
Container-based Continuous Delivery
for Clusters

Per-Gustaf Stenberg

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-06

Container-based Continuous Delivery for
Clusters

Per-Gustaf Stenberg
dt08ps5@student.lth.se

January 18, 2016

Master’s thesis work carried out at Data Ductus Malmö AB.

Supervisors: Mario Toffia, mario.toffia@dataductus.se
Ulf Asklund, ulf.asklund@cs.lth.se

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:dt08ps5@student.lth.se
mailto:mario.toffia@dataductus.se
mailto:ulf.asklund@cs.lth.se
mailto:martin.host@cs.lth.se

Abstract

The focus of thismaster’s thesis was aimed at E.ON’s electricity saving project,
100koll, in collaboration with IT-consulting firm Data Ductus. The 100koll
users demand high availability, which creates a complex underlaying system-
infrastructure. The processes of deploying and preparing new releases to the
system is presently done manually. Data Ductus is requesting an investiga-
tion on whether or not containers can facilitate the preparation processes to
a point where delivery is done continuously. The solution which was intro-
duced follows five steps of implementation which involves a programmable
infrastructure, deployment strategies and a deployment pipeline with a feed-
back system. What the solution shows us is that containers were able to facili-
tate certain parts of the implementation process that previously prevented Data
Ductus from achieving continuous delivery. However, the conducted research
also proves with the help of the implementation processes that achieving con-
tinuous delivery is not all to do with having access to the correct tools; it also
has to do with the mindset of the people involved.

Keywords: MSc, Continuous Delivery, Configuration Management, Docker, Contin-
uous Integration, Containers, DevOps

2

Acknowledgements

Big thanks to Ulf Asklund for the guidance throughout this Master’s thesis. I would also
like to thank my examiner Lars Bendix, and in the later stage, Martin Höst.

Also, huge thanks for all the support at Data Ductus. Special thanks to Mario Toffia
who made this project possible and Viktor Hansson for the great guidance and support
during the implementation process.

Another big thanks goes out to Malin Wiborg for the proofreading, and of course to
all other people involved in the project.

3

4

Contents

1 Background and Introduction 9
1.1 100koll . 9
1.2 The Problem . 10
1.3 What is Continuous Integration, Delivery and Deployment? 11

1.3.1 Continuous Integration . 11
1.3.2 Continuous Delivery and Deployment 11

1.4 The Concept of Containerization . 12

2 Method 15
2.1 Questions . 15
2.2 Approach . 15

2.2.1 Pains and Blockers . 16
2.2.2 Container-based Solution . 16
2.2.3 Solution Evaluation . 16

2.3 Related Work . 18

3 Containers 19
3.1 Underlying Technology . 19

3.1.1 Namespaces . 19
3.1.2 Cgroups . 21

3.2 Docker . 21
3.3 Performance . 22

3.3.1 CPU and Memory . 22
3.3.2 Networking . 23
3.3.3 Disk I/O . 23
3.3.4 Summary . 23

4 Taking the Step 25
4.1 The Anti-patterns . 25

4.1.1 Deploying Manually . 25

5

CONTENTS

4.1.2 Manual Configuration Management 27
4.2 Breaking the Anti-patterns . 28

4.2.1 Automatization is the Key . 28
4.2.2 Acceptance Testing . 29
4.2.3 Higher Deliver Frequency . 29
4.2.4 Generalize the Infastructure . 29

4.3 Containers role in breaking of the anti-patterns 30
4.3.1 Automation . 30
4.3.2 Generalization . 31
4.3.3 Delivery Frequency . 32
4.3.4 Acceptance-testing . 32

5 The Implementation Process 33
5.1 The Dummy-project . 33
5.2 Step 1. Infrastructure as Code . 35

5.2.1 Best Practices . 35
5.3 Step 2. Generalizing the Infrastructure 36

5.3.1 Service Discovery . 36
5.3.2 Standarized Configuration Management 37
5.3.3 Monitoring . 39
5.3.4 Data Management . 39

5.4 Step 3. Deployment Strategy . 40
5.4.1 Rolling out Releases . 40
5.4.2 Blue-Green Deployment . 42

5.5 Step 4. Constructing a Pipeline . 43
5.5.1 Integration . 43
5.5.2 Quality Testing . 43
5.5.3 Implementation . 44

5.6 Step 5. Return Feedback . 44
5.6.1 Pipevis . 45

6 Evaluation & Results 47
6.1 Cycle Time . 47
6.2 Feedback . 48
6.3 Quality . 48
6.4 Implementation Effort . 48

7 Discussion 51
7.1 Method & Evaluation . 51
7.2 The Solution . 52

7.2.1 Stability . 52
7.2.2 Alternatives . 52
7.2.3 Hiccups . 52
7.2.4 Containerized Configuration Management 52
7.2.5 Change Control . 53
7.2.6 DevOps . 53

7.3 Continuous Delivery . 53

6

CONTENTS

7.3.1 Project Management . 54
7.3.2 Continuous Everything . 54

7.4 Docker . 55
7.4.1 Impact on the Process . 55
7.4.2 Possible Problems . 55
7.4.3 Resource Usage . 55
7.4.4 What Docker really brings to the table 56

8 Conclusions 57
8.1 Continuous Delivery . 57
8.2 Obstacles preventing CD . 57
8.3 Containers impact on CD . 58

Bibliography 59

Appendix A Fibonacci Sequence 63

Appendix B Golden Ratio 65

Appendix C Service Register Role 67
C.1 tasks/main.yml . 67
C.2 defaults/main.yml . 67

Appendix D Service Deregister Role 69
D.1 tasks/main.yml . 69

Appendix E Deploy Playbook 71
E.1 vars/devservice.json . 71
E.2 deploy.playbook.yml . 71
E.3 rollback.playbook.yml . 72

Appendix F Healthcheck Container - HTTP 73
F.1 check.j2 . 73
F.2 Dockerfile . 73

7

CONTENTS

8

Chapter 1
Background and Introduction

This chapter presents the background story for this Master’s thesis, as well as an overview
of Continuous Delivery/Deployment, the concept of containerization along with the prob-
lem, related work and the approach on getting the result and answers to these questions.
The purpose of this chapter is to provide a better understanding of the project in general
and hopefully the following text will spark an interest in the project as a whole.

The next chapter in this report will present a technical deep dive into the container
technology and give the user a perspective on why containers are important in this context.
The third chapter will analyze how the project can utilize the container technology in order
to achieve its goals. The fourth chapter will present the solution implemented using the
previous presented methodology. The last part of this report will introduce a discussion
and a conclusion dependent on the result and the problems stated in the first chapter.

1.1 100koll
The residents of Sweden may have stumbled upon E.ON´s 100koll1 project before, and if
not you may still have heard about the electric power company E.ON. 100koll is an addi-
tional customer-service that allows you to monitor your power consumption in real-time.
This will give the customers a better understanding about where they use the most electric
power and where they can save the most energy. It seems very simple in the commercials,
“just plugin the power-meter and download the app, and you are good to go”. What the
consumer and common person may not know is the extent of the underlying technology
and the number of companies involved in the system. One of the contributing companies
is Data Ductus, and this Master’s thesis is carried out in collaboration with them.

Data Ductus is responsible for knitting the whole E.ON project together, making it pos-
sible for the front-end application to communicate with the service providers, which in turn

1More about the 100koll - http://www.eon.se/privatkund/Produkter-och-priser/Elavtal/100Koll/Om-
100koll/

9

1. Background and Introduction

communicates with the hardware. They are achieving this by utilizing their crossbreed-
container2 which essentially is an API3-hub. The API-hub makes it possible to collect a
numerous of API´s and make them work as one to a front-end application, which in this
case is the smartphone app. It is crucial for Data Ductus to keep the system up and running
at all time, in order to keep the whole 100koll service going.

1.2 The Problem
In order to be able to meet the zero-downtime4 requirement there needs to be an infras-
tructure that can fulfill it, which involves corner stones like load balancers, clusters and
firewalls; which can be seen in figure 1.1.

Figure 1.1: An overview of the infrastructure.

At this point all deployments and configurations of the infrastructure are done man-
ually by the opererations-personnel. When new artifacts are ready for deployments the
person in charge of operations receive these artifacts and the corresponding configura-
tions from the build server. Then, by manually disconnecting one of the nodes from the
load-balancer, a safe update procedure can be preformed without impacting the customer.
This node is manually activated with the newly upgraded service, while the other nodes
will be disconnected from the load-balancer, in order to perform the same update proce-
dure. With the growing interest in containers, Data Ductus is requesting knowledge on
whether or not containerization of the essential artifacts and configurations will help them

2More about Crossbreed - http://crossbreed.se/
3API stands for Application Programming Interface, which is a framework for communicating with a

specific application.
4The service should never be down, or “under maintenance” during updates.

10

1.3 What is Continuous Integration, Delivery and Deployment?

fulfill automatic deployment and staging to their infrastructure - that in the end will lead to
continuous delivery. This thesis will hopefully provide sufficient knowledge on this mat-
ter, as well as propose a solid solution on how to achieve continuous delivery. Data Ductus
are confident that a solid continuous delivery workflowwill help them in their future work,
and save them a lot of time.

1.3 What is Continuous Integration, Deliv-
ery and Deployment?

Continuous Delivery and Continuous Deployment are a relatively new terms for a very
obvious and natural extension from Continuous Integration. So to be able to grasp the
concept of continuous delivery you have to understand the basic concept of continuous
integration.

1.3.1 Continuous Integration
Continuous Integration (CI) emerged shortly after the more agile and lean development
processes were introduced into the software engineering market. Continuous Integration
is a natural practice to utilize in the more lean and agile development teams. All the small
integration steps are an essential part for keeping the process going. However to keep
these integration steps continuous, some kind of automation needs to be done to compile
and test new code. When you get these steps automated you can then integrate new code
continuously, hence the name; Continuous Integration[5].

1.3.2 Continuous Delivery and Deployment
Although it seems very obvious to have some kind of deployment/delivery system extend-
ing your CI-system, the whole concept and principles were not realized on paper until
David Farley and Jez Humble wrote the book “Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation”[8]. Continuous Delivery is
the natural and final building stone in the integration workflow. By making not only the
integration steps small but the deliveries as well, the product quality can be improved even
further. However, to keep the delivery continuous there needs to be quality assurance steps
before the initial deployment step. All these steps from new code to a deliverable product
can be realized in a “deployment pipeline”[7]. “deployment pipeline” is a concept Farley
and Humble discuss in their book as well. There have been a lot of confusion around the
terms “delivery” and “deployment”, as they may be interpreted in various ways. In this
master’s thesis they are defined as follows; Continuous Delivery is the same thing as Con-
tinuous Deployment except for the fact that Continuous Delivery makes a product delivery
ready (deployable in the push of a button), but Continuous Deployment shoots the delivery
out to production as well.

11

1. Background and Introduction

1.4 The Concept of Containerization
Workload and resource isolation have always beenwell-discussed subjects in computer sci-
ence. By isolating dependencies and resources, the maintainability of a particular system
can be dramatically improved, and in the end give a better overall quality of the system. In
the age of “cloud” computing, systems are even more dependent on isolation. The required
isolation and resource allocations make infrastructures heavily dependent on virtualiza-
tion. The virtualization enables physical machines to act as multiple virtual machines[14].
These sub-machines can act as isolated instances, which includes dependencies and func-
tionality that enables a service or services to operate. These isolated instances can then
be transferred to different environments, independent of actual configurations surrounding
this isolated instance. This isolated transfer principle will significantly simplify the pro-
cesses towards continuous delivery, that are heavily dependent on the processes of getting
artifacts from one environment to another.

When searching for a solid understanding as to why this topic is so important, Solomon
Hykes talks about the “matrix of hell” in his introduction speech about Docker [9]. As can
be seen in table 1.1, a set of different configurations can quickly escalate into an massive
dependency matrix. Each question mark in table 1.1, is a combination of configurations
specific for that environment and solution. Making sure the solution is persistent through
the whole matrix requires a tremendous amount of tests, and even then the quality cannot
be secured whenever a new set of configurations is about to arrive.

Developers
Laptop

QA envi-
ronment

Single
Pro-
duction
Server

Cluster Public
Cloud

Testers
Laptop

Customers
Servers

Static
Website

? ? ? ? ? ? ?

Web
Front-
end

? ? ? ? ? ? ?

User DB ? ? ? ? ? ? ?
Analytic
DB

? ? ? ? ? ? ?

Queue ? ? ? ? ? ? ?

Table 1.1: The Matrix of hell

The solution to this hazard is rather simple; containerization. By encapsulating the
dependencies and configurations with the use containerization, it is possible to cover all
combinations in the matrix described above with only one artifact; the container itself. As
Hykes mentions, containers have been the obvious solution in the field of logistics, and
makes up a unified solution which can be used by trains, trucks and boats. This unified
container solution enables shipments from point A to B, without any specialized excep-
tions. The sender from point A is aware of the setup in point B, which enables B to use
all the tools and systems to receive the goods without any hiccups. This concept can be

12

1.4 The Concept of Containerization

transferred into the binary world, by simply putting the artifacts into a container and then
ship them to the system of your choice. If the container can be executed in your system it
can be executed in the production servers and the stakeholders laptops alike, thanks to the
unified container solution[1].

Virtual machines are another approach to solving the isolation problem, but there are
some technical differences, which will be explored in Chapter 3.

13

1. Background and Introduction

14

Chapter 2
Method

This chapter will give the reader a better understanding of how the conclusions of this
Master thesis were stated. By raising questions and providing them answers, the reader is
given an insight on how containers will impact the processes towards continuous delivery,
and in turn give valid conclusions.

2.1 Questions
Below is a list of questions that needs to be answered in order to be able to understand the
containers impact on continuous delivery, and continuous delivery’s overall impact on the
project:

• What problems or blockers does Ductus have today that prevents them from achiev-
ing continuous delivery?

• How can we solve these issues with the use of containers?

• Will containers have the desired impact on the implementation process?

• How will continuous delivery impact the project?

The goal throughout this Master’s thesis is to establish a discussion and conclusion
based on the questions presented above. These questions will hopefully give the reader a
better overview of this research, and acts as guidelines and goals during this study.

2.2 Approach
Reaching the answers to the questions raised in section 2.1, will call for a solid research
approach. This section will present the way in which the research was conducted. The

15

2. Method

hope is to provide the reader with a sufficient understanding of the approach to finding the
answers to the questions raised. This research will use a qualitative approach. A qualitative
research was chosen due to the fact that the problems at hand are somewhat specific for
Data Ductus’ case. A more quantitative approach, for instance with the use of polls, might
provide a understanding of the need for continuous delivery, but this research is more of
an investigation on how the use of containers will impact the process towards continuous
delivery.

2.2.1 Pains and Blockers
The first step in this research process will pinpoint the hardships and blockades that stand
in the way of Data Ductus achieving continuous delivery today. The bad practices that
encourages these obstacles will from now on be referred to as the “anti-patterns”. Obser-
vations and informal interviews have been performed with the developers and especially
the personnel in charge of operations in order to find these anti-patterns. By physically
being located among the people involved in the 100koll project provided a great oppor-
tunity to always get instantaneous feedback, as well as the possibility to observe how the
developers run their day-to-day routines. Therefore, observations and informal interviews
has been the main approach to this qualitative research.

2.2.2 Container-based Solution
When the bad practices or anti-patterns are identified a solution can be implemented, which
will be purely based on containers. Implementing a solution based on containers will give
the evaluation a better correlation with containers true impact on continuous delivery. The
continuous delivery solution will be implemented with the use of a “dummy-project”. This
dummy-project is a trivial implementation of a fibonacci sequence solver. The architec-
tural components that builds up this dummy-project will be depict the 100koll project as
close as possible. Achieving continuous delivery with the use of the dummy-project will
aid the adaptation to the 100koll project and other projects alike. The use of this dummy-
project will provide fair conclusions on how the 100koll project will be impacted in reality,
without having to learn the true workings of 100koll.

2.2.3 Solution Evaluation
To be able to get a solid evaluation of the container-based solution there needs to be some
qualitative research before and after the solution is introduced into the agile workflow.
These metrics are stated by interviewing operations personnel, sysadmins1 and by a deeper
analysis of the current workflow. By conducting a deeper evaluation of the solution and
how it can eventually impact the 100koll project will hopefully give this research valid and
solid metrics in order to find the answers to the questions raised in section 2.1.

1System administrators - The persons maintaining the systems in the infrastructure

16

2.2 Approach

Cycle Time
One of the most important metrics in a software delivery process is the cycle time. The
cycle time refers to the time it takes for a new request to be realized and delivered to the
customer. For instance, the point in time were a new feature has been requested to the point
in time when the feature is actually available to the customer [8]. This metric can be hard
to measure due to the fact that it spans over the whole delivery process and involves many
steps, which makes it a very purposive metric, which in turn makes it a strong candidate
for measuring the success rate of the solution. The value of this metric will be settled
based on these two questions:

• How fast can a bug-fix or other “quick-fixes” be delivered to the customer?

• How much time is spent on staging and deploying new releases during an iteration?

Feedback
Feedback is the heart of the software delivery process [8]. It is essential for the developers
to get integration feedback from their newly commit code. It is also important to archive
all changes and reports accordingly to get a good overview of the project success rate. This
is usually done by utilizing so called continuous integration servers like Jenkins CI.

To get even better feedback to the developer (or any involved stakeholders for that
matter), the use of “information radiators” is not uncommon. These radiators are hard-to-
avoid manners which usually consists of a big monitor or a poster displaying the status of
the project.

This metric will be based on how fast developers can get feedback and on howwell they
are informed. The feedback loop will first be measured by observing how the developers
get feedback today, and the overall mindset against it. This measurement will then be
compared with the potential feedback improvements gained by the new feedback system.
The new feedback system will be measured and evaluated by observing and recording first
impressions and reactions from the developers when first introduced to the new system.

Quality
Unlocking the complete set of benefits from continuous delivery is crucial in maintaining
the quality of the product. How the newly committed code retain the expected quality
needs to be analyzed and reported back to the developers in the feedback cycle. The ease of
discovering quality defects are therefore an important metric in order to be able to release
highly quality releases.

This metric will be measured by implementing the same functionality in two different
ways; one less efficient way (in form of execution time) and one in a more efficient way.
By making two solutions that cover the same functionality, the less efficient way of solving
the problem will hopefully be discovered with the use of quality testing, which in the end
gives us a sufficient measurement of the metric. This will be done by implementing two
ways of solving a trivial math problem, like a fibonacci sequence calculation. The less
efficient way will then hopefully be discovered by introducing a threshold into the quality
testing in the deployment pipeline. The threshold results in the less efficient way lagging
behind its more efficient counterpart, due to the fact that the lesser alternative cannot make

17

2. Method

it over the threshold. The result of this measurement will then be compared by the quality
assurance measurements performed in today’s delivery workflow.

2.3 Related Work
This Master’s thesis will be heavily dependent on Jez Humble and David Farley’s book
about continuous delivery[8]. Both Humble and Farley have got masses of experience in
this area and decided, in 2010, to publish a book about their knowledge on how to solve
the problem of achieving continuous delivery. Introducing containers into the Farley and
Humble guidelines and by observing the way in which they impact the processes toward
continuous delivery, it is possible to get a better understanding on how they really impact
the integration workflow, and give us the desired conclusions.

To get a better understanding on how containers work and how they can impact the in-
frastructure, Wes Felter, Alexandre Ferreira, Ram Rajamony and Juan Rubio have written
an IBM report which will be used [16]. In the year 2014 they updated their research about
containers to use Docker as the default container framework. This project also heavily
revolves around Docker, and because of this the IBM-report is the perfect reference with
which to touch base.

Other companies like Oracle have, by introducing the concept of continuous delivery,
greatly improved quality and business value of their products[13]. However, it did come
at a certain price, but in the end these costs can be exempt due to the opportunities gained.
This, among other studies[4], display the potential value and gain of continuous deliv-
ery. However, continuous delivery may come with some challenges (which are described
throughout the remainder of this thesis report). This Master’s thesis study will hopefully
be valuable addition to the research involving the processes towards continuous delivery
and the true value gained from its introduction.

18

Chapter 3
Containers

This section takes a deeper dive into the technical aspects of containers, and give the reader
a better understanding on how containers can be an alternative to virtual machines in order
to provide isolation.

3.1 Underlying Technology
The basic principle of container usage is to get the same benefits as virtual machines but
without unnecessary overheads. This is achieved by isolation on the operating system level
layer instead of virtualizing the hardware and operating system kernel. This allows for the
wanted level of isolation. As can be seen in figure 3.1 the isolation is closer to the oper-
ating system, which turns the hypervisor and the guest operating system into unnecessary
footprints. The removal of the extra layering can also be reflected on the performance
which will be discussed in section 3.3.

In order to achieve the isolation between the operating system and the top layer as
shown in figure 3.1, functionality in the Linux kernel is used; namely namespaces and
cgroups. These Linux kernel functionalities are then usually wrapped into a more user-
friendly framework which will be discussed in section 3.2.

3.1.1 Namespaces
The duty of the namespaces is to give a process different view of the system than other
processes. Using six different types of namespaces gives the system the possibility to wrap
a particular global system resource in an abstraction, which makes the process within those
namespaces act as if it has its own isolated instance of the systems global resources [10].
These six namespaces can be shown in the list below:

Mount namespaces Mounting namespaceswas the first namespace that was implemented

19

3. Containers

Figure 3.1: Architectural differences between virtual machines
and containers.

and shipped with the Linux kernel 2.4.19[10]. This namespace allows a group of
processes to see just a specific set of the filesystem mount points by isolating them
from the rest, which makes it possible for a processes (or multiple processes) within
that namespace to have a whole different view of the filesystem hierarchy.

UTS namespaces First appeared in Linux kernel 2.6.19[10], allows isolation of two sys-
tem identifiers; the domain and node-name. This namespace can for instance make
it possible for a container to have its own hostname.

IPC namespaces Alongwith UTS namespaces, IPC namespaces were implemented. IPC
namespaces makes it possible to isolate certain interprocess communication re-
sources. In the Linux kernel, System V IPC was used until 2.6.30, when it was
later replaced by POSIX message queues. IPC (Inter-process communication) al-
lows processes to exchange data between eachother.

PID namespaces PID namespaces arrived in Linux kernel 2.6.24[10], which makes it
possible to isolate the process ID number space. This means, in practice, that the
same PID can exist in different namespaces.

Network namespaces Network namespaces have existed since 2.6.24[10], but was not
fully completed until about the time of the release of Linux 2.6.29. This namespace
makes it possible to isolate all system resources associatedwith networking; devices,
IP addresses, IP routing tables and ports etc..

User namespaces User namespaces is the last namespace that has been implemented in
the Linux kernel. It started to occur as early as 2.6.23[10], but was not fully com-
pleted until 3.8. This namespace makes it possible to isolate User and group ids.
This means that a process inside this namespace can have full root privileges for
operations but is unprivileged for operations outside the namespace.

20

3.2 Docker

3.1.2 Cgroups
Cgroups (Control Groups) is another important feature in the Linux kernel. Cgroups are
used for limiting, account for and isolate resource usage; CPU, Memory, Disk I/O and
networking, among others. This gives the host the ability to constrain containers resource
usage. Cgroups provides functionality for separating certain sets of tasks into hierarchical
groups with specialized behavior from other hierarchical groups. For instance by limiting
the resource usage for an apache server, apache and all apache’s child processes will not
exceed that resource limitation, apaches hierarchical group will not overrun another hier-
archical group. Cgroups are therefore a fundamental corner-stone for isolating containers
from each other.[11]

3.2 Docker
As mentioned in section 3.1 containers relies on a variety of Linux kernel functionalities
which are usually wrapped into a user-friendly environment. One of those “frameworks”
is Docker[6]. Docker utilizes a pre-built execution environment. Until version 0.9 Docker
used LXC as the standard execution environment. LXC was later dropped and switched
to libcontainer[15]. Libcontainer is considered to be a tighter integration with the Docker
framework, hence the execution environment is developed by the community itself, as can
be seen in figure 3.3.

Our hero, the Docker Whale!

Docker acts as an additional layer of ab-
straction for the container execution environ-
ment by utilizing a server-client architecture.
The core building-stone of the Docker frame-
work is the Docker Engine. The engine is basi-
cally a daemon running on your operating sys-
tem that manages containers with the use of
an execution environment. This engine can
in turn be controlled by an API (Application
Programming Interface), which are most com-
monly used by the Docker CLI (Command Line
Interface). The Docker engine allows the op-
erating system, for instance, to “link” contain-
ers or expose ports through the Docker Network
interface[6], and the fundamental parts as starting, stopping and killing containers.

Docker utilizes a layering architecture in order to simplify the process of moving con-
tainers across different hosting environment. By creating images (read-only containers)
and saving them using the AUFS (advanced multi layered unification filesystem), the foot-
print of these images can be significant minimized. This is due to the fact that AUFS
utilizes the “copy-on-write” principle, which means that one set of information only exists
once, and the top layers inherits from the same footprint. For instance if you have two
images based on the same Linux distribution but two different web hosting systems, for
example nginx and apache. These two images will point to the same base layer (which
only exists once), and then put another layer on top of that.

21

3. Containers

Figure 3.3: Architecture overview of Docker and its interfaces.

NAT (Network Address Translation) are also used by Docker to make it even more
user friendly. By creating a separated network interface for Docker containers, the traffic
can be bridged and give the user even more control.

3.3 Performance
As mentioned in the introduction to this chapter, containers are considered an alternative
to virtual machines. With the increasing interest in “cloud” computing, virtualization has
become a crucial factor in order to squeeze as much functionality as possible into todays
powerful hardware. This is directly reflected on resource utilization and budgets, wanting
companies to move their IT infrastructure into the “cloud”. As mentioned in the article by
IBM [16], the trade-off for virtualization has always been a factor to consider, due to the
fact that it directly affects the computing resource budget. By making the virtualization on
a operating system level, in theory the trade-off will be less. In the article, IBM is stacking
up containers (docker) against virtual machines (KVM) to see which technology got the
best trade-off by comparing it to native performance.

3.3.1 CPU and Memory
The benchmarks during IBM’s research were conducted using numerous different tech-
niques. CPU performance was measured by utilizing PXZ, which are a lossless data
compression method using the LZMA algorithm. The result showed that Docker out per-
formed KVM by 12%, and was very similar to the native performance[16]. HPC (High-
performance computing) was measured using Linpack. Linpack performs LU factoriza-
tion with partial pivoting in order to solve a dense system of linear equations. In this
test Docker performed almost identical to the native with a 17% better performance from
KVM[16]. However when KVM was fine tuned it performed only at 2% less[16]. The
STREAM benchmark was utilized to measure the Memory bandwidth. STREAM makes
simple operations on vectors in order to measures sustainable memory bandwidth. In this
case Docker performed as the other tests, almost identical to the native. KVM had lost
an average of 2,25% in performance, which is slightly less[16]. The benchmarking on
the memory was executed by RandomAccess, which stresses the memory subsystem in a

22

3.3 Performance

regular manner, with a set of memory operations. This test showed almost no significant
difference from the native results for both KVM and Docker. Docker performed 2% less
and KVM 1%[16].

By calculating the average loss in performance relative to native performance, the re-
sult showed that Docker benchmarked 0,86%performance loss andKVM (tuned) 4,29%[16],
a difference by 3,43%.

3.3.2 Networking
As mentioned in section 3.2, Docker uses a bridge which is connected to the network via
NAT. IBM benchmarked Docker both with the NAT network setup and the host interface
directly. Tominimize virtualization overhead as much as possible while using KVM, virtio
was used on the guest OS and vhost on the host. The first measurement was done by using
nuttcp, which is a tool for measuring network bandwidth. The result from nuttcp showed
that during transmission, Docker containers utilizing NAT gives an noticeable overhead,
while containers using the host interface performs almost identical to the native. KVMper-
formed significantly better than Docker using NAT during transmission. However while
receiving data, Docker using NAT out-performed KVM[16].

The network latency was then analyzed using netperf. The result showed that Docker
using NAT almost doubled the latency, while KVM adds a less overhead compared to the
native[16].

3.3.3 Disk I/O
IBM utilized fio to analyze the Disk I/O performance drop for KVM and Docker. As de-
scribed in section 3.2, Docker uses the AUFS filesystem to achieve the “copy-on-write”
functionality. However this can be neglected by mounting the host volume into the con-
tainer, which IBM did during the benchmarks. KVM however adds an extra layer, namely
QEMU. The result shows that Docker (while mounted volume) performs as expected, iden-
tical to the native[16]. The IOPS (Input/Output Operations Per Second) result showed
KVM could only withstand half of IOPS compared to Docker and the native[16]. All
I/O operations done with the KVM setup had to go through QEMU. However, the KVM
throughput performance was almost identical to native and Docker, but the extra layering
of KVM needs to make more use of CPU cycles per I/O operation, which will be directly
reflected on how much CPU that are available for the application.

3.3.4 Summary
The report from IBM showed that containers perform equally or better than VM’s in almost
all cases[16]. The overhead for CPU and memory performance was almost negligible, and
networking and disk i/o should be used carefully. By letting Docker container utilize the
host interface, the overhead introduced by bridging the traffic via NAT can be avoided. The
AUFS filesystem introduces overheads as well[3], but can be avoided by mounting the host
volume into the container. By introducing these two configurations a lot of overhead can
be avoided while virtualizing with containers. However, with virtual machines utilizing
hardware virtualization, it is impossible to avoid the extra layers that comes with them.

23

3. Containers

24

Chapter 4
Taking the Step

The title of this chapter “taking the step” refers to the leap from continuous integration to
continuous delivery, by breaking the unproductive and bad practices around infrastructure
and deployments, so called anti-patterns. This thesis assumes that there is already a work-
ing continuous integration workflow in place, and therefor the thesis is focusing on the
step from integration to delivery. This last and somewhat fundamental part in the whole
agile workflow is often left out because it is usually considered to be a hard and resource
heavy component to achieve. This chapter will present the anti-patterns and the pitfalls
for achieving continuous delivery and how to take the step from continuous integration to
delivery by breaking these anti-patterns. The objective is to make the leap from continu-
ous integration to continuous delivery a lot shorter by introducing containers. This will in
turn make the breaking of the anti-patterns a lot more appealing.

The first section will present the anti-patterns Data Ductus are currently conducting.
The second section is a way of breaking it and the last section will present the benefits
with continuous delivery.

4.1 The Anti-patterns
This section will present the anti-patterns that Data Ductus is currently conducting with
their 100koll project, which prevents them from achieving continuous delivery. However
these patterns can be considered one of the most common patterns and can probably be
related to a lot of other projects. This pattern does not take into account the integration-step
as described in the previous section.

4.1.1 Deploying Manually
Deploying manually is one of the anti-patterns. Deploying new releases are usually con-
sidered painful, repetitive and really boring: boring to the point that developers takes

25

4. Taking the Step

turns to deploy artifacts to the development environment or even use the “if you need
to test your changes, deploy them yourself” practice. When the big release day is sched-
uled, it is usually associated with fear. The anxiety builds up inside when you realize
that the last time a new release went into production you had this huge bug that did
not reveal itself until the system was used by the customers. The development team
needed to make a quick-fix while the ops-team in panic manually rolled back the system.

Angry developer blaming operations personnel.

When the release was finally ready for another
rollout the clock was already 1am at night. This
made a tired ops-person publishing the wrong
artifact. The developers think they did not solve
the problem and tries to figure out why their
quick-fix did not work. A couple of intense
hours later they realized that the ops-team did
just deploy the wrong artifact to the produc-
tion and everything escalates into CHAOS. This
might be the worst case scenario, but a lot of
people might be able to relate to it in some way.

Deploying, and especially deploying to pro-
duction, involves a lot of moving parts, and by
performing these tasks manually the risk of fail-

ing increases considerably. The probability of a human error increases as the process gets
more and more intense. This list will hopefully give a better understanding of what can go
wrong and to give a better visualization of different failing scenarios.

• If the deployment-step is performed manually there is a probability that errors will
occur. These errors might be so insignificant that they are hard to track down and
will not appear until days later.

• Because the deployment is done manually it will probably not be repeatable which
can give sporadic errors that leads to a lot of time being wasted on debugging de-
ployment errors.

• Manual deployment-procedures need to be documented in some way. This means
that every time a deployment routine changes the documentation needs to be up-
dated as well. This might be time-consuming and will even come to the point where
documentation is way to out-dated when it needs to be used.

• The deployments are usually (and hopefully) done by some deployment-expert, and
when the expert is not available there cannot be any deployments done.

• Performing deployments manually is repetitive and boring, yet it requires, as men-
tioned, some degree of expertise to perform them. Asking people about doing boring
yet technically demanding tasks is a certain way into human errors. Especially when
the expert is having a bad day.

• You can only test a manual process by doing it, which is often time-consuming and
expensive.

26

4.1 The Anti-patterns

• The fact that deploying manually to a development environment gives the possibility
that the environment is out of sync. Even though the artifacts are deployed based on
the central repository and not the developers local source-code. This might occur
when developers misunderstand each other or if a developer forgets to deploy his/her
new changes to the development environment.

These are just a few examples on the many things that may go wrong.

4.1.2 Manual Configuration Management
There is a possibility that configurations of the infrastructure are done manually by the
operations-personnel and sysadmins. This is the case for Data Ductus; for instance: if
there needs to be some security reconfiguration in some third-pary library, the sysadmin
needs to do these tasks on all these nodes individually, which can be very time consuming.
To get a better understanding why manual configuration of the infrastructure is considered
an anti-pattern, a small list were things can go wrong will be presented below:

• Even though having deployed new releases to staging successfully many times the
service might not work in the production, and there is no way of knowing why.

• Nodes in a cluster might get a different behavior which might lead to an inconsistent
and misbehaving system.

• The operation team needs to perform intense and techical-demanding tasks just to
get a environment ready for deployment.

• With the lack of version controlled automated configuration management it is hard
to step back to a previous configuration of the system or infrastructure, the sysadmin
might not even know how he or she got the configuration that is in place today.

• Bugsmight occur because there is an unintentional mismatch between nodes in some
configuration.

• Configuration of the systemmight be performed by modifying the machines directly
which give the possibility to mess something else up.

As you can imagine keeping a system running by manually configuring a cluster of
machines is really demanding and time-consuming, and human errors are waiting to hap-
pen. Configuration mistakes can even be transferred to the development team, for instance;
some load-balancer had a corrupt node in its pool and the developers just deployed some
new artifact to the environment. They now think their code messed something up but
the fact is that there is only some misconfigurations in a configuration-file on the load-
balancing node.

27

4. Taking the Step

4.2 Breaking the Anti-patterns
Breaking these anti-patterns are usually considered to be hard and resource heavy. Con-
ducting these anti-patterns seems safer and a better solution for now. This section will try
to point out the fundamental building-stones towards continuous delivery by breaking the
anti-patterns with the use of containers. These container-based solution is however just a
theoretical assumption and is to be tested and evaluated in a later stage by implementing
a solution based on containers and Farley and Humbles principles[8].

4.2.1 Automatization is the Key

Satisfied developer and tester

Automatization is the key element in achiev-
ing continuous delivery. Almost everything can
be automated. It makes a lot of sense to auto-
mate demanding and repetitive tasks in a real
manufacturing process, but when it comes to
computer technology it is often omitted: Even
a simple task such as transferring a file to the
same folder every morning, or starting that
backup every time you are about to go home
from work. Two minutes a day becomes 10
minutes a week, 10 minutes a week becomes
40 minutes a month, 40 minutes a month be-
comes 480 minutes a year. Which means that
if you had a little one-liner script that did this
task for you everyday for a year you could save yourself a whole workday’s worth of time.
In order to achieve continuous delivery you need to make your software ready to be in a
deliverable state by the use of some “deployment pipeline”. This pipeline is dependent
on chained automated tasks in order to construct a deliverable software into production.
More about deployment pipelines and a implementation will be presented in chapter 5,
where automated solutions will be presented along with it. However this section will try
to point out which benefits you gain from automating your repetitive tasks:

• By automating a repetitive task, it is easier to find bugs and errors. Repeating a
task exactly the same way multiple times will give, with a high probability, the same
errors.

• Your scripts are your documentation. There is no need for keeping a document up-to
date, because if your scripts are not up-to date the atomization will not work.

• Automated tasks are easier to test and these tests are cheaper to perform.

• If your scripts have successfully done a task 100 times it will probably work the
101:s time.

The scripts and automatization techniques do not always comes with just benefits. It is
important to keep the scripts standardized in order to adopt to different infrastructures and

28

4.2 Breaking the Anti-patterns

projects. Follow the principle of DRY (do not repeat yourself) during scripting towards
automation is also important, to avoid the double maintenance problem. By making the
deployments and configurations dependent on standarized scripts creates the need to keep
these scripts updated during system changes.

4.2.2 Acceptance Testing
Another factor that keeps development-teams stuck in this anti-pattern might be that they
feel a lot more comfortable by deploying manually, because then they feel like they have
more control of the artifacts that goings into production. However, by utilizing good ac-
ceptance testing there is no need to worry about bad artifacts. Acceptance tests are there
to make your team enough comfortable to take the step to deploy something new into
production. Here are some key benefits by introducing good acceptance testing:

• Your release will always be ready for production. If the acceptance tests fail the
release fails.

• It is better to discover that you have a quality problem before you release something
into production then after.

• Computers are better to test the quality of a product by removing the human errors.
Computers can follow strict testing routines that should not make any release slip
through.

It is important however tomake relevant acceptance tests, that confirm the quality of the
product. If the acceptance tests wont be able to confirm the product quality, pure releases
might slip through the pipeline.

4.2.3 Higher Deliver Frequency
Integrating new code into a project is usually a very painful process. The concept of agile
and lean development is to make the processes that hurt more frequent to bring the pain
forward, instead of make a huge mega integration at the end. So why do not take this
principle a step further and practice it in the delivery state as well. By making frequent
deliveries you are able to improve the quality of your product. Realizing that the quality
requirements are not met as early as possible is an important factor, and a good way to find
out quality flaws is to deploy your service into the QA-environment for testing. Instead of
discover that the whole month of integration of new codes messes your quality up when it
is finally ready for production. By developing good automated deployment strategies will
make sure the deployment processes to the production will not mess up the production
environment.

4.2.4 Generalize the Infastructure
The key benefit of keeping an infrastructure generalized is that we can keep our environ-
ments increasingly similar. The development environment can be similar to the quality

29

4. Taking the Step

assurance environment and the quality assurance environment to the production environ-
ment. By keeping the differences at a minimum the production environment will behave
some what like our development environment. This means that there is no need for spe-
cialized scripts for a specific environment purpose and we can keep and maintain just one
script that works on all environments.

By keeping the scripts as general as possible gives a better proof and confidence that
if it works for the development environment we know it will work with high probability in
production as well.

If the configuration management is automated with the use of configuration manage-
ment tools as well, the benefits can be even greater. By keeping configuration management
automated makes it possible to construct dynamic load-balancers, scalability and a better
way of maintaining the infrastructure. Basically you administrate your infrastructure by
pushing configurations to a central repository and the system solves the rest. This makes it
easier to debug the system and you always know how the latest revision of configurations
looked like and makes it possible to rollback at any point in time.

4.3 Containers role in breaking of the anti-
patterns

The goal of this Master’s thesis is to, with the use of containers and Humbles and Farleys
guidelines, break the current anti-patterns conducted at Data Ductus, in order to achieve
continuos delivery. The problems determined and described in section 4.1, can be broken
with the practices described in section 4.2.

An overview of how containers, and Docker especially, can be used with the current
workflow to facilitate the breakage of these anti-patterns can be seen in Figure 4.3. By
encapsulating the configurations, dependencies and compiled code into one artifact, a con-
tainer (Docker) image, simplifies the deployment and staging processes significantly. The
scripts and configurations used during deployments and staging can be encapsulated into
a container (Docker) image as well. These images can then be utilized for staging and
deployment in any environment, for instance on the operations personnels laptop, a con-
tinuous integration server or even a customer.

How to achieve such a solution will be described into further detail with the five steps
of implementation in chapter 5. The solution described in chapter 5 is purely container
based. This chapter will lay down the benefits gained by utilizing containers to break these
anti-patterns. These benefits are then realized into a solution described in the later chapter
5.

4.3.1 Automation
By utilizing the concept of containerization, the automated tasks will be less painful. This
list will present some examples where containers can help the automation process.

• You only need to compile once, due to the fact the binaries and configurations in a
container is the same for all containers that are created from the same image. You

30

4.3 Containers role in breaking of the anti-patterns

Figure 4.3: Continuous Delivery with the use of Containers

compile once, put the binaries and configurations into an image and then you are
certain that this image will work the same on all machines.

• The container framework is the core functionality in the automation process. The
framework lets you start, stop and kill containers on demand within seconds, which
simplifies the automation process due to the fact that there are less moving parts
involved.

Containers are a virtualization technique which are heavily isolated instance. It is
important to keep this in mind due to the fact that this can make the automation processes
even harder then without them, especially when containers needs to talk to each other.
By strictly use automated configuration management this can however be avoided or be
simplified.

4.3.2 Generalization
The fundamental building stone of a general infrastructure is the use of isolation. This
gives the possibility to utilize the whole machine and give the machine different purposes
at the same time. One machine can even be used for Development, QA, and Production at
the same time. Isolation can also be achieved by the use of virtual machines, see chapter
3. However, the fact that containers are less resource-heavy makes it possible to squeeze
in even more isolation into one machine.

31

4. Taking the Step

As described in chapter 3, containers are faster as well, which can be beneficial when
the configurationmanagement should be automized. It is easy and fast to scale your cluster,
dynamically load balance to different nodes and to restart and debug containers.

Another great benefit with containers is that you can isolate the configurations and
containerize them specifically for the purpose of that container. For instance; you can
have 10 different services with 10 different versions and 10 different configurations on
one machine. This would also be possible with virtual machines, however, it would take
a lot more resources due to the fact that you need the hypervisor, OS and everything else
that sets the base for the virtual machine. By using containers you use the same footprint
for all 10 containers, the only difference is the footprint from the different versions and
configurations.

By utilizing a complete framework like Docker, the processes of configuring contain-
ers to work together can also be easily achieved. You can for instance “link” containers
together in order to ease the communication between them.[6]

4.3.3 Delivery Frequency
As mentioned containers will in theory bring down the automation steps and make them
a lot more simpler. This will have direct impact on the frequency that a new software are
able to be delivered. By reducing the steps and make them simpler the whole process are
less likely to fail, therefore the frequency can be increased.

Containers simple and lightweight frameworkmakes them very easy to transfer, deploy
and to start. Starting a container is a matter of seconds instead of minutes.

4.3.4 Acceptance-testing
By utilizing the fact that containers are prepared once and able to be executed anywhere,
you are able to run your acceptance-test anywhere as well. You can even run your func-
tional acceptance test directly on your CI-server. This makes the whole automation a lot
more simpler. You do not need to worry about how your binaries are configured on other
machines, because all the configurations are already wrapped into your containers. The
fact that all configuration and dependencies are containerized, gives a higher probability
that it will work on another environment with minor configurations.

32

Chapter 5
The Implementation Process

As mentioned in section 1.3.2, continuous delivery is about being able to deliver a quality
product continuously to the customer. There needs to be various techniques established in
order to achieve this goal. This masters thesis will be separating the implementation of the
continuous delivery workflow into five fundamental steps. The first two steps is about the
ability to get a infrastructure as code, the third to utilize the programmable infrastructure
to perform deployments and the last two is about construct the deployment pipeline. As
the solution may vary from project to project, these steps will hopefully help the reader in
achieving a solution using these guidelines.

In order to get an adequate evaluation of the solution a “dummy-project” has been
implemented. This project contains parts that are required in order to test the workflow,
adopted to fit the attributes of the 100koll project. However, the solution and project is
standardized and it will hopefully be possible to adapt it in accordance with other projects
as well.

5.1 The Dummy-project
The Dummy-project is a RESTful web service implemented using Java. The project con-
sists of a backend-part and a simple front-end part. In order to be able to utilize the whole
spectrum of the delivery pipeline; functional (blackbox-testing) and stress-testing using
Jmeter have been implemented, along with unit-tests and test-coverage. Maven is the stan-
dard building script for Java-based projects at Data Ductus, and because of this, Maven is
used as the default building script in this instance as well. The Jersey-framework (based
on JAX-RS) have been utilized in order to simplify the process of implementing a simple
RESTful web service.

The “dummy-project” is a simple web service that helps a customer to calculate the
golden ratio based on a fibonacci sequence. The sequence can be seen in figure 5.1.

33

5. The Implementation Process

f (n) =


0 n = 0
1 n = 1
f (n − 1) + f (n − 2) otherwise

The fibonacci sequence have been chosen because the trivial implementation, and the
possibility of implementing it in two different quality ways. The first and most obvious
way of solving this function is by implementing a simple recursive call, as can be seen
in Appendix A. However this function tends by very inefficient, due to the fact that the
recursive calls gets exponentially worse with larger n. This can be avoided by “caching”
the previous calculated sequences, whichmeans a fibonacci number will only be calculated
once. In this way we can avoid our big O notation to involve any exponent and make the
complexity linear. The “cache” based solution can be seen in Appendix A, as well. To
make it more convenient and to be able to easily switch between the two solutions, a simple
interface has been created which the different implementations can inherit, as can be seen
in figure 5.1.

Figure 5.1: UML diagram over the logic implementation of the
web service.

The ratio of consecutive Fibonacci numbers are called the golden ratio, which can be
seen in figure 5.1. The source code can be seen in appendix B.

lim
x→∞

Fn+1

Fn
= ϕ

Unit tests have been implemented using jUnit for the source code in appendix 5.1 and
B. The golden ratio can then be calculated using these fibonacci numbers, by a requesting-
client through the RESTful service. The functional testing or blackbox testing and the
stress testing is performed by jMeter using the RESTful service as well.

Maven triggers all these types of tests along with the thresholds; one threshold for unit
tests source coverage, one for functional and one for the stress-testing. These thresholds
sets the requirements for newly integrated code, as the code needs to pass all these test
through the deployment pipeline.

34

5.2 Step 1. Infrastructure as Code

5.2 Step 1. Infrastructure as Code
Infrastructure as code or programmable infrastructure, is the art of writing code to manage
configuration management and provisioning of an infrastructure. Not to be associated with
infrastructure automation, which involves the technique of automating repetitive tasks in
the infrastructure, infrastructure as code is the principle ofmaintaining a certain state of the
infrastructure. So called configuration management tools are utilized in order to achieve a
programmable infrastructure. These tools are all based on the some princible; describe the
infrastructures state with the use of high-level or scripting languages, and let the machines
configure them self to that given state.

Ansible1 have been chosen to be the default configuration management tool in this
Master’s thesis, due to the fact that Ansible is completely agent-less. Agent-less architec-
ture do not require a certain initial state of the infrastructure in order to make the autom-
atization work. Most configuration management tools like Puppet2 utilize an agent based
architecture, which means that the tool requires a “master-node” to synchronize configura-
tions from. Configuration management tools based on agent-less architecture like Ansible,
is only dependent on ssh by “pushing” configurations out to the infrastructure instead of
letting agents synchronize its configurations. The “pushing” functionality simplifies inte-
gration of deployment strategies especially with the use of Docker without any additional
implementations.

5.2.1 Best Practices
As mentioned the task for configuration management tools is to maintain and upgrade a
certain state of the infrastructure. In order to better grasp the concept of programmable
configurationmanagement, metaphors are usually introduced to describe the programming
discipline and structure. In the case of Ansible, thesemetaphors are: roles, tasks, inventory
and playbooks.

A certain machine in the infrastructure can have one or multiple roles. These roles
contains tasks, which are state-based synchronized executions decribed using YAML3. For
example; a machine can have the role as a “webserver”. The “webserver” role can then
contain tasks as following; “make sure you have apache version x” and “make sure your
port 80 is open”. In this way certain manifests for the infrastructure can be constructed
with an mixture of roles and underlaying tasks. These roles can then be delegated to a
certain machine or a group of machines by running a playbook, which contains a set of
“plays”. For instance; there can exist a playbook that describes your base state of the
infrastructure. Running this base state playbook periodically, makes it possible for the
infrastructure maintain its state, and a situation were the infrastructure is out of its state
can be reduced. The machine groups in these plays can be described in inventories. These
inventories can either be dynamically constructed using scripts or just described statically.
For instance there can be an inventory group called “webservers” which is associated in
the playbook with the role “webserver”. Examples of roles can be seen in Appendix C and
D.

1Ansible Configuration Management Tool - http://www.ansible.com/
2Puppet Configuration Management Tool - https://puppetlabs.com/
3YAML Ain’t Markup Language - http://yaml.org/

35

5. The Implementation Process

Figure 5.2: Graph of how Ansible can be structured.

As can be seen in figure 5.2, additional variables can be set in the context of plays, roles
and inventory groups. By following the structure principle described in 5.2, gives the pos-
sibility to describe dynamic plays which can be composed into deployment routines. By
keeping the roles and tasks general, describing the attributes with the use of variables and
inventories, makes it even more flexible to create a generalized infrastructure as described
in section 5.3.

In combination with the use of version control, configuration replications and rollbacks
from different version our infrastructure can be constructed. As described in chapter 5.3.2,
these Ansible scripts can act as an documentation for the infrastructure, which simplifies
the maintainability considerably.

5.3 Step 2. Generalizing the Infrastructure
Keeping the infrastructure generalized will entails its benefits, as mentioned in section
4.2.4. This might be considered a hard task, but with the use of containers the problem
will be significantly less palpable. However, as mentioned in section 4.2.4, the use of
containers in the infrastructure will conceive problems. The fact that containers is such
an isolated instance makes them not aware of its surroundings. This section will explain
that with the use of service discovery and standardized roles solves this problem. As can
imagine this step requires that the previous step is achieved, it is crucial to follow the best
practices as described in section 5.2.1, in order to simplify this step as much as possible.

5.3.1 Service Discovery
By interpreting an instance of a process, which task is to solve a problem (for instance a
customers need) through a specific port, as an service, the use of service discovery can be
applied. Service discovery is a collection of protocols, which task is to always know were
these services are located on which state they are in. By introducing service discovery in

36

5.3 Step 2. Generalizing the Infrastructure

a cluster of machines will give these machines the awareness of its surroundings in the
infrastructure and the services within it.

In thisMaster’s thesis Consul4 was selected as the default service discovery tool. There
are a a lot of different tools available that help the infrastructure achieve service awareness.
However Consul was chosen because the key/value store functionality and the simplicity.
The key/value store influence on the infrastructure will be explained in more detail in
section 5.4.

Figure 5.3: Infrastructure overview using Consul.

Figure 5.3 shows how Consul can be integrated into the existing infrastructure. By
keeping one Consul server instance on each machine that hosts a service, all servers are
aware of each other by utilizing the consensus protocol5[12]. The consensus protocol takes
advantage of the raft algorithm, which follows that the cluster required at least (n/2) + 1
members (a quorum). If one of the (n/2) + 1 members goes down, will make the other
members be aware of it.

With the use of health checks or hearth beats Consul will also be aware of the service
states hosted on these machines. Load-balancers can then dynamically configure it self
dependent on the information given by the Consul cluster, a very important functionality
used during rollouts, described later in section 5.4. Consul’s services are defined by one
unique name and which port the service is reachable through. This makes it optimal to use
for containers, were the ports on the host are bound to certain ports within a container.

5.3.2 Standarized Configuration Management
Keeping the configuration management as standarized as possible can gain many benefits,
as described in chapter . Following the best practices described in section 5.2.1, standard-
ized playbooks can be constructed with the use of different set of variables associated with
a specific set of hosts, as can be seen in figure 5.4.

4Consul Service Discovery Tool - https://www.consul.io/
5Consensus Protocol - https://www.consul.io/docs/internals/consensus.html

37

5. The Implementation Process

Figure 5.4: Standarized configuration management using Ansi-
ble.

These variables can even dynamically, with the use of logic operations, configure a
standardized role. The list below will present the fundamental standardized roles that
makes it possible to generalize the infrastructure and adapt it to serve different set of ser-
vices. In this master’s thesis those services are the QA, development and production en-
vironment hosting the “dummy-project”.

Docker Node This role configures a Linux based operating system to serve Docker con-
tainers. The goal of this role is to make the machine a Docker host, independent
on the Linux distribution, for instance CentOS or Ubuntu. All other roles are de-
pendent on this role, due to the fact that the whole service infrastructure should be
containerized.

Docker Image Another very fundamental part of the generalized infrastructure is the
Docker Image role. This role makes it possible to dynamically build docker images
based on a variety of variables and attributes. The images are built dynamically by
templating configuration files, send them to the nodes and let them build the docker
images. For instance; one docker image can be created specific for a host and its
underlaying service which produce hearthbeats in order to check the state of that
specific service. Docker containers can then be started based on these images, with-
out the need to specify any configurations during staring phase, due to the fact that
the configurations have already been settled within that image.

Service Node Makes it possible for a node to act as an Consul service host. This is
achieved by constructing consul agent containers based on machine variables or
facts. This Consul agent container can then be used to bootstrap a Cluster of ser-
vice nodes. This is done automatically based on a group of hosts and the groups
associated variables.

Load Balancer This role makes it possible to initiate a dynamic load-balancer (HAproxy)
based on service attributes. With the use of Consul this container can then adapt the
configuration and balance based on the service data and the key/value store.

Registrate Service This role registrates a service with the use of the consul agent con-
tainer and set ups the healthchecks.

38

5.3 Step 2. Generalizing the Infrastructure

Deregistrate Service This role deregistrates a service with the use of the consul agent
container.

Docker Deploy Deploys a container based on a docker-image associated service informa-
tion.

Docker Rollback Makes it possible to rollback to a previous container state.

Docker Data Bind a data-volume to a specific container and service, which will be de-
scribed on more detail in a section 5.3.4.

This is a just a few the roles that were implemented during this project. However these
roles set the base of the generalized and containerized infrastructure.

5.3.3 Monitoring
Being able to monitor the infrastructure at all times is an important requirement. A sysad-
min can be forever all-knowing regarding the state of the infrastructure, by combining
health checks with the use of watches. In this project the monitoring was solved by con-
tainerizing the healthchecks and performing general scripts for testing a service and the
machine health. If the containers incorporate scripts for testing services, they will be able
to take advantage of the Docker framework in order to link itself together with the service-
container. This eases the networking. A simple example of a HTTP-check can be seen in
appendix F.

In order to notify a sysadmin if a script fails, watches can be used. Awatch is, basically,
a process that waits for state changes in order to pipe data into another process. At Data
Ductus Slack is heavily used as the default communication tool, therefore an integration6
using watches, Consul and python-scripting with Slack was a obvious solution. Figure 5.5
shows a failing Consul service notifying the user with the use of Slack.

5.3.4 Data Management
As described in section 3.3, Docker utilized the AUFS filesystem to get the layer function-
ality as needed. The AUFS filesystem is slow and should by avoided by mounting host
volumes into the containers during heavy disk I/O operations. However the data mounting
can be generalized due to the fact that Docker gives the possibility to inherit data used
from a container from another container, as shown in figure 5.6. This technique can be
used when containers needs to share data between them by creating a “data-container”.
The only purpose of this data-container is to host data. This data-container can then be
used by “data-manager” containers, whichmakes different operations on themounted data.
This technique can for instance be utilized for data backups and data restoration, as shown
in figure 5.6.

Data-management are outside the frames of thisMaster’s thesis, hence the data-management
implementation is not a priority, and should be seen as a prototype or a proof-of-concept.

6Consul Slack Integration - https://github.com/pgstenberg/docker-consul-slackbot

39

5. The Implementation Process

(a)

(b)

Figure 5.5: Screenshot of a failing Consul service, notifying the
user with the use of Slack.

5.4 Step 3. Deployment Strategy
The next step in the implementation phase is to create deployment strategies. This sec-
tion will describe two methods, one for general deployments, and another specialized for
deployments into production. The goal of these methods is to achieve a controllable zero-
downtime deployment, hence the customer will not notice any downtime during update.
This is a crucial requirement for the 100koll project and is often crucial requirement for
other projects as well.

5.4.1 Rolling out Releases
“Rolling” out releases will be the general method for deploying new artifacts to the cluster.
This method will in this Master’s thesis be executed during deployments to development

40

5.4 Step 3. Deployment Strategy

Figure 5.6: Data management with Docker containers.

and quality assurance environment. The deployments to these environments will usually
not require the same degree of deployment control as for the production environment.

Rolling out deployment are built up with sequential, performed by Ansible. In the
case of an failure, a rollback routine will be executed. The deployment steps involved in a
rollout can be described as following:

1.) Prepare Rollout (all nodes) This first step, and fundamental step, is required to be
able to rollback when so is desired. By committing the state of the service container
and utilize the key/value store hosted by Consul to point to this committed image, a
rollback will be possible in case of a occurring failure.

2.) Pull Docker Image (all nodes) To speed up the deployment time even further this
step will be downloading and prepare the upgraded artifact which will be replac-
ing the current service container in a later stage.

3.) Deregistrate Service (50% of the nodes) When the two preparation steps are done,
the rollout process can be initiated. The first step is to deregistrate the service from
the Consul cluster described in section 5.3.1. This will notify the load-balancer that
the service will not be available. The load-balancer will then be reloading the traffic
pool without the node with the deregistrated service.

4.) Deploy (50% of the nodes) This step will first stop and remove the current service
container, which will then be replaced by the newly pulled image. It is basically the
step were the current service container will be replaced by a upgraded one.

5.) Smoke Test (50% of the nodes) After a certain given delay a smoke test will be exe-
cuted on the newly started container. In case this fails, the rollback procedure will be
executed, and the “smoked” container will be committed for further investigation.

41

5. The Implementation Process

6.) Registrate Service (50% of the nodes) If the smoke-test passes, the service on the
node will be registrated again. This will notify the load-balancer that the service is
ready for traffic. As soon as this procedure is done, the rest of the nodes will execute
the four last steps as well.

If this routine is executed as expected the deployment will be considered as a success.
However in case something fails, for instance the smoke-test, a rollback plan need to be
conducted. The rollback steps can be described as following:

1.) Pull rollback image Pull down the Docker image based on the previous committed
container pointed by the key/value store hosted by the Consul cluster.

2.) Deploy rollback image Stop and remove the none-working container and replace it
with the last functional one (the rollback image). The rollback image will always be
a working candidate, hence it inherits from the last working state.

3.) Registrate Service Registrate the service again to let the load-balancer know that it
is in a healthy state again.

These two plans will cover the zero-downtime deployment requirement, even if a fail-
ure occurs. The customer will never notice (in theory) any down-time during deployments.

5.4.2 Blue-Green Deployment
Deploying to production requires a higher degree of control, which can be achieved by
following a strict deployment plan or routine. Farley and Humble presents a method in
their book they call blue-green deployment[8]. The concept is about having two identical
environments, one blue and one green, there will always be a possibility to switch back
and forth between them without impacting the customers, with the use of load-balancing.
One huge downside with this method is that there will always be one idle environment,
this solution is there for not resource optimal. By introducing the use of service discovery,
dynamic load-balancing and containers, it is possible to exploit both of these environment
at the same time. In this master’s thesis one of such implementation have been constructed,
as can be seen in figure 5.7.

Consul makes it possible to tag certain services. Those tags can be direct taken advan-
tages of by the load-balancer, by directing the traffic to a specific tag. In the deployment
plan shown in figure 5.7, we can see that in figure (a), that both blue and green are tagged
PROD. In the next step (b), one of these environments have switched tag to STAGE. In this
way a new temporary load-balancer can be initialized which only directs traffic to a the
newly updated and tagged environment. The auditor (usually a operations personell), can
then approve or disapprove the new version. If the auditor disapproves, the rollback plan
can be executed and the environment can be switched back to PROD again. If the auditor
approves the change the updated environment will then be tagged PROD, and the other
will be untagged to perform the same rollout as the environment tagged STAGE earlier.
In this way the deployment procedure can be controlled, and in case of failures, switching
between these environments will always be possible.

42

5.5 Step 4. Constructing a Pipeline

(a) (b)

(c) (d)

Figure 5.7: Blue-green deployment sequence with the use of ser-
vice discovery and containers.

5.5 Step 4. Constructing a Pipeline
When the configurationmanagement have been automated and good deployment strategies
have been established, an deployment pipeline can start to take form. The deployment
pipeline is essentially a number of sequential steps or tests which a newly commit code
needs to pass in order to state that a change is releasable. If any of these steps fails, the
whole pipeline will fail and the new changes till be considered unreleasable. However it is
important to make these steps relevant and make sure the quality will be tested throughout
the whole pipeline.

5.5.1 Integration
The first step in the pipeline is to integrate new code into the existing project. This practice
are usually already implemented, due to the fact that it is part of the continuous integration
concept. By utilizing unit testing, will make sure the new code will not negatively impact
other part of the source-code. If the unit-testing passed, the code will be compiled and be
considered as a new artifact, with a version associated along with it.

5.5.2 Quality Testing
As described in chapter 5.3.2, it is very important to setup quality testing to make sure
no quality deficient artifacts will go out into production. In this Master’s thesis the first

43

5. The Implementation Process

quality test is test-coverage. These tests executed even before the artifact are deployed into
the development environment. When the deployment to the development environment are
successful (hence the smoke-tests passed etc.), the deployment to QA will be initialized.
The QA environment will be used to quality assure the newly created artifact, in this case
by two types of tests. One functional-testing or blackbox-testing and one stress-testing.
The stress-testing is important in this project due to the fact that the 100koll project is a
hight currency system that relies on stability and speed.

When all quality-tests have passed the artifact can start rollout to production using the
blue-green deployment plan described in the previous section 5.4.2.

5.5.3 Implementation
Deployment pipelines are usually implemented with the use of continuous integration
tools, in this case Jenkins7 were used[2]. By declaring different types of “jobs” in Jenk-
ins and by linking them together, gives the possibility to construct chaining events, hence
your pipeline. However chaining jobs together in Jenkins lacks maintainability. It is pos-
sible to version control your Jenkins configurations, but the there will always be a need for
administrating the jobs individually inside the graphical interface.

CloudBees solved this problem with their workflow Jenkins plugin8. With the use of
domain specific Groovy-scripting it is possible to construct flows with tasks tightly in-
tegrated with Jenkins. This have numerous of benifits; for instance, the pipeline can be
version controlled and maintained as a script. Instead of creating multiple linked jobs, the
pipeline will only require one, which triggers the groovy script that executes the work-
flow. Another great benefit by using scripted pipelines is that the script can make user
interaction. In this project, under interaction were utilized during blue-green deployment
auditing and during specifying the version of the artifact to deploy into production.

In this project two workflow were created, one for the pipeline and one for release into
production, as can be seen in figure 5.8.

5.6 Step 5. Return Feedback
When the first four steps are established and a deployment pipeline have been taking shape,
some kind of feedback system can be implemented to the project members. The feedback
is essential in order to be able to notify failures during changes, or successfully code in-
tegrations. As mentioned in the book about continuous delivery, it is not uncommon to
have some sort of information radiator[8]. As mentioned before, Jenkins have been used
as the default continuous integration and delivery tool, with the use of groovy scripting
based workflows. There exists Jenkins plugins to be able to visualize chained jobs as a
pipeline, however they are very inflexible and lacks functionality, therefore an stand alone
alternative was implemented during this project.

7Jenkins Continuous Integration Server - https://jenkins-ci.org/
8Jenkins Workflow Plugin by CloudBees - https://github.com/jenkinsci/workflow-plugin

44

5.6 Step 5. Return Feedback

Figure 5.8: Flowchart over the deployment pipeline.

5.6.1 Pipevis
Pipevis9 is a single page application that can act as an information radiator; with artifact
links, reports and pipeline-progress. Pipevis have been developed with the use of numer-
ous open-source frameworks. Pipevis main goal is to maintain the importance of making
information radiator pleasing for the project members to be not considered as just another
mandatory thing to keep track of. It will help the developers keep the importance of check-
ing reports through simple links, and by always informing which state the project is in.

(a) (b)

Figure 5.9: Pipevis screenshots

9Pipevis Information Radiator - https://github.com/pgstenberg/pipevis

45

5. The Implementation Process

46

Chapter 6
Evaluation & Results

This section presents the results from the evaluation based on the metrics presented in
section 2.2.3. These results will support the discussion in the later chapter and answer the
questions raised in section 1.2. The solution which was presented earlier in the chapter
5 is purely based on containers. This will provide us with the most precise evaluation
possible and, in turn, allow for a qualitative research with stellar properties. During the
point in time in which this report was originally written, the solution had not yet been used
in actual live production, therefore these results are based on the first impressions of the
project members as well as a deeper analysis of the impact of the solution on the workflow.
Close collaboration with the operations personnel have also been a huge factor during the
qualitative research.

6.1 Cycle Time
As mentioned in chapter 5.3.2, manual deployment and operations are today considered
a huge anti-pattern. This anti-pattern makes it hard to measure an accurate cycle time,
due to the fact that most operations are done manually. However, when analysing the
current workflow further, a rough estimation have been done; request for a bug fix from
a customer may take several days to be put into production. By introducing automated
processes for quality assurance, testing and deployments, the time to get a new release into
production can be reduced to under an hour. This is based on how long the automation
will executed, and not based on the manual labour behind a new deployment. However as
described in previous section, some manual auditing will be required during operations
towards production environments.

With continuous delivery, the cycle time can be seen as the span from a customer
request to the state were a releasable artifact produced through the pipeline. For a single
line code-fix this can be a huge benefit; the operations and deployment can, in these cases,
be considered a bottleneck. The deployments will not be dependent on a deployment

47

6. Evaluation & Results

expert either; they can be executed by any of the project members whom have got the
approval-privileges for artifacts headed for production.

The evaluation shows that introducing continuous delivery into the project workflow
will facilitate small iterations. This is due to the fact that deployments will not be re-
garded as time consuming factors. During larger iterations the deployment time will have
a relatively lesser impact on the overall cycle-time.

6.2 Feedback
During the analysis of the continuous integration workflow for projects at Data Ductus, the
need for a standardized feedback system was discovered. The most common continuous
integration server used is Jenkins, where reports from different projects are presented.
However, the usage of these reports were not consistent throughout the whole development
team. With the use of an information radiator, developers can be more aware of the state of
the project. With direct access to the reports, the developers can receive feedback without
even knowing the underlaying technology for generating them. By keeping the information
esthetically pleasing, developers and the stakeholders will be more motivated to always
keep an eye on the information radiator, which in the end will hopefully motivate project
members to keep the project at a healthy state at all time. Pipevis, the pipeline visualization
tool showed promising result among the developers.

6.3 Quality
As described in the previous section there is no standardized system for feedback. Maven
is mostly used as the default building script for Java based projects, where the scripts may
vary from project to project. By introducing thresholds during tests executed by Maven, it
is possible to reflect on these tests, wether they pass or not directly into the feedback cycle.
Quality testing have been done before using jMeter, and the concept is, therefore, not
unfamiliar. However, by combining thresholds with the deployment pipeline, the quality
can be approved even further, by failing artifacts that do not fulfill the quality requirements.

In this Master’s thesis two different implementations were constructed in order to solve
a fibonacci sequence, as described in section 5.1. These implementations were easily
switched with the use of different configuration files for the QA, development and produc-
tion environments. Switching to the less efficient solution did not show any differences in
the development environment; although, during the stress-testing against the QA environ-
ment the thresholds set in the Maven script were not fulfilled. Thus, the pipeline failed and
a notification was shown. With that, the developers can come to the immediate realization
that the last change in the source-code was not release-friendly, due to the lack of quality.

6.4 Implementation Effort
Containers had a huge impact on the implementation aspects of this project. Containers
made it possible to reduce almost all configuration dependencies. The five implementation

48

6.4 Implementation Effort

steps presented in the chapter 5, was conducted within 2 months, with minor knowledge
of the technologies on beforehand.

The solution could, within three hours, be maintained and used by the operations per-
sonnel in a test environment, based on the demonstrations that were conducted. The ser-
vice discovery technique when introduced seemed trivial to most of the developers and
operations personnel.

49

6. Evaluation & Results

50

Chapter 7
Discussion

This chapter will hopefully give the reader solid answers to the questions raised through-
out this report. The approach, method and evaluation will be discussed along with the
solution. This section also features a more thorough discussion on continuous delivery
and the impact on the 100koll project, as well as the role of containers in the implemen-
tation process. It is worth to mention again that this system has not been introduced into
production, therefore a lot of these conclusions are assumptions based on facts rather than
finalized results.

7.1 Method & Evaluation
A qualitative research was chosen for this study. It took some consideration, but since the
better perspective would come from a deeper analysis of the current workflow as well as
an understanding on the work-methods of the small 100koll-team at Data Ductus, quality
trumped quantity. A quantitative research was considered but later dropped, as this would
not contribute to sufficient answers. Larger amounts of data, from example questionnaires,
would not provide enough relevant data on how containers facilitated the process towards
continuous delivery. By close collaboration with the operations personnel, and the team
involved in the project, understanding which anti-patterns that could be solved at Data
Ductus gave the research solid conclusions. Without the possibility to be as tightly inte-
grated with the development team at Data Ductus, a quantitative would probably be an
alternative.

The metrics chosen for the evaluation could have been established and considered ear-
lier on in the process, as this would have made the path to the conclusion somewhat less
crooked.

The collaboration with Data Ductus was very close, and most of the work was done
in their offices. This tight knit setting provided the required insight that was needed to, in
combination with the metrics, reach the conclusions.

51

7. Discussion

7.2 The Solution
7.2.1 Stability
The system was developed using the well defined five steps of implementation described
in chapter 5. The system seemed solid and stable, due to the fact that the pipeline was
successfully triggered about 200 times, even though the infrastructure behind the test and
development environment was very poor. The system was also stressed constantly during
three dayswithout any noticeable hiccups. The system did preform as expectedwhen it was
migrated into a another, better suited, infrastructure set-up by the operations personnel.
This shows that the system is very adaptable, general and standardized, which was a goal
during the implementation process. This makes it very easy to setup a new infrastructures
if so is desired, or even scale the infrastructure and resources at will. These properties
were made possible by making the infrastructure programmable, with minimal manual
processes.

7.2.2 Alternatives
The orchestration of containers in the infrastructure was implemented via the use of service
discovery, Docker and a configuration management tool. Finished solutions already exist
for these functionalities, and a lot of them were analyzed and tested before the first pro-
totype was constructed. However, it was soon discovered that a lot of these tools seemed
very immature, and most of them were still in the early alpha stage. The fact that this
system was aimed at helping Data Ductus in production, the use of alpha staged tools was
not an option. Therefore it seemed to be a better choice to use already tested and verified
techniques and tools to implement the solution. As these finished solutions mature they
might be better candidates in the future, but for now the combination of service discovery
and configuration management tools is the best option.

7.2.3 Hiccups
When the system was introduced into Data Ductus own servers by the operations person-
nel, it was soon discovered that one important dependency was not covered. The fact that
Ansible is heavily based on Python, gave a version conflict with one of the Python mod-
ules. This was however easily fixed with the use of virtual environments, by initializing
one isolated Python environment to be used by Ansible. As this solution will go into
production more hiccups might occur, but will be solved along the way.

7.2.4 Containerized Configuration Management
The Ansible runtime and its configurations are containerized as well. The containeriza-
tion of Ansible and with the use of virtual environments makes it possible to avoid all
configuration and runtime dependencies. The containerization of Ansible, however, ex-
pects that the Docker framework is already installed on the machines executing the Ansible
container. This container, or configuration management container, is usually executed by

52

7.3 Continuous Delivery

the continuous integration server. This is a great practice, since the execution will always
be logged and archived, in turn gives better change control.

The fact that the configuration management is container-based gives the possibility,
with no substantial extra efforts, to execute it on any machine with an OS based on Linux,
for instance on any of the project members laptops. If the user does not have a machine
running Linux, the Docker community has constructed great tools for managing a virtual
machine running Docker. The containerized configuration management concept can even
make it possible to deliver entire ready-configured infrastructure setups directly to the
customer, with the intention of hosting the customer’s requested service. Data Ductus
works as consultants and this serves their line of work very well.

7.2.5 Change Control
Another huge benefit optained from introducing infrastructure as code, is the possibil-
ity to use ordinary source control tools. The state of the infrastructure can be somewhat
more controllable which will facilitate the whole configuration management aspects of a
project. A lot of focus has been placed on this during this project which resulted in version
controllable pipelines, feedback systems and infrastructure, in addition to the traditional
configuration items like source-code, tests and documents. These additional configura-
tion items can then be included into the controlled change process and baselines which
can facilitate the configuration management.

7.2.6 DevOps
The containerization of the infrastructure and the introduction of infrastructure as code
gave circumstance to a better collaboration between the operations and the developers,
which in turn will give the team a more DevOps approach during development. By in-
troducing the infrastructure as a configuration item along with the source-code, provides
the possibility for developers to better grasp the underlaying infrastructure and operations
to better understand how the infrastructure collerate with the source-code. Using the pro-
grammable infrastructure, developers even have the option to initialize the same infras-
tructure setup as the production environment with the use of virtual machines on their
local development machine.

7.3 Continuous Delivery
The goal of this Master’s thesis was to introduce continuous delivery to a cluster with the
use of containers and to see if containers impacted the road towards continuous delivery.
During the project progression, it was soon realized that this was not a simple task. Con-
structing the deployment pipeline to achieve the finishing results of continuous delivery
was a small and trivial part of the whole project. The main part of the focus was faced
towards developing a programmable infrastructure using containers. However, the work
served its purpose, by introducing infrastructure as code, made it possible to easily achieve
continuous delivery with a lot of added bonuses.

53

7. Discussion

7.3.1 Project Management
This Master’s thesis provided the possibility to see the true value of continuous deliv-
ery in the context of project management. The result shows that; small iterations will
benefit the most from introducing continuous delivery. Small iterations correlate with
improved product quality; smaller changes will go trough the pipeline, in order to verify
its quality, which can in turn be improved even further with the closed feedback loop.

A happy project manager

The deployment pipeline provides the possibility to establish
the definition of “done”. By defining that a story is not done
until it passes through the whole pipeline, instead of having
a vaguer definition of when the story is “done”, gives for in-
stance the SCRUMmaster during sprints better backlog con-
trol.

As the result also shows, by introducing continuous de-
livery, will make the release of new versions not a [as] time
consuming factor. This makes it possible for instance during
a sprint, implement a bunch of stories to the state of done
(with the new definition), and by the end of the sprint always
have a releasable artifact that can be automatically sent out
into production (if so desired). This will decrease the cycle
time dramatically and increase the time to market. This is
especially shown during “single-line of code fixes” or “quick
fixes”, hence these type of customer requests will consider

operations and deployments as a bigger bottleneck. The consequence of better time to
market is happier and more satisfied customers, which in turn gives better revenue.

7.3.2 Continuous Everything
In order to gain access to the full benefits from continuous delivery, a cultural change needs
to be in place. Continuous delivery extends the use of continuous integration, which is a
combination of two words continuous and integration. Therefore the integrations need to
be conducted continuously, or the whole idea of continuous integration will fail, and in
turn the delivery process as well. Most developers fear the integration process and are
usually more comfortable working on their own branch in silence. By introducing tools
and features which will make developers more aware of their surroundings are therefore
very important. These tools should not feel like another burden and should be seen as
a type of motivation and utility. By introducing esthetically pleasing information radia-
tors of feedback systems like pipevis, developers might be inspired by the urge to achieve
something good, or even grow an addiction to seeing how their new code integrates with
the rest. These types of information radiators or feedback systems can even be taken a step
further by integrating real physical things. For instance by integrating a microprocessor
into the feedback system which flashes lights depending on the project status. To get that
extraordinary and pleasing feeling during this project an integration with Giphy1 was im-
plemented. Giphy was used by randomizing different gif:s depending on the outcome of
the new code integration and project status. These types of continuous feedback systems

1Giphy Animated Gifs - http://giphy.com/

54

7.4 Docker

can hopefully improve the communication between the projects members and force the de-
velopers out of the “branching bubble” and force them to start integrating their code more
continuously. If this mentality is set in place, it is possible to receive even more feedback
from the customer. The feedback loop will be more consistent due to the increasingly con-
tinuous releases. In turn,the product quality will be increased continuously, thanks to the
continuous delivery system.

7.4 Docker
7.4.1 Impact on the Process
Containers are not a new concept and have been around for a while. However, whenDocker
hit the market they increased the availability of containers. By constructing easy to use
tools around the container runtimes, made it possible to, without any considerable time
investments, utilize the container functionality. This research shows that it is possible to
construct a solid continuous delivery workflow with the use of Docker along with infras-
tructure as code and basic monitoring within a two-month time frame. Without the use of
containers, these result would have been a lot harder to achieve.

7.4.2 Possible Problems
During the progression of this research, it was soon discovered that Docker is still an im-
mature technology. The framework has not been around for very long and during the im-
plementation a couple of new releases were introduced, along with new alpha staged tools.
With this, the conclusion that Docker works better alongside virtual machines, instead of
using Docker as a substitute, can be drawn. Virtual machines provides the infrastructure
with the mandatory trusted and secure environments. In this way Docker can be used as
another layer of abstraction, which makes the infrastructure a lot more flexible. In Data
Ductus’ case, the immaturity was directly reflected on their default Linux distribution for
the 100koll project, CentOS 6.6 from RedHat. CentOS 6.6 ships with an older Linux ker-
nel that was too unstable with the Docker framework. When switching to a newer version
CentOS 7, which is based on a newer Linux kernel, Docker worked as expected, even
though the Docker community told the users that CentOS 6.6 was supported. They later
dropped the support for CentOS 6.6 when a multitude of issues arose.

Another issue to consider is to view Docker as a problem solving tool and not a way
of disguising the issues. For instance the comfort of the ability to just restart a container if
something fails, might translate into bad qualitative code running in production. Instead
of eliminating the issues in the source-code from start, it might seem more comfortable to
just restart the container during crashes. The problem might not even be detected if the
container restarts itself during crashes.

7.4.3 Resource Usage
As mentioned these kinds of end results would not be possible without the use of Docker.
With the right trusted and tested tools, the framework can be very powerful and gain huge

55

7. Discussion

benefits, and the extra level of isolation is perfect for today’s “cloud” computing. The
fact that containers are so lightweight made it possible for containers to start and stop
within seconds. This in turn gave the infrastructure fast scaling and adapting possibilities,
and finally provided better resource usage. Introducing containers to the infrastructure
provides the possibility to squeezemore isolated functionality into one singlemachine. For
instance one machine can be a cluster node for both the QA and development environment,
with 5 different versions of the same service. Optimized resource usage can be directly
reflected in tighter budgets, which can be a deal breaker for most businesses.

7.4.4 What Docker really brings to the table
It might sound like Docker is the “magic” solution to everything, but in fact Docker will
only facilitate minor processes which can be seen as bottlenecks. As have been described
and discussed before the functionality of containers can be achieved with the use of virtual
machines. However, the big difference is the flexibility that comes with the lightweight
framework. The fact that containers can start, stop and transfer isolated instances within
seconds is not possible with the ordinary use of virtual machines. It can be seen as a unified
solution for transferring and executing isolated artifacts from point A to point B. This
makes Docker perfect for fast-adapting infrastructures and with the possibility of quick
deployments. Docker should be therefore seen as an additional infrastructure feature in
combination with virtual machines for increasing scaling, deployment and resource usage.
Virtual machines gives the security and trustability that cannot be provided with Docker.
Docker should not be a dependent technique but should be seen as a possibility to get the
desired extra layer of abstraction. This attribute makes it, in turn, a lot easier to construct
a infrastructure system that supports continuous delivery.

56

Chapter 8
Conclusions

This section presents conclusions and answers to the questions raised in section 2.1. The
first section presents the conclusions involving continuous delivery. The second section
presents the anti-patterns that preventing Data Ductus from achieving continuous deliv-
ery today. The conclusions on how containers impacted the process towards continuous
delivery will be prestented in the last section.

8.1 Continuous Delivery
It is important to note that continuous delivery is not just about implementing a new work-
flow and system for delivery. It has more to do with a cultural change. The introduction
of continuous delivery will not magically make a development team more agile. The agile
mindset needs to be in place beforehand in order to get the full potential of continuous
delivery. However, continuous delivery and especially the feedback potential gained from
the deployment pipeline can be seen as a motivation to keep the thinking more lean and
agile. This can, in turn, reflect directly on the product quality, time to market and in the
end happier customers and better revenue.

8.2 Obstacles preventing CD
The most obvious anti-pattern at Data Ductus is manual deployments. The conservative
mindset around the manual deployment process is usually protected by the feeling of hav-
ing control of which artifacts are sent out to production. By introducing a good automated
quality assurance testing option, the operations and developers are provided with the con-
fidence to rely on the artifacts to fulfill the quality requirements and to then be sent out,
automatically, to the different environments. Another big anti-pattern is the use of manual
configuration of the infrastructure. Manually configurating the infrastructures can lead to

57

8. Conclusions

failures which are hard to track down and locate. It also leads to node inconsistency. With
the introduction of programmable infrastructure or infrastructure as code, it is possible to
utilize version control, which leads to better version control. This will in turn simplify
the orchestration processes during deployments, better failure handling as well as the pos-
sibility to rollback to previous configurations of the infrastructure. During this project it
was discovered that the biggest amount of time was focused on the process of constructing
infrastructure as code. The construction of the concept of infrastructure as code was not
in vain, as mentioned, it did create a lot of benefits.

8.3 Containers impact on CD
Achieving continuous delivery is not an easy task. A lot of techniques, patterns and the
basic setting needs to be in place on beforehand. The use of containers made this struggle
less painful. However, Docker should not be seen as the magic tool which saves people
from the outdated workflows, but as more of a tool which can facilitate the processes to-
wards new agile thinking. By identifying the anti-patterns which prevents the team from
achieving continuous delivery, the bottle-necks that emerges can be dissolved more easily
with the use of containers. This, in turn, can break these anti-patterns. Even though con-
tainers helped the process of converting the infrastructure to code, it was not a necessary
utility. The containers worked best in combination with deployment and infrastructure
configuration, due to the fact the containerization of essential artifacts associated config-
urations without unnecessary resource usage, provided the possibility of moving artifacts
from point A to B in a less straining way. These container attributes in turn facilitated the
possibility to move from continuous integration to delivery.

58

Bibliography

[1] Charles Anderson. Docker. IEEE Software, 32(3):102 – 105, 2015.

[2] V. Armenise. Continuous delivery with jenkins: Jenkins solutions to implement
continuous delivery. 2015 IEEE ACM 3rd International Workshop on Release Engi-
neering (RELENG). Proceedings, pages 24 – 7, 2015.

[3] Jie Chen, Jun Wang, Zhihu Tan, and Changsheng Xie. Effects of recursive update in
copy-on-write file systems: A btrfs case study. Canadian Journal of Electrical and
Computer Engineering, 37(2):113 – 22, Spring 2014.

[4] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Soft-
ware, 32(2):50 – 54, 2015.

[5] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-Works
http://www.thoughtworks.com/ContinuousIntegration.pdf, 2006.

[6] Sébastien Goasguen. Docker Cookbook. O’Reilly Media, 2015.

[7] J. Humble, C. Read, and D. North. The deployment production line. AGILE 2006,
2006.

[8] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley, 2010.

[9] Solomon Hykes. Introduction to docker engine. https://www.youtube.com/
watch?v=jB-Ddfph7EI, 2015.

[10] Michael Kerrisk. Namespaces in operation. http://lwn.net/Articles/
531114/, 2013.

[11] Paul Menage. Control groups (cgroups). https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt, 2004.

59

https://www.youtube.com/watch?v=jB-Ddfph7EI
https://www.youtube.com/watch?v=jB-Ddfph7EI
http://lwn.net/Articles/531114/
http://lwn.net/Articles/531114/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

BIBLIOGRAPHY

[12] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-
gorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Association.

[13] Oracle. Adapting to peoplesoft continuous delivery. Oracle White Paper, sep 2014.

[14] J.E. Smith and Ravi Nair. The architecture of virtual machines. Computer, 38(5):32
– 8, 2005.

[15] Chris Swan. Docker drops lxc as default execution environment. http://www.
infoq.com/news/2014/03/docker_0_9.

[16] Ram Rajamony Wes Felter, Alexandre Ferreira and Juan Rubio. An updated perfor-
mance comparison of virtual machines and linux containers. IBM Research Report,
jul 2014.

60

http://www.infoq.com/news/2014/03/docker_0_9
http://www.infoq.com/news/2014/03/docker_0_9

Appendices

61

Appendix A
Fibonacci Sequence

public interface FibonacciSequence {
public abstract BigInteger getFibonacciNumber(int n);

}

public class FibonacciSequenceRecursive implements FibonacciSequence{
public BigInteger getFibonacciNumber(int n) {

if (n <= 1) return BigInteger.valueOf(n);
else return getFibonacciNumber(n -1).add(getFibonacciNumber(n-2));

}
}

public class FibonacciSequenceMemoryCached implements FibonacciSequence{
private static ArrayList<BigInteger> cache = new ArrayList<BigInteger>(){
{

add(BigInteger.ZERO);
add(BigInteger.ONE);

}};
public BigInteger getFibonacciNumber(int n) {

if (n >= cache.size()) cache.add(n,
getFibonacciNumber(n-1).add(getFibonacciNumber(n-2)));

return cache.get(n);
}

}

63

A. Fibonacci Sequence

64

Appendix B
Golden Ratio

public class GoldenRatioCalculator {
private FibonacciSequence fibonacciSequence;
private int goldenRatioDecimals;
public GoldenRatioCalculator(FibonacciSequence fibonacciSequence,

int goldenRatioDecimals){
this.fibonacciSequence = fibonacciSequence;
this.goldenRatioDecimals = goldenRatioDecimals;

}
public BigDecimal calculate(int n){

BigDecimal fibX = new BigDecimal(fibonacciSequence.getFibonacciNumber(n));
BigDecimal fibY = new BigDecimal(fibonacciSequence.getFibonacciNumber(n+1));
return fibX.divide(fibY,goldenRatioDecimals, BigDecimal.ROUND_HALF_UP);

}
}

65

B. Golden Ratio

66

Appendix C
Service Register Role

C.1 tasks/main.yml
−−−

#Construct hea r t hbea t_ sc r i p t based on se rv ice
− name : Construct hear thbea t s c r i p t based on se rv ice

s e t _ f a c t :
hea r t hbea t_ sc r i p t : " docker run −−rm − t −−l i nk {{ service_name }}−{{

se rv ice_por t }}: service−conta iner {{
docker_healthcheck_base_image }}:{{ service_name }}−{{
se rv ice_por t }}"

when : service_name i s defined and se rv ice_por t i s defined

− name : Reg i s t r a t e consul se rv ice with heal thcheck
consul :

s t a t e : presen t
service_name : "{{ service_name }}"
se rv ice_ id : "{{ service_name }}−{{ se rv ice_por t }}"
se rv ice_por t : "{{ se rv ice_por t }}"
tags : "{{ se rv ice_ tags }}"
s c r i p t : "{{ hea r t hbea t_ sc r i p t }}"
i n t e r v a l : "{{ hea r t hbea t_ in t e rva l }}"

C.2 defaults/main.yml
hea r t hbea t_ in t e rva l : 30s
se rv ice_ tags : []
docker_healthcheck_base_image : " ductus / heal thcheck "

67

C. Service Register Role

68

Appendix D
Service Deregister Role

D.1 tasks/main.yml
−−−

− name : Dereg i s t r a t e consul se rv ice
consul :

s t a t e : absent
se rv ice_ id : "{{ service_name }}−{{ se rv ice_por t }}"

69

D. Service Deregister Role

70

Appendix E
Deploy Playbook

E.1 vars/devservice.json
{

" service_name " : " devservice " ,
" se rv ice_por t " : 3030 ,
" con ta ine r_por t " : 8080 ,
" i n s ecu r e_ r eg i s t r y " : "True " ,
" ro l lbackab le " : "True " ,
" docker_push_regis t ry " : " False " ,
" docker_s ta te " : " reloaded "

}

E.2 deploy.playbook.yml
−−−

− hosts : service−nodes
sudo : yes
ga the r_ fac t s : yes
ro l e s :
− { ro le : ductus / docker / ro l lback / prepare }
− { ro le : ductus / docker / pu l l }

tags :
− prepare

− hosts : service−nodes
sudo : yes
s e r i a l : "49%"

71

E. Deploy Playbook

r o l e s :
− { ro le : ductus / se rv ice / d e r eg i s t e r }
− { ro le : ductus / docker / r o l l o u t / perform }
− { ro le : ductus / se rv ice / r e g i s t e r }

tags :
− deploy

E.3 rollback.playbook.yml
−−−

− hosts : service−nodes
sudo : yes
ro l e s :
− { ro le : ductus / docker / ro l lback / perform }
− { ro le : ductus / se rv ice / r e g i s t e r }

72

Appendix F
Healthcheck Container - HTTP

F.1 check.j2
! / usr / bin / env python

import h t t p l i b
conn = h t t p l i b . HTTPConnection (" service−conta iner :{{ con ta ine r_por t }}")
conn . reques t ("HEAD" , " / ")
p r i n t (" Trying to conntect to service−conta iner :{{ con ta ine r_por t }}")
r1 = conn . getresponse ()

i f r1 . s t a t u s != 200:
p r i n t "Ups! se rv ice re turned code %i " % r1 . s t a t u s
ex i t (1)

p r i n t r1 . s t a tus , r1 . reason

F.2 Dockerfile
FROM python:2−wheezy

COPY check / bin / check
RUN chmod +x / bin / check

ENTRYPOINT [" / bin / check "]

73

Dagens krav på ständig uppkoppling ställer allt högre förväntningar på våra IT-
system. Nya lösningar och funktioner måste leveras i en högre takt och kvalitet.
Är containerramverket Docker nyckeln till snabbare leverans?

Dagens samhälle är ett uppkopplat samhälle. Den ökade
internetanvändningen ställer större krav på IT-system
och tiden det tar att utveckla, underhålla och uppdatera
dessa. Målet för de flesta IT-företag är att kunna uppda-
tera sina system utan att man påverkar kundens tillgång
till tjänsten, detta genom så kallad “zero-downtime de-
ployment”.
  Dessa krav bidrar gemensamt till att infrastrukturen
bakom IT-systemen blir allt större och mer komplice-
rade. Ny programkod måste levereras kontinuerligt.
Detta bidrar till att problem upptäcks och kan åtgärdas
snabbare. För att uppnå den kvalitetshöjande så kal�-
lade “continuous delivery”-principen, är det möjligt att
använda sig av Docker-containers som kapslar in konfi-
gurationer för att underlätta leverans och körbarhet till
IT-systemet.
  E-ons hundrakollprojekt är ett bra exempel på en
tjänst som ställer höga krav på att konfigurationer samt
mjukvara levereras felfritt och kontinuerligt. Hundra-
koll hjälper E-ons kunder att hålla koll på sin elförbruk-
ning; i sitt nuvarande tillstånd tillhandahåller tjänsten
ett perfekt tillfälle att undersöka processen mot continu-
ous delivery. I samarbete med IT-konsult-bolaget Data
Ductus skapades, med hjälp utav Docker, en lösning för
att kunna upprätthålla en kontinuerlig leverans av pro-
gramvaruändringar.
  Under arbetets gång skulle det snart visa sig att målet,
continuous delivery, inte uppnås genom att bara ha till-
gång till rätt verktyg (d.v.s. Docker). Docker kan dock

underlätta hur konfigurationer och tillhörande körbar
kod kan tas från en miljö till en annan. Dock kvarstår
frågan om hur miljöerna i sig ska kunna konfigureras
per automatik, samt att leda in utvecklarna i rätt tanke-
sätt. Det krävs att ny kod testas och integreras med den
befintliga koden kontinuerligt.
  Projektet inleddes med att de arbetsprocesser som
förhindrade Data Ductus från att uppnå continuous de-
livery identifierades. Docker, i kombination med andra
konfigurationshanteringsverktyg, användes sedan för att
bryta dessa så kallade “anti-patterns”. Tillvägagångssät-
tet för att kunna göra detta bestod av en implemente-
ringsmetod i fem steg, i vilka containers stod i fokus.
  Det första problemet att lösa var att beskriva infra-
strukturen med hjälp av programmeringskod. Genom
att sedan generalisera och standardisera denna program-
meringskod kunde nya uppdateringsstrategier skapas
för att uppnå en zero-downtime deployment. Detta gav
tillräckliga förutsättningar för att gå vidare mot målet
att uppnå continuous delivery.
  Nästa steg var att skapa sekventiella steg eller trösklar
som den nyintegrerade koden måste genomgå. Dessa
steg bildar en så kallad “deployment-pipeline”. Denna
deployment-pipeline ger sedan möjligheten att åter-
koppla information till utvecklarna rörande hur deras
kod klarade av integrationsprocessen. Detta ger i sin tur
goda förutsättningar att uppnå ett kontinuerligt flöde av
nya leveranser av kod med hög kvalitet.

EXAMENSARBETE Container-based continuous delivery for clusters

STUDENT Per-Gustaf Stenberg

HANDLEDARE Ulf Asklund (LTH), Mario Toffia (Data Ductus)

EXAMINATOR Martin Höst

Containers - en snabbare väg ut i drift?
POPULÄRVETENSKAPLIG SAMMANFATTNING Per-Gustaf Stenberg

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-10-30

	2016-06 Framsida
	Tom sida
	2016-06 Rapport
	2016-06 Rapport
	Background and Introduction
	100koll
	The Problem
	What is Continuous Integration, Delivery and Deployment?
	Continuous Integration
	Continuous Delivery and Deployment

	The Concept of Containerization

	Method
	Questions
	Approach
	Pains and Blockers
	Container-based Solution
	Solution Evaluation

	Related Work

	Containers
	Underlying Technology
	Namespaces
	Cgroups

	Docker
	Performance
	CPU and Memory
	Networking
	Disk I/O
	Summary

	Taking the Step
	The Anti-patterns
	Deploying Manually
	Manual Configuration Management

	Breaking the Anti-patterns
	Automatization is the Key
	Acceptance Testing
	Higher Deliver Frequency
	Generalize the Infastructure

	Containers role in breaking of the anti-patterns
	Automation
	Generalization
	Delivery Frequency
	Acceptance-testing

	The Implementation Process
	The Dummy-project
	Step 1. Infrastructure as Code
	Best Practices

	Step 2. Generalizing the Infrastructure
	Service Discovery
	Standarized Configuration Management
	Monitoring
	Data Management

	Step 3. Deployment Strategy
	Rolling out Releases
	Blue-Green Deployment

	Step 4. Constructing a Pipeline
	Integration
	Quality Testing
	Implementation

	Step 5. Return Feedback
	Pipevis

	Evaluation & Results
	Cycle Time
	Feedback
	Quality
	Implementation Effort

	Discussion
	Method & Evaluation
	The Solution
	Stability
	Alternatives
	Hiccups
	Containerized Configuration Management
	Change Control
	DevOps

	Continuous Delivery
	Project Management
	Continuous Everything

	Docker
	Impact on the Process
	Possible Problems
	Resource Usage
	What Docker really brings to the table

	Conclusions
	Continuous Delivery
	Obstacles preventing CD
	Containers impact on CD

	Bibliography
	Appendix Fibonacci Sequence
	Appendix Golden Ratio
	Appendix Service Register Role
	tasks/main.yml
	defaults/main.yml

	Appendix Service Deregister Role
	tasks/main.yml

	Appendix Deploy Playbook
	vars/devservice.json
	deploy.playbook.yml
	rollback.playbook.yml

	Appendix Healthcheck Container - HTTP
	check.j2
	Dockerfile

	Tom sida
	2016-06 Popvet

