖) = 𝜇𝑡
𝑖 +√

𝜈 − 2

𝜈
𝜎𝑡+1
𝑖 𝑡𝑞,𝜈 , (5) 

where 𝑡𝑞,𝜈 is the 𝑞-quantile of the student t-distribution with 𝜈 degrees of freedom (Nilsson, 

2015).  

In order to obtain the inputs required to calculate the VaR for each institution and the system, 

a univariate GJR GARCH(1,1) model is estimated. The GJR GARCH model, first introduced 

by Glosten, Jagannathan and Runkle (1993), accounts for the so-called leverage effect which is 

commonly observed for financial data. The leverage effect usually refers to negative shocks 

having a bigger effect on changes in volatility than positive shocks. Here, the variance equation 

of the GJR GARCH model, in the formulation introduced by Ding, Granger and Engle (1993), 

is being used. The mean equation of the model is specified in the following way 

 𝑟𝑡
𝑖 = 𝑎0 +∑ 𝑎𝑗𝑟𝑡−𝑗

𝑖 + 𝜀𝑡
𝑖 +∑ 𝑏𝑘𝜀𝑡−𝑘

𝑖
𝑞

𝑘=1

𝑝

𝑗=1
, (6) 

with 

𝜀𝑡
𝑖 = 𝜎𝑡𝑣𝑡 

and 

𝑣𝑡~𝑖𝑖𝑑(0,1), 

where 𝑎0 is an intercept term, 𝑎𝑗𝑟𝑡−𝑗
𝑖  is the autoregressive component, 𝑏𝑘𝜀𝑡−𝑘

𝑖  is the moving 

average component, and 𝜀𝑡
𝑖 are the error terms. 

The number of lags in the AR part, denoted by 𝑝 in the sum, and the number of lags in the MA 

part, denoted by 𝑞 in the sum, in Equation (6) are determined by the Bayesian Information 

Criterion (BIC). 

The variance equation of the model is specified as  

 𝜎𝑡
𝛿 = 𝜔 + 𝛼1(|𝜀𝑡−1

𝑖 | − 𝛾1𝜀𝑡−1
𝑖 )

𝛿
+ 𝛽1𝜎𝑡−1

𝛿 , (7) 

where 𝛼1 measures the size of the impact of a shock on volatility, 𝛽1 measures the persistence 

of shocks on volatility, 𝛿 indicates if the variance equation represents the conditional variance 

or the conditional standard deviation, and 𝛾1 captures the leverage effect. For 𝛾1 > 0, negative 

shocks increase the conditional variance more than positive shocks and vice versa for 𝛾1 < 0. 

For 𝛾1 = 0, the GJR GARCH model boils down to a standard symmetric GARCH model. 

The model is estimated using the quasi-maximum likelihood estimation method, which yields 

estimates for the conditional mean 𝜇𝑡, the conditional variance 𝜎𝑡
2, and the degrees of freedom 

𝜈. These estimates for each institution and the system are then used to calculate its VaR using 

the VaR-formula in Equation (5). 
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3.3.2 Step 2: Estimation of the joint probability density function 

For the estimation of the correlations between the system’s returns and the returns of one or 

more institutions, the dynamic conditional correlation approach (DCC) by Engle (2002) is used. 

In order to calculate the CoVaR measure, another distributional assumption for the joint 

distribution of the system’s returns and the 𝑁 institutions’ returns has to be made. To take into 

account the well-known fact of fat tails of financial data, a multivariate student t-distribution is 

assumed for the joint distribution 

(

𝑟𝑡
𝑆

𝑟𝑡
1

⋮
𝑟𝑡
𝑁

)~𝑡𝜈

(

  
 
(

𝜇𝑡
𝑆

𝜇𝑡
1

⋮
𝜇𝑡
𝑁

) ,

(

 
 

𝜎𝑆,𝑡
2 𝜌𝑆1,𝑡𝜎𝑆,𝑡𝜎1,𝑡 ⋯ 𝜌𝑆𝑁,𝑡𝜎𝑆,𝑡𝜎𝑁,𝑡

𝜌1𝑆,𝑡𝜎1,𝑡𝜎𝑆,𝑡 𝜎1,𝑡
2 ⋯ 𝜌1𝑁,𝑡𝜎1,𝑡𝜎𝑁,𝑡

⋮ ⋮ ⋱ ⋮
𝜌𝑁𝑆,𝑡𝜎𝑁,𝑡𝜎𝑆,𝑡 𝜌𝑁1,𝑡𝜎𝑁,𝑡𝜎1,𝑡 … 𝜎𝑁,𝑡

2

)

 
 

)

  
 
, 

where 𝑟𝑡 = (𝑟𝑡
𝑆, 𝑟𝑡

1, … , 𝑟𝑡
𝑁)′ is the (𝑁 + 1 × 1) vector of returns, 𝜇𝑡 = (𝜇𝑡

𝑆, 𝜇𝑡
1, … , 𝜇𝑡

𝑁)′ is the 

(𝑁 + 1 × 1) vector of conditional means, and Σ𝑡 is the (𝑁 + 1 × 𝑁 + 1) conditional 

covariance matrix, 𝜎𝑖,𝑡 is the conditional standard deviation of 𝑖, and 𝜌𝑖𝑗,𝑡 is the conditional 

correlation between 𝑖 and 𝑗. 

The correlation coefficients defined as the (𝑁 + 1 × 𝑁 + 1) matrix of conditional correlations 

can be denoted as 𝑅𝑡 = 𝑑𝑖𝑎𝑔(Σ𝑡)
−1 2⁄ Σ𝑡𝑑𝑖𝑎𝑔(Σ𝑡)

−1 2⁄ = 𝜌𝑖𝑗,𝑡. Following Engle (2002), the 

conditional correlation matrix is estimated by the following model: 

 𝑅𝑡 = 𝑑𝑖𝑎𝑔(Q𝑡)
−1 2⁄ Q𝑡𝑑𝑖𝑎𝑔(Q𝑡)

−1 2⁄ , (8) 

where 

 Q𝑡 = (1 − 𝛿1 − 𝛿2)𝑄̅ + 𝛿1(𝜀𝑡−1
∗ 𝜀𝑡−1

∗ ′) + 𝛿2𝑄𝑡−1. (9) 

𝑄̅ is the unconditional covariance matrix of the standardized residuals 𝜀𝑡
∗ = 𝜀𝑡 × 𝑑𝑖𝑎𝑔(Q𝑡)

−1 2⁄ , 

and 𝛿1 and 𝛿2 are non-negative scalars that fulfill the following condition of stationarity 𝛿1 +
𝛿2 < 1.  

The DCC approach follows a two-step procedure. For both steps the QML estimation method 

is used. In the first step, the volatility part of the joint student t-distribution from above is 

estimated. For this purpose the respective underlying GJR GARCH (1,1) model from the 

previous step is fitted to each institution’s return series. In addition, the shape parameter given 

by the degrees of freedom 𝜈 is estimated for the joint student t-distribution. In the second step, 

the correlation part is estimated using the model described in Equation (8) and (9), with the 

estimates from step one serving as inputs. Thus, given the estimates from the DCC approach 

the conditional covariance matrix Σ𝑡 can be specified entirely.  

Given the estimates for the conditional mean vector 𝜇𝑡 = (𝜇𝑡
𝑆, 𝜇𝑡

1, … , 𝜇𝑡
𝑁)′, the conditional 

covariance matrix Σ𝑡, and the degrees of freedom 𝜈 of the multivariate student t-distribution, 

the joint probability density function of the system and 𝑁 institutions can be obtained. 
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3.3.3 Step 3: Calculating CoVaR 

After obtaining all the inputs needed to calculate CoVaR, the parameters are used in the 

following equations to obtain the systemic risk measure. 

Recall the definition of CoVaR from above, 

 Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|1,…,𝑁|𝑟𝑡
1 ≤ 𝑉𝑎𝑅𝑞,𝑡

1 , … , 𝑟𝑡
𝑁 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑁 ) = 𝑞. (10) 

By means of conditional probabilities, the above definition can be reformulated as 

 Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|1,…,𝑁 ∩ 𝑟𝑡
1 ≤ 𝑉𝑎𝑅𝑞,𝑡

1 , … , 𝑟𝑡
𝑁 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑁 )

Pr(𝑟𝑡
1 ≤ 𝑉𝑎𝑅𝑞,𝑡

1 , … , 𝑟𝑡
𝑁 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑁 )
= 𝑞. (11) 

Given the VaR estimates from Step 1 and the joint probability density function of the returns 

obtained in Step 2, the denominator Pr(𝑟𝑡
1 ≤ 𝑉𝑎𝑅𝑞,𝑡

1 , … , 𝑟𝑡
𝑁 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑁 ) of the above equation 

can easily be solved, yielding a joint probability 𝑞𝑑 

 
∫ … ∫ 𝑝𝑑𝑓𝑡(𝑟𝑡

1, … , 𝑟𝑡
𝑁) 𝑑𝑟𝑡

1⋯𝑑𝑟𝑡
𝑁

𝑉𝑎𝑅𝑞,𝑡
𝑁

−∞

𝑉𝑎𝑅𝑞,𝑡
1

−∞

= 𝑞𝑑 . (12) 

Thus, by plugging in the result from Equation (12) and through simple rearrangements of terms, 

Equation (11) becomes 

 Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|1,…,𝑁 ∩ 𝑟𝑡
1 ≤ 𝑉𝑎𝑅𝑞,𝑡

1 , … , 𝑟𝑡
𝑁 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑁 ) = 𝑞 × 𝑞𝑑 . (13) 

In the same fashion as the denominator in Equation (11) has been reformulated, Equation (13) 

can be reformulated the following way, 

 
∫ ∫ … ∫ 𝑝𝑑𝑓𝑡(𝑟𝑡

𝑆, 𝑟𝑡
1, … , 𝑟𝑡

𝑁)𝑑𝑟𝑡
𝑆 𝑑𝑟𝑡

1⋯𝑑𝑟𝑡
𝑁

𝑉𝑎𝑅𝑞,𝑡
𝑁

−∞

𝑉𝑎𝑅𝑞,𝑡
1

−∞

𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁

−∞

= 𝑞 × 𝑞𝑑 . (14) 

Since all other parameters are given, Equation (14) can be solved numerically with respect to 

𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁

 for each time period 𝑡, yielding the CoVaR measure conditional on 𝑁 institutions 

being in financial distress. 

In order to calculate the combined systemic risk contribution of the 𝑁 institutions, a benchmark 

case of the CoVaR measure is needed. Following Girardi and Ergün (2013) and Cao (2013), 

the CoVaR for the benchmark state is defined as 

Pr (𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑏1,…,𝑁| 𝜇𝑡
1 − 𝜎𝑡

1 ≤ 𝑟𝑡
1 ≤ 𝜇𝑡

1 + 𝜎𝑡
1, … , 𝜇𝑡

𝑁 − 𝜎𝑡
𝑁 ≤ 𝑟𝑡

𝑁 ≤ 𝜇𝑡
𝑁 + 𝜎𝑡

𝑁) =𝑞, (15) 

where 𝜇𝑡
𝑖 − 𝜎𝑡

𝑖 ≤ 𝑟𝑡
𝑖 ≤ 𝜇𝑡

𝑖 + 𝜎𝑡
𝑖 is the one standard-deviation event around the mean. 

Again, as in the distress case, Equation (15) can be reformulated by means of conditional 

probabilities, 
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Pr (𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑏1,…,𝑁
∩ 𝜇𝑡

1 − 𝜎𝑡
1 ≤ 𝑟𝑡

1 ≤ 𝜇𝑡
1 + 𝜎𝑡

1, … , 𝜇𝑡
𝑁 − 𝜎𝑡

𝑁 ≤ 𝑟𝑡
𝑁 ≤ 𝜇𝑡

𝑁 + 𝜎𝑡
𝑁)

Pr(𝜇𝑡
1 − 𝜎𝑡

1 ≤ 𝑟𝑡
1 ≤ 𝜇𝑡

1 + 𝜎𝑡
1, … , 𝜇𝑡

𝑁 − 𝜎𝑡
𝑁 ≤ 𝑟𝑡

𝑁 ≤ 𝜇𝑡
𝑁 + 𝜎𝑡

𝑁)
= 𝑞. (16) 

For the denominator in Equation (16), the joint probability 𝑝𝑑 in the benchmark case can be 

obtained by solving the following equation 

 
∫ … ∫ 𝑝𝑑𝑓𝑡(𝑟𝑡

1, … , 𝑟𝑡
𝑁) 𝑑𝑟𝑡

1⋯𝑑𝑟𝑡
𝑁

𝜇𝑡
𝑁+𝜎𝑡

𝑁

𝜇𝑡
𝑁−𝜎𝑡

𝑁

𝜇𝑡
1+𝜎𝑡

1

𝜇𝑡
1−𝜎𝑡

1
= 𝑝𝑑. (17) 

Plugging in the result from Equation (17) into Equation (16) and rearranging terms yields 

Pr (𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑏1,…,𝑁
∩ 𝜇𝑡

1 − 𝜎𝑡
1 ≤ 𝑟𝑡

1 ≤ 𝜇𝑡
1 + 𝜎𝑡

1, … , 𝜇𝑡
𝑁 − 𝜎𝑡

𝑁 ≤ 𝑟𝑡
𝑁 ≤ 𝜇𝑡

𝑁 + 𝜎𝑡
𝑁) = 𝑞 × 𝑝𝑑 . (18) 

Given all other parameters, by rewriting Equation (18) in terms of a multiple integral and a 

probability density function, it is once again possible to solve numerically for 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏1,…,𝑁

 

using the following formula, 

∫ ∫ … ∫ 𝑝𝑑𝑓𝑡(𝑟𝑡
𝑆, 𝑟𝑡

1, … , 𝑟𝑡
𝑁)𝑑𝑟𝑡

𝑆 𝑑𝑟𝑡
1⋯𝑑𝑟𝑡

𝑁
𝜇𝑡
𝑁+𝜎𝑡

𝑁

𝜇𝑡
𝑁−𝜎𝑡

𝑁

𝜇𝑡
1+𝜎𝑡

1

𝜇𝑡
1−𝜎𝑡

1

𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏1,…,𝑁

−∞

= 𝑞 × 𝑝𝑑. (19) 

Given the CoVaR measure for the benchmark and the distress state, the combined systemic risk 

contribution of 𝑁 financial institutions can be calculated by taking the difference of the two 

CoVaR measures 

 ∆𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁 = 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|1,…,𝑁 − 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏1,…,𝑁

. (20) 

The above described calculations and estimations apply both for the case of measuring the 

combined systemic risk contribution of several financial institutions, and for the case of 

measuring the systemic risk contribution of an individual institution. In the latter case, some of 

the estimations and equations can be simplified. Appendix B provides information about the 

estimations and calculations used for measuring the systemic risk contribution of an individual 

institution. 
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4 Data 

For the estimations and calculations in this essay, stock market data of 32 European banks from 

10 different Eurozone countries are used. The data consists of daily stock prices covering a time 

period of 10 years from 1st May 2005 to 1st May 2015 and has been obtained through 

Datastream. 

A complete overview of all included banks can be found in Appendix C. Table 1 provides an 

overview of the number of banks per country included in the sample. The number of countries 

that participated in the European Monetary Union over the whole sample period is limited to a 

total of 12 countries. These are the 11 member states that founded the union in 1999 and Greece, 

which joined the union in 2001. Finland and Luxembourg however have not been included in 

the sample due to the lack of data on listed banks from the respective countries. 

Table 1 Number of banks per country 

Country Austria Belgium France Germany Greece Ireland Italy Netherlands Portugal Spain 

No. of 

Banks 
2 2 4 4 4 2 5 2 2 5 

           

Percentage returns for each institution have been generated using the following formula, 

𝑟𝑡
𝑖 =

𝑃𝑡
𝑖 − 𝑃𝑡−1

𝑖

𝑃𝑡−1
𝑖

, 

where 𝑟𝑡
𝑖 is the return of institution 𝑖 at time 𝑡, 𝑃𝑡

𝑖 is the closing price of institution 𝑖 at time 𝑡, 
and 𝑃𝑡−1

𝑖  is the closing price of institution 𝑖 at time 𝑡 − 1. Using returns instead of prices brings 

the advantage of a unit free measure with it.  

As a representation of the financial system, a market-value-weighted return index of the 32 

European banks has been created, using the following formula, 

𝑟𝑡
𝑆 =∑ 𝑤𝑡

𝑖𝑟𝑡
𝑖

32

𝑖=1
, 

where 

𝑤𝑡
𝑖 =

𝑀𝑉𝑡
𝑖

∑ 𝑀𝑉𝑡
𝑖32

𝑖=1

 . 

𝑤𝑡
𝑖 is the weight of institution 𝑖 at time 𝑡, 𝑀𝑉𝑡

𝑖 is the market value of institution 𝑖 at time 𝑡, 
∑ 𝑀𝑉𝑡

𝑖32
𝑖=1  is the total market value of all 32 institutions at time 𝑡, and 𝑟𝑡

𝑆 is the market-value-

weighted return index that represents the financial system at time 𝑡. 
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Following the hypothesis of efficient financial markets, using publicly available stock prices 

has the advantage of taking all available information into account, as they are reflected by the 

prices. While these prices are sufficient for measuring the historical and contemporaneous 

systemic risk contribution of an institution, their use in forecasting future systemic risk 

contributions of an individual bank is limited. In order to forecast the systemic risk contribution 

of an institution, information regarding firm specific characteristics are needed. Unfortunately, 

this kind of information is only available to the regulation authorities, and not to the public. 
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5 Empirical Results 

In this chapter, the results and findings from the estimations and calculations will be presented. 

Given the sample size, the output will be aggregated on a country level using averages. 

However, the individual estimation output for all 32 financial institutions in the sample can be 

found in Appendix E. First, summary statistics concerning the dataset will be presented. 

Second, a summary of the estimation parameters of the GARCH and the DCC model, as well 

as an overview of the VaR of the financial institutions will be given. Third, the time-varying 

∆CoVaR outputs will be presented and analyzed. Fourth, a worst-case scenario by country is 

presented, where CoVaR is calculated conditional on all financial institutions of a certain 

country being in distress at the same time. 

5.1 Summary statistics 

Table 2 below gives an overview of the characteristics of the return data used for estimations 

and calculations. Average daily returns for the period 1st May 2005 to 1st May 2015 were 

highest for Belgian, French and Austrian banks. The lowest average daily returns are exhibited 

by Greek, Irish, and Portuguese financial institutions. Average standard deviation, which can 

be seen as a proxy for risk, was highest for banks from Belgium, Ireland and Greece. Spanish, 

Dutch and Portuguese financial institutions experienced the lowest volatility, as measured by 

the average standard deviation. Another interesting characteristic is the average kurtosis of the 

return data. Banks from all 10 European countries considered in the sample show an average 

kurtosis more than two times larger than three. In fact, none of the returns series of the financial 

institutions exhibit a kurtosis lower than five, as Appendix D shows. Since the kurtosis of a 

normal distribution is three, these results imply that estimations of CoVaR based on the 

assumption of a normal distribution may be incorrect as they do not take into account the fatter 

tails of the actual underlying distribution. This supports the assumption of an underlying student 

t-distribution. 
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Table 2 Summary statistics of return data aggregated at country level (01.05.2005 – 01.05.2015) 

Country Mean (%) St. Dev (%) Max (%) Min (%) Kurtosis Skewness 

Austria 0,0244 3,1102 18,6160 -21,3831 8,9038 0,1073 

Belgium 0,0870 5,9719 74,9533 -30,5980 25,2728 1,6526 

France 0,0388 2,9197 27,4777 -16,0813 13,0472 0,7863 

Germany -0,0104 3,0203 31,3208 -22,2003 20,9547 0,7374 

Greece -0,0683 4,7344 29,4866 -28,3954 10,2808 0,5149 

Ireland -0,0189 5,2441 45,7898 -56,6888 19,4301 0,5736 

Italy -0,0140 2,7802 18,6175 -16,8706 8,7257 0,2082 

Netherlands 0,0114 2,4234 20,8717 -18,3403 13,2168 0,4646 

Portugal -0,0156 2,6236 26,9663 -14,0615 13,8034 1,0392 

Spain 0,0136 2,2008 19,7384 -10,9791 9,9640 0,7131 

5.2 Estimation output GJR GARCH, DCC, and VaR  

5.2.1 Estimation output 

In order to estimate the individual VaR of each financial institution, an underlying student t-

distribution is assumed. The underlying distribution can be defined by its mean, its variance 

and its degrees of freedom. By fitting a GJR GARCH model to each return series, the necessary 

inputs for the underlying distribution are obtained. Summary statistics of the conditional mean, 

the conditional variance, and the dynamic conditional correlations, all aggregated at country 

level, are presented in Table 3. 

The estimation results in the first column of Table 3 show that the fitted models for banks from 

France, Belgium, Austria, and Spain yield a positive average conditional mean, with French, 

Belgian, and Austrian banks exhibiting the highest average conditional mean. A positive 

conditional mean implies that the return distributions for these banks are shifted to the right 

compared to a standard student t-distribution, which is centralized around zero. In contrast, the 

fitted GJR GARCH models for financial institutions from Portugal, Italy, Ireland, Germany, 

the Netherlands, and Greece, yield negative average conditional means, suggesting that their 

return distributions are located to the left of zero. Among the financial institutions whose return 

distribution is shifted to the left, Portuguese, Italian, and Irish banks’ return distributions are 

located the furthest from zero since they exhibit the lowest average conditional means. The 

estimation results of the average conditional mean, as presented in the first column of Table 3, 

show that assuming a student t-distribution that is centralized around zero may lead to incorrect 

estimates of VaR and CoVaR, due to its neglection of the actual location shift of the underlying 

distribution. 

The estimation results in the second column of Table 3 show that banks from Belgium, Ireland, 

and Greece experienced on average the highest conditional volatility. Whereas, Spanish, Dutch, 

and Italian financial institutions exhibited on average the lowest conditional volatility. 

Appendix E provides a comprehensive overview of the fitted coefficients. It is worth noting 

that the 𝛾1 coefficient, which captures the leverage effect in the GJR GARCH model, is positive 
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for the return series of all institutions and in addition significant at the 5% level for all but one 

institution. This implies that the return series in fact exhibit leverage effects, which should be 

accounted for in the model. 

Column three of Table 3 presents the average dynamic conditional correlations. It shows that 

the return series of banks from France, Spain, and Italy have the highest correlations with the 

return series of the system. Whereas, the return series of Greek, Portuguese, and Dutch financial 

institutions exhibit the lowest correlation with the return series of the financial system. The 

dynamic conditional correlation is needed to obtain the time varying joint distribution of the 

individual institutions’ returns and the system’s returns, which is required to calculate the 

CoVaR measure of the system. 

Table 3 Summary statistics of average conditional mean, average conditional variance, and average 

dynamic conditional correlation aggregated at country level (01.05.2005 – 01.05.2015) 

Country 
Average conditional 

mean (%) 

Average conditional 

variance (%) 

Average dynamic 

conditional correlation (%) 

Austria 0,0032 0,1024 64,1936 

Belgium 0,0061 0,3811 61,2916 

France 0,0123 0,0861 79,9829 

Germany -0,0112 0,1053 51,9774 

Greece -0,0024 0,2415 42,3725 

Ireland -0,0177 0,2938 52,8188 

Italy -0,0244 0,0816 71,8088 

Netherlands -0,0060 0,0690 51,0440 

Portugal -0,0254 0,0839 50,4063 

Spain 0,0032 0,0508 77,1157 

    

In order to obtain estimates of the individual and the joint underlying student t-distributions, 

the degrees of freedom as the shape parameter of the distribution are estimated using the quasi-

maximum likelihood method. The average degrees of freedom by country, for the underlying 

individual and joint student t-distribution, as well as average respective p-values are presented 

in Table 4. 

The first column of Table 4 represents the average estimated degrees of freedom by country for 

the underlying return distribution of an individual bank. The second column shows the average 

p-value of the respective degrees of freedom estimate. As the first two columns of Table 4 

show, all average estimated degrees of freedom lie between three and seven and are highly 

significant. In fact, even at firm level all the estimates of the degrees of freedom lie between 

three and nine, as Appendix E shows, which implies fatter tails than a normal distribution. 

These results are in accordance with the findings from the summary statistics of the return data, 

which rejected the normal distribution as the underlying distribution due to the large kurtosis. 

In column three, the average estimated degrees of freedom by country for the joint distribution 

of an individual bank and the system are presented. Column four shows the respective 

aggregated p-values. Again, the estimates are highly significant and lie between five and seven. 

As Appendix D shows, at the firm level the estimates lie between four and eight. These results 
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support the assumption of an underlying student t-distribution for the joint return distribution 

of an institution and the financial system. 

Table 4 Summary statistics of individual and joint degrees of freedom aggregated at country level 

(01.05.2015 – 01.05.2015) 

Country DF p-value Joint DF p-value 

Austria 5,3316 0,0000 6,0903 0,0000 

Belgium 5,2312 0,0000 5,6232 0,0000 

France 6,6257 0,0000 5,3573 0,0000 

Germany 4,4344 0,0000 5,0639 0,0000 

Greece 5,1571 0,0000 6,7329 0,0000 

Ireland 4,3687 0,0000 5,8443 0,0000 

Italy 6,0159 0,0000 5,9731 0,0000 

Netherlands 5,3096 0,0000 5,3006 0,0000 

Portugal 3,7577 0,0000 5,0520 0,0000 

Spain 5,6103 0,0000 5,7055 0,0000 

5.2.2 Time-varying conditional variance and dynamic conditional 

correlations 

Since Table 3 does not allow to assess the evolution of the conditional variance over time, 

Figure 1 depicts its development from 1st May 2005 to 1st May 2015. For clarity reasons, the 

average of the conditional variance of all institutions in the system is taken. The graph shows a 

tranquil period in the beginning followed by a period of very high volatility from mid-2008 to 

mid-2009, represented by the high peaks during this time. The volatility decreases again 

thereafter but exhibits three more peaks: one in mid-2010, one in late-2011, and one in mid-

2013. While the first and largest peaks can be explained by the global financial crisis, the three 

peaks thereafter represent the distressing events caused by the European debt crisis. Since the 

global financial crisis and the European debt crisis have been major system-wide shocks, it can 

be expected that these events also affected the ΔCoVaR measure. 

Figure 1 Average conditional variance of all sample institutions (01.05.2005 – 01.05.2015) 
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Figure 2 depicts the evolution of the dynamic conditional correlations from 1st May 2005 to 

1st May 2015. Again, for clarity reasons the average of the dynamic conditional correlations of 

all banks in the system is taken. While the average dynamic conditional correlation is also 

influenced by the events of the global financial crisis and the European debt crisis, the impact 

is less pronounced than for the average conditional variance. Interestingly, while the average 

conditional variance exhibits peaks over the course of the year 2013, caused by the events of 

the European debt crisis, the average dynamic conditional correlations in contrast show 

decreasing correlations between the financial institutions and the system. This is somewhat 

surprising, as the correlations between a financial institution and the system are expected to 

increase in times of a crisis (Ang & Chen, 2002). 

Figure 2 Average conditional correlation of all sample institutions (01.05.2005 – 01.05.2015) 

 

 

5.2.3 Individual VaR 

Using the estimation outputs that have been described above, daily 5% VaR-levels for each 

institution and the system itself have been calculated. Figure 3 depicts the average daily 5% 

VaR for each country. The figure shows that on average, Irish, Belgian, and Greek banks 

exhibited the highest individual VaR, whereas financial institutions from Spain, the 

Netherlands, and Portugal showed the lowest average VaR. Furthermore, Figure 3 shows that 

the unconditional VaR of the financial system is lower than the average VaR of each country. 

This can be explained by the diversification effect of the system, which consists of all sample 

institutions. The strong link between individual VaR and individual volatility becomes clear 

when comparing Table 2 to Figure 3, as the countries with the highest (lowest) average 

conditional variance are among the countries with the highest (lowest) average individual VaR-

levels. 
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Figure 3 Average daily 5% VaR aggregated at country level (01.05.2005 – 01.05.2015) 

 

To analyze the time-series behavior of the VaR, the evolution of the average 5% daily VaR of 

all sample institutions is depicted in Figure 4. Similarly to Figure 1, the average VaR first 

exhibits relatively low levels until mid-2008, where it begins to increase dramatically. This 

period of very high VaR-levels lasts until mid-2009 and can be explained by the global financial 

crisis. The average VaR decreases to lower levels thereafter, but like the average conditional 

variance shows three more peaks in mid-2010, in late-2011, and in mid-2013. These three peaks 

can be explained by the on-going European debt crisis. The resemblance of Figure 1 and Figure 

4 is another indicator for the strong relation between individual volatility and individual VaR. 

Figure 4 Average 5% daily VaR of all sample institutions (01.05.2005 – 01.05.2015) 
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5.3 CoVaR and ∆CoVaR 

5.3.1 CoVaR 

After analyzing the estimation outputs and the idiosyncratic VaR of the financial institutions, 

the focus is now put on the empirical results regarding CoVaR and ∆CoVaR. Figure 5 below 

depicts the average daily 5% VaR and CoVaR by country. Recall, that the CoVaR is the VaR 

of the financial system conditional on an institution being in financial distress, i.e. its returns 

being at their VaR level. 

Figure 5 shows that Spanish, French, and Portuguese banks cause the highest average CoVaR 

levels of the system when being in financial distress, and that financial institutions from Greece, 

Ireland, and the Netherlands cause the lowest average CoVaR levels of the system when being 

in financial distress. A possible explanation of this observation is that the Greek, Irish, and 

Dutch banks are less correlated with the system than financial institutions from Spain, France, 

and Portugal. Table 3 partly supports this explanation, since the banks from Greece, Ireland and 

the Netherlands are among the banks which exhibit the lowest average dynamic conditional 

correlation with the system, and Spanish and French banks are among the banks which exhibit 

the highest average dynamic conditional correlation with the system. However, while 

Portuguese financial institutions cause high average CoVaR levels for the system, their average 

dynamic conditional correlation with the system are among the lowest. Thus, systemic risk 

seems to be determined by more factors than just correlation with the system. Figure 5 also 

shows that all countries’ average CoVaR is larger than their average VaR. Furthermore, the 

relation between VaR and CoVaR appears to be rather weak, as low VaR-levels are paired with 

both high and low CoVaR-levels. Lastly, the average unconditional VaR of the system is, 

unsurprisingly, smaller than all average VaR’s of the system conditional on an individual 

institution being in distress, as denoted by CoVaR. 

Figure 5 Average daily 5% VaR and CoVaR by country (01.05.2005 – 01.05.2015) 

 

-0,09 -0,08 -0,07 -0,06 -0,05 -0,04 -0,03 -0,02 -0,01 0

Austria

Belgium

France

Germany

Greece

Ireland

Italy

Netherlands

Portugal

Spain

System

Average daily 5% CoVaR by country Average daily 5% VaR by country



 26 

In order to compare the evolution of VaR and CoVaR over time, the average of the respective 

measure of all sample institutions is depicted in Figure 6. While Figure 5 indicates that there is 

a loose cross-sectional relation between VaR and CoVaR, Figure 6 suggests a close link 

between VaR and CoVaR in the time-series dimension. It is interesting to note that for almost 

every point in time, the average systemic risk caused by the financial institutions is larger than 

their average idiosyncratic risk. Especially the peaks of the average systemic risk, caused by 

the global financial crisis and the European debt crisis, are far more pronounced than the peaks 

of the average idiosyncratic risk. 

Figure 6 Absolute value of average VaR and CoVaR of all sample institutions 

(01.05.2005 – 01.05.2015) 
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By taking the difference between the distress-state CoVaR of an institution and the benchmark-

state CoVaR of that institution, the systemic risk contribution of the institution can be 
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(Karimalis & Nomikos, 2014). Interestingly, French, Spanish, and Italian banks are among the 
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ΔCoVaR-levels. As in the case of CoVaR, there seems to be only a weak cross-sectional relation 

between average daily 5% VaR and average daily 5% ΔCoVaR. This finding is in line with the 

results from previous research, which showed that there is only a weak cross-sectional link 

between VaR and ΔCoVaR.  

Figure 7 Average daily 5% VaR and ΔCoVaR by country (01.05.2005 – 01.05.2015) 

 

To further investigate the cross-sectional relation between VaR and ΔCoVaR, a scatterplot and 
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ranking pairs can be found in Appendix F. The results from the ranking analysis further 

confirms the finding of a loose link between VaR and ΔCoVaR in the cross-sectional 

dimension. 

In addition, the scatterplot of the average daily 5% VaR and the average daily 5% ΔCoVaR in 
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Figure 8 Scatterplot of average daily 5% VaR and ΔCoVaR by country (01.05.2005 – 01.05.2015) 

 

In the time-series dimension, however, there seems to be a strong relation between VaR and 

ΔCoVaR which is depicted in Figure 9. It depicts the average ΔCoVaR of all banks included in 

the sample and the average VaR of all banks in the sample over the period from 1st May 2005 

to 1st May 2015. As the chart shows, the average ΔCoVaR is higher than the average VaR at 

almost every point in the sample period. Though, from 1st November 2012, the VaR values are 

mostly higher than the ΔCoVaR values. Furthermore, as in the case of CoVaR, the peaks caused 

by the global financial crisis and the European debt crisis are more pronounced for ΔCoVaR 

than for VaR. This indicates that financial crises increase systemic risk even more than 

idiosyncratic risk. The close relation between ΔCoVaR and VaR in the time-series dimension 

is in line with previous research on the two measures, as discussed in Chapter 2. 

Figure 9 Average ΔCoVaR and VaR of 32 European banks (01.05.2005 – 01.05.2015) 
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5.4 Worst case scenario analysis 

While the previous results were all based on a single bank being in financial distress, the worst 

case scenario analysis presents results for several institutions being in financial distress at the 

same time.  

The worst case scenario is defined as all banks from a certain country being in financial distress 

at the same time. Country specific factors such as country specific banking rules, market 

structure, and customs and traditions might lead the banks of a certain country to develop 

similar business models. Hence, the banks might accumulate exposures in the same asset classes 

which leaves all of them vulnerable to shocks in those assets. Examples for such events where 

numerous financial institutions of a certain country were facing financial difficulties at the same 

time are the Spanish financial crisis in 2007, caused by a housing bubble, and the Cypriot 

financial crisis in the years 2012 and 2013. Table 5 below gives an overview of the systemic 

risk contribution 𝛥𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|1,…,𝑁

 of all 𝑁 banks of a certain country being in financial distress 

at the same time. 

Table 5 shows that while the average joint systemic risk contribution of banks from Germany, 

Italy, and Spain was the highest, Greek, Austrian, and Portuguese financial institutions 

exhibited the lowest average combined systemic risk contribution. The results show that the 

average combined systemic risk contributions are higher than the average individual systemic 

risk contributions. This is hardly surprising since several institutions in distress are expected to 

have a higher systemic risk contribution than a single institution being in financial distress. 

Column 4 of Table 5 shows that the sum of the individual average ΔCoVaR is larger than their 

combined ΔCoVaR for banks from Austria, Belgium, France, Germany, Greece, Italy, Portugal 

and Spain. Irish and Dutch financial institutions exhibit a larger collective ∆CoVaR than sum 

of the individual average ∆CoVaR. This confirms the findings of Cao (2013), that ΔCoVaR 

does not exhibit additivity. A very interesting result from Table 5 is that the average combined 

systemic risk contribution of German banks is the highest and that the average combined 

systemic risk contribution of Greek banks is the lowest. This is somewhat surprising since banks 

from Spain, France, and Italy showed higher average individual ΔCoVaR values as illustrated 

in Figure 8. In addition, Spain and Italy are represented in the sample by five banks each, while 

Germany only contributes with four banks to the sample, yet their combined ΔCoVaR is lower 

than that of German banks. Greek banks on the other hand, exhibited both the lowest average 

individual systemic risk contribution as shown in Figure 7, and the lowest average combined 

ΔCoVaR. Greece is represented in the sample by four banks and thus is expected to have a 

greater influence on the financial system than countries which are represented in the sample by 

only two banks. Yet, the four Greek banks have a lower joint systemic risk contribution than, 

for example, the two banks from Belgium. This is somewhat surprising as Greece contributes 

a larger share to the financial system of the sample, yet exhibits a lower joint systemic risk 

contribution than countries with a lower share of the system. 
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Table 5 Average combined 𝛥𝐶𝑜𝑉𝑎𝑅 by country (01.05.2005 – 01.05.2015) 

Country Mean Max Min 

Sum of average 

individual 

𝛥𝐶𝑜𝑉𝑎𝑅 

Austria -0,0736 -0,2792 -0,0200 -0,0937 

Belgium -0,0888 -0,3382 -0,0249 -0,1039 

France -0,1077 -0,3810 -0,0316 -0,2499 

Germany -0,1366 -0,4758 -0,0396 -0,1789 

Greece -0,0658 -0,2821 -0,0164 -0,1420 

Ireland -0,0837 -0,3152 -0,0232 -0,0816 

Italy -0,1161 -0,4426 -0,0392 -0,2739 

Netherlands -0,0905 -0,3441 -0,0236 -0,0852 

Portugal -0,0776 -0,2937 -0,0190 -0,1015 

Spain -0,1160 -0,4131 -0,0375 -0,3065 

     

Figure 10 presents a scatterplot of the average individual ΔCoVaR and the average joint 

ΔCoVaR by country. In general there seems to be only a weak link between the average 

individual ∆CoVaR of a country and its average joint ∆CoVaR. This result is supported by the 

low goodness of fit value (𝑅2 = 0,2487). However, if Germany is treated as an outlier, the 

goodness of fit value (𝑅2 = 0,6532) increases significantly. 

Figure 10 Scatterplot of average individual ΔCoVaR and average joint ΔCoVaR by country 

(01.05.2005 – 01.05.2015) 
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a group results in a higher cumulative VaR of that group, while a higher number of banks also 

implies a higher share of the system and thus a higher combined systemic risk contribution. 

Figure 11 Scatterplot of average cumulative VaR and average comined ∆CoVaR by country 

(01.05.2005 – 01.05.2015) 

 

Figure 12 depicts a scatterplot of the average correlation between the institutions of a certain 

country and the combined ∆CoVaR of that country. The plot shows that there is only a very 

weak relation between the correlation between the banks of a certain country and their 

combined ∆CoVaR. This is supported by the very low goodness of fit (𝑅2 = 0,011). This result 

implies that the correlations between the members of a group do not influence the groups 

combined systemic risk contribution. This is somewhat surprising since the correlation between 

the banks determine their likeliness of being simultaneously in financial distress. Hence, a 

group of banks that is less likely to be collectively in financial distress does not necessarily 

have a higher combined systemic risk contribution. One explanation for the weak link can be 

found in Section 3.3. The correlations between the banks of a group are used to obtain their 

joint probability density function. This joint probability function is then used to calculate the 

joint probability of the banks of that group being simultaneously in distress, as Equation (12) 

shows. However, the same probability density function is also used to calculate the joint 

probability of the institutions being in their benchmark state, as Equation (17) shows. Thus the 

correlations between the banks of a group influence both the CoVaR when the institutions are 

in their benchmark and in their distress state. Hence, the effect of the correlations between the 

members of a group on the group’s combined systemic risk contribution is ambiguous. 
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Figure 12 Scatterplot of average correlation between institutions and average combined ∆CoVaR by 

country (01.05.2005 – 01.05.2015) 

 

Figure 13 presents the evolution of the average cumulative VaR and the average combined 

∆CoVaR of all countries. As in the cases of individual ∆CoVaR there seems to be a strong link 

between cumulative VaR and the combined ∆CoVaR in the time-series dimension. Both series 

exhibit peaks, which can be associated with the global financial crisis and the European debt 

crisis. Interestingly, the two series follow each other very closely until early-2012 but seem to 

diverge thereafter. Furthermore, the average cumulative VaR exhibits another peak in mid-2013 

while the average combined ∆CoVaR does not. Hence, there seems to be a distress event that 

increased the average cumulative VaR of all countries but did not affect their combined 

systemic risk contribution, as the combined ∆CoVaR series does not show a peak. 

Figure 13 Average cumulative VaR and average combined ∆CoVaR of all countries 

(01.05.2005 – 01.05.2015) 
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6 Summary and Conclusion 

The aim of this essay was to measure systemic risk contributions within the financial system of 

the European Monetary Union and to identify the countries that are home to the banks that 

contribute the highest risks to the system. Systemic risk contributions have been measured by 

applying the CoVaR measure introduced by Adrian and Brunnermeier (2011). Multivariate 

GARCH models with underlying student t-distributions and DCC models, to estimate the 

correlations between institutions and the system, were used to obtain the joint return distribution 

of the financial system and the financial institutions. Given the joint probability density function 

of the system and the banks, the CoVaR measure was calculated. This approach also allows to 

calculate the joint systemic risk contribution of a group of financial institutions, which enables 

to measure the collective systemic risk contribution of all banks of a country. The dataset used 

for estimations and calculations consists of daily stock prices of 32 financial institutions from 

10 Eurozone countries covering a period of 10 years from 1st May 2005 to 1st May 2015. 

The empirical findings show that financial institutions from France, Spain, and Italy exhibited 

on average the highest systemic risk contribution, while Greek, Irish, and Dutch banks on 

average contributed the least to systemic risk. One possible explanation for the lower systemic 

risk contribution of Greek, Irish, and Dutch banks is that these banks are typical commercial 

banks with a focus on the local market and limited international activity, which leads to a lower 

correlation with the financial system (Karimalis & Nomikos, 2014). France, Spain, and Italy on 

the other hand contribute to the sample data with some of the largest European financial 

institutions. Given their size and scale of international activity, it is little surprising that these 

countries exhibit the highest average systemic risk contributions. 

The empirical results further show that the unconditional VaR of the financial system is lower 

than its VaR conditional on an institution being in financial distress, as measured by CoVaR. 

This result confirms the intuition that a bank in financial difficulties increases the overall risk 

of the financial system. 

A finding that has also been reported by previous studies is that ∆CoVaR and VaR differ 

significantly in the cross-sectional dimension. This result has important implications as 

regulation based on idiosyncratic risk of financial institutions would not be sufficient to protect 

from systemic risk. The fatal outcomes of basing banking regulations on idiosyncratic risks 

have been visualized by the global financial crisis. 

Besides the systemic risk contribution of individual institutions, the collective systemic risk 

contribution of groups of banks has been assessed. The empirical results show that the joint 

systemic risk contribution of banks from Germany, Italy, and Spain was the highest, while 

Greek, Austrian, and Portuguese financial institutions had the lowest collective systemic risk 

contribution. Interestingly, there seems to be only a weak link between the individual systemic 

risk contribution by country and the collective systemic risk contribution by country. This 
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implies that countries which are home of the individually most systemically risky banks do not 

necessarily exhibit the highest combined systemic risk contribution. 

The relation between a country’s combined systemic risk contribution and the correlations 

between the institutions of that country is found to be very weak. This implies that the joint 

probability of being in financial distress, which is determined by the correlation between the 

banks, does not have an impact on the combined systemic risk contribution. As shown, this can 

be explained by the fact that the joint probability density function, which is based on the inner 

group correlations, is used for calculating both the benchmark and the distress state CoVaR. 

Since ∆CoVaR is the difference between the benchmark and the distress state CoVaR, the 

influence of the inner group correlations on the collective ∆CoVaR of the group is ambiguous.  

Furthermore, the relation between the average cumulative VaR and the combined ∆𝐶𝑜𝑉𝑎𝑅 by 

country has been assessed. The results show that the link between the cumulative VaR and the 

combined ∆CoVaR of a group of banks is stronger than the link between the VaR and the 

∆CoVaR of an individual institution. However, as described above the relation might be simply 

due to the obvious fact that bigger groups of banks have both a larger cumulative VaR and a 

larger share of the financial system, which leads to a larger effect on systemic risk. 

The findings show that in practice regulation should not be based on idiosyncratic risks. 

Furthermore, given the weak link between a group’s average ∆CoVaR of the individual 

institutions and the group’s combined ∆CoVaR, regulation should in addition be group-based 

and a group of banks should be regulated according to their collective systemic risk 

contribution. 

Certainly, CoVaR allows for further investigations and research. The ability to forecast 

systemic risk contribution as measured by CoVaR is an important feature needed to regulate 

financial institutions. It would be interesting to further investigate the firm specific drivers of 

systemic risk and construct a regulation framework based on these characteristics. This however 

requires bank specific data that is only available to regulation authorities. Furthermore, the 

collective systemic risk contribution of a group of institutions has received little attention so 

far. It would be interesting to further analyze what drivers within a group of banks affect the 

systemic risk contribution of the whole group. In addition, a regulation rule that takes into 

account both the individual as well as collective systemic risk contribution of a group of banks 

could prove to be very favorable for protecting the financial system from systemic risks. 

This essay contributes to the growing research on systemic risk and systemic risk contribution 

by measuring both systemic risk contributions of individual institutions and joint systemic risk 

contributions of a group of banks in the financial system of the European Monetary Union. It 

puts an extra focus on the collective systemic risk contribution of a group of banks, as this 

phenomenon has received little attention in the literature so far. 
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Appendix A 

1. Value-at-risk and expected shortfall 

Even though Value-at-Risk (VaR) and expected shortfall (ES) are not capable of measuring 

systemic risk and are therefore not classified as systemic risk measures, the two measures are 

nevertheless briefly described. The reasons are that 1) until the outbreak of the global financial 

crisis, regulation of financial institutions and the financial system was mainly based on VaR, 

and 2) a number of systemic risk measures, such as CoVaR, are based on those two idiosyncratic 

risk measures.  

As explained by Nilsson (2015), VaR is defined as the smallest loss ℓ such that the probability 

of receiving a future loss 𝐿 that is bigger than ℓ is less than or equal to 1 − 𝛼. In mathematical 

terms it is defined as  

𝑉𝑎𝑅𝛼(𝐿) = 𝑚𝑖𝑛{ℓ: Pr(𝐿 > ℓ) ≤ 1 − 𝛼}. 

In case of a continuous loss distribution the following definition can be used, 

Pr(𝐿 > 𝑉𝑎𝑅𝛼(𝐿)) = 1 − 𝛼. 

In other words, VaR is the 𝛼-quantile of the loss distribution. (Nilsson, 2015) 

Nilsson (2015) further provided a definition for expected shortfall. It is defined as the average 

of VaR for confidence levels greater than or equal to 𝛼. Hence it also takes into account losses 

that are larger than the VaR and thus gives an estimate of the magnitude of the loss if a tail 

event occurs. Mathematically it is defined as  

𝐸𝑆𝛼(𝐿) =
1

1 − 𝛼
∫ 𝑉𝑎𝑅𝑥(𝐿) 𝑑𝑥
1

𝛼

. 

In case of a continuous loss distribution, 

𝐸𝑆𝛼(𝐿) = 𝐸[𝐿: 𝐿 > 𝑉𝑎𝑅𝛼(𝐿)]. 

(Nilsson, 2015) 

The global financial crisis has painfully shown that banking regulation based on idiosyncratic 

risk measures is not sufficient to protect from systemic risk. The new Basel III accords are the 

first to include macro prudential regulation approaches to take systemic risk into account. (Bank 

for International Settlements, 2015) 

2. CoVaR 

CoVaR is one of the most important systemic risk measures and thus should not be missing in 

this selection of systemic risk measures. Recall from above, that it is defined as the VaR of the 

financial system conditional on an institution being in financial distress. Furthermore, the 
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systemic risk contribution ∆CoVaR of an institution is defined as the difference between the 

distress state CoVaR and the benchmark state CoVaR. In contrast to VaR and ES, CoVaR is an 

actual systemic risk measure and thus suitable for regulation purposes. (Adrian & 

Brunnermeier, 2011) 

3. CoES 

Adrian and Brunnermeier (2011) also shortly elaborate on further “corisk measures” that can 

be derived from CoVaR, such as CoES which stands for co-expected shortfall. Similarly to the 

relation between VaR and ES, CoES is defined as the average of CoVaR for confidence levels 

smaller than or equal to 𝛽. In mathematical terms it is defined as follows: 

𝐶𝑜𝐸𝑆𝛽
𝑖,𝑉𝑎𝑅 =

1

𝛽
∫ 𝐶𝑜𝑉𝑎𝑅𝑦

𝑠𝑦𝑠𝑡𝑒𝑚|𝑋𝑖=𝑉𝑎𝑅𝑞
𝑖𝛽

0

𝑑𝑦. 

And in the benchmark case 

𝐶𝑜𝐸𝑆𝛽
𝑖,𝑏𝑒𝑛𝑐ℎ =

1

𝛽
∫ 𝐶𝑜𝑉𝑎𝑅𝑦

𝑠𝑦𝑠𝑡𝑒𝑚|𝑋𝑖=𝑏𝑖
𝛽

0

𝑑𝑦. 

Hence the contribution of institution 𝑖 to systemic risk, as measured by CoES, is defined as 

∆𝐶𝑜𝐸𝑆 = 𝐶𝑜𝐸𝑆𝛽
𝑖,𝑉𝑎𝑅 − 𝐶𝑜𝐸𝑆𝛽

𝑖,𝑏𝑒𝑛𝑐ℎ. 

4. Systemic risk beta 

Besides the before mentioned measures CoVaR and CoES there is a large number of other 

systemic risk measures, as the discussion on the definition of systemic risk already implies. 

These risk measures may focus on other key characteristics of systemic risk, differ in the data 

required or are simply extensions or advancements of existing systemic risk measures. 

One of the many systemic risk measures is the systemic risk beta proposed by Hautsch, 

Schaumburg and Schienle (2015). It is defined as the marginal effect of institution 𝑖’s VaR on 

the VaR of the financial system. In mathematical terms it is defined as 

𝜕𝑉𝑎𝑅𝑝,𝑡
𝑠 (𝑉𝑡

(𝑖), 𝑉𝑎𝑅𝑞,𝑡
𝑖 )

𝜕𝑉𝑎𝑅𝑞,𝑡
𝑖

= 𝛽𝑝,𝑞
𝑠|𝑖 , 

where 𝑉𝑡
(𝑖)

 are firm specific control variables. In an inverse analogy to asset pricing, the 

systemic risk beta can be interpreted as the sensitivity of the system’s VaR to changes in 

institution 𝑖’s VaR. The authors further define the realized systemic risk beta as 

𝛽̅𝑝,𝑞
𝑠|𝑖 ≔ 𝛽𝑝,𝑞

𝑠|𝑖𝑉𝑎𝑅𝑡
𝑖 . 

The realized systemic risk contribution visualizes the absolute effect of an increase in bank 𝑖’s 

VaR on the VaR of the financial system. In order to estimate the before defined measures 

Hautsch, Schaumburg and Schienle (2015) use a two-step procedure. In a first step they select 
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significant factors that influence the VaR of a single institution 𝑖. In a second step they regress 

the VaR of the system onto these significant factors and the VaR of firm 𝑖 in order to obtain an 

estimate of the marginal systemic risk contribution 𝛽𝑝,𝑞
𝑠|𝑖

. The significant background factors 

consist of firm characteristics, macroeconomic state variables and the VaR values of other 

institutions in the system. 

5. Marginal expected shortfall 

Another systemic risk measure is the marginal expected shortfall (MES) first introduced by 

Acharya et al. (2010). It is defined as the marginal contribution of firm 𝑖 to systemic risk, 

measured in terms of expected shortfall of the financial system. The conditional expected 

shortfall of the financial system can be defined as 

𝐸𝑆𝑚𝑡(𝐶) = 𝔼𝑡−1(𝑟𝑚𝑡|𝑟𝑚𝑡 < 𝐶) =∑𝑤𝑖𝑡𝔼𝑡−1(𝑟𝑖𝑡|𝑟𝑚𝑡 < 𝐶)

𝑁

𝑖=1

, 

where 𝐶 is a given threshold. Typical thresholds are 𝑉𝑎𝑅0.95, 𝑉𝑎𝑅0.975 or 𝑉𝑎𝑅0.99. 
Consequently, MES is defined as 

𝑀𝐸𝑆𝑖𝑡(𝐶) =
𝜕𝐸𝑆𝑚𝑡(𝐶)

𝜕𝑤𝑖𝑡
= 𝔼𝑡−1(𝑟𝑖𝑡|𝑟𝑚𝑡 < 𝐶). 

Hence MES measures the increase in systemic risk caused by a marginal increase in the weight 

of institution 𝑖. Thus, the higher the MES of an institution the higher its contribution to overall 

risk in the financial system. (Acharya et al., 2010) 

6. Systemic expected shortfall 

Acharya et al. (2010) also introduce an extension to MES, the so-called systemic expected 

shortfall (SES). The SES measures the contribution of a financial institution to systemic risk 

and is defined as the propensity of a firm 𝑖 to be undercapitalized when the entire financial 

system is undercapitalized. The authors show that the SES measure consists of three 

components: i) excess ex ante leverage, ii) the MES based on pre-crisis data, and iii) an 

adjustment term. In mathematical terms it is defined as  

𝑆𝐸𝑆𝑖𝑡 = (𝑘 𝐿𝑖𝑡 − 1 + 𝜃 𝑀𝐸𝑆𝑖𝑡 + ∆𝑖) 𝑊𝑖𝑡, 

where 𝐿𝑖𝑡 is the leverage (𝐴𝑖𝑡 𝑊𝑖𝑡⁄ ), 𝐴𝑖𝑡 are the total assets, 𝑊𝑖𝑡 are the market value of the 

equity and 𝑘, 𝜃 and ∆𝑖 are constants. The formulation supports the fact that the SES for 

institution 𝑖 increases with a higher leverage and a higher MES.  

7. Distress Insurance Premium 

Another measure that allows to assess the contribution of a financial institution to systemic risk 

is the distress insurance premium (DIP) introduced by Huang, Zhou and Zhu (2011). The DIP 

is a systemic risk indicator and is measured by the insurance price against systemic financial 

distress. It is defined as the insurance premium that shields against the distressed losses of the 
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system portfolio, which consists of the total liabilities of all institutions in the system. Thus the 

total loss of the system portfolio is defined as 𝐿 = ∑ 𝐿𝑖
𝑁
𝑖=1 , where 𝐿𝑖 is the loss of institution 𝑖’s 

liability. The DIP is then given by the risk-neutral expectation of the loss exceeding a certain 

threshold. In mathematical terms it is defined as  

𝐷𝐼𝑃 = 𝐸𝑄[𝐿|𝐿 ≥ 𝐿𝑚𝑖𝑛], 

where 𝐿𝑚𝑖𝑛 is the minimum loss threshold, similar to a deductible. In order to obtain the 

marginal contribution of a single bank to systemic risk, the partial derivative of the 𝐷𝐼𝑃 is taken 

with respect to institution 𝑖, 

𝜕 𝐷𝐼𝑃

𝜕 𝐿𝑖
≡ 𝐸𝑄[𝐿𝑖|𝐿 ≥ 𝐿𝑚𝑖𝑛]. 

 

8. Further measures 

There are several attempts in the literature to taxonomize the multitude of different systemic 

risk measurements. Hansen (2013) for example divides systemic risk measures in four groups 

depending on the approach of measurement of systemic risk they are following. The four groups 

are tail measures, contingent claims analysis, network models and dynamic, stochastic 

macroeconomic models. The first group of tail measures focus on co-dependence in the tails of 

equity returns of financial firms. Adrian and Brunnermeier’s CoVaR measure as well as the 

MES and SES systemic risk measures can be classified to this group. Contingent claims 

analysis, the second group of measuring approaches, is based on option pricing theory. By 

assuming an underlying stochastic process for the value of the assets of an institution, equity 

can be expressed as a call option on the firm’s assets and debt as a put option. In order to 

measure systemic risks, the contingent claims analysis is extended by aggregating balance sheet 

data for entire sectors of the economy. Third, network models focus on the interconnectedness 

of financial firms in the system. The fourth group of measurement approaches, dynamic, 

stochastic macroeconomic models, focus on the spillover effects from distressed financial 

markets to the macro economy (Hansen, 2013).  

There are many ways to assess systemic risk, and depending on different criteria such as 

availability of data, the supervisory scope or temporal category, one measurement approach 

might be preferred over another. An extensive overview of systemic risk measures, their key 

characteristics and their specific outputs, can be found in Bisias et al. (2013). 
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Appendix B 

Appendix B presents the calculation of ∆CoVaR for an individual institution. The steps 

presented in Section 3.3 remain the same. However, some simplifications can be used. 

The first step, as described in Section 3.3.1, remains the exact same and the individual VaR of 

each institution is obtained. 

Secondly, the joint student t-distribution is obtained. Since the ∆CoVaR of an individual 

institution is calculated, the joint student t-distribution boils down to a bivariate distribution, 

(
𝑟𝑡
𝑆

𝑟𝑡
𝑖)~𝑡𝜈 ((

𝜇𝑡
𝑆

𝜇𝑡
𝑖) , (

𝜎𝑆,𝑡
2 𝜌𝑆𝑖,𝑡𝜎𝑆,𝑡𝜎𝑖,𝑡

𝜌𝑖𝑆,𝑡𝜎𝑖,𝑡𝜎𝑆,𝑡 𝜎𝑖,𝑡
2 )), 

where 𝑟𝑡 = (𝑟𝑡
𝑆, 𝑟𝑡

𝑖)′ is the (2 × 1) vector of returns, 𝜇𝑡 = (𝜇𝑡
𝑆, 𝜇𝑡

𝑖)′ is the (2 × 1) vector of 

conditional means, and Σ𝑡 is the (2 × 2) conditional covariance matrix, 𝜎𝑖,𝑡 is the conditional 

standard deviation of 𝑖, and 𝜌𝑖𝑗,𝑡 is the conditional correlation between 𝑖 and 𝑗. 

Hence, in a similar fashion the DCC model boils down to a bivariate one. The (2 × 2) 
correlation matrix is estimated as described in Equation (8) and Equation (9). 

Given all the inputs needed, the joint bivariate student t-distribution is obtained. 

Third, 𝐶𝑜𝑉𝑎𝑅 for the distress and the benchmark state is calculated. The distress sate 𝐶𝑜𝑉𝑎𝑅 

is defined as 

Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑖|𝑟𝑡
𝑖 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑖 ) = 𝑞. 

By means of conditional probabilities the equation can be reformulated as, 

Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑖 ∩ 𝑟𝑡
𝑖 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑖 )

Pr(𝑟𝑡
𝑖 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑖 )
= 𝑞. 

Given the definition of VaR, the denominator of the equation above can be written as, 

Pr(𝑟𝑡
𝑖 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑖 ) = 𝑞. 

Plugging in this result into the formulation of 𝐶𝑜𝑉𝑎𝑅 in terms of joint probabilities gives: 

Pr(𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑖 ∩ 𝑟𝑡
𝑖 ≤ 𝑉𝑎𝑅𝑞,𝑡

𝑖 ) = 𝑞2. 

Thus 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑖

 is obtained by solving numerically for the upper boundary of the double 

integral, 
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∫ ∫ 𝑝𝑑𝑓𝑡(𝑟𝑡
𝑆, 𝑟𝑡

𝑖)𝑑𝑟𝑡
𝑆 𝑑𝑟𝑡

𝑖
𝑉𝑎𝑅𝑞,𝑡

𝑖

−∞

𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑖

−∞

= 𝑞2. 

In a similar fashion, the benchmark state 𝐶𝑜𝑉𝑎𝑅 can be calculated. The benchmark 𝐶𝑜𝑉𝑎𝑅 is 

defined as: 

Pr (𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑏𝑖| 𝜇𝑡
𝑖 − 𝜎𝑡

𝑖 ≤ 𝑟𝑡
𝑖 ≤ 𝜇𝑡

𝑖 + 𝜎𝑡
𝑖) =𝑞. 

In terms of conditional probabilities it can be written as: 

Pr (𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑏𝑖
∩ 𝜇𝑡

𝑖 − 𝜎𝑡
𝑖 ≤ 𝑟𝑡

𝑖 ≤ 𝜇𝑡
𝑖 + 𝜎𝑡

𝑖)

Pr(𝜇𝑡
𝑖 − 𝜎𝑡

𝑖 ≤ 𝑟𝑡
𝑖 ≤ 𝜇𝑡

𝑖 + 𝜎𝑡
𝑖)

= 𝑞. 

Given the probability of the benchmark event Pr(𝜇𝑡
𝑖 − 𝜎𝑡

𝑖 ≤ 𝑟𝑡
𝑖 ≤ 𝜇𝑡

𝑖 + 𝜎𝑡
𝑖) = 𝑝𝑡, the above 

equation becomes: 

Pr (𝑟𝑡
𝑆 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑏𝑖
∩ 𝜇𝑡

𝑖 − 𝜎𝑡
𝑖 ≤ 𝑟𝑡

𝑖 ≤ 𝜇𝑡
𝑖 + 𝜎𝑡

𝑖) = 𝑞 × 𝑝𝑡. 

The benchmark state 𝐶𝑜𝑉𝑎𝑅 is obtained by solving numerically for the upper boundary of the 

double integral, 

∫ ∫ 𝑝𝑑𝑓𝑡(𝑟𝑡
𝑆, 𝑟𝑡

𝑖)𝑑𝑟𝑡
𝑆 𝑑𝑟𝑡

𝑖
𝜇𝑡
𝑖+𝜎𝑡

𝑖

𝜇𝑡
𝑖−𝜎𝑡

𝑖

𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏𝑖

−∞

= 𝑞 × 𝑝
𝑡
. 

The systemic risk contribution of institution 𝑖 is then given by the difference between the 

distress state and the benchmark state 𝐶𝑜𝑉𝑎𝑅. 

∆𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑖 = 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡

𝑆|𝑖 − 𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑆|𝑏𝑖
. 
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Appendix C 

Appendix C presents the banks included in the sample and their respective home country. 

Institution Country 

Erste Group Bank AG Austria 

Raiffeisen Bank International AG Austria 

KBC Group NV Belgium 

Dexia N.V./S.A. Belgium 

BNP Paribas S.A. France 

Crédit Agricole S.A. France 

Société Générale S.A. France 

Natixis S.A. France 

Commerzbank AG Germany 

Deutsche Bank AG Germany 

IKB Deutsche Industriebank AG Germany 

Deutsche Postbank AG Germany 

Alpha Bank S.A. Greece 

National Bank of Greece S.A. Greece 

Piraeus Bank S.A. Greece 

Eurobank Ergasias S.A. Greece 

Bank of Ireland Ltd. Ireland 

Allied Irish Banks p.l.c. Ireland 

Banca Monte dei Paschi di Siena S.p.A. Italy 

Banco Popolare Soc.Coop. Italy 

Intesa Sanpaolo S.p.A. Italy 

Unione di Banche Italiane S.c.p.A. Italy 

UniCredit S.p.A. Italy 

ING Groep N.V. Netherlands 

Van Lanschot N.V. Netherlands 

Banco Comercial Português S.A. Portugal 

Banco Português de Investimento S.A. Portugal 

Bankinter S.A. Spain 

Banco Bilbao Vizcaya Argentaria S.A. Spain 

Banco Popular Español S.A. Spain 

Banco de Sabadell S.A. Spain 

Banco Santander S.A. Spain 
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Appendix D 

Appendix D presents the summary statistics at the bank level. 

Institution Mean St. Dev Max Min Kurtosis Skewness 

ERSTE GROUP BANK 0,0003 0,0302 0,1854 -0,1810 8,9137 0,0918 

RAIFFEISEN BANK INTL. 0,0002 0,0320 0,1869 -0,2466 8,8938 0,1229 

KBC GROUP 0,0006 0,0363 0,4991 -0,2492 24,9516 1,0206 

COMMERZBANK -0,0003 0,0311 0,2148 -0,2461 10,8260 0,3254 

DEUTSCHE BANK 0,0001 0,0256 0,2499 -0,1653 15,0648 0,8229 

BANKINTER 0,0004 0,0234 0,1450 -0,0807 6,4013 0,6673 

BBV.ARGENTARIA 0,0002 0,0217 0,2203 -0,1278 10,8887 0,6260 

BANCO POPULAR ESPANOL -0,0003 0,0237 0,2068 -0,1232 8,7727 0,6970 

BANCO DE SABADELL 0,0001 0,0192 0,1827 -0,0764 10,8172 1,0018 

BANCO SANTANDER 0,0003 0,0220 0,2322 -0,1409 12,9400 0,5732 

BNP PARIBAS 0,0004 0,0264 0,2090 -0,1724 12,5836 0,7567 

CREDIT AGRICOLE 0,0003 0,0286 0,2632 -0,1337 10,3606 0,6525 

SOCIETE GENERALE 0,0003 0,0294 0,2389 -0,1623 10,3122 0,4525 

NATIXIS 0,0006 0,0324 0,3880 -0,1748 18,9325 1,2836 

ALPHA BANK -0,0001 0,0447 0,2941 -0,2703 9,7972 0,7082 

NATIONAL BK.OF GREECE -0,0007 0,0444 0,2915 -0,2678 9,5887 0,4500 

BANK OF IRELAND 0,0001 0,0509 0,4810 -0,5476 22,3568 0,8686 

BANCA MONTE DEI PASCHI -0,0007 0,0294 0,2134 -0,2150 11,8589 0,3151 

BANCO POPOLARE -0,0002 0,0293 0,1894 -0,1636 7,6276 0,3176 

INTESA SANPAOLO 0,0003 0,0265 0,1968 -0,1686 9,4941 0,0855 

UNIONE DI BANCHE ITALIAN 0,0000 0,0242 0,1219 -0,1236 5,6795 0,1386 

UNICREDIT -0,0001 0,0296 0,2093 -0,1727 8,9686 0,1843 

ING GROEP 0,0005 0,0325 0,2924 -0,2748 18,1213 0,7544 

BANCO COMR.PORTUGUES -0,0004 0,0276 0,2690 -0,1507 11,7338 0,7985 

ALLIED IRISH BANKS -0,0005 0,0540 0,4348 -0,5862 16,5035 0,2786 

BANK OF PIRAEUS -0,0007 0,0472 0,2990 -0,2955 10,8908 0,5074 

EUROBANK ERGASIAS -0,0013 0,0531 0,2948 -0,3023 10,8462 0,3940 

BANCO BPI 0,0001 0,0249 0,2704 -0,1305 15,8730 1,2799 

DEXIA 0,0011 0,0831 1,0000 -0,3627 25,5940 2,2845 

IKB DEUTSCHE INDSTRBK. -0,0004 0,0419 0,6367 -0,2387 36,2487 2,8086 

DEUTSCHE POSTBANK 0,0003 0,0222 0,1515 -0,2379 21,6795 -1,0072 

VAN LANSCHOT -0,0002 0,0160 0,1250 -0,0920 8,3124 0,1748 

INDEX_SYSTEM 0,0004 0,0214 0,1943 -0,1053 10,4001 0,5655 
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Appendix E 

Appendix E presents the estimation output at the bank level. The Appendix is divided into 4 

tables. Table 1 of Appendix E shows the estimation output of the mean equation as presented 

in Equation (6). 

Institution 𝑎0 𝑎1 𝑏1 𝑏2 

ERSTE GROUP BANK 0,0003 - - - 

RAIFFEISEN BANK INTL. -0,0003 - - - 

KBC GROUP 0,0005** - 0,0223*** - 

COMMERZBANK 0,0000 - - - 

DEUTSCHE BANK 0,0002 - - - 

BANKINTER -0,0001 - - - 

BBV.ARGENTARIA 0,0000 - 0,0637*** - 

BANCO POPULAR ESPANOL -0,0001 - 0,0661*** - 

BANCO DE SABADELL 0,0000 0,0825*** - - 

BANCO SANTANDER 0,0003 - - - 

BNP PARIBAS 0,0000 - - - 

CREDIT AGRICOLE 0,0001 - - - 

SOCIETE GENERALE 0,0000 - 0,0589*** - 

NATIXIS 0,0003 - - - 

ALPHA BANK 0,0003 - - - 

NATIONAL BK.OF GREECE -0,0001 - - - 

BANK OF IRELAND 0,0001 - - - 

BANCA MONTE DEI PASCHI -0,0007** - 0,0456** - 

BANCO POPOLARE -0,0004 - 0,0302 - 

INTESA SANPAOLO -0,0001 - - - 

UNIONE DI BANCHE ITALIAN -0,0002 - - - 

UNICREDIT 0,0002 - - - 

ING GROEP 0,0004 - - - 

BANCO COMR.PORTUGUES -0,0005* - 0,0318 - 

ALLIED IRISH BANKS -0,0004 - -0,0116 - 

BANK OF PIRAEUS 0,0004 - - - 

EUROBANK ERGASIAS -0,0006 - 0,0578** - 

BANCO BPI 0,0000 - - - 

DEXIA -0,0002 -0,9572*** 0,8332*** -0,1239*** 

IKB DEUTSCHE INDSTRBK. -0,0008*** - -0,2486*** - 

DEUTSCHE POSTBANK 0,0003*** - - - 

VAN LANSCHOT -0,0005** -0,1207*** - - 

INDEX_SYSTEM 0,0005** - - - 

Significance levels: 1%: ***; 5%: **; 10%: * 
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Table 2 of Appendix E shows the estimation output of the variance equation as presented in 

Equation (7). 

Institution 𝜔 𝛼1 𝛽1 𝛾1 𝛿 

ERSTE GROUP BANK 0,0001 0,0536*** 0,9546*** 0,5179*** 1,0492** 

RAIFFEISEN BANK INTL. 0,0002 0,0988*** 0,9115*** 0,2989*** 1,3223*** 

KBC GROUP 0,0002 0,1013 0,9167*** 0,4799** 1,0579*** 

COMMERZBANK 0,0002 0,1146** 0,8984*** 0,2960*** 1,2890*** 

DEUTSCHE BANK 0,0000 0,0678*** 0,9353*** 0,4328*** 1,4374*** 

BANKINTER 0,0001 0,1049*** 0,9089*** 0,3865*** 1,3830*** 

BBV.ARGENTARIA 0,0001 0,0629*** 0,9373*** 0,7939*** 1,2482*** 

BANCO POPULAR ESPANOL 0,0000 0,0753*** 0,9405*** 0,3434** 1,2482*** 

BANCO DE SABADELL 0,0000 0,0525*** 0,9518*** 0,2057** 1,8034*** 

BANCO SANTANDER 0,0002 0,0799*** 0,9235*** 0,8033*** 1,0796*** 

BNP PARIBAS 0,0001 0,0531* 0,9416*** 0,9887*** 1,2758*** 

CREDIT AGRICOLE 0,0001 0,0639*** 0,9413*** 0,5051*** 1,3217*** 

SOCIETE GENERALE 0,0000 0,0758*** 0,9302*** 0,5097*** 1,3812*** 

NATIXIS 0,0003* 0,1103*** 0,9094*** 0,4691*** 1,0431*** 

ALPHA BANK 0,0000 0,0865*** 0,9261*** 0,1956*** 1,5345*** 

NATIONAL BK.OF GREECE 0,0001 0,1253*** 0,8925*** 0,2659*** 1,5096*** 

BANK OF IRELAND 0,0001 0,0812** 0,9380*** 0,3333** 1,1576*** 

BANCA MONTE DEI PASCHI 0,0001 0,1141*** 0,9066*** 0,2272*** 1,3666*** 

BANCO POPOLARE 0,0001 0,0566*** 0,9539*** 0,5586*** 1,0381*** 

INTESA SANPAOLO 0,0001 0,0606*** 0,9484*** 0,6539*** 1,0425*** 

UNIONE DI BANCHE ITALIAN 0,0001 0,0603*** 0,9517*** 0,4718*** 1,0718*** 

UNICREDIT 0,0001 0,0762*** 0,9297*** 0,5572*** 1,3066*** 

ING GROEP 0,0001 0,0861*** 0,9246*** 0,5975*** 1,1236*** 

BANCO COMR.PORTUGUES 0,0002 0,1669*** 0,8744*** 0,2841*** 1,1841*** 

ALLIED IRISH BANKS 0,0001 0,1436*** 0,8905*** 0,1542*** 1,3354*** 

BANK OF PIRAEUS 0,0001 0,1228*** 0,9030*** 0,2524*** 1,4343*** 

EUROBANK ERGASIAS 0,0000 0,1373*** 0,8849*** 0,1489** 1,5757*** 

BANCO BPI 0,0001 0,1944*** 0,8605*** 0,2266*** 1,1406*** 

DEXIA 0,0001 0,1725*** 0,8684*** 0,2709*** 1,3108*** 

IKB DEUTSCHE INDSTRBK. 0,0016 0,1935*** 0,8483*** 0,1993** 0,8830*** 

DEUTSCHE POSTBANK 0,0004 0,2602*** 0,8122*** 0,1002* 1,0036*** 

VAN LANSCHOT 0,0013 0,2355*** 0,7073*** 0,1812** 1,1669*** 

INDEX_SYSTEM 0,0000 0,0745*** 0,9322*** 0,5213*** 1,2913*** 

Significance levels: 1%: ***; 5%: **; 10%: * 
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Table 3 of Appendix E shows the degrees of freedom of the student t-distribution of an 

individual institution and the degrees of freedom of the joint student t-distribution of an 

institution and the system. 

Institution 𝜈 joint-𝜈 

ERSTE GROUP BANK 6,2563*** 6,5640*** 

RAIFFEISEN BANK INTL. 4,4068*** 5,6165*** 

KBC GROUP 6,2559*** 5,8134*** 

COMMERZBANK 4,5883*** 5,1260*** 

DEUTSCHE BANK 6,7258*** 5,8420*** 

BANKINTER 5,8059*** 5,9662*** 

BBV.ARGENTARIA 6,8817*** 6,5838*** 

BANCO POPULAR ESPANOL 4,9180*** 5,4498*** 

BANCO DE SABADELL 3,4491*** 4,4085*** 

BANCO SANTANDER 6,9966*** 6,1190*** 

BNP PARIBAS 8,3186*** 5,8942*** 

CREDIT AGRICOLE 7,0494*** 5,4790*** 

SOCIETE GENERALE 7,2275*** 5,5523*** 

NATIXIS 3,9074*** 4,5039*** 

ALPHA BANK 6,2264*** 7,6508*** 

NATIONAL BK.OF GREECE 5,5344*** 7,0707*** 

BANK OF IRELAND 4,4855*** 5,9685*** 

BANCA MONTE DEI PASCHI 4,1802*** 4,8428*** 

BANCO POPOLARE 5,1296*** 5,5057*** 

INTESA SANPAOLO 6,7464*** 6,3367*** 

UNIONE DI BANCHE ITALIAN 6,1250*** 6,4003*** 

UNICREDIT 7,8983*** 6,7801*** 

ING GROEP 7,6158*** 5,7993*** 

BANCO COMR.PORTUGUES 3,7260*** 5,0891*** 

ALLIED IRISH BANKS 4,2520*** 5,7200*** 

BANK OF PIRAEUS 4,0775*** 5,7376*** 

EUROBANK ERGASIAS 4,7903*** 6,4724*** 

BANCO BPI 3,7895*** 5,0148*** 

DEXIA 4,2066*** 5,4329*** 

IKB DEUTSCHE INDSTRBK. 3,0487*** 4,5981*** 

DEUTSCHE POSTBANK 3,3749*** 4,6895*** 

VAN LANSCHOT 3,0035*** 4,8019*** 

INDEX_SYSTEM 8,4314*** - 

Significance levels: 1%: ***; 5%: **; 10%: * 
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Table 4 of Appendix E shows the estimation output of the DCC model as presented in Equation 

(9). 

Institution 𝛿1 𝛿2 

ERSTE GROUP BANK 0,0300*** 0,9513*** 

RAIFFEISEN BANK INTL. 0,0268*** 0,9481*** 

KBC GROUP 0,0467*** 0,9120*** 

COMMERZBANK 0,0222*** 0,9693*** 

DEUTSCHE BANK 0,0061** 0,9918*** 

BANKINTER 0,0475*** 0,9212*** 

BBV.ARGENTARIA 0,0339*** 0,9431*** 

BANCO POPULAR ESPANOL 0,0449*** 0,9410*** 

BANCO DE SABADELL 0,0444* 0,9241*** 

BANCO SANTANDER 0,0462*** 0,9185*** 

BNP PARIBAS 0,0665*** 0,8774*** 

CREDIT AGRICOLE 0,0414*** 0,9162*** 

SOCIETE GENERALE 0,0509*** 0,8630*** 

NATIXIS 0,0343*** 0,9605*** 

ALPHA BANK 0,0073*** 0,9911*** 

NATIONAL BK.OF GREECE 0,0109** 0,9862*** 

BANK OF IRELAND 0,0255*** 0,9572*** 

BANCA MONTE DEI PASCHI 0,0383*** 0,9541*** 

BANCO POPOLARE 0,0249*** 0,9662*** 

INTESA SANPAOLO 0,0267*** 0,9641*** 

UNIONE DI BANCHE ITALIAN 0,0234*** 0,9708*** 

UNICREDIT 0,0465*** 0,9152*** 

ING GROEP 0,0444*** 0,9166*** 

BANCO COMR.PORTUGUES 0,0313*** 0,9549*** 

ALLIED IRISH BANKS 0,0246*** 0,9720*** 

BANK OF PIRAEUS 0,0062*** 0,9932*** 

EUROBANK ERGASIAS 0,0097*** 0,9877*** 

BANCO BPI 0,0159* 0,9809*** 

DEXIA 0,0287*** 0,9706*** 

IKB DEUTSCHE INDSTRBK. 0,0142*** 0,9856*** 

DEUTSCHE POSTBANK 0,0212*** 0,9788*** 

VAN LANSCHOT 0,0202 0,8001*** 

INDEX_SYSTEM - - 

Significance levels: 1%: ***; 5%: **; 10%: * 
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Appendix F 

Appendix F presents the density plots of the matches of the VaR-∆CoVaR top 10 ranking. The 

first figure shows the percentage of exact rank matches per day. An exact rank match means 

that the position of an institution in the VaR ranking is the exact same position in the ∆CoVaR 

ranking. 

 

The second figure shows the percentage of the top 10 overlaps per day. This means that an 

institution simultaneously exhibits a ∆CoVaR-value that is among the 10 highest ∆CoVaR-

values and a VaR-value that is among the 10 highest VaR-values. 
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Appendix G 

Appendix G presents the summary statistics of VaR and ∆CoVaR at the bank level. 

 VaR 𝛥𝐶𝑜𝑉𝑎𝑅 

Institution Mean Max Min Mean Max Min 

ERSTE GROUP BANK -0,0428 -0,1493 -0,0178 -0,0464 -0,1846 -0,0092 

RAIFFEISEN BANK INTL. -0,0480 -0,2254 -0,0209 -0,0473 -0,1900 -0,0107 

KBC GROUP -0,0464 -0,2595 -0,0111 -0,0546 -0,2079 -0,0147 

COMMERZBANK -0,0432 -0,1676 -0,0151 -0,0614 -0,2283 -0,0159 

DEUTSCHE BANK -0,0345 -0,1447 -0,0119 -0,0573 -0,2096 -0,0162 

BANKINTER -0,0359 -0,0876 -0,0131 -0,0526 -0,1803 -0,0128 

BBV.ARGENTARIA -0,0313 -0,1121 -0,0109 -0,0559 -0,2058 -0,0152 

BANCO POPULAR ESPANOL -0,0349 -0,0918 -0,0092 -0,0638 -0,2483 -0,0172 

BANCO DE SABADELL -0,0295 -0,0715 -0,0133 -0,0728 -0,2617 -0,0190 

BANCO SANTANDER -0,0310 -0,1257 -0,0098 -0,0614 -0,2237 -0,0173 

BNP PARIBAS -0,0367 -0,1357 -0,0139 -0,0615 -0,2148 -0,0161 

CREDIT AGRICOLE -0,0413 -0,1337 -0,0162 -0,0685 -0,2491 -0,0181 

SOCIETE GENERALE -0,0420 -0,1551 -0,0132 -0,0605 -0,2144 -0,0168 

NATIXIS -0,0428 -0,1522 -0,0114 -0,0594 -0,2201 -0,0074 

ALPHA BANK -0,0627 -0,1940 -0,0174 -0,0304 -0,1299 -0,0076 

NATIONAL BK.OF GREECE -0,0623 -0,2449 -0,0185 -0,0376 -0,1675 -0,0096 

BANK OF IRELAND -0,0649 -0,2919 -0,0148 -0,0416 -0,1763 -0,0101 

BANCA MONTE DEI PASCHI -0,0427 -0,2015 -0,0136 -0,0565 -0,2252 -0,0093 

BANCO POPOLARE -0,0438 -0,1232 -0,0141 -0,0511 -0,1871 -0,0130 

INTESA SANPAOLO -0,0379 -0,1213 -0,0137 -0,0585 -0,2177 -0,0131 

UNIONE DI BANCHE ITALIAN -0,0366 -0,0878 -0,0106 -0,0536 -0,2037 -0,0091 

UNICREDIT -0,0421 -0,1598 -0,0106 -0,0541 -0,1967 -0,0138 

ING GROEP -0,0414 -0,2530 -0,0118 -0,0588 -0,2191 -0,0160 

BANCO COMR.PORTUGUES -0,0401 -0,1288 -0,0105 -0,0508 -0,2213 -0,0120 

ALLIED IRISH BANKS -0,0730 -0,4015 -0,0130 -0,0400 -0,1727 -0,0110 

BANK OF PIRAEUS -0,0637 -0,2698 -0,0128 -0,0368 -0,1660 -0,0103 

EUROBANK ERGASIAS -0,0704 -0,3489 -0,0162 -0,0372 -0,1738 -0,0099 

BANCO BPI -0,0358 -0,1227 -0,0059 -0,0506 -0,2064 -0,0091 

DEXIA -0,0849 -0,6358 -0,0099 -0,0493 -0,2224 -0,0041 

IKB DEUTSCHE INDSTRBK. -0,0535 -0,3630 -0,0158 -0,0252 -0,1304 -0,0039 

DEUTSCHE POSTBANK -0,0289 -0,2330 -0,0043 -0,0350 -0,1525 -0,0014 

VAN LANSCHOT -0,0241 -0,0738 -0,0146 -0,0263 -0,1051 -0,0073 

INDEX_SYSTEM -0,0303 -0,1106 -0,0083 - - - 

 


