Programpaket för uppsättning och intrimning av PID-regulatorer

Patrik Bannura

Institutionen för Reglerteknik
Lunds Tekniska Högskola
Juni 1994
Department of Automatic Control  
Lund Institute of Technology  
P.O. Box 118  
S-221 00 Lund  Sweden  

<table>
<thead>
<tr>
<th>Document name</th>
<th>Master thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of issue</td>
<td>June 1994</td>
</tr>
<tr>
<td>Document Number</td>
<td>ISRN LUTFD2/TFRT--5508--SE</td>
</tr>
<tr>
<td>Supervisor</td>
<td>Lars Ekelund, Beijer Electronics, and Tore Hägglund</td>
</tr>
<tr>
<td>Sponsoring organisation</td>
<td></td>
</tr>
</tbody>
</table>

**Title and subtitle**  
Programpaket för uppsättning och intrimmning av PID-regulatorer  
(Program package for initiating and tuning of PID controllers.)

**Abstract**

To handle controllers conveniently in PLC systems, a host computer and a program with a graphical user interface for setting up and tuning controller parameters facilitate this task.

This report describes the development of such a program at Beijer Electronics in Malmö.

This tool for use with Mitsubishi PLC systems supports logging of up to 32 simultaneous control loops which of one of these can be monitored in a live trend diagram. The logged data can be saved to file and then be viewed on screen or printed at a later time.

Setting up controller parameters is done by letting the user fill in a form containing P, I, and D constants, sampling time and alarm limits. The controllers can be tuned automatically by analyzing the process and suggesting the calculated parameters.

**Key words**

**Classification system and/or index terms (if any)**

**Supplementary bibliographical information**

<table>
<thead>
<tr>
<th>ISSN and key title</th>
<th>0280–5316</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Number of pages</td>
<td>Recipient's notes</td>
</tr>
<tr>
<td>Swedish</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010, S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbia lund.
Programpaket för uppsättning och intrimning av PID-regulatorer

Patrik Bannura D87
Abstract

To handle controllers conveniently in PLC-systems a host computer and a program with a graphical user interface for setting up and tuning controller parameters facilitate this task.

This report describes the development of such a program at Beijer Electronics in Malmö.

This tool for use with Mitsubishi PLC-systems supports logging of up to 32 simultaneous control loops which of one of these can be monitored in a live trend diagram. The logged data can be saved to file and then be viewed on screen or printed at a later time.

Setting up controller parameters is done by letting the user fill in a form containing P, I and D constants, sampling time and alarm limits. The controllers can be tuned automatically by analysing the process and suggesting the calculated parameters.
Sammanfattning

För att på ett enkelt sätt handha regulatorer i PLC-system kan en överordnad dator och ett program med ett grafiskt användargränssnitt för uppsättning och intrimning av regulatorparametrar underlätta detta arbete.

Denna rapport beskriver utvecklingen av ett sådant program vid Beijer Electronics i Malmö.

Detta verktyg för användning med Mitsubishi PLC-system understödjer loggning av upp till 32 samtidiga regulatorloopar varav en av dessa kan studeras i ett trenddiagram. Förloppen kan sparas på fil för att senare studeras på skärmen eller skrivas ut.

Tack

Jag vill tacka min handledare Tore Hägglund vid institutionen för Reglerteknik, LTH för hans bidrag med algoritmerna som används vid den automatiska intrimningen och för institutionens utlåning av deras enda exemplar av ”Dual Process Simulator”. Lars Celano, Lars Ekelund, Johnny Nilsson och Bengt Jardrup vid Beijer Electronics har besvarat många frågor och bidragit med konstruktiv kritik under arbetets gång.
# Innehåll

Abstract ..........................................................................................................................
Sammanfattning............................................................................................................
Tack............................................................................................................................... 7
1. Bakgrund ................................................................................................................ 8
2. Inledning .................................................................................................................. 8
   MELPID .................................................................................................................. 8
   Vad är ett PLC-system? ....................................................................................... 8
   MEDOC ................................................................................................................. 8
   Visual Basic ......................................................................................................... 9
   Windows Charting Tools ..................................................................................... 9
   Melcom ................................................................................................................ 9
3. Projektbeskrivning ................................................................................................ 11
   Samverkan på logisk nivå ................................................................................ 11
   Kommunikationsvägen på fysisk nivå ............................................................... 12
   Regulatorprogram för PLC-systemen .............................................................. 12
   PID-AnA ............................................................................................................ 13
   PI-FX .................................................................................................................... 14
   PID-AnN ............................................................................................................ 15
4. Handhavande av MELPID .................................................................................... 16
   Menyn File ......................................................................................................... 16
   Menyn Project .................................................................................................... 17
   Menyn Loop ....................................................................................................... 20
   Menyn Dynamics ............................................................................................... 23
   Menyn ? ............................................................................................................ 39
5. Autotuning ............................................................................................................. 41
6. Resultat och diskussion ................................................................. 45
   Ett exempel ................................................................. 45
   Snabba processer .............................................................. 46
   Brusiga processer .............................................................. 47
   Ickeminfassystem ................................................................. 47

7. Referenser ................................................................................. 49
1. Bakgrund

Uppsättning och intrimning av regulatorer i Mitsubishi PLC-system behövde förenklas med hjälp av ett lättanvänd programpaket under MS Windows. Målsättningen var att en ingenjör med visst reglerkunnande, men utan kunnande om uppbyggnaden av PLC-systemets regulatorer, snabbt skulle kunna definiera upp önskat antal regulatorer och trimma in dem till optimal reglerfunktion.

2. Inledning

MELPID

Enligt Beijer Electronics (nya) namnstandard ska de applikationer som utvecklas för Mitsubishi produkter ha ett namn som börjar med förkortningen MEL vilket står för Mitsubishi Electric.

Sedan tidigare har det funnits ett inte allt för avancerat teckenbaserat program för uppsättning av PID regulatorer i vissa typer av PLC-system som heter PIDMON. Som en syntes mellan dessa namn fattades beslut om att föreliggande applikation skulle få namnet MELPID.

Vad är ett PLC-system?

En PLC (Programmable Logic Controller) är ett programmerbart styrsystem som används flitigt främst i process- och verkstadsindustrin. Dessa ersatte relä- och logikblocksystemen på 60-talet och erbjuder industripassad maskinvära, bra pris/prestanda och enkel programmering med sk sekvensprogram. De liknar mikrodatorsystem men skiljer sig från dessa på några punkter:

- Stort antal digitala eller analoga in- och utgångar. Ofta utbyggbart antal (20-2048).
- Exekverar hela sekvensprogrammet i en enda loop där ingångarna läses i början, utgångarna beräknas i loopen och skrivs i slutet av denna.
- Minnet organiseras i register, minnesceller, in/utgångar och programstegsarea.
- Möjlighet till direkt hopkoppling i nätverk. Kommunikation med antingen annan PLC eller överordnad dator.

MEDOC

MESEC MEDOC är ett programpaket för att skapa, underhålla och dokumentera program för Mitsubishi PLC-system. De PLC-program
som implementerar regulatorerna är utvecklade i denna miljö. MEDOC-projekt sparar som ett antal filer av vilka två används av MELPID; programfilen och benämningssfilen.

Visual Basic


Windows Charting Tools

För presentationsdelen har ett programbibliotek (DLL) från Quinn-Curtis använts, vilket tillhandahåller diverse grafikutiker. Detta paket hjälper till med kurvritning i fönster på skärmen och underlättar skalning av axlar, utsättning av axelenhet, utsättning av axelrubriker och utskrift av en graf till skrivare. På köpet får användaren också möjlighet att ändra på diverse grafparametrar interaktivt genom att klicka på axlar eller kurvor.

Melcom

Kommunikationen mellan PC och PLC har implementerats med hjälp av anrop till kommunicationsbiblioteket Melcom (DLL). Rutinerna som tillhandahålls är bl.a.

Öppna

Öppna förbindelse med PLC-systemet. Parametrar som ska skickas med här är PLC-typ, PC-port, Modem-telefonnummer, kommunikationsparametrar.
Skriv

Skriv värden till PLC-systemets register. Här ska en vektor skickas med innehållande lika många element som antal register som ska skrivas till.

Läs

Läs värden från PLC-systemets register. Här ska en vektor skickas med innehållande lika många element som antal register som ska läsas.

Stäng

Stäng förbindelsen till PLC-systemet.
3. Projektbeskrivning

Samverkan på logisk nivå

MELPID är knutet till MELSEC MEDOC via två filer som genereras av MEDOC.

![Diagram]

*Hur MEDOC och MELPID logiskt samverkar med PC och PLC-system.*

Programfilen (*.prg)

I denna fil finns själva PLC-koden och diverse annan information. MELPID läser i denna för att avgöra vilken PLC-typ som programmet är skrivet för och därigenom vilket standard-PLC-program som är aktuellt. Även vid uppkoppling mot PLC:n görs en förfrågan över serieporten om PLC-typ och om dess svar är annorlunda än det i programfilen så kopplas förbindelsen ner.
Detta görs dels för att användaren inte ska behöva ange PLC-typ (han kanske inte vet) dels för att minimera risken för att använda
benämningar från ett annat PLC-program än det som ligger i PLC:n.

**Benämningsfilen (*.nam)**

Benämningar i MEDOC är 15 tecken långa strängar som på ett
informativt sätt talar om vad ett PLC-register används till. MELPID
använder dessa för att kunna visa för användaren var det anser att bör-
och ärvärde, utsignal och alla regulatorparametrar befinner sig i
minnesarean i PLC:n.

**MELPID-projektfilen (*.pid)**

I denna fil sparas all information om regulatorerna, PLC-typen,
kommunikationsparametrarna och sökvägen till MEDOC-projektet.

**Kommunikationsvägen på fysisk nivå**

För att kunna kommunicera med ett PLC-system på avstånd
understödjer MELPID modemkommunikation över upprindg telefon-
förbindelse. Stödet för melsec net är något varje PLC i A-serien har
inbyggt.

![Diagram](image)

*Ett avancerat exempel på hur man kan fjärrstyra sina regulatorer.*

**Regulatorprogram för PLC-systemen**

MELPID förutsätter att regulatorerna är implementerade i PLC-kod.
Detta görs på olika sätt för olika PLC-typer. Dessa delas (i detta
sammankl) in i tre klasser med tillhörande PLC-program. Dessa
standard-PLC-program är skelett som är avsedda att kompletteras
eftersom en anläggning ofta innehåller mer än bara regulatorer.

Avsikten är att gränssnittet mot användaren ska vara i stort sett
oberoende av vilket PLC-program som är aktuellt. Denna transparens
ställer stora krav på MELPID då programmen förutom att de stödjer
olika parametrar skiljer sig vad gäller:
- parametrarnas intervall
- parametrarnas bitlängd
- olika maximalt antal regulatorer

**PID-AnA**

PLC-programmet PID-AnA har två PID-regulatorer i grundutförandet med möjlighet att utöka till 32. Programmet understödjer följande parametrar

- Samplingstid ($T_s$)
- Proportionalitetskonstant ($K_p$)
- Integrationstid ($T_i$)
- Derivationstid ($T_d$)
- Minsta utsignal
- Största utsignal
- Maximal årvärdesändring (annars larm)
- Maximal utsignalsändring (annars larm)

Parametrarna beskrivs närmare i avsnittet om **MELPI**D's handhavande.

**Filterkoefficient**

Denna parameter ger möjlighet till utjämnning av årvärdet. Det filtrerade årvärdet $PV_f(n)$ beräknas enligt

$$PV_f(n) = PV(n) + \alpha [PV_f(n-1) - PV(n)]$$

där $PV(n)$ är den nuvarande ofiltrerade årvärdet, $PV_f(n-1)$ är det föregående filtrerade årvärdet och $\alpha$ är filterkoefficienten.

**Algoritm**

PID-AnA använder instruktioner som implementerar regleralgoritmen. Dessa instruktioner finns tillgängliga i alla PLC:er av typ AnA. Av denna anledning har man ingen kontroll över vilken algoritm som används för att beräkna utsignalen, den är alltså hårdkokad i
instruktionsuppsättningen. Följande algoritm används vid direkt reglerverkan:

\[ E(n) = PV_f(n) - SV \text{ (reglerfel)} \]

\[ \Delta MV = K_p \{E(n) - E(n-1) + \frac{T_i}{T_d} E(n) + \}

\[ + \frac{T_d}{T_s} \{2 \cdot PV_f(n-1) - PV_f(n) - PV_f(n-2)\}\}

\[ MV(n) = \sum \Delta MV \]

och vid omvänd reglerverkan beräknas reglerfelet som

\[ E(n) = SV - PV_f(n) \]

där E är reglerfelet, PV är ärvärde, SV är börvärdet och MV är utsignalen.

Med direkt reglerverkan menas här att utsignalen ökar när ärvärdet blir större än börvärdet och vid omvänd reglerverkan ökar utsignalen istället när börvärdet blir större än ärvärdet.

**PI-FX**

Detta PLC-program är avsett för CPU:er i FX-serien. Dessa är mindre och billigare. De saknar dessutom stöd i instruktionsuppsättningen för reglering.


- Ärvärdeshöglarm
- Ärvärdesläglarm

**Algorit**

Följande algoritm används vid direkt reglerverkan:

\[ E(n) = PV(n) - SV \text{ (reglerfel)} \]
\[ \Delta MV = K_p \{E(n) - E(n-1) + \frac{T_s}{T_i} E(n)\} \]

\[ MV(n) = \sum \Delta MV \]

och vid omvänd reglerverkan beräknas reglerfelet som

\[ E(n) = SV - PV(n) \]

**PID-AnN**

Detta är det äldsta sättet att lösa PID-reglering i PLC-system på. Här anropas ett mikroprogram för att exekvera regleralgoritmen. För att administrera dessa anrop behövs ett överordnat PLC-program som också tar hand om kommunikationen med MELP. Programmet stöder samma uppsättning parametrar som PID-AnA.
4. Handhavande av MELPID

MELPID är organiserat så att man arbetar (i grova drag) från vänster till höger i menyraden och endast de menyalternativ som är tillåtna för tillfället är synliga.

Det är tänkt att man ska kunna göra uppsättning av ett antal regulatorer, definiera egna intervall och enheter mm utan att vara ansluten till något PLC-system, dvs off-line. Av denna anledning går MELPID on-line först då man försöker göra något som kräver ett anslutet PLC-system, dvs antingen trendmonitorering eller autotuning.

Menyn File

New
Startar ett nytt projekt. Man befinner sig i detta tillstånd när programmet startar och man behöver således inte börja med att klicka på detta alternativ.

Open
Öppnar ett befintligt MELPID-projekt.

Save
Sparar det aktuella MELPID-projektet. Om detta inte är namngivet är detta menyalternativ ekvivalent med Save as.

Save as
Visar en dialogbox som frågar efter det filnamn man vill spara det aktuella MELPID-projektet som. Fil tillägget blir automatiskt .PID om inget annat anges.

Print
Skriver ut hela MELPID-projektet på standardskrivaren. Utskriften består av projektnamn, kommunikationsparametrar, antal regulatorer samt startadresser och parametrar för varje regulator.
**Printer Setup**

Väljer standardskrivare, pappersstorlek, orientering, och källa.

**Exit**

Avslutar MELPID. Frågar om projektet ska sparas om det har ändrats sedan det sparades sist.

**Menyn Project**

**MELSEC ME DOC**

Visar en dialogbox i vilken man kan bläddra sig fram till katalogen för MELSEC ME DOC-projektet. Öppnar .NAM filen för att göra benämningarna åtkomliga. Detta menyalternativ behöver bara väljas när man skapar ett nytt MELPID-projekt, däremot finns sökvägen lagrad i detta projekt.

**Communication**

![Diagram of PLC and Port Settings]

Dialogbox för inställning av diverse kommunikationsparametrar.

---

**Programpaket för uppsättning och inträffning av PID-regulatorer**

**Handhavande av melpid**
Visar ett formulär i vilket man kan ställa in ett stort antal kommunikationsparametrar. Detta är indelat i tre huvudgrupper: PLC Settings, Port Settings och Miscellaneous. Längst ner i formuläret finns en kortfattad hjälpext beroende på vilket inmatningsfält man befinner sig i.

**PLC Settings**

Här anges uppgifter om PLC, nätverk mm.

**Protocol**


**Address**

Här fyller man i kompletterande uppgifter angående PLC-kommunikationen. De är följande:

**MNET**

Om MELSEC.NET används fyller man i adress på slavnummer med mera i detta fält. Även om man inte har ett nätverk ska värdena vara ifyllda enligt nedan.

<table>
<thead>
<tr>
<th>255</th>
<th>Värd-PLC, dvs den PLC man fysiskt är uppkopplat mot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Master-PLC i ett melsec net.</td>
</tr>
<tr>
<td>1-64</td>
<td>Slavnummer på PLC i ett melsec net.</td>
</tr>
</tbody>
</table>

**AJ71**

Här anger man vilket stationsnummer som är inställt med potentiometrarna överst på AJ71C24-kortet.

| 0-31 | Stationsnummer på AJ71C24-kort i multidrop nätverk. |

Programpaket för uppsättning och inträffning av PID-regulatorer Handhavande av melpid
MAC

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ingen MAC-adress använd.</td>
</tr>
<tr>
<td>1-63</td>
<td>MAC-adress i multidrop nätverk.</td>
</tr>
</tbody>
</table>

Port Settings
Under Port Settings anges portparametrarna.

Port
Här väljer man vilken av serieportarna på PC:n som används. Antalet kommunikationsportar begränsas av Windows till 4 stycken.

Baudrate
Här anges kommunikationshastigheten mellan PC och PLC.

Parity
Pariteten för aktuell kommunikation väljs här.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Ingen paritet</td>
</tr>
<tr>
<td>Odd</td>
<td>Udda paritet</td>
</tr>
<tr>
<td>Even</td>
<td>Jämn paritet</td>
</tr>
</tbody>
</table>

Word size
Här anges ordlängden för kommunikationen, Den kan vara antingen 7 eller 8 bitar.

Stop bits
Antalet stoppbitar anges i detta fält. Det kan vara antingen 1 eller 2 bitar. Kommunikationsparametrarna brukar anges med syntaxen: Baudrate,Parity,Word size,Stop bits. CPU-porten på Mitsubishis PLC-system har följande parametrar:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-serien</td>
<td>9600,Odd,8,1</td>
</tr>
<tr>
<td>FX-serien</td>
<td>9600,Even,7,1</td>
</tr>
</tbody>
</table>
Dessa parametrar ställs in som standard när ett MELSEC MEDOC projekt öppnas utan att något MELPID-projekt är öppnat, dvs när man skapar ett nytt MELPID-projekt.

**Miscellaneous**

Här anges diverse övriga parametrar

**Modem**

Här anges det telefonnummer som ska ringas upp innan MELPID kopplar upp sig mot PLC:n. För anslutning av telefonmodemet se dess manual.

**Timeout**

*Normal*

Här anges den timeout som önskas *after* uppkoppling mot PLC:n. Tiden anges i millisekunder (ms).

*Quick*

Detta är den timeout som gäller för kommunikationen *vid* uppkoppling mot PLC:n.

**Menyn Loop**

**Data**

I dialogboxen Loop Data anges sådant som är specifikt för det PLC:program man använder. Har man inte ändrat i regulatorprogrammet till den aktuella PLC:n så behöver man inte göra några ändringar i denna dialogbox.
Dialogbox för inmatning av parametrar specifika för det aktuella PLC-programmet.

**Number of used loops**
Detta är antalet regulatorlooper som används av MELSPID. Detta kan som mest vara det antal loopar PLC-programmet exekverar i PLC:n.

**Loop**
Denna listruta innehåller de tillgängliga regulatorlooparna. Den valda loopen är den som är aktuell för de ändringar som görs.

**Start Address**

Varje regulator har sin egen uppsättning med både parametrar och dynamiska variabler. Dessa block ligger oftast konsekutivt i minnet.

**Parameter Area**

**Dynamic Area**
Den dynamiska areaen är den area där variabler som ändrar sig lagras. Bl.a. ärvärde, utsignal och larmflaggor.
**Reset**

Denna knapp återställer startadresserna för samtliga regulatorloopar till det som är standard för det PLC-program för reglering som tillhör den aktuella PLC-typen. Dock återställs inte antalet regulatorer.

**Auto Address**

Denna knapp numrerar parameterareans startadress och den dynamiska areans startadress automatiskt för alla looparna baserat på adressen för loop 1. Loop 2 och uppfåt läggs konsekutivt i minnet efter loop 1.

**User Range**

I dialogboxen User Range kan man ställa in egna enheter (ingenjörsstörheter) och intervall för börvärde, ärvärde och utsignal.

![User Range](image)

*Dialogbox för inmatning av användarens egna intervall, kommentarer och enheter.*

**Loop**

Denna listruta innehåller de tillgängliga regulatorlooparna. Den valda loopen är den som är aktuell för de ändringar som görs.

**Comment**

I detta fält kan man skriva in en kort kommentar (max 30 tecken) för den aktuella regulatorloopen, exempelvis en kort beskrivning på den process regulatorn styr.
**Set Value och Process Value**

På denna rad skrivs enhet och intervallets min och maxgräns för bör- och ärvärdet in. Dessa har samma enhet och intervall eftersom de två värdena jämförs för varje sampel i regleralgoritmen.

Det går utmärkt att ha ett min-värde mindre än noll.

**Manipulated Value**

På denna rad skrivs enhet och intervallets min och maxgräns för utsignalen in.

**MEDOC name**

I denna kolumn står MELSEC MEDOCS benämningar på de register i PLC:n som innehåller börvärde, ärvärde och utsignal.

**Menyn Dynamics**

Denna meny innehåller sådant som berör process och regulatorodynamik.

**Parameters**

Dialogboxen Parameters innehåller alla parametrar som går att ändra för varje regulator. Innehållet ser aningen olika ut beroende på vilka parametrar aktuell PLC stöder.

**OBS!**

**Cancel** i denna dialogbox medför bara att ändringarna i den aktuella loopen inte görs. Alla andra loopar som ändrats förblir ändrade.
Dialogbox för inmatning av regulatorparametrarna.

Comment
I detta fält återfinns den kommentar man angav i dialogboxen User Range för den aktuella regulatorloopen angiven i listrutan Loop.

Value
I denna kolumn står de värden som parametrarna har för tillfället. Om man är online så ändras motsvarande värden i PLC:n när man klickar på OK, byter loop eller trycker på vagntretur. Om man är offline så lagras parametrarna lokalt och laddas inte ner till PLC:n förrän man går online.

Min och Max
I denna kolumn står intervallets undre respektive övre gräns för det värde varje parameter kan anta.
**MEDOC name**

I denna kolumn står MEDOC MEDOCs benämningar på de register i PLC:n som innehåller respektive parameter.

**Proportionate factor**

Detta är P-konstanten (förstärkningen). Tillåtet intervall är 0,01 – 100.

**Integrating time (s)**

Detta är I-konstanten (integrationstiden) i sekunder. Tillåtet intervall är 0,1s – 3000s

**Differentiating time (s)**

Detta är D-konstanten (derivationstiden) i sekunder. Tillåtet intervall är 0,0s – 300s. Parametern saknas vid reglering med ett FX-system.

**Sampling time (s)**

Detta är samplingstiden i sekunder med vilken PID-algoritmen exekverar i PLC:n. Inte att förvälta med samplingstiden vid trendmonitorering eller Autotuning. Tillåtet intervall är 0,01s – 60s.

**Filter coefficient (%)**


**MV lower limit**

Denna undre utsignalsgrens anger det minsta värde utsignalen kan anta i autoläge. Beräknas en utsignal lägre än denna gräns sätts utsignalen till detta värde.

**MV higher limit**

Denna övre utsignalsgrens anger det största värde utsignalen kan anta i autoläge. Beräknas en utsignal större än denna gräns sätts utsignalen till detta värde.

**MV variation rate limit**

Detta är den maximalt tillåtna utsignalssändringen. Om skillnaden mellan detta och föregående sampels utsignal är större än denna gräns sätts en larmflagga.
PV variation rate limit
Detta är den maximalt tillåtna årvärdesändringen. Om skillnaden mellan årvärdet i detta och föregående sampel är större än denna gräns sätts en larmflagga.

PV lower alarm limit
Denna parameter anger undre gräns för årvärdeslarm. Om årvärdet underskriver detta värde slår PLC:n larm. Parametern understöds endast av FX-system

PV higher alarm limit
Denna parameter anger övre gräns för årvärdeslarm. Om årvärdet överskrider detta värde slår PLC:n larm. Parametern understöds endast av FX-system

Manual MV
Om man kopplar ur regulatorn med Manipulated Value Manual så blir denna parameter utsignal.

Set Value
Börvärdet, dvs det värde regulatorn försöker få årvärdet att följa.

Operation method
Normal
Detta val innebär normal reglerverkan dvs utsignalen ökar när årvärdet blir större än börvärdet.

Reverse
Detta val innebär omvänd reglerverkan dvs utsignalen ökar när årvärdet blir mindre än börvärdet.

Manipulated Value
Automatic
Detta val innebär att regulatorn befinner sig i autoläge dvs den arbetar normalt.
Manual

Monitor Loop Trend
Detta menyalternativ ger möjlighet att studera processen i realtid. Här går MELPID online mot PLC:n om inte detta har gjorts tidigare.

Monitor Trend

Dialogbox för val av regulator, buffringstid och samplingstid från PLC vid trendmonitorering.

Loop
I denna listruta anges vilken regulatorloop som ska studeras. Även om endast en loop studeras på skärmen sker loggning av samtliga befintliga loopar till en buffert som senare kan sparas.

Sampling time from PLC (s)
Här anges tiden i sekunder mellan två läsningar som MELPID ska göra från PLC:n.

Buffertime (s)
Här anges buffertens storlek i sekunder. Denna är av rullande typ på så sätt att när bufferten är full så kasseras hela tiden de äldsta samplen.
**Trend graph**

![Trend graph](image)

Fönster som visar börvärde, ärvärde, utsignal mm vid trendmonitorering.

I detta trenddiagram kan kurvor över börvärden (svart kurva) och ärvärden (gul kurva) studeras samtidigt som utsignalen visas som en blå stapel till höger. I textutor uppe till höger presenteras de numeriska värdena för P-konstant ($K_p$), I-konstant ($T_i$), D-konstant ($T_d$), samplingstid ($T_s$), börvärde (SV) och ärvärde (PV).

I detta fönster kan man även klicka dels på kurvorna och dels på axlarna
Plot Parameters

Om man klickar på en kurva i diagrammet får man upp dialogboxen Plot Parameters efter att vald kurva blinkat till.

*Spline*

Om denna ruta är kryssad kan man få en mjukare kurva men denna kommer också att uppdateras långsammare vid snabb sampling.

*Data*

Man kan få upp ett kalkylarksliknande fönster genom att klicka på knappen *Data.*
<table>
<thead>
<tr>
<th>#</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>63.0</td>
</tr>
<tr>
<td>1</td>
<td>0.011900</td>
<td>63.95</td>
</tr>
<tr>
<td>2</td>
<td>0.021967</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>0.031133</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>0.040283</td>
<td>64.05</td>
</tr>
<tr>
<td>5</td>
<td>0.050350</td>
<td>64.05</td>
</tr>
<tr>
<td>6</td>
<td>0.060417</td>
<td>64.1</td>
</tr>
<tr>
<td>7</td>
<td>0.070403</td>
<td>64.1</td>
</tr>
<tr>
<td>8</td>
<td>0.079650</td>
<td>64.05</td>
</tr>
<tr>
<td>9</td>
<td>0.089717</td>
<td>64.1</td>
</tr>
<tr>
<td>10</td>
<td>0.099867</td>
<td>64.2</td>
</tr>
<tr>
<td>11</td>
<td>0.109933</td>
<td>64.15</td>
</tr>
<tr>
<td>12</td>
<td>0.119000</td>
<td>64.05</td>
</tr>
<tr>
<td>13</td>
<td>0.129063</td>
<td>64.1</td>
</tr>
<tr>
<td>14</td>
<td>0.139150</td>
<td>64.1</td>
</tr>
<tr>
<td>15</td>
<td>0.149217</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>0.159283</td>
<td>64.15</td>
</tr>
</tbody>
</table>

Fönster som visar bör eller ärvärdena i varje sampel.

Detta fönster visar värdena i den valda kurvan punkt för punkt. Varje värde skiftas ett steg uppåt per sampel. Man kan bläddra uppåt och neråt med bläddringslisten till höger.

Med menyalternativet **Copy** kopieras alla datapunkternas värden i ASCII format till Windows Urklipp.

Med **Format** kan man ändra antal siffror som ryms i kolumnerna (**Width**) och antalet värdesiffror i datapunkternas värden (**Precision**).

**Line Attributes**

Om man klickar på knappen **Line Attributes** får man upp en dialogbox i vilken man kan ändra diverse parametrar för den valda linjen.

**Color**

Ändrar linjens färg. Undvik dock rött som används för att indikera larm på ärvärdeskurvan.
Style
Ändrar linjens ritsätt. Man kan välja mellan bl.a. heldragen, streckad och punktstreckad. Används med fördel vid utskrift för att lättare kunna skilja på bör- och ärvärde.

Width
Ändrar linjens bredd. Linjebredden 0 innebär att den skrivs ut så tunn som möjligt både på skärmen och på skrivare.

Vertical/Horizontal Axis
Klickar man på en axel får man upp dialogboxen Vertical/Horizontal Axis efter att vald axel blinkat till.

<table>
<thead>
<tr>
<th>Vertical Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
</tr>
<tr>
<td>To</td>
</tr>
<tr>
<td>□ Logarithmic Scale</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>Ticks</td>
</tr>
<tr>
<td>Step</td>
</tr>
<tr>
<td>Minor Ticks</td>
</tr>
<tr>
<td>Grids</td>
</tr>
<tr>
<td>□ Major</td>
</tr>
<tr>
<td>□ Minor</td>
</tr>
<tr>
<td>Style...</td>
</tr>
<tr>
<td>Style...</td>
</tr>
<tr>
<td>OK</td>
</tr>
</tbody>
</table>

From och To
From anger var det visade intervallet ska börja och To var det ska sluta. Det är bara meningsfullt att ändra dessa gränser för y-axeln.

Ticks
Step anger avståndet mellan stora skalstreck och Minor Ticks anger antalet små skalstreck mellan de stora.

Logarithmic Scale
Om denna ruta är kryssad fås en logaritmisk skala längs den valda axeln och kurvan anpassas därefter.
**Intercept**

Detta värde anger en punkt på den andra axeln vid vilken denna axel ska skära.

**OBS!**

Om man vill detaljstudera ett intervall på y-axeln genom att ändra på värdena i **To** och **From** måste man ändra interceptvärde för x-axeln till y-axelns fromvärde först för att diagrammet ska hänga ihop.

**Grids**

Man kan lägga ett rutnät över området innanför axlarna för att underlätta avläsning genom att kryssa rutorna **Major** och **Minor**. Bara **Major** kryssad ger en storlek på rutorna som är lika stor som avståndet mellan de stora skalstrecken och båda kryssade som mellan de små. Klickar man på **Style** kan man ändra på rutnätets rätsätt, färg och linjebredd på samma sätt som man ändrar detta för kurvorna.

**Menyraden i trendfönstret**

**File**

**Save**

Detta menyval sparar alla de befintliga looparna på fil efter att man gett historiefilen ett namn. Filnamnet får tillägget .HST om inget annat anges.

Är och börvärdet sparas för varje sampel i bufferten medan P, I, och D-konstant och samplingstid blir de som är aktuella vid spartillfället. Av denna anledning är det lämpligt att spara förloppet varje gång man ändrar på någon av dessa parametrar.

**Print Graph**

Skriver ut den kurva som visas i fönstret på standardskrivaren.

**Printer Setup**

Möjliggör ändring av ett antal skrivarspecifika inställningar.

**Printing Options**

I denna dialogbox kan man ändra ett antal utskriftsparametrar angående grafen man vill skriva ut.
Graph Window Background
Om denna ruta är kryssad skrivs området utanför axlarna ut med bakgrund annars inte.

Plotting Area Background
Om denna ruta är kryssad skrivs området innanför axlarna ut med bakgrund annars inte.

Border
Om denna ruta är kryssad skrivs en ram runt grafen ut.

Maintain Aspect Ratio
Om denna ruta är kryssad bevaras proportionerna i grafen.

Print Graphs to max size
Skriver ut grafen så stor som papperet tillåter.

Proportionate
Skriver ut grafen så stor som papperet tillåter samtidigt som proportionerna bevaras.

Exact size
Skriver ut grafen med samma storlek som på skärmen.

Close
Detta menyalternativ avbryter buffringen och stänger Trendfönstret.

Edit
Under denna meny finns menyalternativet Copy som kopierar grafen till Windows Urklipp. Detta kommando kan också utföras med Ctrl-C.

Loop
Under denna meny finns alternativet Select i vilken man kan byta loop i trendfönstret utan att behöva gå ur detta och öppna det på nytt. Dock börjar buffringen om från början när man byter loop varför det är lämpligt att spara förloppet innan detta menyalternativ väljs.

Alarm
PLC:n bevakar hela tiden att ärvärde och utsignal håller sig inom de gränser som angavs i parameterfönstret. Larmfunktionen påverkar antingen ärvärdeskurvan eller utsignalstapeln genom att dessa byter färg till rött.
**Enable**

Om detta menyalternativ är förbockat är larmen aktiva annars inaktiva.

**Reset**

Nollställer båda larmen.

2

Denna meny ger en kortfattad on-line hjälp om trendfönstret.

**Monitor Loop History**

Att kunna studera ett processförlopp i efterhand kan vara värdefullt när man vill kontrollera hur en regulator styr en och samma process med olika regulatorparametrar. Dessa olika förlopp kan sedan jämföras för att besluta vilken uppsättning parametrar som fungerande bäst. Efter att ha sparat ett förlopp i trendfönstret kan det senare öppnas med hjälp av detta menyalternativ.

**Select Loop**

![Select Loop Dialog](Image)

*Dialogbox för val av regulator vid monitorering av historiskt förlopp.*

Här väljer man vilken regulatorloop man vill studera. De man har att välja ibland är alla de loopar som buffrades vid spartillfälle.
**History graph**

Fönster som visar bl.a. bör och ärvärde för ett historiskt förlopp.

Historiefönstret har samma menyer som trendfönstret förutom **Alarm** och **Save**. Dessutom finns samma möjligheter att klicka på kurvor och axlar. Om bufferten är längre än historiefönstrets bredd finns en bläddringslist under historiegrafen med vilken man kan flytta sig längs tidsaxeln. När fönstret öppnas visas den del av förloppet som var aktuell vid spartillfället, man befinner sig alltså i slutet på tidsaxeln. Regulatorparametrarna P-konstant ($K_p$), I-konstant ($T_i$), D-konstant ($T_d$) och samplingstid ($T_s$) presenteras i textboxar uppe till höger i fönstret. Dessa är de som var aktuella vid spartillfället. Nedanför dessa finns börvärdet (SV) och ärvärdet (PV) dessa är de aktuella i varje sampel.

Historiegrafens x-axel är graderad i minuter och origo är det äldsta samplet i bufferten. Längst nere till höger i detta fönster finns en
absolut tidsangivelse för det sampel som befinner sig längst till höger i grafen.

**Auto Tune**


Autotuningfunktionen i MELPID består av flera moment som måste utföras i en viss ordning och därför är denna utformad som en guide i fem steg där varje steg är ett fönster.

**Auto Tuning (step 1 of 5)**

MELPID går här online mot PLC:n om inte detta har gjorts tidigare.

![Auto tuning (step 1 of 5)](image)

Här väljs vilken regulator som ska trimmas.

**Auto Tuning (step 2 of 5)**

Här får man upp ett fönster som påminner om trendfönstret men med en bläddringslist istälte för en stapel för utsignal. Man har dessutom samma menyer (förutom Save) och samma möjligheter att klicka på kurvor och axlar som i trendfönstret.

I detta fönster befinner sig regulatorn i manuellt läge och man styr processen med bläddringslisten till höger som är kopplad till den manuella utsignalen (processens insignal).

I textrutorna uppe till höger presenteras de numeriska värdena för börvärde (SV), årvärde (PV) och utsignal (MV). Den svarta kurvan visar börvärden och den gula kurvan visar årvärdet (processens utsignal). För att få bra resultat lägger man nu årvärdet med hjälp av
bläddringslisten på lämplig nivå (nära börvärdet) och väntar tills stabilitet uppnås (ärvärden ligger stilla). När detta är klart trycker man på Start-knappen.

Observera att börvärdet hör endast visas som referens och påverkar inte processen.

**Auto Tuning (step 3 of 5)**

![Auto Tuning dialog box]

*Dialogbox för inmatning av diverse information om steget inman det utförs.*


**Amount**

I detta fält står ett förslag på stegets storlek som ska utföras på utsignalen. Detta kan ändras efter behov. Värdet uttrycks i samma enhet som utsignalen (% i exemplet ovan).

**Duration (s)**

Här anges varaktigheten på steget i sekunder. Den föreslagna tiden kan ändras efter behov. Denna tid är i allra högsta grad processberoende varför det är troligt att denna behöver ändras. En för lång tid är att föredra framför en för kort eftersom steget kan avbrytas i förtid manuellt.

**MV Step**

Här avgörs om utsignalsteget ska tas uppåt eller neråt. MELPİD föreslår uppåt om ärvärdet för tillfället ligger under mitten av sitt intervall, annars neråt.
Step Up låter utsignalsteget gå uppåt medan Step Down tar steget neråt.

Control Algorithm

Här väljs om man vill beräkna parametrar till en PI-regulator eller en PID-regulator.

Auto Tuning (step 4 of 5)

Här kan stegsvaret studeras på ärvärdeskurvan. Det är under denna period som datainsamling om processen sker. Tanken är nu att man ska klicka på Step-knappen när ärvärdet planat ut och inte rör sig nämnvärt längre. Om man inte avbryter stegsvaret manuellt så avslutas det efter den tid som angavs i Duration i steg 3.

Auto Tuning (step 5 of 5)

![Auto tuning dialog box](image)

Fönster som presenterar de beräknade parametrarna.

I denna dialogbox presenteras förslag på nya regulatorparametrar. När man klickar på OK återgår man till autoläge med den valda parameteruppsättningen.

De parametrar som föreslås är P-konstant (Proportionate factor), I-konstant (Integrating time) och D-konstant (Differentiating time). I det fall man har valt att beräkna endast P och I parametrar sätts D-konstanten till noll.

Suggested

I denna kolumn presenteras de föreslagna parametrarna. Dessa är beräknade ur den datamängd insamlad i steg 4.
Old

I denna kolumn visas den uppsättning parametrar som hittills använts (i autoläge).

Parameter selection

Här väljs om man vill använda de föreslagna (suggested) eller de hittills använda (old) parametrarna när man återgår till autoläge.

Menyn ?

Index

Detta alternativ tar fram innehållsförteckningen till MELPIDS online hjälpavsnitt. Detta innehåller hjälp till de mest icke-triviale dialogboxarna.
Kortfattad on-line hjälp.

About

Detta alternativ tar fram ett fönster som visar versionsnummer och information om MELPID.

Programpaket för uppsättning och intrimning av PID-regulatorer

Handhavande av melpid
5. Autotuning


Algoritm

Den använda algoritmen är baserad på ”dominant pol”-metoden. Denna undviker flera av nackdelarna med Ziegler-Nichols metod genom att utfärda tre istället för två processparametrar beräkna regulatorparametrarna. Dessa är statisk processförstärkning ($K_{pp}$), dominerande dödttid (L) och dominerande tidskonstant (T).

Den statiska processförstärkningen är kvoten mellan förändring i ärvärde och förändring i styrsignal

$$K_{pp} = \frac{\Delta PV}{\Delta MV}.$$ 

Den dominerande dödttiden (L) är definierad som skärningspunkten av tangenten till den brantaste lutningen på stegsvaret med tidsaxeln. Den dominerande tidskonstanten är den tidpunkt då stegsvaret når 63% av sitt slutliga värde. Dessa tider illustreras nog bäst i en figur.
$T$ och $L$ definieras ur stegevaret.

Den normaliserade dödtiden ($\tau$) är

$$\tau = \frac{L}{L + T}$$

När processparametrarna extraherats ur stegevaret kan regulatorparametrarna $K_p$, $T_i$, och $T_d$ beräknas.

**PI**

$$K_p = \frac{1}{K_{eqg}} \cdot \frac{T}{L} \cdot 0,29 \cdot e^{-2,7\tau + 3,7\tau^2}$$

$$T_i = T \cdot 0,79 \cdot e^{-1,4\tau + 2,4\tau^2}$$

**PID**

$$K_p = \frac{1}{K_{eqg}} \cdot \frac{T}{L} \cdot 3,8 \cdot e^{-4,4\tau + 7,3\tau^2}$$

$$T_i = T \cdot 0,46 \cdot e^{2,8\tau - 2,1\tau^2}$$

$$T_d = T \cdot 0,077 \cdot e^{5,0\tau - 4,8\tau^2}$$

Observera att till en PI-regulator beräknas parametrarna med en egen formel, det går alltså inte att använda PID-formeln alltid och sätta $T_d$ till 0 i de fall regulatorn inte stöder D-verkan.

Nu återstår bara problemet att formulera den ovan beskrivna algoritmen i programkod. Antag att två vektorer av långd TuneBuffSize finns tillgängliga. Dessa är dels PV TuneBuffer...
(ärvärdesvektorn) och dels TickTuneBuffer (tidsstämpel (ms) för varje ärvärde). Låt differenskvoten

\[
\frac{dPV}{dt} \text{(Sample)} \approx 1000 \cdot \frac{PV\text{TuneBuffer(Sample)} - PV\text{TuneBuffer(Sample - 1)}}{Tick\text{TuneBuffer(Sample)} - Tick\text{TuneBuffer(Sample - 1)}}
\]

approximera derivatan (lutningen) av PV med avseende på tiden i tidpunkten Sample. Genomsökning av vektorernas alla värden är nu ofrånkomligt, men sökning kan göras både efter den maximala lutningen och eftersom är avvärdet nått 63% samtidigt. Se nedanstående kodavsnitt.

```vba
Function CalculatePIDParam () As Integer

    Dim SPG As Single  ' Static process gain dPV/dMV
    Dim L As Single    ' Apparent dead time
    Dim T As Single    ' Apparent time constant
    Dim Tau As Single  ' Normalized dead time L/(L+T)
    Dim dPV As Integer
    Dim dPvd As Single, MaxdPvd As Single
    Dim Sample As Integer, LSample As Integer, TSample As Integer
    Dim FoundT As Integer

    dPV=Abs( PV\text{TuneBuffer(TuneBuffSize-1)}- PV\text{TuneBuffer(0)} )
    SPG=dPV/Abs(StepMV-StartMV)
    FoundT=False
    MaxdPvd=0

    For Sample=1 To TuneBuffSize-1
        If Abs( PV\text{TuneBuffer(Sample)}- PV\text{TuneBuffer(0)})>.63*dPV And Not FoundT Then
            FoundT=True
            TSample=Sample
        End If
        dPvd=1000*(PV\text{TuneBuffer(Sample)}- PV\text{TuneBuffer(Sample-1)})/(Tick\text{TuneBuffer(Sample)}- Tick\text{TuneBuffer(Sample-1)})
        If Abs(dPvd)>Abs(MaxdPvd) Then
            MaxdPvd=dPvd
            LSample=Sample
        End If
    Next Sample

    If MaxdPvd=0 Then
        CalculatePIDParam=False
        MsgBox "Can't calculate new parameters",
    MB_ICONEXCLAMATION
    Else
        CalculatePIDParam=True
    End If
```

Programpaket för uppsättning och inträffning av PID-regulatorer

Autotuning
L = TickTuneBuffer(LSample) - TickTuneBuffer(0) - Abs(PVTuneBuffer(LSample) - PVTuneBuffer(0))/MaxdPVdt
T = (TickTuneBuffer(TSample) - TickTuneBuffer(0))/1000 - L
Tau = L / (L + T)

If frmTune3!optPID(0) Then 'PI
KpSuggest = T/L/SPG*.29*Exp(-2.7*Tau+3.7*Tau^2)
TiSuggest = T*.79*Exp(-1.4*Tau+2.4*Tau^2)
TdSuggest = 0
Else 'PID
KpSuggest = T/L/SPG*3.8*Exp(-8.4*Tau+7.3*Tau^2)
TiSuggest = T*.46*Exp(2.8*Tau-2.1*Tau^2)
TdSuggest = T*.077*Exp(5*Tau-4.8*Tau^2)
End If

End If

End Function
6. Resultat och diskussion

De resulterande parametrarna vid autotuning fungerade hyfsat i de flesta fall och riktigt bra i andra fall beroende på vad som bedöms vara acceptabelt. Att resultatet inte blir perfekt beror på att metoden trots allt utgår ifrån begränsad information om processen.

Ett exempel

Autotuning av en process simulerad med hjälp av ”Dual Process Simulator” utfördes fem gånger med samma process både med PI- och PID-algoritmen. Resultatet blev följande:

<table>
<thead>
<tr>
<th>P</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,08</td>
<td>4,21s</td>
</tr>
<tr>
<td>1,06</td>
<td>4,86s</td>
</tr>
<tr>
<td>1,04</td>
<td>4,59s</td>
</tr>
<tr>
<td>1,03</td>
<td>4,86s</td>
</tr>
<tr>
<td>1,00</td>
<td>4,09s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>I</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,08</td>
<td>3,99s</td>
<td>0,89s</td>
</tr>
<tr>
<td>5,79</td>
<td>4,23s</td>
<td>0,97s</td>
</tr>
<tr>
<td>3,56</td>
<td>4,32s</td>
<td>1,02s</td>
</tr>
<tr>
<td>6,00</td>
<td>3,99s</td>
<td>0,89s</td>
</tr>
<tr>
<td>5,09</td>
<td>4,34s</td>
<td>1,00s</td>
</tr>
</tbody>
</table>

Det intressanta här är att samma process kan generera så pass olika parametrar. En bidragande anledning till detta finner man om man tittar på formeln som används för att beräkna P-konstanterna i fallet PID för vilka situationen är värst.
\[ K_p = \frac{1}{K_{spg}} \cdot \frac{T}{L} \cdot 3.8 \cdot e^{-8.4\tau + 7.3\tau^2} \]

Grafen visar funktionen \( f(\tau) = e^{-8.4\tau + 7.3\tau^2} \).

Figuren ovan visar att exponentialfunktionen i formeluttrycket är ganska brant speciellt för \( \tau \) nära 0 vilket medför att små variationer i processparametrarna kan bidra till stora variationer i de beräknade P-konstanterna.

Snabba processer

En fundamental praktisk begränsning har varit prestanda vad gäller snabbheten på de processer som antingen autotunas eller studeras i trenddiagram och anledningen är till största delen att samplingstakten mellan PC och PLC begränsas av sitt protokoll. Faktum är att detta är PLC-programberoende, Melcom (kommunikationsbiblioteket) kan nämligen optimera kommunikationen bättre om regulatorernas dataareor ligger konsekutivt i PLC-systemets minne.

En annan faktor som drar ner prestanda är grafipaketet. En kurva ska ritas om varje sampel och i fallet trendmonitorering så ska dessutom alla looparna loggas.
Snabbheten beror också på hur många regulatorer som används. I gynnsamma fall kan man pressa samplingstiden mellan PC och PLC till ca 0,1s och i värsta fall kan den uppgå till ca 2s.

Vid trendmonitorering är det inte så allvarligt, visserligen ser man inte de högfrekventa svängningarna vid monitorering av en snabb process men en hygglig skattning kan man se och regulatorn klarar ju av att reglera mycket snabbare processer än MELPID kan visa.

Värre är situationen vid autotuning. Algoritmen kommer att beräkna felaktiga parametrar och det finns inget sätt för den att avgöra att den har att göra med en allt för snabb process. Därför får hoppetstå till att användaren inte ger sig på autotuning för sådana processer.

**Brusiga processer**

Om en alltför brusig process ska autotunas kommer punkten för största lutning i stegsvaret med all säkerhet att hittas på fel ställe och därmed blir de beräknade parametrarna fel. Detta problem kan löjas genom att låta MELPID genomföra någon slags filtrering. Detta görs dock inte i dess nuvarande utförande. Observera att den filterkoeficient som kan användas för att jämna ut ärvar det endast fungerar i autoläge och alltså är oväsentlig vid autotuning.

Ett alternativt sätt att lösa problemet med brus är att utnyttja den möjlighet till medelvärdessbildning som finns på de analoga ingångskorten till ett PLC-system.

**Ickeminfassystem**

Ett ickeinfassystem skulle "lura" algoritmen.

Det får antas troligt att dylika processer är ovanliga i industrin och därför utgör ett mindre problem.
7. Referenser


Studentlitteratur (1989)


Karl-Johan Åström & Tore Hägglund. *PID Control.*
Instrument Society of America (1994)